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An argument is put forward in favor of using a model gravity field of a degree and order higher than 
2 as a reference in gravity field studies. Stokes's approach to the evaluation of the geoid from gravity 
anomalies is then generalized to be applicable to a higher than second-order reference spheroid. The 
effects of truncating Stokes's integration and of modifying the integration kernels are investigated in 
the context of the generalized approach. Several different modification schemes, starting with a 
Molodenskij-like modification and ending with the least squares modification, are studied. Particular 
attention is devoted to looking at both global and local biases and mean square errors of the individual 
schemes. 

INTRODUCIION 

After the famous Newton-Cassini argument about the basic 
shape of the Earth (oblate versus prolate) was settled by the 
French Academy's mid-eighteenth century expeditions, the 
oblate biaxial ellipsoid became the reference surface in 
geodesy. There is, of course, much to be said about the 
appropriateness of such a simple surface for the purpose of 
positioning. We wish to argue here, however, that for 
gravity field studies a higher than second-order surface (a 
spheroid of degree and order M) may now be used with 
considerable advantage. 

This is not, of course, a new idea. Earth Gravity Models 
(EGM) expressed in terms of a series of zonal spherical 
harmonics have become part of the definition of geodetic 
reference systems (see, for instance, the definition of 
Geodetic Reference System (GRS) 80 [Moritz, 1980], or 
World Geodetic System (WGS) 1984 [Smith, 1988]). Low- 
degree and -order fields, mostly determined from satellite 
orbits, have been used by many researchers [e.g., Nagy and 
Paul, 1973], in the past few decades, mostly without 
acknowledging their reference role explicitly. We wish to 
point out that there is a definite gain in insight and thus a 
didactic advantage in the explicit acknowledgment of the 
reference field role played in effect by the EGMs. 

To be sure, there is, and always will be, an error in any 
EGM to be adopted as a reference field. But this situation is 
no different from that we now face with the second-degree 
zonal (Somigliana-Pizzeti) field, a situation we have been 
living with for at least two centuries. There are ways of 
dealing with this problem, and we shall try to point them out 
as appropriate. 

Throughout this paper, we shall be expressing the gravity 
field (the geoid in particular) or its components 
interchangeably in terms of convolution integrals of Green's 
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type and in terms of finite or infinite series of spherical 
harmonics. We shall speak of those as integral or spectral 
representations, respectively, as has recently become the 
custom in geodesy. 

In addition, it should be emphasized that the residual geoid 
obtained using a higher-degree and -order reference field may 
have particular advantages for regional geophysical 
interpretation [e.g., SjOberg, 1984c; Christou et al., 1989]. 
This fact alone should motivate a closer study of Stokes's 
formula for a higher-degree and -order reference field. 

REFORMULATION OF STOKES'S CONVOLUTION INTEGRAL 

Let us start by considering Stokes's original formula for 
geoid undulation N referred to the geodetic reference ellipsoid 
[Heiskanen and Moritz, 1967]: 

N ' n: •S(• Agd• , (1) 
where tc = R/(41r•, R and •' are the mean surface radius and 
mean gravity of the Earth, Ag is the gravity anomaly defined 
as 

Ag = g •- •'$= g - •' ø (2) 
(g.• = g is the actual gravity on the geoid, and 7• =7o is the 
normal gravity on the ellipsoid, both along the same normal 
to the ellipsoid), and the integration kernel S is called the 
Stokes function. The integration is carried over the whole 
reference ellipsoid • or, equivalently, over a unit sphere. We 
use the approximate equality sign because the expression is 
correct only to the order of e 2 (the square of eccentricity of 
the reference ellipsoid) [Vanœ•ek and Krakiwsky, 1986]; this 
is known as the "spherical approximation." Stokes's 
function is usually written as a series of Legendre 
polynomials Pn, 

S(• = E 2n+ 1 n-1 Pn (cos l/t) , (3) 
n=2 
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where •r is the geocentric angle between the point of interest 
and the dummy point in the integration. 

It has been shown by many authors (e.g., Lachapelle 
[1977] or Vanœ•ek and Krakiwsky [1986]), that if a spheroid 
of degree M given by the first M degree spherical harmonic 
components (Ni) of the geoid 

M 

qv) = , (4) 
i=2 

where Ni contains (2i+1) spherical harmonics of appropriate 
orders, is taken as a reference surface, then the geoidal height 
N M above that spheroid is given by the following equation, 
correct to the order of the eccentricity of the reference 
ellipsoid squared (e2). We have 

N M ' tc • •, sM(IF) Ag M d •' , (5) 
where 

SM(•= Z 2n+l Pn(cos • n-1 
n=M+l 

M 

Z2n+ 1 pn(cos I/t) , (6) =S(•- n-1 
n=2 

AgM=g_•14 ; •3'1= 
M 

(7) 

and 7n is defined below. In the sequel, we shall call the 
spheroid of Mth degree and order simply "spheroid of Mth 
degree." 

The following two notes are required. First, writing (5), 
we have neglected a term 

E 1 = tC • o• (S - S M) Ag M d o • , (8) 
which equals to zero when ¾n < M: AgMn = gn- 7n TM 0, i.e., 
in the absence of errors in the low-degree harmonic 
components g n and 7n of the observed gravity g and the 
model gravity •: This condition will clearly not be satisfied 
generally, as the analogous condition for go and 7o is not 
satisfied in the original Stokes formulation, and we will bring 
the neglected term into the picture later when we start 
discussing observational errors. Second, we note the 

nonstandard use of the symbols 7n and 7 *t. By 7n we denote 
the spherical harmonic components of gravity generated by 
the EGM, i.e., the "model gravity" on the spheroid. The 
model gravity T •t plays exactly the same role here as the 
normal gravity 7o does in the original Stokes development. 
(It should be noted that 7o does not figure in any of the new 
expressions as it should not. In practical computations, 
however, Ag around the world would be available rather than 

g in which case To obviously has to be taken into account. 
But this step is irrelevant to the theory presented here.) The 
only place the reference ellipsoid is implied is in (4); by (4) 
the reference spheroid is presumed to be referred to the 
reference ellipsoid. Clearly, (N)M + N M = N as required. As 
expected, as the degree M grows, Ag M tends to zero. 
Moreover, for n > M: AgMn = gn' since, by definition, for n > 
M: 7n=0. 

Equation (5) is an exact counterpart of the original Stokes 
formula (1) derived for the second-degree reference spheroid 

(i.e., the reference ellipsoid), and we shall be calling it the 
"generalized Stokes formula." It is accurate, like its original 
second-degree counterpart, to terms of the order of e 2, i.e., to 
the order of 0.3%. Since for a reasonable choice of M, say 
M = 20, LNMI is about one order of magnitude smaller than 
IN I, the effect of this inaccuracy is also one order of 
magnitude smaller, which amounts to a few centimeters. 

We note that in (5), Ag M can be replaced by Ag without 
any effect on the resultant N M because S M is "blind" to the 
first M harmonic components of Ag. This result follows 
from the orthogonality of sperical harmonics on the sphere. 
Nevertheless, we shall systematically use Ag M, because we 
will want to perform certain operations on the generalized 
Stokes function S M which may destroy its "blindness," and 
the retention of the low-order part of Ag in the convolution 
integral would give rise to unjustifiable terms. 

We wish to point out that the adoption of the higher- 
degree reference spheroid in the Stokes theory as discussed 
above is responsible for the change in the shape of the 
Stokes kernel from S (really S 2) to S M. The latter tapers off 
more rapidly than the former [e.g., Jekeli, 1980]; that is, the 
influence of distant gravity anomalies on local geoidal height 
is reduced. The reduction is proportional to the degree M of 
the reference spheroid. Thus, to evaluate the geoidal height 
N M above the Mth degree reference spheroid, distant gravity 
anomalies may be treated in a more cavalier way than in the 
standard second-order Stckes :•ecry. 

As with the standard Stokes formula, the generalized 
formula is oblivious to the scale of the reference spheroid and 
to the geocentricity of the reference field. The question of 
"forbidden harmonics" [Heiskanen and Moritz, 1967] does not 
arise since we do not need to transform Ag• to N•. We leave 
the topographical, indirect, and atmospheric effects in the 
generalized Stokes approach out of the discussion here. 
These effects were discussed exhaustively by Vanœ•ek and 
Kleusberg [1987]. However, again we wish to point out that 
most errors, linear and nonlinear, coming from various 
sources, are reduced when transferring to a higher-degree 
reference field [see Heck, 1989]. 

NUMERICAL EVALUATION OF TI-IE GENERAI.• STOKES 

CONVOLUTION INTEGRAL 

Theoretically, the integration implied by (5) has to be 
carried out over the whole Earth. This is a nuisance, because 
gravity coverage of the Earth's surface is irregular and 
incomplete. Also the numerical effort involved would be 
huge. This is where the fast convergence of S M to zero with 
growing • becomes very helpful. The integration does not 
have to be carried out all the way to •= •r, because the 
contributions to N M from distances • larger than a certain 
value •o become manageably small. For practical evaluation 
of the convolution integral, we would welcome the critical 
distance •o to be as small as possible. This would imply that 
as high a degree of M as possible should be used for the 
reference spheroid. On the other hand, the error in the 
reference field grows with growing M. Normally, therefore, a 
compromise value of M is used. 

Now writing (5) as 

NM ' tc Il eoSM(IF) AgM d • 
+ r ff SM< AgM d•, (9) 
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where •o denotes a spherical cap of radius •t o, we can study 
the effect of M and •t o on the geoidal height N M. The first 
term denotes the "truncated" convolution integral (for • < 
•o), while the second term describes the "truncation 
correction," or the negative "trimcation error" •M committed 
when the truncated integral is taken instead of the complete 
integral over the whole earth. Note that we still use the 
approximate equality because of the spherical approximation. 

It was Molodenskij et al. [1960], who first introduced the 
idea of reducing the value of •o further by allowing the kernel 
to be modified in such a way as to minimize the second term 
in (9), i.e., the tnmcation correction or truncation error. This 
idea has since been explored and developed in different 
directions by scores of researchers. 

To explain the similarities and differences between the 
various possibilities, let us first explain how the 
Molodenskij-type modification works within the framework 
of generalized Stokes theory. Molodenskij's idea is to 
change (modify) the integration kernel by subtracting a 
modifying function M s from it. We then get the modified 
kernel S M* in the following form: 

sM*(•=SM(•-M$(• . (10) 

Substituting this into (9), we obtain 

u.r Ileo SM*AgMdø• 
+ lC II •-•o SM* AgMd• 
+ •C • • Ms Ag M d• , (11) 

where the first term on the right-hand side represents a new 
approximation of N M and the last two terms are the new 
truncation correction to be minimized. 

To make things easier, the modifying function Ms is now 
chosen so that the last term disappears. Disregarding, once 
again, any errors in the EGM and in the low-degree 
components of Ag, all components AgMn of degree lower than 
or equal to M disappear, and any polynomial in P n of degree 
lower than or equal to M will satisfy the above requirement. 
(The effect of this disregarded term in the presence of long 
wavelength errors will be treated later.) We then choose 

M 

Z2n+ 1 Ms(V/) = 2 tn Pn(cos • , (12) 
n--0 

where the factors (2n+1)/2 are introduced for computational 
convenience, and tn, called "Molodenskij's modification 
coefficients," are to be determined so that the new truncation 
error 

8N M* =- •c II •-eo SM* AgM d• (13) 
is minimized in one sense or another. 

If the generalized Stokes formula is applied to a properly 
scaled EGM expressed in a geocentric coordinate system, then 
the summation (12) may begin with n=2. This is what we 
shall assume for simplicity from now on, so that we write 

M 

s M* ( v/) = s M ( v/) - Z 2n+ 1 2 tn Pn(cos • ß (14) 
n=2 

From Schwarz's inequality applied to (13) it follows that 

(/iNM*) 2 < • IISM*112 IIAgMII 2 , (15) 
where 

11'112 = II •-•o (.)2 d• . (16) 
Now, Molodenskij required that the upper bound of 18NM*l (cf. 
equation (15)) be the minimum. For a given AgM (fixed 
reference field and location), the norm IIAgMII is constant, 
while IISM*ll varies with the choice of tn (n = 2,3 ..... M). 
Minimizing the latter norm leads to the following system of 
normal equations: 

Vn < M: •nn oo_ i• ø (sM*) 2 do ø 

(sM*) 2 sin •t d•t= 0), 

or 

Vn<M: S M* •}tn sin • d• = 0). (17) 
Carrying out the differentiation, we obtain 

Vn<M: I (SM-Ms) Pn(cøs • sin •d•= 0 . (18) 
•o 

Employ•g •e usual notation, 

•Pi(cos • P/(cos • sin •d•= e0(%) , (19) 
•o 

•S(• Pi(cos • sin •d•= Qi(%) , (20) 

IsM(• Pi(cos • sin wdw= Q•(Wo) , (21) 
•o 

we get f•ally 
M M 

Vn•M' Z 2k+l u Z 2k+l 2 e•t•=Qn =Qn- 2 en•. (22) 
k=2 k=2 

•is represents a system of M-1 l•e• equatio• for t• which 
can be solved for •y given •o. These (Molodenskij-l•e) 
coefficients t• are then substituted •to (14) to give the 
Molode•kij-•pe modified kernel for •e generalized Stokes 
fomula. •s approach w• used • produc•g •e "U• Dec. 
'86" C•adi• geoid [Van[•ek et al., 1986]. 

Equations (22) are slightly different from the orig•al 
Molodens•j equation, •d the result•g p•meters t n •e 
also different from Molode•j's. But it t•s out that •e 
generalized Stokes function S M modified h la Molodenskij 

M* ß 
(SMol) xs exactly •e sine as Molodens•j's modified orig•al 
Stokes's function (SMol). T•s is •derst•dable because • 
both approaches we seek a f•ction so modified as to have 
the minimal L2-norm, •d in both cases only the low 
frequencies (up to wave number M) •e allowed to ch•ge. 
There is, however, a signific•t difference between the 
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geoidal height N%o t obtained by applying Molodenskij's 
modified kernel in the original Stokes theory and applying it 
in the generalized Stokes theory: the upper bound of the 
truncation error is, for the same radius of integration gr o, 
significantly smaller for the generalized theory. To show 
this, let us write 

_< = /, 
and, similarly, for the original truncation error: 

<- 
The expected value of IIAgMII is significantly smaller than the 
expected value of IIAgll, which proves the point. 

SPECTRAL REPRESENTATION OF DIFFERENT KINDS 
OF GEOIDAL HEIGHTS 

Before we discuss the modification issue further, let us 
derive the spectrum (harmonic series) representation of the 
individual kinds of geoidal heights. The simplest expression 
is obtained for the "exact" geoidal height N M given by (5). 
Expressing both S M and Ag M in Legendre's polynomials, we 
get 

ß M N M c Z n-• Agn ' (25) 
n=M+ 1 

where c = R/(2T), and AgMn can be replaced by Ag n because for 
n>M the two are identical. We use again the approximate 
equality symbol because the accuracy is only to the order of 
e 2. Bringing into the discussion also the term œ1, given by 
(8) which was neglected originally, we get an additional term 

M 

n--2 

The sum of (25) and (26) gives the complete expression: 

.c 2; , 
n--2 

in the expected and correct form. 
Let us now turn to the spectral representation of the 

geoidal height obtained from the truncated integration, i.e., 
from (9). First, to si•_plify the forthcoming equations, we 
introduce a new kernel S M by the following expression: 

= (28) 
for ¾t>•t o 

and write it in a Legendre's polynomial series form as 

s-M Z 2n+ 1 = 2 Sn Pn(cOs •, (29) 
n=2 

where sn are some coefficients to be determined. Disregarding 
the truncation error we have 

N M ' •c •o SM AgM d • 

=r ••MAgMd• . (30) 
Taking (29) into account, we can transfer this convolution 
integral into its spectral form as follows: 

n--2 

or, equivalently, 
M 

n--2 n--M+l 

Here we recognize the first term to be again caused by long 
wavelength errors in •34 and g; it would disappear if the EGM 
were errorless and if g were not contaminated by long 
wavelength errors. 

The coefficients s n can be easily determined from 

Vn: sn= I •-M(• pn(cos •sin !/td 
or, equivalently, from 

Vn: Sn TM ISM Pn sin !/rd 

Clearly, 

M Pn sin side. 

ln_-•'-QMn for 

n<M 

n>M 

(32) 

(33) 

and (31) becomes 
M 

n--2 

+c Z (n'-•-f-Q•)Agn ß (34) n=M+l 

Here again, the first term will have a nonzero value only 
because of long wavelength errors in the EGM and in g. 

It is interesting now to have a look also at the spectrum 
of the truncation error. The complete truncation error can be 
obtained from (9) and by considering the originally neglected 
term œ1. We obtain 

- 3N M =- tc o•_f2o S M AgM 

- tc •j• •, (S -S M) AgM d•. (35) 
This can be written in a spectral form as 

n=2 n=2 

Subtracting 6• M from ]•M (given by (34)) we obtain N M 
(equation (27)) as we should. 

Similarly, the geoidal height N M* computed by means of a 
modified generalized Stokes function S M* (equation (11)) has 
the following spectrum: 
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M 

N M*' • (tn+QMn - c *) AgnM 
n=2 

+c • (n-•-QMn*) Agn' (37) n=M+l 

where we use the symbol Q•n* to denote 
M 

V n: QMn*=QM n • 2i+1 - • ein t i . (38) 
i--2 

Both the long and short wavelengths are affected by the 
modification. The difference between the geoidal heights 
computed from the truncated integration using the generalized 
Stokes kernel and the modified generalized Stokes kernel is 
given by 

- • 2i+1 AgnM N M*-N M =-c n - •ein ti 
n=2 i=2 

** M 

+ c 2 ein t i Ag n (39) n=M+l i=2 

The critical role played by the Molodenskij modification 
coefficients t n is clearly demonstrated in this equation. 

The complete truncation error of modified geoidal height 
increased by the term œ1 is 

i/vu* =_ r II -eo su* AgU 
- r •J• •, M sag Md•-el ß (40) 

In a spectral form it can be written as 
** M 

• • ( 2 )AgnM ' (41) 6NM*=- c QMn* AgnM- c n-• + t n 
n=2 n=2 

which, once again, subtracted from N M* (equation (37)) gives 
N M. 

We note that Molodenskij's modification (equation (22)) 
implies that 

Vn < M: QMn* = O 
rendering the following result: 

M ** 

.. )Ag:c . •iI•M'o t - c n-'•-f + t n _ QUa* A g • (42) 
n=2 n=M+l 

The Molodenskij modified geoidal height spectrum is then 
M ** 

. ß ) I•M• t - c t n AgM n + c _ QM Ag (43) 
n=2 n=M+l 

Now comparing (37) and (43), we see that the 
Molodenskij modification affects not only the long 
wavelength geoidal heights, in the presence of long 
wavelength errors in Ag M, but also the short wavelengths. 

ß o 

The Q•n factors •n the two equations are different, as is 
apparent from (38): in the former case the modification 
coefficients are unspecified, in the latter case they are given 
by (22). This is true, of course, only for the modification 
which uses Legendre's polynomials up to the Mth degree. 

Other modification schemes can be used, and it will be 
interesting to investigate, for instance, modification schemes 
which use Legendre's polynomials up to a degree L, higher 
than the degree M of the reference spheroid. 

To do so, we rewrite (5) in the following rather general 
way, which can be done due to the orthogonality of spherical 
harmonics on •: 

L 

N M=tc • sL(!t t )Ag Md•+c • sn Agn, (44) 
n=M+ 1 

or, equivalently, 

N M = r II •o Sœ( • AgM d •' 

+ [ Q•n(•o) + sn] AgM n 
where 

¾L >M. 

Vn < L: 

+ • QLn(llro)Agn 
n=L+ 1 

(45) 

L 

St;(• = S(gt) - • 2k+ 1 2 sk Pk(cos V), (46) 
k--2 

QLn(•o) = ISœ(!//)Pn(cos l/t)sin •d• 
L 

= 2 enid(•o) sl•. (47) 
k=2 

In (45) we have divided the integration area into a cap •o 
of spherical angle •o around the computation point and a 
remote zone area •-•o. The latter integral becomes 

r o•_e ø Sœ(• AgM d•= c QLn(•o ) Ag n , (48) 
n=2 

which when inserted into (44) yields (45). We have assumed 
that the maximum degree of modification (L)is at least as 
high as the degree of the reference field, i.e., L>M, and we 
will use this assumption throughout the rest of this paper. 
We also assume that potential coefficients, typically 
determined from satellite orbit analyses, are available to 
degree and order L. However, only the first M degrees and 
orders are used to define the reference spheroid. 

Referring now to (45), it follows that Vn>M' Agn M = Ag n. 
Furthermore, due to the orthogonality of the Laplace 
harmonics, it follows that (44) is equivalent to (5) for any 
choice of the parameters s n (k=2,3 ..... L). (For clarification, 
S t' is denoted by S t'*, when Sn = (2/(n-l) + tn.) Equation (44) 
is essential in the error estimates to be derived below. 

One thing is clear, however: compared to the standard 
Stokes approach, truncation of the convolution integral does 
much less damage in the generalized Stokes approach. The 
price one has to pay for this is the introduction of 
unmitigated errors in the EGM (really in (N)M). We shall 
investigate the effect of these errors together with the effect 
of errors in Ag later. 

The other source of errors, the discretization error in the 
numerical evaluation of the convolution integral for N M*, is 
considered outside the scope of this paper. It represents a 
problem from the domain of numerical analysis and as such 
calls for development of techniques from that mathematical 
domain. 
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TWO GENERIC ESTIMATORS 

To be able to treat the case of different degrees (and 
orders) of the reference spheroid (M) and the modification (L), 
we shall directly introduce two kinds of generic estimators of 
N M rather than deriving them from some desired properties. 
Later, we shall show that specific selections of free 
parameters sn lead to specific properties of these estimators. 

Consider first the following general estimator of N M [cf. 
SjOberg, 1987]' 

L 

$I ^ Z ^ •IM' = r 0o Sœ(• AgM d•' + c (Q• + s,) Ag, , (49) 
n=M+l 

where A• •t and A•n are observed values (estimates)of Ag M 
and Agn, respectively. •M' suffers from errors in A•d•t and 

A 

Ag n as well as from the truncation error arising from the 
limited integration area 

A slightly different general estimator is given by [cf. 
Sj6berg, 1984a,b, 1987] 

L 

II •1M" = tc 0o St'( • A gM d •' + c sn Agn ß (50) 
n=M+l 

Note that the summation terms on the right-hand side of 
AM 

(49) and (50) reflect the assumptions that ¾n<M' Ag n = 0; 
that is, that the reference field represents the first M degrees 

AM 
of the actual field perfectly, and, by definition, ¾n>M: Agn 

A 

= Agn (cf. discussion following (8)). 
The errors of the two estimators (49) and (50) will be 

discussed in the next section. 

ERROR ESTIMATION 

Let us denote the errors in terrestrial gravity and the 
reference field harmonics of anomalies by e T and e s, 
respectively. The nth Laplace harmonics of these errors are 
denoted by • and •. Then the estimator •/M' can be rewritten 
as 

•IM' = tC II •o St'( AgSt + er - es) d •' 
L 

n=M+l 

where we have taken, following (7), 

(51) 

= ag + e r -(ag M + e s) = agM + er_ es, (52) 
and 

n=2 

By adding the stipulated (estimated) reference spheroid 
M 

n--2 

one obtains an estimator (N') for the total undulation above 
the reference ellipsoid. Equations (51), (54), (4), and (45) 
yield the expression for the total geoid undulation error which 
includes both the truncation error and the errors in the 

satellite and terrestrial gravity anomalies: 

8N' = N' - N = - tc o•_ {• S œ Ag M do • 
M 

II •o St'(er-eS) d(•'+c Z n--••a 
n=2 

L 

n=M+l 

Note that (52) yields 

and 

(55) 

¾n>M: A;a • A T = Ag n = Ag n + t• n . (57) 

Using the following relations between integral 
convolutions and Laplace expansions' 

and 

II •- •o SL AgM d • = 

II1•o SL(b'T-d) d o • 
where 

n=M+l 

= c - ½9) 
n=2 

and 

(60) 

, {•n for 2< n <L sn = , (61) 
for n >L 

one obtains, finally, the spectral form of the total error: 

6N'=c - s -Qn n-1 n 
n=2 

L • 

+ cZ + Z 
n=2 n=L+ 1 

Assuming that the observation errors have zero expectation, 
i.e., 

Vn: E(•)= E(•) = 0, and thus also E(e r) = E(e s) = 0, (63) 
it follows that the expected value of the total error is 

8N'= E($N') = - c Q• agn ß 
n=L+ 1 

(64) 

Introducing the global average operator 

1II r(.) = ½ ½.d½ , 
we note that 

(65) 

r(6N') = - c Q• r(Ag D = 0 ; (66) 
n=L+l 

that is, the global average of 8N' is unbiased. However, 8N' 
itself is locallybiased, because for any given locality, the 
expected value 8N' is not equal to zero. To study the local 
bias, we introduce 
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F[(•N.)2 ] c2 (Q•)2 = ca > 0 , (67) 
n=L+l 

where ca are the so-called "anomaly degree variances" 

Vn' c, = r(ag2•) > 0 , (68) 
which reflect the global behavior of the gravity field and 
have nothing to do with observing errors. Note also that the 
anomaly degree covariances vanish: 

¾n•k: F(Agn, Agk) = 0 . (69) 

This shows that the estimator N' is locally biased from degree 
and order L+I up. This is caused by the truncation of 
Stokes's integration to a cap (•o and by the use of a harmonic 
series to degree and order L in (49) (see also Sjiiberg [1987]). 

In a similar way, the error of the second general estimator 
N" becomes (cf. equations (49) and (50)) 

L 

6N" =N"-N = 6N'-c QL ^ • ag• (70) 
n=M+l 

with the expectation 

_ ~ • 6N" = E(6N") = - c Q•n ag ,. (71) 
n=M+l 

It follows that the estimator N" is again globally unbiased 
but is locally biased from degree and order M+I up. Clearly, 
if L is selected to equal to M, both estimators will have the 
same local bias. 

Next we will determine the variances of the estimators N' 

and N". We will use the following notations for the gravity 
anomaly error covariances 

Vn,k: E(• 4) = Ant and Vn,k•_L: E(4 4) = l'•nt. (72) 
Note that Ant and l•nt are position dependent! Furthermore, 

^'" ^S 
we assume that errors in Ag t and Ag n are uncorrelated, that is, 

¾n•k: E(• •) = 0 . (73) 
This implies that terrestrial gravity should not have been used 
in the computation of the potential coefficients defining 
either the reference spheroid or the potential coefficients of 
degrees between M and L! The case of correlated •T and • 
was treated by SjOberg [1987]. Finally, we note that 
potential coefficient derived _anomal•v errors (•n) will 
contribute to the variances of N' and N" both through the 
reference field (see (54)) (2 < n < M) and through the 
potential coefficient representation for degrees between M and 
L. 

Then the (expected) "local mean square error" of N' 
becomes 

MSE(N') = E[(N'-N) 2] = Var(N') + Bias2(N'), (74) 

whe• 

Var(N') = E{[N' - E(N')] 2} 

= n QL 

+ •(Q•n + sn) Z(Q•t + s•)12n {75) 
n=2 k--2 

and 

Bias2(•/) = [E(•/') -N] 2= c2 (n=• * QL n Agn•. (76) 1 

Similarly, one obtains the (expected) local mean square error 
of the estimator N": 

MSE(N") = Var(N") + Bias2(N ") , (77) 

where 

+ Z(P•n+sn)Z(Pi+sk).On , (78) 
n=2 k=2 

where 

p•n={0•n for 2< n < M for M <n<L 
(79) 

and 

Bias2(N ") = c 2 L n Agn ß (80) 

Note that the above local mean square errors, variances, and 
biases are position dependent! 

We now proceed to the global averages of the local mean 
square errors which we shall call "global mean square errors." 
For the estimator N' we obtain 

F[MSE(N')] = F[Var(N')] + F[Bias2(N')], (81) 

where 

r[w(3] 

and 

+ + (, . (82) 
n--2 

F[Bias2(•/')] = c2 Z (QLn)2 cn. 
n=L+l 

(83) 

In these derivations, we have employed the following 
notation: 

r(Ank)={(O•n) 2 for n=k for n•:k 
(84) 

and 

(0OSn) for n=k r(r•): , (85) 
for n•k 

where (o•n)2 and (Ogn) 2 are called the "error degree variances" of 
the terrestrial and of the potential-coefficient-generated 
anomalies, respectively. In addition, (68) and (69) were used 
to derive the global averages of squared biases. 
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In the same way, the global mean square error of •" is 
derived: 

r[MSE(N")] = riva(N")] + r[B ias2(N")], (86) 

where 
L 

rtVa&') = rtVa&)- 
n=M+l 

+ 2sn)(OSn) 2 (87) 

FrBias2(•")] = c2 Z (Q6n)2 c,. (88) 
n=M+l 

It is interesting to note that the mean square errors of N' are 
independent of _the choice of degree M(< L) of the reference 
field, while for N" they depend on M (cf. (74) to (87)). 

SOME SPECIAL MODIFICATIONS 

We will now consider some special cases of modifying 
Stokes's formula, namely the "Molodenskij modification," 
the "strict separation modification," and the "least squares 
modification." The first method, limited to L=M, was 
formulated already above and will now be only restated for L 
>M. 

Molodenskij's Modification 

To begin with, we rewrite (45) as 

= [ II eo •AgMd e + II e- eo ] 
L 

+c 5'.s• ag• . (89) 
n=M+ 1 

Clearly, the errors of Molodenskij's modification of 
Stokes's formula are independent of the degree (M)of the 
reference field; rather they depend on the degree L of 
modification. Due to (69), the resulting truncation error 
becomes 

•SN•tot = - c Z QLn A gn 
n=L+ 1 

(95) 

independent of the choice of degree M. This implies that the 
smaller truncation error bound for a higher-degree (M) 
reference field discussed earlier must be taken as applying 
rather to the degree L of modification for which M is the 
lowest bound. 

The Strict Separation Modification 

Frequently, the combined solution of the truncated (and 
modified) Stokes's formula and the reference field of degree M 
is said to be a merger of long-wavelength features given by 
the latter and short-wavelength features given by the former. 
This separation is generally not rigorous, and it is highly 
dependent on the type of modification of Stokes's function, 
i.e., the choice of the parameters s n. For some applications, 
a strict wavelength separation might be advantageous. The 
derivation of such a solution, which we have not found in the 
open literature, is the intention of this section. 

Reconsider the total error (62) of the general estimator 
•/M'. If s n is selected in such a way that 

2 
V 2<n<M<L' Qn L+s n_ (96) - - - n-I 

then the error becomes 

The truncation error is described by the second term (which is 
not contained in 

6N œ = r $$ o•_0o SI.'(• AgM d•. (90) 
In view of Molodenskij's choice of parameters sn, this 

solution implies that 

Vn<L: Q•n = 0. (91) 
Hence the two estimators (49) and (50) become identical, with 

L 

M S L A gM d $ + c A gn (92) vmt = 
n=2 

with the local mean square error: 

^ MSE(NMMøt)=c2 n-'-• -s n-•n k- 1 -s Ant • 
n=2 = 

L 

^ 2 tSN'= c n-•-• 4 
n=2 

+c Z [ (n--•-QLn) eTn - QLn Ag n=L+ 1 (97) 
We have thus shown that for this choice of Sn, the estimator 

L 

N'= r •o SLAgdø•+c Agn 
n=2 

(98) 

is strictly determined from estimated Laplace harmonics of Ag 
up to degree L and from observed terrestrial gravity anomalies 
abov• degree L. Here it is completely irrelevant whether A•, M 
or Ag is the argument under Stokes's integral of (98). The 
local and global mean square errors become 

"1-C2 $n $k '('•nk + C2 QL n gig n ß (93) MSE(N') = c 2 2 2 = = =L+I n=2 k=2 n- 1 k- 1 1• n k 
The global mean square error becomes 

L 

^ [( ) FtMSE(Nffot)] =C2Z 2 n---• - $n 
n=2 

(94) +C2Z [ (n-•-QLn) 2 (4) 2+ (Qi)2Cn] ß 
n=L+ 1 and 

+z z (n--5- n=L+l k=L+l 

=L+I 
(99) 
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F[MSE(N')] = c 2 2 2 n:2 (OSn)2 

- 
^ 

Similarly, we could get the estimator N" and its mean 
•quare errors from (96), (50), (74) to (76), and (77) to (80). 
N" and its errors are dependent on the degr•ee (M) of the 
reference field, while this is not the case with N' 

The Least-Squares Modifications 

The least squares modification minimizes the mean square 
errors of the solution with respect to the choice of the 
parameters sn (k=2,3 ..... L). For each of the general 
estimators •M' and /•M", one obtains two least squares 
solutions: one locally best estimator, minimizing the (local) 
mean square error (equations (74) to (76)), and one globally 
best estimator, minimizing the global mean square error 
(equations (77) to (80)). In each case, the MSEs of the 
general solutions, i.e., equations (74) to (76) and (77) to 
(80), can be written in the following general form [SfiSberg, 
1987] 

MSE = a + s r As - 2srh , (101) 

where a is the MSE without modification, that is, for all sn 
set to zero, A is a symmetrical matrix, and h is a vector. For 
instance, 

a=al=C2 Ln•__2 (n2"'•- Qn)2(4)2 

and 

n=2 n=L+ 1 

(02) 

(106) 

L 

a = a 2= a 1 +c 2 E Q2 [½n_ (4)2] (103) 
n=M+l 

where a l and a 2 refer to the F(MSE) of N' and N", 
respectively. 

The minimum variance is obtained for 

3MSE 

•}s = As - h = 0. (104) 
Thus the optimum set of parameters s are the solution of the 
system 

^ 

As = h , (105) 

yielding the MSE: 
^ 

MSE=a-s •T A• = a - s T h . 

The elements of A and h are given as follows: 
1. Least squares estimator unbiased to degree and order L. 
(1) The locally best estimator: 

Vn,k=2 ..... L: 

Ank = E E (•Sai- Eai) (•5kj- E•j) (Dii + Aij ) 
i--2 j=2 

+ • •EniEIqAgiAgj, 
i=L+l j=L+I 

(07) 

Vn=2 ..... L: 

[ ] i--2 j=2 

and 

i=L+l j=L+I 
(08) 

a=c2 E 
i--2 j--2 

where 

2 - j) Aq 

for i=j for i•j 

(09) 

(110) 

is the Kronecker symbol, and 
2n+l 

Eni = 2 eni . (111) 

(2) The globally best estimator (see also Sj6berg [1984b, 
1987]): 

Vk,r = 2 .... J•: Ant = Zn 8kr- 

2k+l 2r+l 

+ 2 2 

2r+l 2k+ 1 

2 ZI• el•r- 2 Zr erl• 

E enk enr Zn , (112) 
n=2 

Vk=2 ..... L' h•= k-1 -Qkz• 

+ 2 Qn enl•Zn-- n-1 en• ( , (113) 

and 

where 

a=c 2 i_-•-Qi (4) 2 

+ + '---- 
(114) 

{(c•a) 2 for 2 < n <L Xa = (ora) 2 + (115) 
for n>L 

2. Least squares estimator unbiased to degree M (degree 
and order of the reference field.) 

(1) The locally best estimator: 

¾n,k=2 ..... M: 

a n• = E E ( Sni - Eni) ( S tq - E kj) ( Ai.i + 1• 
i=2 j=2 

+ • •EniEIqAgiAgj, 
i--M+1 j=M+I 

(116) 



6538 
VAN• AND SJOBERO: REFORMULATION OF STOKE'S THEORY AND INTEGRATION KERNEL MODIFICATION 

¾n=2 ..... M: 

and 

where 

( •ni - Eni) 

i+M+ 1 j-,M+ 1 

(117) 

+ QiQj.c2ij + Q 
+1 

(118) 

l•i• ' ={o•iJ for ivj<M otherwise 
(119) 

(2) The globally best estimator: 

Vk, r=2 ..... M: 

A• = likr Zr- Erl• Z I• - EkrZr + E• Era 
n--2 

(120) 

Vk=2 ..... M: 

and 

a=c 2 

where 

and 

hl•= (k_-•- Ql•) (4) 2 
M o• 

n=2 n=M+l 

(121) 

-Q• i2:i , (122) 
i=2 i=2 

for n > M 

** t(oSn) 2 for 2<n<M X. = 
Lc• for n > M 

(123) 

(124) 

REMARKS AND CONCLUSIONS 

The generalized Stokes approach parallels the classical 
Stokes approach when the reference ellipsoid is replaced by 
an Mth degree spheroid, normal gravity 7o on the reference 
ellipsoid is replaced by a model gravity 7 •t on the spheroid, 
and the Stokes integration kernel S is replaced by the 
spheroidal kernel S M. In standard geodetic practice, gravity 
values g are reduced to gravity anomalies Ag by subtracting 
normal gravity 7o' In the context of the generalized Stokes 
approach, gravity values are reduced even more by subtracting 
the model gravity 7 *t to obtain generalized gravity anomalies 
gg M. For growing M the Ag M tends to zero, and for n > M 
the harmonic components Agn M become identically equal to 
the harmonic components gn of the gravity itself. 

In both the classical Stokes approach and the generalized 
Stokes approach, the spherical approximation causes an error 
in the evaluated geoidal height, but for growing M the error 
diminishes. For M = 20, the error is estimated to be within a 

few centimeters. In both approaches, the error in the 
reference field (second degree and Mth degree, respectively) 
has to be treated separately, and both approaches are 
oblivious to the scale of their respective reference surfaces 
and their geocentricity. 

The main advantage of the generalized Stokes approach is 
that the integration kernel S M converges rapidly to zero for 
the growing integration distance. Consequently, the effect of 
individual gravity anomalies vanishes more rapidly with 
distance from the point of interest, and the numerical 
evaluation of the convolution integral may thus be truncated 
much closer to the point of interest to achieve the same 
accuracy as with the classical Stokes approach. Thus the 
evaluation of the generalized Stokes convolution integral 
requires less computational effort as well as less extensive 
terrestrial gravity coverage. 

Various modification schemes may also be used for 
practical evaluation of the generalized Stokes convolution 
integral. It turns out that if the classical Molodenskij 
modification is used with modification of degree M, the 
modified S M has exactly the same shape as the original 
Molodenskij-modified S. However, the upper bound of the 
truncation error for the same radius of integration •t o is 
significantly smaller. 

We have considered two generic models (•/M' and •M") for 
the modification of Stokes's formula for a higher-degree 
reference field. For unbiased data, the first model is locally 
unbiased to the degree of modification (L) which equals to the 
maximum degree of harmonic coefficients, while the second 
model is locally unbiased to the degree (M < L)of the 
reference field. The error of •M' is therefore independent of 
the choice of M, while the error of /•M" is generally 
dependent on M. The choice between the two models, and the 
choice of degree M for •M" are still open questions. For 
Molodenskij's modification, however, the two estimators 
coincide. Examples 2 and 4 of SjOberg [1987] show that the 
biased least squares estimator is superior to the unbiased 
estimator in the limiting case of a vanishing cap size. These 
examples also indicate that a low-degree reference field is to 
be preferred in this particular case. 

We have derived a new type of least squares estimator, 
namely, the locally best one. Its application is restricted by 
the limited knowledge of the local error covariance functions 
of terrestrial gravity, the correlations among the potential 
coefficients, and the high degree spectrum of gravity. These 
limitations are considerably relaxed in the more modest 
global least squares modifications. 
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