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Resumen

El esquema Stokes-Helmert para la determinación precisa del geoide es un trabajo
desarrollado en la Universidad de New Brunswick, Canadá, por más de diez años de
investigación sin interrupción, en la que han participado destacados científicos. Este
trabajo, presenta en forma sintética los pasos para obtener un geoide centimétrico,
así como la formulación matemática en la que se fundamenta este esquema.

Abstract

The Stokes-Helmert’s scheme for the precise geoid determination is a work devel-
oped in the University of New Brunswick, Canada, by more than ten years of inves-
tigation without interruption, in which outstanding scientists have participated. This
work, presents in synthetic form the steps to obtain a centimeter geoide, as well as
the mathematical formulation on which east scheme is based.

Stokes-Helmert’s geoid software

Stokes-Helmert’s geoid software (SHGEO) is a scientific software for precise geoid
determination based on the Stokes-Helmert theory of determination of the gravimet-
ric geoid. The software has been developed during more then 10 years period under
leadership of professor Petr Vanícek at the Department of Geodesy and Geomatics
Engineering, University of New Brunswick. Authors of particular programs are: M.
Najafi, P. Novák, J. Huang, J. Janák and R. Tenzer. We also have to mention Z.
Martinec, A. Kleusberg, L.E. Sjöberg, W.E. Featherstone, W. Sun whose research
presented in their papers was incorporated into the SHGEO software. SHGEO soft-
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ware uses various global models (e.g. TUG87, GRIM4-S4, EGM96). These global
models play an important role in the geoid computation scheme. Therefore we ac-
knowledge the contribution of all research teams that have developed these or other
global models. Reference manual was compiled by R. Tenzer and J. Janák.

Stokes-Helmert’s scheme for precise geoid determination

Introduction

This part of the manual gives a brief theoretical overview of the precise geoid deter-
mination process. The details can be found in references.

The Stokes-Helmert scheme for determination of the precise geoid can be sum-
marized to the following steps:

1. Formulation of the boundary value problem on the Earth surface
2. Evaluation of the Helmert gravity anomalies on the Earth surface
3. Downward continuation of the Helmert gravity anomalies onto the geoid
4. Stokes’s integration (solution to the Stokes’s boundary value problem)
5. Transformation of geoidal heights from the Helmert space to the real space.

Formulation of the boundary value problem

The quantity to be solved is the earth’s gravity potential ( )Ω,rW  on and outside the
geoid and the geoid itself. The geoid is the equipotential surface that approximates
the mean sea level most closely. The gravity potential on the geoid is denoted by

( ) ., constrWo =Ω  In order to solve this problem a normal gravity potential ( )Ω,rU
generated by the mean geocentric ellipsoid of revolution is introduced. The normal
gravity potential oU  on the mean geocentric ellipsoid is chosen to be equal to the
earth’s potential on the geoid: oo WU = .

The difference of the gravity potential ( )Ω,rW  and the normal gravity potential

( )Ω,rU  defines the disturbing potential ( )Ω,rT ,

( ) ( ) ( )Ω−Ω=Ω ,rU,rW,rT (1.1)

When atmospheric attraction is neglected, ( )Ω,rT  is harmonic outside the Earth
and it satisfies the Laplace equation

( ) 0,rT2 =Ω∇ (1.2)
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Once ( )Ω,rT  has been solved, the gravity potential ( )Ω,rW  can be obtained at

any point by adding ( )Ω,rU , which can be computed from existing models. Also

when ( )Ω,rT  is known on the geoid, the vertical separation between the reference

ellipsoid and the geoid can be obtained by the Bruns formula

( ) ( )( )
( )Ωγ
Ω

=Ω
o

grT
N (1.3)

where ( )( )ΩgrT  is the disturbing potential on the geoid, and ( )Ωγ o  is the normal

gravity on the mean geocentric ellipsoid. The problem is now reduced to the deter-

mination of ( )Ω,rT  on and outside the geoid.

However, the disturbing potential ( )Ω,rT  does not satisfy the Laplace equation

inside of topographical masses where the geoid is often located. Therefore in order

to satisfy Laplace’s equation, all atmospheric and topographical masses have to be

removed or condensed on or beneath the geoid. In Helmert’s second condensation

method the atmospheric and topographical masses are condensed directly onto the

geoid.

When atmospheric and topographical masses are condensed as a single layer that

is located on the geoid, the Earth gravity field will slightly change. The space ob-

tained after such a condensation is the Helmert space. The quantities given in the

Helmert space are denoted by superscript H . Helmert’s gravity potential is defined

as follows

( ) ( ) ( ) ( )Ωδ−Ωδ−Ω=Ω ,rV,rV,rW,rW atH (1.4)

The residual topographical potential ( )Ωδ ,rV t  is defined as a difference of the

gravitational potential ( )Ω,rV t  of topographical masses and the gravitational po-

tential ( )Ω,rV ct  of condensed topographical masses

( ) ( ) ( )Ω−Ω=Ωδ ,rV,rV,rV cttt (1.5)

Similarly, the residual atmospheric potential ( )Ωδ ,rV a  is defined as a difference

of the gravitational potential ( )Ω,rVa  of atmospheric masses and the gravitational

potential ( )Ω,rVca  of condensed atmospheric masses
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( ) ( ) ( )Ω−Ω=Ωδ ,rV,rV,rV caaa (1.6)

By subtracting the normal gravity potential ( )Ω,rU  from eqn. (1.4), the disturb-

ing potential ( )Ω,rT H  in Helmert’s space becomes

( ) ( ) ( )Ω−Ω=Ω ,rU,rW,rT HH (1.7)

Helmert’s disturbing potential ( )Ω,rT H  is harmonic above the geoid, so that it

satisfies the Laplace equation

( ) 0,rT2 =Ω∇ H (1.8)

To determine ( )Ω,rT H , the boundary value problem of the third kind outside the

geoid has to be solved. Therefore, the boundary values on the a-priori unknown

geoid are needed. In this problem, the Helmert gravity anomalies on the geoid serve

as the boundary values. To find a relation between the disturbing potential and the

Helmert gravity anomalies, let us introduce the radial derivative of the Helmert dis-

turbing potential

( ) ( ) ( )
r
,rU

r
,rW

r
,rT

∂
Ω∂−

∂
Ω∂=

∂
Ω∂ HH

(1.9)

The negative radial derivative of the Helmert disturbing potential ( )Ω,rT H  de-

fines the Helmert gravity disturbance ( )Ωδ ,rgH , i.e.,

( ) ( ) ( )Ωε−Ωδ=
∂

Ω∂− δ ,r,rg
r
,rT

g
H

H

(1.10)

The second term on the right hand side of eqn. (1.10) is the ellipsoidal correction

to the gravity disturbance (Vanícek et al., 1999).

Since the geoidal height above the ellipsoid are not usually available, the gravity

disturbance is not considered to be a measurable quantity on the surface of the Earth.

Therefore Helmert’s gravity disturbance ( )Ω,H rgδ  has to be transformed to more

commonly available quantity, which is the Helmert gravity anomaly ( )Ω∆ ,H rg .

This transformation is achieved by adding a term ( )ΩΓ ,r  to the gravity distur-

bance. This term accounts for the change in normal gravity due to the difference

between the geodetic height ( )Ωh  and the commonly available orthometric height

( )ΩOH . This expression can be written with a sufficient accuracy as

ˆ
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( ) ( )
( )

( )
n

H

∂
Ωγ∂

Ωγ
Ω=ΩΓ ,r

,r
,rT,r (1.11)

In solving the boundary value problem it is convenient to introduce the following

spherical approximation

( )
( )

R
2,r

,r
1 −≅

∂
Ωγ∂

Ωγ n (1.12)

The error caused by this approximation is called the ellipsoidal correction

( )Ω,rnε  for the spherical approximation.

Substituting eqns. (1.11) and (1.12) into eqn. (1.10), we can formulate the bound-

ary value problem in the Helmert space by the following equation

( ) ( ) ( ) ( ) ( )Ωε−Ωε+Ω∆=Ω−
∂

Ω∂− δ ,r,r,rg,rT
R
2

r
,rT

gn
HH

H

(1.13)

This equation represents the fundamental equation of the physical geodesy valid

in the Helmert space. It relates the known boundary values ( )Ω∆ ,rgH  to the un-

known disturbing potential ( )Ω,rT H  outside and on the geoid. As the boundary

values are the Helmert gravity anomalies on the geoid, the next two sections deal

with the derivation of this quantity from the measurements.

Evaluation of the Helmert gravity anomalies on the earth surface

Helmert gravity anomaly ( )Ω∆ ,rgH  referred on the earth surface is given by

( )( ) ( )( ) ( )( )Ωγ−Ω=Ω∆ N
tt Hrgrg HH (1.14)

where ( )( )Ωγ NH  is the normal gravity on the telluriod in the Helmert space (see

Figure 1).

The Helmert gravity ( )( )ΩtrgH  on the earth surface is obtained from the ob-

served gravity ( )( )Ωtrg , by adding the direct topographical effect and the direct

atmospheric effect:

( )( ) ( )( ) ( )
( )

( )
( )Ω=Ω=

∂
Ωδ∂

−
∂

Ωδ∂
−Ω=Ω

trr

a

trr

t

tt r
,rV

r
,rV

rgrg HH

(1.15)
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The direct topographical effect (DTE) on gravity, given by a radial derivative of
the residual gravitational potential ( )Ωδ ,rV t  of topographical masses, is the gravi-
tational attraction of topographical masses minus the gravitational attraction of
condensed topographical masses. It should be evaluated on the earth surface. Analo-
gous, the direct atmospheric effect (DAE) on gravity is gravitational attraction of
atmospheric masses minus the gravitational attraction of condensed atmospherical
masses.

Normal gravity ( )( )Ωγ NH  on the telluriod in Helmert’s space is obtained by up-
ward continuation of normal gravity at the corresponding point on the mean geocen-
tric ellipsoid. The height used for this computation should be the normal height

( )ΩNH  in Helmert’s space, which is the height of Helmert’s telluroid above the
ellipsoid. In practice, however, the heights on gravity observations on the earth sur-
face are orthometric heights ( )ΩOH  and the upward continuation of normal gravity
is computed using ( )ΩOH  instead of ( )ΩNH . Therefore, a correction has to be
added to the normal gravity. This correction consists of two parts. The first one,
which is caused by the different position of the telluroid in the real and Helmert’s
space, is called the secondary indirect effect. The second part, which is due to the
difference between the normal and orthometric height, is called the correction for
the orthometric height. The expression for the normal gravity on Helmert’s telluroid
is then given by

( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )Ωδ
Ω

−Ωδ
Ω

−Ω∆Ω−Ωγ=Ωγ t
a

t
t

t

t
t

SBOON rV
r

2
rV

r
2

rgH
R
2

HHH
(1.16)

where ( )( )Ω∆ t
SB rg  is the simple Bouguer gravity anomaly.

The second term on the right-hand side of eqn. (1.16) is the geoid-quasigeoid
correction to the boundary value problem. The third and fourth terms stands for the
secondary indirect topographical effect on gravity (SITE) and the secondary indi-
rect atmospheric effect on gravity (SIAE).

Inserting eqns. (1.14) and (1.15) back into eqn. (1.14) and considering also the
free-air gravity anomaly given by

( )( ) ( )( ) ( )( )Ωγ−Ω=Ω∆ O
tt

FA Hrgrg (1.17)

the boundary value problem in the Helmert space (eqn. (1.14)) takes the following
form

( )( ) ( )( ) ( )
( )

( )
( ) ( ) ( )( )+Ωδ

Ω
+

∂
Ωδ∂+

∂
Ωδ∂+Ω=Ω∆

Ω=Ω=
t

t

ttrr

a

trr

t

t
FA

t rV
r

2
r

,rV
r

,rV
rgrgH

( ) ( )( ) ( ) ( )( ) ( ) ( )Ωε−Ωε+Ω∆Ω+Ωδ
Ω

+ δ ,r,rrgH
R
2

rV
r

2
gnt

SBO
t

t

t
(1.18)
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Free-air gravity anomalies are not very smooth, so that are not suitable for inter-

polation and averaging. Therefore, in practice the smoother complete Bouguer grav-

ity anomalies ( )( )Ω∆ t
CB rg  are used to produce the mean gravity data. The complete

Bouguer anomaly is defined as

( ) ( ) ( ) ( ) ( ) ( )Ωδ+Ωρ−Ω∆=Ωδ+Ω∆=Ω∆ ,rgGH2,rg,rg,rg,rg tcO
o

FAtcSBCB π (1.19)

where ( )Ωδ ,rg tc  is the gravimetric terrain correction, i.e. a correction for the attrac-

tion of the earth’s topography relative to the height at the evaluation point.

Downward continuation of Helmert gravity anomaly

To solve the Stokes boundary value problem in the Helmert space the Helmert’s

gravity anomalies ( )( )Ω∆ trg H  have to be downward continued onto the geoid.

The Helmert disturbing potential is a harmonic function above the Helmert co-

geoid. Poisson’s solution to Dirichlet’s problem of upward continuation of a har-

monic function can be applied in finding a solution to the inverse problem, i.e.

downward continuation.

The relation between Helmert’s gravity anomalies ( )( )Ω∆ trg H  on the geoid and

Helmert’s gravity anomalies ( )( )Ω∆ trg H  on the earth surface is given by Poisson’s

integral

( )( ) ( ) ( )( ) ( ) ( )[ ]∫∫
Ω∈Ω′

Ω′Ω′ΩψΩΩ∆
Ω

=Ω∆
o

tg
t

t R,,,rrg
r4
Rrg dKHH

π (1.20)

where ( ) ( )[ ]Rrt ,,, Ω′ΩψΩK  is the Poisson integral kernel. The solution to the prob-

lem of downward continuation is then given as a inverse solution of an integral

equation of the first kind, where ( )( )Ω∆ trgH  is known and ( )( )Ω∆ grgH  is being

determined. This integral equation can be solved iteratively according to Jacobi’s

iteration approach.

Stokes’s boundary value problem

According to eqn. (1.3), the geoidal height ( )ΩN  can be obtained from the Bruns

formula if the disturbing gravity potential ( )( )ΩgrT  on the geoid is known. The
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relation between the gravity anomaly on the geoid and the disturbing gravity poten-

tial referred on the geoid is given by Stokes theorem.

Solving Stokes’s boundary value problem in the Helmet space, the co-geoid heights

( )ΩHN  is given by the Stokes integral

( ) ( ) ( )( ) ( )( )∫∫
Ω∈Ω′

Ω′Ω′ΩψΩ∆
Ωγ

=Ω
o

t
o

,rg
4

RN dSHH

π (1.21)

where ( )( )Ω′Ωψ ,S  is the Stokes integral kernel.

Transformation of geoidal heights from the Helmert space to the real space

To obtain the geoid, the co-geoidal heights ( )ΩHN  have to be transformed from the

Helmert space back to the real space. This transformation is done by evaluating the

primary indirect topographical effect (PITE) on the geoidal height according to the

following equation

( ) ( )( )
( )Ωγ

Ωδ
=Ω

o

g
t

t
rV

N (1.22)

where ( )( )Ωδ g
t rV  is the residual gravitational potential of topographical masses,

which is reckoned at the geoid.

The geoid is finally computed by

( ) ( ) ( )Ω+Ω=Ω tNNN H (1.23)

The primary indirect atmospheric effect as well as the secondary indirect atmo-

spheric effect can be neglected, as it is shown in (Novák, 2000). Equation (1.23) is

then final equation in the precise geoid determination process.
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