

No Topography approach for Stokes-Helmert's geoid modelling:

results for an area in the Canadian Rockies

A. Ellmann, P. Vaniček, M. Santos

Department of Geodesy and Geomatics Engineering, University of New Brunswick (UNB), PO Box 4400, Fredericton, NB, Canada

Outline

- Motivation of the study
- "Standard" two-space approach

versus

- New three-space approach
- Numerical results
- Discrepancies
- Comparison with GPS-leveling data
- Summary and work in progress

$T^{h}(r,\Omega) = T(r,\Omega) - V^{t}(r,\Omega) + V^{ct}(r,\Omega) - V^{a}(r,\Omega) + V^{ca}(r,\Omega)$ $\forall r > r_{g} : \nabla^{2}T^{h}(r,\Omega) = 0$

The NT disturbing potential $T^{NT}(r,\Omega) = T(r,\Omega) - V^{t}(r,\Omega) - V^{a}(r,\Omega)$ $\forall r > r_{o} : \nabla^{2}T^{NT}(r,\Omega) = 0$

Fund. grav. equation at earth's surface

$$\Delta g(r_t, \Omega) = -\frac{\partial T(r_t, \Omega)}{\partial n} + \gamma \left[r_t - \varsigma(r, \Omega), \phi\right]^{-1} \frac{\partial \gamma(r, \phi)}{\partial n} T(r_t, \Omega)$$

UNB free-air anomaly to Helmert anomaly 1. On the surface

$$\Delta g^{h}(r,\Omega) = \Delta g^{FA}(r,\Omega) + \frac{\partial \left[V^{t}(r,\Omega) - V^{ct}(r,\Omega)\right]}{\partial r} + \frac{\partial \left[V^{a}(r,\Omega) - V^{ca}(r,\Omega)\right]}{\partial r} + \frac{2}{r} \left[V^{t}(r,\Omega) - V^{ct}(r,\Omega)\right] + \frac{2}{r} \left[V^{a}(r,\Omega) - V^{ca}(r,\Omega)\right] + \varepsilon$$

Residual quantities utilized!!!

$$\nabla^{2} \left[r \Delta g^{h} \left(r, \Omega \right) \right] = 0 \qquad \forall r \ge r_{g} \qquad \text{Harmonic!!!}$$

2. Downward continuation

$$\Delta g^{h}\left(r_{g},\Omega\right) = \Delta g^{h}\left(r_{t},\Omega\right) + D\left[\Delta g^{h}\left(r_{t},\Omega\right)\right]$$

From free-air anomaly to NT-anomaly...

1. On the surface $\Delta g^{NT}(r,\Omega) = \Delta g^{FA}(r,\Omega) + \frac{\partial V^{t}(r,\Omega)}{\partial r} + \frac{\partial V^{a}(r,\Omega)}{\partial r} + \frac{2}{r}V^{t}(r,\Omega) + \frac{2}{r}V^{a}(r,\Omega) + \varepsilon$ $\nabla^{2} \Big[r\Delta g^{NT}(r,\Omega) \Big] = 0 \qquad \forall r \ge r_{g} \qquad \text{Harmonic!!!}$ 2. Downward continuation

$$\Delta g^{NT}\left(r_{g},\Omega\right) = \Delta g^{NT}\left(r,\Omega\right) + D\left[\Delta g^{NT}\left(r,\Omega\right)\right]$$

3. On the boundary

$$\Delta g^{H}\left(r_{g},\Omega\right) = \Delta g^{NT}\left(r_{g},\Omega\right) - \frac{\partial V^{ct}\left(r_{g},\Omega\right)}{\partial r} - \frac{\partial V^{ca}\left(r_{g},\Omega\right)}{\partial r} - \frac{2}{r_{g}}V^{ct}\left(r_{g},\Omega\right) - \frac{2}{r_{g}}V^{ca}\left(r_{g},\Omega\right)$$

... and to Helmert's anomaly on the geoid!!

Data:

Used datasets and test area

30'x30' (far-zone/global contribution)

Standard Helmert

Classical Helmert anomaly. Contour interval is 25 mGal

Max = 112.687 Min = -133.092 Mean = 0.47184 STD = 26.4449 mGal

$$\Delta g^{h}(r,\Omega) = \Delta g^{FA}(r,\Omega) + \frac{\partial \left[V^{t}(r,\Omega) - V^{ct}(r,\Omega)\right]}{\partial r} + \frac{2}{r} \left[V^{t}(r,\Omega) - V^{ct}(r,\Omega)\right]$$

NT anomaly = Spher. complete Bouguer anom.

$$\Delta g^{NT}(r,\Omega) = \Delta g^{FA}(r,\Omega) + \frac{\partial V^{t}(r,\Omega)}{\partial r} + \frac{2}{r}V^{t}(r,\Omega)$$

DWC contribution of NTanomaly on the geoid (6 degree integr. radius)

5

5

9

Ο

Standard Helmert

Classical Helemrt anomalies on the geoid (after DWC)

$$\Delta g^{\rm h}\left(r_{g},\Omega\right) = \Delta g^{\rm h}\left(r_{t},\Omega\right) + DWC^{\rm h}$$

NT-deduced Helmert

NT-deduced Helmert anomalies on the geoid

$$\Delta g^{H}\left(r_{g},\Omega\right) = \Delta g^{NT}\left(r_{g},\Omega\right) - \frac{\partial V^{ct}\left(r_{g},\Omega\right)}{\partial r} - \frac{2}{r_{g}}V^{ct}\left(r_{g},\Omega\right)$$

Discrepancies between the UNB standard Helmert and NT approaches

The two approaches are theoretically equivalent, but

SCTC ??? $-\frac{\partial V^{ct}(r_g, \Omega)}{\partial r} = BS - \iint_{\Omega_0} \frac{r^3(\Omega') - r^3(\Omega)}{3} \frac{\partial l^{-1}[R, \psi(\Omega, \Omega'), R]}{\partial r} d\Omega'$

DWC ?

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

Pre-fit differ btw GPS-level & NTdeduc geoid model (GGM02-40, PITE, trunc.bias incl.)

GRACE based GGM02 Modification degree M = L = 40

Statistics slightly better for NTdeduced models^{Max = 0.66} Min = -0.51465 Mean = 6.3007e-013 STD = 0.13067

Low-land - STD < 5...10 cm, Mountains - STD >13 cm

- substantial (numerical) differences between the two- & three-space scenarios
- higher resolution (2'x2'?) geoid models useful
- Laterally varying density
- CHAMP & GRACE-based geopotential models
- Synthetic data: AUS-SEGM

