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Abstract
In this contribution, some numerical aspects of computing the mean value of geoid-generated gravity disturbance along the 
plumbline within the topography are discussed.

Introduction
The mean value of gravity along the plumbline between the geoid and the Earth surface depends on the mass density distribution 
within the topography, the shape of the Earth surface and the vertical change of gravity generated by the geoid. The mean gravity 
is evaluated as the sum of the mean value of gravity generated by the Earth mass within the geoid and the mean value of 
topography-generated gravitational attraction. The geoid-generated gravity is further divided into the normal gravity and the geoid-
generated gravity disturbance, i.e., the gravity disturbance in the No Topography space (Vaní�ek at al., 2003a). By removing the 
gravitational attraction of the topographical masses from the gravity generated by the whole Earth, the gravitational field becomes 
harmonic above the geoid. Therefore, the mean value of the geoid-generated gravity disturbance can be evaluated by solving 
Dirichlet’s boundary value problem. 

Mean gravity along plumbline
According the definition of “integral mean” the “mean value  of gravity along the plumbline between the geoid and the earth 
surface” reads (e.g., Heiskanen and Moritz, 1967, Eq. 4-20)

(1) 
where               is the gravity at a point of geocentric position                   , and the geocentric radius        of the Earth surface is 
given (with an accuracy of a few millimeters) by the geocentric radius of the geoid          plus the orthometric height           . 

The gravity  can be decomposed as

(2)

Interpretations
The mean gravity disturbances  reflect the mass distribution below the geoid level (i.e., sea level) and also the topography 
because they are referred to the approximate mid-point between the geoid and the Earth surface.   It has been shown that 
the gravity values at the geoid are not correlated with the topography, while the mean value of gravity is correlated with 
the topography.

In this contribution, we have attempted to show that it is not only possible but also feasible to compute that part of the real gravity 
field whose origin is in the masses below the sea level.  When the part of the field whose origin is within topography is added to 
the here-discussed part, it is possible to reconstruct the actual field within topography with accuracy adequate for many 
applications.
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Mean geoid-generated gravity disturbance along plumbline
The “mean value  of geoid-generated gravity disturbance along the plumbline between the geoid and the Earth surface” is given 
by the second term on the right-hand-side of Eq. (3)

(3)

Since the geoid-generated gravity disturbance multiplied by r is harmonic above the geoid (really co-geoid, to be more precise), 
the mean gravity disturbance can be evaluated by averaging the Poisson’s integral (e.g., Kellogg, 1929) .

Performing the radial integration of Poisson’s integral kernel                       multiplied by 1/r, the following expression can be 
found for the averaging of Poisson’s kernel (Vaní�ek at al., 2003c)

(4)

The mean gravity disturbance  along the plumbline takes the following form (Vaní�ek at al., 2003c)

(5)
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Computational considerations and numerical results
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Fig. 2. Mean geoid-generated gravity disturbances
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Fig. 3: Correction to Helmert’s orthometric height due to the mean
geoid-generated gravity disturbance along the plumbline. 

The mean values of the geoid-generated gravity disturbances are 
interesting from both the geodetic as well as geophysical point of 
view.  Their main geodetic application is as part of the corrections 
to Helmert’s orthometric heights (Santos et al., 2003), where the 
actual value of mean gravity along the plumbline is needed. It can 
be seen from Eq. (2) that the geoid-generated field is one part of the 
real gravity field needed in that correction. The correction  to
Helmert’s orthometric height due to the near-zone contribution to 
the mean geoid-generated gravity disturbance along the plumbline
is shown in Fig. 3; it varies between –3.4 cm and 7.9 cm with an 
average of 0.1 cm. The correction due to the far-zone contribution 
is totally negligible. Fig. 3 shows one part of the correction to 
Helmert’s orthometric height.  The other part is the Terrain 
correction which is discussed in Santos et al. 2003.  

Clearly, from the numerical investigation shown in Fig. 3, applying 
the correction due to mean geoid-generated gravity disturbance to 
Helmert’s orthometric heights improves the accuracy of these 
orthometric heights significantly. 
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The surface integration in Eq. (5) has to be carried over the 
entire Earth.  It has been divided into the near-zone domain 
and the far-zone domain integration. The near-zone 
contribution to the mean geoid-generated gravity disturbance 
is computed by the numerical integration of an integral 
shown in Eq. (5), while the far-zone contribution can be 
evaluated from the global geopotential model. In this 
contribution we discuss only the evaluation of the near-zone 
contribution. Brief tests have shown that the far-zone 
contribution to the mean values of the geoid-generated 
gravity disturbance is 3 orders of magnitude smaller than the 
near-zone contribution.

Fig. 1 Topography in the testing area of the Canadian Rocky 
Mountains
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These gravity disturbances were then convolved numerically 
with the averaging Poisson’s integration kernel over the 
near zone, which was selected to be a spherical cap of radius 
of 5 arc-degrees. The numerical results of the computed 
near-zone contribution to the mean geoid-generated gravity 
disturbances in the part of the Canadian Rocky Mountains        

that we have used for our test, are 
shown in Fig. 2. They range between –169.2 mGal and 128.2 
mGal (average –14.6 mGal). 
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In this paper, we shall concentrate on the evaluation of the second term only.  The evaluation of the first term is relatively standard 
in geodesy, while the evaluation of the third term is, among other things, discussed in the paper (Santos et al., 2003) presented at 
this conference. 


