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Abstract 
 
There are many applications where the spherical 
convolution integration is employed, especially those 
dealing with the Earth and it�s gravity field, i.e. in 
geophysics, geodesy, oceanography, meteorology, etc. 
The truncation of the integration is often necessary as 
detailed input data are usually not available around the 
world. In this contribution an elegant symmetrical 
apparatus how to treat the truncation problem properly 
is described. Some important aspects are mentioned and 
one practical example is shown as well. 



Mathematical background 
 
Let�s consider a general convolution integral 
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where K is an isotropic kernel, a function of spherical 
distance ψ between the evaluation and integration 
points. f is a continuous function on a sphere, Ω = (ϕ, λ) 
is a solid angle, and ϕ, λ are spherical latitude and 
longitude. Let us express the kernel K as a series of 
Legendre polynomials. We get 
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where 
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This integral can also be written as 
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where C denotes a spherical cap of an arbitrary radius 
ψ0 ≤ π. In practice the area C corresponds to such a 
domain where detailed input data are known. 



 
Let us define a new kernel 
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K* can be expressed also as a series of Legendre 
polynomials as follows 
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where for ∀n = 0,1,2,...; ψ0 ≤ π we get 
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Then the first integral on the right hand side in eqn. (4) 
can be re-written as 
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where Yn are Laplace surface spherical harmonics of f 
defined as follows 
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In eqn. (9), Rnm and Snm are the fully normalised 
spherical harmonics and anm and bnm are the fully 
normalised spherical harmonic coefficients of f defined 
by following expressions 
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Symbol δ0m in eqn. (11) stands for Kronecker delta and 
Pnm are associated Legendre functions. 
 Similarly we can define a complementary kernel 
K** as 
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and express it again in a series form 
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where for ∀n = 0,1,2,...; ψ0 ≤ π we get 
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The second integral on the right hand side of the eqn. 
(4) may be than expressed as 
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 Equations (8) and (15) provide a nice symmetrical 
apparatus for dealing with any truncation problem 
encountered in the studies of the Earth. Among other 
things, we note that the division of the integration area 
Ω′ into a spherical cap and the rest of the sphere does 
not correspond to a separation of the two partial 
contributions: each partial integral must be expressed as 
a series containing all frequencies. Since the sum K*(ψ) 
+ K**(ψ) must be equal to K(ψ), we have 
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Indeed, putting together equations (4), (8) and (15) we 
get 
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as expected. 



 
Example 
 
A very nice example where the above mentioned theory 
is employed in geodesy, is the Stokes�s integration 
during the geoid determination process. Here we want 
to describe how to treat this integration properly with an 
obviously available data and to show some numerical 
results from Canadian national project �Precise Geoid 
Determination for Geo-referencing and Oceanography�. 
A deeper analysis of Stokes�s integration can be found 
in (Martinec, 1993). 
 The famous Stokes�s integral 
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transforms the gravity anomalies ∆g to disturbing 
potential T or geoidal height N if we assume the Bruns�s 
formula. In this integral, R is the radius of the reference 
sphere, γ is the normal gravity on the reference ellipsoid 
and S(ψ) is the Stokes�s function. The Stokes�s function 
may be represented in a spatial form (Heiskanen and 
Moritz, 1967, eqn.(2-164)) or (Vaníček and Krakiwsky, 
1986, eqn.(22.16)) 
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or in a spectral form 
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where Pn(cosψ) is the Legendre polynomial of degree n. 
From the point of view of the boundary value problem 
solution, Stokes�s function is simply a Green�s function. 
It may also be regarded as an homogeneous and 
isotropic integration kernel (Vaníček and Krakiwsky, 
1986). It is clear that the Stokes�s formula (18) requires 
knowledge of the gravity anomalies over the whole 
Earth. How to solve this problem if there is a lack of 
gravity data in some regions? Vaníček and Kleusberg 
(1987) suggested to separate the summation over n in 
the Stokes�s function (20) into low and high degree 
parts 
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Let us denote the low degree part as Sl(ψ) and the high 
degree part as Sl(ψ). A high degree part of the Stokes�s 
kernel is called the spheroidal Stokes�s kernel. If we 
substitute Stokes�s function from (21) into Stokes�s 
integral (18), we can split the geoidal height as well into 
a low degree part Nl(Ω) usually called reference 
spheroid and a high degree contribution Nl(Ω) 
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where 
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It is possible to determine the low frequency part of the 
geoid Nl(Ω) from satellite measurements (global 
geopotential models) with a sufficient accuracy. In our 
example l=20. The Stokes�s integration is employed for 
high degree part of the geoidal height only according 
eqn. (24). We can see that the problem with lack of the 
gravity data in some regions in eqn. (24) still remains. 
In order to solve this problem let us to split the 
integration domain into a spherical cap ψ0 (in our 
example ψ0 = 6 degree) and the rest of the reference 
sphere. Integration over a spherical cap somehow 
estimates the high frequency part of the geoidal height. 
Integration over the rest of the reference sphere is 
usually much smaller and thus it is possible to 
determine it from the global geopotential model with 
sufficient accuracy. This part we call a truncation error. 
Moreover it is possible to minimise the truncation error 
by modifying the spheroidal Stokes�s function. Such a 
modification is introduced e.g. in (Vaníček and 
Kleusberg, 1987) in a least-square sense according idea 
of (Molodensky et al., 1960). The Stokes�s kernel after 



modification we call the modified spheroidal Stokes�s 
kernel. 
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