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Abstract. The truncated geoid, de®ned by the truncated
Stokes' integral transform, an integral convolution of
gravity anomalies with the Stokes' function on a
spherical cap, is often used as a mathematical tool in
geoid computations via Stokes' integral to overcome
computational di�culties, particularly the need to
integrate over the entire boundary spheroid. The objec-
tive of this paper is to demonstrate that the truncated
geoid does, besides having mathematical applications,
have physical interpretation, and thus may be used in
gravity inversion. A very simple model of one point-
mass anomaly is chosen and a method for inverting its
synthetic gravity ®eld with the use of the truncated
geoid is presented. The method of inverting the
synthetic ®eld generated by one point-mass anomaly
has become fundamental for the authors' inversion
studies for sets of point-mass anomalies, which are
published in a separate paper. More general applica-
tions are currently under investigation. Since an inver-
sion technique for physically meaningful mass
distributions based on the truncated geoid has not yet
been developed, this work is not related to any of the
existing gravity inversion techniques. The inversion for
one point mass is based on the onset of the so-called
dimple event, which occurs in the sequence of surfaces
(or pro®les) of the ®rst derivative of the truncated geoid
with respect to the truncation parameter (radius of the
integration cap), its only free parameter. Computing the
truncated geoid at various values of the truncation
parameter may be understood as spatial ®ltering of
surface gravity data, a type of weighted spherical
windowing method. Studying the change of the trun-
cated geoid represented by its ®rst derivative may be
understood as a data enhancement method. The instant
of the dimple onset is practically independent of the
mass of the point anomaly and linearly dependent on its
depth.
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1 Introduction

The truncated geoid, de®ned by the Stokes' integral taken
over a spherical cap rather than over thewhole sphere, has
been used in geodetic boundary value problem solutions
as an approximation to the geoid. The truncation error
(e.g. Molodenskij et al. 1962), i.e. the contribution to the
Stokes' integral from the rest of the boundary, is usually
estimated or modelled (de Witte 1967; Hagiwara 1972;
SjoÈ berg 1984; VanõÂ cÏ ek andKleusberg 1987; VanõÂ cÏ ek et al.
1995; Neyman et al. 1996). The truncated geoid was also
used by VanõÂ cÏ ek et al. (1987) in their comparison of
marine gravity anomalies with gravity anomalies ob-
tained from geoidal undulations derived from satellite
altimetry. As such, the truncated geoid has always been
associated only with a purely mathematical interpretat-
ion. We have been studying the truncated geoid as a
candidate new tool in gravity inversion, motivated by its
changing nature when the value of its free parameter, the
radius of the integration cap (hereinafter referred to as the
truncation parameter), is changed.

In spite of the gravimetric inverse problem being
non-unique (e.g. Bomford 1971; Pick et al. 1973; Tel-
ford et al. 1976; Menke 1984; Moritz 1990), there is a
variety of gravity ®eld inversion techniques which
invert surface gravity anomalies or disturbances of
various types (using various gravity gradients, various
topography or isostasy reductions, trend removal, ref-
erence ®eld removal, spectral ®ltering, etc.), geoidal
heights, or other quantities derived from these or from
the disturbing potential, such as vertical or horizontal
derivatives, etc. These techniques yield useful infor-
mation on the anomalous densities producing the
gravity ®eld subject to interpretation. Methods and
techniques vary with respect to the extent and depth ofCorrespondence to: P. Vajda
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the region of interest ± local, regional, and global so-
lutions ± and may be classi®ed as forward modelling,
(least squares) inversion, analytical methods for re-
stricted classes of mass distribution models, and data
enhancement and display techniques. An overview of
such inversion techniques may be found in e.g. Grant
and West (1968), Grant (1972), Telford et al. (1976),
Strakhov (1977) or Blakely (1995). VanõÂ cÏ ek and
Christou (1993) highlight the use of the geoid in gravity
inversion. There are also techniques for inverting the
gravity ®eld in terms of point masses (e.g. Heikkinen
1981; SuÈ nkel 1981, 1983; Stromeyer and Ballani 1984;
Lehmann 1993). Our goal has been to develop an in-
version technique using the truncated geoid. In this
paper we theoretically justify the method for inverting
the synthetic ®eld of one point-mass anomaly (PMA),
which was developed with the help of computer simu-
lations. Inversion for sets of PMAs via the truncated
geoid was studied next and the results are the subject of
a separate paper (Vajda and VanõÂ cÏ ek 1997).

The motivation for our investigation was the varying
nature of the truncated geoid. As will be seen in the next
section, the truncated geoid changes with a decreasing
value of the truncation parameter from being the geoid,
through being a scaled mean gravity anomaly on a re-
gion that of the cap size, to vanishing at its truncation
parameter approaching zero. We studied this change as
a dynamic phenomenon with respect to the truncation
parameter and in terms of the anomalous mass distri-
bution ± a point mass in this particular case. By studying
its change we understand studying a discrete sequence of
surfaces or pro®les of the ®rst derivative of the truncated
geoid with respect to the truncation parameter, whereby
the value of the truncation parameter in the sequence
changes systematically with a preselected step. Herein-
after we will refer to the said sequence as the derivative
of the truncated geoid ``(DTG) sequence''. The sequence
is numerically computed by direct and straightforward
processing of the synthetic surface gravity (synthetic
gravity anomaly) generated by the mass model (the
point anomaly).

In the DTG sequence we have identi®ed a quanti®-
able dynamic phenomenon, which we named the ``dim-
ple event'', the onset of which is uniquely related to the
depth and mass of the point anomaly. The onset of the
dimple event is practically independent of the mass of
the point anomaly and linearly dependent on its depth.
The horizontal position of the point mass coincides with
the high (positive point mass) or low (negative point
mass) of the truncated geoid. The mass of the point
anomaly has to be determined by an independent
method, such as a least-squares method, which becomes
a linear problem, once the 3-D position of the point
mass is ®xed (e.g. Lehmann 1993).

The above-stipulated statements originated as results
of computer simulations and were proved theoretically.
After de®ning the truncated geoid and its ®rst derivative
mathematically, we ®rst discuss the dimple event as such
and demonstrate the behaviour of its onset in response
to the depth and mass of the point anomaly, and then
justify it theoretically.

2 Truncated geoid and its ®rst derivative

The truncated geoid is de®ned by the truncated Stokes
integral (e.g. VanõÂ cÏ ek et al. 1987)

Nw0 P� � � R
4pc

ZZ
<�w0�

Dg Q� �S�P ;Q�dr �1�

The truncated geoidal height Nw0 is evaluated at the
computation point P as a convolution of the gravity
anomalies Dg on a spherical cap <�w0� of radius w0

centered at P , with the Stokes' function S (Stokes 1849)
being the convolution kernel and Q denoting the
integration point. As usual, R is the radius of the
boundary sphere (mean earth), c is the normal gravity,
and dr is the surface element on the unit sphere. Integral
(1) can be expressed in the local polar coordinates with
the origin in P as (cf. Fig. 1)

Nw0 P� � � R
4pc

Z w0

0

Z 2p

0

Dg�w; a�S�w� sin�w�dw da �2�

where w is the spherical distance between points P and
Q, and a is the azimuth of point Q.

The spherical radius of w0, called the truncation pa-
rameter, is a free parameter of the transformation Dg to
Nw0 . Therefore the shape of the truncated geoid changes
with the value of w0. Indeed, for w0=p the truncated
geoid is, by de®nition, identical to the complete geoid.
For w0 approaching zero the truncated geoid vanishes:

lim
w0!p

Nw0�P � � N�P� �3a�

lim
w0!0

Nw0�P� � 0 �3b�

The ®rst derivative of the truncated geoid with respect to
the truncation parameter (in the following, we shall call
this quantity simply ``the derivative'', or abbreviate it as
``DTG'')

dNw0

dw0

� lim
Dw0!0

Nw0�Dw0 ÿ Nw0

Dw0

�4�

re¯ects the rate of change of the truncated geoid with
respect to w0. We wish to study this derivative since it
has some very useful properties, as we will show below.
To begin with, for w0 � 0 the derivative is equal to the
gravity anomaly scaled by an appropriate constant. For
w0 approaching p, the derivative tends to vanish:

lim
w0!0

dNw0

dw0

� �����
P
� R

c
Dg�P� �5a�

lim
w0!p

dNw0

dw0

� �����
P
� 0 �5b�

3 Computer simulation

To study the behaviour of the truncated geoid (TG) and
its derivative (DTG), we have used computer simulation.
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To begin with, we chose the simplest possible model of
one PMA embedded in a sphere of constant mass
density. We then let this density model generate
synthetic surface gravity in terms of gravity anomalies
Dg. These synthetic anomalies were then used to
compute the TG and DTG sequences for uniformly
decreasing values of the free parameter w0.

These two sequences of surfaces, or eventually sur-
face pro®les, were then plotted to allow a visual in-
spection of their behaviour. The aim was to discover a
quanti®able phenomenon that could be directly linked
to the depth and/or the mass of the generating PMA.
We succeeded in ®nding such a phenomenon in the
DTG sequence and named it ``the dimple event''. The
value of w0, for which the dimple onset is observed, is
referred to as ``the instant of the dimple onset'' and we
denote it by w�0. In this paper we discuss how this instant
is related to the depth and mass of the generating PMA.

When simulating the direct problem for one point
mass, we embed the PMA of mass m at depth d in a
homogeneous sphere (of mass M and radius R), repre-
senting the mean earth; see Fig. 2. The boundary sphere
was chosen to be centered in the center of the total mass
M � m, in order for the gravity ®eld to be free of the ®rst
harmonic degree (free of forbidden harmonics). The
radius R0 of this sphere was selected such that the sphere
is the smallest possible one that bounds all the masses.

Synthetic gravity anomalies on the boundary sphere
were then generated in the following way: ®rst the

``actual'' gravity on the geoid was computed from the
attraction of the PMA added to the attraction of the
massive sphere. The synthetic geoid was determined
from the disturbing potential of the setup using the
Bruns' formula. This had to be done iteratively. The
normal gravity c was generated as the attraction of a
point mass M � m located at the center of mass C. The
normal ®eld is thus the radial ®eld and the normal po-
tential and normal gravity read as follows:

U�Q� � j�m�M�
r

c�r � R0� � j�m�M�
�R0�2

�6�

where j is the gravitational constant.
The TG sequence for w0 decreasing from p to 0 with

a step of Dw0 was computed from these synthetic
gravity anomalies by numerical integration using Eq.
(2). Then the corresponding DTG sequence for the
same values of w0 was computed by di�erencing the
consecutive TGs and dividing the di�erences by Dw0.
Both the sequences are displayed in terms of the cross-
sectional pro®les running directly above the PMA in
Figs. 3 and 4. As the sequences display interesting
behaviour at smaller values of the truncation parame-
ter, we show only the portion of the sequences for w0

smaller than some 20�. Since the TG changes from
being the geoid through being a scaled mean gravity

Fig. 1. Truncated Stokes' integration

Fig. 2. Model consisting of one PMA
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anomaly until it vanishes, when decreasing w0, and the
DTG changes from being a scaled point gravity
anomaly until it vanishes, when increasing w0, cf.
Eqs. (3) and (5), we choose to display the TG sequence
in a decreasing and the DTG sequence in an increasing
order of w0 (see Figs. 3 and 4).

It is the DTG sequence that displays an interesting
evolution. At ®rst, the pro®le that coincides with the
scaled gravity anomaly starts deforming in such a way
that the feature spreads laterally while its amplitude
collapses. At a certain instant, w0=w�0, a depression (we
call it a ``dimple'') begins to develop in the pro®le. For
w0>w�0 the dimple deepens, while the whole feature
continues spreading laterally and collapsing towards
zero. We refer to the value of w�0 as the instant of the
dimple onset. By repetitive simulations for a point mass
with ®xed depth and varying mass we have discovered
that the value of w�0 is independent of m within the ac-
curacy of Dw0 that we used. By varying the depth d of
the mass anomaly we determined that w�0 changes with d
in a linear fashion. Since this discovery would o�er in-
teresting applications in the gravity inversion problem,
we now proceed to a theoretical veri®cation of the
phenomenon.

4 Theoretical justi®cation of the dimple

The dimple sets on right above the PMA in the DTG
sequence at the instant of the curvature change of the
DTG. The instant of the dimple onset w�0 is therefore
governed by the following equation:

o2

ow2
SP

dNw0

dw0

w0;wSP� �
� �����

wSP�0
� 0 �7�

where wSP is the spherical distance between the point
mass location (projected onto the boundary sphere as
point S) and the computation point of the DTG (point
P ) (cf. Figs. 2 and 5). Clearly, only w0 � w�0 satis®es
Eq. (7).

By substituting for Nw0 P� � from Eq. (2) in the de-
rivative [Eq. (7)] we obtain

dNw0

dw0

P� � � R
4pc

Z 2p

0

Dg�w0; a�S�w0� sin�w0� da �8�

and interchanging the order of the second partial
derivative and the integral we arrive atZ 2p

0

o2Dg�w0 � w�0;wSP ; a�
ow2

SP

�����
wSP�0

0@ 1Ada � 0 �9�

The interchange is admissible, as the gravity anomalies
on the boundary sphere are analytical functions.

The trivial solution sin�w0� S�w0�=0 is of no interest
here (the trivial solution describes the instants when the
whole DTG pro®le becomes zero, or in other words
changes polarity, which is caused by the nodes of the
Stokes' function). Thus the trivial solution is satis®ed for
w�0 equal to 39� and 117�. Disregarding the trivial solu-
tion, Eq. (9) is the governing equation of the dimple
onset.

The gravity anomalies in Eq. (9), generated by one
point-mass, can be expressed by means of m, and d, of

Fig. 3. The TG sequence generated by one PMA
in depth d � 319 km producing roughly a 100-m
synthetic geoid �m=M � 8:25� 10ÿ7�
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the point mass using the fundamental gravimetric
equation (Heiskanen and Moritz, 1967)

Dg r� � � ÿ oT r� �
or
� 1

c
oc
or

T r� � �10�

where T is the disturbing potential, c is the normal
gravity, and r is the radial distance of the evaluation
point Q. Thus Eqs. (9) and (10) will provide us with a
functional relation between m; d and w�0. This can be
done in either a spectral form, using a spherical
harmonic series, or a closed analytical form.

The actual potential generated by the combination of
the point mass and the massive sphere reads as (cf. Fig.
2):

W �Q� � jm
qmQ
� jM

qMQ
�11�

with the spatial distances being given by

qmQ�r � R0� � r2m � r2 ÿ 2rmr cos�wSQ�
h i1

2

�����
r�R0

�12a�

qMQ�r � R0� � r2M � r2 � 2rM r cos�wSQ�
h i1

2

�����
r�R0

�12b�

and where

rm � �Rÿ d� M
m�M

rM � �Rÿ d� m
m�M

�13�

R0 � 2m�M
m�M

Rÿ m
m�M

d �14�

From Fig. 5 we obtain, using spherical trigonometry

cos�wSQ� � cos�wSP � cos�w� � sin�wSP � sin�w� cos�a�
�15�

The fundamental gravimetric equation, Eq. (10),
requires that the disturbing potential [T �Q� � W �Q�ÿ
U�Q�] be given on the geoid. Unfortunately, we are not
able to compute the actual potential on the geoid
analytically, because the location (displacement with
respect to the boundary sphere) of the synthetic geoid is
not known to begin with. It has to be evaluated through
Bruns' formula, which requires the knowledge of the
disturbing potential on the geoid. We use the disturbing
potential on the boundary

T �r � R0� � jm
qmQ

�����
r�R0
� jM

qMQ

�����
r�R0
ÿj�m�M�

r

����
r�R0

�16�

as an approximation to the disturbing potential on the
geoid. This approximation appears acceptable when
working with synthetic geoids departing from the
boundary sphere by no more than 100 m. Now, by
expressing the reciprocal spatial distances in Eq. (16) in
Legendre polynomial series, we obtain the spectral form
of the disturbing potential generated by our model on
the boundary sphere as

T �Q� � j
R0
X1
n�2

�
m

rm

R0
� �n

��ÿ1�nM
rM

R0
� �n

�
Pn�cos�wSQ��

�17�

Fig. 4. The DTG sequence with respect to the TG
sequence shown in Fig. 3
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where Pn�cos�wSQ�� are the Legendre polynomials.

4.1 Derivation of the instant of the dimple onset
in spectral form

Substituting for the disturbing potential in Eq. (10) from
Eq. (17) gives us the expression for the gravity anomalies
generated by our synthetic model on the boundary
sphere:

Dg�Q� � j

�R0�2
X1
n�2
�nÿ 1�

�
�

m
rm

R0
� �n

��ÿ1�nM
rM

R0
� �n

�
Pn�cos�wSQ��

�18�
After substituting into the governing equation for the
dimple onset [Eq. (9)] and performing all the necessary
mathematical operations, Eq. (9) becomesX1
n�2
�nÿ 1�

 
m

rm

R0
� �n

��ÿ1�nM
rM

R0
� �n

!
cnPn�cos�w0�� � 0

�19�
with the cn coe�cients de®ned as

cn � ÿ o2

ow2
Pn�cos�w��

� �����
w�0

�20�

and being equal to

cn � dPn�cos�w��
d cos�w�

����
cos�w��1

� P 0n�1� �21�

For the cn coe�cients a recurrent relation was derived
based on the existing recurrent relations for Legendre
polynomials (e.g. Bateman and ErdeÂ lyi 1953), which
reads as follows:

cn � cnÿ1 � n; c1 � 1; n � 2; 3; . . . �22�
After taking out the multiplication factor
m rm

R0 � M rM
R0 6� 0 in the series of Eq. (19) and denoting

the function given by such series as F , we obtain

F �M ;R;m; d;w0�

�
X1
n�2
�nÿ 1� rm

R0
� �nÿ1

��ÿ1�n rM

R0
� �nÿ1� �

� cnPn�cos�w0�� � 0 �23�
As M and R are constant, F is an implicit function of
three variables: m; d and w0. We studied the convergence
of the series (23) numerically and determined that, as
expected, the bigger the d, and the smaller the m, the
faster the convergence. An example of the function F is
given in Fig. 6.

Since we are not able to rewrite the implicit function
F in an explicit form in w�0, we had to resort to ®nding its
roots w�0=w�0�m; d� numerically. For this purpose we
used the bisection method (Press et al. 1992). We have
repeated the calculations for the depth d, varying from a
few kilometres to a few thousand kilometres and for the
mass m varying over several orders of magnitude, sub-
ject to the constraint that the amplitude of the generated
geoid was bounded by ÿ100 and +100 m. This con-
straint was implemented, because we wanted our model
to be realistic. We found, that beside the trivial roots,
the function F has two additional roots for any values of
m and d. We took only the ®rst root into consideration

Fig. 5. Geometry on the boundary sphere

Fig. 6. An example of the function F for d � 319 km, and m
generating roughly a 100-m synthetic geoid
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for the following reason: the ®rst root agrees with the
results of the computer simulation, while the second root
is very poorly determined. We suspect it to be probably
an artefact caused by approximating the disturbing po-
tential on the geoid by the disturbing potential on the
boundary sphere, but we have not been able to prove
this suspicion.

We found out that the dependence of the dimple
onset w�0 on m is very weak, while the dependence on d is
strong and linear. Using the least-squares regression, we
established the linear dependence to be

w�0��� _� 0:0074��=km� � d�km� � dw�0�m���� �24�
Disregarding the weak dependence on m (i.e. the dw�0�m�
term in the above equation) causes a relative error
dw�0=w

�
0 of only 3� 10ÿ5 in w�0 determination. Let us

have a closer look at the weak dependence of the instant
of the dimple onset on the mass of the PMA. Let us
rewrite Eq. (23) by splitting it into two series, and
lowering the subscript n by 1, asX1
n�1

n
rm

R0
� �n

cn�1Pn�1�cos�w0��

�
X1
n�1

n�ÿ1�n�1 rM

R0
� �n

cn�1Pn�1�cos�w0�� � 0 �25�

Realising that m << M (m=M is actually less than 10ÿ7),
we have for any n

rm

R0
� �n

>>
rM

R0
� �n

; for n � 1; 2; . . . �26�

and we can neglect the second series with respect to the
®rst one. Equation (25) then becomesX1
n�1

n
rm

R0
� �n

cn�1Pn�1�cos�w0�� _� 0 �27�

Since m << M , we can also approximate R0 by R [cf.
Eq. (14)] and rm by �Rÿ d� [cf. Eq. (13)], which yields

~F �M ;R;w0; d� �
X1
n�1

n 1ÿ d
R

� �n

cn�1Pn�1�cos�w0�� _� 0

�28�
The function ~F is a special case of the function F , i.e.

~F �M ;R;w0; d� � F �M ;R;w0; d;m � 0� �29�
We have checked this derivation also numerically and
established that, as expected, it gives identical numer-
ical results for the roots w�0=w�0�d� as the function F
[Eq. (23)] does for the roots w�0=w�0�m; d� when
m! 0.

4.2 Derivation of the instant of the dimple onset
in a closed form

By substituting in the fundamental gravimetric equa-
tion, Eq. (9), the disturbing potential T from Eq. (17),

we obtain a closed-form expression for the gravity
anomalies generated by our model on the boundary
sphere. Namely, we obtain

Dg�r � R0� � jm
q3

mQ

R0 ÿ rm cos�wSQ�
� �

ÿ 2

R0
jm
qmQ
� jM

qMQ

 !

� jM
q3

MQ

R0 � rM cos�wSQ�
� �

� j�m�M�
�R0�2

�30�
After substituting these into the governing equation, Eq.
(9), for the dimple onset and performing all the required
mathematical operations, Eq. (9) becomes

f �m; d;w0;M ;R� � A1 � A2 � A3 � A4 � B1

� B2 � B3 � B4 � 0 �31�
where the A and B terms read as

A1 � 15mr2m�R0�2
q7

m0

R0 ÿ rm cos�w0�� � sin2�w0�

A2 � ÿ 12mr2mR0

q5
m0

sin2�w0�

A3 � ÿ 6mrmR0

q5
m0

R0 ÿ rm cos�w0�� � cos�w0�

A4 � 6mrm

q3
m0

cos�w0�

B1 � 15Mr2M �R0�2
q7

M0

R0 � rM cos�w0�� � sin2�w0�

B2 � ÿ 12Mr2M R0

q5
M0

sin2�w0�

B3 � 6MrM R0

q5
M0

R0 � rM cos�w0�� � cos�w0�

B4 � ÿ 6MrM

q3
M0

cos�w0�

and

qm0 � r2m � �R0�2 ÿ 2rmR0 cos�w0�
h i1

2

qM0 � r2M � �R0�2 � 2rM R0 cos�w0�
h i1

2

Again, we were not able to rewrite Eq. (31) in an explicit
form of w�0=w�0�m; d� and were consigned to ®nding the
roots of this function f numerically using the bisection
method. One such function is illustrated in Fig. 7. The
function f turns out to have three roots for any m and d.
We only considered the ®rst root, for the same reason as
given in Sect. 4.1.

The numerical results of w�0=w�0�m; d� derived from
the function f display a slight distortion in the ®fth
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decimal place of a degree compared to the results from
the function F . We think that this di�erence can be ex-
plained by the fact that the error in w�0 determination,
caused by the above-discussed approximation of the
disturbing potential, a�ects the spectral and the closed
forms di�erently.

5 Conclusions

The theoretically derived results for the instant of the
dimple onset in the DTG sequence (using a combination
of analytical and numerical techniques) seem to con®rm
the results of computer simulation. The instant of the
dimple onset w�0 depends only weakly on the mass of the
point anomaly and strongly on its depth, displaying a
linear relation, cf. Eq. (24). Equation (24) can be
inverted to give us a prescription for computing the
depth d of a PMA as follows:

d�km� � 135:82�km=��w�0��� � dd�m��km� �32�
where the dd�m� term (a function of mass m) may be
neglected if we do not require relative accuracy of the
depth of a PMA determination dd=d better than
3� 10ÿ5.

This means that within the above accuracy the depth
of a PMA can be determined by direct processing of the
surface gravity (detection of the instant of the dimple
onset in the DTG sequence numerically computed from
the gravity anomalies) regardless of the mass of the
point anomaly, provided this point mass is the only
source of the gravity anomaly.

This example of interpreting the synthetic surface
gravity of one PMA in terms of the TG and DTG se-
quences proves that the truncated geoid also has
physical applications. Suggestions as to how the intro-
duced method could be used for inverting surface
gravity ®elds in terms of sets of mass points are made
by Vajda and VanõÂ cÏ ek (1997). Interpretation of the

truncated geoid for models more meaningful in practi-
cal geophysical or geological applications is currently
under investigation.
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