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ABSTRACT 
 

In the practice of tidal analysis and prediction, the number and kind of 
astronomical tidal components that are to be included in a tidal model depend 
on the length of available tidal record and the desired accuracy of prediction. 
Since tidal frequencies, including shallow water constituents, are distributed 
unequally in a few narrow frequency bands, an inappropriate selection of tidal 
constituents to be included in the analysis and prediction may cause the normal 
equations to become ill-conditioned, unstable or even singular, and the 
prediction to become poor. This investigation shows how to construct lumped 
tidal frequencies which better characterise ocean tides with diminishing length 
of observational series. 
 Further, a sequential tidal analysis model is proposed and an algorithm 
for its implementation is presented, which can rigorously update a tidal solution 
when the number of observations increases. The algotithm also bring in 
automatically additional tidal constituents without a large amount of 
computation work; the CPU time for this analysis is only about 4 percent of that 
for the conventional harmonic technique. The sequential algorithm for ocean 
tidal analysis and prediction has a potential to be used in  tide gauge stations 
for providing continuous up-to-date tidal prediction. 

  
Introduction 

 
Drive towards an increasingly more accurate predictive capability of sea level 
elevation in coastal zones has been spurred on by concerns relating to 
navigation, global warming, shore-line engineering and pollutant transport. 
Traditionally, site specific sea level tidal information is derived from the 
harmonic analysis of a collected time series which estimates the amplitude and 
phases of some selected harmonic tidal constituents. Then, these harmonic 
tidal constituents, which can be either of an astronomic origin, or of shallow 
water variety [Zetler and Robert, 1967], are used to generate tidal prediction for 
future dates.  
 In tidal predictions, the accuracy of predicted values y(t) depends not 
only on the number of tidal components used in the computations, but also on 
the accuracy of their estimated amplitudes and phases. Assuming that we order 



the components according to their amplitudes, the more tidal components are 
included in an analysis, the higher the accuracy that can be achieved in tidal 
predictions. On the other hand, the accuracies of estimated amplitudes and 
phases of these tidal constituents, of which we would want to select as many as 
possible, are closely related to the length of the time series used in the 
estimation with the least squares method. If too many constituents are chosen 
for the analysis, in other words, if the time period over which observations are 
taken is too short, then either no solution would ensue, or an unstable solution 
would be obtained, in which the interference between and among tidal 
components with similar frequencies would be a detrimental factor. This 
happens when two or more frequencies are too close together so that they 
cannot be resolved from the given length of the time series.  
 As a rule of thumb, two tidal constituents of frequencies  fj  and  fk  can 
be separated, if their frequencies satisfy the relation [Godin, 1972]: 
 

 N ( f j − f k ) ≥ 1,          j ≠ k . (1) 

 
This rule is called the Rayleigh criterion, where, N represents the number of 
steps - typically hours - in a continuous sequence of (hourly) observations.  
 From the above description, it is apparent that the number of tidal 
components that could be included in a tidal analysis really depends on the 
length of the available tide gauge record. Since tidal records of 'sufficient' 
length are not available at all tide gauge stations, it is usually impossible to 
obtain as many tidal constituents as we would wish to have to make a 
'sufficiently' good prediction. The problem then is that when the length of the 
collected tidal series is short, which and how many tidal constituents should be 
included in the tidal analysis to give us the best predicted results. Before 
answering these questions, we should realise that since the tidal frequencies 
are distributed unequally in a few narrow bands, the selection of the tidal 
constituents to be included in the analysis and prediction is not a simple matter. 
Arbitrary selection of tidal constituents may cause either large departures of the 
prediction from reality, or cause the normal equations to become ill-conditioned 
(unstable), or even singular. Therefore, the selection of standard tidal analysis 
and prediction tables of tidal constituents which would fit different lengths of 
observational series is a critically important step particularly for short tidal 
series. 
 As we know, by increasing the time period over which sea-level data are 
collected, more and more tidal constituents can be separated and thus included 
in the analysis. Then, the accuracy of tidal prediction will gradually increase. 
But, with adding new data and new tidal constituents, the normal equations of 
the harmonic analysis model have to be inverted repeatedly to update all the 
estimates because no use is made, in the standard approach, of the estimates 
calculated in the previous stages. Usually, the matrix to be repeatedly inverted 
is quite large, so updating the estimates takes a good deal of CPU time. 
 The purpose of this work is to seek a method, that, while adopting the 
most detailed tidal model possible,.would update harmonic results with a 
minimum computational effort   



 
Conventional Harmonic Analysis 
 
Let us, for the moment, forget the shallow water constituents and the nontidal 
effects in the oceans and consider the tide to be composed of astronomical 
tidal constituents only: 
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where 

 C j = Hj cos φ j S j = - Hj sin φ j, 
 t ∈ { t1, t2, ..., tN } ,  ω t + ϕ  = k1 τ +k2 s +k3 h +k4 p +k5 N +k6 Ps, and t is 
Greenwich mean time, Hj, fj are the amplitudes and phase lags. The following 
relations hold:  

 ∀j =1,m:    H j = (C j
2 + S j

2 )   ,     φ j = arc tan ( -  
S j

C j
 ) . (3) 

 For the theoretical tide, the arguments wit + ji for individual tidal 
constituents are known from Doodson's harmonic development. For the actual 
tide we have to estimate the unknown parameters Zo, Hj, fj (j= 1, 2, ..., m)  from 
the series of measured values y(ti)  (i=1, 2, ..., N) by the least squares method. 

Once the parameters have been determined, the values y ( t i )  can be obtained 
from the above model; this is the tidal "prediction".  
 Matrix notation can now be used to rewrite the eqn. (2) as: 
 
 Y = AX, (4) 
 
where Y = (y(t1), y(t2), ..., y(tN))T is the "observation vector", 
X = ( Zo , C1  , S1 , ..., Cm, Sm  )  T  is the "solution  vector", and the matrix 
 
  

A =   

1 cos(ω1 t1 + ϕ1) ... sin(ωm t1 + ϕm )

1 .
.

.

.
.
.

. . . .

1 cos(ω1tN + ϕ1) ... sin(ωm tN  + ϕm)

 

 

(5)

 



is called the Vandermonde (or design) matrix. The least squares solution of the 
above system of over determined equations (for N>2m+1) is given by the 
following normal equations: 
 
 X=(ATA)-1ATY . (6) 
 

 It is known from the theory of the least squares method [ Vanicek  and 
Krakiwsky, 1986] that the accuracy of the solution vector X  is estimated by the 
covariance matrix: 
 

 CX = (Y-AX )T(Y-AX )(ATA)-1

N - (2m+1)    (7) 
 
The diagonal elements of CX represent the variances σσσσXi

2   (j=1, 2, ..., 2m+1) of 
the resulting parameters and off-diagonal elements are the covariances  σσσσXiXj

 
  

(j=1, 2, ..., 2m+1) between pairs of parameters. 
 This method is widely used now in tidal operations because it is simple, 
yet it gives good enough predictions for most purposes. 
 

Lumped Tidal Constitutents 

As we have already stated, the number of constituents used in a tidal model 
depends strongly on the length of the observational series. If the length of 
observed series is more than 18.6 years, nearly all the harmonic tidal 
constituents of Doodson's development as well as all shallow water 
constituents can be separated and thus included in the model. Under this 
circumstance, it perhaps makes no sense to introduce the sequential approach. 
But if the duration of observed series is much shorter, sometimes only a few 
months, weeks or even days, we wish to know which principal tidal constituents 
should be selected in the model to obtain the best predicted results. In other 
words, the question arises as to which compositions of principal tidal 
constituents gives an optimal representation over whole tidal frequency 
spectrum. Making such a selection in tidal analysis is very difficult. No such 
composition reflects the tidal energy distribution over all tidal frequency bands 
rigorously. 

 For constructing the sequential tidal model, we create lumped tidal 
constituents from individual astronomical and shallow water constituents by the 
least squares method. This smaller number of lumped tidal constituents, can be 
considered to be the best representation of tidal frequency bands. To 
demonstrate how to form these lumped tidal constituents, let us consider two 
astronomical tidal constituents with adjacent frequencies w1 and w2; lumped 
together the result must have a representative frequency w* located 



somewhere between w1 and w2 and a combined amplitude A* related to the 
amplitudes A1 and A2 of the original constituents (see Figure 1).  
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Figure 1  A Representative Frequency w* for w1 and w2 
  
 In our algorithm, for any two tidal constituents to be lumped together, the 
weighted average w* of the frequencies w1, w2 has been used for the 
frequency of their lumped representative: 
   

 
ω* = ω1 + ω2-ω1

A1+A2
 A2

 , 
(8)

 

where, A1, A2 are the respective theoretical amplitudes of the two constituents. 
The lumped amplitude A* is defined by: 
  

 A* = A1
2 +  A2

2
  . (9) 

These parameters w* and A* are then used in the next lumping step as the 
representative values for the original constituents.  
  
Method of Construction of Lumped Constituent Tables 

The tidal potential contains about 400 constituents in Doodson's [Doodson,       
] harmonic development, about 500 terms in Cartwright's [Cartwright,.........] 
spectral analysis results and about 1140 terms in Qiwen’s [Qiwen, 1987] logical 
deduction method for precision tidal analysis. 

 In the construction of our lumped tidal tables, we have selected only 60 
principal harmonic constituents whose theoretical relative amplitudes are larger 
than 500x10-5 (neglecting the fact that actual amplitudes may be significantly 
different, altered by tidal resonance and, of course, by the latitude effect). Since 
the tidal energy is proportional to the squares of the amplitudes, the 60 main 



constituents represent some 99.97% percent of total tidal energy. Beside the 60 
principal tidal constituents, an additional 15 shallow water constituents have 
been also considered in our construction. Amplitudes of shallow water 
constituents change dramatically from place to place. In our computations, 
however, for a lack of any better information, we have assumed all their 
amplitudes, to equal to 600X10-5  

 When building up the design matrix, we re-wrote the observation 
equation (2) in such a way that the original phase jj and the phase lag fj are 
added together. Then they become part of the unknown parameters  C*j and 
S*j  as follows: 
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where: 

 ∀j = 1, m:          Cj
* = H j cos ( ϕj + φj ) ;            Sj

* = - H j sin ( ϕj + φj ) . (11) 

Thus, the elements of the design matrix are expressed as functions of angular 
velocities  wj  and time  t , regardless of the time origin of the analyzed series. It 
should be kept in mind, however, that the vector of unknown parameters  C* 
and S*  will change according to the choice of origin of time (usually Julian) 
used in forming the design matrix. 

 When the matrix of the normal equations  N=ATA  is created, its 
elements have one of the following forms: 
  

 cos ωj�
i = 1

N
 t i cos ωk t i

,  
 cos ωj�
i = 1

N
 t i sin ωk t i

, 
sin ωj�

i = 1

N
 t i sin ωk t i

  
(12)

 

(with the exception of the first row and first column, where the elements are as 
follows:  
   

 
cos ωj�

i = 1

N
 t i,  

 
sin ωj�
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N
 t i

  ). 
(13) 

 



These elements can be evaluated much faster from the following expressions 
[Bronshtein and Semendyayev, 1979]: 
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sin [0.5N (ω j )] sin [0.5(N+1) ω j ]

sin 
ωj 
2
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(18) 

Clearly, using the above expressions, the CPU time needed for constructing the 
matrix of normal equations is independent of the observation series length N. 
This is very useful in sequential tidal analysis, especially with a very long tidal 
series. 

 

Correlation Criterion for Separability of Constituents 

From the matrix of normal equations, we can estimate approximately which two 
pairs of columns are likely to interfere with each other, i.e., which pair of tidal 
constituents is likely to be highly correlated. It is impossible, however, to 
determine the definite correlation values between any two adjacent 
constituents. For this purpose, it is necessary to invert the matrix and get the 
covariance matrix of the estimated coefficients (Eqn. 7), which we will rewrite 
here as: 
 

  

Cx = σo
2  ( ATA )-1  = σo

2    

Q11 . . Q1L
. . . .
. . . .

QL1 . . QLL

   =   

σ1 
2 . . σ1L

. σ2 
2 . .

. . . .

σL1 . . σL 
2

 

  
  



 (19) 

where,   σo
2 = (Y-AX )T(Y-AX )/(N-L)  and L=2m+1. 

 The  rij  correlation coefficient of any two estimated coefficients  Xi, Xj  

(note that here X's stand for the unknowns C's and S's) is given by [ Vanicek  
and Wells, 1972]: 
 

 
ρi j = σi j

σi σj . 
(20)

 
 

Clearly, we can also write: 

 
ρ i j = Qi j

Qii  Qjj
 = ρ j i

 
(21) 

and to evaluate the correlation coefficient it is not necessary to know σo
2
 .  The 

following correlation matrix: 
  

 

R =   

1 ρ12 . ρ1L

. 1 . .

. . . .

ρL1 . . 1

 

  

(22)

 

can be then calculated without having any observational series. This matrix  R  
depends only on   the assumed length  N  of the time series, and the selected 
number  m  of constituents. Looking at the off-diagonal elements in the matrix 
R, we can make a decision about which two (or more) tidal components are 
strongly correlated; these two (or more) can then be held responsible for 
potential ill-conditioning of the normal equations. 

 To determine which two adjacent tidal constituents are significantly 
correlated, we first take the 4 by 4 symmetrical submatrix of  R  connected with 
these two constituents. This submatrix will look as follows: 
  

 

1   ρCiSi   ρCiCi +1   ρCiSi +1

  ρSiCi 1   ρSiCi +1   ρSiSi +1

  ρCi +1Ci   ρCi +1Si 1   ρCi +1Si +1

  ρSi +1Ci     ρSi +1Ci     ρSi +1Ci +1 1  

.

 

(23)

 
 



From numerical experiments we have established that 
  

 ρCiCi +1 ≈ ρSiSi +1 , ρCiSi +1 ≈ ρSiCi +1   (24) 

From further numerical experiments we have determined that the quantity 
 
  

 
ρi , i + 1  = 1

2
 ρCiCi + 1  + ρSiSi +1   2 +  ρCiSI +1  + ρSiCI +1   2     ∈ 0, 1

 (25) 

decreases monotonically with increasing N, and is thus suitable to use as a 
correlation criterion. Somewhat arbitrarily, we have selected a value of 0.985 to 
serve as a criterion value for deciding if two adjacent constituents are 
correlated, i.e., if they are separable or not. For ρi,i+1  ≤ 0.985  all the correlation 
coefficients in the matrix (23) are smaller in absolute value than 0.95. 

 In Tables 1 to 3, the frequencies and amplitudes of lumped  

      TABLES 1 TO 3 TO FIT NEAR HERE 

 
representative constituents, obtained as described above, are given in the 
individual boxes. These Tables show how the lumping works for diminishing 
length of observational series, when the series is shortened in successive 
steps. Looked at from the other perspective, i.e., considering the series as 
growing in length, these tables show the separability of constituents. Based on 
these Tables, detailed time schedule for the tidal constituent separability has 
been designed and included in our computer program for sequential tidal 
analysis . 

The Sequential Mathematical Model 

In applying the sequential technique to tidal analysis,first of all the first 
estimates of unknown parameters are obtained from an initial tidal harmonic 
analysis. In the next stage these initial estimates are updated by computing 
corrections to the earlier results as functions of previous estimates. The 
information made available for subsequent use consists of the estimated 
amplitudes, phase lags and their covariance matrix, that serves as the link 
between subsequent steps 

 In our sequential tidal model algorithm we distinguish between two 
different update modes: 

 (i) adding only new observations; 

 (ii) adding both new observations and new tidal constituents; 



Throughout the development of the algorithm (as well as the program based on 
the algorithm), we restrict ourselves to a rigorous approach, but we will include 
some discussion concerning approximate approaches for certain situations. 

 The original mathematical model for tidal harmonic analysis is (cf eqn. 
4): 

 A1 X1 = L1, (26) 

where L1=(L1, L2, ..., LN)T is the data vector, A1 is the design matrix, and 
X1=(X1, X2, ..., XL)T is the unknown parameter vector. The least squares 
solution of the above system of over-determined linear equations is given by 

normal equations as [ Vanicek  and Krakiwsky, 1986]: 

 X1 = N-1
 A1

TL1 = (A1
TA1)-1A1

TL1. (27) 

 The sequential updating starts with the acquisition of additional data. Let 
us assume that a batch of data, consisting of 1 to N1 new values becomes 
available. These additional data contain additional information on the analysed 
tide and now have to be included in the analysis. We note that the size N1 of 
the batch (it may be as small as 1!) should be selected beforehand according to 
what use the results of the analysis are going to be put to.  

 When adding the new batch of data to the existing series, two or more 
tidal constituents may become separable. If this is the case, then the separable 
constituent present in the previous analysis - it could have been a lumped 
constituent, of course - is replaced by its separate component. This case is 
refered to as ii) above. We shall first discuss the more simple scenario i), when 
no new tidal constituents appear in the sequential step. 
 
Addition of New Observations 

If only new observations L2=(LN+1, LN+2, ..., LN+N1)T are added, the 
observation equations become: 
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and the new solution is given as: 

 X1
(1)+dX1

(2) = N11
-1(A1

TL1+A2
TL2) . (29) 

Here, the matrix  N11  of normal equations is as follows: 
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A2
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A1

A2
 

 

= (A1
TA1+A2

TA2) = (N+DN) . (30) 

The inversion of this matrix can be obtained from the following rigorous  
sequential expression [Morrison, 1969]: 

 N11
-1 = (N+DN)-1 = N-1-N-1A2

T[I+A2N-1A2
T]-1A2N-1, (31) 

Here,  I  is the identity matrix, and   

 DN = A2
TA2   

can be considered the perturbation of the set of the original normal equations 
due to the added observations. From expression (31), we see that the matrix  
I+A2 N-1A2

T  has a dimension of  N1 by N1,  where N1 is the number of added 
observations.  

If N1 is large, we still need to invert a large matrix which would eliminate one of 
the important advantages of the sequential approach. In practice, the number 
of added observations N1 should be small. If we let, for example,  N1=1,  
meaning that only one new observation is added at a time, the matrix 
degenerates into a scalar: 

 (I+A2 N-1A2
T) = Q (32) 

Eqn. (31) is then written  as: 

 N11
-1= (N+DN)-1= N-1-

1
Q  N-1A2

TA2 N-1= N-1-
1
Q  N-1DN N-1 . (33) 

Obviously, when adding a single new observation at a time, no additional matrix 
needs be inverted. 

 Before the rigorous complete sequential solution is given, let us 
introduce another important approximate formula for matrix inversions which 
may be useful in some cases where the original matrix is huge, and the number 
N1 of observations added is so large that the rigorous inversion would be too 
time consuming. The approximate expression reads [ reference] 

 N11= (N+DN)-1 = N-1-N-1DN N-1. (34) 

The criterion for this expression to satisfy the required accuracy of tidal 
harmonic analysis reads: 

 ||DN|| << ||N||, (35) 



where  || . ||  denotes a norm [reference]. There are several ways to compute a 
matrix norm, and we adopt the most commonly used quadratic norm. The 
formulation is given as: 

  

 ||T|| = { S | Tij | 2 } 
1 
2  

,
 (36) 

where  Tij  are the elements of matrix  T. 

 To conclude: if no new tidal constituents are added, the new (sequential) 
solution is given by: 
 

 X1
(2) = X1

(1)+dX1
(2), (37) 

 dX1
(2)  = N-1A2

TL2 - F(A1
TL1+A2

TL2), (38) 

where the matrix  F  is given as: 
 

 F =   

��
�
��

-N-1A2
T(I+A2 N-1A2

T) -1A2 N-1 all

-
1
Q N-1DN N-1 N1=1

-N-1DN N-1 || DN || < < || N ||.

  (39) 

  
or 
       give here the expression for the approximate inversion! 
 
 
Addition of New Tidal Constituents 
 
In the case, when not only  n2  new observations  Li  are added, but also  m2  
lumped tidal constituents become separable, the situation is somewhat more 
complicated. Clearly,  2m2  already estimated parameters become redundant, 
while  4m2  new parameters have to be estimated. Thus, in addition to the new 
vector  L2  of observations (of dimension  n2) to be added to the previous 
vector  L1  (of dimension  n1), we have to consider also a new vector  X2  of 
unknown parameters (of dimension  4m2) that has to be added to the previous 
vector  X1  (of dimension   2m1 + 1) from which  2m2  elements are first 
discarded.  In the sequel, we shall explain only the necessary manipulations 
with pertinent matrices without keeping track of the proper dimensions. (Mr. 
Hou - the preceding paragraph should replace the first 3 lines in your 



version of thid chapter. Please note the notation used for the dimensions 
of all the vectors. You should change the text in this and other chapters to 
conform with this notation; what you have been using does not make 
much sense!) 
 
The observation equations can be written here as: 
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where the new design matrices A2, A3 and A4 are added to the original design 
matrix A1. The new (updated) matrix of normal equations reads: 
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TA2 A1

TA4+A2
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TA2 A3
TA3+A4
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where the submatrices are denoted as follows: 

 N11= N  + DN = A1
TA1 + A2

TA2, 

 N12 = N21
T = A1

TA4 + A2
TA3, 

 N22 = A3
TA3 + A4

TA4. 

Partitioning the matrix inversion, we then get: 
 

 (N (2)) -1 = 
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N11 N12

N21 N22
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N11

-1+N11
-1N12D-1N21N11

-1 -N11
-1N12D-1

-D-1N21N11
-1 D-1

  , (42) 

where, 

 D-1 = (N22-N21N11
-1N12)

-1
 . (43) 

It is seen that the additional matrix inversion for sequential updating is only of 
the size of the number of added parameters. The matrix inversion  (I+A2 N-



1A2
T)-1  pertaining to the new observations appears as well, as one would 

naturally expect. 

 The rigorous solution to the combined (old and new) normal equations 
for all the unknown parameters (old ones without the parameters pertaining to 
the constituent(s) being separated and the new ones) can be written as: 
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Spelling out these results, we have: 
  
 X1

(1) = N-1A1
TL1, 

 X1
(2) = X1

(1) + dX1
(2) , 

 dX1
(2)= Z1L1+Z2L2 , 

(45) 

(note that the dimension of  dX1(2)  is smaller than the dimension of  X1(1)  by 
twice the number of constituents that became separable in this sequential step) 

   X2
(2) =  Z3L1+Z4L2 ,  

where, using eqn.s (39) and (42), we can write: 
  
 Z1 = -N11

-1N12D-1(N21N11
-1A1

T - A4
T) - FA1

T, 

 Z2 = N11
-1 + N11

-1N12D-1(N21N11
-1A2

T - A3
T), 

 Z3 = D-1(A4
T - N21N11

-1A1
T), 

(46)
 

 Z4 = D-1(A3
T - N21N11

-1A2
T). 

In the above mathematical model, the entire covariance matrix  (N(2))-1  in the 
current step must be available as  N-1  in next step, to obtain again the rigorous 
sequential solution. 

 The sequence of iterative solutions for unknown parameters of tidal 
harmonic analysis looks as follows: 
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It can be seen that all the information about the previously estimated 
parameters is always made available to the subsequent step 

 

Testing of Accuracy of Fit 

To test the performance of our sequential algorithm, we had generated a 
synthetical hourly series consisting of the most dominant 60 theoretical 
(astronomical) constituents. (Mr.Hou - have you also included any shallow 
water constituents here? If yes, say so.) We then analysed this series, 
starting with the first 100 values and proceeding till 300 hours (i.e.,12.5 days) 
were reached,.using a step of .............hours. From the lumped constituent 
tables the program selected 12 lumped constituents to be fitted to the first 100-
value series and ended up fitting 21 lumped constituents to the whole 300-



value series. At each step we plotted the relative root-mean-square error (RMS) 
σ i

ζ
 
, defined as: 

 
σ i = [ ( ζ j - ζ i ) 2 / ( N-2m-1 )�

j

N i

 ] 1
2

,  
ζ  = [ ζj

 2
�

j

N
 /N ] 1

2

. 
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These relative RMS are shown in Figure 6.3, where the symbols (13), (14), ..., 
(21) indicate the number of lumped tidal constituents used at any particular 
time.  
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Figure 2 - Relative RMS of the Sequential Analysis 

 

The shape of the curve demonstrates that when new tidal constituent are 
added (really, when used lumped constituents are separated), the relative 
accuracy of the fit increases. During the time interval when the number of tidal 
constituents in the model is fixed, the relative accuracy decreases until the next 
separation of constituents occurs. It implies that before adding the next 
constituent at a certain stage, the tidal model find it more and more difficult to fit 
properly the current data series. Intuitively, this behaviour obviously makes a 
good sense 

 
 For comparison, we give the standard deviation curve of real tide-gauge 
data analysis at Halifax (Fig. 3). It shows that the values of standard deviations 
of the fit also generally decrease when a new constituent is added to the 
model.(Mr.Hou - Here, we have to explain what the standard deviation is 
and how does it relate to the above used relative RMS.) The situation in this 



case is more complicated however, because of the presence of non-tidal 
signals in the data. Thus, Figures 2 and 3 cannot be compared directly. 
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Figure 3 - Standard Deviations of the Sequential Analysis at Halifax 
 
Computation Speed Testing 
 

The tidal harmonic analysis results at permanent tide gauges should be kept 
up-to-date to maintain the quality of tidal prediction at any given time. To do 
this, large systems of linear equations have to be solved repeatedly. This will 

require a lot of CPU time, which, in turn, will increase the cost. It is thus of 
natural interest, to determine just how much faster the analysis can be 
performed using the sequential approach. The comparison of the time 

consumption of the traditional harmonic analysis with that of the sequential 
approach is given in Fig. 4. 
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Figure 4 - CPU Time Consumption of the Two Methods 
 
The difference in the CPU time consumption for obtaining 10 solutions (with 
increasing number of unknown parameters) from the two methods on a 
mainframe IBM computer is seen very clearly. For instance, if the tidal model 
contains 7 constituents (15 unknown parameters), solving the pertinent 15 
normal equations 10 (Mr. Hou - Why do we solve the equations 10-times? 
Can we not make the same point simply by solving the system just once?) 
times to get 10 updated solutions, the standard method spends 13.4 seconds 
of CPU time, and sequential method spends 4.5 seconds - a difference of 8.9 
seconds. If the size of the system of equations is increased to 95, the 
difference of CPU time needed by the two methods increases to13.8 seconds. 
With further increases in the number of needed constituents, the CPU time 
saving increases progressively 
 
 

Comparison Between Using Pure and Lumped Constituents 
 
The lumped tidal constituent tables discussed above are based on the 
astronomical tidal constituents and created by the least squares method, in 
which the covariance matrix of the estimated constituents' amplitudes and 
phases is inspected by using a specific correlation criterion. With the lumped 
constituent tables , we establish a standard model that includes as many tidal 
components as is possible with the limited length of observational series, while 
assuring that no ill-conditioned normal equation matrix results in any of the steps 



of the sequential algorithm. As we have mentioned earlier, the lumped tidal 
constituents can be considered as a good representation of the pure 
astronomical and shallow water constituents when the time series is short. For 
demonstrating the differences between using the two  kinds of constituents, pure 
and lumped, two data series, a synthetic one and the observed data series at 
Halifax, were analysed. The resulting standard deviations of the respective fits 
are shown in Table 4.  

 
 
 N Standard Deviation Standard Deviation of
 (hour) of observation (cm)  Equilibrium tide (cm) 

 Astronomical 40 ±   5.826 ±   1.414 

 Tidal  70 ±   5.213 ±   1.303 

 Constituents  100 ±   5.046 ±   0.264 

 Lumped 40 ±   4.599 ±   0.408 

 Tidal  70 ±   3.743 ±   0.151 

 Constituents  100 ±   4.410 ±   0.365 
 

Table 4 - Standard Deviations of Analyses with 
                       Pure and Lumped Constituents  
  It can be seen that when the series is not very long, the analysis with 
lumped constituents yields generally more accurate results than the one with 
the pure constituents. The only exception is found for the longest analysed 
stretch of the synthetical data series (n = 100 hours). The reason is that the 
lumped constituents used in the analysis contain some shallow water 
contributions. When the length of the series is increased, the effect of these 
contributions in the lumped constituents become more and more apparent and 
the misfit of the fitted series to the synthetical series (generated from purely 
astronomical constituents) becomes more and more obvious. It may be 
assumed that if the lumped constituent tables were constructed without 
considering the shallow water effects, the accuracy of the analysis (using these 
lumped constituents) would also be higher. 
  As one may expect, prediction with lumped tidal constituents gives also a 
higher accuracy than that with pure astronomical constituents. This can be 
seen from numerical results listed in Table 5, constructed for  N = 100 and  N1 
= 30. 

  Unit (cm)
 lumped tides Astronomical tide 
 Stand. deviations 4.410 5.046  
 for estimates  
 Stand. deviations 12.881 15.291  
 for predictions  



 
 

 Table 5 - Standard Deviations of Predictions with  
 Pure and Lumped Constituents  

 When the length of the time series is increased, the results by using the 
two kinds of constituents get closer together, until the difference between them 
completely disappears. This happens, when the series becomes sufficiently 
long so that all the lumped constituents can be separated into their component 
constituents. 
 

Conclusions 
 
The sequential tidal harmonic analysis proposed in this study can be used to 
provide up-to-date information for ocean tidal predictions in real time. Once new 
hourly observations (one, two or several hours) become available, updated 
results (estimated new amplitudes and phase lags, and their standard 
deviations) can be obtained with very little CPU time expenditure, as the 
solution time is only weakly dependent on how many tidal constituents are 
included in the tidal model. If desired, the predicted values y can be naturally 
computed in each sequential step. 

 For obtaining accurate results by the sequential algorithm, lumped tidal 
constituent tables have been constructed for sequential separation of tidal 
constituents. This has been done by using the correlation matrix for estimated 
tidal amplitudes and phases without considering any tidal observations and 
applying a specific criterion for maximum allowable correlation. If the need 
arises, these tables can be recomputed for a different criterion. 

 Lumped tidal constituents are a realistic representation of pure 
astronomical tidal constituents over all tidal frequency bands with observational 
series of a limited length. The lumped tidal constituents are all separated into 
the pure astronomical components, when the length of the observational series 
is greater than 19 years.(Mr.Hou - The last sentence belongs in the section 
where we describe the lumping. I would like to do a bit more work on the 
Conclusions later; they are a little lean!) 
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Note - w's should be replaced with 'omegas'. 

I have not checked formulae. Some of them look screwed up. They should all 
be checked thoroughly after the paper is printed. 

Insert systematically two spaces before and after symbols in the text. 

Typing of equations should be cleaned up (bold-faced subscripts?) including 
paragraphing - skip one line before and one line after the equation. 

Morrisson missing in citations. Check that all publications listed are actually 
quoted in the text! 



I would like to edit the Tables once they are printed. Ther seems to be some 
problems there with wording and with placing of headings. 


