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ABSTRACT

In the practice of tidal analysis and prediction, the number and kind of
astronomical tidal components that are to be included in a tidal model depend
on the length of available tidal record and the desired accuracy of prediction.
Since tidal frequencies, including shallow water constituents, are distributed
unequally in a few narrow frequency bands, an inappropriate selection of tidal
constituents to be included in the analysis and prediction may cause the normal
equations to become ill-conditioned, unstable or even singular, and the
prediction to become poor. This investigation shows how to construct lumped
tidal frequencies which better characterise ocean tides with diminishing length
of observational series.

Further, a sequential tidal analysis model is proposed and an algorithm
for its implementation is presented, which can rigorously update a tidal solution
when the number of observations increases. The algotithm also bring in
automatically additional tidal constituents without a large amount of
computation work; the CPU time for this analysis is only about 4 percent of that
for the conventional harmonic technique. The sequential algorithm for ocean
tidal analysis and prediction has a potential to be used in tide gauge stations
for providing continuous up-to-date tidal prediction.

Introduction

Drive towards an increasingly more accurate predictive capability of sea level
elevation in coastal zones has been spurred on by concerns relating to
navigation, global warming, shore-line engineering and pollutant transport.
Traditionally, site specific sea level tidal information is derived from the
harmonic analysis of a collected time series which estimates the amplitude and
phases of some selected harmonic tidal constituents. Then, these harmonic
tidal constituents, which can be either of an astronomic origin, or of shallow
water variety [Zetler and Robert, 1967], are used to generate tidal prediction for
future dates.

In tidal predictions, the accuracy of predicted values y(t) depends not
only on the number of tidal components used in the computations, but also on
the accuracy of their estimated amplitudes and phases. Assuming that we order



the components according to their amplitudes, the more tidal components are
included in an analysis, the higher the accuracy that can be achieved in tidal
predictions. On the other hand, the accuracies of estimated amplitudes and
phases of these tidal constituents, of which we would want to select as many as
possible, are closely related to the length of the time series used in the
estimation with the least squares method. If too many constituents are chosen
for the analysis, in other words, if the time period over which observations are
taken is too short, then either no solution would ensue, or an unstable solution
would be obtained, in which the interference between and among tidal
components with similar frequencies would be a detrimental factor. This
happens when two or more frequencies are too close together so that they
cannot be resolved from the given length of the time series.

As a rule of thumb, two tidal constituents of frequencies fj and fi can

be separated, if their frequencies satisfy the relation [Godin, 1972]:
N(fj—fk)>1, j#k. €))

This rule is called the Rayleigh criterion, where, N represents the number of
steps - typically hours - in a continuous sequence of (hourly) observations.

From the above description, it is apparent that the number of tidal
components that could be included in a tidal analysis really depends on the
length of the available tide gauge record. Since tidal records of 'sufficient'
length are not available at all tide gauge stations, it is usually impossible to
obtain as many tidal constituents as we would wish to have to make a
'sufficiently' good prediction. The problem then is that when the length of the
collected tidal series is short, which and how many tidal constituents should be
included in the tidal analysis to give us the best predicted results. Before
answering these questions, we should realise that since the tidal frequencies
are distributed unequally in a few narrow bands, the selection of the tidal
constituents to be included in the analysis and prediction is not a simple matter.
Arbitrary selection of tidal constituents may cause either large departures of the
prediction from reality, or cause the normal equations to become ill-conditioned
(unstable), or even singular. Therefore, the selection of standard tidal analysis
and prediction tables of tidal constituents which would fit different lengths of
observational series is a critically important step particularly for short tidal
series.

As we know, by increasing the time period over which sea-level data are
collected, more and more tidal constituents can be separated and thus included
in the analysis. Then, the accuracy of tidal prediction will gradually increase.
But, with adding new data and new tidal constituents, the normal equations of
the harmonic analysis model have to be inverted repeatedly to update all the
estimates because no use is made, in the standard approach, of the estimates
calculated in the previous stages. Usually, the matrix to be repeatedly inverted
is quite large, so updating the estimates takes a good deal of CPU time.

The purpose of this work is to seek a method, that, while adopting the
most detailed tidal model possible,.would update harmonic results with a
minimum computational effort



Conventional Harmonic Analysis

Let us, for the moment, forget the shallow water constituents and the nontidal
effects in the oceans and consider the tide to be composed of astronomical
tidal constituents only:
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j=1
Jm
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Greenwich mean time, H;, fj are the amplitudes and phase lags. The following
relations hold:
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For the theoretical tide, the arguments wijt + jj for individual tidal
constituents are known from Doodson's harmonic development. For the actual
tide we have to estimate the unknown parameters Z, H; fj (=1, 2, ..., m) from

the series of measured values y(t;) (i=1, 2, ..., N) by the least squares method.
Once the parameters have been determined, the values ; (tj) can be obtained

from the above model; this is the tidal "prediction”.
Matrix notation can now be used to rewrite the egn. (2) as:

Y = AX, (4)
where 'Y = (y(t1), vy(2), ..., y(tN))T is the "observation vector",
X=(2Z,,GCi, Sy, .., Cn Sn )T isthe "solution vector", and the matrix
[ 1 cos(mq ty + ¢y) sin(omty + O ) |
1
A - . . . (5)

1 cos(mty + 1) sin(®m tn + Q)



is called the Vandermonde (or design) matrix. The least squares solution of the
above system of over determined equations (for N>2m+1) is given by the
following normal equations:

X=(ATA)ATY. (6)

It is known from the theory of the least squares method [Vanfc\ék and

Krakiwsky, 1986] that the accuracy of the solution vector X is estimated by the
covariance matrix:

oo - (Y-AX)T(Y-AX)ATA)!
X- N - (2m+1) )

The diagonal elements of R represent the variances c%i (=1, 2, ..., 2m+1) of

the resulting parameters and off-diagonal elements are the covariances Oxx;
(=1, 2, ..., 2m+1) between pairs of parameters.

This method is widely used now in tidal operations because it is simple,
yet it gives good enough predictions for most purposes.

Lumped Tidal Constitutents

As we have already stated, the number of constituents used in a tidal model
depends strongly on the length of the observational series. If the length of
observed series is more than 18.6 years, nearly all the harmonic tidal
constituents of Doodson's development as well as all shallow water
constituents can be separated and thus included in the model. Under this
circumstance, it perhaps makes no sense to introduce the sequential approach.
But if the duration of observed series is much shorter, sometimes only a few
months, weeks or even days, we wish to know which principal tidal constituents
should be selected in the model to obtain the best predicted results. In other
words, the question arises as to which compositions of principal tidal
constituents gives an optimal representation over whole tidal frequency
spectrum. Making such a selection in tidal analysis is very difficult. No such
composition reflects the tidal energy distribution over all tidal frequency bands
rigorously.

For constructing the sequential tidal model, we create lumped tidal
constituents from individual astronomical and shallow water constituents by the
least squares method. This smaller number of lumped tidal constituents, can be
considered to be the best representation of tidal frequency bands. To
demonstrate how to form these lumped tidal constituents, let us consider two
astronomical tidal constituents with adjacent frequencies wy and w,; lumped

together the result must have a representative frequency w* located



somewhere between w; and w, and a combined amplitude A* related to the
amplitudes A; and A, of the original constituents (see Figure 1).
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Figure 1 A Representative Frequency w* for w4 and w»

In our algorithm, for any two tidal constituents to be lumped together, the
weighted average W* of the frequencies Wy, W2 has been used for the
frequency of their lumped representative:

W2-Wg

*
O =0+
! Al+Ar

A ®)
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where, A4 A are the respective theoretical amplitudes of the two constituents.
The lumped amplitude A* is defined by:

A" = 4 A12 + A22 . 9)

These parameters w* and A* are then used in the next lumping step as the
representative values for the original constituents.

Method of Construction of Lumped Constituent Tables

The tidal potential contains about 400 constituents in Doodson's [Doodson,
] harmonic development, about 500 terms in Cartwright's [Cartwright,......... ]
spectral analysis results and about 1140 terms in Qiwen’s [Qiwen, 1987] logical
deduction method for precision tidal analysis.

In the construction of our lumped tidal tables, we have selected only 60
principal harmonic constituents whose theoretical relative amplitudes are larger
than 500x10-5 (neglecting the fact that actual amplitudes may be significantly
different, altered by tidal resonance and, of course, by the latitude effect). Since
the tidal energy is proportional to the squares of the amplitudes, the 60 main



constituents represent some 99.97% percent of total tidal energy. Beside the 60
principal tidal constituents, an additional 15 shallow water constituents have
been also considered in our construction. Amplitudes of shallow water
constituents change dramatically from place to place. In our computations,
however, for a lack of any better information, we have assumed all their

amplitudes, to equal to 600x10-°

When building up the design matrix, we re-wrote the observation
equation (2) in such a way that the original phase j; and the phase lag fj are

added together. Then they become part of the unknown parameters C* and
S* as follows:

m
Vi=1,N: y(ti)= DHjcos((Djt+(pj+¢j):
=1
m ) )
=7Zo+ [ [Hjcos((pj+¢j)cos(0j t—Hj s1n((pj+q)j)smmjt]=
j=1
m
=70+ 1 (Ci cos®;t+S* sin@®;it)- (10)
i=1 ] J J J
where:
Vi=1m: C;:Hjcos(@j+¢j); S;:—Hjsin((pj+({)j), (11)

Thus, the elements of the design matrix are expressed as functions of angular
velocities W; and time t, regardless of the time origin of the analyzed series. It
should be kept in mind, however, that the vector of unknown parameters C*
and S* will change according to the choice of origin of time (usually Julian)
used in forming the design matrix.

When the matrix of the normal equations N=ATA s created, its
elements have one of the following forms:

N N N
[ ] cos j tj cos my t; [ ] cos o t;sin oy t; [ ] sin o ti sin @y t; (12)
i=1 , i=1 ; i=1

(with the exception of the first row and first column, where the elements are as
follows:

N N
[ ] cos mj t;, [ ] sin @j t; (13)
i=1 i=l )



These elements can be evaluated much faster from the following expressions

[Bronshtein and Semendyayev, 1979]:
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Clearly, using the above expressions, the CPU time needed for constructing the
matrix of normal equations is independent of the observation series length N.
This is very useful in sequential tidal analysis, especially with a very long tidal
series.

Correlation Criterion for Separability of Constituents

From the matrix of normal equations, we can estimate approximately which two
pairs of columns are likely to interfere with each other, i.e., which pair of tidal
constituents is likely to be highly correlated. It is impossible, however, to
determine the definite correlation values between any two adjacent
constituents. For this purpose, it is necessary to invert the matrix and get the
covariance matrix of the estimated coefficients (Eqn. 7), which we will rewrite
here as:

o7 . . oqL

Oll . . Q]L

~ - . - . (55

Q. . . QL




(19)
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where, 6,%=(Y-AX)T(Y-AX)/(N-L) and L=2m+1.
The r; correlation coefficient of any two estimated coefficients X, X

(note that here X's stand for the unknowns C's and S's) is given by [Vanféék
and Wells, 1972]:

. _Gij (20)
Pi=3 G .
Clearly, we can also write:
pij= _Q;,— Pji 21
v QI ij

~2
and to evaluate the correlation coefficient it is not necessary to know Go . The
following correlation matrix:

I pp - PiL
1 . . (22)

P - - 1]

can be then calculated without having any observational series. This matrix R
depends only on the assumed length N of the time series, and the selected
number m of constituents. Looking at the off-diagonal elements in the matrix
R, we can make a decision about which two (or more) tidal components are
strongly correlated; these two (or more) can then be held responsible for
potential ill-conditioning of the normal equations.

To determine which two adjacent tidal constituents are significantly
correlated, we first take the 4 by 4 symmetrical submatrix of R connected with
these two constituents. This submatrix will look as follows:

1 Pcs; Pcci. PCsi.
Psc; 1 PSCisi PSS
PCi.C PCi.si 1 PCiaSia (23)

Psi.Ci Psi.Ci PSiiCin 1



From numerical experiments we have established that
PCiCivi = PSiSia , PCiSi+1 = PSiCiu (24)

From further numerical experiments we have determined that the quantity

+psicia)? €0, 1) (25)

+| pSiSi+1| )2 +(|pCiSI+1

Pi,i+1 =%'\/(|pCiCi+1

decreases monotonically with increasing N, and is thus suitable to use as a
correlation criterion. Somewhat arbitrarily, we have selected a value of 0.985 to
serve as a criterion value for deciding if two adjacent constituents are

correlated, i.e., if they are separable or not. For p;i;; <0.985 all the correlation
coefficients in the matrix (23) are smaller in absolute value than 0.95.

In Tables 1 to 3, the frequencies and amplitudes of lumped

TABLES 1 TO 3 TO FIT NEAR HERE

representative constituents, obtained as described above, are given in the
individual boxes. These Tables show how the lumping works for diminishing
length of observational series, when the series is shortened in successive
steps. Looked at from the other perspective, i.e., considering the series as
growing in length, these tables show the separability of constituents. Based on
these Tables, detailed time schedule for the tidal constituent separability has
been designed and included in our computer program for sequential tidal
analysis .

The Sequential Mathematical Model

In applying the sequential technique to tidal analysis,first of all the first
estimates of unknown parameters are obtained from an initial tidal harmonic
analysis. In the next stage these initial estimates are updated by computing
corrections to the earlier results as functions of previous estimates. The
information made available for subsequent use consists of the estimated
amplitudes, phase lags and their covariance matrix, that serves as the link
between subsequent steps

In our sequential tidal model algorithm we distinguish between two
different update modes:

(i) adding only new observations;

(if) adding both new observations and new tidal constituents;



Throughout the development of the algorithm (as well as the program based on
the algorithm), we restrict ourselves to a rigorous approach, but we will include
some discussion concerning approximate approaches for certain situations.

The original mathematical model for tidal harmonic analysis is (cf eqgn.

4):

Aq X1 =Ly, (26)
where Ly=(Ly, Lo, ..., LN)T is the data vector, A4 is the design matrix, and
X4=(Xy, Xo, ..., X)T is the unknown parameter vector. The least squares

solution of the above system of over-determined linear equations is given by
normal equations as [Vanfcvek and Krakiwsky, 1986]:

X1 =NTA{TLy = (ATA) 1AL, (27)

The sequential updating starts with the acquisition of additional data. Let
us assume that a batch of data, consisting of 1 to N{y new values becomes

available. These additional data contain additional information on the analysed
tide and now have to be included in the analysis. We note that the size N1 of

the batch (it may be as small as 1!) should be selected beforehand according to
what use the results of the analysis are going to be put to.

When adding the new batch of data to the existing series, two or more
tidal constituents may become separable. If this is the case, then the separable
constituent present in the previous analysis - it could have been a lumped
constituent, of course - is replaced by its separate component. This case is
refered to as ii) above. We shall first discuss the more simple scenario i), when
no new tidal constituents appear in the sequential step.

Addition of New Observations

If only new observations Lp=(Ln,1, LNs2, ... Lnsng)T are added, the
observation equations become:

Aq L
{ . ](x1<1>+dx1<2>) -], (28)

2

and the new solution is given as:
X1M+dX1 = Ny171(A1TL1+A2Ly) . (29)

Here, the matrix N{q of normal equations is as follows:



AT A
N11={ } {A }:(A1TA1+A2TA2)=(N+DN). (30)
2

The inversion of this matrix can be obtained from the following rigorous
sequential expression [Morrison, 1969]:

N11'1 = (N+DN)'1 = N'1-N'1A2T[|+A2N'1A2T]'1A2N'1, (31)
Here, | is the identity matrix, and
DN = AyA,

can be considered the perturbation of the set of the original normal equations
due to the added observations. From expression (31), we see that the matrix
I+A2 N-1A,T has a dimension of Ny by Ny, where Ny is the number of added

observations.

If N¢ is large, we still need to invert a large matrix which would eliminate one of

the important advantages of the sequential approach. In practice, the number
of added observations Ny should be small. If we let, for example, N¢=1,

meaning that only one new observation is added at a time, the matrix
degenerates into a scalar:

(I+A; N-1AT) = Q (32)
Eqgn. (31) is then written as:
Ni1'= (N+DN)'= N-L% N-TA>TA, N-1= N-Lé N-'DNN-1. (33)
Obviously, when adding a single new observation at a time, no additional matrix
needs be inverted.

Before the rigorous complete sequential solution is given, let us
introduce another important approximate formula for matrix inversions which
may be useful in some cases where the original matrix is huge, and the number
N; of observations added is so large that the rigorous inversion would be too

time consuming. The approximate expression reads [ reference]
Ni1= (N+DN)' = N-1-N-1DN N-1. (34)

The criterion for this expression to satisfy the required accuracy of tidal
harmonic analysis reads:

|IDNJ| << [[NI], (35)



where || .|| denotes a norm [reference]. There are several ways to compute a
matrix norm, and we adopt the most commonly used quadratic norm. The
formulation is given as:

1
T ={SITjl2}2 (36)

where T are the elements of matrix T.

To conclude: if no new tidal constituents are added, the new (sequential)
solution is given by:

X;@ = X; (40X, @), (37)
dX:® = N1A "L, - F(A1L1,A2TLy), (38)

where the matrix F is given as:

( NTAST(1+A2 NTAST) 1Ay N all
F= < S NDN N Nq=1 (39)
\ N-'DN N1 IDN[[<<|INJ|.

or
give here the expression for the approximate inversion!

Addition of New Tidal Constituents

In the case, when not only no> new observations L; are added, but also mao

lumped tidal constituents become separable, the situation is somewhat more
complicated. Clearly, 2mo already estimated parameters become redundant,

while 4mo new parameters have to be estimated. Thus, in addition to the new
vector Lo of observations (of dimension np) to be added to the previous
vector L4 (of dimension n{), we have to consider also a new vector Xo of
unknown parameters (of dimension 4mo) that has to be added to the previous
vector X{ (of dimension 2mq + 1) from which 2mo elements are first

discarded. In the sequel, we shall explain only the necessary manipulations
with pertinent matrices without keeping track of the proper dimensions. (Mr.
Hou - the preceding paragraph should replace the first 3 lines in your



version of thid chapter. Please note the notation used for the dimensions
of all the vectors. You should change the text in this and other chapters to
conform with this notation; what you have been using does not make
much sense!)

The observation equations can be written here as:

Ay Ay X1 L1

Ay Az || Xo L2
where the new design matrices Ao, Az and A4 are added to the original design
matrix A4. The new (updated) matrix of normal equations reads:

(41)

T
@ {A1 A4} A1 A4 A1TA1+A2TA2 A1TA4+A2TA3
A Ayl | A As | !

AyTA1+A3TA; A3TA3+ALTA,
where the submatrices are denoted as follows:
Nii=N + DN = A;TA; + ASTA,,
Ni2=NoiT= ATAs + ASTAs,
Noo = AzTAz + AgTA,.

Partitioning the matrix inversion, we then get:

N14 N12}

(N ) -1 ={
N21 N2

{N11'1+N11'1N12|3'1N21N11'1 -N117'N42D"
_D-1 N21N11'1 D-1

where,

D' = (N22-N21N117'Nq2) . (43)

It is seen that the additional matrix inversion for sequential updating is only of
the size of the number of added parameters. The matrix inversion (I+Az N-



1A.T)1  pertaining to the new observations appears as well, as one would
naturally expect.

The rigorous solution to the combined (old and new) normal equations
for all the unknown parameters (old ones without the parameters pertaining to
the constituent(s) being separated and the new ones) can be written as:

X1 1@ X D+dX,@ ATL1+AS Lo
= = (N ) . (44)
X2 X2 AsTL1+A3TL,
Spelling out these results, we have:
X4(M = N1A{ Ly,
X1 = X4 4+ dX,@ |
(45)

dX1®= z4L1+Z,L,,

(note that the dimension of dX1(2) is smaller than the dimension of X;(1) by
twice the number of constituents that became separable in this sequential step)

X2(2) = Z3L1 +Z4L2 ,
where, using eqgn.s (39) and (42), we can write:
Zy = -N11"'N12D (N2g N1 1A T - AgT) - FA(T,

Zy = Ny + Ny17'NyoD 1 (N2g Ny 1A T - AgT),

(46)
Z3 = DV(A4T - Ng¢Ny11A(T),

Z, = D1(A3T- NotNy11AT).

In the above mathematical model, the entire covariance matrix (N®)1 in the
current step must be available as N in next step, to obtain again the rigorous
sequential solution.

The sequence of iterative solutions for unknown parameters of tidal
harmonic analysis looks as follows:



[ X® = XM 4+ gx,@
<
L X,
C X4@
=X,
| X,
-
) 3
X4 = 1@ + dx4©®)
L X5
-
9
X4 = AUSY) AL
L X,

It can be seen that all the information about the previously estimated
parameters is always made available to the subsequent step

Testing of Accuracy of Fit

To test the performance of our sequential algorithm, we had generated a
synthetical hourly series consisting of the most dominant 60 theoretical
(astronomical) constituents. (Mr.Hou - have you also included any shallow
water constituents here? If yes, say so.) We then analysed this series,
starting with the first 100 values and proceeding till 300 hours (i.e.,12.5 days)
were reached,.using a step of ............ hours. From the lumped constituent
tables the program selected 12 lumped constituents to be fitted to the first 100-
value series and ended up fitting 21 lumped constituents to the whole 300-



value series. At each step we plotted the relative root-mean-square error (RMS)
G
|d , defined as:

ci=[§<cj~-a>2/<N—2m—1>]§ !€|=[jDCf/N]5 (47)

These relative RMS are shown in Figure 6.3, where the symbols (13), (14), ...,
(21) indicate the number of lumped tidal constituents used at any particular
time.
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Figure 2 - Relative RMS of the Sequential Analysis

The shape of the curve demonstrates that when new tidal constituent are
added (really, when used lumped constituents are separated), the relative
accuracy of the fit increases. During the time interval when the number of tidal
constituents in the model is fixed, the relative accuracy decreases until the next
separation of constituents occurs. It implies that before adding the next
constituent at a certain stage, the tidal model find it more and more difficult to fit
properly the current data series. Intuitively, this behaviour obviously makes a
good sense

For comparison, we give the standard deviation curve of real tide-gauge
data analysis at Halifax (Fig. 3). It shows that the values of standard deviations
of the fit also generally decrease when a new constituent is added to the
model.(Mr.Hou - Here, we have to explain what the standard deviation is
and how does it relate to the above used relative RMS.) The situation in this



case is more complicated however, because of the presence of non-tidal
signals in the data. Thus, Figures 2 and 3 cannot be compared directly.
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Figure 3 - Standard Deviations of the Sequential Analysis at Halifax

Computation Speed Testing

The tidal harmonic analysis results at permanent tide gauges should be kept
up-to-date to maintain the quality of tidal prediction at any given time. To do
this, large systems of linear equations have to be solved repeatedly. This will
require a lot of CPU time, which, in turn, will increase the cost. It is thus of
natural interest, to determine just how much faster the analysis can be
performed using the sequential approach. The comparison of the time
consumption of the traditional harmonic analysis with that of the sequential
approach is given in Fig. 4.
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Figure 4 - CPU Time Consumption of the Two Methods

The difference in the CPU time consumption for obtaining 10 solutions (with
increasing number of unknown parameters) from the two methods on a
mainframe IBM computer is seen very clearly. For instance, if the tidal model
contains 7 constituents (15 unknown parameters), solving the pertinent 15
normal equations 10 (Mr. Hou - Why do we solve the equations 10-times?
Can we not make the same point simply by solving the system just once?)
times to get 10 updated solutions, the standard method spends 13.4 seconds
of CPU time, and sequential method spends 4.5 seconds - a difference of 8.9
seconds. If the size of the system of equations is increased to 95, the
difference of CPU time needed by the two methods increases t013.8 seconds.
With further increases in the number of needed constituents, the CPU time
saving increases progressively

Comparison Between Using Pure and Lumped Constituents

The Ilumped tidal constituent tables discussed above are based on the
astronomical tidal constituents and created by the least squares method, in
which the covariance matrix of the estimated constituents' amplitudes and
phases is inspected by using a specific correlation criterion. With the lumped
constituent tables , we establish a standard model that includes as many tidal
components as is possible with the limited length of observational series, while
assuring that no ill-conditioned normal equation matrix results in any of the steps




of the sequential algorithm. As we have mentioned earlier, the lumped tidal
constituents can be considered as a good representation of the pure
astronomical and shallow water constituents when the time series is short. For
demonstrating the differences between using the two kinds of constituents, pure
and lumped, two data series, a synthetic one and the observed data series at
Halifax, were analysed. The resulting standard deviations of the respective fits
are shown in Table 4.

N Standard Deviation | Standard Deviation of

(hour) | of observation (cm) Equilibrium tide (cm)
Astronomical 40 tH 5.826 H 1.414
Tidal 70 H 5.213 4 1.303
Constituents 100 E 5.046 E 0.264
Lumped 40 H 4.599 H 0.408
Tidal 70 tH 3.743 4 0.151
Constituents 100 H 4.410  0.365

Table 4 - Standard Deviations of Analyses with
Pure and Lumped Constituents
It can be seen that when the series is not very long, the analysis with
lumped constituents yields generally more accurate results than the one with
the pure constituents. The only exception is found for the longest analysed
stretch of the synthetical data series (n = 100 hours). The reason is that the
lumped constituents used in the analysis contain some shallow water
contributions. When the length of the series is increased, the effect of these
contributions in the lumped constituents become more and more apparent and
the misfit of the fitted series to the synthetical series (generated from purely
astronomical constituents) becomes more and more obvious. It may be
assumed that if the lumped constituent tables were constructed without
considering the shallow water effects, the accuracy of the analysis (using these
lumped constituents) would also be higher.
As one may expect, prediction with lumped tidal constituents gives also a
higher accuracy than that with pure astronomical constituents. This can be
seen from numerical results listed in Table 5, constructed for N = 100 and N1

=30.

Unit (cm)
lumped tides Astronomical tide
Stand. deviations 4.410 5.046
for estimates
Stand. deviations 12.881 15.291
for predictions




Table 5 - Standard Deviations of Predictions with
Pure and Lumped Constituents

When the length of the time series is increased, the results by using the
two kinds of constituents get closer together, until the difference between them
completely disappears. This happens, when the series becomes sufficiently
long so that all the lumped constituents can be separated into their component
constituents.

Conclusions

The sequential tidal harmonic analysis proposed in this study can be used to
provide up-to-date information for ocean tidal predictions in real time. Once new
hourly observations (one, two or several hours) become available, updated
results (estimated new amplitudes and phase lags, and their standard
deviations) can be obtained with very little CPU time expenditure, as the
solution time is only weakly dependent on how many tidal constituents are

included in the tidal model. If desired, the predicted values y can be naturally
computed in each sequential step.

For obtaining accurate results by the sequential algorithm, lumped tidal
constituent tables have been constructed for sequential separation of tidal
constituents. This has been done by using the correlation matrix for estimated
tidal amplitudes and phases without considering any tidal observations and
applying a specific criterion for maximum allowable correlation. If the need
arises, these tables can be recomputed for a different criterion.

Lumped tidal constituents are a realistic representation of pure
astronomical tidal constituents over all tidal frequency bands with observational
series of a limited length. The lumped tidal constituents are all separated into
the pure astronomical components, when the length of the observational series
is greater than 19 years.(Mr.Hou - The last sentence belongs in the section
where we describe the lumping. | would like to do a bit more work on the
Conclusions later; they are a little lean!)
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Note - w's should be replaced with 'omegas'.

| have not checked formulae. Some of them look screwed up. They should all
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paragraphing - skip one line before and one line after the equation.

Morrisson missing in citations. Check that all publications listed are actually
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| would like to edit the Tables once they are printed. Ther seems to be some
problems there with wording and with placing of headings.



