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Abstract.  The objective of this study is to compile 
a physically meaningful map of vertical crustal 
movements (VCM) for Eastern Canada. Average 
vertical velocities over the past century are 
determined by repeated precise levelling and 
monthly mean sea level observations from 17 tide 
gauges. The spatial vertical velocities may be 
mathematically expressed in any number of ways. 

    In this study, the uplift rate is calculated using 
smooth piecewise algebraic polynomial 
approximation. The mathematical model of the 
approximation for the geodetic data is given. We 
show how a vertical velocity surface is 
approximated using piecewise algebraic 
polynomials and what conditions should be 
satisfied to guarantee the smoothness of the surface. 

First, we divide Eastern Canada into zones. The 
vertical movement is represented by a different 
polynomial surface in each zone. The polynomials 
are joined together at nodal points along the border 
of adjacent zones in such a way that a certain 
degree of smoothness (differentiability) of the 
resulting function is guaranteed.  

This study shows that piecewise polynomial 
surfaces can represent the available data in a unified 
map. The pattern of a northwest to southeast 
gradient of crustal movements is consistent with the 
existing Glacial Isostatic Adjustment (GIA) models. 
Present-day radial displacement predictions due to 
postglacial rebound over North America computed 
using VM2 Earth model and ICE-4G adopted ice 
history show a zero line (hinge line) very similar to 
ours along the St. Lawrence River.  

The main advantage of the presented technique is 
its capability of accommodating in one model, 
different kinds of information when the re-levelled 
segments are scattered not only in time but also in 
space. Piecewise approximations make it easier to 
get the physically meaningful details of the map, 
without increasing the degree of polynomials. 
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1 Introduction 
 

It has been recognized for several decades that the 
determination of a Vertical Crustal Motion model is 
of importance in geosciences. In geophysics, for 
example, it is of primary interest in the study of the 
rheology of the mantle and lithosphere which is 
crucial in understanding geodynamical processes. In 
geodesy, they are important in the definition of 
vertical datum which is in turn, required in many 
application areas such as navigation, mapping, and 
environmental studies. The first VCM model in 
Canada was compiled by Vaníček and 
Christodulides (1974) using scattered geodetic 
relevelled segments and the first study which 
covered the whole of Canada was carried out by 
Vaníček and Nagy (1981) using precise re-leveled 
segments and tide gauge records.  The country was 
divided into regions and polynomial surfaces of 
order 2, 3 and 4 were calculated by the method of 
least squares for each region to obtain 
representations of the vertical movements. A 
considerably larger database has been gathered since 
then, and this, together with additional insight into 
the nature of the data, led to the recompilation of the 
map of vertical crustal movement of Canada by 
Carrera et al. (1994) in which a vertical  polynomial 
was fitted to the data.  

In order to infer a physically meaningful VCM, it 
is necessary to combine the geodetic and 
geophysical data, theories, methodologies and 
techniques that are somehow linked together. 
Hence, finding the best approach to reconcile 
geodetic data with geological phenomena is 
required. 

In North America, the most significant 
geophysical process that has an evident effect on the 
shape of the viscoelastic earth is postglacial rebound 



or Glacial Isostatic Adjustment (GIA). During the 
last major glaciation event, immense masses of ice 
accumulated over regions of North America, 
causing subsidence of the Earth’s crust in these ice 
covered regions, and uplift in peripheral regions. 
When this ice has melted during the last 20,000 
years, the viscoelastic rebounding of the crust in the 
ice covered regions started and has been ongoing 
since (Peltier, 1996). 

In this paper, some ideas are exploited in an 
effort to infer a more physically meaningful VCM 
model for Canada.  Using smooth piecewise 
approximation method, the velocity surfaces are 
computed in pieces, and then they are tied together 
to guarantee their continuity across the zone 
boundaries. 

 
 

2 Sea Level data and re-levelled 
segments 

 

The data used in this study are of two kinds: sea-
level records and relevelled segments of the first-
order levelling network. A number of 17 permanent 
tide gauge stations with long enough records were 
selected in the area of interest (Figure 1). The 
subset of 17 sites was then selected to include all 
stations for which continuous records of at least 10 
years duration are available. In the studies of 
vertical crustal motion, tide gauge records with 
longer time span are considered more reliable. Sea 

level records with duration of less than 50 years may 
not be taken as representative for the secular trends 
sought, if they are studied individually. However, 
when they are treated in pairs, the secular variations 
can be accurately estimated. There is a well 
documented feature of tide gauge records: their 
striking similarity when they are obtained at two 
close-by locations. (Vaníček and Carrera, 1993). 
This spatial coherence is caused by common 
atmospheric and oceanic noise. Clearly, a large 
portion of these variations disappears when the 
records are differenced. This behaviour offers an 
alternative way of treating sea level trends in close-
by tide gauges. In this study, a straight--forward 
trend analysis was carried out on monthly mean 
values for all stations. Then, it was decided to use 
the differencing technique to treat the sea level 
records. The regional correlation matrices and 
correlation coefficient confidence interval is used to 
select the optimum pairing of sites, i.e., a tree 
diagram for  optimum differencing, that gives the 
most precise and accurate velocity differences to be 
used in the modelling. Figure 1 demonstrates the 
optimum pairing of tide gauges in Eastern Canada. 

          A total of 14168 relevelled segments from 
Maritimes and southern Quebec were chosen for this 
study. They were observed during the period 
between 1909 and 2002. The distribution of data is 
shown in Figure 1. 

 

Fig 1: Data distribution used in computations. The optimum tree diagram of tide-gauges for differencing is shown by red lines.  



3 Mathematical Model 
 

In order to predict the spatial vertical velocities, 
or uplift rates, a vertical velocity surface should be 
fitted to the sea level linear trends and levelling 
height difference differences data reviewed in the 
previous section.  Therefore, the main concern is to 
provide an approximation to a function V(x,y) from 
geodetic data. The assumptions underlying this 
approach are that the uplift rates are linear in time 
and that they vary smoothly with location. 

The velocity surface is first obtained in the form 
of 
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where (x,y) is the location of the points in an 
arbitrary selected local horizontal coordinate 
system, n is the degree of polynomials, and сij  are 
the sought coefficients. Here, the algebraic 
functions are the simplest functions to deal with 
numerically and are adequate when the solution is 
confined to the regions where sufficient data exits; 
the poor behaviour appears only when the solution 
is used in an extrapolation mode (Vaníček and 
Nagy, 1981). The procedure of fitting a surface to 
the geodetic data involves the use of both the point 
rates and the gradients simultaneously, together 
with their proper weights. The point rates are 
determined from some of the tide gauge data which 
were selected to be used in the point velocity mode, 
and the gradients come from relevelled segments 
and tide gauge pairs. 

To get the details needed for the map to be 
meaningful, the order of the velocity surface would 
have to be too high to be numerically manageable. 
A practical way to avoid this is to divide the area of 
study into zones, and seek the velocity surface 
piecewise. 

In general, if we divide the area of study into m 
zones and the degree of all the algebraic 
polynomials is n, the resulting function is a 
polynomial function of degree n with m zones. A 
given polynomial in the m-th zone looks as follows: 
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where Vm is the algebraic least squares velocity 
surface for zone m, fitted to the desired data (x,y). 
The pair (xm,k ,ym,k) for k=1,2,…,q represents the 
position of each node (Pm,k) located in the 
predefined border between two zones (zones m and 

m+1) . Here, q, represents the maximum number of 
the nodal points in each border. 

In order to piece the polynomials together, the 
following conditions should be satisfied: 
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              (3.b) 
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Conditions (3.a) make sure that the piecewise 
polynomial fits to the nodal points (Pm,1, Pm,2, …, 
Pm,k=q). These conditions imply that the function is 
continuous everywhere in the region. Conditions 
(3.b) and (3.c) ensure that the polynomials are 
continuous in slope and curvature respectively 
throughout the region spanned by the points (x,y).  
Assuming the velocity to be constant in time, the 
difference of the two levelled height differences 
divided by the time span between the two levellings 
gives the velocity difference between the two 
levelling segment’s ends. These ‘observations’ are 
used to compute the coefficients by means of least-
squares method.  

The main mathematical model is equation (2) 
while all the conditions under (3) show the existence 
of constraints on the main model. To find the least 
square solutions, equations (2) and (3) can be 
simplified in a general form:  
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Here, l is the vector of observations and с is the 
vector of unknown coefficients. It will be assumed 
that it is possible to solve for с, using only the main 
model (4.a). The auxiliary model fc consists of some 
constraint functions that enforce the conditions 
which should be guaranteed. The above models are 
next linearized to yield: 
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In equations (5), r is the vector of expected 
residuals. Matrices A and D are the Jacobian 
matrices of transformation from parameter space to 
the two model spaces, valid for a small 
neighborhood of )0(c . Matrix B is the Jacobian 
matrix of transformation from observation space to 
the main model space. It is observed that equations 
(5) are merely the differentional form of the 
original non-linear mathematical model equations 
(4.a) and (4.b) and describe the relations of 
quantities in the neighborhoods of )0(c , the point of 
expansion in the parameter space, and )0(w , the 
misclosure vector, where,  
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The variation function for finding the least-squares 
solution is written as, 
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where Cr≡Cl is the covariance matrix of the 
observations. Here, there are two sets of Lagrange 
correlates: k, kc, reflecting the fact that two models 
are present. The minimum with respect to r is found 
by the Lagrange approach (Vaníček and Krakiwsky, 
1986) as  
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Equation (11) represents the solution from the main 

model ƒ alone, and the corrective term (1)δδ −ˆ in 
equation (8), arises from the enforcement of the 
constraints. 

The next task is to obtain the covariance matrix of 
the parameters. It is given by Vaníček and 
Krakiwsky (1986) as: 
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The appropriate degree of the velocity surface is 
determined by testing the estimated accuracy, or the 
‘a posteriori standard deviation’. This is computed 
from 
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where r̂  is the vector of least square residuals and ν  
denotes the number of degree of freedom.  

Due to the geophysical diversity in Eastern 
Canada, for example, different geological 
characteristics and different rate of seismicity, 
Eastern Canada was divided into two zones: the 
Maritimes zone, and the zone containing the 
southern part of St. Lawrence River (Figure 2). The 
border of these two zones is dictated by the actual 
data distribution and the present knowledge of the 
geodynamics of the area. For example, the estuary 
of the St. Lawrence River is an area where 50 to 100 
earthquakes are detected yearly. The region, known 
as the Lower St. Lawrence Seismic Zone, was 
originally defined by spatial clustering of magnitude 
(M) <5 earthquakes (Basham et al., 1982 from M. 
Lamontagne et al., 2003). This information was 
used to select the zone boundaries. The vertical 
movement was then represented by a different 
polynomial surface in each zone. The polynomials 
were joined together at the nodal points along the 
zone border in such a way that the desired degree of 
smoothness (differentiability) of the resulting 
function was guaranteed. 



 
Fig 2: The polygonal subdivision used to compute the partial solutions describing the trends of VCM. 

 

 

4 Results 

Several tests were made to determine the 
appropriate degree of the velocity surface to be 
computed. Table 1 shows the a posteriori variance 
factors for the degrees 2, 3 and 4. All degrees of the 
polynomials yielded the a posteriori variance 
factors between 8.1-8.5. The value n=3 was finally 
selected as the highest degree compatible with data 
distribution. 

 

Table1. The a posteriori variance factors of polynomial 
surfaces of degree 2, 3 and 4. 

Degree of 
polynomials 

Degree 
2 

Degree 
3 

Degree 
4 

a posterior 
variance factor 

8.4 8.1 8.3 

 

 

The map of vertical crustal movements in Eastern 
Canada produced by smooth piecewise algebraic 
polynomials is shown in Figure 3. The standard 
deviation for the area of interest is typically 1.4 
mm/a. The solution is evidently much generalized. 
This is due to the sparseness of data which imposes 
the use of smooth functions. The map depicts clearly 
the zero line of the postglacial rebound. The zero 
line follows the St. Lawrence River. Present-day 
radial displacement predictions of postglacial 
rebound over North America computed using VM2 
Earth model and ICE-5G adopted ice history (Figure 
4, Peltier 2004) show a zero line very similar to ours 
along St. Lawrence River.  

The general Northwest Southeast trend of vertical 
crustal movements is consistent with the predictions 
of Glacial Isostatic Adjustment models of Mitrovica 
et al. (1994), Peltier(1994), Wu(2002) and 
Peltier(2004).   



 
Fig 3:.Pattern of vertical crustal movements in Eastern Canada. Contours are in millimetre/year 

 
Fig 4.  ICE-5G (VM2) prediction of the present-day rate of vertical movement (rate of radial displacement) of Earth’s crust over 
the Eastern North American continent.(Adopted from Peltier, 2004)  



With respect to the individual features, caution is 
required when interpreting the map. The technique 
used here was designed to model only linear 
vertical movements, i.e., movements with velocities 
constant in time. It is unlikely that all parts of 
Eastern Canada are undergoing such a steady 
vertical movements. The subsidence in Maritimes 
predominantly in Nova Scotia and eastern New 
Brunswick is due to postglacial rebound. This area 
lies immediately outside of the region that was 
covered by the Laurentide Ice Sheet at the last 
glacial maximum (see Peltier, 1994 for maps of 
surface ice cover from LGM to present). As the 
Laurentian ice started to decay, leading to the 
postglacial rebound of the crust in the once ice 
covered region, the forebulge began to collapse to 
accommodate the uplift in the central region 
(Peltier, 1996). The map of VCM in this area 
reflects this phenomenon and is also compatible 
with the recent map of gravity changes (See 
Pagiatakis, 2003 for the map of gravity changes).  

The pattern shown in the north eastern margin of 
the former Laurentide ice sheet (the border of 
which has been postulated to have been parallel to 
St.Lawrence river) is complicated due to the 
probable fragmentation of the crust in this zone. 
The map seems to justify the concentration of 
seismicity in Lower St. Lawrence Zone (See 
Lamontagne et al., 2003 for the definition of Lower 
St.Lawrence Siesmic Zone), which opens new 
doors into the study of geodynamics of this 
complex area. The earlier reported uplift of the 
northern New Brunswick and the subsidence of the 
south St. Lawrence River (Carrera, G. and P. 
Vaníček 1994) are here more sharply defined. 

 

5 Conclusions 

  

The technique of smooth piecewise polynomial 
approximation is capable of accommodating in one 
model, different kinds of information when the re-
levelled segments are scattered not only in time but 
also in space. Piecewise approximations make it 
easier to get the details of the map to be physically 
meaningful, without increasing the degree of 
polynomials. 

The general pattern of the map reflects the main 
geophysical phenomenon in the region, postglacial 
rebound. The local pattern of the map gives more 
details of the South St. Lawrence River, compared 
to the previous maps. This is mainly due to the 
improvements in the methodology that enables us to 

define different surfaces for geophysically different 
areas and still maintain the continuity and 
smoothness throughout the region of interest. 
However, the computed value of 8.1 for the a 
posteriori variance factor indicates the probability of 
the existence of some shorter wavelength features 
that could not be modelled by a surface of such a 
low degree. Increasing the number of intervals 
(zones) in the area of computation, might be a 
solution for representing shorter wavelength features 
of VCM which would be the next step in our 
studies.  
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