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THE 3-D TRUNCATION FILTERING METHODOLOGY DEFINED FOR 
PLANAR AND SPHERICAL MODELS: INTERPRETING GRAVITY DATA 

GENERATED BY POINT MASSES. 
 

PETER VAJDA1 AND PETR VANÍČEK2 
 
 

ABSTRACT 
 
This paper focuses on one particular way of linear filtering the gravity data to 

facilitate gravity inversion or interpretation. With the use of integral transforms the 
gravity anomalies are transformed into new quantities that allow an easier interpretation 
with the help of pattern recognition. As the integral transforms are in fact filters, and as 
the regions of integration are caps with a variable radius, which can be systematically 
changed as a free parameter, we refer to such methodology as the truncation filtering. 
Such filters may be understood as weighted spherical windows moving over the surface, 
on which the gravity anomaly is defined, the kernel of the transform being the weight 
function. The objective of this paper is to define and deploy the truncation filtering for a 
planar model, i.e. for a homogenous horizontally infinite layer with embedded anomalous 
masses, and for a spherical model, i.e., for a homogenous massive sphere with embedded 
anomalous masses. Instead of the original gravity anomaly, the quantities resulting from 
the truncation filtering are interpreted/inverted. As we shall see, this approach has certain 
benefits. The fundamental concept of the truncation filtering methodology is demonstrated 
here in terms of the model consisting of one point mass anomaly.  

The relationship between the depth of the point mass and the instant of the onset of the 
dimple pattern observed in sequences produced by truncation filtering the synthetic 
gravity data generated by point masses is, for both the planar and spherical models, 
compiled by computer simulations, as well as derived analytically. It is shown, that the 
dimple pattern is a consequence of truncating the domain of the filter and is free of the 
choice of the kernel of the filter. It is shown, that in terms of the mean earth and depths of 
point masses no greater than some 100 km the spherical model may be replaced by a 
planar model from the perspective of the truncation filtering methodology. It is also 
shown, that from the viewpoint of the truncation filtering methodology the rigorous 
gravity anomaly may be approximated by the vertical component of the gravity 
disturbance. The relationship between the instant of the dimple onset and the depth of the 
point mass thus becomes linear and independent of the magnitude (mass) of the point 
mass.  
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1. TRUNCATION FILTER 
 
By the truncation filter we understand any linear filter defined by a convolution of the 

gravity anomaly ∆g (or eventually of the gravity disturbance), given on a reference 
surface (plane, sphere), with a weight function (kernel) w in a cap (a circle in the plane or 
a spherical cap on the sphere) 

 ( ) ( ) ( )
( )
∫∫∆=

0

0 ,
sC

Q
s dQPwQgPZ σ . (1) 

The radius s0 of the cap C is a free parameter and is referred to as the truncation 
parameter (planar truncation parameter for the circle, radial truncation parameter for the 
spherical cap). The kernel is a function of the distance (planar distance or radial distance) 
between the computation point P (point of evaluation of the transformed quantity Z) and 
the variable integration point Q, at which ∆g is given. The properties of Z and the shape of 
its surface depend on the type and definition of the gravity anomaly that is filtered, as well 
as on the chosen weight function. The shape of the surface of Z depends also on the value 
of the truncation parameter, that is why the superscript. The integration is carried out over 
surface elements Qdσ . 

 
2. TRUNCATION FILTERING METHODOLOGY 

 
The truncation filter is used so, that the cap with a pre-selected size glides over the 

reference plane or sphere like a moving spherical window and transforms the gravity 
anomaly into quantity Z. Then the Z quantity is interpreted (inverted) instead of the 
original gravity anomaly. What is the benefit of interpreting/inverting the transformed 
quantity rather than the gravity anomaly itself? Note that the truncation filter has one free 
parameter, the truncation parameter, that enables computing a sequence (of surfaces or 
profiles) of Z with gradually changing (decreasing or increasing) the value of the 
truncation parameter. When animating such a sequence, using an analogy between the 
truncation parameter and time, dynamic patterns are observed in the sequence, that are 
signatures of the anomalous masses that generate the gravity anomaly, from which the Z 
sequence is computed. The sequences that are animated using computer visualization are 
for practical reasons presented as several subsequent �timeframes of the animation� in one 
plot, as it is not possible to present an animation in a paper. 

It is even more transparent to study patterns in the sequence of (surfaces or profiles of) 
the first derivative of the Z quantity with respect to the truncation parameter 
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which is numerically computed by differencing the Z quantity at the consecutive values of 
the truncation parameter and dividing the difference by the step in the truncation 
parameter. The sequence of the first derivative of Z, which represents the change in the Z 
quantity with changing the truncation parameter, yields more pronounced patterns.  
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In general, each pattern depends on the mass anomaly generating it and on the type of 
the Z quantity - by the type we understand the choice of the weight function and the type 
of the gravity anomaly. Different Z quantities may be more or less suitable for 
identifying/interpreting different features of the anomalous mass distribution. From the 
instant - a particular value of the truncation parameter in the animation - of the onset of 
some patterns, depth determinations, or estimates thereof, may be obtained for certain 
mass anomalies. The link between the mass anomalies and the patterns can be established 
through computer simulations (modelling).  

We demonstrate the methodology of interpreting/inverting the Z quantity, and 
particularly its change represented by 00 dsdZ s , i.e. the methodology of interpreting 
gravity data by means of the truncation filtering - the truncation filtering methodology, on 
a point mass anomaly embedded at depth d in an infinite massive horizontal layer, and in 
a massive sphere. 

 
3. THE 3-D TRUNCATION FILTERING FOR A PLANAR MODEL 

 
In practical geophysical applications very often the gravity anomalies are referred to a 

planar model. For the planar model the truncation filter is defined as follows: 

 ( ) ( ) ( )∫ ∫∆=
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s dsdsswyxgyxZ

π
α , (3) 

where s is the planar distance between points P and Q,  

 ( ) ( )22
PP yyxxs −+−= , (4) 

0s  is the (planar) truncation parameter (radius of the integration circle), α is the angle 
between point Q and arbitrary reference point as viewed from point P, ασ ddssd Q =  is 
the surface element, and the w kernel (the weight function) is chosen arbitrarily. It could 
be for instance 

 ksw =)( , (5a) 

where k is an arbitrary constant, 

 
22

)( asesw −= , (5b) 

where a is arbitrary constant, or any other. Note that the choice of weight function 
specifies the filter properties of the truncation filter. It is a good idea to choose a kernel 
that is positive on the max

0,0 s  interval, where max
0s  is the largest pre-selected value 

of the truncation parameter to be used in filtering the gravity anomaly, i.e., a kernel that 
does not have a node. The reason for choosing a kernel with no node will be justified later 
on. Anyhow, this is a recommendation only, not a requirement. 
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3 . 1 .  O n e  p o i n t  m a s s   

Now let us select a simple model consisting of a point mass m placed at depth d below 
the surface of a horizontally infinite layer of volume density ρ0 and thickness H greater 
than d (cf. Fig. 1).  

Such a planar model of one point mass anomaly produces a gravity anomaly defined 
as the difference between the magnitude of the actual gravity attraction on the geoid and 
the magnitude of the normal attraction on the reference plane (the surface of the horizontal 
layer). The actual gravity attraction is the superposition of the attraction of the point mass 
and of the attraction of the infinite horizontal layer. The term �geoid� is artificial in the 
context of this model, still we will use it by analogy to the geoid used in geodesy. It shall 
be defined with help of the disturbing potential. Similarly, for this model, the reference 
plane shall become the equivalent to the reference ellipsoid used in geodesy. The 
disturbing potential T is the difference between the actual gravitational potential and the 
normal potential. The potential of the infinite layer is chosen for the normal potential. 
Although it is infinite, it will not prevent us from computing the disturbing potential. The 
actual gravitational potential is the sum of the potential of the point mass and the potential 
of the infinite layer. Consequently the disturbing potential is the Newtonian potential of 
the point mass. The geoid is defined by Bruns�s formula (e.g. Vaníček and Krakiwsky, 
1986, page 493, eqn. (21.4)), which is applicable to this model. Although the potential of 
the infinite layer is infinite, its first derivative with respect to the vertical to its surface, i.e. 
its attraction, is finite and constant on the surface and above (e.g. Grant and West, 1965, 
page 239, or Kellogg, 1929). Introducing a Cartesian coordinate system with the z-axis 
vertical to the surface of the infinite layer and oriented outward, with the origin straight 
above the point mass location, and furthermore using the distance r from the origin 

 

H 

 
Fig. 1. The anomalous point mass m embedded at depth d in an infinite horizontal layer of 
thickness H. 
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instead of the x and y coordinates (r2 = x2 + y2), we can write for the geoid, N being the 
geoidal height,  

 ( ) ( )( )

( )( )220

1
2

,

rNdrH
mrNzrTrN

++
===

ρπγ
, (6) 

since the Bruns�s formula requires that the disturbing potential is given on the geoid, 
where the disturbing potential is the Newtonian potential of the point mass 

 ( )
( )22

,
zdr

mzrT
++

= κ , (7) 

where κ is the gravitational constant, and the normal gravity ( γγ r
= ) reads 

 02 ρπκγ H= . (8) 

The problem with the requirement on the disturbing potential to be given on the geoid 
which is sought can be dealt with by an iterative procedure by feeding the Bruns�s 
formula with the disturbing potential given on the reference plane first (N(r) = 0) and then 
iterating it. This procedure converges very quickly. For our sake here the first iteration 
will be satisfactory.  

Once the geoid is known, the gravity anomaly can be evaluated as 

 ( ) ( )( ) ( )( ) γγ −=+==∆ rNzrrNzrgrg ,,
rr . (9) 

Note that γr  is constant and perpendicular to the reference surface (oriented 
downward) everywhere on and above the surface. 

Now we adopt the first approximation to be used in this paper, namely we replace the 
actual gravitational attraction on the geoid by the actual gravitational attraction on the 
reference surface 

 ( ) ( ) ( ) γγ −=+==∆ 0,0, zrzrgrg
rr

& , (10) 

which rewritten in components reads 

 ( ) ( ) ( )( ) γγ −+=+==∆ 22 0,0, zrgzrgrg zr& . (11) 

Next we adopt the second approximation to be used in this paper, that is we neglect the 
2
rg  term, as  

 ( )22 γ+<< zr gg , 

which is justifiable in all cases when the attraction of the point mass is perturbing rather 
than comparable with respect to the attraction of the infinite horizontal layer. The second 
approximation results in  
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Rigorously these two approximations mean, that the gravity anomaly is approximated 
by the vertical (z) component of the gravity disturbance. Below we shall assess such an 
approximation by numerical experiments. There is another way of defining the gravity 
anomaly, namely from the fundamental gravimetric equation (e.g., Vaníček and 
Krakiwsky, 1986, page 495, eqn. (21.14)). This is neither needed nor adopted in the 
context of this paper. The interested reader is referred to e.g. Vaníček et al. (1999). 

 
3 . 1 . 1 .  D i m p l e  o n s e t  -  c o m p u t e r  s i m u l a t i o n  

We may now compute the surface of the gravity anomaly, approximated by the 
vertical component of the gravity disturbance (eqn. (12)), generated by a point mass and 
truncation filter this gravity anomaly, while choosing the kernel of eqn.(5b). To truncation 
filter a gravity anomaly means to transform the surface of the gravity anomaly into the 
sequence of surfaces of 0sZ  and 00 dsdZ s  for a pre-selected sequence of values of the 

truncation parameter ( )1
0s  to ( )ns0  with a step of ∆s0. The two sequences are referred to as 

the Z sequence, and the 0dsdZ sequence, respectively. We do not present the Z sequence 
generated by our point mass in a graphical plot here, as it does not show much interesting 
behavior. Let us take a look at the 0dsdZ  sequence, produced by our point mass, 
instead, see Fig. 2.  

The 0dsdZ  sequence displays a pattern of a dimple, i.e. the convex profile while 
collapsing develops a dimple (a pit) at a certain instant (a particular value of the truncation 
parameter) that continues to spread during the collapse of the profile (compare also to 
Vajda and Vaníček, 1997;1999). The dimple sets on in the sequence at a particular value 
of the truncation parameter, referred to as the instant of the dimple onset, denoted as ∗

0s . 
Computer simulations for several different depths and masses (such that the amplitude of 
the geoidal height would not exceed 100 meters) of the point mass and for several 
different choices of the kernel of the truncation filter have revealed, that, although the 
shape of the Z quantity and of its first derivative, and hence the shape of the dimple 
pattern, depend on the choice of the kernel and on the depth of the point mass, the instant 
of the dimple onset is independent of the choice of the kernel. This fact will be justified 
below analytically. Moreover, computer simulations have revealed, that ∗

0s  is independent 
of the magnitude m of the point mass anomaly and depends linearly on its depth as 

ds 82.00 =∗ & . This is an interesting observation that has direct application in terms of 
gravity interpreting/inversion � when the gravity anomaly generated by one point mass is 
filtered by the truncation filter, the depth of the point mass is directly determined from the 
instant of the dimple onset in the sequence of the first derivative of Z as ∗= 022.1 sd & . 
Below we justify this statement analytically. 
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As for the approximation of the gravity anomaly by the vertical component of the 
gravity disturbance, we have assessed it by numerical experiments (computer simulation) 
from the viewpoint of the relationship between the instant of the dimple onset and the 
depth of the point mass. Similarly to computer simulations for the vertical component of 
the gravity disturbance generated by the point mass, we perform computer simulations for 
the gravity anomaly (eqn.(9)) generated by the point mass. Numerical experiments show, 
that when using the gravity anomaly, the relationship between the instant of the dimple 
onset and the depth of the point mass deviates from the linear relationship derived when 
using the vertical component of the gravity disturbance. The shallower the point and the 
greater its mass the greater the deviation from the relationship ds 82.00 =∗ & . For example 
for a point mass at depth 1 km with a mass such, that it generates geoid with amplitude of 
its height 100 meters, kms 9375.00 =∗ & . For this point mass the error in the determination 

of its depth from the dimple onset ( ∗= 022.1 sd & ) caused by the said approximation would 
amount to about 144 meters. However, a point mass at depth 1 km generating a 100 meter 
geoidal feature is unrealistic. When choosing the mass of the point placed at depth 1 km 
such, that it generates geoid with amplitude 1 m, then kms 82.00 =∗ & , which is the same as 
in the case of the vertical component of the gravity disturbance. Let us denote the 
amplitude of the geoid (the maximum height of the geoidal feature) generated by a point 
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Fig. 2. Three illustrative snapshots from the animated 0dsdZ  sequence generated by one point 
mass placed at depth d = 10 km. The w(s) = const = 1 was the kernel of the truncation filter for 

producing the above sequence. The dimple pattern sets on at instant ∗
0s  = 8.25 km ±  250 m 

(250 m is the numerical step in the truncation parameter when computing the sequence). Horizontal 
axis is distance from the point mass location projected onto the surface, in kilometers. 
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mass at depth d by Na. Numerical experiments have shown, that for realistic point mass 
anomalies, under which we understand that 410−≤dN a , the approximation of the 
gravity anomaly by the vertical component of the gravity disturbance has practically no 
impact on the relationship between the depth of the point mass and the instant of the 
dimple onset. We conclude that for realistic point masses the truncation filtering 
methodology gives same results (depth determination) when using the vertical component 
of the gravity disturbance, as if the rigorous gravity anomaly was used.  

 
3 . 1 . 2 .  D i m p l e  o n s e t  �  a n a l y t i c a l  d e r i v a t i o n  

The vertical component of the gravity disturbance generated by a point mass evaluated 
at point Q is given by eqn. (12). By denoting the distance between the computation point 
P and the projection of the point mass location onto the reference plane, point O, by ρ, we 
can express the gravity anomaly approximated by the vertical component of the gravity 
disturbance as follows (cf. Fig. 1) 

 ( )
( ) 2

3
cos2222 αρρ

κ

ssd

mdrg
−++

=∆ & , (13) 

where α is the angle between the integration point Q and the point mass projected onto the 
boundary plane O, as viewed from the computation point P.  

The instant of the dimple onset is the particular value of the planar truncation 
parameter at the moment of the curvature change of the first derivative of Z right above 
the point mass and hence is governed by the following equation (compare also with 
eqn.(7) in Vajda and Vaníček, 1999) 
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By taking the first derivative of Z with respect to s0 we arrive at (cf. eqn.(3)) 
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After substituting it back into eqn.(14), the governing equation for the dimple onset 
attains the form of  

 ( )∫ =







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=

π

ρ
ααρ

∂ρ
∂2

0 0
02

2
0,, dssg , (16) 

since either ( ) 000 ≠sws , when the kernel has no node, or else if ( ) 00 =sw , the node of 
the kernel is not the solution governing the instant of the dimple onset, rather it governs 
the instant when the whole surface of the first derivative of Z becomes zero, which is the 
instant when the whole sequence changes polarity (flips up-side-down). This going 
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through zero and flipping up-side-down of the 0dsdZ  sequence may over-ride some 
pattern development in the sequence and this is the reason why we strongly recommend to 
use kernels with no node only. By examining eqn.(16) we also note, that the onset of the 
dimple pattern is a consequence of the truncation of the integration domain in the 
truncation filter, and does not depend at all on the kernel w(s) of the truncation filter. This 
is an important fact. 

When substituting for the gravity anomaly in eqn.(16) from eqn.(13), the dimple onset 
governing equation becomes 
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and after all the required development, also realizing, that the instant of the dimple onset 
is independent of the mass of the point anomaly, we arrive at 

 ds
3
2

0 =∗ . (18) 

Equation (18) proves theoretically that the depth of the point mass embedded in the 
horizontally infinite layer, which produces the dimple pattern in the sequence of the first 
derivative of Z, depends linearly on the instant of the dimple onset as ∗= 05.1 sd .  

 
4. THE 3-D TRUNCATION FILTERING FOR A SPHERICAL MODEL 

 
Suppose that the gravity data are referenced to a spherical boundary surface, to the 

reference sphere of radius R, then the need arises to formulate the truncation filtering for a 
spherical model as follows: 

 ( ) ( ) ( )∫ ∫ 
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sswgRZ
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where s is the radial distance between the computation point P (given by its latitude ϕP 
and longitude λP) and the point of evaluating the gravity anomaly Q (given by its latitude 
ϕ and longitude λ),  

 ( ) ( ) ( ) ( ) ( )PPPR
s λλϕϕϕϕ −+=





 coscoscossinsincos , (20) 

and where ασ dds
R
sRd Q 





= sin  is the integration surface element. 

Also the truncation parameter s0 now has the nature of radial distance, being called the 
radial truncation parameter. Everything else remains the same story as for the planar 
model.  
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4 . 1 .  O n e  p o i n t  m a s s   

We shall again examine the model case of one point mass anomaly. Having the point 
mass m placed at depth d in a homogeneous massive sphere of radius R, as illustrated in 
Fig. 3, where r is the radial distance between the projection of the point mass onto the 
spherical boundary (point O) and the point of evaluation of the gravity anomaly (point Q), 
the gravity anomaly generated by such point mass, again approximated by the vertical 
component of the gravity disturbance, at point Q reads  

 ( ) ( ) ( )
( )

( ) ( ) 2
3

22 cos2

cos
,Q


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−−

=∆=∆=∆

R
rRdRRdR

R
rdRR

mrggg κλϕ & . (21) 

The gravity anomaly is transformed by our truncation filter (eqn.(19)) into the Z and 
0dsdZ  sequences, exactly as it was in the above section for the planar model. As we 

would expect, the Z and 0dsdZ  sequences (not presented graphically here) very much 
resemble their counterparts of the planar model. The 0dsdZ  sequence displays a dimple 
pattern. The story repeats here (realizing that all distances are radial and the truncation 
parameter is radial, too), except for one substantial fact. The instant of the dimple onset is 
no longer related to the depth of the point mass according to eqn.(18). A new relationship 
between the dimple pattern onset and the depth of the point mass must be established. 

 

 

 
Fig. 3. The anomalous point mass m embedded at depth d in the homogenous massive sphere of 
radius R. 
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4 . 1 . 1 .  D i m p l e  o n s e t  �  c o m p u t e r  s i m u l a t i o n  

Computer simulations, using the vertical component of the gravity disturbance as an 
approximation to the gravity anomaly (cf. section 3.1.1), for several different depths and 
masses (such that the amplitude of the surface of the geoidal height would not exceed 
100 meters) of the point mass have revealed, that, although the shape of the Z quantity and 
of its first derivative, and hence the shape of the dimple pattern, depends on the depth of 
the point mass (and also on the choice of the kernel), and is slightly different from the 
shape of that for the planar model, the instant of the dimple onset is independent of the 
mass of the point (and of the choice of the kernel). This fact is justified below analytically. 
The instant of the dimple onset no longer depends linearly on the depth of the point mass. 
Its dependence on depth, established by computer simulations, is presented in Fig. 4.  

 
 
 

4 . 1 . 2 .  D i m p l e  o n s e t  �  a n a l y t i c a l  d e r i v a t i o n  

By denoting the radial distance between the computation point P and point O by ρ, we 
can express the gravity anomaly at point Q (eqn. (21)), with the help of spherical 
trigonometry as follows (cf. Fig. 3) 
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Fig. 4. The relationship between the instant of the dimple onset and the depth of the point mass 
compiled by computer simulations for several discrete depths of the point mass and interpolated by 
cubic splines. 
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where α is the angle between the integration point Q and the point mass projected onto the 
boundary sphere as viewed from the computation point P.  

The instant of the dimple onset is again the particular value of the radial truncation 
parameter at the moment of the curvature change of the first derivative of Z right above 
the point mass, and hence is governed by the following equation, analogical to eqn.(14), 
here ρ being the radial rather than planar distance 
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Taking the first derivative of Z results in  
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Following the same procedure as for the planar model, with the same story about the 
node of the kernel, i.e. the � ( ) ( ) 0sin 00 =swRs � solution, we get  
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=








=∆∫

=

π

ρ
ααρ

∂ρ
∂ dssg , satisfied by ∗= 00 ss . (24) 

By substituting for the gravity anomaly from eqn. (22) into eqn. (24), and performing 
all the required and tedious developments, we arrive at the following equation for the 
relation between the instant of the dimple onset and the depth of the point mass anomaly 
in case of a spherical model, and for the gravity anomaly, which is truncation filtered, 
being approximated by the vertical component of the gravity disturbance 

 ( ) ( ) ( ) ( ) 0,,,,,,,, 0000 =++= sdRtsdRvsdRusdRf  satisfied by ∗= 00 ss , (25) 

where  
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dRsdRu ,  
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This is a different result compared to that, when the problem is formulated on the 
plane. We will seek the solution ( )dss ∗∗ = 00  of eqn. (25) for a fixed R graphically, cf. 
Fig. 5.  

The results obtained by this analytical derivation match the results acquired by 
computer simulations. 

For a reference sphere of radius of about that of the earth and depths up to 100 km, the 
dependence is practically linear. The smaller the depth, the closer the ( )∗= 0sdd  

dependence is to ∗= 05.1 sd . When processing synthetic gravity data referenced to a 
sphere with radius R of roughly the radius of the earth, and having anomalous point 
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8000 

depth of the point mass [km] 
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[km] 

f ( R = 6 378 km, d, s0 ) = 0

 
Fig. 5. The relationship between the instant of the dimple pattern onset and the depth of the point 
mass for a spherical model (R = 6 378 km) obtained from the analytical derivation by graphically 
solving the dimple onset defining equation f(R = 6378 km, d, s0) = 0. 
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masses no deeper than some 100 km, we can accurately enough replace the spherical 
model with the planar model (replace radial distances with planar distances, and replace 
radial truncation parameter with planar truncation parameter), and replace eqn.(25) with 

∗= 05.1 sd .  
In case of the spherical model we evaluate the convolution integral � the truncation 

filter � in spherical coordinates and display the results mapped onto the tangent plane of 
the projection of the point mass onto the reference sphere. In a spherical model it is also 
possible to evaluate convolution integrals in a moving tangent plane, which introduces a 
planar approximation to the spherical problem, cf. for instance Grafarend and Krumm 
(1996;1998). More about the use of the planar approximation in spherical geodetic or 
geophysical problems may be found in e.g. Bellaire (1972), Groten (1965;1966a,b), 
Jordan (1972), Shaofeng and Zhang (1993). 

5. THE TRUNCATED STOKES TRANSFORM AS A TRUNCATION FILTER  
 
When the truncation filter is formulated for a spherical model (cf. eqn.(19)), and the 

kernel chosen as  

 ( ) 





=

R
sS

R
sw

πγ4
1 , (26) 

where S is the Stokes function (Stokes, 1849), γ is normal earth gravity, and R is mean 
earth�s radius, then the truncation filter becomes the Truncated Stokes Transform (Vajda 
and Vaníček, 1999), the Z quantity becomes the truncated geoidal height, the Z sequence 
becomes the TG sequence (the truncated geoid sequence) [ibid] and the 0dsdZ  sequence 
becomes the DTG sequence (the first derivative of TG with respect to the truncation 
parameter sequence) [ibid]. Vajda and Vaníček (1999) derived the instant of the dimple 
onset setting on in the DTG sequence (eqn.(32) in [ibid]) for one point mass anomaly m 
embedded at depth d in a homogenous massive sphere approximating the earth. In that 
derivation the gravity anomaly producing the DTG sequence was defined rigorously from 
the fundamental gravimetric equation, using a disturbing potential with proper mass and 
proper center of mass. This rigorous definition of the gravity anomaly caused, that the 
instant of the dimple onset was not only dependent on the depth of the point mass, but also 
on its mass. However, the dependence on mass was very minute. After neglecting the 
dependence on mass m (cf. [ibid]), the relationship between the instant of the dimple onset 
and the depth of the point mass becomes linear and reads (for R = 6 378 km) 

 deg]arc[deg]arc/[82.135][ 0
∗= ψkmkmd & , (27) 

where ψ0 is the (polar) truncation parameter [in arc degrees] and relates to the radial 
truncation parameter as Rs00 =ψ  , while the asterisk denotes the instant of the onset. 
Thus eqn. (27) can be rewritten (replacing the arc degrees with radians and putting 
R = 6 378 km) in terms of the radial truncation parameter as  

 (a) ∗= 022.1 sd & , or (b) ds 82.00 =∗ & . (28) 
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Equation (28) is in agreement with eqn. (18). It is also in agreement with eqn. (25) for 
shallow depths in its linear approximation. This actually means, that in a spherical model, 
and for shallow point masses, the rigorous gravity anomaly may be approximated by the 
vertical component of the gravity disturbance, and the relationship between the instant of 
the dimple onset and the depth of the point mass is linear and identical with that of 
eqn. (18). 

 
6. CONCLUSIONS 

 
In Sections 3 and 4 we have mathematically formulated the truncation filtering 

methodology on the boundary (reference) plane and on the boundary (reference) sphere 
respectively. The truncation filtering can be used as the aid in the gravimetric inversion or 
gravity data interpreting. The truncation filtering methodology consists of transforming 
the gravity anomaly given on the reference plane or sphere into the Z and 

0dsdZ sequences for a series of systematically varied values of the truncation parameter. 
Both these sequences (of the Z and 0dsdZ  surfaces) are animated with respect to varying 
the value of the truncation parameter. Patterns that are signatures of the individual features 
of the anomalous mass distribution appear in the sequences. These patterns can be used 
for interpreting the mass distribution that generates the original gravity data. Here we 
present only the fundamental concept of the truncation filtering methodology, as an 
inversion or interpretation tool, represented by inverting the gravity anomaly generated by 
one point mass anomaly in terms of its depth. The model of one point mass anomaly 
produces the dimple pattern in the 0dsdZ  sequence. The relation between the instant of 
the dimple onset and the depth of the point anomaly is derived analytically for both the 
planar and spherical models � Sections 3.1.2 and 4.1.2. The derivation matches the results 
of computer simulations. Inverting gravity anomalies of point masses may find some use 
in physical geodesy, but likely very limited use in applied gravimetry. Computer 
simulations will be used to study patterns of more realistic geologic mass distribution 
features to develop the pattern recognition skills, and to establish relations between onsets 
of patterns and depth estimates of the individual geological features. Attention will be also 
paid to the choice of kernels of truncation filters. 

When using the truncation filtering methodology and dealing with shallow mass 
anomalies (depths up to 100 km in case of mean earth), the rigorous gravity anomaly may 
be approximated by the vertical component of the gravity disturbance and the spherical 
model may be replaced by the planar model.  
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