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Abstract 

 

In the past, the application of strain in geodesy was more or less limited to horizontal geodetic 

networks, i.e., the applications were distinctly two-dimensional (2D).  Strain of three-dimensional 

(3D) nature has been used in many non-geodetic applications but it is relatively new in geodesy.  

Three-dimensional networks are a recent phenomenon in geodesy whose introduction has been 

predicated on the appearance of three-dimensional satellite positioning techniques.  With the 

introduction of three-dimensional strain descriptors there arose a question as how to relate the 

three-dimensional descriptors to the two-dimensional ones so they could be easily compared and 

put in similar schemes for example for specification purposes.  It has been long established that 

for the strain descriptors to be useful in studying geodetic networks, for instance in the context of 

Robustness analysis, they must be invariant under any rotation of coordinate systems.  They are 

by nature invariant in any shift of the origin of coordinate systems.  The requirements of 

invariance originate from the overall explicit requirement that the descriptors be sensitive only to 

the shape of the network and the quality of the observations. 
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1 Introduction 

 

The aim of this contribution is two-fold: 

1) To show some meaningful strain invariants in 3D, i.e., those that have natural physical 

meaning by themselves. 

2) To show how the 2D invariants are related to the 3D invariants and by showing this to 

demonstrate how 2D invariants can be obtained from their 3D counterparts. 

If we succeed in this venture, then we will have proved that investigation of strain of geodetic 

networks can always be done in 3D, in the most appropriate coordinate system, and the 2D 

counterparts can be obtained from the 3D invariants by some hopefully simple mathematical 

manipulations.  The main application on our mind here is the investigation of strain of geodetic 

networks for Robustness (Vaníček et al., 2001), i.e., when looking for virtual, rather than real 

deformations.  In fact, the idea of getting 2D strain invariants from 3D invariants can, of course, 

be used while investigating either real or virtual deformations of any structure. 

     To investigate the relations we are after, we shall be using Euclidean spaces only.  We shall 

assume that the 3D geometrical space in which the strain is determined is a Euclidean space 

complete with a Cartesian coordinate system (X, Y, Z).  To investigate these relations, we shall 

use 3D Euclidean geometry, which is the embedding space of 2D Riemann geometry.  In plain 

language, the 2D space will be a plane with a 2D Cartesian coordinate system (x, y) defined in it. 

     Let us begin by denoting the displacements of a 3D position 3r = (X, Y, Z)T by 

3∆r = (U, V, W)T,          (1) 



and the corresponding 2D displacement 2∆r = (u, v)T of a 2D position 2r = (x, y)T.  In this 

Introduction, we shall, for better or worse, follow the terminology and the symbolism introduced 

by Vaníček et al. (2001).  As the cited paper appeared relatively recently in this journal, we keep 

the explanations here at a minimal level, trusting that if need be, the reader will have an easy 

access to the cited paper.   The strain matrix E is composed of partial derivatives 
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Similarly, the 2D strain matrix is given by 
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To obtain the appropriate descriptors of strain, expressed as different linear combinations of the 

elements of the above strain matrices, these matrices are split into symmetric (S) and anti-

symmetric (A) parts, by the standard well known operations: 
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These operations are applied the same way to both the 3D and the 2D cases.  The 3D symmetrical 

part, for instance, becomes 
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where the diagonal elements U
X
∂
∂

, V
Y
∂
∂

, W
Z

∂
∂

reflect the dilation along the X-, Y- and Z-axes.  

These dilations are usually denoted by special symbols σ1, σ2 and σ3.  Analogously, in 2D where 

there would, of course, be only two such dilations along x- and y- axes.  The 3-D anti-symmetric 

part can be written similarly as 
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It is customary to denote the off-diagonal elements 1
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  by -ω1,2 , -ω1,3 and -ω2,3.  In 2D, the anti-symmetric part reads 
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where the off-diagonal element 1
2
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y x
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  is customarily denoted by -ω.  Thus  is often 

written as 
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     For the strain descriptors to be of any use, they have to be independent of the coordinate 

systems used in their evaluation.  In other words, the descriptors have to be invariant in 

coordinate translations and rotations.  The invariance in translations is assured automatically as 

the partial derivatives in S are blind to translations of coordinates and thus to translations of 

displacement as well.  The real problem to be addressed is the invariance in rotation, one rotation 

for the 2D case and three rotations in the 3D case. 

     Invariance is a standard mathematical property that has been studied by mathematicians and 

others for centuries.  Let us quote here one textbook for all, (Kaye and Wilson, 1998), where the 

interested reader can get the theoretical background as well as the historical perspective.  A good 

discussion of strain invariants in mechanics can be found in (Love 1944, p. 43), some geodetic 

applications are listed by Krumm and Grafarend (2002; Table 3). 

     Some 2D strain invariants were studied by Vaníček et al. (2001), where three meaningful 

strain invariants, �dilation invariant�, �differential rotation magnitude invariant� and �total shear 

magnitude invariant� were identified.  It made sense then to try to find 3D counterparts to these 

2D invariants.  It soon became clear though that the third strain descriptor, total shear, was an 

invariant in 2D but not in 3D (Berber 2006), and it had to be replaced by a different descriptor.  

The selection fell on the �maximum shear� used by Grafarend and Voosoghi (2003) in their 2D 

applications.  It turns out that this invariant can be very simply generalised into 3D as we have 

done here .  Maximum shear is simply defined as the difference between the largest and the 

smallest eigenvalues of the S matrix. 

     We shall demonstrate numerically the validity of the derived transformations between 3D and 

2D invariants using two standard geodetic coordinate systems.  The 3D coordinate system will be 



the (geocentric) Geodetic coordinate system (G), used naturally in most satellite positioning 

work.  The 2D coordinate system will be the x,y-plane of the local geodetic (LG) coordinate 

system in which most traditional horizontal positions are given.  For the exact definition of these 

two coordinate systems the reader is advised to consult Vaníček and Krakiwsky (1986). 

 

2.1 Dilation 

 

     The dilation invariant is the only linear invariant.  It is given by 
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where n is the dimensionality of the problem.  The relation between the 2D and 3D cases is 

1
33 2σ σΣ = +   ,          (10) 

where we denote the 3D dilation invariant ,3σ , simply by Σ and the two dimensional ,2σ , by σ .  

The dilation σ does not depend on the selection of the coordinate system in the 2D manifold 

(Vaníček et al. 2001).  On the other hand, the value of σ3, the magnitude of dilation along the 

third coordinate axis (z), is clearly connected to the direction of the third axis, which is 

perpendicular to the 2D manifold.  We note that once the 2D manifold is selected, we do NOT 

have the freedom to select the direction of the third axis in the 3D coordinate system arbitrarily as 

it is perpendicular to that manifold. 

 

2.2 Differential rotation 

 



     The differential rotation magnitude invariant is a quadratic invariant.  It is given by the 

following expression in 3D 

2 2 2
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while in 2D the invariant is simply a scalar quantity 2ω (Vaníček et al. 2001).  This 3D invariant 

can be interpreted as the square of the length of the �differential rotation vector� (Ω1, Ω2, Ω3)T, 

where the components are equal to the 2D scalar invariants ω1, ω2, ω3 in the coordinate planes 

1,2; 1,3 and 2,3. 

     We know from the investigation of the 2D invariants ω that these are nothing else but 

magnitudes of vectors ωi  i = 1,2,3 that are perpendicular to the coordinate planes 1,2; 1,3 and 2,3 

in this order [ibid.].  Using the more mundane notation of x,y,z, instead of x1, x2, x3, the argument 

goes as follows: 

1) The displacement ∆r = (u, v)T of a 2D position r = (x, y)T due to the differential rotation ω 

is given by 
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2) Equation (12) can be written equivalently using the 3D symbolism as 
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3) Another, equivalent way of writing Eq.(12) is 
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where × denotes the vector product. 



4) In Eq.(14), the differential rotation vector [0,0, ω]T is a vector of magnitude ω, 

perpendicular to the (x,y)-plane, or ω1 in our alternative notation, so that 

1∆ = − ×r ω r .          (15) 

5) Similarly, we can show that ω2 and ω3 are perpendicular to planes (x,z) and (y,z) 

respectively. 

For clarity, we shall denote these vectors ωi and the corresponding coordinates ωi  by two 

subscripts, referring them to the coordinate planes used in their computations rather than the 

coordinate axes.  Thus we shall write ω1 as ω2,3, ω2 as ω1,3 and ω3 as ω1,2.  This means that the 2D 

vectors ωi  i = 1,2,3, are nothing else but components of the 3D vector Ω.  Thus 
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which vector is fixed in the space implied by the strain matrix, but its magnitude is invariant in 

any coordinate transformation. This can be seen by realising that under any rotation of the 

original coordinate system, neither the magnitudes, nor the configuration of the triad (ω1, ω2, ω3) 

change. 

     The simplest way of computing the projection of Ω onto the normal to the 2D manifold (to get 

the value of ω=ω3, which we seek) is to first rotate the 3D coordinate system into a position 

where the (x,y) plane coincides with the 2D manifold.  The rotation can be done by the standard 

formula: 

* =Ω RΩ ,           (17) 

where R is the rotation matrix that transforms coordinates from the original 3D coordinate system 

into the coordinate system � denoted by an asterisk - in which the (x,y) plane is identical to the 

2D space.  The z-coordinate of Ω* is the scalar ω we seek. 



 

2.3 Maximum shear strain 

 

     The eigenvalues of the symmetric part S of the 3D strain matrix E are, of course invariants.  

As the matrix S is positive definite, the eigenvalues are all real and positive (Boresi et al. 1993).  

Let us denote them by Λ = (Λ1, Λ2, Λ3)T and agree to order them always from the largest, Λ1, to 

the smallest, Λ3.  Thus the maximum shear Μ will be always given by 

1M = Λ −Λ3

3

 .          (18) 

The eigenvalues are obtained as a solution of the standard cubic equation 

( ) 3 2
1 2det I I− = Λ − Λ − Λ −ΛI S I

2i

        (19) 

where I1, I2, I3 are the linear, quadratic and cubic invariants in 3D.  The linear invariant is equal to 

I1 = Tr(3S) and similarly the other two invariants. The solution for cubic equations is outlined in 

the Appendix.  

 

     For the 2D case, we compute the vector of eigenvalues (λ1, λ2)T = λ from the standard 

quadratic equation 

( ) 2
1det iλ λ− = − −λI S          (20) 

where i1 and i2 are the usual linear and quadratic invariants of 2S.  

 

Let us adopt a similar convention here that we adopted for the 3D case: let us always have λ1> λ2, 

and 
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Solution for this quadratic equation is fairly straightforward.  The roots of Eq. (20) are 
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Substituting for λ1 and λ2 in Eq. (21) we arrive at 

2
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T

.           (23) 

The last step that should be performed here is the transformation of M into µ.  This 

transformation is, unfortunately, more involved than the straight calculation of µ.  Thus our 

recommendation is that this transformation not be performed.  Instead, the 3S matrix in the 3D 

coordinate system can be transformed into the 2D manifold coordinate system by the following 

rotation 

3 3 3 3* =S R S R ,          (29) 

where 3S* is reckoned in the 2D coordinate system augmented by z-axis perpendicular to the 

plane.  The R matrix is the rotation matrix mediating the rotation from the (X, Y, Z) coordinate 

system to the augmented (x,y) coordinate system.  Taking then the upper left 2 by 2 submatrix of 

3S*, which corresponds to the (x, y) coordinate system, µ can be calculated from Eq.(23). 

 

3 Numerical results 

 

     In order to be able to show the numerical behaviour of the 2D and 3D invariants, a geodetic 

network from Northwest Territories, Canada is used. This is a relatively recent 3D network, 

observed with GPS; its horizontal projection is shown in Fig.1. The strain computed for this 

network is the virtual strain needed for the Robustness analysis therefore we do not show the 

initial data needed for the analysis.  (These data consist of 3D position differences and their 

standard deviations.) 



 

Table 1 shows the numerical values for all the 33 points in that network.   The most interesting 

phenomenon is that the 3D invariants are several orders of magnitude larger than their 2D 

counterparts.  This can be understood as being caused by the fact that the strains in the vertical 

direction are much larger than the strains in the horizontal direction; perhaps the behaviour of 

dilation can be intuitively understood here in lieu of any strain. Thus the strain invariants in 3D, 

which are functions of strain in all three directions, are here also much larger than the 2D 

invariants. 

 

The physical reason for this phenomenon is the geometrical shape of the analysed configuration, 

i.e., the 3D geodetic network from Northwest Territories observed with GPS.  Its shape is 

essentially two-dimensional, meaning that the variations in positions in the horizontal (xy-) plane 

are much larger than the variations in the vertical (z-) direction.  We can think as if we were 

dealing with a physical body that looks a lot like a membrane stretched in the horizontal plane.  

The strain across the membrane will, of course, appear much larger than the strains within the 

membrane; consequently, the strain invariants in 3D will be much larger than those in two 

dimensions.   

 

We pointed this phenomenon out in (Vaníček et al. 1991; page 28) already.  In this publication 

we argued that it did not make much sense to look at the robustness of even the so called three-

dimensional geodetic networks in three dimensions and we proceeded to study robustness only in 

two dimensions. Later on, Berber pointed out the same thing in his work (2006; page 11).  

Clearly, the problem of inherent two-dimensionality of geodetic networks (even 3D network) 

does not disappear when 3D strain invariants are used.  While for other structures three-



dimensional strains may be used to an advantage, it seems to us that this is not the case 

with geodetic networks, even when these are in three dimensions. 

 

4 Conclusions 

 

     According to our investigations, there are at least three meaningful invariants in 3D. These are 

�dilation invariant�, �differential rotation magnitude invariant� and �maximum shear strain 

invariant�. �Total shear� is not invariant in 3D. Compared to differential rotation and maximum 

shear strain, the relation between 3D and 2D in terms of dilation is straightforward. The 

differential rotation in 2D may be understood as the length of a rotation vector  that �sticks 

out� of the 2D manifold. In 3D the differential rotation is a vector fixed in space implied by the 

strain matrix, but its magnitude is invariant in any coordinate transformation. This can be seen by 

realizing that under any rotation of the original coordinate system, neither the magnitudes, nor the 

configuration of the triad (ω

ω
!

1, ω2, ω3) change. The simplest way of computing the projection of 

the differential rotation in 3D onto the normal to the 2D manifold is to first rotate the 3D 

coordinate system into a position where the (x,y) plane coincides with the 2D manifold and then 

the rotation can be done by the standard formula. 

     It has been found out that defined as the difference between the largest and the smallest 

eigenvalues of the S matrix, the maximum shear strain can be simply generalised into 3D. 

Computing the maximum shear strain in 2D from the maximum shear strain in 3D is a very 

cumbersome operation. That is why instead of computing the maximum shear strain in 2D from 

the maximum shear strain in 3D, the maximum shear strain in 2D should be calculated  directly 

from the 2D sub-matrix of the properly rotated symmetrical part of the 3D strain matrix. In this 

paper these findings have been both shown theoretically and confirmed numerically. 



    As a by-product of our computations we have confirmed that geodetic networks are inherently 

almost two-dimensional configurations. Consequently, it does not make much sense to look at 

their strain in the vertical direction.  We have shown that even the usage of 3D strain invariants 

cannot overcome the difficulties caused by this fact. 
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Appendix 

As the solution of a cubic equation is a fairly mundane task in mathematics, described in any 

standard mathematical textbook, we shall give only the main steps here as given by Dickson 

(1914).  These are: 

1
1 1 3
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1
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1
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so that we get for the maximum shear 
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In these formulae, the pertinent η  � terms are equal to 
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Table 1. Values of strain invariants for Northwest Territories network 
 times 108.  (Here Σ, σ are dilations, Ω, ω are differential rotation  
magnitudes and M, µ are maximum shear strains in 3D and 2D.)  

 Σ σ Ω ω M µ 
1 1711.3 35.2 13230.9 -61.8 16041.4 113.7 
2 957.9 -7.8 6853.5 -18.4 8432.8 52.2 
3 124.7 -6.2 1188.9 36.7 1364.3 37.1 
4 333.3 65.9 2424.9 41.5 2986.8 105.4 
5 138.9 -7.9 1263.2 37.9 1438.0 23.5 
6 -13.8 -27.3 1029.9 4.8 1039.5 10.6 
7 -521.8 -15.9 2749.0 1.1 3619.9 80.3 
8 -637.3 -2.5 1510.8 -15.2 2678.8 30.8 
9 -666.5 4.1 3601.5 -56.8 4654.3 416.7 
10 200.7 13.2 1251.0 19.6 1564.6 58.4 
11 -459.5 -6.0 3350.0 -9.4 4097.2 122.2 
12 -1171.7 -30.4 8006.9 52.9 9931.9 190.7 
13 -233.7 -11.5 2007.4 42.9 2400.8 53.2 
14 -424.6 -6.6 1937.6 -3.3 2597.5 45.7 
15 354.8 1.7 1211.5 -37.8 1865.5 68.1 
16 670.0 -12.1 2023.8 -2.3 3241.2 20.1 
17 457.9 19.9 2141.9 -5.1 2927.0 46.7 
18 1741.5 -35.0 4856.0 15.8 8096.8 84.0 
19 -2297.6 -14.7 8336.5 17.0 12414.7 182.1 
20 -665.0 1.4 1805.2 -5.4 3026.4 144.5 
21 -1882.3 -17.2 7424.2 7.0 10744.6 311.1 
22 1625.0 -18.5 4222.3 -17.8 7325.9 4.3 
23 1615.2 -61.0 5426.3 9.8 8335.2 189.5 
24 -1171.7 -30.4 8006.9 52.9 9931.9 190.7 
25 -1773.1 -17.9 5301.8 -30.9 8576.4 117.5 
26 339.3 28.9 2373.7 27.2 2907.1 79.3 
27 -99.1 7.4 2174.8 -1.5 2317.8 51.7 
28 486.5 12.8 809.4 38.9 1827.1 31.3 
29 187.8 29.0 1081.6 30.6 1469.7 315.8 
30 -804.2 8.6 6823.9 46.8 8077.3 134.4 
31 1625.0 -18.5 4222.3 -17.8 7325.9 4.3 
32 -147.5 12.5 670.6 4.7 948.4 7.2 
33 497.7 9.8 2825.1 45.0 3690.1 111.8 
 

 

 



 

 

 

 
Longitude (deg) 

 
Figure 1. Northwest Territories network 
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