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When the new cartographic mapping system 
for Iran was considered, the requirements were 
that the system be conformal, continuous and, 
naturally, possess the smallest possible scale 
distortion over the Iranian national territory. In the 
design of the map projection, these requirements 
have been met by an oblique conical projection 
with two secant obl ique paral le ls .  The 
proposed mapping is really a conglomerate of 
two conformal mappings.  Firstly, mapping the 
reference ellipsoid to a Gaussian sphere, and 
secondly, relating the Gaussian sphere to a 
Lambert cone in an oblique position.
Both of these mappings are formulated so as to 
ensure minimal distortion over the territory of 
Iran. 

INTRODUCTION
Some seven or eight years ago, the National 
Cartographic Center (NCC) of Iran decided to 
adopt a new map projection for the new 1:1 000 
000 map series of Iran.  The new map projection 
was then conceived as a double projection: first 
the reference ellipsoid is mapped to a conformal 
sphere, then the conformal sphere is mapped 
onto an oblique cone.  In the formulation of 
the two projections, two additional coordinate 
transformations had to be introduced, namely:  

· Spherical coordinates on the Gaussian sphere 
into oblique spherical coordinates on the same 
sphere;

· Oblique Cartesian coordinates on the Lambert 
mapping plane into final mapping coordinates 
(see Sec. 4).

Thus, this research had to deal really with four 
coordinate transformations: (Φ,λ) to (u,v), (u,v) to 
(u*,v*), (u*,v*) to (x*,y*), (x*,y*) to (X,Y). These four 
transformations can be combined at the end, to 
yield one combined mapping equation:  
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that transforms the geodetic latitude and 
longitude of a point on the reference ellipsoid 
(horizontal datum) to Cartesian coordinates 
on the mapping plane (map coordinates). This 
mapping equation resides in software, where it 
is evaluated whenever a point on the horizontal 
datum is to be mapped onto the mapping plane. 
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The inverse mapping equation, transforming 
the map coordinates to geodetic latitude and 
longitude, is also formulated side by side with the 
direct mapping equation.    

CONFORMAL MAPPING OF 
REFERENCE ELLIPSOID ONTO A 

GAUSSIAN SPHERE

Theory
The mapping of the reference ellipsoid onto a 
conformal (Gaussian) sphere is fairly standard 
in mathematical cartography. It may be useful, 
however, to recapitulate the theory of this 
mapping here. The direct and inverse mapping 
equations are derived in a sequence of steps as 
follows (Fiala, 1955):  

· Select a sphere of an as yet unspecified radius 
R and a curvilinear orthogonal coordinate 
system u,v (spherical latitude and spherical 
longitude).

· To avoid meridian convergence on the 
Gaussian conformal sphere it is required that 
spherical latitude be an as yet unspecified 
function of only geodetic latitude and spherical 
longitude be an unspecified linear function of 
geodetic longitude, i.e.,

1),( Cvfu    (1)

where C1 is an integration constant to be 
determined.

· Conformality of the mapping requires that 
the differential distortion (scale factor (k)) 

in the meridian
 dM

duR

 
be the same as the 

differential distortion in the parallel dN
dvuR

cos
cos

. 

This requirement is equivalent to the Cauchy-
Riemann conditions that can be written as:
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where M and N are the meridian and the prime 
vertical radii of curvature of the reference 
ellipsoid, see e.g., [Vanicek and Krakiwsky, 1986].

· Solution of the differential equation (2) 
yields the expression for u as a function of :

d  :
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which is the mapping equation for u, where 
e represents the eccentricity of the mapped 
reference ellipsoid. Values of the integration 
constants C1 and C2 have to be determined from 
other considerations.

· As u is a function of d  only, the scale 
factor (k) given by equation (2) is clearly also a 
function of  only. It is possible thus to develop the 
scale factor into a Taylor series with respect to 
the mean latitude d o of the mapped territory as 
follows:
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where  is the geodetic latitude increment 
referred to d o.

· Now, from the requirement that:

1)(k (5)

the value for R can be derived as:

NMR (6)

where Mo and No are the meridian and prime 
vertical radii of curvature of the reference ellipsoid 
for the mean latitude d . This is the determining 
equation for R. Substitution for the radii of 
curvature gives the following equation for R:
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where a is the major semi-axis of the mapped 
reference ellipsoid.

· From the requirement that the scale 
factor be as close to 1 as possible, or, equivalently, 
from the requirement that the first two derivatives 
in the Taylor series expression for the scale factor 
disappear:
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the following two equations are derived:

sinsin1 uC (9)

and
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where uo is the mean spherical latitude of the 
mapped territory.

 Equation (9) is the determining equation for. C1

· Enforcement of equations (8) and (9) results 
in the optimization of the scale factor 
k (d ) for the mapped territory, which can now 
be written as:
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The convergence of this series has not been 
investigated in detail, and neither have the partial 
derivatives been evaluated as part of this research.  
But it should be clear from the fact that C1 is very 
close to 1, that the series converges quite quickly.

· Finally, the second integration constant is 
evaluated from equation (3) taken for the 
mean latitude of the mapped territory, as:
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where all the quantities are now known.

· The inverse mapping equations, from the 
Gaussian sphere onto the reference ellipsoid, 
are obtained from the direct mapping 
equations (from the reference ellipsoid onto 
the Gaussian sphere) as:
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Here, the first equation must be solved 
iteratively by putting first d  = u in the corrective 

term 
2/

sin1
sin1

e

e
e  and updating d  at each iterative 

step [Thomson et al., 1977].

Choice of constants for Iran
The evaluation of the most appropriate constants 
for the conformal mapping of the reference 
ellipsoid onto the Gaussian sphere requires:

· selection of the mean latitude d 0 for Iran;

· knowledge of the size (a) and shape (e) of the 
reference ellipsoid used in the mapping.

A value of d 0= 3.25o was selected for the 
mean latitude.  For an ellipsoid of flattening  

25.298
1f   equation (10) yields:

,510703001.1C1   (14)

from equation(9) is derived:

ou 43794656.320     (15)

Equation (12) gives:

77829900112 .C (16)

Adopting the value of a = 6378137.00m, 
equation (7) provides:

m.R 19650613696 (17)

These are the values defining uniquely the best 
conformal mapping of the reference ellipsoid for 
Iran onto the Gaussian sphere. As a result the 
scale factor of this mapping for Iran ranges from 
1 – 4.76x10  in the northern part of Iran 
(d  = 40o) to 1+4.28x10-6 in southern part of Iran 
(d  = 25o). Angles and azimuth are, of course, 
undistorted as the mapping is conformal.

SELECTION OF THE BEST POSITION 
FOR THE LAMBERT CONE

Theory
The next step in the development of the 
mapping solution is to select an appropriate 
position and orientation (obliquity) of the cone 
on which to project the Gaussian sphere in the 
second Lambert conical projection. This position 
and orientation depends on the shape of the 
territory to be mapped.  The obvious idea behind 
this concept is the overall minimization of the 
point scale factor over the territory. This can be 
achieved quite easily by appropriately rotating the  
u, v coordinates system on the sphere to obtain a 
new (oblique) spherical coordinate system u*, v* 
in which:

· the centre point, also called the origin, (u0, v0) 
has coordinates (u0*=u0 , v0*= v0) and;
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· the longest segment of a great circle on the 
mapped territory, passing through the origin 
(u0, v0) is a segment of a parallel u* = u0.

The choice of the new spherical coordinates 
(u0*, v0*) for the origin is somewhat arbitrary. One 
could choose the value of u0* differently, for 
instance in such a way as to further optimize the 
distortion over the mapped territory. One may 
even discover that a choice of u0* = 0, putting 
the origin at the equator of the new coordinates 
system, thus converting the conical projection to 
a cylindrical projection, gives smaller distortions 
than the current choice. This possibility has not 
been examined in detail, but this point could 
be investigated further. The choice of v0* = 0 is 
merely a matter of convenience; it places the 
zero meridian of the oblique coordinate system 
running through the origin of the mapped 
territory.

Denoting the azimuth of the longest great 
circle segment passing through (u0, v0) by 0, 
the above rotation of the u, v coordinate system 
into the u*, v* coordinate system is given by the 
following equation:

rRRRRRr )v()u()()u()v( ***
0302010203 2

  (18)

where
T)usin,vsinucos,vcosu(cosr (19)

T***** )usin,vsinucos,vcosu(cos*r (20)
The matrices R1, R2, R3, are rotation matrices 
as defined by Vanicek and Krakiwsky (1986). 
Multiplying the 5 matrices (equation (18)) 
provides:

rAr *  (21)
which is the final linear transformation equation 
between the u,v and u*,v* systems. The matrix 
A is the total rotation matrix with the following 
elements:

00
*
0

*
0

*
000

000
*
0

*
0

*
00

*
0

*
00011

cos)sincossinsincos(sin

sin)cossincossinsin(sin

coscoscoscos

vvuvvu

vuvuvu

vuvua

00
*
0

*
0

*
000

0
*
00

*
0

*
000

*
0

*
00021

cos)sinsinsincoscos(sin

sin)cossinsinsincos(sin

sincoscoscos

vvuvvu

vvvuvu

vuvua

0
*
00

0
*
000

*
00031

coscossin

sincoscossinsincoscos

uv

uvuuvua

00
*
0

*
0

*
000

0
*
00

*
0

*
000

*
0

*
00012

cos)coscossinsinsin(sin

sin)sincoscossinsin(sin

coscossincos

vvuvvu

vvvuvu

vuvua

0
*
0000

*
0

*
0

0
*
0

*
000

*
00

*
0

*
00022

cos)cossinsincossin(sin

sin)cossincossincos(cos

sincossincos

vvuvvu

vuvuvu

vuvua

00
*
0

0
*
000

*
00032

coscoscos

sincossinsinsinsincos

vu

uvuuvua

0
*
00

00
*
0

*
0

*
0

*
0013

cossincos

sincoscossincoscossin

vu

uvuvuua

00
*
0

00
*
0

*
0

*
0

*
0023

coscoscos

sincossinsinsincossin

uv

uvuvuua

00
*
0

*
0033 sincoscossinsin uuuua                        (22)

Note that for the choice of v0* = 0 in this 
research, terms containing sin v0* disappear.

Once r* is determined from this transformation 
equation, u0*, v0* are evaluated as:
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where r1*,r2*,r3* are the three components of the 
vector r*. 

The inverse linear transformation equation, from 
the u* , v*, system to u , v reads:

rAr T (24)

where AT is the transpose of A.

The individual coordinates u and v are obtained 
from equations parallel to (23).

Choice of constants for Iran
In the earlier section dealing with the choice of 
constants for Iran,  was determined to be:

ou 43794656.320 (25)

From the map of Iran, we selected 540  as the 
mean longitude of Iran. Applying equation (1) we 
get :

ov 09198956.540 (26)

The azimuth of the longest great circle segment 
passing through the origin was estimated as 

1290
0 , (Figure 1).
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Substituting these values into equations (22), 
the numerical values for the total rotation matrix 
are:

84126325.039321243.037102577.0
53112933.072919374.043148363.0

10088493.056005399.082229055.0
A (28)

LAMBERT CONFORMAL 
PROJECTION OF OBLIQUE 

GAUSSIAN SPHERE

Theory
Once the u*,v* spherical coordinate system on 
the Gaussian sphere has been established, in 
which the longest segment in the mapped area is 
a segment of parallel u*=u, the standard Lambert 
conformal projection (Fiala, 1955) can be used 
for this oblique coordinate system.

In the Lambert conformal projection the 
mapping equations from the oblique Gaussian 
sphere onto the mapping plane are:
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where K1 and K2 are some integration constants 
to be selected,  v* = v* – vo*, and:

24
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*
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is the isometric (spherical) latitude on the rotated 
Gaussian sphere.

Substituting q* from equation (30) into equations 
(29) yields the final direct mapping equations:

*
2

*

1 cos
24

tan 2 vKuKx K

*
2

*

1 sin
24

tan 2 vKuKy K  
(31)

where x*, y* are oblique Cartesian coordinates on 
the Lambert mapping plane.

The scale factor of the Lambert conformal 
mapping is given by:
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where R stands for the radius of the Gaussian 
sphere discussed previously.  The superscript L 
is used to distinguish the scale factor (kL) of the 
Lambert projection from the scale factor (k) of 
the conformal mapping of the reference ellipsoid 
onto the Gaussian conformal sphere, discussed 
previously.

To select the integration constants K1 and K2, the 
scale factor for the two extreme parallels (on the 
mapped territory) is required, namely:
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be equal to 1+ , while for some parallels, close to 
u*=u0*, which are referred to as u*=um*,   the scale 
factor will be 1– . The result is:
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Since K2 must also equal to um*, um* can be 
determined from K2 as:

2
* arcsin Kum (35)

The integration constant K1 is then evaluated from 
the following equation:
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where R is again the radius of the Gaussian 
sphere.

        129º

Figure 1.  The longest great circle and its azimuth
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The inverse transformation equations (to 
equations (31)) read:
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Choice of constants for Iran
For the selected mean latitude u0=32.43794656 
and for u*=6.5o the maximum half width of Iran 
in the azimuth 39o, the integration constants are:
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The Lambert scale factors at the mean and 
extreme u* coordinates are:
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CHOICE OF MAPPING 
COORDINATES

The Cartesian coordinates x*,y* have the origin 
at the vertex of the oblique cone. In addition, 
the axes are also oblique.  To transform this 
coordinate system into a practical Cartesian 
system the following transformations are applied.

The coordinates are first transformed to the 
( *x , *y ) system with its origin coincident with 
the origin (u0*,vo*.  The *x  -axis points south-east 
at an azimuth of 0 (cf. the Lambert cone) and 
the *y  -axis points north-east at a right angle to 
the *x -axis. The transformation between the 
two systems reads:

yx *

*
0

* xy
(40)

where

24
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u
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To convert these oblique Cartesian coordinates 
(x,y )to proper mapping coordinates, the 
coordinate system must be rotated so that the y 
-axis points east and the -axis points north. This 
can be stated as:

,
2

*
0 rTr (42)

where r and r * are now two-dimensional vectors 
of Cartesian coordinates and T is the two-
dimensional rotation matrix:

cossin
sincos

)(T (43)

The rotated coordinate system gives true easting 
x and true northing y. It is customary for a 
mapping to use rather a false easting X and a false 
northing Y, obtained from their true counterparts 
by adding some arbitrarily selected coordinate 
shifts x0 and y0, such that all the eastings and 
northings for the mapped territory will be positive 
(Figure 2)

rrP 0 (44)

cossin

The complete transformation from the oblique 
Cartesian coordinates to the mapping coordinates 
(false easting and northing) then reads: 

0
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0
*

00 sincos)( yxxX

0
*

0
*

00 cossin)( yxyY  
(45)

The inverse transformation, from the mapping 
coordinates (false easting and northing) to the 
oblique Cartesian coordinates is:

00000
* sincos yYxXx

0000
* cossin yYxXy      

(46)

showing the four coordinate systems used here. 

Choice of constants for Iran
For the territory of Iran it seems appropriate to 
select the coordinate shifts as:

Figure 2.  The four coordinate systems used in the new 
projection
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mymx 10000001000000 00 (47)

The azimuth 0  was discussed previously 
and its value is 0  = 129o, and the parameter 

0  =99967518.6644.

Substituting these particular values into equations 
(46) we get the appropriate transformations for 
Iran are obtained as:

7437.7272762*7771459.062932039.0 xX

8758.874621662932039.077714596.0 *yxY
(48)

and the inverse transformation reads:

0170.1137398577714596.062932039.0* YXx
5704.14782562932039.077714596.0* YXy   (49)

DISTORTIONS OF THE PROPOSED 
MAP PROJECTION

In this section the mapping distortions (scale 
distortions, meridian convergence, T-t corrections) 
are determined across the mapping territory of 
Iran.

Scale distortion

The overall point scale factor of the double 
projection, mapping the ellipsoid onto the oblique 
cone, can be computed as a product of the two 
scale factors: k (equation (11)); and kL (equation 
(32)):

24
cot
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2

*
211 u

uN
uKKC

kk KL (50)

and as a result, the overall point distortion can be 
derived from the equation:

1LL kk  (51)

The distortion is a function of latitude ( ) of a 
computation point. Figure 3 shows the variation 
of scale distortion over the mapping territory. 

The distortion is mostly negative in the territory, 
decreasing in magnitude from the central oblique 
parallel.

Figure 3.  The point scale distortion in the new cartographic mapping of Iran.
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Meridian convergence

The meridian convergence is computed from the 
general expression:

x

y

1tan (52)

where x and y are the mapping coordinates; 
equationns (45). To derive the expression for 

, the following sets of equations are used 
(equationns (1)) as:
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and finally equations (45) as:

),( yxxx
)y,x(yy

Using equations (1), the partial derivatives of u 

and v with respect to the variable  read:
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Taking these derivatives in the chain rule of 
partial derivatives applied among the four sets of 
equations mentioned above, one concludes with 
the following partial derivatives:
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Deriving the partial derivatives in the right hand 
side from the sets of equations yields:
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Substituting the derivatives in the formula for  
yields: 

1,0 Cvu
(53)

This equation is used to compute the meridian 
convergence as a function of position in a 
grid of points of 15 arc minute (latitude and 

Figure 4.  Meridian convergence, contour intervals 0.25o
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longitude differences) spacing across the mapping 
territory (Iran).  Contour lines of equal meridian 
convergences are shown in Figure 4.

The (T-t) correction  
The arc to chord, or (T–t), correction is a 
correction applied to the azimuth of a mapped 
geodesic (arc) at a computation point to change 
it to the bearing of the base line (chord). It is a 
function of the positions of the two end points 
of the base line. An approximate value for the 
correction can be obtained from the formula:
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s)tT(

LL
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(57)

where  is the curvature of the mapped 
geodesic at the computation point, s is the length 
of the base line, kL is the point scale factor given 
by equation (32), and T is the bearing of the base 
line at the computation point. For the computation 
of the correction, the kL needs to be expressed in 
terms of the mapping coordinates x and y. To 
do this, kL, equation (32), is first formulated as a 
function of x* Y* and . From equations (31) the 
following is derived: 
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Substituting this equation into equation (32), and 
applying the identity:
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the following expression for kL as a function of 
and x* and y* is obtained:
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As it can be seen from equation (60), kL is a 

function of the squared distance 2*2* yx  
from the vertex of the oblique cone. Denoting 
this squared distance by 2:
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On the other hand, 2 is also a function of the 
mapping coordinates X and Y. This function can 
be derived from equations (45) as:
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Using the chain rule for differentiation, the partial 

derivatives of 
x

k L
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 are evaluated as:
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where the derivatives 
x
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 and 
y

2

 are coming 

from equation (62) and the derivative 2

Lk
 is 

obtained from equation (61):
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Having the partial derivatives, the curvature 
( ) is computed as a function of position. The 
(T–t) correction can then be estimated, using 
equation (57), for a given base line length (s) and 
at a given bearing (T). For the study of distribution 
of the (T–t) correction across the mapping 
territory, the maximum (T–t) correction for a 
given constant base line length is determined. The 
maximum or minimum value of the correction 

is obtained at the bearing T  that satisfies the 
condition:

0
T

(65)

The derived T  is tested for the maximum value 
of the correction. The maximum value of the  
correction is then calculated for the base line 
length of , on the same grid of points used for 
the meridian convergence computation across 
the mapping territory (Iran). A plot of the contour 
lines of equal  correction are shown in Figure 5.
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A COMPARISON WITH THE 
LAMBERT CONFORMAL CONIC 

PROJECTION
A comparison of the new cartographic mapping 
system is made with the Lambert Conformal 
Conic projection with two standard parallels 
(LCC2).  The comparison is made in terms of the 
distortions determined for the two mappings. 
For a LCC2 to cover the mapping territory as a 
continuous projection, the two standard parallels 
would take the values:

75362528 21 .. (66)

imply ing the centra l  lat i tude va lue of 
10
 = 32.5o and a half width of  1 = 8.5o for 

the territory in the latitude direction. The central 
meridian is selected to be 540 . The constant 
(l) for the projection (Krakiwsky, 1973) reads:

12

2121 coslncoslnlnln
qq

NN
l (67)

where N1 and N2 are the prime vertical radii 
of curvature at 11 and 12 on the selected 
reference ellipsoid (GRS80), and q1 and q2 are 
the corresponding isometric latitudes. Introducing 
another constant  ( ) given by:

21 2211 coscos lqlq e
l

N
e

l
N

(68)

Figure 5.  (T-t) correction, contour intervals 5” Figure 6.  Scale distortion in the LCC2 map projection, 
contour interval 0.001

the point scale factor kL2, and the corresponding 
point scale distortion 2L , can then be derived 
from the following equations:

122

2

LL

lqL

k

e
cosN

lk
(69)

A map of scale distortion contour lines for the 
LCC2 projection, based on the scale distortions 
computed for the already used grid of points in 
the mapping territory, is shown in Figure 6. 

A map of meridian convergence ( ) was 
developed (Figure 7) in the same way as a map of 

Figure 7.  Meridian convergence in the LCC2 map 
projection, contour interval 0.25"
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distortion using the formula for the convergence 
as (Krakiwsky, 1973):

0l , (70)

A map of the (T–t) correction for the LCC2 
map projection has also been developed for the 
mapped territory. Applying equations (57), the 
kL2 and its derivatives with respect to the LCC2 
Cartesian  coordinates are required. Realising that 
the scale factor kL2 is a function of latitude  only, 
and using the chain rule for derivatives, we can 
write:

x
q

q
k

x
k LL 22

y
q

q
k

y
k LL 22

 
(71)

where

M
N

q
cos  (72)

where M and N are the ellipsoidal meridian and 
prime vertical radii of curvatures respectively, and:

000

2
0

2

cotNr
yrxr

l
rlnlny,xq

(73)

is the inverse mapping equation, (Krakiwsky, 
1973). Evaluating the partial derivatives:

r
x

MN
FlM

x
k L

cos

2

r
ry

MN
FlM

y
k L

0
2

cos

(74)

where

sin
1
cossin

2

22

N
e

eMF . (75)

Now the maximum (T–t) correction can be 
again computed on the same grid of points as 
the other corrections. The corresponding map of 
contour lines is shown in Figure 8.

CONCLUSIONS

This paper describes the selection of the best 
mapping (i.e., mapping that has the smallest 
distortion), for the territory of Iran.  It really 
consists of two projections: that of the reference 
ellipsoid onto a Gaussian conformal sphere and 
that of the Gaussian conformal sphere onto an 
oblique secant Lambert cone.  The choices of 
the optimum constants of the two mappings for 
the mapped territory are also discussed, but only 
approximate estimates for these constants are 
adopted for the demonstration.  These constants 
should be fine tuned for the actual mapping to 
achieve the smallest possible scale distortion.  

Next, the distortions of the proposed 
mapping (i.e., the scale distortion), the meridian 
convergence and the (T–t) distortion, are plotted 
and discussed.  It is shown that the scale distortion 
for Iran ranges approximately between  -3.2*10-3 

and 3.2*10-3.  The meridian convergence for the 
proposed mapping is reasonable and the (T–t) 
correction, standardized for a 20 km baseline, is 
in a reasonable range between –40” and 40”.

For comparison, the optimal Lambert 
conformal (secant) conic projection for Iran is also 
presented and the distortions of that mapping are 
discussed.  It transpires that while the meridian 
convergence and the (T–t) distortion are about 
the same as for the proposed map projection, 

Figure 8.  (T-t) correction in the LCC2 map projection, 
contour interval 5"
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the scale distortion can be almost twice as large 
for the Lambert projection.  
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