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When the new cartographic mapping system
for Iran was considered, the requirements were
that the system be conformal, continuous and,
naturally, possess the smallest possible scale
distortion over the Iranian national territory. In the
design of the map projection, these requirements
have been met by an oblique conical projection
with two secant oblique parallels. The
proposed mapping is really a conglomerate of
two conformal mappings. Firstly, mapping the
reference ellipsoid to a Gaussian sphere, and
secondly, relating the Gaussian sphere to a
Lambert cone in an oblique position.

Both of these mappings are formulated so as to
ensure minimal distortion over the territory of
Iran.
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INTRODUCTION

Some seven or eight years ago, the National
Cartographic Center (NCC) of Iran decided to
adopt a new map projection for the new 1:1 000
000 map series of Iran. The new map projection
was then conceived as a double projection: first
the reference ellipsoid is mapped to a conformal
sphere, then the conformal sphere is mapped
onto an oblique cone. In the formulation of
the two projections, two additional coordinate
transformations had to be introduced, namely:

Spherical coordinates on the Gaussian sphere
into oblique spherical coordinates on the same
sphere;

Oblique Cartesian coordinates on the Lambert
mapping plane into final mapping coordinates
(see Sec. 4).

Thus, this research had to deal really with four
coordinate transformations: (®,)) to (u,v), (u,v) to
(V) (W,v) to (x7,y), (x,y) to (X,Y). These four
transformations can be combined at the end, to
yield one combined mapping equation:

T

Y Y(o,)
that transforms the geodetic latitude and
longitude of a point on the reference ellipsoid
(horizontal datum) to Cartesian coordinates
on the mapping plane (map coordinates). This
mapping equation resides in software, where it
is evaluated whenever a point on the horizontal
datum is to be mapped onto the mapping plane.
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The inverse mapping equation, transforming
the map coordinates to geodetic latitude and
longitude, is also formulated side by side with the
direct mapping equation.

CONFORMAL MAPPING OF
REFERENCE ELLIPSOID ONTO A
GAUSSIAN SPHERE

Theory

The mapping of the reference ellipsoid onto a
conformal (Gaussian) sphere is fairly standard
in mathematical cartography. It may be useful,
however, to recapitulate the theory of this
mapping here. The direct and inverse mapping
equations are derived in a sequence of steps as
follows (Fiala, 1955):

Select a sphere of an as yet unspecified radius
R and a curvilinear orthogonal coordinate
system u,v (spherical latitude and spherical
longitude).

To avoid meridian convergence on the
Gaussian conformal sphere it is required that
spherical latitude be an as yet unspecified
function of only geodetic latitude and spherical
longitude be an unspecified linear function of
geodetic longitude, i.e.,

u=f(9), v=C 1 1)

where C1 is an integration constant to be
determined.

Conformality of the mapping requires that
the differential distortion (scale factor (k))
Rdu
M dg
differential distortion in the parallel

be the same as the
Rcosudv

N cosgdi”
This requirement is equivalent to the Cauchy-
Riemann conditions that can be written as:
Rdu  Rcosudv  RC, cosu
Mdg Ncosgdi N cos¢

in the meridian

k(g) =

where M and N are the meridian and the prime
vertical radii of curvature of the reference
elipsoid, see e.g., [Vanicek and Krakiwsky, 1986].

Solution of the differential equation (2)
yields the expression for u as a function of :
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¢ :tan(ﬁJrEj = C{tan(”+¢) (1_83:”(1}}2] 3)
4 2 4 2)\1+esng

which is the mapping equation for u, where

e represents the eccentricity of the mapped

reference ellipsoid. Values of the integration

constants C, and C, have to be determined from
other considerations.

As u'is a function of ¢ only, the scale

factor (k) given by equation (2) is clearly also a

function of only. It is possible thus to develop the

scale factor into a Taylor series with respect to

the mean latitude ¢ of the mapped territory as
follows:

ok 5%k

k() = k(4. )+%¢uﬁ¢+672

where 4¢ is the geodetic latitude increment

referred to ¢

a9° 0K AP (4)
2 o4% 6

b0 %o

Now, from the requirement that:

k(¢,)=1 (5)

the value for R can be derived as:

R=,M_N. 6)

where M, and N, are the meridian and prime
vertical radii of curvature of the reference ellipsoid
for the mean latitude @. This is the determining
equation for R. Substitution for the radii of
curvature gives the following equation for R:

ay1-e?
R= 2.2, @
1-e“sin“ ¢,

where a is the major semi-axis of the mapped

reference ellipsoid.

From the requirement that the scale
factor be as close to 1 as possible, or, equivalently,
from the requirement that the first two derivatives
in the Taylor series expression for the scale factor
disappear:

oK o’k
o 297 =0 (8)
%o %o
the following two equations are derived:
C, sinu, =sing, 9)
and
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2

C, =41+ cos’ ¢, (10)

2

where u_ is the mean spherical latitude of the
mapped territory.

Equation (9) is the determining equation for. C,

Enforcement of equations (8) and (9) results
in the optimization of the scale factor
k (¢) for the mapped territory, which can now
be written as:

RC,cosu
N cos¢

3 3
o’k %‘F

|, 6

k(g) = (an

The convergence of this series has not been
investigated in detail, and neither have the partial
derivatives been evaluated as part of this research.
But it should be clear from the fact that C, is very
close to 1, that the series converges quite quickly.

Finally, the second integration constant is
evaluated from equation (3) taken for the
mean latitude of the mapped territory, as:

. e/277Q
—tan| Z 4 Y0 | an Z 4 $o | 1=€SNdo
Cz—tan(4+ 2){tan[4+ zj(hesin%J } (12)

where all the quantities are now known.

The inverse mapping equations, from the
Gaussian sphere onto the reference ellipsoid,
are obtained from the direct mapping
equations (from the reference ellipsoid onto
the Gaussian sphere) as:

[72’ ]{l [ﬂ' uﬂé[l—esinqﬁjelz

tan —+— |=| —tan —+— -

4 2 fz 4 2 1+esing (13)
A=—V

1
Here, the first equation must be solved
iteratively by putting first ¢ = u in the corrective

1-esing
1+esing
step [Thomson et al., 19771.

e/2
term ( j and updating ¢ at each iterative

Choice of constants for Iran

The evaluation of the most appropriate constants
for the conformal mapping of the reference
ellipsoid onto the Gaussian sphere requires:

selection of the mean latitude ¢, for Iran;

knowledge of the size (a) and shape (e) of the
reference ellipsoid used in the mapping.
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A value of ¢ = 3.25%was selected for the
mean latitude. For an ellipsoid of flattening
1

= tion (10) yields:
f = eags cdua ion (10) yields

C, =1.001703510 ,

from equation(9) is derived:
U, = 32 .43794656°
Equation (12) gives:

C, =1.001299778 (16)

Adopting the value of a = 6378137.00m,
equation (7) provides:

R=6369061.1965 m (17)

These are the values defining uniquely the best
conformal mapping of the reference ellipsoid for
Iran onto the Gaussian sphere. As a result the
scale factor of this mapping for Iran ranges from
1 — 4.76x10 in the northern part of Iran
(¢ = 40°) to 1+4.28x10¢ in southern part of Iran
(¢ = 25°. Angles and azimuth are, of course,
undistorted as the mapping is conformal.

SELECTION OF THE BEST POSITION
FOR THE LAMBERT CONE

Theory

The next step in the development of the
mapping solution is to select an appropriate
position and orientation (obliquity) of the cone
on which to project the Gaussian sphere in the
second Lambert conical projection. This position
and orientation depends on the shape of the
territory to be mapped. The obvious idea behind
this concept is the overall minimization of the
point scale factor over the territory. This can be
achieved quite easily by appropriately rotating the
u, v coordinates system on the sphere to obtain a
new (oblique) spherical coordinate system u’, v*
in which:

the centre point, also called the origin, (u,, v,)
has coordinates (u,=u, , v,= v,) and;
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the longest segment of a great circle on the
mapped territory, passing through the origin
(u, v,)is a segment of a parallel u”= u,,

The choice of the new spherical coordinates
(u,, v, for the origin is somewhat arbitrary. One
could choose the value of u," differently, for
instance in such a way as to further optimize the
distortion over the mapped territory. One may
even discover that a choice of u,” = 0, putting
the origin at the equator of the new coordinates
system, thus converting the conical projection to
a cylindrical projection, gives smaller distortions
than the current choice. This possibility has not
been examined in detail, but this point could
be investigated further. The choice of v," = 0'is
merely a matter of convenience; it places the
zero meridian of the oblique coordinate system
running through the origin of the mapped
territory.

Denoting the azimuth of the longest great
circle segment passing through (u,, v,) by «,,
the above rotation of the u, v coordinate system
into the u’, v* coordinate system is given by the
following equation:

= Ra(o Ra(Uy Ry T —ato Ro( U (v ) (18)
where

r =(cosucosv ,cosu sinv ,sinu)’ (19)
r’ =(cosu  cosv’ ,cosu” sinv ,sinu )" (20)

The matrices R,, R,, R,, are rotation matrices
as defined by Vanicek and Krakiwsky (1986).
Multiplying the 5 matrices (equation (18))
provides:

r'=A r (21)

which is the final linear transformation equation
between the u,v and u’,v’ systems. The matrix
A is the total rotation matrix with the following
elements:

ay; = CosU, COSV, COSUy COSVy +
(sinug Sinvy + sinuy Cosvy SinU, Cosvg)sing, +
(sinuy cosvy Sinvy — sinug oSV, SiNvg) cosag
ay = COSUy COSV, COSUy SINVy +
(sinug cosvysinug sinvy —sinvg cosvg) sinag —
(sinuy cosvy CosVy — Sinug SiNVy SiNvg) €osag
ag = COSUy COSVy SiNUy —SiNUg COSVy COSUy Sinag +

sinv, cosug Cosag
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a;, = COSUy SINVy COSUG COSVy +
(Sinug sinvysinug CosVy —Cosvy SiNVp) Sinag —
(sinug sinvy sinvy + Sinug COSVy COSV,) COSeg
ay, = COSUy SNV, COSUg SNV +
(cosug cosv + sinug Cosv, SinuUg CosVg)Sina, +
(sinug sinvy cosvy — sinug SinVy COSVy) Cosag
ag, = CoSUy SNVy SiNUy —SiNU, SNV, COSUy SiNag —
cOSUy COSV, COS@g
a;3 = SiNU, COSUy COSVy —SiNUg COSVy COSUg Sinag —
-
cosuy Sinvy Cosag
ay; =SiNUy COSUG SiNVg —Sinug SiNVg cosuy Sinag —
oSV COSU, COSag

ag3 =SiNUy SiNUg+ COSUg COSUy Sinag

(22)

Note that for the choice of v,” = 0 in this
research, terms containing sin v, " disappear.

Once r' is determined from this transformation
equation, u,’, v," are evaluated as:

ut = arcsin(rg)
.
2
42 4r?

where r " r,"r." are the three components of the
vector r".

. zmn[ (23)

The inverse linear transformation equation, from
the u", v, system to u, v reads:

r=A'r" (24)

where AT is the transpose of A.

The individual coordinates u and v are obtained
from equations parallel to (23).

Choice of constants for Iran

In the earlier section dealing with the choice of
constants for Iran, was determined to be:
U, = 32 .43794656° (25)
From the map of Iran, we selected 4, = 54° as the

mean longitude of Iran. Applying equation (1) we
get :

v, = 54 .09198956° (26)
The azimuth of the longest great circle segment
passing through the origin was estimated as
ag =129°, (Figure 1).
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Figure 1. The longest great circle and its azimuth

Substituting these values into equations (22),
the numerical values for the total rotation matrix
are:

0.82229055 0.56005399  0.10088493
A=|-043148363 0.72919374 -0.53112933
[— 0.37102577 0.39321243 0.84126325]

(28)

LAMBERT CONFORMAL
PROJECTION OF OBLIQUE
GAUSSIAN SPHERE

Theory

Once the u',v' spherical coordinate system on
the Gaussian sphere has been established, in
which the longest segment in the mapped area is
a segment of parallel u'=u, the standard Lambert
conformal projection (Fiala, 1955) can be used
for this oblique coordinate system.

In the Lambert conformal projection the
mapping equations from the oblique Gaussian
sphere onto the mapping plane are:

X =K, exp(— Koq' )cos(KzAv*)
y' = Klexp(— K,q' )s' n(KZAv')

where K, and K, are some integration constants
to be selected, A v' = v' — v *, and:

(29)

*

* 7 U
q = lntan[T;] (30)

is the isometric (spherical) latitude on the rotated
Gaussian sphere.
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Substituting g from equation (30) into equations
(29) yields the final direct mapping equations:

X' = KltanK{ZJriJcos(KzAv*)

(31
y =K tan2 L sin(K Av*)
! 4 2 2

where X', y" are oblique Cartesian coordinates on
the Lambert mapping plane.

The scale factor of the Lambert conformal
mapping is given by:

u
KK, cots| £+ 2
Kt (7 |

Rcosu”

. (32)

where R stands for the radius of the Gaussian
sphere discussed previously. The superscript L
is used to distinguish the scale factor (k') of the
Lambert projection from the scale factor (k) of
the conformal mapping of the reference ellipsoid
onto the Gaussian conformal sphere, discussed
previously.

To select the integration constants K, and K, the
scale factor for the two extreme parallels (on the
mapped territory) is required, namely:

U =Ug—Au Uy, =Ug + AU

(33)

be equal to 1+, while for some parallels, close to
u=u,’, which are referred to as u'=u_°, the scale
factor will be 1—g. The result is:

K, = Inoos(uiz)—lncos(u{)

Intan[£+u—1] +Intan[£+u—2] (34)
472 472

Since K, must also equal to u *, u " can be
determined from K, as:

up, = arcsinK, (35)

The integration constant K is then evaluated from
the following equation:

2Rcos U, cos(ui)

e 1) i 5 2]

Ky=

(36)

where R is again the radius of the Gaussian
sphere.
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The inverse transformation equations (to
equations (31)) read:

2 4 y2 2Kz
u” =2arctan 723, -z
K2 2

V= Kizarctan[i—:}vg
Choice of constants for Iran
For the selected mean latitude u,=32.43794656
and for Au'=6.5° the maximum half width of Iran
in the azimuth 399, the integration constants are:

K, =13754372.9049m

K, = 0.537543752. (38)

The Lambert scale factors at the mean and
extreme u” coordinates are:

u,, = 32.51658743° k" =0.996774
u, = 25.93794656° k" =1.003226 (39)
u, = 38.93794656° k" =1.003226

CHOICE OF MAPPING
COORDINATES

The Cartesian coordinates x°,y* have the origin
at the vertex of the oblique cone. In addition,
the axes are also oblique. To transform this
coordinate system into a practical Cartesian
system the following transformations are applied.

The coordinates are first transformed to the
(X", y") system with its origin coincident with
the origin (u,’,v,". The X" -axis points south-east
at an azimuth of &g(cf. the Lambert cone) and
the y" -axis points north-east at a right angle to
the x"-axis. The transformation between the
two systems reads:

X" =y

v & (40)
=pPo~

where

po=K1thz[%+u70] (41)

To convert these oblique Cartesian coordinates
(x,y)to proper mapping coordinates, the
coordinate system must be rotated so that the y
-axis points east and the -axis points north. This
can be stated as:

r= T(oz0 —%Jr "’

(42)
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where r and r” are now two-dimensional vectors
of Cartesian coordinates and T is the two-
dimensional rotation matrix:

T(a) = cosa  sina
(a)_[—sina cosa] (43)
The rotated coordinate system gives true easting
x and true northing y. It is customary for a
mapping to use rather a false easting X and a false
northing Y, obtained from their true counterparts
by adding some arbitrarily selected coordinate
shifts x, and y,, such that all the eastings and
northings for the mapped territory will be positive

(Figure 2)

P=rg+r (44)

Y
A

,% y*

X

/%

= X

Figure 2. The four coordinate systems used in the new
projection

The complete transformation from the oblique
Cartesian coordinates to the mapping coordinates
(false easting and northing) then reads:

X :xo—(p0—><:)<-:05ao+):*sinao 45)
Y=Yo—-(pg—X)Snag+Yy cosag
The inverse transformation, from the mapping
coordinates (false easting and northing) to the
oblique Cartesian coordinates is:

X = (X =xg)cosag ~ (Y - yo)sinag + po

y' = (X =xp)sineg - (Y - yg )cose, (46)

showing the four coordinate systems used here.

Choice of constants for Iran

For the territory of Iran it seems appropriate to
select the coordinate shifts as:
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X, =1000000 m Y, =1000000 m (47)

The azimuth @y was discussed previously
and its value is ay = 129° and the parameter
P0 =99967518.6644.

Substituting these particular values into equations
(46) we get the appropriate transformations for
Iran are obtained as:

X =-0.62932039 X" + 0.7771459* +7272762.7437

(48)
Y = -0.77714596 X" —0.62932039y" + 8746216.8758
and the inverse transformation reads:
X' =-0.62932039X — 0.77714596Y +11373985.0170 (49)

y' = +0.77714596 X — 0.62932039Y —147825.5704

DISTORTIONS OF THE PROPOSED
MAP PROJECTION

In this section the mapping distortions (scale
distortions, meridian convergence, T-t corrections)
are determined across the mapping territory of
Iran.

Scale distortion

The overall point scale factor of the double
projection, mapping the ellipsoid onto the oblique
cone, can be computed as a product of the two
scale factors: k (equation (11)); and k* (equation

(32)):
cot *» [%4—”7)

and as a result, the overall point distortion can be
derived from the equation:

~ CK,K, cosu

Kk - -
N cos¢ cosu

(50)

et =kk" -1 (51)
The distortion is a function of latitude (¢) of a
computation point. Figure 3 shows the variation
of scale distortion over the mapping territory.

The distortion is mostly negative in the territory,
decreasing in magnitude from the central oblique
parallel.

Figure 3. The point scale distortion in the new cartographic mapping of Iran.
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Meridian convergence

The meridian convergence is computed from the
general expression:

57

oA
o (52)
0

y =tan—

where x and y are the mapping coordinates;
equationns (45). To derive the expression for
7, the following sets of equations are used
(equationns (1)) as:

u=u(9)
v=V(1)

equations (21) as:
u* =u*(u,v)
v =Vv'(u,v)
equations (31) as:
X" =x"(u*,v")
y =y (unv)
and finally equations (45) as:
x=X(x",y")
y=y(x".y")
Using equations (1), the partial derivatives of u

and v with respect to the variable A read:

ou ov
Z=0, =-=C

7 Fri (53)
Taking these derivatives in the chain rule of
partial derivatives applied among the four sets of
equations mentioned above, one concludes with
the following partial derivatives:

%:q[ﬁ%+ﬁﬁj%+q[ﬁi+ﬁﬁjﬂ

0. oyt vt ox" ov’ ay" au” ox out ) oA
ﬂ:cl[ﬁ%+ﬂﬁJﬁ+c1[ﬂﬁ+ﬂ£j£
oA oy" vt ox" ov' ) 04 ay" eut  ox' out ) o4 (54)

Deriving the partial derivatives in the right hand
side from the sets of equations yields:
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= —(~ag cosu sinv+ag, cosu cosv)
cosu
.

= (~a, cosu sinv+a, coSU COSV)-—
1

cos?v*

2
rl

(~a, cosu sinv+a, cosu cosv)

ox*

dy = = Kyx", Ky =— Ka

au cosu”

d; = =sinag

—=

g

=-sinag
ox

dg = ﬁ = cosag
(55)
Substituting the derivatives in the formula for y

yields:

ou

M_p N
oA oA
This equation is used to compute the meridian

convergence as a function of position in a
grid of points of 15 arc minute (latitude and

C (53)

40" frg 40
35 Kisd) K
30 30
25 f 25
Figure 4. Meridian convergence, contour intervals 0.25°
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longitude differences) spacing across the mapping
territory (Iran). Contour lines of equal meridian
convergences are shown in Figure 4.

The (T-t) correction

The arc to chord, or (T—t), correction is a
correction applied to the azimuth of a mapped
geodesic (arc) at a computation point to change
it to the bearing of the base line (chord). It is a
function of the positions of the two end points
of the base line. An approximate value for the
correction can be obtained from the formula:

S
T-t)z=o—
( ) 2 (57)
L L
:—le aakx cosTfak sinT)

where O is the curvature of the mapped
geodesic at the computation point, s is the length
of the base line, k* is the point scale factor given
by equation (32), and T is the bearing of the base
line at the computation point. For the computation
of the correction, the k! needs to be expressed in
terms of the mapping coordinates x and y. To
do this, k, equation (32), is first formulated as a
function of x* Y" and . From equations (31) the
following is derived:

1

!

)

Substituting this equation into equation (32), and
applying the identity:

T u
cot| —+
o
the following expression for kt as a function of
and x"and y"is obtained:

(Ky)?

X*2+y*2

tanz{” (58)

4

11

cosu’ 2

+1tan[1+ u (59)

2 4 2

1

1K Ky
e K,K
2 +

ey

K,-1

“ (60)

) )

2RK

As it can be seen from equation (60), k! is a
function of the squared distance (X*2+ y*2)

from the vertex of the oblique cone. Denoting
this squared distance by 62

1

2R

Kol

14K,
K ’3

2 K,
—0 +

2RK

Kby )= 61)
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On the other hand, 0 is also a function of the
mapping coordinates X and Y. This function can
be derived from equations (45) as:

07 (%, y) =X +y™? = (X =X, +py c0st, )* +(Y = Yo + po Siner, )*

(62)
Using the chain rule for differentiation, the partial

. okt k" .
derivatives of 0 and o are evaluated as:
X

ok _ ok' 80% ok _ ak‘ ae?
ox  00% ox ' ay 060% oy (63)
— 26? 20? .
where the derivatives o and are coming
. - k.
from equation (62) and the derivative pyrll
obtained from equation (61):
1
okt 14K, e KK S
= 0" + 0 "
20 L 4R (64)
4RK

Having the partial derivatives, the curvature
(0) is computed as a function of position. The
(T—t) correction can then be estimated, using
equation (57), for a given base line length (s) and
at a given bearing (T). For the study of distribution
of the (T—t) correction across the mapping
territory, the maximum (T—t) correction for a
given constant base line length is determined. The
maximum or minimum value of the correction

A
is obtained at the bearing T that satisfies the
condition:

do =0 (65)
oT

The derived T is tested for the maximum value
of the correction. The maximum value of the
correction is then calculated for the base line
length of , on the same grid of points used for
the meridian convergence computation across
the mapping territory (Iran). A plot of the contour
lines of equal correction are shown in Figure 5.
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45

50 55 60

Figure 5. (T-t) correction, contour intervals 5”

A COMPARISON WITH THE
LAMBERT CONFORMAL CONIC
PROJECTION

A comparison of the new cartographic mapping
system is made with the Lambert Conformal
Conic projection with two standard parallels
(LCC2). The comparison is made in terms of the
distortions determined for the two mappings.
For a LCC2 to cover the mapping territory as a
continuous projection, the two standard parallels
would take the values:

¢, =28.25 ¢, =36.75° (66)
implying the central latitude value of
¢O = 32.5°and a half width of A ¢ = 8.5° for
the territory in the latitude direction. The central
meridian is selected to be 4y =54". The constant
() for the projection (Krakiwsky, 1973) reads:

_InN; -InN, +Incos¢, —Incosg,
d; -0

where N, and N, are the prime vertical radii
of curvature at ¢, and ¢, on the selected
reference ellipsoid (GRS80), and q, and g, are
the corresponding isometric latitudes. Introducing
another constant () given by:

[ (67)

. N, cosg, o _ N, cosg, oo

| (68)
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Figure 6. Scale distortion in the LCC2 map projection,
contour interval 0.001

the point scale factor k2, and the corresponding
point scale distortion ¢L2, can then be derived
from the following equations:

o«
~ Ncosg
g2 k21

A map of scale distortion contour lines for the
LCC2 projection, based on the scale distortions

computed for the already used grid of points in
the mapping territory, is shown in Figure 6.

L2

e

(69)

A map of meridian convergence () was
developed (Figure 7) in the same way as a map of

60

40

35

AN
S

+ 25

PO L

i
55 60

Figure 7. Meridian convergence in the LCC2 map
projection, contour interval 0.25"
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distortion using the formula for the convergence
as (Krakiwsky, 1973):

y=1(A-1), (70)

A map of the (T—1t) correction for the LCC2
map projection has also been developed for the
mapped territory. Applying equations (57), the
k2 and its derivatives with respect to the LCC2
Cartesian coordinates are required. Realising that
the scale factor k* is a function of latitude only,
and using the chain rule for derivatives, we can
write:

6kL2 B 6kL2 %@

ox o¢ 0q OX

akLZ _ akLZ %%

v ey (71
where
9 _Ncosg (72)
aq M

where M and N are the ellipsoidal meridian and
prime vertical radii of curvatures respectively, and:

Ink —Inr
alxy) ==
= 9T 7
r, = Ny cotd,

is the inverse mapping equation, (Krakiwsky,
1973). Evaluating the partial derivatives:

k" _IM+F x

ox  MNcosg r

L2 ’ (74)
k? _IM+F y-1,

oy MNcosg r
where

2 2

F:Msin¢wasin¢. (75)

Now the maximum (T—t) correction can be
again computed on the same grid of points as
the other corrections. The corresponding map of
contour lines is shown in Figure 8.
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Figure 8. (T-t) correction in the LCC2 map projection,
contour interval 5"

CONCLUSIONS

This paper describes the selection of the best
mapping (i.e., mapping that has the smallest
distortion), for the territory of Iran. It really
consists of two projections: that of the reference
ellipsoid onto a Gaussian conformal sphere and
that of the Gaussian conformal sphere onto an
oblique secant Lambert cone. The choices of
the optimum constants of the two mappings for
the mapped territory are also discussed, but only
approximate estimates for these constants are
adopted for the demonstration. These constants
should be fine tuned for the actual mapping to
achieve the smallest possible scale distortion.

Next, the distortions of the proposed
mapping (i.e., the scale distortion), the meridian
convergence and the (T—t) distortion, are plotted
and discussed. It is shown that the scale distortion
for Iran ranges approximately between -3.2°10-
and 3.2°10. The meridian convergence for the
proposed mapping is reasonable and the (T—1)
correction, standardized for a 20 km baseline, is
in a reasonable range between —40” and 40”.

For comparison, the optimal Lambert
conformal (secant) conic projection for Iran is also
presented and the distortions of that mapping are
discussed. It transpires that while the meridian
convergence and the (T—t) distortion are about
the same as for the proposed map projection,

Vol. 49, No. 2, December 2004



the scale distortion can be almost twice as large
for the Lambert projection.
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