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Abstract 

 

In this contribution we formulate and solve the problem of determining transformation 

parameters in the transformation between a geodetic coordinate system (G-System) and 

the Conventional Terrestrial (geocentric) coordinate system (CT-system), or equivalently, 

between the datums associated with these systems. The transformation parameters are 

obtained from a set of points whose positions (coordinates) are known both, in the CT-



system and in the G-system. It is shown that if the heights of these points above the 

horizontal datum are disregarded, as Vaníček and Steeves [1996] argued they should be, 

one can obtain transformation parameters of a horizontal datum positioned at “the origin 

of the geodetic network” (called also the “datum point”, or “fundamental datum point” by 

some people) and oriented with respect to the Local Astronomical coordinate system at 

this “origin”, to a very good accuracy. If the geodetic datum has been positioned and 

oriented some other way, and the misalignment of the two systems has been sought in 

terms of three rather than one unknown angle, one would have to pay extra attention to 

the spatial distribution of the common points. This is because correlations among the 

transformation parameters may play a more crucial role than in the simpler case 

described above. Even more crucial are the correlations between the transformation 

parameters (particularly the scale difference parameter) and parameters representing the 

network distortions. Because most older horizontal networks contain very significant 

distortions, these must be modelled either beforehand, or together with the transformation 

parameters. Otherwise, unmodelled distortions are likely to be absorbed by the 

transformation parameters giving an incorrect estimation of the actual transformation 

between the two datums. 
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Introduction 



 

With the advent of satellite positioning systems, geodesists found themselves faced with 

the necessity of transforming positions (coordinates) from a geocentric Conventional 

Terrestrial coordinate system (CT-system), in which satellite-determined positions are 

given, into the generally non-geocentric, geodetic coordinate system (G-system), in 

which existing horizontal geodetic positions are known, and vice versa. To be more 

accurate, the satellite-determined coordinates are normally given in a coordinate system, 

such as the WGS-84, which would be one of the practical realizations of the CT-system.  

This, we feel, requires some explanation in terms of the terminology now prevalent in 

geodetic practice. 

 

Nowadays, CT coordinate systems recommended for general use are regarded as being 

parts of “reference systems” such as WGS-84 or ITRS.  A reference system is understood 

to consist of a coordinate system and a set of conventions and auxiliary models (for the 

earth gravity field, for atmospheric density, for tidal potential, etc.) that are to be used in 

the treatment of observed quantities.  The coordinate system is assumed to be Cartesian 

and it may, or may not have a curvilinear/ellipsoidal coordinate system associated with it.  

Such a curvilinear coordinate system then implies that a reference ellipsoid (horizontal 

datum) of a certain size and shape – see below – has been adopted.   

 

In order to be usable in practice, any coordinate system must have known positions 

(coordinates) of at least a few accessible (monumented) points associated with it.  This 



association is referred to as a “realisation of the coordinate system”. When the coordinate 

system has been “realised”, then the reference system, of which it is part, becomes a 

“reference frame”. In the sequel, we shall call these monumented points “frame points”  

because they play a specific role in “converting” a reference system to a reference frame.  

Generally, these points are a subset of the network of points that we shall be dealing with 

below.  Clearly, the realisation does not have any effect on the auxiliary models, while 

the auxiliary models influence the realisation, i.e., the values of coordinates.  An example 

of this terminology is the different ITRFs being different realisations of the ITRS.   

 

Because here we are interested only in the geometrical aspects of the transformation 

between the CT-frame and G-frame, we shall be dealing only with the coordinate system 

part of the frames, leaving alone the set of conventions and auxiliary models that are an 

integral part of a frame.   By the same token, we shall be also referring to the realizations 

of these systems as the “CT-system” and “G-system”, without distinguishing which 

realization is really involved. For the same reason, we shall not be specifying which of 

the existing G-systems is considered. 

 

We shall assume that the G-system we deal with here has a specific geodetic reference 

ellipsoid associated with it.  This reference ellipsoid will be defined by the lengths of its 

semi-axes, a and b.  Alternatively, such a geodetic reference ellipsoid may be assumed to 

have been defined by its major semi-axis a and flattening f, or the first numerical 

eccentricity e [Vaníček and Krakiwsky, 1986]. Such a reference ellipsoid must be 



understood to have been properly positioned and oriented within the earth and thus with 

respect to the CT-system, which, in turn, assures proper positioning and orientation of the 

G-system with respect to the CT-system. Some people want to distinguish between a 

“reference ellipsoid” and a “horizontal datum”, the latter being a properly positioned and 

oriented reference ellipsoid. Since the latter is indubitably the case here, we shall be 

referring to the geodetic reference ellipsoid also as a “horizontal geodetic datum” for the 

distinction described above is moot. 

 

Accepting these assumptions, we shall be dealing with the Cartesian G-coordinates (x
G
, 

y
G
, z

G
), and the equivalent curvilinear G-coordinates (ϕG

, λG
, h

G
). The standard nonlinear 

transformation equations [Vaníček and Krakiwsky, 1986, Eq. (15.63)] 
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where N is the prime vertical radius of curvature of the reference ellipsoid at the point of 

interest, define the relation between the Cartesian and curvilinear G-coordinates. Most of 

the time, we will be referring to the ordered triplet of Cartesian coordinates (x
G
, y

G
, z

G
)
T
 

simply as a vector r
G
. 

 

The way the horizontal geodetic datum had been positioned and oriented with respect to 

the CT-system, i.e., the way the G-frame had been obtained from the G-system, dictates 



how the transformation between the G-system and the CT-system should be set up 

[Vaníček and Steeves, 1996]. We shall be distinguishing between G-systems (and thus 

between horizontal geodetic datums) positioned at the “origin of the network” and 

oriented (with respect to the Local Astronomical coordinate system at the “origin”) 

directly, through six “topocentric parameters” [Vaníček and Wells, 1974], and those 

positioned and oriented indirectly, by means of a set of known positions. Without getting 

into any details here, we just wish to say that the former mode is the “classical” one, 

encountered in the majority of geodetic datums throughout the world, while the latter 

mode has been used in the establishment of the more recent geodetic datums. 

 

The transformation between the CT-system and the G-system is usually defined in terms 

of the linear transformation equation 

 

 r
G
  =  R(εx, ε y, εz) r

CT
 − t

CT
 , (2) 

 

where R denotes the rotation matrix involving the misalignment angles (εx, ε y, εz) around 

the three Cartesian axes. The symbol r
CT

 = (x
CT

, y
CT

, z
CT

)
T
 stands for a position vector in 

the CT-system and t
CT

 represents the position vector (in the CT-system) of the centre of 

the reference ellipsoid (i.e., the origin of the G-system), known as the “translation 

vector”. We note the obvious reciprocity 

 

 t 
CT

  =  (tx
CT

, ty
CT

, tz
CT

)
T
 = -t 

G
 , (3) 



 

where t
G
 is the position vector of the earth's centre of mass (i.e., the origin of the CT-

system), in the G-system.  We shall not discuss here cases where specific realisations of 

the CT-systems imply that the CT-system origin does not coincide with the centre of 

mass of the earth.  We shall understand that a CT-system has its origin in the earth centre 

of mass by definition. 

 

There are six “transformation parameters” present in Eq. (2):  tx
CT

, ty
CT

, tz
CT

, εx, ε y, εz.  

Since we are talking about a transformation between coordinate systems, there is no need 

for introducing a scale parameter representing the difference between the scales of 

coordinate systems.  The scale difference is associated with transformations between 

coordinates and not with transformations between (coordinate) systems.  Since a 

coordinate system is an entity separate from the point configuration described in that 

coordinate system, one can imagine a coordinate system that exists (by definition) 

regardless of the existence of any point configuration. If there have not been any 

measurements of distances carried out in the coordinate system, how would one be able 

to talk about a scale?  Clearly, one could speak of a scale only after the scale had been 

brought in through some distance measurements associated with the determination of 

coordinates, or coordinate differences.  

 

Suppose for a moment that we are willing to regard the scale implied by measured 

distances between the points in a configuration to “define the scale of the coordinate 



system”. That will violate our basic assumption that the coordinate system is an entity by 

itself, separate from the point configuration (e.g., the network) that we may wish to 

describe in that coordinate system.   The situation is slightly more complicated when the 

reference system of which the coordinate system is the essential part, is realised 

(positioned and oriented) by a set of “frame points” (that “convert” the system to the 

reference frame).  Should these “frame points” be taken as being more closely related to 

the coordinate system or to the independent point configuration?  We shall discuss this 

point in the next section of this paper. 

 

It is useful to realize that, for small misalignment angles between two coordinate systems 

(which is always the case in practice), the “misalignment term”, i.e., the first term on the 

right-hand side of Eq. (2), can be also written as [Vaníček and Carrera, 1985] 

 

 R(εx, εy, εz) r
CT

  =  r
CT

 + ωωωω × r
CT

 , (4) 

 

where ωωωω is the “misalignment vector” defined as 

 

 ωωωω  =  (εx, ε y, εz )
T
 , (5) 

 

and “×” denotes the vector product. The interesting geometrical insight one gets from Eq. 

(4) is that (for small misalignment angles) the rotated position vector R(εx, εy, εz) r
CT

 can 

be obtained from the original position vector r
CT

 by a small shift ωωωω × r
CT

 in a direction 



perpendicular to the misalignment vector ωωωω and also perpendicular to the position vector 

r
CT

 itself. Generally, vector ωωωω has an arbitrary direction and magnitude. It can be seen 

rather clearly from Eq. (4) that if the direction of ωωωω happens to coincide with the direction 

of r
CT

, the second term on the right-hand side of Eq. (4) goes to zero vector and there is 

no effect from the misalignment on the position r
CT

. 

 

It was shown by Vaníček and Wells [1974] that if the geodetic horizontal datum (and 

thus the G-system) is positioned and oriented the “classical” way, i.e., by means of the 

origin of the network, the misalignment must take the form of a rotation around the 

ellipsoidal normal passing through the network origin. This means that the direction of 

the misalignment vector ωωωω must coincide with the direction of the ellipsoidal normal at 

the network origin; i.e., 

 

 ωωωω = ωωωωo = ωo (cosϕo cosλo, cosϕo sinλo, sinλo)
T
 , (6) 

 

where ωo is the magnitude of the misalignment and (ϕo, λo) are the geodetic (curvilinear) 

coordinates of the network origin, and the vector on the right-hand side is the unit vector 

normal to the reference ellipsoid at the network origin. 

 

It is interesting to realize that even when one does not expect the (small) misalignment 

angle to have occurred in the same direction as the normal to the reference ellipsoid at the 



network origin, i.e., when the geodetic horizontal datum had been positioned and oriented 

by means of a set of points, the transformation (2) can be written in a similar form as 

 

 r
G
 = r

CT
 + ωωωωm × r

CT
 − t

CT
 . (7) 

 

Here 

 

 ωωωωm = ωm (cosϕm cosλm, cosϕm sinλm, sinϕm)
T
 , (8) 

 

and (ϕm, λm) are the geodetic coordinates of the point to be determined, around the 

normal of which the misalignment of magnitude ωωωωm takes place. The sought six-tuple of 

transformation parameters then becomes tx
CT

, ty
CT

, tz
CT

, ωm, ϕm, λm. 

 

Statement and Formulation of the Problem 

 

The position of a specific horizontal geodetic datum (reference ellipsoid) with respect to 

the CT-system cannot be determined directly. Therefore, we have no choice but to do it 

indirectly using coordinates of two sets of n points, one set in the CT-system and the 

other in the G-system. Now, these “common points” normally belong to the network, but 

some of them may also belong to the set of “frame points”.  Be that as it may, these 

coordinates are naturally burdened with errors (both, random and systematic) originating 

in the observations, as well as in some of the shortcomings of the computational 



procedures (systematic errors) used to derive the coordinates from the original 

observations [Vaníček and Steeves, 1996]. Here is where the above discussed scale 

difference comes into the picture; it must be taken into account, together with the other 

existing distortions of the coordinates that may be coming from the above discussed 

sources or, e.g., from geodynamical phenomena.  These distortions have to be modelled 

and the distortion parameters estimated.  We shall have more to say about this aspect a 

little later; for the moment, we shall assume that these distortions have been taken care of 

one way or another. 

 

If we do not have such two sets of coordinates for a sufficient number of points then we 

cannot solve the problem. When we do, we can formulate n vectorial observation 

equations (equivalent to 3 × n scalar equations) of the kind of Eqs. (2) or (7). The two 

sets of coordinates, {r1
G
, r2

G
, ... , rn

G
} and {r1

CT
, r2

CT
, ... , rn

CT
} become the “known” 

quantities and the transformation parameters become the “unknown” quantities. 

 

Once we have formulated the 3 × n observation equations, which, still assuming a small 

misalignment, can be written as, cf. Eq. (7), 

 

 ∀ i = 1, 2, ... , n  :  ri
G
 − ri

CT 
 =  ωωωωm × ri

CT
 − t

CT
 , (9) 

 

we can attempt to solve them for the six unknown parameters tx
CT

, ty
CT

, tz
CT

, ωm, ϕm, λm. If 

the geodetic horizontal datum were positioned and oriented the “classical” way then we 



would have only four unknown parameters tx
CT

, ty
CT

, tz
CT

, ωo to solve for. In the sequel, 

we will be thus speaking about either “six-parametric”, or “four-parametric” 

transformations. 

 

It is helpful to reformulate Eq. (9) in such a way that the unknown transformation 

parameters appear in the usual form, as a vector pre-multiplied by a known matrix 

(design matrix). This can be done simply by realizing that 

 

 ωωωωm × ri
CT

  =  −ri
CT

 × ωωωωm , (10) 

 

which can be then written as 

 

 −ri
CT

 × ωωωωm ,  =  Qi ωωωωm , (11) 

 

where 

 

 Q
i
  =  









0   −zi

CT
    yi

CT
  

  zi
CT

  0   −xi
CT

  

  −yi
CT

    xi
CT

  0

 . (12) 

 

Then Eq. (9) can be restated as 

 

 ∀ i = 1, 2, ... , n  :  ri
G
 − ri

CT 
 =  −Qi ωωωωm − t

CT
 , (13) 



 

or, more simply, as 

 

 ∀ i = 1, 2, ... , n  :  ri
G
 − ri

CT 
 =  Ai x , (14) 

 

where the design matrix Ai is given by 

 

 Ai  =  [ Qi , I ] , (15) 

 

and the unknown vector x consists of 

 

 x  =  [ ωωωωm , t
CT

 ]
T
 . (16) 

 

The sub-vector ωωωωm has to be, in the end, resolved into the three transformation parameters 

ωm, ϕm, λm according to Eqs. (8) or (6). If a four-parametric transformation is used then 

−Qi ωωωωm in Eq. (13) must be replaced by 

 

 −Qi ωωωωo  =  −Qi
o
 ωo , (17) 

 

where the vector Qi
o
 is a product of the matrix Qi with the unit vector normal to the 

reference ellipsoid at the network origin, given by Eq. (6). Note that ωωωωo on the left hand 

side is a vector, while ωo on right hand side is a scalar. 



 

Let us now return to the coordinates on the left-hand side of Eqs. (14).  As we mentioned 

above, these coordinates are distorted and these distortions (be they a single scale 

difference for the entire network or many different regional scale differences or some 

more complicated cases) need be accounted for, either beforehand or simultaneously with 

the estimation of the coordinate system transformation. The problem with trying to 

estimate the distortion and transformation parameters independently of each other is that 

they are often highly correlated. Estimating the distortions first may result in some 

portion of the transformation parameters being absorbed by the distortion parameters. 

Conversely, estimating the transformation parameters first may result in some portion of 

the distortion parameters being absorbed by the transformation parameters. In both cases 

one would end up with incorrect transformation parameters.  

 

Thus estimating both sets of parameters simultaneously seems to be the preferred choice.  

This can be done quite easily by adding to Eq. (14) a linear deformation model.  Clearly, 

if the distortions are modelled by means of a linear model that contains nuisance 

parameters (see, for example, [Junkins, 1991]), these nuisance parameters may be 

resolved simultaneously with the transformation parameters that we have been working 

with above.  The observation equations (14), containing both the transformation, as well 

as nuisance parameters can be solved for both kinds of parameters simultaneously.  It has 

been a standard practice however (see, e.g., [United States Defence Mapping Agency, 

1987]), to lump the distortions described by nuisance parameters together with the 



transformation parameters, rather then keeping them separate. This practice is misleading 

because it obfuscates the nature of the transformation: rather than keeping the coordinate 

system transformation separate from the distortions, it mixes the two things together 

yielding some “coordinate quasi-transformation parameters” (generally different from the 

transformation parameters described above) which vary from location to location. This 

practice is also clumsy because it precludes any reasonable attempt of an assessment of 

accuracy of the (coordinate system) transformation parameters as well as an assessment 

of correlations. 

 

To simplify the discussion here, we shall assume that the distortions have been already 

modelled and that the distortion model has become part of the system of observation 

equations.  We do not wish to discuss the distortion modelling here as it represents a 

problem quite different from the one we are discussing in this paper.  We just want to 

point out that at this stage, that if some or all of the “common points” are also “frame 

points”, their distortions may have to be modelled independently from the other 

(network) points.  

 

Now, if there are more observation equations available than the number of transformation 

and nuisance (for simplicity not considered any further in our derivations here) 

parameters sought, the least-squares approach to the solution is normally employed. For 

the least-squares solution, the covariance matrix of the vector of coordinate differences 

 



 ∀ i = 1, 2, ... , n  :  ri
G
 − ri

CT 
 =  ∆ri  =  (∆x, ∆y, ∆z)i

T
 , (18) 

 

has to be properly assembled, including the appropriate covariances.  Still disregarding 

the linear model of coordinate deformation, the system of either four or six normal 

equations is formulated and solved. 

 

Correlations among some datum transformation parameters and some nuisance 

parameters appear explicitly in the a posteriori covariance matrix of the two kinds of 

parameters.  In particular, a high correlation is often experienced between the translation 

vector and the scale factor.  The rise of all these correlations represents a very interesting 

and challenging problem, which should be treated in a separate paper. 

 

There is yet another complication that should be discussed here. In our formulation 

above, we have been using three-dimensional positions (three Cartesian (x, y, z) or 

curvilinear (ϕ, λ, h) coordinates) to describe the position of each point needed in the 

formulation of the observation equations. Vaníček and Steeves [1996] argued that in the 

case of terrestrial geodetic horizontal networks (networks established by classical, 

terrestrial-based measurement techniques), the accuracy of geodetic (ellipsoidal) heights 

h may be significantly lower than the accuracy of the other two coordinates ϕ and λ, and 

that the height h is often missing altogether. Although accurate orthometric and geoidal 

heights are sometimes provided in the terrestrial position set, they are determined by 

completely different means than the horizontal positions and as such, in our opinion, 



should not be mixed with them in a purely geometrical transformation. This non-

availability and incompatibility makes the practice of using three-dimensional 

coordinates for the determination of horizontal datum transformation parameters 

unnecessarily much less transparent and probably less accurate than needs be. 

 

Consequently, Vaníček and Steeves [ibid.] have recommended that only horizontal (2-D) 

coordinates be used for the purpose of coordinate transformation parameter 

determination. They also suggest a very simple technique designed for the use of such 

coordinates, whereby the three-dimensional Cartesian coordinates in the CT-frame are 

first converted to two-dimensional coordinates on a reference ellipsoid of the same size 

and shape as the reference ellipsoid for the G-frame, but concentric with the origin of the 

CT-system.  (We note that there are now two reference ellipsoids for the CT-frame: the 

one defined for the CT-frame and the one compatible with the G-frame.)  So derived 

horizontal positions in the CT-frame can be then directly compared against the horizontal 

positions in the G-frame. We note that the vertical positions in the CT-system (heights 

above the reference ellipsoid) are thus not used, even though they do not suffer from the 

same malady as the heights in the G-system do. This is the inevitable sacrifice resulting 

from leaving the latter heights out of the calculations. 

 

Let us now have a look at how the observation equations (14) change if we want to work 

with curvilinear rather than Cartesian coordinates so we can eliminate more easily the 

third coordinate, the height. The conversion of curvilinear coordinate differences into 



Cartesian coordinate differences is done by the following linear equations [Vaníček and 

Krakiwsky, 1986, Eq. (15.93)] 

 

 ∆r  =  (∆x, ∆y, ∆z)
T
  =  J (∆ϕ, ∆λ, ∆h)

T
 , (19) 

 

where the Jacobi matrix of transformation reads 

 

 J  =  









 −M sinϕ cosλ  −N cosϕ sinλ  cosϕ cosλ 

 −M sinϕ sinλ  N cosϕ cosλ  cosϕ sinλ 

 M cosϕ  0  sinϕ 

  , (20) 

 

where M is the meridian radius of curvature of the reference ellipsoid at the point of 

interest and N has been defined earlier. In this equation, the heights h have already been 

set to zero, to keep the expression as simple as possible. Substituting Eq. (19) into Eq. 

(14), we obtain 

 

 ∀ i = 1, 2, ... , n  :  Ji(∆ϕ, ∆λ, ∆h)i
T
  =  Ai x , (21) 

 

Pre-multiplying each equation by Ji
−1

 (the inverse exists because Ji is regular for all  i = 

1, 2, ... , n), we get 

 

 ∀ i = 1, 2, ... , n  :  (∆ϕ, ∆λ, ∆h)i
T
  =  Ji

−1
 Ai x , (22) 

 



This is the system of 3 × n observation equations for the n “common points” that are to be 

used for the determination of the transformation parameters. 

 

It is interesting to note that when nuisance parameters describing the position 

deformation are not considered, horizontal coordinates of three points known in both, the 

CT-system and the G-system are enough to guarantee a unique solution for six 

transformation parameters. Only two such points suffice to determine the four 

transformation parameters. 

 

Solution 

 

We now have two different possibilities how to solve this system of observation 

equations in an appropriate manner: 

 

1. We can neglect the height differences ∆h in Eqs. (22), and reduce the system of 3 × n 

observation equations into a system of 2 × n observation equations involving only the 

horizontal coordinate differences. We shall refer to this model as the two-dimensional 

or 2D model. 

 

2. We can leave the ∆h in the system of observation equations and suppress their effect 

in the normal equations by associating some very large a priori errors with those 



height differences. This results in a three-dimensional model, in which the third 

dimension, heights, is moot; we shall call this the 3D model.  

 

We also tried to implement the model described by Okia [1996] — a 3D model with 

geodetic heights forced to zero and associated with very small a priori errors — but failed 

to reproduce his results.  Using this setup, Okia claimed to have obtained transformation 

parameters exactly, i.e., without any formal errors.  Our subsequent computations have 

shown decisively that this is not the case; the transformation parameters are actually 

estimated with larger errors than in the above two approaches. 

 

When the a priori errors in ∆h are chosen to be sufficiently large, the two models give the 

same numerical results, as it intuitively should. It does not seem to matter if the model is 

formulated in two or three dimensions, when, at the end, the contribution of heights in the 

three-dimensional model is effectively eliminated by means of stipulated large errors in 

∆h.  Thus we will use only the smaller system of equations. We shall not discuss these 

two sets of normal equations here as the formulation of these equations is routine and we 

will go directly to the numerical results. 

 

We shall first demonstrate the performance of our models on a set of twelve simulated 

“common points” and then on a set of twelve real “common points”, both from Canada. 

For each set, coordinates are known in both the North American Datum of 1927 (NAD 

27), a realization of a G-system and the “geocentric” North American Datum of 1983 



(NAD 83), which represents a realization of a CT-coordinate system.  To have the 

simulated case somewhat closer to the real case described below, we decided to use the 

same number of points, i.e., twelve as mentioned above.  But we have distributed these 

simulated points more regularly (see Fig. 1) vis-à-vis the position of the origin of NAD 

27 (Meade's Ranch, which had been used in 1927 for the positioning and orientation of 

NAD 27) then they are in the real case below.  

 

We first chose the horizontal positions on the geocentric NAD 83, and generated 

uncorrelated random errors (Gaussian noise) with standard deviations σϕ = 0.005" 

(corresponding to 0.15 metre) and σλ = 0.005" (corresponding to 0.1 metre), which were 

then added to the chosen positions to represent the CT-positions of the determining 

points. Then the (errorless) positions on NAD 83 were transformed to NAD 27 by means 

of three translations tx
CT

 = +100 metres, ty
CT

 = −100 metres, tz
CT

 = +100 metres, and a 

misalignment of ωo = −1" around the normal to the NAD 27 ellipsoid (Clarke) at the 

origin. Finally, these simulated errorless NAD 27 positions were burdened with 

uncorrelated Gaussian noise characterised by σϕ = 0.05" (corresponding to 1.5 metre) and 

σλ = 0.05" (corresponding to 1.0 metre). To make sure that the error estimation for the 

computed transformation parameters works properly, we generated several different noise 

sequences and analyzed the estimated parameter errors for statistical consistency. 

 

In Table 1 we show the results for three typical simulated cases of twelve “common 

points” using the four-parameter transformation. The transformation parameters are 



resolved quite well and their errors appear to be compatible with the input errors in 

positions as discussed above. The largest discrepancies are encountered for the y- and z-

translations. These discrepancies are more variable with the choice of the random 

sequence than the other two because there is a relatively high correlation of −0.93 

between these two, which points to a lack of resolvability due to this particular 

geometrical configuration. The other correlations are significantly smaller and, 

consequently, the other parameters are resolved better.  The whole question of 

correlations is, of course, a very interesting one and is discussed further in Kutoglu et al. 

[2002]. 

 

Table 2 shows the result for the same configuration using the six-parametric 

transformation. The accuracy of these results is one order of magnitude worse than for 

the four-parametric transformation. Interestingly, the point around the normal of which 

the misalignment takes place is located at (−47°, 31°), (−8°, −67°), and (10°, 53°) for the 

three random number sequences respectively, instead of the correct location of ϕo ≅ 

+39.22°, λo ≅ −98.54°.  The amount of misalignment is estimated as 1.232", 1.268", and 

1.564" respectively, instead of the correct amount of 1.000". Clearly, the use of the six-

parametric model does not produce very satisfactory results when the horizontal datum 

had been, in fact positioned using only four parameters, as was the case in this simulated 

example.  This shows that it is important to use the appropriate transformation model 

when seeking the datum transformation parameters. 

 



To show how our algorithm works with real data, we evaluate the transformation 

parameters for the NAD 27 geodetic datum from coordinates of twelve points obtained 

from the Geodetic Survey Division of Natural Resources Canada (see Fig. 2). Geodetic 

heights of only nine out of the twelve points were available — this illustrates one of the 

disadvantages of using heights of the “common points” in the parameter estimation. As 

we do not know the real accuracy of the twelve positions on NAD 27, which were 

determined by terrestrial means, we assume the following values: σϕ = 0.05" 

(corresponding to 1.5 metre) and σλ = 0.05" (corresponding to 1.0 metre).  Also we 

assume no correlations between the two horizontal coordinates of each point and no 

correlations among the twelve points for our stochastic model. 

 

The results for the four-parametric transformation using the real data described above are 

given in Table 3. Clearly, we were too optimistic when assigning errors to the terrestrial 

positions; the value of the a posteriori variance factor (12.759) is very large.  Neglecting 

the existing correlations among the input coordinates certainly contributes to one's 

uneasiness about the values for the a posteriori error estimates as one can be quite certain 

that there are significant correlations present.  We also note that the geometrical 

configuration of the real points is much less favourable for the solution than the 

configuration of the simulated points discussed above. Last, but not least, there are 

definitely some systematic errors in the terrestrial positions, which we have not even 

attempted to model; we have included no model for the position distortions.   Taking all 

these shortcomings into consideration, the results look fairly reasonable with the 



estimated errors of the parameters being about twice as large as in the simulated case. 

The estimated values of translation components agree reasonably well with some 

previous determinations — see, e.g., [Merry and Vaníček, 1974, Table 3; United States 

Defence Mapping Agency, 1987] — and the estimated misalignment of 0.230" agrees 

with the value of 0.3" estimated by [Wells and Vaníček, 1975] within the errors.  

 

Much like for the simulated data, the six-parametric model gives unsatisfactory results 

also for the real data (Table 4). It places the misalignment rotation centre at (36°, 126°), 

and estimates the magnitude of the misalignment as being an unreasonable 8.237". The 

estimated errors of transformation parameters are again about one order of magnitude 

larger than in the four-parametric case. 

 

Conclusions and Recommendations 

 

There exists a rather strong motivation for disregarding the heights of the points, which 

belong to horizontal geodetic networks in the derivation of transformation parameters. 

This motivation was discussed by Vaníček and Steeves [1996] and has not been repeated 

here. In this paper we have shown how transformation parameters between a geodetic 

coordinate system (G-system) and its associated geodetic reference ellipsoid (also known 

as a geodetic horizontal datum), and the conventional terrestrial coordinate system (CT-

system) can be determined from horizontal positions alone (the geodetic heights are set to 

zero). It can be done simply by taking the points common to both reference frames, i.e., 



the “common points” whose positions in both the CT- and the G-systems are known, and 

projecting them onto their respective reference ellipsoids by setting their geodetic heights 

to zero. Here the reference ellipsoid in the geocentric CT-system of coordinates has to 

have the same size and shape as the reference ellipsoid for the G-system. These two-

dimensional positions are then used to derive the parameters needed for transformations 

from one coordinate system to the other. 

 

The selection of the transformation model involving one misalignment angle is 

predicated on the procedures used in the classical geodetic horizontal datum 

establishment (positioning and orientation of the geodetic reference ellipsoid, or classical 

geodetic system realisation). This predication was discussed by Vaníček and Wells 

[1974], and only the consequences have been shown here. In other realisation cases three 

misalignment angles should be sought.  Both models are used side by side and it is shown 

that the six-parametric model (involving three misalignment angles) performs 

significantly worse than the four-parametric model (involving one misalignment angle) 

when the horizontal geodetic datum was in fact positioned and oriented using the 

classical technique. 

 

The approach we have followed here deals with transformations between coordinate 

systems. If one is interested in transforming coordinate values (from one reference frame 

to another - as one always is in geodesy) then distortions inherent in the coordinates must 

be also taken into account. These distortions include, but are usually not limited to, the 



scale distortions in the coordinate values. These distortions are usually parameterized and 

the distortion (nuisance) parameters are solved for either separately, in a sequential 

manner, or together with the transformation parameters.  It should be mentioned that 

while the distortions of coordinates vary from place to place, the transformation 

parameters do not. 

 

It should be borne in mind that there may exist significant correlations among the 

transformation and distortion (nuisance) parameters. These correlations depend 

predominantly on the spatial distribution of the “common points”.  Sometimes, it may not 

be even possible to de-correlate some of these parameters, but the discussion of these 

cases will have to wait for another paper. 

 

By keeping these two concepts, i.e., the transformation between coordinate systems and 

the distortion of coordinates, separate, a much clearer understanding of the interplay of 

coordinate systems can be gained. Also, a more rigorous and transparent error analysis 

can be brought to bear on the problem of coordinate transformations. Last, but not least, 

the effect of geodetic horizontal datum misalignment with respect to the CT-system on 

the deflections of the vertical, as well as on geodetic azimuths [Grafarend and Richter, 

1977; Vaníček and Carrera, 1985] can be rigorously evaluated. To keep the two concepts 

separate should become a sound geodetic practice. 
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Table 1:  Four-parametric model with simulated data. 
 

 No Parameter Unit x̂ x̂ − x
o
 σ̂x̂ tx̂ 

 1 ωo " −0.989 0.011 0.086 0.016 

  tx m 99.499 −0.501 0.507 0.976 

  ty m −102.909 −2.909 2.086 1.944 

  tz m 102.547 2.547 1.817 1.965 

  σ2
o  1.364 

 2 ωo " −0.932 0.068 0.066 1.044 

  tx m 100.013 0.013 0.390 0.001 

  ty m −100.236 −0.236 1.604 0.022 

  tz m 100.277 0.277 1.397 0.039 

  σ2
o  0.806 

 3 ωo " −0.873 0.127 0.073 3.047 

  tx m 99.540 −0.460 0.430 1.146 

  ty m −103.575 −3.575 1.768 4.089 

  tz m 101.798 1.798 1.5407 1.364 

  σ2
o  0.980 

 



 

Table 2:  Six-parametric model with simulated data. 
 

 No Parameter Unit x̂ x̂ − x
o
 σ̂x̂ tx̂ 

 1 εx " 0.718 0.603 0.884 0.465 

  εy " 0.433 −0.333 0.662 0.254 

  εz " −0.903 −0.271  0.782 0.120 

  tx m 112.435 12.435 31.087  0.160 

  ty m −91.813 8.187 18.249 0.201 

  tz m 117.810 17.810 21.103 0.712 

  σ2
o  1.463 

 2 εx " −0.493 −0.608 0.665 0.838 

  εy " 1.156 0.380 0.498 0.614 

  εz " −0.172 0.460 0.588 0.611 

  tx m 81.516 −18.484 23.387  0.624 

  ty m −110.789 −10.789 13.729 0.618 

  tz m 84.683 −15.317 15.876 0.931 

  σ2
o  0.828 

 3 εx " 0.919 0.804 0.710 1.283 

  εy " 1.237  0.461 0.532 0.783 

  εz " 0.265 0.897 0.628 2.039 

  tx m 69.244 −30.756  24.983 1.516 

  ty m −84.413 15.587 14.666 1.130 

  tz m 118.997 18.997 16.959 1.255 

  σ2
o  0.945 

 



 

Table 3:  Four-parametric model with real data. 
 

 Parameter Unit x̂ σ̂x̂ 

 ωo " 0.230 0.272 

 tx m 9.515 1.716 

 ty m −143.263 4.044 

 tz m −205.264 4.893 

 σ2
o  12.759 

 



 

Table 4:  Six-parametric model with real data. 
 

 Parameter Unit x̂ σ̂x̂ 

 ωx " −3.974 2.024 

 ωy " 5.377 1.221 

 ωz " 4.810 1.032 

 tx m −217.041 49.717 

 ty m −230.491 46.415 

 tz m −285.328  40.418 

 σ2
o  6.355 

 



 



 

Figure 1:  Configuration of the simulated network. 



 



 

Figure 2:  Configuration of the real network. 


