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Abstract

Two numerical techniques are used in recent regional high-frequency geoid computations in
Canada: discrete numerical integration and the fast Fourier transform. These two techniques
have been tested for their numerical accuracy using a synthetic gravity field. The synthetic field
was generated by artificially extending the EGM96 spherical harmonic coefficients to degree 2160,
which is commensurate with the regular 5 geographical grid used in Canada. This field was used to
generate self-consistent sets of synthetic gravity anomalies and synthetic geoid heights with different
degree variance spectra, which were used as control on the numerical geoid computation techniques.
Both the discrete integration and the fast Fourier transform were applied within a 6° spherical cap
centered at each computation point. The effect of the gravity data outside the spherical cap was
computed using the spheroidal Molodenskij approach. Comparisons of these geoid solutions with
the synthetic geoid heights over western Canada indicate that the high-frequency geoid can be
computed with an accuracy of ~ lecm using the modified Stokes technique, with discrete numerical

integration giving a slightly, though not significantly, better result than the fast Fourier transform.
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1 Introduction

The gravimetric determination of the geoid relies upon the solution of the spherical geodetic boundary-
value problem, and requires the evaluation of Stokes’s surface convolutive integral. In practice, the
gravimetric geoid is computed using a combination of terrestrial and satellite-derived gravity data.
The approach taken in this contribution is to spectrally decompose the geoid height into the reference
spheroid (low-frequency geoid), which is computed from a satellite-derived spherical harmonic global
model, and the high-frequency geoid, which is computed from terrestrial gravity data.

The high-frequency component of the geoid in this data combination requires the numerical evalu-

ation of adapted Stokes’s (1849) formula. Generally, its solution can be obtained by:
1. using discrete numerical integration (i.e. quadrature-based summation); or

2. converting Stokes’s convolutive integral from the space domain into a product of the spectra of
Stokes’s function (or a modification thereof) with that of gravity data in the frequency domain,

and back again.

The latter method is usually referred to as the fast Fourier transform (FFT) technique (eg. Schwarz,
Sideris and Forsberg, 1990). Since only the one-dimensional fast Fourier transform or 1D-FFT (Haag-
mans et al., 1993) allows for evaluation of Stokes’s formula without any planar approximation or sim-
plification of the kernel, it is considered here to be the only realistic alternative to discrete numerical
integration.

The major purpose of this contribution is to examine the numerical accuracy of both approaches
based on the use of the Molodenskij-modified spheroidal Stokes’s formula (Vanicek and Kleusberg
1987; see also Vanicek and Sjoberg, 1991; Martinec and Vanicek, 1996). The integration domain for
the modified Stokes integral is divided into a spherical cap of radius 6° about each computation point,
and the remainder of the sphere. The contribution of the gravity data within the spherical cap is
computed using both the discrete numerical integration and the 1D-FFT technique. The contribution
of the distant gravity data in the region outside this spherical cap is computed by employing the
spheroidal Molodenskij-type approach (ibid.).

A synthetic gravity field based on spherical harmonics will be used to assess and compare the

accuracy of the gravimetrically computed geoid models (cf. Tziavos 1996). The coefficients to degree



360 of the EGM96 spherical harmonic model of the Earth’s gravity field (Lemoine et al., 1998) were
supplemented with synthetically generated high-frequency coefficients out to degree 2160. The EGM96
and synthetically generated coefficients were used to create self-consistent gravity anomalies and geoid
heights on a regular 5 geographical grid over a test area in the Canadian Rocky Mountains. These
synthetic gravity data grids were used to compute the high-frequency geoid via the discrete numerical
integration and the 1D-FFT technique. The difference between the computed and synthetic geoid
heights was used to assess the relative numerical accuracy of these methods and the high-frequency

geoid determination based on the Molodenskij-modified spheroidal Stokes formula.

2 Spectral decomposition of the geoid

Terrestrial gravity data provide detailed local information about the medium and high-frequency com-
ponents of the Earth’s gravity field. However, due to incomplete gravity data coverage (and availability)
and long-wavelength biases in the observed gravity data (eg. due to the drift of gravimeters), the long-
wavelength components of the Earth’s gravity field are less accurately determined by terrestrial gravity
observations. At present, the only reliable global information about the Earth’s gravity field is based
on artificial-satellite dynamics (i.e. the analysis of satellites’ orbital perturbations). However, due to
the attenuation of the strength of the Earth’s gravity field with increasing distance from the geocentre,
only the low-frequency component of the Earth’s gravity field can reliably be detected in this way.

In the sequel, a spectral form of the Earth’s gravity field is used, with a distinction made between
the low and high-frequency components. The threshold value of £ = 20 is used throughout the text.
This reflects our belief that the frequencies up to this degree can correctly be derived from satellite
dynamics, and do not have to be further improved by terrestrial gravity data in a combined global
geopotential model. However, this choice of £ = 20 is somewhat subjective and no proof is given to
justify this value, apart from the arguments in the preceding paragraph.

Based on the above frequency decomposition of gravity data, the geoid height can similarly be
decomposed into the low-frequency reference spheroid N;, and the so-called residual geoid N¢, which is
the high-frequency component of the geoid. The reference spheroid is computed from the low-frequency

gravity disturbing potential Ty at the geoid level r, (estimated from the low-degree spherical harmonic



coefficients of a global geopotential model) as follows (Bruns, 1878; Heiskanen and Moritz, 1967)

l n 14
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where v is the normal gravity acceleration on the surface of the geocentric reference ellipsoid, GM
is the product of the Newtonian gravitational constant G and the mass of the Earth M, T, are the
zonal coefficients of the disturbing gravity potential T' (derived from fully-normalized, unitless spherical
harmonic coefficients obtained from a global geopotential model), and R is the radius of the geocentric
reference sphere upon which the spherical harmonic expansion of the coefficients T}, reduces to the
Laplace harmonics. Throughout the sequel, spherical coordinates (r,p,\) = (r,Q), represented by
the geocentric latitude ¢, the geocentric longitude A, and the length of the geocentric radius vector r,
are used to describe a location of points of interest. The expression on the right-hand side of Eq. (1)

is derived for the spherical approximation of the geoid by the reference sphere, i.e. 7, = R, and for

GM/R? = .

3 Review of the spheroidal Molodenskij approach

This section provides a review of the spheroidal Molodenskij approach to high-frequency geoid com-
putation as developed and used at the University of New Brunswick. The theoretical bases for these
approaches are given elsewhere in the geodetic literature (eg. Vani¢ek and Kleusberg, 1987; Vanicek and
Sj6berg, 1991; Martinec and Vanicek, 1996). This section simply presents them in a single, coherent
framework, which describes how to practically implement them for high-frequency geoid computation.

The geodetic boundary-value problem is used for the solution of the high-frequency gravimetric
geoid that is residual to the reference spheroid. It is assumed that there are no external topograph-
ical and atmospheric masses above the geoid (i.e. the regularization of the geoid is not described
or considered in this contribution). Accordingly, the high-frequency disturbing gravity potential T
is a harmonic function everywhere outside the geoid and its behaviour is controlled by the Laplace

differential equation (eg. Heiskanen and Moritz, 1967)
Vr >r, : V2Tr,Q) = 0. (2)

A boundary condition to the homogeneous elliptical equation (Eq. 2) for the solution of the unknown

function T at the geoid level ry is the fundamental gravimetric equation, which reads in a spherical



approximation as (Martinec and Vanicek, 1996)
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where the high-frequency gravity anomaly at the geoid is defined as (eg. Heiskanen and Moritz, 1967)
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The solution of Egs. (2) and (3) for the unknown function T exists and is unique when T is regular
at infinity and when Ag® do not contain any first-degree harmonics (eg. Heiskanen and Moritz, 1967),
which can be satisfied by the proper selection of the geocentric reference ellipsoid. The solution is
given by the spheroidal Stokes integral (Martinec and Vanicek, 1996; also see Vanitek and Sjoberg,

1991; Vanicek and Kleusberg, 1987), which is analogous to the spherical Stokes (1849) integral

T = 1 [[ ad@) stw) anl )

where 2 defines the geocentric position of the computation point on the geoid, Q' defines the geocentric
position of the integration point, g denotes the surface of a sphere of unit radius, and v is the spherical
distance between the integration point and computation point.

The function S for the computation of the high-frequency geoid in Eq. (5) is the spheroidal Stokes
kernel (Vaniéek and Kleusberg, 1987), and can conveniently be computed according to

2n +1
n—
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where S is the spherical Stokes kernel (Stokes, 1849). The high-frequency geoid N* can be computed
from the high-frequency disturbing potential 7'¢ using Bruns’s theorem (Bruns, 1878)

L _ Tl(rgaﬂ)
NY () = — (7)

which is then added to the reference spheroid Ny in Eq. (1) to yield the total geoidal height N.

Due to the incomplete coverage or availability of terrestrial gravity data, the spheroidal Stokes
integral (5) cannot be evaluated over the full spatial angle {2g,. Therefore, a limited integration domain
g, represented by a spherical cap of radius 1,, must be used instead (Figure 1). This term is called
the contribution of the near zone Né which can be computed from the terrestrial gravity data using
the modified spheroidal Stokes integral

R
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The solution of the convolutive integral in Eq. (8) can be computed in either the spatial or the spectral
form. While the former method uses discrete numerical integration of high-frequency gravity data, the
latter method converts the integral from the space domain into the product of spectra of the Stokes
function with that of the high-frequency gravity data in the frequency domain, and back again, see
Section (3.2). The accuracy of these two approaches will be investigated later in this paper. Problems
arising from the singularity of Stokes’s integral for 1) = 0 are addressed in Section (3.1).

The influence of the gravity information from the remainder of the globe (Qg — Qg) is accounted

for using a term called the contribution of the far zone N& _ (the truncation bias)

No—o(®) = 7= //Qea ) Q) S (¥, ¢) d . 9)

The contribution of the far zone can be evaluated from the global geopotential model, see Section (3.3).
However, due to significant differences between available models (eg. Najafi, 1996; also see Lambeck
and Coleman, 1983), one should try to keep the far zone contribution as small as possible. This can be
achieved by modifying the spheroidal Stokes function. It is acknowledged that there are many different
modifications to Stokes’s formula. However, these will not be considered here since the modification
introduced by Vaniéek and Kleusberg (1987) is used for practical geoid computations in Canada.

The modified spheroidal Stokes function can be written as (ibid.)

l 4
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where t,, are the modification coefficients. It can be shown that in order to minimize the effect of

gravity from the remote zones, see Eq. (9), the following integral must be minimized (ibid.)

Vt, € R™ : min {/ [ S¢(,4,) 7 dY } (11)
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The solution leads to the system of linear equations for the unknown modification coefficients t,,
¢
2n+1
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where the coefficients R, m (1), introduced by Paul (1973), are

m < n o Ram(t) = /;_Qﬁ 1 (co3 ) Pr(cos ) sing dip (13)

The spheroidal truncation coefficients in Eq. (12) can then be computed as (cf. Molodenskij et al.,

1960; see also Heiskanen and Moritz, 1967; Martinec, 1993)

T l
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3.1 Contribution of the computation point

The spherical, spheroidal, and modified spheroidal Stokes integrals are weakly singular for the spherical
distance 1) = 0. Therefore, in seeking the solution in the spatial form, its appropriate treatment must
first be chosen. The classical method consists of adding and subtracting the gravity anomaly at the

computation point as follows

=iy [ {20 @ @+ [a00) - ad @] S'wun } an (15)
Y
which can be split into the contribution of the computation point
4 Yo
@) = BELE [ i) sing dp (16)
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and the contribution of the rest of the cap

Noo@) = g [ [ad@) - age ] S a' (17

The singularity is removed from Eq. (17) because the value of the integrand equals zero for ¢ = 0.

The integral of the Stokes function in Eq. (16) can be evaluated analytically as follows
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The integral of the Stokes function can be written (Heiskanen and Moritz, 1967)
wo . 4 .
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and the integral of Legendre’s polynomial reads (Paul, 1973)
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The integral on the left-hand side of Eq. (18) is then of the form (Martinec, 1993)
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and the contribution of the computation point to the geoid is given by (ibid.)

4
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3.2 Contribution of the near zone from discrete numerical integration and

the 1D-FFT

The contribution of the remainder of the spherical cap to the high-frequency geoid can be evaluated
by discrete summation over mean values of gravity anomalies on a regular geographical grid within the
cap, cf. Figure (1). After accounting for the contribution of the computation point, the contribution
of the near zone to the high-frequency geoid is

R
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Using the mean value theorem, the integration in Eq. (23) can be replaced by the summation over
(j — 1) cells within the spherical cap of the product of discrete mean values of high-frequency gravity
anomalies (Vanicek and Krakiwsky, 1986)

_— ]_ ’ 1
A = g [ ad@) e, (24)

with corresponding point values of modified spheroidal Stokes’s function. Equation (23) then reads
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= 3 [Ag) — B | S ve) A (25)

where the value of S¢(1,),) is evaluated for the spherical distance 1 between the integration point
and the centre of the k-th cell, and Ay is the surface area of the k-th cell, see Figure (1).

An alternative approach to the discrete numerical integration of Eq. (25) is represented by the
solution in the spectral domain, which is based on the convolution theorem. Here, the discretised in-
tegration of mean gravity anomalies (Eq. 25) may be reformulated, without further approximation, as
the sum (in latitude) of a series of one-dimensional discretised convolution integrals (in longitude). The
discrete one-dimensional fast Fourier transform (1D-FFT), when applied to mean the high-frequency
gravity anomalies within the spherical cap (2g), can be written for a fixed latitude ¢y of the compu-

tation point as (Haagmans et al., 1993)

Nher(@) = TE22 f‘l{ S F B cosge ] F[ 8 ev) ] } , (26)
k=1



where F and F~! denote the one-dimensional discrete Fourier transform operator and its inverse,
respectively, 7 is the number of gravity data along the meridian ¢, and Ay and A\ are the sampling
intervals of a regular data grid. When applied correctly to the same gravity data, both the spatial
form (Eq. 25) and spectral form (Eq. 26) should produce the identical high-frequency geoid. Note that
the spectral form also faces the problem arising from the singularity of the Stokes function and the
contribution of the computation point must be evaluated separately (ibid.).

Concerning the relative numerical efficiency of discrete numerical integration and the 1D-FFT,
it has been argued for a long time that the discrete Fourier transform is computationally superior
to discrete numerical integration. However, due to recent developments in the discrete numerical

integration (Huang et al., 2000), both methods use a comparable amount of computational time.

3.3 Contribution of the distant zone from spherical harmonic coefficients

The contribution of the distant zone to the high-frequency geoid has been derived by several authors.
The approach taken here, originally derived by Molodenskij et al. (1960), uses the so-called Molodenskij
coefficients (weights) to account for the influence of the distant zones omitted from the truncated
integration in Eq. (25) or Eq. (26). The Molodenskij coefficients for the modified spheroidal Stokes

function (Eq. 10) are (eg. Martinec, 1993)

Vm > € QL) = /;_w SH(1h, o) Pr(costp) sing dip
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where the spherical truncation coefficients Q,,(1,) are given by Eq. (14). The contribution of the

distant zone to the high-frequency geoid height can then be evaluated using a conversion of the spatial

form in Eq. (9) to a spectral form based on spherical harmonics (ibid.)
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with the spherical harmonic coefficients of the disturbing gravity potential 73, taken from a combined
global geopotential model. The maximum degree maz = 120 can be used for numerical evaluations,

thus rendering the effect of higher-degree terms smaller than one millimetre (Martinec, 1993).



To conclude this Section, the final expression for the determination of the high-frequency geoid can

be written for the discrete numerical integration as
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The final expression for the determination of the high-frequency geoid by the 1D-FFT is then
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4 Synthetic gravity field based on spherical harmonics

The test chosen to evaluate and compare the accuracy of the high-frequency geoid computation from
discrete quadrature-based numerical integration (used in Eq. 29) and the discrete 1D-FFT (used in
Eq. 30) uses a self-consistent set of synthetically generated geoid heights and gravity anomalies. This
approach is analogous to that taken by Tziavos (1996), who uses a degree 360 global geopotential model.
However, the current study extends the upper bound of the frequencies over which the accuracy of the
geoid computation can be assessed.

Over the Canadian territory, mean gravity anomalies on a regular 5 geographical grid (prepared by
the Geodetic Survey Division of Natural Resources Canada) are usually used for the determination of
the regional gravimetric geoid (eg. Sideris and She, 1995; Vanicek et al., 1990). The Nyquist frequency
of this gravity grid corresponds to a maximum spherical harmonic expansion of degree and order 2160.
Since freely available global geopotential models only contain coefficients up to degree and order 360
(notwithstanding the GPM98 models (Wenzel, 1998), which extend to degree 1800), it is necessary to
artificially generate a set of synthetic coefficients complete to degree and order 2160.

The synthetic spherical harmonic expansion of the geopotential consists of two distinct parts. First,

all spherical harmonic coefficients for degrees £ + 1 < n < 360 were taken from the EGM96 global



geopotential model (Lemoine et al., 1998) with respect to the GRS80 reference ellipsoid. Second,
the remaining synthetic coefficients for degrees 361 < n < 2160 were generated from an artificially
constructed sequence of pairs of real numbers. These were taken from the EGM96 coefficient pairs of
orders 0 < m < 360 at degree n = 360. For example, to generate the synthetic coefficients for degree
540, the EGM96 coefficient pairs were used for 0 < m < 360 and used again for 361 < m < 540.
However, using only this approach yielded an unrealistic degree variance (cf. Heiskanen and Moritz,
1967, p. 259) of the synthetic field, which did not agree with current expectations of the actual geopo-
tential spectrum of the Earth (cf. Tscherning and Rapp, 1974). Therefore, each pair of high-degree
synthetic coefficients was multiplied by a simple scale factor to yield a more realistic degree variance
(described later). The degree-360 sequence of EGM96 coefficients was thus scaled and used in a re-
peated cycle, until all of required synthetic coefficients were produced. The aim of this approach was
to generate a synthetic field that was reasonably realistic so that inferences made about the accuracy
of the high-frequency geoid computation using the synthetic gravity field will apply to the real Earth.
The scale factor used is given by (a*/a)"=3%°, where a is the radius of the geocentric sphere upon
which the spherical harmonic expansion of the EGM96 coefficients reduces to Laplace harmonics, and

a*

is the radius of an arbitrary reference sphere that is of a similar magnitude to a, but slightly
smaller. This combination of scale factor and synthetic coefficients provided a convenient means by
which the degree variance of the synthetic field would smoothly extend from EGM96 into the higher
degrees, while also providing a decaying degree variance similar to current expectations. Formulation
of the scale factor using the a and a* terms was effected for reasons of computational efficiency and
convenience only. Therefore, no physical interpretation should be made regarding this scale factor or
the synthetic gravity field.

The synthetic coefficients were used to produce two data-sets with different degree variances in the
high-degree terms, which was achieved by changing the a* term. The first synthetic field, called Data
A, was generated using a value of a* = 6.34 x 10 m; the second synthetic field, called Data B, used
a* = 6.35 x 10 m. The degree variances of these two data-sets were compared against the GPM98
tailored global geopotential models (Wenzel, 1998) in the region 360 < n < 1800 to help ensure that

the synthetic degree variances remained reasonably realistic. The value of the a* term was selected

in such a way that the high-degree frequencies of Data A are less powerful than the corresponding

10



frequencies of GPM98B, and wvice versa for Data B. The degree variances of Data A and GPM98B are
shown in Figure (2); the degree variances of Data B and GPM98B are shown in Figure (3). Data A
has less power in the very-high frequencies than Data B, which is apparent from the larger amplitude

of higher frequency geoid undulations in Figures (4) and (5).

5 Methodology, results and discussion

A conceptually simple procedure, which follows that of Tziavos (1996), was employed to assess and
compare the discrete numerical integration and the 1D-FFT in the modified spheroidal Stokes approach
to high-frequency geoid determination. Two synthetic gravity fields were generated using the proce-
dures described above. The synthetic gravity anomalies in the region 21 < n < 2160 were computed
directly for each set and are designated ’Data A’ and 'Data B’. The corresponding synthetic geoid
heights (21 < n < 2160) were likewise produced from each set and are designated ’Spheroid A’ and
"Spheroid B’. The result is two self-consistent (to a spherical approximation) grids of geoid heights and
gravity anomalies, which can be used to compare different methods for gravimetric geoid computation.

All gravity anomaly and geoid values were produced on identical, regular 5 geographical grids
for a test region bounded by 49° < ¢ < 54° (N) and 236° < A < 246° (E). This grid spacing
corresponds with the gravity anomaly grids produced by the Canadian Geodetic Survey Division.
Although this area covers the Canadian Rocky Mountains, it should be remembered that the synthetic
geopotential coefficients for degrees 361 < n < 2160 were not generated empirically from observational
data. Therefore, they do not necessarily reflect the actual gravity field generated by the topography
and geology of this region. Accordingly, no physical interpretation should be made from them.

The methodology is best understood by first considering the use of a single integration technique
in conjunction with a single set of synthetic geoid heights and gravity anomalies. The high-frequency
gravity anomalies (21 < n < 2160) were produced by subtracting the low-degree reference spheroid of
degree ¢ = 20 from synthetic gravity anomalies (Eq. 7). This approach was taken so as to replicate as
closely as possible the approach that is used in practical geoid computations with observational gravity
data. The contribution of the near zones to the high-frequency geoid (21 < n < 2160) was then obtained

from the high-frequency synthetic gravity grid using both the discrete numerical integration (in Eq. 25)
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and the 1D-FFT (in Eq. 26). A cap radius of 9, = 6° was used in each technique. The contribution of
the distant zones to the high-frequency geoid was, in both cases, evaluated using spherical harmonics
and the coefficients from the EGM96 global geopotential model to degree maz = 120 (Eq. 28). The
computed contributions from the near and distant zones were combined to give the high-frequency
residual geoid, which was added to the (¢ = 20) reference spheroid to yield a total gravimetric geoid
solution (2 < n < 2160) for the test region. This process was repeated for Data A and Data B, which
resulted in four gravimetric geoid solutions computed from the synthetic gravity anomalies.

Figure (6) shows a schematic of the methodology used. Theoretically, the difference between the
computed and synthetic geoids should be equal to zero everywhere across each grid for both Data A and
Data B. Therefore, any computed differences are used as indicators of the accuracy of each numerical
technique (i.e. numerical integration and 1D-FFT) when used in conjunction with the high-frequency
geoid determination based on the Molodenskij-modified spheroidal Stokes formula. The term accuracy
is used here since the exact geoid heights expected from the gravity anomalies is known (to a spherical
approximation) from the synthetic field.

Tables (1) and (2) show a statistical summary of the differences between each synthetic geoid and
the computed geoids, as obtained using the numerical integration and 1D-FFT, respectively. These are
given for Data A (the synthetic field with less power than GPM98B in the medium and high-frequencies)
and Data B (the synthetic field with more power than GPM98B in the medium and high-frequencies).
The standard deviations in Tables (1) and (2) show that both the discrete numerical integration and
the 1D-FFT deliver a precision of approximately one-centimetre for the test-region. Likewise, the root
mean square in Tables (1) and (2) show that both methods deliver an accuracy of approximately one-
centimetre for the test-region. The range (i.e. maximum minus minimum) and standard deviation of
the discrepancies obtained through the use of the numerical integration procedure are slightly smaller
than those obtained from the 1D-FFT, although the improvement is not statistically significant and
lies within the numerical accuracy of the computer algorithms used. Thus, both methods provide
comparable accuracy as one would expect from the theory. As stated earlier, the recent advances in
discrete numerical integration make it as computationally fast as the 1D-FFT (Huang et al., 2000).
Therefore, there are no compelling arguments based on numerical accuracy nor efficiency that suggest

that either technique is preferable for high-frequency geoid determination. Therefore, the choice of
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using discrete numerical integration or the 1D-FFT to compute the high-frequency geoid is merely one
of computational convenience.

The discrepancies observed for both numerical approaches become slightly larger for Data B than
for Data A. A visual confirmation of this point may be obtained by inspection of Figures (7) and
(8), which plot the discrepancies between the synthetic geoid values those computed using numerical
integration for Data A and Data B, respectively. This, and the results summarized in Tables (1) and
(2), implies that the accuracy of each technique will decrease when applied to regions in which there
is more power in the medium and high-frequency bands of the local gravity field. From this, it can be
inferred than the accuracy of the computed geoid may be worse than one-centimetre in regions of the
Earth for which this is true.

In addition to comparing the numerical accuracy of discrete numerical integration and the 1D-FFT,
the results in Tables (1) and (2) show that the numerical implementation of the modified Stokes theory
(Egs. 29 and 30) can yield the high-frequency (21 < n < 2160) geoid accurate to approximately one
centimetre in this test region. However, this has assumed that there are no errors in the input gravity

data, which is not necessarily true when using observational gravity data.

6 Summary and conclusions

This contribution has reviewed the Molodenskij-modified spheroidal Stokes integral and given a strategy
for its practical solution, which is based on a degree ¢ = 20 satellite-derived reference spheroid, a
contribution of gravity anomalies inside a spherical cap of 6° radius, and a contribution from the
remote zones outside this cap from a degree 120 combined global geopotential model. This has been
tested against a high-frequency synthetic gravity field to quantify the accuracy of the Molodenskij-
modified spheroidal Stokes approach developed at the University of New Brunswick. The numerical
evaluation of the near zone contribution to the high-frequency geoid as part of this approach has
been computed using both discrete numerical integration and the 1D-FFT technique. Therefore, it
has simultaneously given an accuracy evaluation of discrete numerical integration and the 1D-FFT
technique.

From the comparison of the computed high-frequency geoids with the synthetic high-frequency
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geoid, the expected accuracy for the solution of this component of a gravimetric geoid is at the one-
centimetre level. It is important to state that this test only really validates the accuracy of the
high-frequency component of the computed gravimetric geoid. This is because any low-frequency er-
rors in the reference spheroid (n < 20) are essentially invisible to the approach used here. Nevertheless,
the tests do validate the numerical accuracy of the high-frequency geoid computations based on the
Molodenskij-modified spheroidal Stokes theory. Also, the gravity and other data (such as topograph-
ical heights and densities) used in practical geoid computations do not currently allow for such a
strict requirement in numerical accuracy. However, the theoretical and numerical principles are being
formulated with respect to the goal of a one-centimetre geoid.

In addition to verifying the appropriateness of the modified Stokes theory, this investigation has
also permitted a verification of the numerical accuracy of the near zone contribution to the high-
frequency geoid, when computed from discrete numerical integration and the 1D-FFT technique. The
computer algorithms for these two approaches delivered results of comparable accuracy, with the
discrete numerical integration being slightly (though not significantly) more accurate. Therefore, the
expected accuracy of the high-frequency geoid computed using the Molodenskij-modified spheroidal
Stokes theory (assuming error-free gravity data) is at the one-centimetre level. However, it should be
stressed that this value may not be achieved in practical geoid computations due to the accuracy of

observational data and the approximations currently used for the regularization of the geoid.
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Statistic Data A | Data B

Maximum + 0.026 | + 0.039
Minimum — 0.017 | — 0.030

Arithmetic Mean + 0.003 | + 0.003

Standard Deviation | £+ 0.008 | £ 0.010

Table 1: Statistics of the differences between the high-frequency geoid from the synthetic field and

discrete numerical integration (in metres).



Statistic Data A | Data B

Maximum + 0.033 | + 0.045
Minimum — 0.026 | — 0.036

Arithmetic Mean + 0.003 | + 0.003

Standard Deviation | £+ 0.009 | £+ 0.011

Table 2: Statistics of the differences between the high-frequency geoid from the synthetic field and the
ID-FFT (in metres).



Figures :

Figure 1 : Integration sub-domains in Stokes’s integration
Figure 2 : Degree variance of the data A vs GPM98 (mGal?)
Figure 3 : Degree variance of the data B vs GPM98 (mGal?)
Figure 4 : Degree 2160 spheroid A (metres)

Figure 5 : Degree 2160 spheroid B (metres)

Figure 6 : Scheme of the testing procedure

Figure 7 : Differences for the degree 2160 spheroid A (metres)

Figure 8 : Differences for the degree 2160 spheroid B (metres)



