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Ab s t r a c t : Newton integrals for the potential and the vertical component of the

attraction vector (gravitational effect), serve for evaluating various topographical effects

(negative topographical corrections) as well as for evaluating the potential and the gravi-

tational effect of various bodies and/or models of mass density distribution (real, constant

or anomalous). Here we review global evaluation of the Newton integrals in geodetic co-

ordinates (in Gauss ellipsoidal coordinates) formulated exactly and in spherical approxi-

mation. Various topographical corrections are addressed by investigating their definitions

in terms of the upper and lower topographical boundary and the used density. Numerical

aspects of the evaluation of the Newton integrals, such as the weak singularity treatment,

split–up into spherical shell and terrain terms, and a requirement to integrate over the

entire globe are also addressed. Implications associated with regional and local evalu-

ation of the Newton integrals are indicated. Special attention is paid to the so-called

“ellipsoidal topography of constant density” (“ETC”) and to NETC topo–corrections to

potential and gravity. The abbreviation “NETC” stands for “No ETC” and represents

the removal of the effect of “ETC” on potential or gravity.
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Introduction

In geodesy and geophysics we often face the need to remove the gravita-
tional potential of topographical masses of real or model (constant) density
from the actual and/or disturbing potential. Equivalently, we may need to
remove the vertical component of the attraction vector (so-called gravita-
tional effect) of these topographical masses from the actual (observed or
synthetic) gravity (thus also from gravity disturbances or anomalies). Ge-
nerally, the topographical masses are defined as density distribution (real
or model) between Earth’s surface (topographical surface, shortly topo–
surface) and the geoid. However, there are applications (both geodetic and
geophysical) that call for defining the topographical masses as the density
distribution between the topo–surface and the reference ellipsoid (as op-
posed to the geoid). In geophysics the need of removing the effect of the
latter type of topography was advocated by e.g. Chapman and Bodine
(1979); Vogel (1982); Jung and Rabinowitz (1988); Meurers (1992); Tal-
wani (1998); Hackney and Featherstone (2003). In order to distinguish the
types of topographical masses according to their lower boundary and mass
density, Vajda et al. (2004) proposed the following classification:
The term “ellipsoidal topography” is not to be understood as the topogra-

Tab. 1. Models of topographical masses. The upper boundary is always the topo–surface

phy of the ellipsoid, but as the topography reckoned from the ellipsoid.
In addition, in geophysics we need to evaluate the potential and/or gra-

vitational effect of various bodies, or density distributions of various sub–
regions of the Earth – of real, constant, or anomalous density – not mention-
ing horizontal and higher order derivatives of the actual and/or disturbing
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potential. All the above mentioned potentials and gravitational effects are
evaluated by means of the Newton integrals for the potential and vertical
component of the attraction vector, respectively. The significance of the
Newton integral is great, as it represents the solution to the direct (for-
ward) gravimetric problem. Below we deal with evaluating these two kinds
of the Newton integral in the geodetic coordinates. Our starting point
will be global and rigorous, followed by considering approximations such as
neglecting deflections of the vertical, spherical approximation, or simplifi-
cations that can be adopted in regional or local studies.
The need to express the Newton integrals in the geodetic coordinates

is implied by the fact, that in practice evaluation/observation points (sta-
tions) are often positioned in the geodetic coordinates. To be more specific,
horizontal coordinates are given as geodetic latitude and geodetic longitude
(respective to a reference ellipsoid as the horizontal datum), vertical coor-
dinate is given as a geodetic (ellipsoidal) height reckoned from the same
reference ellipsoid as the vertical datum. The geodetic height is either mea-
sured or may be evaluated (as an acceptable approximation) as the sum
of a “height above sea level” (e.g., orthometric or normal height) reckoned
from the “sea level” (i.e., geoid or quasigeoid), and the geoidal/quasigeoidal
height (that is referred to the same reference ellipsoid).

1. Spherical and geodetic coordinates

We shall refer the discussed quantities to geocentric coordinate systems,
namely to a geocentric Cartesian coordinate system, geocentric spherical
coordinate system, and geocentric geodetic (Gauss ellipsoidal) coordinate
system (e.g., Pick et al., 1973, p. 437; Heiskanen and Moritz, 1967, Chap-
ter 5–3; Vańıček and Krakiwsky, 1986, Chapter 15.4). In the spherical co-
ordinate system any point P in space is given by the geocentric distance r,
spherical (geocentric) latitude φ̄, and spherical (geocentric) longitude λ̄, that
are related to the Cartesian coordinates of the point P ≡ (x, y, z) ≡ (

r, φ̄, λ̄
)

as follows, cf. Fig. 1:
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Fig. 1. The geodetic coordinate system and the relationship between spherical and geode-

tic coordinates.

For brevity we shall often denote the horizontal position in the geocen-
tric spherical coordinates as Ω̄ ≡

(

φ̄, λ̄
)

. Geocentric geodetic coordinates –
geodetic height h, geodetic latitude φ, and geodetic longitude λ – are defined
in the geocentric geodetic coordinate system, which is based on the mean
earth ellipsoid (e.g. Heiskanen and Moritz, 1967, Section 2–21). The mean
earth ellipsoid is a reference ellipsoid that is not only geocentric and biaxial,
it is also a so called “level” ellipsoid (ibid, Section 2–7). There is a unique
and physically meaningful link between the level ellipsoid and the normal
gravity field. The level ellipsoid is the equipotential surface of the normal
gravity potential on which the normal gravity potential has the same value
as the actual gravity potential on the geoid. Thus the mean earth ellipsoid
(or normal ellipsoid) generates the normal gravity, while its surface serves
as a (geocentric geodetic) coordinate surface. As a surface it is defined by
a major semi–axis a, and minor semi–axis b. Thus the geodetic coordinates
are inevitably associated with the mentioned two parameters of the ellip-
soid. Alternatively to the minor semi–axis, the first numerical eccentricity
e (e2 = [a2 − b2]

/

a2), focal distance E, or flattening f can be used (ibid).
The geodetic coordinates are related to the Cartesian coordinates of the
point P ≡ (x, y, z) ≡ (h, φ, λ) as follows (e.g., ibid, Section 5–3 ), cf. Fig. 1:
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where

N (φ) =
a

√

1− e2 sin2 φ
(3)

is the prime vertical radius of curvature (not to be confused with the geoidal
height due to the same notation). The inverse transformation is not as
straightforward, cf. e.g. (Jones, 2002; Pollard, 2002; Vermeille, 2002).
For brevity, we will often denote the horizontal position in the geodetic
coordinates as Ω ≡ (φ, λ). Equations (1) and (2) are used to transform the
geodetic coordinates of the point P to its (geocentric) spherical coordinates
or vice versa. Obviously, if the biaxial ellipsoid represents the horizontal
datum, longitudes in both coordinate systems are identical, i.e. λ = λ̄.

2. Newton integrals in geocentric spherical coordinates

In Section 2 we will review the formulation of the Newton integral for
the gravitational potential and for the vertical component of the attraction
vector in geocentric spherical coordinates. The integral boundaries will be
thus referred in spherical coordinates, and the infinitesimal solid (volume)
element will be expressed also in the mentioned coordinates.

2.1. Newton integral for the gravitational potential

The Newton integral for the gravitational potential expressed in the
spherical coordinates reads

∀ (rP , Ω̄P ) : V
(

rP , Ω̄P
)

= G

r2(Ω̄)
∫

r1(Ω̄)

∫∫

Ω0

ρ(r, Ω̄)L−1(rP , Ω̄P , r, Ω̄) dϑ̄ , (4)

where G is the universal gravitational constant, ρ
(

r, Ω̄
)

is the mass density
distribution (real, constant, or anomalous), L is a 3–D Euclidean distance
between the evaluation and integration (running) point,

293



Vajda P. et al.: On evaluation of Newton integrals in geodetic . . . , (289–314)

Tab. 2. Examples of specific gravitational potentials defined by the Newton integral. The

upper boundary is for all examples the topo–surface r2
(

Ω̄
)

≡ rt

(

Ω̄
)

dϑ̄ = r2 cos φ̄ dr dφ̄ dλ̄ = r2 dr dΩ̄ (5)

is the infinitesimal solid (volume) element in the spherical coordinate sys-
tem, Ω0 ≡ 〈−π/2; π/2〉 ⊗ 〈0; 2π) is the full solid angle, and r1

(

Ω̄
)

and
r2
(

Ω̄
)

are the lower and upper integral boundaries, respectively. Examples
of specific gravitational potentials defined by Eq. (4) are listed in Tab. 2.
The first four rows of Tab. 2 define, taken with the negative sign, four dif-

ferent (NT, NTC, NET, NETC) topographical corrections to the potential
used for constructing the topo–corrected actual and/or disturbing poten-
tial. Note, that in Eq. (4) the evaluation point is not restricted to lie on the
topo–surface or any other reference surface.

2.2. Newton integral for the vertical component
of the attraction vector (gravitational effect)

The gravitational effect of mass density from a specific region is defined
as a vertical component of the attraction vector generated by the mass
density (real, constant, or anomalous) within that region. In the spherical
coordinates it reads as follows
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Tab. 3. Various gravitational effects defined by the Newton integral for the vertical

component of the attraction vector. The upper boundary is the topo–surface r2
(

Ω̄
)

≡

rt

(

Ω̄
)

∀ (rP , Ω̄P ) : A
(

rP , Ω̄P
)

= − G

r2(Ω̄)
∫

r1(Ω̄)

∫∫

Ω0

ρ(r, Ω̄)
∂L−1(rP , Ω̄P , r, Ω̄)

∂n
dϑ̄ , (6)

where ∂/∂n is the derivative in the direction of the outer normal to the ac-
tual equipotential surface at the evaluation point P (along actual plumbline
at P ). Everything else remains as defined in Eq. (4). When neglecting the
deflection of the vertical at P , we can replace the ∂/∂n by the derivative in
the direction of the ellipsoidal normal, i.e. by the derivative with respect to
the geodetic height of the evaluation point ∂/∂hP . Thus

∀ (rP , Ω̄P ) : A
(

rP , Ω̄P
) ∼= − G

r2(Ω̄)
∫

r1(Ω̄)

∫∫

Ω0

ρ(r, Ω̄)
∂L−1(rP , Ω̄P , r, Ω̄)

∂hP
dϑ̄ , (7)

The integration domain and corresponding density distribution define the
gravitational effect given by Eqs (6) and (7), cf. Tab. 3 for some examples.
Taken with the negative sign, the first four rows define four different topo-
graphical corrections to actual gravity, cf. also Tab. 8 in Vajda et al. (2004).
Note, that again in Eqs (6) or (7) the point of evaluation is not restricted
to lie on the topo–surface or any other reference surface.
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3. Newton integrals in geocentric geodetic coordinates

In Section 3 we will present the formulation of the Newton integral for
the gravitational potential and for the vertical component of the attraction
vector (gravitational effect) in geocentric geodetic coordinates. This will
require expressing the solid element, and the Euclidean distance with its
vertical derivative, in the geodetic coordinates. Also the integral boundaries
will be now referred in the geodetic coordinates.

3.1. Newton integral for the gravitational potential in the geodetic

coordinates

The infinitesimal solid element in the geodetic coordinates reads

dϑ = J (a, e, h, φ) dh dφ dλ , (8)

where the expression for the Jacobian J (a, e, h, φ) is derived by means of
Eq. (2)

J(a, e, h, φ)=

∣

∣

∣

∣

∂x

∂h

(

∂y

∂φ

∂z

∂λ
− ∂y

∂λ

∂z

∂φ

)

− ∂x

∂φ

(

∂y

∂h

∂z

∂λ
− ∂y

∂λ

∂z

∂h

)

+

+
∂x
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(

∂y
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∂z

∂φ
− ∂y

∂φ

∂z

∂h

)
∣

∣

∣

∣

. (9)

For the partial derivatives we get

∂x

∂h
= cosφ cos λ ,

∂y

∂h
= cosφ sinλ ,

∂z

∂h
= sinφ , (10)

∂x

∂φ
= cosφ cosλ

∂N (φ)

∂φ
− (N (φ) + h) sinφ cos λ , (11a)

∂y

∂φ
= cosφ sinλ

∂N (φ)

∂φ
− (N (φ) + h) sinφ sinλ , (11b)

∂z

∂φ
= sinφ

(

1− e2
) ∂N (φ)

∂φ
+
[

N (φ)
(

1− e2
)

+ h
]

cosφ , (11c)
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∂x

∂λ
=− (N (φ) + h) cosφ sinλ, ∂y

∂λ
= (N (φ) + h) cosφ cosλ,

∂z

∂λ
=0, (12)

where the curvature N (φ) is given by Eq. (3), and where

∂N (φ)

∂φ
= a e2 sinφ cosφ

(

1− e2 sin2 φ
)

−
3

2

=
e2 sinφ cosφ

1− e2 sin2 φ
N (φ) . (13)

Upon the back substitution and required algebraic treatment we obtain

J (a, e, h, φ) = (N (φ) + h)

(

1− e2

1− e2 sin2 φ
N (φ) + h

)

cosφ. (14)

For the behaviour of the Jacobian, see Appendix. In the geodetic coordi-
nates, the Euclidean distance L reads

L(hP , φP , λP , h, φ, λ) =
{

[N (φP ) + hP ]
2 cos2 φP + [N (φ) + h]

2 cos2 φ−

−2 (N (φP ) + hP ) (N (φ) + h) cosφP cosφ cos (λP − λ) +

+
[

(N (φP ) + hP )− e2N (φP )
]2
sin2 φP +

[

(N (φ) + h)− e2N (φ)
]2
sin2 φ−

−2
[

(N (φP ) + hP )− e2N (φP )
][

(N (φ) + h)− e2N (φ)
]

sinφP sinφ
}
1

2
. (15)

Thus the Newton integral for the gravitational potential reads in the geode-
tic coordinates

∀ (hP ,ΩP ) : V (hP ,ΩP ) = G
h2(Ω)
∫

h1(Ω)

∫∫

Ω0

ρ(h,Ω)L−1(hP ,ΩP , h,Ω)dϑ, (16)

where the distance L is given by Eq. (15), solid element by Eq. (8), and the
Jacobian by Eq. (14). The upper and lower boundaries are now also given in
the geodetic coordinates. For instance, the topo–surface is given as ht (Ω),
geoid as N (Ω) and reference ellipsoid as h (Ω) = 0. When the integration is
to be carried out over the whole Earth’s interior, starting at the geocentre,
the lower integration boundary will no longer be a single point. The lower
boundary will become h1 (Ω) = hC (φ), defined as z = 0 for φ 6= 0, i.e.,
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∀φ : 0 < |φ| ≤ π

2
: hC(φ) = −

(

1− e2
)

N (φ) , (17)

where N (φ) is given by Eq. (3), cf. Fig. 2.
Recently, Novák and Grafarend (2004) derived the Newton integral for

Fig. 2. The lower integration boundary hC(φ) [km] for evaluating the Newton integral

over the whole interior of the Earth (of the ellipsoid). The horizontal axis is geodetic

latitude [arcdeg]. The reference ellipsoid is given by a = 6378 km and e2 = 0.0067.

the potential in the geodetic coordinates while neglecting the terms of e4

and higher (ibid, Section 2). They also discussed the computational aspects
in detail, as well as the expression of this integral in the spectral form (ibid,
Section 4).

3.2. Newton integral for the gravitational effect in the geodetic
coordinates

The derivative of the inverse Euclidean distance with respect to the
geodetic height reads

∂L−1(hP , φP , λP , h, φ, λ)

∂hP
=− L−3

{

[N (φP ) + hP ]− [N (φ) + h] cosψ+

+ e2 sinφP [N (φ) sinφ−N (φP ) sinφP ]
}

, (18)

where
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cosψ = sinφP sinφ + cosφP cosφ cos (λP − λ) , (19)

and the distance L is given by Eq. (15). The gravitational effect given by
Eq. (7) reads in the geodetic coordinates

∀(hP ,ΩP ) : A (hP ,ΩP ) = −G
h2(Ω)
∫

h1(Ω)

∫∫

Ω0

ρ(h,Ω)
∂L−1(hP ,ΩP , h,Ω)

∂hP
dϑ, (20)

where ∂L−1
/

∂h
P
is given by Eq. (18).

Novák and Grafarend (2004) also derived the Newton integral for the
gravitational effect in the geodetic coordinates while neglecting the terms
of e4 and higher (ibid, Section 3). They also discussed the computational
aspects in detail.

4. Spherical approximation of Newton integrals in geocentric
geodetic coordinates

In Section 4 we will deal with the spherical approximation of the Newton
integrals presented in Section 3. The spherical approximation will imply ex-
pressing the solid element, as well as the Euclidean distance and its vertical
derivative, in the spherical approximation, still using the geodetic coordi-
nates.

4.1. Newton integral for the potential in the geodetic
coordinates – spherical approximation

Under the spherical approximation (Moritz, 1980, p. 349) we shall here-
after understand neglecting the terms multiplied by e2 and higher order
terms in the expressions for the Euclidean distance, derivative of the in-
verse Euclidean distance with respect to the geodetic height of the evalua-
tion point, and the Jacobian. Moreover, the major semi–axis a is replaced
by the mean radius R =

3
√
a2b. Since

N (φ) =
a

√

1− e2 sin2 φ

∼= a+ a

2
e2 sin2 φ ≈ a ≈ R , (21)
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Equation (15) reads in the spherical approximation as follows:

L(hP ,ΩP , h,Ω)≈
√

(R+ hP )
2 + (R+ h)2 − 2 (R+ hP ) (R+ h) cosψ, (22)

where cosψ is given by Eq. (19). Here ψ stands for the angular distance
between the evaluation and integration point. In spherical approximation,
the Jacobian reads

J (a, e, h, φ) ≈ (R+ h)2 cosφ. (23)

Thus the Newton integral for the gravitational potential in spherical ap-
proximation reads

∀(hP ,ΩP ) : V (hP ,ΩP ) ≈

≈G

h2(Ω)
∫

h1(Ω)

∫∫

Ω0

ρ(h,Ω)L−1(hP ,ΩP , h,Ω) (R+ h)
2 dh dΩ, (24)

where dΩ = cosφ dφ dλ, and the distance L is given by Eq. (22). In
spherical approximation, when integrating over the whole Earth’s interior,
the integration starts (as expected) at the geocentre, i.e. the lower integral
boundary is given as follows, cf. Eq. (17):

hC (φ) ≈ − R . (25)

Novák and Grafarend (2004) showed, that the Newton integral for the po-
tential in the geodetic coordinates (neglecting the terms of e4 and higher)
can be written as a sum of a spherical term and ellipsoidal correction to
the spherical term (ibid, Eqs (13) through (15)). In the case of the topo-
graphical correction, they showed for a test area in the Canadian Rocky
Mountains that the ellipsoidal correction is by three orders of magnitude
smaller than the spherical term (ibid, Section 5).

4.2. Newton integral for the gravitational effect in the geodetic
coordinates – spherical approximation

Equation (18) reads in spherical approximation as follows:
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∂L−1(hP ,ΩP , h,Ω)

∂hP
≈ −(R+ hP )− (R+ h) cosψ

L3
, (26)

with the distance L given by Eq. (22). Thus the gravitational effect in
spherical approximation reads

∀(hP ,ΩP ) : A (hP ,ΩP ) ≈

≈− G

h2(Ω)
∫

h1(Ω)

∫∫

Ω0

ρ(h,Ω)
∂L−1(hP ,ΩP , h,Ω)

∂hP
(R+ h)2 dh dΩ, (27)

where ∂L−1
/

∂hP is given by Eq. (26).
Novák and Grafarend (2004) showed, that the Newton integral for the

gravitational effect in the geodetic coordinates (neglecting the terms of e4

and higher) can be written as the sum of a spherical term and ellipsoidal
correction to the spherical term (ibid, Eqs (36) and (37)). Again the ellip-
soidal correction was three orders of magnitude smaller than the spherical
term (ibid, Section 5).

5. Spherical approximation of the topographical corrections
in terms of orthometric (or normal) heights with the geoid
(or quasigeoid) as a vertical datum

When the Newton integral for the gravitational potential or the grav-
itational effect is evaluated with the geoid as the lower topo–boundary,
in spherical approximation, while the topo–surface as well as the evalua-
tion and integration points are positioned using orthometric/normal heights
reckoned from the geoid/quasigeoid as a vertical datum, the spherical ap-
proximation applies to the geoid. Recall the relationship between geodetic
(h) and orthometric (H), or normal (HN) heights:

h (Ω) ∼= H (Ω) +N (Ω) (a), h (Ω) ∼= HN (Ω) + ζ (Ω) (b), (28)

where ζ is the height anomaly reckoned from the reference ellipsoid. Eve-
rything considered in the sequel for the orthometric heights applies also to
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the normal heights.
The gravitational potential of topography reads (cf. Tab. 2)

V GT (HP ,ΩP ) ≈

≈ G

Ht(Ω)
∫

0

∫∫

Ω0

ρ(H,Ω)L−1(HP ,ΩP , H,Ω) (R+H)
2 dH dΩ, (29)

where the Euclidian distance L is given by

L(HP ,ΩP , H,Ω) ≈

≈
√

(R+HP )
2 + (R+H)2 − 2 (R+HP ) (R+H) cosψ, (30)

and angular distance between the evaluation and integration points ψ is
given by Eq. (19). The upper boundary is the topo–surface Ht (Ω) reckoned
from the geoid. The lower boundary is the geoid, given as h (Ω) = N (Ω) or
H (Ω) = 0. Similarly the gravitational effect of topography reads (cf. Tab. 3)

AGT (HP ,ΩP ) ≈

≈−G
Ht(Ω)
∫

0

∫∫

Ω0

ρ(H,Ω)
∂L−1(HP ,ΩP , H,Ω)

∂HP

(R+H)2 dH dΩ, (31)

where the vertical derivative with respect to the geodetic height at the
evaluation point ∂/∂hP was replaced by the vertical derivative with respect
to the orthometric height at the evaluation point ∂/∂HP , i.e.

∂L−1(HP ,ΩP , H,Ω)

∂HP

≈ −(R+HP )− (R+H) cosψ
L3

, (32)

where the distance L is given by Eq. (30) and cosψ by Eq. (19). The upper
and lower boundaries are identical to those in Eq. (29).

6. Numerical aspects

Now we will turn our attention to some aspects of numerical evaluation
of the discussed Newton integrals. We will take a look at the singularity
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of the integrals, we will focus on the topographical corrections in spherical
approximation and discuss the splitting of the topo–correction into a sphe-
rical shell term and a terrain term. Finally, we will look at the requirement
of integrating over the whole globe.

6.1. Weak singularity

Both the Newton integrals – gravitational potential and gravitational
effect – discussed in Sections 2 through 5 are singular for the integra-
tion point coinciding with the evaluation point, i.e., (h,Ω) = (hP ,ΩP ),
or (H,Ω) = (HP ,ΩP ). The singularity is encountered when evaluating the
integrals on the topo–surface or below it. However, the singularity is weak,
removable, cf. e.g. (Kellogg, 1929, p. 151).

6.2. Spherical topographical corrections – spherical shell
and terrain terms

In the sequel we shall deal with topo–corrections in spherical approxima-
tion only. The spherical approximation implies that the lower topographical
boundary is approximated by a sphere (not actually, only for the sake of
computing the distances between the evaluation and integration points).
In the case of topo–corrections, that adopt the constant model density of
topographical masses, it is conventional and convenient to split the topo–
correction into a spherical shell term and a terrain term (sometimes referred
to as the roughness term)

ht(Ω)
∫

0

... =

ht(ΩP )
∫

0

...+

ht(Ω)
∫

ht(ΩP )

... (a),

Ht(Ω)
∫

0

... =

Ht(ΩP )
∫

0

...+

Ht(Ω)
∫

Ht(ΩP )

... (b), (33)

where ht (ΩP ) is the geodetic height and Ht (ΩP ) is the orthometric height
of the topo–surface at the horizontal position of the evaluation point. The
spherical shell term (dropping the negative sign) is the potential, or the
gravitational effect, of the spherical layer (shell) with the inner radius equal
to the mean Earth’s radius R, and thickness ht(ΩP ), or Ht (ΩP ), which can
be evaluated analytically (closed-form solution), cf. e.g. (Wichiencharoen,
1982; Blakely, 1995, Sections 3.2.1 and 3.2.2; Vańıček et al., 2001; 2004).
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Note, that the thickness of the spherical shell is equal to the elevation of
the topo–surface at the horizontal position of the evaluation point; thus it
changes from one evaluation point to another. The terrain term (dropping
the negative sign) is the potential, or the gravitational effect, of the terrain
relative to the spherical shell, sometimes called the roughness term, which is
to be evaluated by numerical integration over the entire globe. The terrain
term remains singular, but again the singularity is weak and removable in
the same manner as already discussed in Section 6.1.
Topo–corrections (to the potential and gravity) for topography defined

by the geoid as its lower boundary, referred in terms of the orthometric
heights, cf. Section 5, are discussed in detail in e.g. (Vańıček et al., 2004).
Hereafter we shall focus on the NETC topo–corrections.

6.3. NETC topo–correction to the gravitational potential
and gravity

In Section 6.3 we shall deal exclusively with the evaluation of the NETC
topo–correction to the potential (−V ET0 ) and the NETC topo–correction to
gravity (−AET0 ). For more details regarding the potential and gravitational
effect of the ellipsoidal topography of constant density (ETC), refer to (Vaj-
da et al., 2004), particularly to Sections 3, 3.1, 3.6 and 4. The potential and
the gravitational effect of the ETC can also be split (for evaluation points
above, on or below the topo–surface) into the spherical shell and terrain
term, cf. Fig. 3. Recall, that the surface of the inner quasi–ellipsoid is
taken as the lower topo–boundary of the ETC, in order to account properly
for the areas over the globe, where the topo–surface dips below the reference
ellipsoid (ibid, Section 4).
For the potential of the ETC, V ET

0 , and the gravitational effect of the
ETC, AET0 , the spherical shell term is the potential, and the gravitational
effect, of the spherical layer (shell) of the radius of the inner sphere (R− h∗)
and of thickness (ht(ΩP ) + h

∗), cf. Fig. 3, which can be evaluated analyti-
cally.

For the gravitational potential of the ETC we can write

V ET
0 (hP ,ΩP ) = V

ET,B
0 (hP ,ΩP ) + V

ET,R
0 (hP ,ΩP ) , (34)
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Fig. 3. Sketch illustrating the spherical shell with the upper boundary h = ht (ΩP ) and

lower boundary h = −h∗. The topo–surface forms the terrain relative to the spherical

shell, indicated by “+” and “–“ signs. Subscripts indicate four possible positions of the

evaluation point P ≡ (hP ,ΩP ): 1 – below the spherical shell, 2 – inside the spherical

shell, 3 – at the topo–surface, and 4 – above the topo–surface.

where V ET,B0 is the gravitational potential of the spherical shell of a constant
density ρ0 and thickness (ht(ΩP ) + h

∗), and

V
ET,R
0 (hP ,ΩP ) = Gρ0

ht(Ω)
∫

ht(ΩP )

∫∫

Ω0

L−1 (hP ,ΩP , h,Ω) (R+ h)
2 dh dΩ (35)

is the gravitational potential of the terrain relative to the spherical shell.
Rigorously it must be numerically evaluated over the entire globe. The
terrain term of the ETC potential can be written also as a surface integral
(cf. Martinec, 1998, Eq. (3.52); Sjöberg, 2000, Eqs 9–11), when the geodetic
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heights replace in the formulae the orthometric heights.
For the gravitational effect of the ETC we can write

AET0 (hP ,ΩP ) = A
ET,B
0 (hP ,ΩP ) + A

ET,R
0 (hP ,ΩP ) , (36)

where AET,B0 is the gravitational effect of the spherical shell of the con-
stant density ρ0 and thickness (ht(ΩP ) + h

∗). The gravitational effect of
the terrain relative to the spherical shell is

A
ET,R
0 (hP ,ΩP ) = −Gρ0

ht(Ω)
∫

ht(ΩP )

∫∫

Ω0

∂L−1(hP ,ΩP , h,Ω)

∂hP
(R+ h)2 dh dΩ (37)

Rigorously it must also be numerically evaluated over the entire globe.

6.3.1. Evaluation point on the topo–surface
If the evaluation point is located on the topo–surface, we have ht (ΩP ) =

hP . The potential of the spherical shell becomes, following e.g. (Blakely,
1995, Sections 3.2.1 and 3.2.2), and also (Jekeli and Serpas, 2003, Eqs (9)
and (15); Vańıček et al., 2004, Eq. (25))

hP = ht (ΩP ) : V
ET,B
0 (hP ,ΩP ) =

4

3
πGρ0

(R+ hP )
3 − (R− h∗)3

(R+ hP )
. (38)

The gravitational effect of the spherical shell becomes, following e.g. (Blakely,
1995, Sections 3.2.1 and 3.2.2), and also (Jekeli and Serpas, 2003, Eqs (10)
and (15); Vańıček et al., 2004, Eq. (40))

hP = ht (ΩP ) : A
ET,B
0 (hP ,ΩP ) = −4

3
πGρ0

(R+ hP )
3 − (R− h∗)3

(R+ hP )
2 (39)

The NETC terrain correction to gravity
(

−AET,R0

)

, in the case of the evalua-

tion point located on the topo–surface, is computed exactly (when replacing
orthometric heights by geodetic heights) as the spherical terrain correction
to surface gravity that was recently discussed by Novák et al. (2001), cf.
Sections 3 and 6, and Fig. 7.
A lot of material on the numerical aspects of the evaluation of topo–

corrections for the evaluation point on the topo–surface, which applies also
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to the NETC topo–corrections, if replacing orthometric heights by geode-
tic heights, can be found in geodetic literature as part of the discussion
of the direct topographical effect on gravity. The direct topographical ef-
fect consists of two terms – the effect of topographical masses (“removal
of topographical masses”) and the effect of a condensed layer (“restoration
of topographical masses”) according to a specific scheme, such as the first
or second Helmert condensation method (e.g., Heck, 2003; Martinec, 1998;
Vańıček and Martinec, 1994; Jekeli and Serpas, 2003). By considering just
the terms reflecting the removal of the topographical masses, the same nu-
merical procedures can be applied also to the computation of the NETC
topo–corrections to the potential and gravity. Let us quote Martinec and
Vańıček (1994), Sjöberg (1994), (1996), (2000), Nahavandchi and Sjöberg
(1998), Nahavandchi (2000), Novák et al. (2001), Jekeli and Serpas (2003).
For more details on the numerical aspects of evaluating the terrain effects
(negative terrain corrections) the reader is referred also to Section 3.2.3 in
(Hackney and Featherstone, 2003) and literature cited therein.

6.3.2. Evaluation point below the topo–surface
In the case of the evaluation point below the topo–surface, hP < ht (ΩP ),

the terrain terms will remain as given by Eqs (35) and (37). Only the
spherical shell terms will read differently, following e.g. (Vańıček et al.,
2004, Eqs (25) and (40)); namely, the gravitational potential is

∀(hP ,ΩP );−h∗ ≤ hP < ht(ΩP ) : V
ET,B
0 (hP ,ΩP ) =

=
2

3
πGρ0

[

3 (R+ ht(ΩP ))
2 − 2(R− h∗)3

R+ hP
− (R+ hP )2

]

, (40)

∀ (hP ,ΩP ) ; hP < −h∗ :
V
ET,B
0 (hP ,ΩP ) = 2πGρ0

[

(R+ ht(ΩP ))
2 − (R− h∗)2

]

= const, (41)

and the gravitational effect

∀ (hP ,ΩP ) ;−h∗ ≤ hP < ht (ΩP ) :

A
ET,B
0 (hP ,ΩP ) =

4

3
πGρ0

[

(R− h∗)3

(R+ hP )
2 − (R+ hP )

]

, (42)
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∀ (hP ,ΩP ) ; hP < −h∗ : AET,B0 (hP ,ΩP ) = 0. (43)

6.3.3. Evaluation point above the topo–surface
Again, the terrain terms will remain as given by Eqs (35) and (37).

The spherical shell terms will now read, following e.g. (Blakely, 1995, Sec-
tions 3.2.1 and 3.2.2),

∀ (hP ,ΩP ) ; hP > ht (ΩP ) :

V
ET,B
0 (hP ,ΩP ) =

4

3
πGρ0

(R+ ht(ΩP ))
3 − (R− h∗)3

(R+ hP )
, (44)

∀ (hP ,ΩP ) ; hP > ht (ΩP ) :

A
ET,B
0 (hP ,ΩP ) = −4

3
πGρ0

(R+ ht(ΩP ))
3 − (R− h∗)3

(R+ hP )
2 . (45)

6.4. Integration domain – entire globe

The discussed Newton integrals, or at least the terrain terms in the case
of topo–corrections, must be evaluated over the entire globe. This is a
numerically demanding requirement. If the data coverage is not global,
this requirement even cannot be met. Often, in spherical approximation,
the integration is split into two zones: a near zone (inner zone) and a
far zone (outer zone), or even more zones. The evaluation strategy and
numerical procedure may then differ from zone to zone. Such a split–up into
zones is possible if the integral is expressed in local polar coordinates of the
evaluation point (e.g., Vańıček and Krakiwsky, 1986), where the horizontal
position of the evaluation point (ΩP ) becomes the origin, and the horizontal
position of the integration point (Ω) is given by means of (ψ, α), where ψ is
the angular distance from the origin, and α is the azimuth reckoned from an
arbitrary direction such as the north. In spherical approximation we then
have

V (hP ,ΩP ) ≈

≈ G

h2(ψ,α)
∫

h1(ψ,α)

π
∫

0

2π
∫

0

ρ(h, ψ, α)L−1(hP , h, ψ) (R+ h)
2 sinψ dhdψdα, (46)
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A (hP ,ΩP ) ≈

≈ −G
h2(ψ,α)
∫

h1(ψ,α)

π
∫

0

2π
∫

0

ρ(h, ψ, α)
∂L−1(hP , h, ψ)

∂hP
(R+ h)2 sinψ dhdψdα, (47)

since sinψ dψdα = cosφ dφdλ, and where L (hP , h, ψ) is given by Eq. (22),
cosψ by Eq. (19), and ∂L−1 (hP , h, ψ)

/

∂hP by Eq. (26). The spherical cap
of a pre–selected radius ψ 0, in terms of the angular distance from the evalu-
ation point, constitutes the near zone 〈0, ψ0〉, while the integration domain
beyond this radius represents the far zone (ψ0, π〉 . The upper and lower inte-
gral boundaries remain the same, only are positioned in the new coordinates
hi (ψ, α) ≡ hi (φ, λ), i = 1, 2. In the case of splitting the topo–corrections
into the spherical shell and terrain terms, the split–up into the zones applies
either to both terms or just to the terrain term.
The integration must be carried out over the whole globe, that is in an-

gular distance from 0 to π. Often the contribution from the far zone is
neglected, resulting in a truncation error. The radius of the near zone may
vary by a scholar and by application. Instead of neglecting the far- zone con-
tribution, global digital elevation models (DEMs) in a spherical harmonic
representation may be used in this zone ( Sjöberg, 1994; 1996; Nahavandchi
and Sjöberg, 1998; Novák et al., 2001; Sun, 2002), or a combined approach
may be adopted, as suggested by Nahavandchi (2000). Approximations ad-
ditional to spherical approximation may be adopted, when developing the
reciprocal Euclidean distance into a series expansion, as classified recently
by Jekeli and Serpas (2003) – planar approximation, flat–Earth approxima-
tion, and linear approximation.

7. Discussion and concluding remarks

Newton integrals play an important role in geodesy and geophysics, as
they represent the solution to the direct (forward) gravimetric problem.
They provide the means for evaluating a gravitational potential, its gradi-
ent (vertical and horizontal components of the attraction vector), as well
as higher order derivatives of the potential (actual or disturbing) of various
bodies or density distributions of real, model (such as constant), or anoma-
lous density. Among most common examples we can find the potential or
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gravitational effect of a body that may be the subject of the gravimetric
inverse problem, or the potential or gravitational effect of the topographi-
cal masses. Here we have discussed exclusively the Newton integral for
the potential, as defined in Section 2.1, and the Newton integral for the
gravitational effect, i.e., for the vertical component of the attraction vector,
as defined in Section 2.2. The points of interest (evaluation points) and
the integration (running) points are nowadays commonly positioned in the
geodetic coordinates. That is why we have dealt with evaluating the New-
ton integrals in the geodetic coordinates, as given by Sections 3.1 and 3.2.
The evaluation of the Newton integrals in the geodetic coordinates calls for
evaluating the solid (volume) element, thus the Jacobian, in the geodetic
coordinates, as well as evaluating the 3D reciprocal Euclidean distance and
its vertical derivative in the geodetic coordinates.
In most applications, spherical approximation to the exact evaluation of

the Newton integrals in the geodetic coordinates, as given in Sections 4.1,
4.2, and 5 will be acceptable, since the ellipsoidal correction to spherical
approximation of the Newton integral for the potential and gravitational ef-
fect is by three orders of magnitude smaller than the spherical term (Novák
and Grafarend, 2004).
Several aspects of numerical evaluation of the discussed Newton integrals

were addressed in Section 6. The Newton integrals may become singular,
but this singularity at the coincidence of the integration point with the eva-
luation point is weak and removable. We focused on the topographical cor-
rections in spherical approximation that adopt the constant (model) density
of the topo–masses, and discussed the splitting of the topo–correction into
the spherical shell and terrain (roughness) term, cf. Sections 6.2 and 6.3.
We paid a particular attention to the NETC topo–correction to the poten-
tial and gravity; in other words, to the potential and gravitational effect
of the ellipsoidal topography of a constant density. Globally the “ETC” is
defined as topographical masses of constant density bounded by the surface
of the inner quasi–ellipsoid as the lower topo–boundary (which plays the
role of the reference ellipsoid and originates from the occurrence of negative
ellipsoidal topography in some areas over the globe) and the topo–surface
as the upper topo–boundary. The reasons for defining and using the ETC
topo–masses and their potential and gravitational effect are discussed in
more detail by Vajda et al. (2004). Here we looked in detail at evaluating
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the ETC spherical shell term for evaluation points above, on, and below the
topo–surface, cf. Sections 6.3 through 6.3.3. The advantage of splitting the
ETC potential and ETC gravitational effect (or NETC topo–corrections to
the potential and gravity) into the spherical shell and terrain term dwells
in the analytical evaluation of the (N)ETC spherical shell term and in the
fact, that the NETC terrain correction (negative ETC terrain term) is equal
to the spherical terrain correction (to the potential or gravity) as generally
known and used in geodesy and geophysics. Finally, we looked at the re-
quirement of integrating in the horizontal coordinates over the whole globe.

Fig. 4. The behaviour of the Jacobian. The horizontal axis is geodetic latitude [arcdeg.].

Reference ellipsoid is given by a= 6378 km, e2 = 0.0067. (A) h= 0 km, (B) h = -6000 km,

(C) h = -6300 km, (D) h = -6335 km.
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In Section 6.4 we mentioned the truncation of the integration domain to
a spherical cap, and different approaches and numerical procedures that
may be adopted in near- and far-zone contribution evaluation, providing
references to published work on this topic.

Appendix

To show the behaviour of the Jacobian given by Eq. (14) in the interior
of the reference ellipsoid, we portray it, cf. Fig. 4, as a function of the
geodetic latitude (in the first quadrant) for several values of the (negative)
geodetic height: (A) h = 0 km, (B) h = -6000 km, (C) h = -6300 km,
(D) h = -6335 km. Notice, that to stay in the first quadrant, in terms of
the geodetic height and geodetic latitude, the geodetic height must comply
with the following inequality, cf. Eq. (17) and Fig. 2:

∀φ : 0 < φ ≤ π

2
: h ≥ hC(φ). (48)
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Novák P., Vańıček P., Martinec Z., Véronneau M., 2001: Effects of the spherical terrain
on gravity and the geoid. J. Geod., 75, 491–504.

Novák P., Grafarend E. W., 2004: The ellipsoidal representation of the topographical
potential and its vertical gradient. Submitted to J. Geod.
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