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1. Introduction 
 
The mean value of gravity along the plumbline between the geoid and the earth surface depends on the 
mass density distribution within the Earth and the shape of the Earth. Since the actual values of gravity 
along the plumbline cannot be measured, the mean value of gravity along the plumbline has to be 
computed from the gravity observed at the surface of the Earth. This can be done by reducing the 
observed gravity according to some accepted physical model.    
 
2. Mean gravity along plumbline 
 
According to the theorem of mean integral values, the “mean value ( )Ωg  of gravity along the plumbline 
between the geoid and the earth surface” reads (Heiskanen and Moritz, 1967, Eq. 4-20) 
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where ( )Ω,rg  is the gravity at a point of which geocentric position is ( ) ( )λφ ,,, rr ≡Ω , and the geocentric 
radius ( )Ωtr  of the earth surface is given (with an accuracy of at most a few millimeters) by the 

geocentric radius of the geoid ( )Ωgr  plus the orthometric height ( )ΩOH .  

The gravity ( )Ω,rg  can be expressed as (Tenzer and Vaní�ek, 2003) 
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where ( )φγ ,r  is the normal gravity of the geocentric reference ellipsoid, ( )Ω,NT rgδ  is the gravity 
disturbance in the No Topography gravity space (i.e., the gravity disturbance generated by the mass within 
the geoid itself, Vaní�ek et al., 2003), and ( ) rrV t ∂Ω∂− /,  is the gravitational attraction of topographical 
masses.  
Substituting Eq. (2) back into Eq. (1), the mean gravity ( )Ωg  takes the following form  
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3. Mean normal gravity along plumbline  
 
The first term on the right-hand-side of Eq. (3) defines the “mean value ( )Ωγ  of normal gravity along the 
plumbline between the geoid and the earth surface” 
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Neglecting the deflection of plumbline and the correction caused by different lengths of the plumbline 
(between the geoid and the earth surface) and the ellipsoidal normal (between the geocentric reference 
ellipsoid and the telluroid), the mean normal gravity along the plumbline can be rewritten as (Tenzer and 
Vaní�ek, 2003) 
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where ( )φor  is the geocentric radius of the geocentric reference ellipsoid, ( )ΩNH  is the normal height 

(Molodensky, 1945), and ( )ΩN  is the geoidal height. 
The mean value of normal gravity along the normal between the reference (geocentric) ellipsoid and the 
telluroid is evaluated by the following formula (Heiskanen and Moritz, 1967, Eq. 4-42) 

    ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
�
�
�

�

�
�
�

�

��
	



��
�

 Ω+Ω
��
	



��
�


−++−≅

Ω
=Ω �

Ω+

=

2NN
2

22

N aa
sinf2

GM
ba�

f11d,
1 N HH

rr
H o

Hr

rr

o

o

ϕφγφγγ
φ

φ
,    (6) 

where a , b  are the semi-axes and ( ) ab-af /=  is the first numerical flattening of the geocentric 
reference ellipsoid, �  is the mean angular velocity of Earth’s rotation, ϕ  is the geodetic latitude, GM  is 
the geocentric gravitational constant, and ( )φγ o  is the normal gravity at the surface of the geocentric 
reference ellipsoid.  

 
Fig. 1: Relation between the mean value ( )Ωγ  of normal gravity (reference ellipsoid GRS-80)  

and the normal height ( )ΩNH . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Mean values of normal gravity. 
 

The “correction to normal gravity ( )ΩN
γε  due to the geoid undulation”, i.e., correction for a shift of the 

integration interval from the reference ellipsoid to the geoid, is given by (Tenzer and Vaní�ek, 2003) 
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Fig. 3: Relation between the correction ( )ΩN

γε  to normal gravity due to the geoid undulation  

and the geoidal height ( )ΩN . 
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Fig. 4: Correction to normal gravity due to the geoid undulation. 
 
4. Mean geoid-generated gravity disturbance  
 

The “mean value ( )ΩNTgδ  of geoid-generated gravity disturbance along the plumbline between the geoid 
and the earth surface” is given by the second term on the right-hand-side of Eq. (3), i.e.,    
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Since the geoid-generated gravity disturbance ( )Ω,NT rgδ  multiplied by a geocentric radial distance r  is 
harmonic above the geoid in the No Topography gravity space, i.e., satisfies the Laplace equation, the 
gravity disturbance ( )Ω,NT rgδ  is evaluated by solving Dirichlet’s boundary value problem (Kellogg, 
1929) 
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where the gravity disturbance ( ) ( )( )Ω≡Ω grgg NTNT ,R δδ
 
is referred on the co-geoid, R  is the mean radius 

of the Earth which approximates the geocentric radius of the geoid (or co-geoid) surface, and Poisson’s 
integral kernel ( )[ ]R,,,K Ω′Ωψr  is given by  
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Substituting Eqns. (10) and (9) back into Eq. (8) and performing the radial integration with respect to r , 
Eq. (8) takes the following form (Tenzer and Vaní�ek, 2003) 
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Fig. 5: Mean geoid-generated gravity disturbances ( )ΩNTgδ .  
 
5. Mean topography-generated gravitational attraction   
 
The “mean value of topography-generated gravitational attraction along the plumbline between the geoid 
and the earth surface” (given by the third term on the right-hand-side of Eq. 3) can be derived as (Tenzer 
and Vaní�ek, 2003) 

                     ( )
( )

( )

( ) ( )

( )
( )( )

��
Ω+

=

Ω+Ω

Ω= ∂
Ω∂

Ω
−=

∂
Ω∂

Ω
−

OO R

ROO d
,1

d
,1 H

r
r

tHr

rr
r

t

r
r
rV

H
r

r
rV

H
g

g

 

                                                                               
( ) ( )( )

( )Ω
Ω−Ω= O

,R
H

rVV t
tt

,                                              (12) 

where ( )Ω,RtV  and ( )( )Ωt
t rV  are the gravitational potentials of topographical masses as a referred on the 

geoid and at the earth surface. 
According to Martinec (1998), the gravitational potential ( )Ω,rV t  of the topographical masses for a point 

inside the topographical mass ( ) ( )Ω+≤Ω≤ ORR Hr  reads  
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where G  is Newton’s gravitational constant, ( )[ ]rrl ′Ω′Ω ,,,ψ
 
is the spatial distance between ( )Ω,r  and 

( )Ω′′,r , and ( )Ω′Ω,ψ
 
is the spherical distance between the geocentric direction to Ω  and Ω′ .  

The first term on the right-hand-side of Eq. (13) is the gravitational potential of the spherical Bouguer 
shell (of the mean topographical density o�  and thickness of ( )ΩOH ) inside the topographical masses 
(Wichiencharoen, 1982). The second term stands for the gravitational potential of the terrain roughness 
term of density o�  (Martinec, 1998), and the third term represents the effect of anomalous topographical 
density ( )Ω,rδρ  distribution on the gravitational potential. 
Substituting Eq. (13) back into Eq. (12), the mean value of topography-generated gravitational attraction 
along the radial direction (which approximates the plumbline) becomes (Tenzer and Vaní�ek, 2003) 
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 Fig. 6: Relation between the mean gravity ( )Ωbg  generated by the spherical Bouguer shell and the 

orthometric height ( )ΩOH . 
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Fig. 7: Mean values of the gravitational attraction caused by the spherical Bouguer shell of density o� . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: Mean values of the gravitational attraction caused by the terrain roughness term. 
 
 
 

235 236 237 238 239
50

51

52

53

54

55

0 [mgal]

20 [mgal]

40 [mgal]

60 [mgal]

80 [mgal]

100 [mgal]

120 [mgal]

140 [mgal]

160 [mgal]

180 [mgal]

200 [mgal]

220 [mgal]

240 [mgal]

235 236 237 238 239
50

51

52

53

54

55

-50 [mgal]

-40 [mgal]

-30 [mgal]

-20 [mgal]

-10 [mgal]

0 [mgal]

10 [mgal]

20 [mgal]

30 [mgal]



 

 8 

 
Fig. 9: Relation between the mean gravitational attraction ( )Ωδρg  of the anomalous (lateral)  

topographical density distribution and the orthometric height ( )ΩOH . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 10: Mean values of the gravitational attraction caused by the anomalous  
(laterally varying) topographical density distribution. 

 
6. Conclusions 
 
The mean value of gravity (generated by the solid Earth without the atmosphere) along the plumbline 
between the geoid and the earth surface (Fig. 11) is described as a sum of the mean normal gravity 
between the ellipsoid and the telluroid (Eq. 6), the correction to normal gravity for geoid undulation (Eq. 
7), the mean geoid-generated gravity disturbance (Eq. 11), and the mean topography-generated 
gravitational attraction (Eq. 14). The mean topography-generated gravitational attraction consists of the 
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mean gravitational attractions caused by the spherical Bouguer shell of density o�  (first term in Eq. 14), 
the terrain roughness term (second term in Eq. 14), and anomalous topographical density distribution 
(third term in Eq. 14).  
Minimum, maximum, and average values of orthometric heights (Fig. 12), geoidal heights (Fig. 13) and 
the lateral variation of the topographical density (Fig. 14) at the testing area oo 55,50∈ϕ , oo 239,235∈λ  

in part of the Canadian Rocky Mountains are in Tab. 1. The results of the numerical investigation of all 
components to the mean gravity are summarized in Tab. 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 11: Mean values of gravity along the plumbline between the geoid and the earth surface  
at a part of the Canadian Rocky Mountains. 

 
                                    Tab. 1: 

 Min. Max. Average 
Orthometric Heights [m]  

(Fig. 12) 
4 2736 1166 

Geoidal Heights [m]  
(Fig. 13) 

-17.17 -11.90 -14.63 

Anomalous Lateral Density [g.cm-3]  
(Fig. 14) 

-0.18 0.31 0.04 
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         Tab. 2: 
 Min. 

[mgal] 
Max. 

[mgal] 
Average 
[mgal] 

Mean Normal Gravity 
(Fig. 2) 

980751.5 981392.1 981111.0 

Correction to Normal Gravity for Geoid Undulation 
(Fig. 4) 

3.7 5.3 4.6 

Mean Geoid-Generated Gravity Disturbance 
(Fig. 5) 

-169.2 128.2 -14.6 

Mean Gravitation Attraction of Spherical Bouguer Shell 
(Fig. 7) 

0.0 286.1 130.4 

Mean Gravitational Attraction of Terrain Roughness Term 
(Fig. 8) 

-64.3 35.0 -2.1 

Mean Gravitational Attraction of Anomalous Topographical Density 
(Fig. 10) 

-10.1 29.0 2.3 

Mean Gravity 
(Fig. 11) 

980858.5 981517.1 981232.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12: Terrain at a part of the Canadian Rocky Mountains. 
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Fig. 13: Geoid at a part of the Canadian Rocky Mountains. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig: 14: Lateral variation of topographical density at a part of the Canadian Rocky Mountains. 
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