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Abstract 

 
 

Fourier analysis is not a suitable tool for analysing data series with gaps.  Filling the gaps 
with invented data becomes unacceptable when large gaps (several years in our case) are 
present.  The Least Squares Spectral Analysis (LSSA) has been shown to be more 
suitable for analysing such data series in a variety of applications in astronomy, 
geophysics and geodesy.  
 
In the past half a year, we have been processing such a gappy series, covering the period 
between 1989-1999 with a one-second step, of gravity data from the Canadian 
superconducting gravimeter. We started with the highest frequencies and are heading 
towards looking for lower and lower frequencies. In our preliminary tests, we have 
detected two frequency bands, around the periods of 7 and 20 seconds, with significant 
power.  A noise of an unknown origin (microseismic, cultural noise, instrumental?) 
appears to excite the gravimeter characteristic frequencies in these two bands.  For the 
purpose of our analyses, we can suppress this noise by suitably averaging the data. 
 
We also had the first look at periods of the order of minutes to a few hours and have not 
seen any spectacular signal on these periods. In the next step we will focus on time 
intervals immediately following large earthquakes to see if the earth characteristic 
frequencies can be gleaned from the data. After deciding on suitable averaging/filtering 
of the data (45 minute averages, 1.5 hour averages?), analysis of the tidal signal, and its 
removal from the series will follow.  Given the length of the series, the tidal analysis 
should yield exceptionally accurate (home generated) results, which alone are of interest.  
The really interesting part of the research will be then done on the residual series. 
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1. A few remarks on the method 
 
Given a time-series ∈)(tf H, ti = 1,2…m, and its Cf , the LSSA detects the periodicities 
(periodic or systematic signals) in f when f contains either random or systematic noises, 
or both. The Least Squares Spectrum is defined as (Vanícek, 1971) 
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for trigonometric base functions Φ , where  g = Φ ⋅ x  models  f  by Vandermonde matrix 
Φ = [ΦS, ΦN]  and a vector of unknown parameters xT = [xS | xN] T  that includes signal 
(sub. S) and noise (sub. N) components together. Practically, the signal-noise separation 
is achieved by 
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where decomposition of  f into g and r̂  follows from the projection theorem gr ˆ  ˆ ⊥ . For 
the time-series’ that are long enough (over 150 data points) and with high significance 
levels, it does not matter whether the series  f  does or does not have its (known) 
covariance matrix Cf . 
 
Unlike the Fast Fourier Transform (FFT), by using the LSSA we do not remove 
periodicities – rather we model these. The advantage is in avoiding what is unavoidable 
with the FFT – the bias that comes from a lack of general knowledge about the periods in 
nature. On the other hand, introducing or enforcing a systematic function (model) that 
can be, e.g., periodic, does not affect a signal significantly. An important property of the 
LSSA lays then in its invariance with respect to the enforced systematic noise. Besides, 
the functional (model-) representation of the naturally periodic phenomena enables one to 
use the presently available knowledge on these phenomena (tides, seasonal weather, etc.), 
and regard it as sufficient. Periods can indeed be regarded as unknown and theoretically 
treated as such thereof, but in practical work there is no a viable justification for this. 
 
Since interested in physics behind the data, we intend to apply an approach that 
represents the above phenomena mathematically: from the astronomical facts – luni-solar 
tides, from the measurement records – pressure, temperature and the instrument behavior 
with error assessment, and from the meteorological data – the weather formations. The 
latter phenomenon is at the same time the most challenging one, and we hope for it to 
attain a clearer form once our task of analyzing the entire gravity data altogether with the 
year-gaps, by least squares, is brought to an end. Then, we ought to be able to see such 
known constituencies like, e.g., Chandler period (~435 days), lunar perigee (~8½ years), 
crustal ringing due to post-quake impulse oscillations, and others, but also to find more 
about the not-so-well-known ones: El-Niño and La-Niña (3½-7 years?), etc. 
 
More on the Least Squares Spectral Analysis and on its statistical aspects can be found in, 
e.g., Pagiatakis (1999). 
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2. Data set 
 

The data that we had at our disposal consisted of 7,399 files covering the period between 
1989-1999. Each file represented a single day in the superconducting gravimeter’s 
operation, opened at 00:01 hrs and closed at 24:00 hrs. The instrument was employed at 
the f = 1Hz level, with a satisfying level of maintenance, revealing on average less than a 
few hundred false measurements or measurements not taken at the correct time (each 
second) per file (day). Some years contained no gravity records (1989, 1990) but were 
fully to nearly-fully populated with meteo-data (pressure). The largest gap in gravity data 
coverage was between years 1992-1996, whereas year 1993 contained no data of any 
kind. The total size of the dataset was 2.22 GB. The calibration factor used in our 
analysis was 78.48 µGal/Volt, as per personal communication with Spiros Pagiatakis.  
 
 
 

 
 

        Figure 1. Data size vs. the processing speed. 
 
 
In order to be able to acquire a certain data density, we ran several tests using ten two-
thirds-of-a-day fully populated data sets at 1Hz, chosen at random among the years 1991 
and 1992 data. These were from all four seasons, so as to enable propagation of the 
possible microseismic impact on the instrument’s behavior, most strongly pronounced in 
winter. Resolution used was between 1000-2000 points. This quite a detail does not come 
as a surprise, since the irregularity in peak-generation by graphing software could result 
in artificially smoothed peaks. This could cause unreliable judgements, and thus seriously 
endanger the importance carried by the shape of the peaks. On the other hand, whenever 
possible, to avoid the above (Fig.1) processing speed problems the resolution was kept 
down on the 1000 pts level. 
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3. Characteristic frequencies of the gravimeter 
 
A zone of peaks at ~20sec and ~7sec periods in eight out of ten test results was detected, 
most remarkably represented by Fig 02, and it could not, using the available literature 
(Bengert, 1996), be related to a known instrumental behavior. It could perhaps be 
ascribed to the cultural or other causes, as its microseismic origin would not appear to us 
in a clear form (test datasets spanned over all four seasons). The other 2 tested datasets 
had nearly flat LS spectrum. 
 

 
Figure 2. The most significant LSS of ten examined randomly chosen days. 

 
 
The same data (Fig 2) was then, as containing the most significant high-frequency noise 
characteristics, picked for determining the proper decimation technique: if a constructed 
filter satisfied for this one, it will as well satisfy for all other data. 
 
 

  
 

Figure 3. A pair of one-week data sets; red is the LS spectrum,  
blue is power spectrum (in dB). 
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Figure 4.  The Least Squares Spectra of the weeks 05 and 06 of year 1992, individually. On the 
left hand-side are odd, and on the right-hand side even weeks. Data decimated using the boxcar 
filter with  l =100, k=100. Bandwidth of interest: tidal (periods between ¼ of a day to 2½ days). 

Note the disturbance in the even-week LS spectra, due to the fortnightly tidal periods. 
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4. Decimation technique 
 
Decimation is a necessity: by approximating the CPU time vs. data size plot (Fig.1) by a 
third-order polynomial accurate within 2%, one can easily extrapolate that a six-week-
dataset (such as the one used in Fig.5) LS spectrum computation (without enforcing 
periods), if taken at the rate at which the data was collected (i.e. 1Hz), would require over 
4½ years of processing time on a PIII @ 500MHz. 
 
The decimation technique used in the following was boxcar. This is a moving average 
filter with a uniform distribution. The algorithm is simply: 
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where, after conducting several tests, the parameter values of  l = 100  and  k = 100 where 
selected. 

 

 
 

Figure 5. The Least Squares Spectra of a six-week data set (first six weeks 
of year 1992). Data decimated using the boxcar filter with  l =100, k=100. 

Bandwidth of interest: tidal (periods between ¼ of a day to 2½ days). 
 
Enforced periods (cf. Hou, 1991): 
 

13.4098257   15.0424341   28.9840259 
13.9426854   15.5742444   29.5159428 
14.5057965   28.4395041   29.9977268 º/hr 
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Figure 6.  The Least Squares Spectra of a six-week data set (first six weeks of year 
1992). Data decimated using the boxcar filter with  l =100, k=100. Bandwidth of 
interest: tidal (periods between ¼ of a day to 2½ days). Shown is the LS spectrum 
(top) after enforcing 6 tidal periods from the Table of Lumped Constituents (Hou, 
1991). The bottom image shows the same, but scaled down 10x along the y-axis. 
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Figure 7. The Least Squares Spectra of a six-week data set (first six weeks of year 
1992). Data decimated using the boxcar filter with  l =100, k=100. Bandwidth of 
interest: tidal (periods between ¼ of a day to 2½ days). Shown is the LS spectrum 
(top) after enforcing 9 tidal periods from the Table of Lumped Constituents (Hou, 
1991). The bottom image shows the same, but scaled down 10x along the y-axis. 
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