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Abstract. In this paper we formulate two corrections that
have to be applied to the higher-degree reference spheroid
if one wants to use it in conjunction with the Stokes-
Helmert scheme for geoid determination. We show that in
a precise geoid determination one has to apply the
correction for the residual topographical potential and the
correction for the earth ellipticity. Both these corrections
may reach several decimetres; we show how their
magnitudes vary within Canada and we give their global
ranges.

Introduction

In Vaniek and Martinec, [1994] we explain the idea
behind the Stokes-Helmert scheme for precise geoid
computation. We define the “Helmert potential” W as the
difference between the real gravity potential W and the
residual topographical potential, V. Neglecting the
atmospheric attraction effects, the residual topographical
potential in the Stokes-Helmert approach is defined as

V=vtovye )

where VU is the potential of topographical masses trapped
between the earth’s surface and the geoid, and V¢ is the
potential of the “Helmert condensation layer” on the geoid;
the use of Helmert’s second method of condensation is
thus implied.

In Vani¢ek and Sjoberg [1991] we show how the
classical Stokes theory for geoid determination, conceived
for computing geoidal height above a reference ellipsoid,
can be reformulated for a higher-degree reference field. We
argue that a higher-degree reference field, with a higher-
degree reference spheroid generated as an equipotential
Surface of the reference field (cf., with the standard Stokes

technique), accords a better utilization of local gravity data.
=
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In particular, this generalization gives a smaller truncation
error when the Stokes convolution integral, applied to the
observed gravity reduced for the reference field, (cf., with
the standard Stokes technique) is truncated to a spherical
cap of small radius.

In this paper, we look at the possibility of generalizing
the Stokes-Helmert scheme in a way that would take
advantage of using a higher-degree reference field. We
assume that the higher-order field is described by a set of
potential coefficients and investigate the steps to be taken
before the coefficients can generate the reference field. We
show that the potential coefficients have to undergo several
corrections before they can be used to generate the
reference spheroid for the Stokes-Helmert scheme and
before they can generate the reference gravity to be
subtracted from the gravity observed at the earth’s surface
and reduced to the geoid.

Throughout our derivations, we assume that the potential
coefficients we are interested in using were obtained from
satellite orbit analyses. The reasons for limiting ourselves
to only a relatively low-degree reference field and to solely
satellite-determined potential coefficients are explained in
Vanftek and Sjoberg {1991]. The optimal degree of
reference field we have settled on is 20, and we have used
this cutoff degree extensively (cf., VaniZek and Kleusberg
[1987] and Vanitek et al. [1990]). We use this cutoff
degree 1.=20 also in this paper; the expressions for the
corrections are given for an arbitrary degree L but the
numerical results are obtained for L=20.

Transformation of the Reference Field into the Helmert
model

Let us begin by writing the usual spectral expression for
the gravity potential; namely,
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n=2 r m=-n

where GM is the geocentric constant, W, are the
potential coefficients, r is the length of the radius vector
from the center of mass of the earth, a is the major semi-
axis of the reference ellipsoid used, Yy, is the normalized
spherical function of degree n and order m, and Q is the
geocentric direction defined by geocentric co-latitude 6 and
longitude A. The reference potential consists of the first L
degrees (for L read typically 20) of the above series and it is
this potential that we are interested in transforming into the
Helmert mcdel (space) by subtracting, from it, the direct
wpographical effect.

The residual topographical petential (eqn. (1)) has been
treated in detail by Martinec and Vanicek {1994]. Here we
briefly show the derivation of the expression for the effect
in a spectral form. The spectral form is more convenient
here because the effect can then be easily subtracted from
the reference field. We begin by writing the standard
Newton integral for the potential of topographical masses
in spherical approximation

vicQ) =
(642 3)
dz

H' 2
G —————— (R+2)"dQ" ,
p"f 'fz=0 8(r,Q,R+Z,Q)( )

where G is Newton's universal constant, R is the mean
radius of the earth, pg is the mean topographical density,
H’ is the terrain height reckoned along the radius vector
equal to a sufficient accuracy to the orthometric height, see
(Vanicek and Martinec, 1994), and € is the spatial distance
between points (r,L2) and (R+z,Q2"). We know that the
representation of actual topographical density p by its mean
value pg may be too coarse an approximation and we shall
discuss this point later on.

We now turn to the mathematical details. Let us first
develop the reciprocal distance £! into an infinite series in
Legendre polynomials Pp(cos )

1 1 = [R4z\D
12 L_ — z(“)(_rl) P,(cos ), (4)
n=

convergent for r > R+z. Here, W is the geocentric angular
distance between Q and Q’. Substitution of eqn. (4) into
eqn.(3) yields
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n=0
x (R+z)2dzdQ ,

R+z\"
(TZ) P,(cos y) x (5)

which, for r > R+z, i.e., for points outside the Brillouin
sphere (minimal geocentric sphere containing all the earth
mass), can be rewritten as

oo

Vi Q) =Gpy Y, (l)m X
L] -~ 0 r
n=0

H n+2 ‘
x fQ, P, (cos ) fz , R+ %dzdQ

Since the series is convergent, the integral in z may be
easily evaluated using the binomial theorem, giving

w w2 R3S
.Lo (R+2) dz= n+3 kgi( k ) R @

so that the final expression for the topographical potential
at points outside the Brillouin sphere becomes

ViE) ~ Gp RS (5 AL
o\r n+3

n+3 "k
+3 H ’
xz(ﬂk )L (E) P_(cos y) dQ. .

k=1

The potential of Helmert’s condensation layer on the
geoid, implying the use of Helmert’s second method, is
now to be subtracted from V!. When defining the
condensation layer, we first decide what form of
condensation we want to employ. Here we choose to use
the condensation scheme that preserves the position of the
centre of mass. The reason for this choice is that when the
direct effect is expressed in the spectral form, the terms of
degree 1 are identically equal to zero. The spectral form of
the reference field in Helmert’s space then does not contain
terms of degree | either, and the field is properly expressed
in geocentric coordinates as required in the Stokes theory
[Vanitek and Krakiwsky 1986]. Wichiencharoen [1982] and
Martinec {1993] show that the following condensation

2 3
o(©Q) = pQ) HEQ) | 1+ 208D | HE) HE)

2R R? 4R*
9)
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rigorously preserves the centre of mass. Here ¢ stands for
the areal density of the condensation layer, and p is the
mean density of the topographical column.

Now, the potential of the condensation layer can
be expressed as

V(r,Q) = GR? —E(EZ)—,— dQ’. (10)
Q L(r,QRQ)

After substitution from eqn. (9) and taking the mean value
of topographical density, we get

VE(r,Q) = GR?p X

/2 /3 /4 (11)
f - 3H H H
X H+ + +
Q 3

2ldq’
2R R?Z 4R

As above, we can develop the reciprocal distance

1 1w (R)
(4 _2 Z(—r—) Py(cos v) (12)
n=0

into a series of Legendre polynomials, and forr > R we
finally obtain

00 n+l
V() =~ GR%p, (-I})

n=

weae) (5] (&)

X P (cos y) dQ’,

Q/

(13)
since the series in eqn. (12) properly converges.
Subtracting the condensation layer potential from the

topographical potential, we arrive at the residual
topographical potential

V() = GpoRzZ (B)* x

I " n+3 H ¥ .
X —_ -
{ n+3 k=1 ( k )fQ/ R Pn(COS W) da2

| H s (Y ey
IR T2\RJ T\R) TaR
x P (cos ) dQ’}.

The summation over k converges very quickly, since
H’«R, and we can safely truncate it at degree 3. Then egn
(14) can be rewritten in a more transparent form as

V(r,Q) = GpgR* Z( )on

n=0

’ 7
n-1 H | ‘
T f , ('E) Pn(COS W) dQ +

. n243n-4 f
6 5

It is now easy to see that the first degree term is equal 10 0,
as expected, and neglecting over the 3rd degree term, the
residual topographical potential becomes

HY :
E) Pn(COS W) dQ } . (15)

H24Q +
2r 04

Gp, & ,
+ 20 8 (R gy f H2P_(cosy) dQ2,
QI

(16}
where the first term is the zero-degree residuul
topographical potential V. Expressing the Legendrc
polynomials as sums of products of harmonic functions,

4" Z Yim(€) Yom(©Q), (7

m=-n

Pn(cos y) =

we finally obtam

V() =Vy+ 2nG 2 —\nﬂf )
TARE Y0 Po = r} t2n+1 :
0 (18)
X ¥, (H)nm Yom(),
m=-n

where the higher than second degree terms in H were left
out. This is possible because for the first L degrees, the
error caused by this approximation is smaller than
(L+ 1)/2*10°3, which, for L = 20, amounts to about 1%.
The symbol (H2)nm denotes, of course, the harmonic
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coefficients of squared topography. We note that the value
of Vg at the earth’s surface r =R can be evaluated from a
global topographical model. Using the TUG87 model
(Wieser, 1987], we obtain the value for the corresponding
displacement of the equipotential surface

Vo .
No=—=-4cm. (19)
Yo

The transformation of the potential coefficients into the

Helmert space (to get the Wrr,‘m coefficients), which we set

out to do, is carried out by subtracting the coefficients of
the residual topographical potential

n-1
Vn22,m: V= 21Gpg 53— H?) (20)

from the corresponding potential coefficients Wy, of the
reference field. When computing the reference spheroid of
degree L in the Helmert space, the residual topographical
potential above is replaced by the residual topographical
potential on the geoid and divide by normal gravity 7.
The zero-degree correction above, Ng, must then be
subtracted from Helmert’s reference spheroid.

We have evaluated the residual topographical potential V
on the geoid globally from the TUG87 model, for L = 20
(including the zero-degree term), divided it by yp, and found
it to be between -13 cm and +18 cm. A plot of the effect
for the territory of Canada is shown in Figure 1.

A comment on the use of mean topographic density pg
1s in order. From eqn.(20) it seems that to achieve the one-
centimetre accuracy everywhere in the world, regional
density anomalies should be considered. In most parts of
the world, including Canada, however, the mean
lithospheric density of 2.67 g/cm3 used in our calculations
above will be good enough.

Evaluation of Helmert’s Reference Spheroid

Let us now assume that the potential coefficients of the
reference tield have been corrected for the residual
topographical potential and thus transformed into the
Helmert space. The Helmert reference potential can then be
written as

n=2 r

L n
GM a n+1
whrQ) = —- Y (—) 3 wh oy ().
m=-n

@10

We note that because the summation is finite, the validity
of this expression is no longer limited to the outside of the
Brillouin sphere; we can use this expression anywhere on
and above the geoid. To compute the reference spheroid in
Helmert’s space, we have to evaluate this series for
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r(Q)= rg(Q), (22)
where rg denotes the distance of the geoid from the centre

of the earth; this is now clearly permissible.
To do so, let us write rg for the time being as

r(Q)=a(l+Q)), (23)
where 8(2) is a quantity of the order of flattening of the

reference ellipsoid, i.e., much smaller than 1. Then, for
n<20, we obtain

a n+! )
(—r—) =1-(n+1)d+0 (). (24)
g

To an accuracy better than 5*10-3, § may be taken as the
leading term in the expression for the length of the radius
vector of the reference ellipsoid, 1.e.,

Q) =- fcos’ 0 (25)

see, for instance Bomford [1980, p. 432]. The equation for
the Helmert reference potential on the geoid becomes

L
Wh(r,Q) = g 5 1+f3’21(1+ cos 20 )| x
26)

n=2

n
X Y WY ().

m=-n

It might be expedient to express this “flattening effect”
in the form of a correction 3W! 1o the Helmert reference
potential Wh. From eqn.(26) we easily get

L
SWh(Q)z—g (1+c0s20) (n+1)x

n=2

] 27)
X Y W Yom(Q).
m=-n

We have evaluated this correction for the territory of
Canada and the results, expressed in values of this !
correction are: -88 cm and +65 cm. The potential
coefficients (up to 20,20) used in this evaluation are taken
from the GRIM4-S4P [Gruber and Anzenhofer, 1993]
global solution.

The last task to be performed is to transform the total
Helmert potential Wh to the Helmert disturbing potential
Th. “This is done simply by subtracting the appropriate
normal potential from the Helmert potential. Division by
an appropriate value of normal gravity, finally yields the
desired reference spheroid. We note that it is the gradient of
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