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Abstract In this paper we simulate a model geodynamic event generated by a magmatic heat
source represented by a point source of heat embedded in an elastic halfspace. This simplistic
model, which can be considered relevant to geodynamic studies of volcanism, produces a
thermoelastic displacement field generating a perturbation density distribution. Both the
displacements and the perturbed density produce a gravity anomaly on the surface of the halfspace.
The objective is to demonstrate that this gravity anomaly, being a change in the surface gravity
caused by such a model geodynamic event, can be interpreted using the truncation methodology,
i.e., by transforming the gravity anomaly into a sequence of surfaces or profiles of the truncated
geoidal heights and interpreting such sequence instead, in exactly the same fashion as described in
Vajda and Vaníèek [1999a]. The idea behind this simulation, demonstrated on a case of one point
source, is that density perturbations caused by geodynamic events can be interpreted from temporal
changes of gravity anomalies analogically as the anomalous density can be interpreted from gravity
anomalies with help of the truncation methodology. In turn the interpreted density perturbations can
give insights on the nature of the geodynamic events as well as estimates on the depth of their
origin.

1. Introduction

In deformation modeling and prediction, the most interesting effects are those, which in principle
can be detected on the surface of the earth prior to an eruption. The surface temporal change of
gravity is an example of such observable piece of information. Hvoždara and Brimich [1995]
approximated a magmatic intrusion in earth’s crust by a point source of heat in order to model the
stress and displacement distribution within an elastic homogenous halfspace, the heat flow, and the
temporal change of gravity on the surface of the halfspace. Their model study will serve here as a
basis for our synthetic investigations, the aim being to indicate one possible way of interpreting the
temporal change of gravity in terms of the depth of the source of heat.

The objective of this paper is to demonstrate that the truncation methodology, a particular
gravity inversion technique based on the interpretation of the truncated geoid [Vajda and Vaníèek,
1999a]; [1997], so far developed only for density distributions represented by point masses, can
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also be applied in geodynamic studies. Let us therefore briefly describe the truncation technique, as
we used to refer to it, first.

Vajda and Vaníèek have studied the possibility of using the truncated geoid, which is an
incomplete geoid, defined below, in the gravimetric inverse problem, or in other words, for gravity
data interpreting. The truncated geoid is defined by the Truncated Stokes integral transform (cf. e.g.
Vajda and Vaníèek [1999a], eqn.(1), or [1997], eqn.(1) and Fig.1)
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where, just to recall, R  is the radius of the reference boundary sphere (mean earth’s radius for our
purposes), γ  is normal gravity, ( )ϕ λ,  and ( )′ ′ϕ λ,  are the horizontal positions of the computation

point and the integration point on the reference surface respectively, ψ 0  is the spherical radius of
the spherical cap being the integration domain ( )0ψℜ  and is referred to as the truncation radius or

the truncation parameter, ∆g  is the gravity anomaly, and N oψ  is the truncated geoidal height, The
integral in eqn.(1), which transforms the gravity anomaly into a truncated geoid, may be understood
as a linear filter - a weighted spherical window filter - with the Stokes function S [Stokes, 1849],
the kernel of the convolution integral in eqn.(1), being the weight. Thus the interpretation of the
gravity anomaly is transformed into the interpretation of the truncated geoid. Note that the truncated
geoid has one free parameter, the truncation radius, which controls the size of the window used in
the filtering procedure mathematically described by eqn.(1). This is why it would perhaps be more
accurate to refer to the truncation technique as the „truncation filtering“. In the gravity interpretation
by means of the truncated geoid, not just one truncated geoid (a surface or profile of the truncated
geoidal heights) at a specific selected value of the truncation parameter is used, but a whole
sequence of the truncated geoids with the value of the truncation parameter being varied
systematically is interpreted. Such sequence is denoted as the TG sequence. A sequence of the first
derivative of the truncated geoid with respect to the truncation parameter for the same sequence of
the values of the truncation parameter as in the TG sequence, denoted as the DTG sequence, is
interpreted along with the TG sequence, this being considered a data enhancement technique.

Vajda and Vaníèek used the computer simulation to produce synthetic gravity anomalies
generated by point mass anomalies, and the TG and DTG sequences computed from such synthetic
anomalies were studied with the aim of developing the interpretation know-how. The computer
simulations have proved that the truncated geoid is a suitable tool in gravity inversion.  A
methodology for interpreting synthetic gravity data (generated by sets of point masses) with help of
the truncation filtering - weighted spherical windowing (linear spatial filtering using the TG and
DTG sequences) was developed and at that time denoted as the truncation technique (Vajda and
Vaníèek [1997], [1999a]). It is proposed, although not yet tested, that this filtering be used on real
gravity data to yield maximum depth to source estimates for pronounced isolated gravity anomalies.
Work on developing an interpretation know-how based on the truncation filtering for real density
distributions is in progress.

The gravity interpretation using the truncation filtering is illustrated on a case of one point
mass anomaly in Fig.1, which presents the TG and DTG sequences generated by a negative point
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mass located at the depth of 4 km. In this figure, the profiles that are animated on the computer are
drawn all in one plot, hoping that the transparency is not lost and that the reader can follow the
evolution of the sequence (cf. also the more detailed comments to Fig.4 in Vajda and Vaníèek
[1999a]).

Fig.1

Fig.1 The synthetic TG (a) and DTG (b) sequences generated by one negative point mass
anomaly at the depth of 4 km. The sequences are computed for the values of the truncation
parameter ψ 0  (in degrees of arc) from 0.1123 to 2.25 10-3 with a step of 2.25 10-3; for the TG
decreasingly, for the DTG increasingly.

The above sequences are interpreted as follows: The horizontal position (e.g. latitude and
longitude, or plane x and y coordinates) of the point mass coincides with the horizontal position of
the high (positive point mass anomaly) or the low (negative point mass anomaly) of the TG or the
DTG. The depth of the point mass is determined from the onset of the so called dimple event (for a
negative point mass the sequence is up-side-down and there we should talk about a pimple event),
that is observed in the DTG sequence (cf. Vajda and Vaníèek [1999a])

][]/[82.135][ 0
oo& ∗= ψkmkmd , (2a)

where d is the depth of the point mass in kilometers and ∗
0ψ  is the instant of the dimple onset, i.e., a

particular value of the truncation parameter, at which the dimple sets on in the DTG sequence,
given in degrees of arc. When evaluating the TG and DTG sequence in planar approximation and
using a planar truncation parameter ∗

0s  given in kilometers rather than in degrees of arc, cf. [Vajda
and Vaníèek, 2000], the relation between the depth of the point mass and the instant of the dimple
onset reads

][][ 0 kmskmd ∗=   , (2b)

For more details on interpreting the gravity anomalies in terms of sets of point mass sources the
reader is referred to Vajda and Vaníèek [1997].

2. Interpreting temporal changes in gravity anomalies by means of the truncation
            filtering

As seen above, the three dimensional position of a point mass anomaly can be determined by
interpreting the TG and DTG sequences, i.e., by using the truncation filtering. Let us now assume
that a gravity anomaly ( )1tg∆  given at a time instant 1t  changes over a time period of 12 ttt −=∆  to a
new gravity anomaly of ( )2tg∆  due to some enforced geodynamic event. So the change in the gravity
anomaly in time reads

( ) ( )12 tgtggt ∆−∆=∆  . (3)
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Note that the position argument was omitted in eqn.(3), so that this expression may represent a
temporal change in the point gravity anomaly, a temporal change of a gravity profile, or a temporal
change of a surface of gravity anomalies. When the geodynamic event is such, that it has impact on
the mass (density) distribution below the reference surface, on which the gravity anomaly is given -
measured and reduced to, or computed at in case of synthetic case studies - i.e., the mass
distribution undergoes changes over the time interval specified above, the gt∆  is different from
zero and may be interpreted in the same way a gravity anomaly itself is interpreted.

By replacing the gravity anomaly in eqn.(1) with the temporal change of the gravity
anomaly, we obtain a prescription for transforming the temporal change of the gravity anomaly into
the space of the truncated geoid

( ) ( )∫∫
ℜ

′′′′∆=∆
)(

),,,(,
4

,
o

o dSg
R

N tt

ψ

ψ σλϕλϕλϕ
πγ

λϕ  . (4)

We can refer to quantity oNt ψ∆  as the temporal change of the truncated geoid at a value of the
truncation parameter of 0ψ , since the integral transform of eqns. (1) and (4) is linear and non-
singular (cf. e.g., Vaníèek et al. [1987]) and it holds true that (again omitting the position
arguments):

( ) ( )12 tNtNN ooot ψψψ −=∆  , for any ψ 0  (5)
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By computing the temporal change of the truncated geoid for a sequence of values of the truncation
parameter, we can construct the TGt∆  sequence to be interpreted, similar to the construction of the
TG sequence in the above section. Analogically we can construct a DTGt∆ sequence representing
the first derivative of the temporal change of the truncated geoid with respect to the truncation

parameter. This sequence is composed of the 
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Numerically the DTGt∆  sequence is evaluated by differencing the TGt∆  sequence and dividing
each difference by the step in the truncation parameter 0ψ∆ . For numerical aspects of transforming

the gt∆  to oNt ψ∆  and thus constructing the TGt∆  sequence, the interested reader is referred to

Vajda and Vaníèek [1998]. When computing the TGt∆ and DTGt∆ sequences in planar coordinates,
the truncation parameter 0ψ  is replaced by the planar truncation parameter 0s  , cf. [Vajda and
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Vaníèek, 2000]. Once computed, these two sequences are to be interpreted exactly in the same
fashion as in the above section.

3. A synthetic example - a gravity anomaly caused by the thermoelastic deformation of
            the halfspace due to a point source of heat

The concept of applying the truncation filtering in geodynamic studies is illustrated on a synthetic
case study for a gravity anomaly generated by a model geodynamic event - a thermoelastic
deformation of a halfspace caused by a point source of heat.

Let us first introduce the mathematical apparatus for modeling the said geodynamic event. A
static non-uniform temperature field T(x,y,z) in an elastic medium produces a thermoelastic
displacement field u

r  satisfying the Lamé equation (e.g., Nowacki [1962])

( ) ( ) Tgradugraddivudivgrad T µλαµµλ 23 +=++
rr  , (8)

where µλ ,  are the Lamé elastic parameters, and Tα  is the thermal coefficient of the linear
expansion. The term ( ) TgradT µλα 23 +  represents the force in the equation of the elastic
equilibrium (eqn.(8)). Selecting a point heat source located at (0,0,d) with the heat power w in
Watts, the temperature field, assumed static, satisfies in a homogeneous medium the following
equation (e.g., Hvoždara and Brimich, [1995]):

)()()( dzyxwTgraddivT −−= δδδλ   , (9)

where Tλ  is the heat conductivity and d is the depth of the point source. The temperature field due
to such point source is axially symmetric with respect to the z axis T(x,y,z)=T(r,z), where

22 yxr += . By setting forth a boundary condition (Nowacki [1962])
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0

=
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zrT  , (10)

this being a somewhat artificial condition, physically corresponding to having an equivalent but
negative heat source at height d above the boundary z=0 (the upper halfspace having the same heat
conductivity Tλ ), we arrive at the expression for the temperature field
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 , (11)

where

( )22
1 dzrR −+= , ( )22

2 dzrR ++=  . (12)

Substituting the temperature field into eqn.(8), it yields the solution for the thermoelastic
displacement Tu

r  (subscript T stands for „thermoelastic“), cf. [Hvoždara and Brimich, 1995]
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where ( ) ( )[ ] 1
2823

−++= µλπλαµλ TTwA  and ( )µλλν += 2/  is the Poisson ratio.

The scenario for our modeled geodynamic event is as follows: Prior to the time instant 1t

the heat source remains switched off and the halfspace has a constant density 0ρ  producing no
gravity anomaly on the boundary z=0, thus having

( ) 01 =∆ tg  . (14)

Then the point heat source at depth d is switched on. At a time instant 2t  the system reaches a
thermal equilibrium with the boundary condition of eqn.(10) with thermal displacements of
eqn.(13) producing a new and non-uniform density distribution 0),(),,( ρρρ ≠= zrzyx , and an uplift
of the halfspace. Both the uplift and the non-uniformity of the density generate a gravity anomaly at
and after the instant 2t

 ( ) ( ) ( )22212 tgtgtg ∆+∆=∆  , (15)

where the non-uniform density generates ( )21 tg∆  and the uplift generates ( )22 tg∆ . As was already
mentioned, the non-uniformity (perturbation) of the density distribution is caused by the
thermoelastic displacement, according to (cf. [ibid.])

Tudivzr
r

00),( ρρρ −=  . (16)

The thermoelastic density perturbation Tudiv
r

0ρ−  generates ( )21 tg∆  that can be computed from the
perturbation potential PV  [ibid.] satisfying the Poisson equation below the boundary, κ  being the
gravitational constant,

 TP udivzrVgraddiv
r

04),( πκρ=  , 0≥z  , (17)

and the Laplace equation above the boundary

0),( =zrVgraddiv P  , 0<z , (18)

with help of the boundary conditions stipulating that the perturbation potential and its first
derivatives must be continuos at the boundary z=0, as

( )21 tg∆ =
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z
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For that sake we need to evaluate the r.h.s. of eqn.(17), cf. [ibid.]:



Vajda, Brimich, and Vaníèek - Geodynamic applications of .... sub to J. of Geodynamics

PREPRINT last edit April 4, 2000 page 7

( ) ( ){ }3
2

1
2

1
1 2122 −−− +−+−= RdzdRRAudiv T ν

r  , (20)

which results in
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The ( )22 tg∆ , being a consequence of the vertical uplift, is expressed as [ibid.]

( )22 tg∆ = ( )Tzu
z 
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where 
z∂

∂γ  is the vertical gradient of normal gravity and the displacement is given by eqn.(13).

Hence our synthetic (modeled) temporal change of the gravity anomaly reads, cf. eqns. (3) and (14)

=∆ gt ( ) ( )2221 tgtg ∆+∆  (23)

and is evaluated by substituting from eqns. (21) and (22). Now the synthetic TGt∆  and DTGt∆
sequences can be computed and interpreted.

The model that is presented here was constructed with the following parameters: the point heat
source is located at the depth of 4 km, its heat power w = 6.596 106 W, the halfspace having the
following material properties: 0ρ  = 2 670 kg/m3, Tλ = 3 Wm-1K-1 , Tα  = 10-6 K-1, λ  = 7.05 1010 Pa,
µ  = 6.075 1010 Pa. The resulting gravity anomaly is presented in Fig.2.

Fig.2.

Fig.2 The temporal change of gravity anomaly caused by the model heat source.

Fig.3.

Fig.3 The DTGt∆  sequence, caused by the model point heat source at the depth of 4 km - a
detailed view. This sequence is computed in a planar approximation and the values of the
truncation parameter are in kilometers. The step in the truncation parameter in the sequence is
0.5 km.

Figure 3 presents the DTGt∆  sequence generated by our model. Again the sequence that was
animated on a computer is displayed here with all the profiles drawn in the same plot, hoping that
the reader can follow the evolution of the sequence. The sequence evolves in a way resembling the
evolution of a DTG sequence generated by one point mass anomaly, cf. Fig.1b. From this we
conclude that the temporal variation of the gravity anomaly is generated by a temporal change
(perturbation) of the density distribution that is either a „point mass perturbation“ or a radial
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perturbation density field. The dimple (pimple) sets on at the value of ∗
0s  = 5.75 km ±  0.5 km

(Fig.3b), from which the depth of the „point mass perturbation“ or of the center of the radial
perturbation density field is determined (cf. eqn.(2b)) as d = 5.75 km ±  0.5 km. What this means is
that by direct processing of data on the temporal change of the gravity anomaly we have constructed
a DTGt∆  sequence that yielded the interpretation that the temporal change of gravity was caused by
a point source located at a depth of  5.75 ( ±  0.5) km.

Fig.4

Fig.4 The perturbation density field produced by the point heat source after reaching thermal
equilibrium. The horizontal axis is distance from the point heat source in meters, the vertical
axis is depth in meters.

We observe immediately, that our interpretation is precise to 500 meters and inaccurate by
1.75 km. The precision is given by the step in the planar truncation parameter. But what causes
such a bias (offset) in the determination of the depth of the heat source? Since we are interpreting a
synthetic case and we know the model, we can take a look at the perturbation density given by
eqns. (16) and (20) - it is portrayed in Fig.4. The perturbation density field is only nearly radial,
the deviation from being radial being caused by the boundary condition of eqn.(10). However, the
signature of this perturbation density appears to be in the DTGt∆  sequence alike that of a point
mass perturbation, although with a shifted (offset) depth. In order to have an unbiased interpretation
of the depth of the point heat source, we have to establish a new relationship between the depth of
the point heat source and the instant of the dimple onset, which would replace eqn.(2b). This is
accomplished by simulating the point heat source at various depths in the interval of 1 km to 30 km
and determining the respective instants of the dimple onset, in other words by computer simulation.
Surprisingly enough, this relationship appears to be linear and reads

( ) ][002.0694.0][ 0 kmskmd ∗±=&  . (24)

for depths between 1km and 30 km.

Conclusions

In the first section it was suggested that a temporal change of the gravity anomaly can be interpreted
in terms of a density perturbation generating the temporal gravity change in the same way a gravity
anomaly is interpreted in terms of an anomalous density generating the gravity anomaly. This
suggestion is general and may be applied to forward and inverse modeling as well as to any other
method of the gravimetric inversion. Here we have applied this suggestion to a particular gravity
inversion technique, namely the truncation filtering. The second section provides the apparatus for
such treatment. In the third section we have verified the said concept on a simplistic model case - a
geodynamic event driven by a point source of heat embedded in an homogenous elastic halfspace.

It was shown, that although the signature of the density, perturbed due to the point heat
source, in the DTGt∆  sequence is alike the point mass anomaly signature in the DTG sequence, the
interpreted depth of the point source, when using the expression relating the depth of a point mass
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source to the instant of the dimple onset (eqn.(2b)), is biased. This is caused by the fact that the
perturbation density field is nearly radial rather than radial. A new formula for determining the
depth of the point heat source from the instant of the dimple onset, eqn.(24), was established and
validated by the computer simulation (modeling).

At the moment the truncation filtering methodology is limited to interpretations in terms of
point sources only (cf. Vajda and Vaníèek [1997]), but work is in progress to extend its
capabilities to more realistic density distributions.

It is also suggested, yet not tested, that real observed temporal variations of gravity
anomalies that are well isolated and pronounced, and accompanied by heat flows, be interpreted by
means of the technique presented in this paper, to provide the maximum depth to source of heat
estimates (with help of eqn.(24)), in particular for estimates of maximum depth to sources of
volcanic activity.
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