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A note on spectral filtering
of the truncated geoid
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A b s t r a c t : Producing a frequency window (wavelength bandwidth) part of the trun-
cated geoid is understood under the term ,,spectral filtering of the truncated geoid” in the
context of this paper. We shall furthermore focus on the high frequency (short wavelength)
part of the truncated geoid. Three kinds of the high frequency part of the truncated geoid
are introduced herein. All three are defined via integral transforms and referred to as high
degree truncated geoids. Spectral form expressions are derived for these transforms. It is
shown, that the three transforms differ from each other, and represent slightly different
physical quantities.
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1. Introduction

The truncated geoid (in the sequel often abbreviated as TG), defined in
the second section as a convolution of gravity anomalies with the Stokes
function (the kernel) on a spherical cap, may be interpreted eventually in
terms of density anomalies, that generate the anomalous surface gravity,
as suggested in Christou et al. (1989), Vajda (1995), Vajda and Vaníček
(1996), Vajda and Vaníček (1997).

It is sometimes useful to work with a high frequency (short wavelength)
part of the truncated geoid. By the high frequency part, or the short wave-
length part, we understand the sum of terms of degrees higher than some
pre-selected degree in the series expansion of the TG into surface spherical
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harmonic functions. We also sometimes refer to the said series expansion
as a spectral representation of the TG or a TG expressed in the spectral
domain. That is also why we will refer to producing the high frequency part
of the TG as high-pass filtering of the TG.

To produce such high-pass filtered truncated geoid, one can convert the
TG into its spectral representation (in terms of a series of surface spherical
harmonics), and cut off the unwanted low frequencies (long wavelengths).
On the other hand one may wish to define the high degree truncated geoid
(the high frequency part of the TG, the high-pass filtered TG) as either

1. a convolution of high degree (high frequency part of) gravity anomalies
with the Stokes function on a spherical cap, or

2. a convolution of gravity anomalies with the high frequency part of the
Stokes function (the spheroidal Stokes function) on a spherical cap, or
even

3. a convolution of high degree (high frequency part of) gravity anomalies
with the spheroidal Stokes function on a spherical cap,

which in other words may be expressed as defining the high pass filtered
TG either

1. by high pass filtering the gravity anomalies, or

2. by high pass filtering the kernel, or even

3. by high pass filtering both the kernel and the gravity anomalies

in the convolution integral defining the TG.
Below, we shall examine all of these four mentioned objects, compare

them, and address the differences. For the sake of the comparison, the
spectral forms of the high degree truncated geoids will be derived. We will
show, in the spectral domain, that the three kinds of the high degree TG
differ from each other.

2. Truncated geoid

The truncated geoid is defined by the truncated Stokes integral (e.g.,
Molodenskij et al., 1962; Vaníček et al., 1987, Vajda and Vaníček, 1998)
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Nψ0(P ) =
R

4πγ

∫∫

C(ψ0)

∆g (Q)S(P,Q)dσ(Q). (1)

The truncated geoidal height Nψ0 is evaluated at the computation point
P as a convolution of the gravity anomalies ∆g, free of harmonics of degree
zero and one, on a spherical cap C(ψ0) of radius ψ0 centred at P , with the
Stokes function S (Stokes, 1849) being the kernel. PointQ is the integration
point. R is the radius of the boundary sphere (e.g., mean earth) and γ is
the normal gravity. The differential dσ is the surface element. Eq. (1) can
be expressed in the local polar coordinates of point P as (cf. Fig. 1):

Nψ0(P ) =
R

4πγ

ψ0∫

0

2π∫

0

∆g (ψ, α)S(ψ) sin(ψ)dαdψ, (2)

where ψ is the spherical distance between points P and Q, and α is azimuth
of point Q. The Stokes function in closed form reads (ibid.) as

S(ψ) = 1 +
1

sin
(
ψ
2

) − 6 sin
(
ψ

2

)
− 5 cos(ψ)−

− 3 cos(ψ) ln
[
sin
(
ψ

2

)
+ sin2

(
ψ

2

)]
, (3)

or in spectral form as

S(ψ) =
∞∑

n=2

2n+ 1
n− 1

Pn(cos(ψ)), (4)

with Pn(cos(ψ)) being the Legendre polynomials (e.g., Vaníček and Krakiw-
sky, 1986).

Radius ψ0, called the truncation radius, is a free parameter of the TG.
This is why we usually refer to it as the ,,truncation parameter”.

Let us express the truncated geoid in a spectral form. To achieve this, the
gravity anomalies are expressed in spectral form, i.e., in spherical harmonic
function series on the boundary sphere:

∆g(ϕ, λ) =
∞∑

n=2

∆gn(ϕ, λ) =
∞∑

n=2

n∑

m=0

[
A∆g
nmY

c
nm(ϕ, λ) + B∆g

nmY
s
nm(ϕ, λ)

]
, (5)
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Fig. 1. The truncated Stokes integration.

where Y cnm(ϕ, λ) = cos(mλ)Pnm(sin(ϕ)), Y s
nm(ϕ, λ) = sin(mλ)Pnm(sin(ϕ))

are (surface) spherical harmonic functions with Pnm(sin(ϕ)) being the as-
sociated Legendre functions [ibid.]. The truncated Stokes transform (2) is
now rewritten with a new kernel,

S∗(ψ0, ψ) = S(ψ) on 〈0;ψ0〉
(6)

S∗(ψ0, ψ) = 0 on (ψ0; π〉
so that the integration can be extended to the whole sphere (e.g., Vaníček
et al., 1987):

Nψ0(P ) =
R

4πγ

π∫

0

2π∫

0

∆g(ψ, α)S∗(ψ0, ψ) sin(ψ)dψdα. (7)

The new kernel S∗(ψ0, ψ) can be also developed into Legendre polynomial
series as:

S∗(ψ0, ψ) =
∞∑

n=2

2n+ 1
2

αn(ψ0)Pn(cos(ψ)), (8)

with

αn(ψ) =
2

n− 1
− Qn(ψ0) n = 2, 3, ..., (9)

where Qn(ψ0) are the Molodenskij truncation coefficients (Molodenskij et
al., 1962; Vaníček et al., 1987, Eq. (5.19))
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Qn(ψ0) =
π∫

ψ0

S(ψ)Pn(cos(ψ)) sin(ψ)dψ. (10)

These coefficients can be numerically evaluated by Paul’s algorithm (Paul,
1973). Substituting Eqs (5) and (8) into Eq. (7), utilising the Legendre
decomposition formula [e.g., Vaníček and Krakiwsky, 1986, Eq. (20.51)],
and making use of the orthogonality of the spherical harmonic functions,
we arrive at the spectral representation of the truncated geoid

Nψ0(P ) =
R

2γ

∞∑

n=2

αn(ψ0)∆gn(ϕP , λP ) =
R

2γ

∞∑

n=2

n∑

m=0

(
2

n− 1
− Qn(ψ0)

)
·

·
[
A∆g
nmY

c
nm(ϕP , λP ) + B∆g

nmY
s
nm(ϕP , λP )

]
. (11)

3. High-pass filtered truncated geoid – the high degree trun-
cated geoid

When we cut off the low frequency part (spherical harmonics up to degree
`) from the TG represented by Eq. (11), we arrive at the spectral form of
the high pass filtered TG

δNψ0
` (P )=

R

2γ

∞∑

n=`+1

αn(ψ0)∆gn(ϕP , λP )=
R

2γ

∞∑

n=`+1

n∑

m=0

(
2

n − 1
−Qn(ψ0)

)
·

·
[
A∆g
nmY

c
nm(ϕP , λP ) + B∆g

nmY
s
nm(ϕP , λP )

]
. (12)

Let us forget about Eq. (12), for the moment, and define three kinds of the
high degree truncated geoid via integral transforms as follows:

High degree truncated geoid of the first kind, which differs from
the original TG by replacing the gravity anomalies in Eq. (1) with high
frequency gravity anomalies δ(∆g)` of degree `:

1δNψ0
` (P ) =

R

4πγ

∫∫

C(ψ0)

δ(∆g)`(Q)S(P,Q)dσ(Q) =

=
R

2γ

ψ0∫

0

δ(∆g(ψ))`S(ψ) sin(ψ)dψ, (13)

where
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δ (∆g(ψ))` =
1

2π

2π∫

0

δ (∆g(ψ, α))` dα

is the azimuthal average of the high degree (high-pass) gravity anomaly (of
degree `)

δ(∆g(ψ, α))` =
∞∑

n=`+1

n∑

m=0

(
A∆g
nmY

c
nm(ϕ, λ) +B∆g

nmY
s
nm(ϕ, λ)

)
. (14)

High degree truncated geoid of the second kind, which differs
from the original TG by replacing the kernel in the integral transform (1)
with high-pass filtered Stokes’s function of degree ` – the spheroidal Stokes
functionS`(P,Q)

2δNψ0
` (P ) =

R

4πγ

∫∫

C(ψ0)

∆g(Q)S`(P,Q)dσ(Q) =

=
R

2γ

ψ0∫

0

∆g(ψ)S`(ψ) sin(ψ)dψ, (15)

where

∆g(ψ) =
1

2π

2π∫

0

∆g(ψ, α)dα,

and

S`(ψ) = S(ψ)−
∑̀

n=2

2n+ 1
n − 1

Pn(cos(ψ)) =
∞∑

n=`+1

2n+ 1
n − 1

Pn(cos(ψ)). (16)

High degree truncated geoid of the third kind where we replace both
the kernel and the gravity anomalies in the integral transform (1) by their
high-pass filtered (high frequency) counterparts of degree `:

3δNψ0
` (P ) =

R

4πγ

∫∫

C(ψ0)

δ(∆g)`(Q)S`(P,Q)dσ(Q) =

=
R

2γ

ψ0∫

0

δ(∆g(ψ))`S`(ψ) sin(ψ)dψ, (17)
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Equation (14) describes a high degree gravity anomaly at an integration
point Q, given in polar coordinates (ψ, α) on the left-hand side, and in geo-
graphical coordinates (ϕ, λ) on the right-hand side. S `(ψ) is the spheroidal
Stokes kernel (Vaníček et al., 1987).

For ψ0 = π, all three kinds of the high degree truncated geoid become
identical, due to the orthogonality of Legendre polynomials on 〈0; π〉, and
amount to the high degree (short wavelength) geoid :

δN`(P ) =
R

4πγ

∫
©
∫
δ(∆g)`(Q)S`(P,Q)dσ(Q) =

=
R

2γ

π∫

0

δ(∆g(ψ))`S`(ψ) sin(ψ)dψ =

=
R

4πγ

∫
©
∫

(∆g)(Q)S`(P,Q)dσ(Q) =

=
R

2γ

π∫

0

∆g(ψ)S`(ψ) sin(ψ)dψ =

=
R

4πγ

∫
©
∫
δ(∆g)`(Q)S(P,Q)dσ(Q) =

=
R

2γ

π∫

0

δ(∆g(ψ))`S(ψ) sin(ψ)dψ. (18)

When ψ0 < π, the three Eqs (13), (15), and (17) give different results.
All three kinds of the high degree truncated geoid have two free parame-

ters, the truncation parameter ψ0 and the cut-off spherical harmonic degree
(spheroidal degree) `.

4. Spectral form of the high degree truncated geoid

Following the same procedure as in section 2, we can derive the spectral
forms of all three kinds of the high degree truncated geoid defined in sec-
tion 3. We will need to make use of the S∗` (ψ0, ψ) kernel defined analogously
to the S∗(ψ0, ψ) kernel as:

S∗` (ψ0, ψ) = S`(ψ) on 〈0;ψ0〉
(19)

S∗` (ψ0, ψ) = 0 on (ψ0; π〉 ,

259



which reads in spectral form as (Vaníček et al., 1987)

S∗` (ψ0, ψ) =
∞∑

n=0

kn(ψ0)Pn(cos(ψ)). (20)

The spectral harmonic coefficients of the S∗` (ψ0, ψ) kernel are:

kn(ψ0) = −Q`n(ψ0) for n ≤ `,
(21)

kn(ψ0) =
2

n− 1
−Q`n(ψ0) for n > `,

where Q`n(ψ0) are the Molodenskij truncation coefficients of the spheroidal
Stokes function (e.g., Vaníček et al., 1987; Martinec, 1993)

Q`n(ψ0) =

π∫

ψ0

S`(ψ)Pn(cos(ψ)) sin(ψ)dψ. (22)

After performing the required mathematical development similar to this in
section 3, we arrive at the spectral form expressions for the three kinds of
the high degree TG:

1δNψ0
` (P ) =

R

2γ

∞∑

n=`+1

(
2

n− 1
− Qn(ψ0)

)
∆gn(ϕP , λP ), (23)

2δN
ψ0
` (P ) =

R

2γ

∑̀

n=2

(
−Q`n(ψ)

)
∆gn(ϕP , λP ) +

+
R

2γ

∞∑

n=`+1

(
2

n − 1
− Q`n(ψ0)

)
∆gn(ϕP , λP ) (24)

3δNψ0
` (P ) =

R

2γ

∞∑

n=`+1

(
2

n− 1
− Q`n(ψ0)

)
∆gn(ϕP , λP ), (25)

where the n-th degree spherical harmonic of the gravity anomaly ∆gn is
given in Eq.(5).

Let us now recall Eq. (12). Note that the result of Eq. (12) is identical
with the result of Eq. (23). This means that it is the high degree TG of
the first kind that is the true high frequency part of the TG. The other
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two kinds of the high degree TG are introduced sort of artificially, which
does not mean that they cannot be used and interpreted in some applied
investigations). The cause for the differences among the three kinds of the
high degree TG (cf. Eqs (23), (24), and (25)) is the loss of orthogonality of
the spherical harmonic functions when truncating the integration domain
(of the defining integral transform) from the full sphere to a spherical cap.

5. Conclusions

We have introduced three kinds of the high degree truncated geoid,
whereby either gravity anomalies or the kernel of the integral transform
defining the truncated geoid, or both, are high-pass filtered. These three
are defined by Eqs (13), (15) and (17). Similarly, low-pass or band-pass
filtered truncated geoids could be introduced. The frequency domain repre-
sentations, or spectral forms, of all three kinds of the high degree truncated
geoid are given by Eq. (23) to (25). Each kind represents a slightly different
high-pass filtered truncated geoid, due to the loss of orthogonality of the
associated Legendre functions when truncating the integration domain from
a full sphere to a spherical cap of radius ψ0. Each high degree truncated
geoid has two free parameters: the truncation radius ψ0 and the spheroidal
cut-off degree `. Thus the high degree TG may be understood as an ob-
ject resulting from a combination of spatial and spectral filtering of surface
gravity data (the gravity anomalies). The spatial filtering is represented
by truncation, which is nothing else but weighted spherical windowing, cf.
Eq. (1). The spectral filtering is represented by cutting off the unwanted
wavelengths of the gravity field. This makes the high degree truncated geoid
a promising tool in gravity inversion, which is currently under investigation.
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