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Abstract 
 
In this work, we have conducted two comparisons. Firstly, we numerically compared the point-point Poisson 

downward continuation with the mean-mean one by using the 5'by5' residual Helmert gravity anomalies (n>20) and 

mean heights over the most rugged part of the Rocky Mountains. The results indicate that the former geoidal 

contribution is about 10 percent smaller than the latter one that ranges from - 4 cm to 94 cm with a mean of 48 cm 

and a RMS of 51 cm. In practical applications, certain cautious step has to be taken in selecting a model to minimize 

the incompatibility between the model and data. Secondly, we compared the point-point Poison downward 

continuation with the analytical downward continuation numerically. It is shown that the former geoidal result is 

about 25 cm smaller on average than the latter one that takes the first three terms into account. However their 

difference is dominated by long-wavelength components with a standard deviation of about 4 cm in absolute value. 

A possible cause of the difference may be due to the use of the planar approximation in the computation. 

 

1. Introduction 

The use of Stokes’s formula for the determination of the geoid requires that the gravity anomalies �g represent 

boundary values at the geoid, which implies two requisite conditions of using it: firstly, the gravity anomalies must 

refer to the geoid; secondly, there must be no masses outside the geoid. Hence, gravity reduction is necessary to 



 
  

meet the conditions. It can be carried out with the following two steps: (1) the topographic masses outside the geoid 

are removed and/or shifted below or on the geoid; (2) the gravity anomalies are harmonically reduced from the 

Earth’s surface downward to the geoid. The second step is in geodetic literature described as downward continuation 

of the gravity anomalies. 

  In principle, all gravity reductions are equivalent and must lead to the same geoid if they are properly 

applied, the indirect effect being considered (Heiskanan and Moritz, 1967). Among the proposed reduction models, 

Helmert’s 2nd condensation reduction, in which the topographic masses is condensed as a mass layer on the geoid, is 

widely being used in the practical determination of the geoid (Vaní�ek and Kleusberg, 1987; Véronneau, 1996; 

Smith and Milbert, 1999; Featherstone et al., 2001). Even though the same reduction model is used, the actual 

reductions may be evaluated by different approaches. A major difference among the approaches is related to 

downward continuation methods applied.  

There are two classes of downward continuation methods available for the geoid determination. One is the 

Poisson downward continuation that is based on the Poisson integral formula (Heiskanan and Moritz, 1967; 

Bjerhammar, 1987; Vaní�ek, et. al, 1996; Martinec, 1996). The second one is called the analytical downward 

continuation that is based on the Taylor series expansion ( Moritz, 1980; Sideris, 1987). The former can be further 

branched into the point-point model (Martinec, 1996) and the mean-mean model (Vaní�ek, et. al, 1996). Sun and 

Vaní�ek (1998) pointed out that the point-point solutions are up to five times smaller than the mean-mean solutions. 

It should be noted that the point-point model by Sun and Vaní�ek (1998) is different from the one by Martinec 

(1996). The difference is with the treatment for the coefficient of the central point. By the point-point Poisson 

model, we refer to Martinec's one since its coefficient for the central point approaches to one, and the others to zeros 

when the height of the central point approaches to zero. This property can be mathematically justified because the 

Poisson kernel function switches to a Delta function when the height of the central point goes to zero. 

(Prof. Sideris and Prof. Tziavos: Do you want to add some review about the analytical 
downward continuation with the appropriate references here?) 

 

In this contribution, we are particularly interested in answering the following questions: How different is 

the point-point Poisson downward continuation result from the mean-mean one numerically? Is the analytical 

downward continuation numerically equivalent to the Poisson one? If not, how different are they?   



 
  

 

2. Methodology 1: the Poisson downward continuation formulae 
 

The Poisson integral formula can be written as follows (Heiskanen and Moritz, 6-74, 1967) 
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�g(r,�) is the gravity anomaly function; � is the geocentric angle denoting the pair (�, �), the spherical co-latitude 

and lognitude; � and l are the angular and spatial distances between the point (r,�) and the surface element d �'; r is 

the radius of the point (r,�). 

Given �g(R,�) that is the gravity anomaly function on the spherical surface with a radius R, evaluating the 

gravity anomaly at any point outside the spherical surface is called upward continuation, that can be done directly 

by evaluating the Poisson integral. The gravity anomaly �g(r,�) at a point above the spherical surface represents a 

weighted average of the gravity anomalies �g(R,�) given on the spherical surface, thus it tends to be smoother. 

When the gravity anomalies are known on a surface above the spherical surface, and the gravity anomalies on the 

spherical surface are sought, we face the problem of downward continuation that is achieved by solving the Poisson 

integral equation. In mathematics, this equation is called the Fredholm integral equation of the first kind. In contrast 

to upward continuation, downward continuation tends to 'de-smooth' or accentuate details of the gravity anomalies. 

The geoid group at UNB developed a program package (DOWN97) which can be used to evaluate gravity 

anomalies on the geoid from gravity anomalies at the Earth's surface by solving the discrete Poisson integral 

equation (Vaní�ek, et al., 1998). It is capable of performing the point-point and mean-mean downward 

continuations, depending on how to evaluate kernel coefficients from which the coefficient matrix of a linear system 

of equations is formed. Bearing in mind, the Poisson downward continuation merely gives a spherical approximation 

results. However the effect of the geoid flattening is generally less than 1 cm because the downward continuation 

contribution from the Earth's surface to the geoid is usually smaller than 3 m in the geoidal height.  



 
  

The discrete Poisson integral for the point-point downward continuation can be written as (Martinec, 1996) 
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where subscripts t and g stands for on the Earth's surface and the geoid, respectively; indices i and j indicate the 

computation and integration points, respectively; Hi is the height of a computation point; Kij are the kernel 

coefficients; F  represents the contribution outside the chosen near-zone cap, called the far-zone contribution. 

 The discrete Poisson integral for the mean-mean downward continuation can be expressed as (Vaní�ek, et. 

al, 1996) 
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where the single over-lines indicate the mean values of the corresponding variables; the doubly over-lined Kij 

represent the doubly averaged Poisson kernel coefficients. 

The Seidel iterative method is used to solve the linear system of equations. Let B represent the coefficient 

matrix, and b be the constant vector, and x be the unknown vector, then discrete Poisson integral equations can be 

written as follows 

 b = Bx        (5) 

Let A = I - B, equation (5) becomes 
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Then the Seidel iteration can be expressed as 
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The threshold value � is set as 0.02 mGal. The tests with synthetic data showed that the software gives 

downward continuation results with an accuracy of better than 1 cm in the geoidal height. 

 

3. Methodology 2: the analytical downward continuation formulae 
 



 
  

The analytical downward continuation can be formulated as follows (Moritz, sect. 45, 1980) 

 g = g
n

n
g �

∞

=0

∆        (8) 

where 

�
=

−⋅⋅−=

⋅−⋅−=
⋅−=

=

n

m
mnm

m
n

t

.gLHg

),g(LH)g(LHg

),g(LHg

,gg

1

02
2

12

01

0

�

∆

     (9) 

The operator L is defined as  
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where l0 is the distance between computation point an integration point. 

Up to date, most practical applications have only used the g1 term in combination with the assumption of a 

linear relation between the gravity anomaly and the height. It has been shown that the g1 term is close to the 

Condensed Terrain Effect (CTE) in Helmert's 2nd condensation model  (Véronneau, 1996; Vaní�ek, et al., 1999). It 

is this fact that provides the background for the use of the Faye anomaly in the geoid determination because the Faye 

anomaly approximately represents the Helmert gravity anomaly on the geoid when the g1 term is assumed to cancel 

out the CTE (Véronneau, 1996). Since the linear relation between the gravity anomaly and the height can not strictly 

be established for the Helmert anomaly, it should be avoided when the centimeter-accuracy geoid is determined 

through the Stokes-Helmert approach. 

The evaluation of the analytical downward is very time-consuming. When the L operator is applied in 

planar approximation, it can then be written in a convolution form 
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The integral above can be efficiently evaluated by FFT using either the discrete or the analytical form of the (l0)
-3 

spectrum (Sideris, 1987) 

.frequencyradialq)},q}(f{F{Fdf 'd
l

ffR

,u}}],l{F}u{F{fF}}]l{F}f{F{F[ 'd
l

ffR

z

'

P

'

P

=−=∗=
−

=−=
−

−

−−−−

�

�

πΩ
π

π
Ω

π

Ω

Ω

2
2

1
2
1

2

1

3
0

2

3
0

13
0

1

3
0

2

  (13) 

(Prof. Sideris and Prof. Tziavos: Do you want to add some text about the use of FFT here?) 

4. Data description 
 
The selected test region covers part of the Rocky Mountains (41º<�<60º; 224º<�<258º), which represents the most 

rugged area in Canada. It allows us to visualize the extreme scenarios of the differences between the point-point and 

mean-mean Poisson downward continuations, and between the Poisson downward continuation and the analytical 

downward continuation if they are not equivalent. In addition, Helmert's 2nd condensation yields a rougher gravity 

field than the isostatic gravity field from either of the Airy-Heiskanen and Pratt-Hayford condensation models 

(Martinec, 1996). Therefore, we are dealing with the comparison under the worst case in the two-fold senses.  

The mean 5' by 5' heights and residual Helmert gravity anomalies (n>20) used for the comparison are 

shown in Figure 1. In the ocean and flat areas, the residual Helmert anomalies are more or less similar to the high-

frequency free-air anomalies due to small terrain and CTE corrections, while in the mountainous area, they may 

differ from the high-frequency free-air anomalies by more than 100 percent. 
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(a) (b) 

Fig. 1. (a) The topography (in meters), Min.= 0, Max.=3576, Mean=733, StdDev.=605. (b) The gravity anomalies 

(in mGals), Min.=-223, Max.=291, Mean=-0.8, StdDev.=75.8. 

 

5. The Poisson downward continuation results 

The same gravity data and height data have been treated as point values in one case and as mean values in the other. 

In the computation, the radius of the near-zone cap was chosen as 1 arc-degree. The far-zone contribution was 

ignored because it accounts for only about 1 cm in the test region when EGM96 is adopted. Strictly speaking, a 

global geopotential model must be first transformed into Helmert's space to be compatible with the Helmert 

anomalies. However, the far-zone contribution is predictably small considering the fact that the Poisson kernel is 

inversely proportional to the cubic of the distance between the computation point and the integration point.  

Tables 1 and 2 show the summaries of the point-point and mean-mean Poisson downward continuation 

results in gravity and the geoidal height, respectively. The gravity difference between the results of the two 

continuation models is about 10% for mean, and more than 40% for both standard deviation and RMS of the mean-

mean gravity downward continuation contribution. The geoidal difference between them is about 10% for mean, less 

than 20% for both standard deviation and RMS of the mean-mean geoidal downward continuation contribution. The 

fact that the geoidal difference is not so significant as the gravity one is due to the Stokes integral that tends to 

function as an averaging filter in transforming the gravity result into the geoidal one.  The geoidal results from the 

two models are displayed in Figure 2, and the geoidal difference is displayed in Figure 3. 

 Depending on how one wants to carry out the numerical Stokes integration on the geoid, one may seek 

either point anomaly values or mean anomaly values on the geoid.  If one wishes to work with mean values, one can 

either downward continue point values (known on the Earth's surface) and evaluate the mean values on the geoid, or 

one can evaluate mean values on the Earth's surface and downward continue these onto the geoid.  We have tested 

these two scenarios in a limited way, using only the Poisson approach.  We note that this raises a meaningful 

theoretical question as to whether mean values of a harmonic function are themselves harmonic.  This question will 

not be explored here. 



 
  

The algorithms for downward continuation of point and mean values are, of course, different, with the latter 

requiring a pre-computation of doubly averaged Poisson’s kernels.  Results obtained with the doubly averaged 

kernels were reported by Vaní�ek et al. (1996).  The difference in the results using the two algorithms was analyzed 

by Sun and Vaní�ek (1998).  Interestingly enough, the downward continuation algorithm for mean values was found 

giving rougher results than the algorithm for point values. 

Clearly, the mean values, either on the Earth's surface or the geoid, should be expected to be somewhat 

smoother than the corresponding point values.  This is a result of the smoothing property of the averaging operation.  

Unfortunately, the data on the surface of the Earth that we had at our disposal were neither the point values, nor the 

mean values.  The data had been created by gridding the irregularly spaced observed point values for a 5 by 5 arc-

minute geographical grid.  Thus, at some locations, these gridded values are closer to true “point values”, at other 

locations, where there was an abundance of observed values available, they are closer to true “mean values”.  It was 

therefore impossible properly to test the performance of the two algorithms and it seems to us likely that it may even 

not be possible to conduct proper tests in the foreseeable future. 

 

Table 1. Differences of the Poisson downward continuation gravity corrections between the point-point and mean-

mean models in the area of 44º<�<59º; 226º<�<256º (180×360 grid, 64800 values). Unit: mGal. 

Model Mean Min. Max. StdDev RMS 

(1) point-point 0.80 -23.25 64.23 4.71 4.77 

(2) mean-mean 0.88 -46.20 102.49 7.63 7.68 

(1) - (2) -0.08 -38.25 24.85 3.29 3.29 

 

 

 

 

Table 2. Differences of the Poisson downward continuation geoidal corrections between the point-point and mean-

mean models in the area of 49º<�<54º; 236º<�<246º (60×120 grid, 7200 values). Unit: meter. 



 
  

Model Mean Min. Max. StdDev RMS 

(1) point-point 0.427 -0.038 0.810 0.154 0.454 

(2) mean-mean 0.479 -0.042 0.942 0.175 0.510 

(1) - (2) -0.052 -0.199 0.020 0.031 0.060 

 

(a) (b) 
Fig. 2. (a) The point-point downward continuation result in the geoidal height. (b) The mean-mean downward 

continuation result in the geoid height. Unit: meter. 
 

Fig. 3. The difference between the results of the point-point and mean-mean models. Unit: meter. 
 

6. The analytical downward continuation results 
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( Prof. Sideris and Prof. Tziavos: Could you please add some text here describing how the 
analytical DC was computed, and some remarks on the results below to complete this section?) 
 

Table 3. The gn term point corrections to the gravity anomalies in the area of 44º<�<59º; 226º<�<256º (180×360 

grid, 64800 values). Unit: mGal. 

Item Mean Min. Max. StdDev. RMS 

g1 0.683 -20.784 54.126 4.204 4.259 

g2 -0.143 -17.613 10.110 1.116 1.125 

g3 0.032 -3.662 7.000 0.324 0.326 

g1 + g2 0.541 -16.554 36.513 3.310 3.354 

g1 + g2 + g3  0.573 -17.032 41.000 3.482 3.529 

 

Table 4. The gn term point corrections to the geoidal heights in the area of 49º<�<54º; 236º<�<246º (60×120 grid, 

7200 values). Unit: meter. 

Item Mean Min. Max. StdDev. RMS 

� (g 1) 0.830 0.405 1.212 0.154 0.844 

� (g 2) -0.203 -0.298 -0.104 0.040 0.207 

� (g3) 0.047 0.025 0.080 0.010 0.048 

� (g1 + g2) 0.627 0.298 0.954 0.118 0.638 

� (g1 + g2 + g3)  0.675 0.323 1.011 0.125 0.686 
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(a) (b) 

Fig. 4. Effect of the gn terms on the geoidal height. (a) The g1 term effect on the geoidal height. (2) The g1 + g2 + g3 

terms effect on the geoidal height. Unit: meter. 

 

7. Comparison between the point-point Poisson and analytical downward continuations 

The differences between the point-point Poisson and analytical downward continuations are statistically summarized 

in Tables 5 and 6. The significant differences have been shown between the results from the two methods. The range 

of the gravity differences reaches about 40 mGals with a standard deviation of about 1.5 mGals when the analytical 

downward continuation is summed up to the 3rd terms. Again, we can see that the geoidal differences are not so 

pronounced as the gravity ones due to the smoothing of the Stokes integration. An unacceptable fact is that the g1 

alone apparently agrees best with the Poisson result while it merely represents the first-order approximation. A 

further study is needed in this regard. 

Even though remarkable geoidal differences (20 cm to 40 cm on average) present at individual points of the 

test region, their standard deviations are invariably smaller than 5 cm in absolute value. It implies that the 

differences primarily lie within the long-wavelength band. This character can be easily seen in Figure 5 that shows 

the dominant long-wavelength features. A possible interpretation to it is the uses of the 2-D FFT and the planar 

approximation in the computation of the analytical downward continuation.  

(Do you have more explanation for the discrepancies?) 

 

Table 5. The gravity differences between the gn term point corrections and the point-point Poisson downward 

continuation corrections in the area of 44º<�<59º; 226º<�<256º (180×360 grid, 64800 values). Unit: mGal. 

Item Mean Min. Max. StdDev. RMS 

g1 - Poisson 0.11 -5.72 17.64 0.88 0.88  

(g1 + g2) - Poisson 0.26 -14.56 30.39 1.75 1.77 

(g1 + g2 + g3)- Poisson  -0.22 -27.78 11.36 1.49 1.51 

 



 
  

 
Table 6. The geoidal differences between the gn term point corrections and the Poisson downward continuation 

geoidal corrections in the area of 49º<�<54º; 236º<�<246º (60×120 grid, 7200 values). Unit: mGal. 

Item Mean Min. Max. StdDev. RMS 

� (g1)- � (Poisson) 0.404 0.488 0.245 0.038 0.405  

� (g1 + g2) - � (Poisson) 0.200 0.033 0.336 0.048 0.206 

� (g1 + g2 + g3) - � Poisson)  0.248 0.081 0.361 0.042 0.251 

 
 

Fig. 5. The geoidal difference between the analytical and Poisson downward continuation results. Unit: meter. 

 

8. Summary 
 

We have numerically compared the point-point Poisson downward continuation with the mean-mean one using the 

5' by 5' residual Helmert gravity anomalies (n>2) and mean height data in the Canadian Rocky Mountains. The 

geoidal results show that the point-point downward continuation contribution is about 10 percent smaller than that of 

the mean-mean one on average. The mean-mean downward continuation contribution ranges from -4 cm to 94 cm 

with a mean of 48 cm and a RMS of 51 cm. Since the data on the Earth's surface we have are neither the point 

values, nor the mean values. At some locations, they are closer to the point values, at other locations, they are closer 
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to the mean values depending the distribution density of the observed data. It is therefore impossible properly to tell 

which one is better. In application, caution is needed in selecting a proper downward continuation model. 

Another comparison has also been conducted between the point-point Poisson and analytical downward 

continuations using the same residual Helmert gravity anomalies and height data. The former geoidal contribution is 

about 25 cm smaller on average than the latter one that is summed up to the 3rd order term. But the standard 

deviation of their difference is smaller than 5 cm in absolute value. The analytical downward continuation 

contribution ranges from 68 cm to 101 cm with a mean of 68 cm and a RMS of 69 cm. The difference between the 

two methods characterized by the long-wavelength features may be attributed to the planar approximation in the 

computation of the analytical downward continuation, and the method itself. The comparison based on the spherical 

approximation is needed to more realistically reflect its performance.  
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