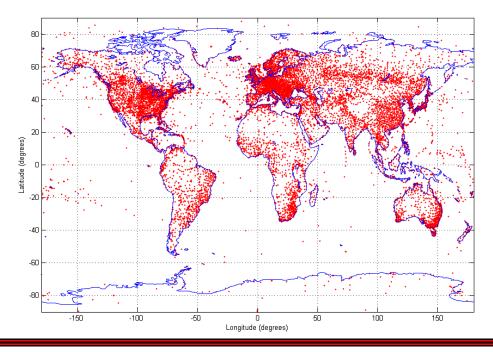


Wide Area Neutral Atmosphere Models for GNSS Applications

Geodetic Research Laboratory Department of Geodesy and Geomatics Engineering University of New Brunswick Fredericton, N.B.

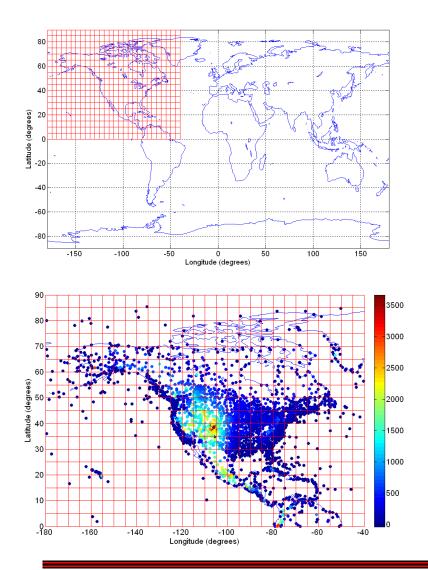
UNB Neutral Atmosphere Models

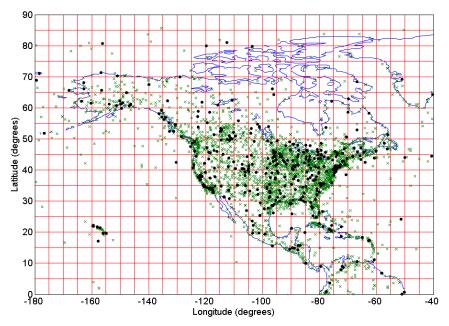
		Average			
Latitude (degrees)	Pressure (mbar)	Temperature (K)	WVP* (mbar)	β (K.km ¹)	λ (-)
15	1013.25	299.65	26.31	6.3	2.77
30	1017.25	294-15	21.79	6.05	3.15
45	1015.75	283.15	11.66	5.58	2.57
60	1011.75	272.15	6.78	5.59	1 81
75	1013.00	263.65	4.11	4.53	1.55
		Amplitude			
Latitude (degrees)	Pressure (mbar)	Temperature (K)	WVP* (mbar)	β (K.km ¹)	λ (-)
15	0.00	0.00	0.00	0.08	0.00
30	-3.75	7.00	8.85	8.25	0.33
45	-2.25	11.00	7.24	0.32	0.46
60	-1.75	15.00	5.36	0.81	0.74
75	-0.50	14.50	3.39	0.62	0.30


$$X_{\phi,doy} = Avg_{\phi} - Amp_{\phi} \cdot \cos\left((doy - 28)\frac{2\pi}{365.25}\right)$$

$$d_{h}^{z} = \frac{10^{-6} k_{1} R}{g_{m}} \cdot P_{0} \cdot \left(1 - \frac{\beta H}{T_{0}}\right)^{\frac{g}{R\beta}} d_{nh}^{z} = \frac{10^{-6} \left(T_{m} k_{2}^{'} + k_{3}\right) R}{g_{m} \lambda' - \beta R} \cdot \frac{e_{0}}{T_{0}} \cdot \left(1 - \frac{\beta H}{T_{0}}\right)^{\frac{\lambda'g}{R\beta}} d_{nh}^{z} = \frac{10^{-6} \left(T_{m} k_{2}^{'} + k_{3}\right) R}{g_{m} \lambda' - \beta R} \cdot \frac{e_{0}}{T_{0}} \cdot \left(1 - \frac{\beta H}{T_{0}}\right)^{\frac{\lambda'g}{R\beta}} d_{nh}^{z} = \frac{10^{-6} \left(T_{m} k_{2}^{'} + k_{3}\right) R}{g_{m} \lambda' - \beta R} \cdot \frac{e_{0}}{T_{0}} \cdot \left(1 - \frac{\beta H}{T_{0}}\right)^{\frac{\lambda'g}{R\beta}} d_{nh}^{z} = \frac{10^{-6} \left(T_{m} k_{2}^{'} + k_{3}\right) R}{g_{m} \lambda' - \beta R} \cdot \frac{e_{0}}{T_{0}} \cdot \left(1 - \frac{\beta H}{T_{0}}\right)^{\frac{\lambda'g}{R\beta}} d_{nh}^{z} = \frac{10^{-6} \left(T_{m} k_{2}^{'} + k_{3}\right) R}{g_{m} \lambda' - \beta R} \cdot \frac{e_{0}}{T_{0}} \cdot \left(1 - \frac{\beta H}{T_{0}}\right)^{\frac{\lambda'g}{R\beta}} d_{nh}^{z} = \frac{10^{-6} \left(T_{m} k_{2}^{'} + k_{3}\right) R}{g_{m} \lambda' - \beta R} \cdot \frac{e_{0}}{T_{0}} \cdot \left(1 - \frac{\beta H}{T_{0}}\right)^{\frac{\lambda'g}{R\beta}} d_{nh}^{z} = \frac{10^{-6} \left(T_{m} k_{2}^{'} + k_{3}\right) R}{g_{m} \lambda' - \beta R} \cdot \frac{e_{0}}{T_{0}} \cdot \left(1 - \frac{\beta H}{T_{0}}\right)^{\frac{\lambda'g}{R\beta}} d_{nh}^{z} = \frac{10^{-6} \left(T_{m} k_{2}^{'} + k_{3}\right) R}{g_{m} \lambda' - \beta R} \cdot \frac{e_{0}}{T_{0}} \cdot \left(1 - \frac{\beta H}{T_{0}}\right)^{\frac{\lambda'g}{R\beta}} d_{nh}^{z} = \frac{10^{-6} \left(T_{m} k_{2}^{'} + k_{3}\right) R}{g_{m} \lambda' - \beta R} \cdot \frac{e_{0}}{T_{0}} \cdot \left(1 - \frac{\beta H}{T_{0}}\right)^{\frac{\lambda'g}{R\beta}} d_{nh}^{z} = \frac{10^{-6} \left(T_{m} k_{2}^{'} + k_{3}\right) R}{g_{m} \lambda' - \beta R} \cdot \frac{e_{0}}{T_{0}} \cdot \left(1 - \frac{\beta H}{T_{0}}\right)^{\frac{\lambda'g}{R\beta}} d_{nh}^{z} = \frac{10^{-6} \left(T_{m} k_{2}^{'} + k_{3}\right) R}{g_{m} \lambda' - \beta R} \cdot \frac{e_{0}}{T_{0}} \cdot \left(1 - \frac{\beta H}{T_{0}}\right)^{\frac{\lambda'g}{R\beta}} d_{nh}^{z} = \frac{10^{-6} \left(T_{m} k_{2}^{'} + k_{3}\right) R}{g_{m} \lambda' - \beta R} \cdot \frac{e_{0}}{T_{0}} \cdot \frac{e_{0}}{T_{0}} + \frac{e_{0}}{T_{0}} \cdot \frac{e_{0}}{T_{0}} + \frac{e_{0}}{T_{0}} \cdot \frac{e_{0}}{T_{0}} + \frac{e_{0}}{T_{0}} \cdot \frac{e_{0}}{T_{0}} + \frac{e_{0}}{T_{0}} + \frac{e_{0}}{T_{0}} \cdot \frac{e_{0}}{T_{0}} + \frac{e_{0}}{T_{0}} \cdot \frac{e_{0}}{T_{0}} + \frac{e_{0}}{T_{0}} \cdot \frac{e_{0}}{T_{0}} + \frac{e_{0}}{T_{$$

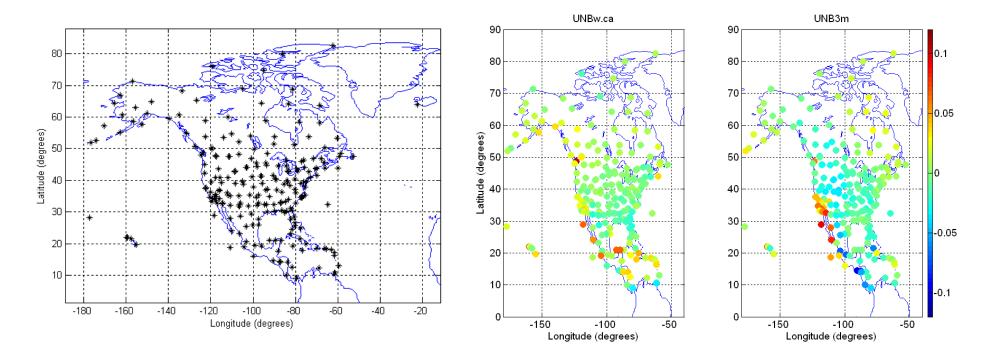
- Use the same physical assumptions of previous versions
- 2D Grid instead of latitude band look-up table
- Calibration dataset: Integrated Surface Hourly (ISH) data base (17415 stations - worldwide) – provided by NOAA
- Jan 2001 Dec 2005




Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering • University of New Brunswick 3

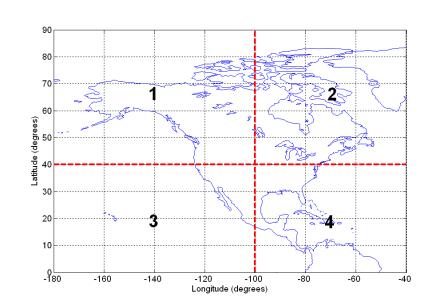
Wide area model for North America: UNBw.na

- •Calibration (3600) and test (400) stations
- •Average and amplitude for T, P, RH are determined
- •Main goal: better performance for areas where UNB3m has perfomance below average



- Surface meteorological parameters
 - 400 control meteorological stations
 - Surface temperature
 - MSL pressure
 - Surface water vapour pressure
- Zenith delays
 - Radiosonde -> ray-traced total zenith delays
- Comparison with UNB3m

Validation with radiosonde derived total zenith delays (701940 soundings)


	Bias (cm)	Std. Dev. (cm)	RMS (cm)
UNBw.na	3.6	44.8	45.0
UNB3m	-5.2	48.9	49.2

Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering • University of New Brunswick 6

Validation for regions

	UNBw.na			UNB3m		
Region	Bias	SD	RMS	Bias	SD	RMS
1	1.0	3.4	3.6	-0.9	3.5	3.7
2	0.4	4.1	4.1	0.5	4.3	4.3
3	0.6	4.4	4.4	0.2	5.7	5.7
4	-0.3	5.4	5.5	-1.3	5.6	5.8

	UNB	w.na	UNB3m		
Region	ab	ab-sd	ab	ab-sd	
1	2.8	2.2	2.8	2.3	
2	3.2	2.6	3.4	2.7	
3	3.4	.9	4.5	3.6	
4	4.5	3.2	4.7	3.4	

ab: absolute biases (cm) ab-sd: ab standard deviation (cm)

Examples of improvement for sample stations

Radiosonde

• UNBw.ca

1996

Radiosonde

UNB3m

1996

UNB3m

(cm)

1997

1997

rms

5.3

4.2

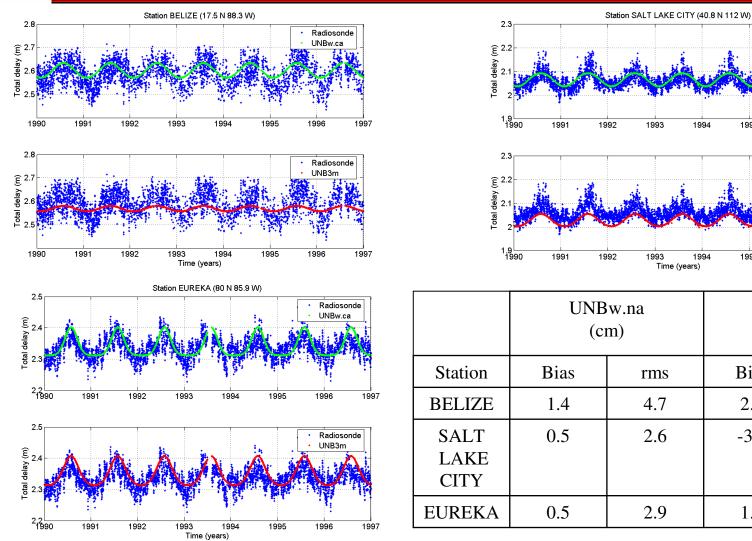
3.2

1994

1994

Time (years)

1995


1995

Bias

2.1

-3.3

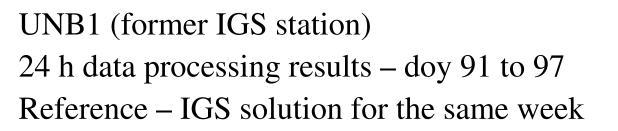
1.5

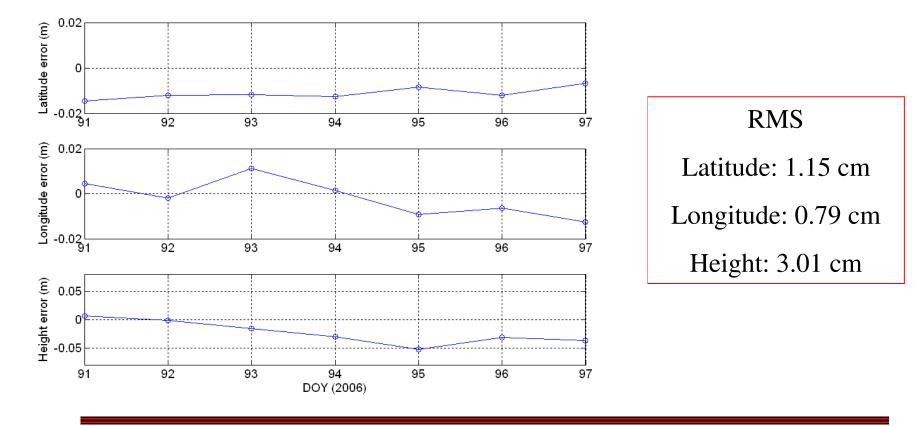
Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering • University of New Brunswick 8

- Improvement in zenith delay estimations for regions where the performance of the old model was below average (up to 85 % in bias and 38 % in rms);
- UNBw.na is consistently better than UNB3m in several aspects. The adopted procedure for the grid calibration worked in an adequate way, resulting in a reliable model;
- Assimilation of atmosphere data for lapse rate and WVP height factor adequate calibration;
- Calibration for other regions (e.g. South America).

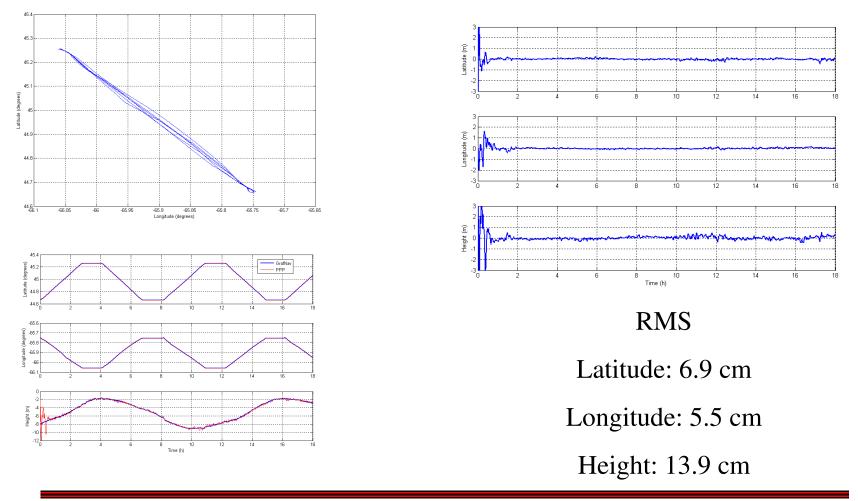
Wide Area Based Precise Point Positioning

Geodetic Research Laboratory Department of Geodesy and Geomatics Engineering University of New Brunswick Fredericton, N.B.


- Precise satellite orbits
- Precise satellite clocks
- Carrier-phase measurements
- Residual neutral atmosphere delay estimation
- Consider:
- » APC variation
- » Satellite antenna offset
- » Tides
- » Phase wind-up
- » Relativistic effects
- » Code biases
- » (...)

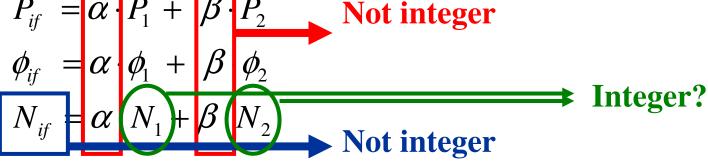


- GAPS GPS data Analysis and Positioning Software
- Precise Point Positioning
- Tools for data analysis and QC
- Static/Kinematic positioning
- Estimation of Neutral Atmosphere delays
- Support Wide Area PPP


Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering • University of New Brunswick 13

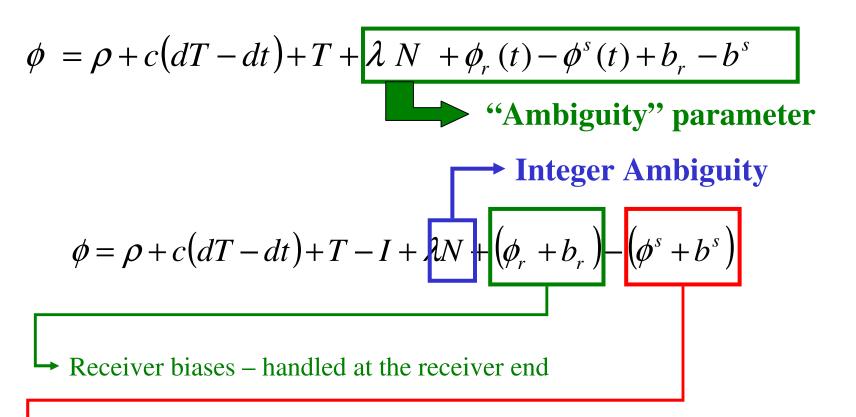
GAPS – PPP Performance

Kinematic positioning – Boat on Bay of Fundy Reference – GrafNav (baseline) Solution



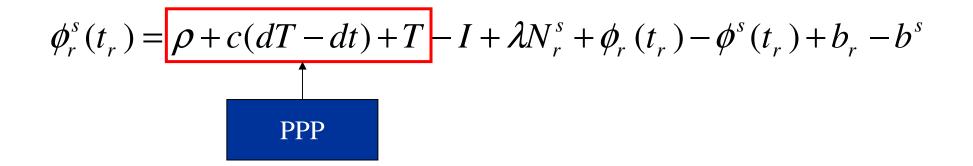
- Undifferenced observations
- Ionospheric free combination
- Ambiguity parameter estimation

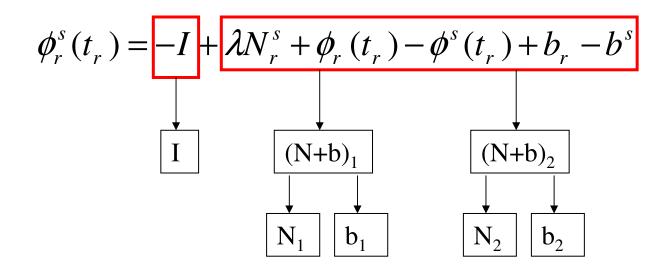
$$P_{if} = \rho + c(dT - dt) + T$$


$$\phi_{if} = \rho + c(dT - dt) + T + \lambda_{if} N_{if}$$

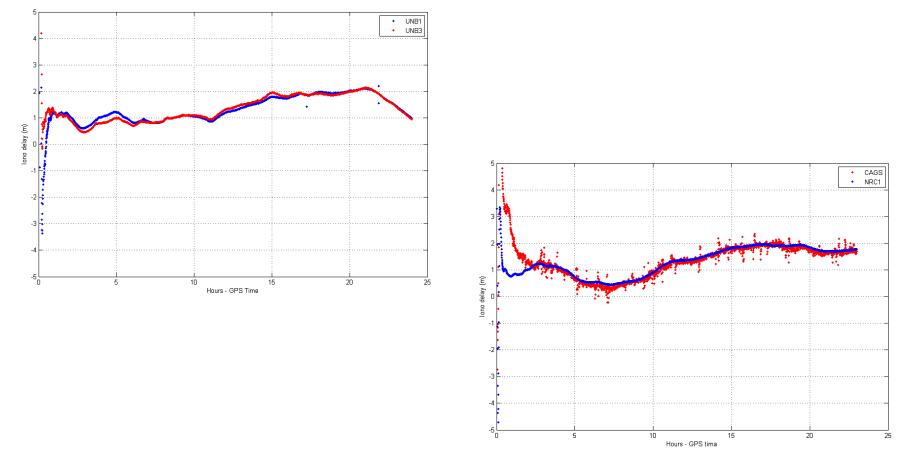
$$P_{if} = \alpha \cdot P_1 + \beta \cdot P_2$$
Not integer

Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering • University of New Brunswick 15



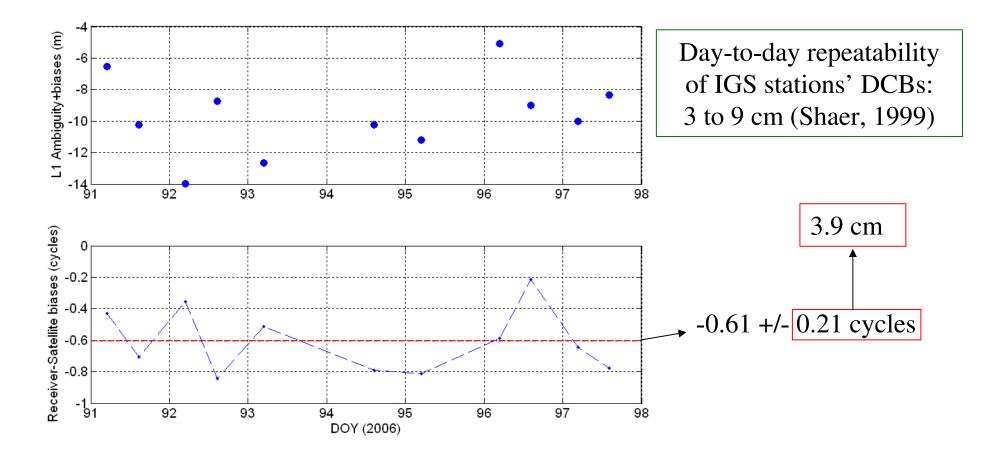


→ Satellite biases – handled by a wide area receiver network



DCF – Ionospheric delay

UNB1 and UNB3 - Two receivers sharing one antenna via splitter


CAGS and NRC1 - Two stations (20 km distance)

L1 Fractional bias

UNB1 and PRN20 – DOY 91 to 97

Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering • University of New Brunswick 19

- Good agreement between ionospheric delay estimation in nearby stations;
- Capability of estimating carrier-phase based, unbiased ionospheric delays;
- Good repeatability when estimating receiver-satellite differential fractional biases;
- De-correlation filter seems to work properly;
- Analysis with more data;
- Apply biases for isolated receiver after network step.