

PPP Research Progress at U of C

Yang Gao Department of Geomatics Engineering The University of Calgary ygao@ucalgary.ca www.ucalgary.ca/~ygao

GEOIDE PPP WORKSHOP May 27, 2008 Niagara Fall, Ontario

Outline

Position Yourself Ahead of the Crowd

- GNSS-based PPP Software Development
- Water Vapor Sensing System Using PPP
- Engineering Application Using PPP
- Ambiguity Resolution in PPP
- GNSS Biases

GNSS-based PPP Software Development

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

A Window-based Software System for GPS-based Precise Point Positioning

ENGINEERING

GNSS-based PPP Software Development

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

Functions

- Undifferenced code/carrier processing
- Different observation model implementations (traditional and UC)
- Precise tropospheric delay and receiver clock estimation
- Static and kinematic positioning
- Forward and backward data processing
- Post-mission PPP using IGS Precise ephemeris and clock products
- Real-time PPP using JPL and NRCan real-time precise orbit/clock products
- Easy-to-use interface
- On-line view of processing results
- Various utilities

Performance

- Static PPP: mm ~ cm
- Kinematic PPP: cm ~ dm
- Zenith Trop: mm-cm
- Receiver clock: 0.1 ns

P3 has been licensed to worldwide users including commercial product development

Department of Geomatics Engineering

GNSS-based PPP Software Development

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

A Window-based Software System for GPS/GLONASS-based Precise Point Positioning

Real-time Water Vapor Sensing Network Using PPP

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

Real-time Water Vapor Sensing Network Using PPP

Department of Geomatics Engineering

Position Yourself Ahead of the Crowd

System infrastructure

- Nation-wide network of **GPS** reference
- Precise GPS satellite orbit and clock product
- Data communication
- Data processing server
- Database server

System infrastructure and data flow

6/28

Real-time Water Vapor Sensing Network Using PPP

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

Department of Geomatics Engineering

Position Yourself Ahead of the Crowd

Real-time Water Vapor Sensing Network Using PPP

Schulich School of Engineering University of Calgary

- Real-time ZDT agrees to IGS's within ~10 mm
- Post-time shows the potential accuracy level which realtime system can achieved

	Mean of PWV Comparison		STD of PWV Comparison		RMS of PWV Comparison	
	R.T.	P.M.	R.T.	P.M.	R.T.	P.M.
Mean	0.14	0.36	2.05	1.37	2.10	1.43
Std	0.57	0.50	0.26	0.46	0.26	0.55
RMS	0.58	0.61	2.07	1.45	2.12	1.53

- Real-time system PWV has an difference of ~2 mm from IGS PWV.
- Real-time PWV is greater than post-mission result by ~0.5 mm, which can be 'overcome' through improvement of system and real-time Met data.
- Real-time system could be improved by real-time Met data.

Position Yourself Ahead of the Crowd

Deformation detection experiment

- ✓ March 23, 2007, on the roof of CCIT Building at University of Calgary
- Two Javad Legacy receivers, 3.5 m baseline
- The rove antenna was set up on the Anorad linear table
- Data acquired: 3 hours static data for the base receiver, 2 hours static and then 1 hour kinematic data with controlled movements
- Truth reference: ambiguity resolved double-difference baseline solutions

- ✓ 6 controlled movement scenarios
- ✓ Vibration motions along the North/South direction
- 20 times for each movement scenario (always start at the central point but finish at the stop point in the north)

#	Range (cm)	Speed (cm/s)
1	[-0.4 0.4]	0.1
2	[-0.8 0.8]	0.2
3	[-1 1]	0.25
4	[-2 2]	0.5
5	[-5 5]	1.25
6	[-8 8]	2

Engineering Application Using PPP

Position Yourself Ahead of the Crowd

ENGINEERING

10/28

Results using IGS final orbit and JPL final clock

Engineering Application Using PPP

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

#	Range (cm)	Speed (cm/s)	
1	[-0.4 0.4]	0.1	
2	[-0.8 0.8]	0.2	
3	[-1 1]	0.25	
4	[-2 2]	0.5	
5	[-5 5]	1.25	
6	[-8 8]	2	

Engineering Application Using PPP

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

- cm level deformation can be detected and determined by precise point positioning method using post-mission Final Product
- cm level deformation can be detected but can't be accurately determined by precise point positioning method using real-time precise product
- Quality of precise products is a limiting factor for the detection of mm level deformation and accurate deformation determination
- Ambiguity resolution method should be investigated to further improve PPP performance

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

ENGINEERING

13/28

Department of Geomatics Engineering

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

Spatially stable (wide-lane results)

Department of Geomatics Engineering

Position Yourself Ahead of the Crowd

Temporally stable (wide-lane results)

- ✓ Daily stability, 10 days from Day of Year 170 in 2006
- ✓ Weekly stability, 10 weeks from Week 25 of Year 2006

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

The integer property can be recovered after the removal of the initial phase bias (wide-lane results)!

Schulich School of Engineering University of Calgary

18/28

Position Yourself Ahead of the Crowd

$$\nabla P_{Pi,\Phi i} = 0.5 [\nabla P_i + \nabla \Phi_i] = \nabla \rho + \nabla d_{trop} + 0.5 \lambda_i [\nabla N_i - \nabla \phi_s(t_0, L_i)] + \varepsilon (\nabla P_{Pi,\Phi i})$$

$$\nabla \Phi_{IF} = \nabla \rho + \nabla d_{trop} + \frac{f_1^2 \lambda_1 [\nabla N_1 - \nabla \phi_s(t_0, L_1)]}{f_1^2 - f_2^2} - \frac{f_2^2 \lambda_2 [\nabla N_2 - \nabla \phi_s(t_0, L_2)]}{f_1^2 - f_2^2} + \varepsilon (\nabla \Phi_{IF})$$

$$\boxed{\nabla N_i - \nabla \phi_s(t_0, L_i)}$$
Integer Part Satellite initial phase bias
Removing initial phase bias to recover the phase integer property
$$\xrightarrow{\text{Precise}} \underbrace{\text{Freeeiver}}_{\text{Footmation}} \underbrace{\text{Determined}}_{\text{Float Amb}} \underbrace{\text{Calibration}}_{\text{Float Amb}} \underbrace{\text{Prep Fixed}}_{\text{Solution}} \underbrace{\text{XY.2}}_{\text{Trop.}} \underbrace{\text{OTF integer ambiguity resolution}}_{\text{OTF integer ambiguity resolution}}$$

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

Float v.s. Fixed Solution

Estimated results	Float (after converged)		Fixed (after TTFF)	
	Mean	Std.	Mean	Std.
	(cm)	(cm)	(cm)	(cm)
East	0.47	0.73	-0.01	0.48
North	0.19	0.42	0.00	0.42
Up	-2.43	1.43	-0.06	0.90
3D	2.71	1.26	0.99	0.49
Trop. wet	0.12	0.11	0.01	0.04

- Convergence time is decreased (Converge to 5cm from more than 1000 s -> 200 s TTFF)
- 3D position and tropospheric zenith wet estimation accuracy dramatically enhanced

GEOMATICS

ENGINEERING

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

Fifty scenarios analysis of AR with PPP

Convergence time reduced from 669 s to 198 s

✓ Convergence improvement, average 64.7%, maximum 90.2%

GNSS Biases

Department of Geomatics Engineering

nead of the Crowd

- **Hardware Bias**
 - ✓ Satellite hardware bias
 - ✓ Receiver hardware bias
- Software Bias
 - ✓ Satellite software bias
 - ✓ Receiver software bias
- **Bias in Code Measurements**
 - ✓ Satellite related bias
 - ✓ Receiver related bias
- **Bias in Phase measurements**
 - ✓ Satellite related bias
 - ✓ Receiver related bias

GNSS Biases

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

Relative (inter-frequency bias)

- Inter-Frequency Bias (IFB)
 - ✓ Satellite IFB
 - ✓ Receiver IFB
- Differential Code Bias (DCB)
 - ✓ Satellite DCB
 - ✓ Receiver DCB
- Differential Phase Bias (DPB)
 - ✓ Satellite DPB
 - ✓ Receiver DPB

- **Inter-System Biases**
- Inter-system Time System Offset (ITB)
 - ✓ GPS/GLONASS
 - ✓ GPS/GALILEO
 - ✓ GPS/COMPASS
 - Inter-system Coordinate System Offset (ICB)
 - ✓ GPS/GLONASS
 - ✓ GPS/GALILEO
 - ✓ GPS/COMPASS

Position Yourself Ahead of the Crowd

GPS Biases in Observation Equations

 $C_{1} = \rho + c(dT - dt) + d_{orb} + d_{trop} + d_{ion/L1} + c(b_{C1}^{r} - b_{C1}^{s}) + \varepsilon(C_{1})$ $P_{1} = \rho + c(dT - dt) + d_{orb} + d_{trop} + d_{ion/L1} + c(b_{P1}^{r} - b_{P1}^{s}) + \varepsilon(P_{1})$ $P_{2} = \rho + c(dT - dt) + d_{orb} + d_{tron} + d_{ion/L2} + c(b_{P2}^{r} - b_{P2}^{s}) + \mathcal{E}(P_{2})$ $\Phi_{1} = \rho + c(dT - dt) + d_{orb} + d_{trop} - d_{ion/L1} + c(b_{\phi_{1}}^{r} - b_{\phi_{1}}^{s}) + \lambda_{1}N_{1} + \varepsilon \ (\Phi_{1})$ $\Phi_{2} = \rho + c(dT - dt) + d_{orb} + d_{trop} - d_{ion/L2} + c(b_{\phi_{2}}^{r} - b_{\phi_{2}}^{s}) + \lambda_{2}N_{2} + \varepsilon (\Phi_{2})$ $C_{2} = \rho + c(dT - dt) + d_{orb} + d_{tron} + d_{ion/L2} + c(b_{C2}^{r} - b_{C2}^{s}) + \varepsilon(C_{2})$ $P_{2}' = \rho + c(dT - dt) + d_{orb} + d_{tron} + d_{ion/L2} + c(b_{P2'}' - b_{P2'}') + \varepsilon(P_{2}')$ $\Phi_{2}^{'} = \rho + c(dT - dt) + d_{orb} + d_{trop} - d_{ion/L2} + c(b_{\Phi2'}^{r} - b_{\Phi2'}^{s}) + \lambda_{2}N_{2} + \varepsilon \ (\Phi_{2}^{'})$

Hardware biases are not estimable in absolute sense

Position Yourself Ahead of the Crowd

GEOMATICS

ENGINEERING

24/28

IGS Product Convention and effect of biases on IGS products

$$P_{IF} = \frac{f_{1}^{2} \cdot P_{1} - f_{2}^{2} \cdot P_{2}}{f_{1}^{2} - f_{2}^{2}} = \rho + c(dT - dt) + d_{orb} + d_{trop} + c(b_{IFP}^{r} - b_{IFP}^{s}) + \mathcal{E}(P_{IF})$$

$$\Phi_{IF} = \frac{f_{1}^{2} \cdot \Phi_{1} - f_{2}^{2} \cdot \Phi_{2}}{f_{1}^{2} - f_{2}^{2}} = \rho + c(dT - dt) + d_{orb} + d_{trop} + c(b_{IF\phi}^{r} - b_{IF\phi}^{s}) + \lambda_{IF}N_{IF} + \mathcal{E}(\Phi_{IF})$$

$$P_{IF} = \frac{f_{1}^{2} \cdot P_{1} - f_{2}^{2} \cdot P_{2}}{f_{1}^{2} - f_{2}^{2}} = \rho + c(dT + b_{IFP}^{r}) - (dt + b_{IFP}^{s}) + d_{orb} + d_{trop} + \mathcal{E}(P_{IF})$$

$$\Phi_{IF} = \frac{f_{1}^{2} \cdot \Phi_{1} - f_{2}^{2} \cdot \Phi_{2}}{f_{1}^{2} - f_{2}^{2}} = \rho + c(dT + b_{IF\phi}^{r}) - (dt + b_{IF\phi}^{s}) + d_{orb} + d_{trop} + \mathcal{E}(P_{IF})$$

$$P_{IF} = \frac{f_{1}^{2} \cdot P_{1} - f_{2}^{2} \cdot \Phi_{2}}{f_{1}^{2} - f_{2}^{2}} = \rho + c(dT + b_{IF\phi}^{r}) - (dt + b_{IF\phi}^{s}) + d_{orb} + d_{trop} + \mathcal{E}(P_{IF})$$

$$\Phi_{IF} = \frac{f_{1}^{2} \cdot P_{1} - f_{2}^{2} \cdot \Phi_{2}}{f_{1}^{2} - f_{2}^{2}} = \rho + c(dT + b_{IF\phi}^{r}) - (dt + b_{IF\phi}^{s}) + d_{orb} + d_{trop} + \mathcal{E}(P_{IF})$$

$$\Phi_{IF} = \frac{f_{1}^{2} \cdot \Phi_{1} - f_{2}^{2} \cdot \Phi_{2}}{f_{1}^{2} - f_{2}^{2}} = \rho + c(dT + b_{IF\phi}^{r}) - (dt + b_{IF\phi}^{s}) + d_{orb} + d_{trop} + \mathcal{E}(P_{IF})$$

$$\Phi_{IF} = \frac{f_{1}^{2} \cdot \Phi_{1} - f_{2}^{2} \cdot \Phi_{2}}{f_{1}^{2} - f_{2}^{2}} = \rho + c(dT + b_{IF\phi}^{r}) - (dt + b_{IF\phi}^{s}) + d_{orb} + d_{trop} + \mathcal{E}(P_{IF})$$

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

Traditional model (Zumberge et al., 1997)

Ionospheric-Free code and phase combinations

$$P_{IF} = \frac{f_1^2 \cdot P_1 - f_2^2 \cdot P_2}{f_1^2 - f_2^2} = \rho + c \left(dT + b_{IFP}^r + d_{trop} + \varepsilon \left(P_{IF} \right) \right)$$

Receiver clock term in the estimates

$$\Phi_{IF} = \frac{f_1^2 \cdot \Phi_1 - f_2^2 \cdot \Phi_2}{f_1^2 - f_2^2} = \rho + c(dT + b_{IFP}^r) + d_{trop}$$

+ $c[(b_{IF\phi}^r - b_{IFP}^r) + (b_{IF\phi}^s - b_{IFP}^s)] + \lambda_{IF}N_{IF} + \varepsilon \ (\Phi_{IF})$

Ambiguity term in the estimates

25/28

Bias Issue in PPP

Position Yourself Ahead of the Crowd Traditional model (Zumberge et al., 1997) based on C1 and P2 Ionospheric-Free code and phase combinations $C_{1} = \rho + cdT + d_{trop} + d_{ion/L1} + cb_{IFP}^{s} + c(b_{C1}^{r} - b_{C1}^{s}) + \varepsilon(C_{1})$ $= \rho + c(dT + b_{IFCP}^{r}) + d_{trop} + d_{ion/L1} + c(b_{IFP}^{s} - b_{IFCP}^{s}) + \frac{c}{1 - \nu} (DCB_{C1,P2}^{r} - DCB_{C1,P2}^{s}) + \varepsilon(C_{1})$ $P_{2} = \rho + cdT + d_{trop} + d_{ion/L2} + cb_{IFP}^{s} + c(b_{P2}^{r} - b_{P2}^{s}) + \mathcal{E}(P_{2})$ $= \rho + c(dT + b_{IFCP}^{r}) + d_{trop} + d_{ion/L2} + c(b_{IFP}^{s} - b_{IFCP}^{s}) + \frac{c\gamma}{1 - \nu} (DCB_{C1,P2}^{r} - DCB_{C1,P2}^{s}) + \varepsilon(P_{2})$ $P_{IFCP} = \frac{f_1^2 \cdot C_1 - f_2^2 \cdot P_2}{f^2 - f^2}$ Receiver clock term in the estimates must be calibrated $= \rho + c(dT + b_{IFCP}^{r}) + d_{trop} - c\frac{\gamma}{1 - \nu}DCB_{C1,P1}^{s} + \varepsilon(P_{IFCP})$ $\Phi_{IF} = \frac{f_1^2 \cdot \Phi_1 - f_2^2 \cdot \Phi_2}{f_1^2 - f_2^2} = \rho + c(dT + b_{IFCP}^r) + d_{trop}$ Ambiguity term in the estimates $+ c[(b_{IE\Phi}^r - b_{IECP}^r) + (b_{IE\Phi}^s - b_{IEP}^s)] + \lambda_{IE}N_{IE} + \varepsilon (\Phi_{IE})$

Bias Issue in PPP

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

UofC model (Gao and Shen, 2002)

Average of code and phase + IF phase combination

$$P_{P_{1,\phi_{1}}} = \rho + c(dT + b_{IFP}^{r}) + d_{trop} + 0.5[c(b_{P_{1}}^{r} + b_{\phi_{1}}^{r}) - c(b_{P_{1}}^{s} + b_{\phi_{1}}^{s}) - 2c(b_{IFP}^{r} - cb_{IFP}^{s}) + \lambda_{1}N_{1}] + \varepsilon (P_{P_{1,\phi_{1}}})$$

$$P_{P2,\phi_2} = \rho + c(dT + b_{IFP}^{r}) + d_{trop} + 0.5[c(b_{P2}^{r} + b_{\phi_2}^{r}) - c(b_{P2}^{s} + b_{\phi_2}^{s}) - 2c(b_{IFP}^{r} - b_{IFP}^{s}) + \lambda_2 N_2] + \varepsilon (P_{P2,\phi_2})$$

$$\begin{split} \varPhi_{IF} = \rho + c \left(dT + d_{IFP}^{r} \right) + d_{trop} + \underbrace{ f_{1}^{2} [c(b_{\phi_{1}}^{r} - b_{\phi_{1}}^{s}) - c(b_{P_{1}}^{r} - b_{P_{1}}^{s}) - 2c(b_{IFP}^{r} - b_{IFP}^{s}) + \lambda_{1} N_{1} \right) \\ - \underbrace{ f_{2}^{2} [c(b_{\phi_{2}}^{r} - b_{\phi_{2}}^{s}) - c(b_{P_{2}}^{r} - b_{P_{2}}^{s}) - 2c(b_{IFP}^{r} - b_{IFP}^{s}) + \lambda_{2} N_{2}] \\ - \underbrace{ f_{2}^{2} [c(b_{\phi_{2}}^{r} - b_{\phi_{2}}^{s}) - c(b_{P_{2}}^{r} - b_{P_{2}}^{s}) - 2c(b_{IFP}^{r} - b_{IFP}^{s}) + \lambda_{2} N_{2}] \\ - \underbrace{ f_{2}^{2} [c(b_{\phi_{2}}^{r} - b_{\phi_{2}}^{s}) - c(b_{P_{2}}^{r} - b_{P_{2}}^{s}) - 2c(b_{IFP}^{r} - b_{IFP}^{s}) + \lambda_{2} N_{2}] \\ - \underbrace{ f_{2}^{2} [c(b_{\phi_{2}}^{r} - b_{\phi_{2}}^{s}) - c(b_{P_{2}}^{r} - b_{P_{2}}^{s}) - 2c(b_{IFP}^{r} - b_{IFP}^{s}) + \lambda_{2} N_{2}] \\ - \underbrace{ f_{2}^{2} [c(b_{\phi_{2}}^{r} - b_{\phi_{2}}^{s}) - c(b_{P_{2}}^{r} - b_{P_{2}}^{s}) - 2c(b_{IFP}^{r} - b_{IFP}^{s}) + \lambda_{2} N_{2}] \\ - \underbrace{ f_{2}^{2} [c(b_{\phi_{2}}^{r} - b_{\phi_{2}}^{s}) - c(b_{P_{2}}^{r} - b_{P_{2}}^{s}) - 2c(b_{IFP}^{r} - b_{IFP}^{s}) + \lambda_{2} N_{2}] \\ - \underbrace{ f_{2}^{2} [c(b_{\phi_{2}}^{r} - b_{\phi_{2}}^{s}) - c(b_{P_{2}}^{r} - b_{P_{2}}^{s}) - 2c(b_{IFP}^{r} - b_{IFP}^{s}) + \lambda_{2} N_{2}] \\ - \underbrace{ f_{2}^{2} [c(b_{\phi_{2}}^{r} - b_{\phi_{2}}^{s}) - c(b_{P_{2}}^{r} - b_{P_{2}}^{s}) - 2c(b_{IFP}^{r} - b_{IFP}^{s}) + \lambda_{2} N_{2}] \\ - \underbrace{ f_{2}^{2} [c(b_{\phi_{2}}^{r} - b_{\phi_{2}}^{s}) - c(b_{P_{2}}^{r} - b_{P_{2}}^{s}) - 2c(b_{IFP}^{r} - b_{IFP}^{s}) + \lambda_{2} N_{2}] \\ - \underbrace{ f_{2}^{2} [c(b_{\phi_{2}}^{r} - b_{\phi_{2}}^{s}) - c(b_{P_{2}}^{r} - b_{P_{2}}^{s}) - 2c(b_{IFP}^{r} - b_{IFP}^{s}) + \lambda_{2} N_{2}] \\ - \underbrace{ f_{2}^{2} [c(b_{\phi_{2}}^{r} - b_{\phi_{2}}^{s}) - c(b_{P_{2}}^{r} - b_{P_{2}}^{s}) - 2c(b_{IF}^{r} - b_{IFP}^{s}) + \lambda_{2} N_{2}] \\ - \underbrace{ f_{2}^{2} [c(b_{\phi_{2}}^{r} - b_{\Phi_{2}}^{s}) - c(b_{P_{2}}^{r} - b_{P_{2}}^{s}) - 2c(b_{IF}^{r} - b_{P_{2}}^{s}) + b_{P_{2}}^{s}] \\ - \underbrace{ f_{2}^{2} [c(b_{\Phi_{2}}^{r} - b_{\Phi_{2}}^{s}) - 2c(b_{\Phi_{2}}^{r} - b_{P_{2}}^{s}) + b_{P_{2}}^{s}] \\ - \underbrace{ f_{2}^{2} [c(b_{\Phi_{2}}^{r} - b_{P_{2}}^{s}) - 2c(b_{P_{2}}^{r} - b_{P_{2}}^{s}) + b_{P_{2}}^{s}] \\ - \underbrace{ f_{2}^{2} [c(b_{\Phi_{2}}^{r} - b_{P$$

✓ L1 ambiguity term in the estimates $c(b_{P_1}^r + b_{\phi_1}^r) - c(b_{P_1}^s + b_{\phi_1}^s) - 2c(b_{IFP}^r - cb_{IFP}^s) + \lambda_1 N_1$ ✓ L2 ambiguity term in the estimates $c(b_{P_2}^r + b_{\phi_2}^r) - c(b_{P_2}^s + b_{\phi_2}^s) - 2c(b_{IFP}^r - b_{IFP}^s) + \lambda_2 N_2$

Department of Geomatics Engineering

Schulich School of Engineering University of Calgary

Position Yourself Ahead of the Crowd

- NSERC and GEOIDE are acknowledged for financial supports.
- NRCan and JPL are acknowledged for their support to the PPP research work at The University of Calgary.

