Isolating and Estimating Undifferenced GPS Integer Ambiguities

Paul Collins
Geodetic Survey Division, Natural Resources Canada

Institute of Navigation, National Technical Meeting
January 28-30, 2008; San Diego, California
Undifferenced Ambiguity Resolution has been an elusive goal in GPS processing.

Recent techniques have been introduced that appear to "show the way". (All aspects addressed?)

Concurrently, there have been on-going investigations into the so-called "code-biases".

The goal of the presentation is to show how:

- the "standard model" of undifferenced ionosphere-free observables is sub-optimal; and
- rigorous modelling of code biases facilitates estimation of integer ambiguities from undifferenced observables.
Standard Observation Equations

\[C_1 = \rho + T + I + c(dt^r - dt^s) + b_{C1}^r - b_{C1}^s + \varepsilon_{C1} \]
\[P_1 = \rho + T + I + c(dt^r - dt^s) + b_{P1}^r - b_{P1}^s + \varepsilon_{P1} \]
\[P_2 = \rho + T + q^2 I + c(dt^r - dt^s) + b_{P2}^r - b_{P2}^s + \varepsilon_{P2} \]
\[\lambda_1 (\Phi_1 + N_1) = L_1 = \rho + T - I + c(dt^r - dt^s) + b_{L1}^r - b_{L1}^s + \varepsilon_{L1} \]
\[\lambda_2 (\Phi_2 + N_2) = L_2 = \rho + T - q^2 I + c(dt^r - dt^s) + b_{L2}^r - b_{L2}^s + \varepsilon_{L2} \]

- distinguish between geometric and non-geometric (timing) parameters
- \(b_* \) represent synchronisation errors between measurements – codes and phases measured separately
- understanding their role is crucial to isolating integer ambiguities from undifferenced carrier phases
Standard Observable Model
Re-assessed

\[P_3 = \rho + T + c(dt^r - dt^s) + b_{rP3}^r - b_{sP3}^s + \epsilon_{P3} \]
\[L_3 = \rho + T + c(dt^r - dt^s) + b_{L3}^r - b_{L3}^s - \lambda_3 N_3 + \epsilon_{L3} \]

- singular due to functionally identical clocks & biases
- by combining code clock and bias parameters and retaining common oscillators:

\[P_3 \equiv \rho + T + c(dt_{P3}^r - dt_{P3}^s) + \epsilon_{P3} \]
\[L_3 \equiv \rho + T + c(dt_{P3}^r - dt_{P3}^s) + A_{P3} + \epsilon_{L3} \]

where \[A_{P3} = b_{L3}^r - b_{P3}^r - b_{L3}^s + b_{P3}^s - \lambda_3 N_3 \]

- hence, even if \(b_{L3}^* \) known, ambiguities are not isolated
Because each carrier phase is uniquely ambiguous, the pseudoranges provide the datum for the clock solutions.

Implication:
- A change in dual-frequency pseudoranges manifests itself in estimated clocks and ambiguities.

Example:
- Compute P1-C1 bias from 2 standard model solutions:
 \[P_3 = f(P_1, P_2) \]
 \[P_3' = f(C_1, P_2') \text{ where } P_2' = C_1 + (P_2 - P_1) \]
 \[dt_{P3}^s - dt_{P3'}^s = b_{P1-C1}^s = A_{P3} - A_{P3'} - b_{P1-C1}^r \]
Deriving satellite P1-C1 biases

- standard model still optimally parameterised if b_1^* are constant, but…

RMS of fit = 0.3ns/0.1m
YELL-AMC2 clock error
(Jan07-Jan13, 2007; common linear fit removed)
Problem:
- Apparent code and phase oscillator measures are significantly different.

Solution:
- Decouple the code and phase clocks:
 \[P_3 = \rho + T + c(d_{P3}^r - d_{P3}^s) + \varepsilon_{P3} \]
 \[L_3 = \rho + T + c(d_{L3}^r - d_{L3}^s) - \lambda_3 N_3 + \varepsilon_{L3} \]

 No assumptions about bias ‘stability’ required.

Implication:
- Pseudorange datum removed from carrier phase.
- Replace with Ambiguity Datums.
Ambiguity Datum Fixing

- One ambiguity per phase clock fixed, less one
- One phase clock fixed as the network datum
 - Identical concept to fixing the ‘reference clock’ in standard model network processing
 - One code clock fixed also
- Ambiguity can be fixed to arbitrary integer value
 - acts as Partial Integer Constraint
 - remaining ambiguities are integer!
- Phase clock estimates are integer ambiguous with respect to the code clock estimates.
Relationship to Goad Model

\[
\begin{align*}
\Phi_1^1(t) &= G_1^1(t)/\lambda + B_1^1(t) \\
\Phi_1^2(t) &= G_1^2(t)/\lambda + B_1^2(t) \\
\Phi_2^1(t) &= G_2^1(t)/\lambda + B_2^1(t) \\
\Phi_2^2(t) &= G_2^2(t)/\lambda + N_{12}^{12} + B_2^1(t) + B_1^2(t) - B_1^1(t)
\end{align*}
\]

4 observations: 4 clk/amb unknowns when \(G(t) \) known

- \(G(t) \): a-priori values or pseudorange estimates

\[
\Phi_1^1(t) = G_1^1(t)/\lambda + B_1^1(t) \\
\Phi_2^1(t) = G_2^1(t)/\lambda + B_2^1(t) + B_1^1(t)
\]

network datum

\[
\Phi_1^2(t) = G_1^2(t)/\lambda + B_1^2(t) \\
\Phi_2^2(t) = G_2^2(t)/\lambda + B_2^1(t) + N_{12}^{12} + B_1^2(t)
\]

base-station–base-satellite \(\Rightarrow\) datum fixing
Problem:
\[\lambda_{IF}(L1,L2) \approx 6 \text{mm}. \ (\text{Note: } \lambda_{IF}(L2,L5) \approx 12 \text{cm}) \]

Implication:
Intermediate step required for L1,L2 processing

Solution:
Melbourne-Wübbena combination for WL
\[A_4 = L_4 - P_5 = b_{A4}^* - b_{A4}^s - \lambda_4 N_4 + \varepsilon_{A4} \]
\[b_{A4}^* \text{ are not constant} – 'delta-clocks' \]
Ambiguity Datum fixing
Processed simultaneously with \(P_3 \) and \(L_3 \)
With WL fixed, \(\lambda_{IF}(L1,L2) = \lambda_{NL} \approx 11 \text{cm} \)
YELL P3 & L3 Average Residuals

Elapsed Time (hour)

std model P3 avg res (m)
-2.0E+00
-1.5E+00
-1.0E+00
-5.0E-01
0.0E+00
5.0E-01
1.0E+00
1.5E+00
2.0E+00
0 12 24 36 48 60 72
ext model P3 avg res (m)
-2.0E+00
-1.5E+00
-1.0E+00
-5.0E-01
0.0E+00
5.0E-01
1.0E+00
1.5E+00
2.0E+00
0 12 24 36 48 60 72

Elapsed Time (hour)

std model L3 avg res (m)
-2.0E-06
-1.5E-06
-1.0E-06
-5.0E-07
0.0E+00
5.0E-07
1.0E-06
1.5E-06
2.0E-06
0 12 24 36 48 60 72
ext model L3 avg res (m)
-2.0E-06
-1.5E-06
-1.0E-06
-5.0E-07
0.0E+00
5.0E-07
1.0E-06
1.5E-06
2.0E-06
0 12 24 36 48 60 72
Station Clock Parameter Estimates

Rapid/phase clock de-trended RMS = 0.08ns/0.02m
Satellite Clock Parameter Estimates

Rapid/phase clock de-trended RMS = 0.17ns/0.05m
Widelane Ambiguities – Float & Fixed

WL Ambiguities for YELL (cy)

Ambiguities (cy)

Hour-of-Day (006, 2007)

Ambiguities (cy)

Hour-of-Day (006, 2007)
L3 Residuals – Float & Fixed

Phase Residuals for YELL (m)

Phase Residuals (m)

Elevation Angle (deg)

Phase Residuals for YELL (m)

Phase Residuals (m)

Elevation Angle (deg)
Implications for PPP — Summary

- Each observable requires a satellite ‘clock’ parameter:
 - \(dt_{P3}, dt_{L3}, b_{A4} \)
 - as well as satellite X, Y, Z coordinates.
- In practice \((dt_{P3} - dt_{L3}) \) and \(b_{A4} \) variations may allow transmission as ‘slow’ corrections.
- Standard Ambiguity Resolution Techniques (e.g. LAMBDA) become applicable to PPP.
- PPP-AR becomes possible in principle.
- ALL predicated on good orbits! (IGS Rapid here)
Conclusions

- Synchronisation of code and phase measurements is significantly different.
- The Standard Model allows the pseudorange biases to directly interfere with the carrier phase biases.
- The Decoupled Clock Model provides:
 - unambiguous, but imprecise code clock estimates
 - precise, but ambiguous phase clock estimates
 - integer ambiguities.
- Extended Model required for L1, L2 processing.
- Provides a path for PPP-AR in a very generic way
 - extension of generic LS, no a-priori bias assumptions.