PROGRAMS SATNAV AND LINK
DESCRIPTIONS AND
USER’S GUIDES

SEE HEAN QUEK

June 1983

PREFACE

In order to make our extensive series of technical reports more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.

PROGRAMS SATNAV AND LINK

DESCRIPTIONS AND USER'S GUIDES

by

SEE HEAN QUEK

Department of Surveying Engineering
University of New Brunswick
P.0O. Box 4400
Fredericton, N.B.

Canada
E3B 5A3

Technical Report 98

June 1983

PREFACE

This technical report contains the second and third contributions in
a series of reports detailing the development of a system for microcomputer

control of a CMA 722B satellite Doppler positioning receiver.

ii

ACKNOWLEDGEMENT

This work would not have been possible without the support of Dr.
D.E. Wells and Dr. R.B. Langley. Improvements to the CMA 722B/Apple II+
operating system were funded by an operating grant held by Dr. Wells from

the Natural Sciences and Engineering Research Council of Canada.

iii

PROGRAM SATNAV

DESCRIPTION AND USER'S GUIDE

iv

ABSTRACT

This supplement describes the changes and improvements to the Digital
Data Recorder program (RECEIVER) developed originally by Mark S. Lord, and
described in Technical Report 88 of the Department of Surveying
Engineering, University of New Brunswick.

These changes have been implemented in a new version of the RECEIVER
program called SATNAV,

SATNAV (version 3.0) optimizes the storage of the Doppler data on the
diskette and has a realtime majority voting capability for the broadcast
satellite message. The following is a list of the new features available
under SATNAV (version 3.0).

(1) Realtime majority voting of satellite message.

2) Realtime accumulation of 30-second Doppler counts.

(3) Validation of majority-voted satellite message.

) Verification of 30-second Doppler count sufficiency for pass
computation,

(5) Optimization of data storage, i.e., choice of saving only the
majority-voted file instead of the much larger raw data file.

(6) Addition of pass diagnostic messages and improved screen display.

(7) Realtime verification of satellite tracked.

(8) Manual rejection of satellite pass.

A user's guide to SATNAV is in Appendix I.

PROGRAM SATNAV

TABLE OF CONTENTS

Page

Preface e e e e e e s e e e s e s e e e e e ii
Acknowledgement ¢ ¢ 4 e e e e e e e e iii
Abstract 0 0 e e e e e e e e e e e \
Table of Contents ¢ o ¢ « ¢ ¢ o+ e« e e vi
1. Introduction e s s s s e s e s e a2 e e e e 1
2. SATNAV . . & v v v d e e e e e e e e e e 2
2.1 Realtime Majority Voting + . + .+ « . 2

2.2 Accumulation of 30-Second Dopplers 3

2.3 Validation of Satellite Message 3

2.4 30-Second Doppler Sufficiency Test 4

2.5 Data Storage ¢ ¢ ¢+« e e e e . 5

2.6 Screen Display . . e e e e e e e e e 6

2.7 Realtime Identification of Satellite 6

2.8 Pass Rejection Capability . . . e e e e e T

2.9 Description of the Majority-Voted Flle e e e e . T

3. Conclusions and Recommendations e e e e e e e e 11
References e s s s e s s s e e e e e s s e e e 12
Appendix I - User's Guide« .+ .« « « < .« . 13

Appendix II
Appendix I1I

Components of the CMA 722B/Apple II+ System .« . 29
SATNAV program listing e e e e 2 e e e e 30

PROGRAM LINK

TABLE OF CONTENTS

Abstract . « ¢ ¢ ¢ e ¢ e e e e e e e e e e e 78
Table of Contents . . .+ « « « « ¢ « ¢« e e e e 79

1. Introduction ¢ ¢ ¢ ¢ 4 4 e e e e e 80

2. LINK e e e e e e e e e e e e e e e e e 81
2.1 1200 Baud Communication e e e e e e e e e 81
2.2 Additional Features« .+ ¢ +« « +« « « . 82

3. Conclusions and Recommendations e e e e e e e e 83
References e e e e e e e e e e e e e e e e e 84
Appendix I - User's Guide . . . « « « + + + o« o« . . 85

Appendix II
Appendix III

Components of the Apple II+ System L
LINK Program Listing 95

vi

1. INTRODUCTION

In 1982, an economical digital recording system was devised as an
alternative to the punched paper tape for the CMA 722B Transit satellite
receiver. The system software and hardware specifications are detailed in
Lord [1982].

Several modifications have been made to both hardware and software
components of the system to improve its utility as an intelligent recording
device. This supplementary report highlights the alterations made to the
program, its implementation, and contains a user's guide to the software
(SATNAV). With the exception of the changes mentioned in this report, the

rest of the operating enviromment of the system is as described in Lord

(19821 (pp. 28-44).

2. SATNAV

SATNAV is the 1latest version of the RECEIVER program developed
originally by Lord [1982]. The program has been extensively revised and
now contains twice as much code which is partitioned into three source text
files (Appendix III). A description of the features available under SATNAV

(version 3.0) follows.

2.1 Realtime Majority Voting

The satellite broadcast message consists of a set of fixed parameters
and a set of variable parameters [Stansell, 1978]. The program majority
votes the incoming satellite message in realtime using two 9-character word
arrays. The first two paragraphs of the satellite broadcast message are
stored in these two separate arrays. Majority voting is done on a digit by
digit basis. When the next digit in the third paragraph is received, it is
compared with the corresponding digits in the two previously received
paragraphs. If the number from the first and second paragraphs agree, the
digit from the third data set and subsequent data paragraphs are ignored.
If a disagreement exists, a three-way comparison is made and the odd one
dropped. If they all disagree, the digit from the latest paragraph is
dropped and the process is repeated until two are in agreement.

There are 28 lines in the majority-voted arrays. The variable and
fixed parameters each occupy one half of the array. Hence there exists
space for the variable parameters from the period (tk - U4) minutes to (tk +
22) minutes, with tk being the lock-on time of the satellite pass. As for
the fixed parameters, only the first 14 of the received parameters are

kept. This can be extended to 15 to allow for the detection of the

satellite message injection during a satellite pass.

The present version of SATNAV accepts only numeric data for majority
voting. Hence the injection flag (three rows of equal signs) is ignored.
This may result in inconsistent majority-voted data on injection passes.
It would be possible to further modify SATNAV to detect and correctly

handle injection passes, but this has not yet been done.

2.2 Accumulation of 30-Second Dopplers

Many Doppler processing programs are based on 30-second Doppler data
rather than on the short 4.6-second counts that the CMA 722B provides.
SATNAV extracts and stores, in realtime, the long (approximately) 30-second
Doppler counts from the array of U4.6-second accumulated Doppler counts.
Both 150 MHz and 400 MHz, 30-second Doppler counts are extracted and kept

in a 9-character word array of 32 rows.

2.3 Validation of Satellite Message

In an effort to weed out bad passes due to errors in the received
satellite message, SATNAV has the capability of checking and testing
satellite ephemerides. Prior to writing the pass on the diskette, SATNAV
does the following:

(a) If any of the digits in the 9-character words are undefined, all

the digits are set to zero.

(b) If any of the fixed parameters have been zeroed, a '9' appears

in the line error code column in the majority-voted file (see
Section 2.9).
(¢) If any of the fixed parameters do not contain an '8' or a '9' as

the first digit, an error flag '9' appears in the line error

code column in the majority-voted file.

(d) If all the fixed parameters pass the above data format checks,
the quality of the message is assessed by decoding and testing
for the following:

i) time of satellite perigee (0 < tp < 1440);
ii) rate of change of mean anomaly (3 < < U);
iii) argument of perigee at time of perigee (0 < w < 360).

A '"1' appearing in the line error code indicates a warning and
usually appears when the parameter is zeroed and is not detrimental to the
pass computations. A '9', on the other hand, indicates a fatal error in
the received broadcast message and will appear in the majority-voted file
if the no-reject option for a pass with a bad message is chosen.
Regardless of the option, SATNAV assesses the quality of the majority-voted
message and displays the final verdict in the message area on the screen

(see Appendix I, figure I-2).

2.4 30-Second Doppler Sufficiency Test

The advantage of tallying the number of 30-second Doppler counts
accumulated in a pass is the ability to assess the quality of the resulting
position determinations based on the number of Doppler observations
available. Due to interference, single frequency Doppler counts may
result, leading to seemingly good passes. To remove single frequency
measurements, a criterion is imposed of a maximum difference of 1500
Doppler counts between the 150 MHz and 400 MHz Dopplers. Care has been
taken in implementing this constraint because, if erroneously applied, it
will result in loss of valuable data. A straight difference in the

recorded long Dopplers can result in losses of whole 2-minute paragraphs of

data. Hence SATNAV uses the Doppler counts reset every (approximately) 30
seconds, rather than the Dopplers accumulated up to two minutes to
implement this restriction.

All actual two-frequency 30-second Doppler counts with differences
greater than 1500 counts are zeroed. The remaining counts are tallied and
if they do not exceed the selected minimum (program option; default 10),
the pass may be rejected. In either case, if the number of counts falls
below the preset minimum, a warning to that effect appears in the message

area of the screen.

2.5 Data Storage

The raw and majority-voted data are buffered until the end of the
satellite pass and then dumped onto the diskette. SATNAV has the user
selected capability of either dumping the raw and majority-voted data or
only the majority-voted data. Raw and majority-voted data are kept in two
separate files. The composition of the majority-voted files is given in
Section 2.9. Each majority-voted code file occupies 2 data blocks on a
diskette that has a maximum capacity of 270 blocks. Therefore it is
possible to store about 135 passes per diskette.

If raw data also is to be stored on the diskette, the number of
passes drops dramatically to about 20. The actual number varies with the
number of paragraphs per pass that was tracked. To enable a longer period
of unattended operation, the boot diskette may be removed, and in its place
a blank PASCAL formatted diskette can be inserted. This diskette will be
used once the primary data diskette is filled. Based on collecting only
the majority-voted data and on an average of 30 good passes per day, the

system may be left unattended for about 9 days before a change of data

diskettes is required.

2.6 Screen Display

The original screen display has been modified to accept 9-digit
Doppler counts. This was made possible by squeezing the program nesting
column.

Currently only 7-digit data are accessed from the CMA 722B. Two zero
digits are appended to the 7 digits to make the Dopplers conform to the
9-digit format. In order to use 9-digit data, the interface to the CMA
722B must be changed from the present parallel interface (connected to the
CMA 722B computer interface board) to a serial interface (connected to the
CMA 722B serial interface board). Within the Apple, the serial interface
should be accessed by an input interrupt driven buffer. For the purposes
of displaying incoming data from the CMA 722B, the digits should be packed
into U-digit words. This should improve the execution speed of the

program.

2.7 Realtime Identification of Satellite

SATNAV constantly attempts to identify, in realtime, the satellite
number. When it manages to decode a valid satellite number, it displays it
on the screen for possible manual rejection of the pass via the ESC unlock
command sequence (see Appendix I). This facility was developed to allow
for the future use of an alert table to select desired satellites or

passes.

2.8 Pass Rejection Capability

The original design of the CMA 722B does not allow software
controlled rejection of a satellite pass. To have this facility, we have
constructed a feedback board based on the diagrams and description in a
report by Ken Hill [1980], and installed it in the empty slot in the CMA
T722B. The end of pass command, used to reject a satellite pass, is issued
by SATNAV through the game I/0 port of the Apple. Wiring diagrams for the
CMA 722B are as indicated in Lord [1982] (page 26). A separate cable
leading from the 48-pin female edge connector to the game I/0 port has been

constructed. Table 2.1 shows the pin connections for this cable.

Game I/0 Connector HP Edge Connector on
on Apple Motherboard CMA T722B Interface Cable
Pin 5 to Pin 22

12 45

13 46

14 47

15 48

Table 2.1

Pass Rejection Feedback Signal Wiring Connections.

2.9 Description of the Majority-Voted File

The majority-voted file is comprised of the majority-voted matrix,
30-second Dopplers, information codes, and the line error code (see Figure
2-1). It contains a 31 by U4 matrix of numbers, preceded by a line giving
the date and time at lock-on. The first two columns of the matrix contain
the 30-second accumulated Doppler counts at 400 MHz and 150 MHz,
respectively. The first 28 rows of the third column comprise the
majority-voted broadcast satellite message. Of these, the first 14 rows

are the ephemeral parameters spanning (tk - 4) minutes to (tk + 22)

minutes; with tk being the lock-on time of the pass. The remaining 14 rows
hold the fixed parameters. The 29th row is, at present, uncoded and can be
used to indicate satellite message injection during the satellite pass, if
so desired. The second to last row (30th from the top) coﬁtains a user
defined code describing station, receiver and/or user. The last row of the
third column gives the options used 1n accunulating the Doppler data. The
breakdown of the coding is given in Figure 2-1.

The line error-code vector is the fourth column of the majority-voted
matrix. The 'health' of the data in each row of the matrix is identified
by a corresponding row in the line error-code column. If a '1' appears in
the 4th column, it denotes a zeroed or undefined parameter in the
majority-voted message; a '9' indicates bad or missing fixed parameters or
insufficient Doppler counts. Under the no-reject option, a bad fixed
parameter results in a '9' in the penultimate row of the fourth column. A
'9' in the last row indicates insufficient Doppler counts have been

recorded.

FIGURE 2-1

Majority—-voted matrix

8Z/02/11-5 16151155

081197000
1514352700
234337300
307294400
0835282900
159683000
2482539900
326995200
QFIF72200
1748735900
272238800
361277200
104383900
196419900
I066IF000
404747400
113330600
216014400
ITZSITZ1000
440383400
QOOOQ0000
000000000
000000000
000000000
QOO0O0000
000000000
000000000
Q00000000
000000000
QOOO00000
000000000
L400 MHz]

081198300
151456100
2343433300
207303000
083286600
159689000
248270200
327007300
092974100
174879600
273243700
361282300
104383300
196418100
206649000
404736600
115326200
216003500
IIST16400
440364800
OOO000000
QOO000000
Q00000000
QQO000000
Q00000000
Q00000000
QOO000000
OOO000Q00
QQOO000000
QOOQOQOO00
QOO000000
L1550 MH=z]

Continue next page

090010014
600130134
610250334
&203505932

0410894
640451231
20043513580
210372147
220342470
230282744
2402029635
250103090
0600131435
Q00000000
039300580
837537250
818388360
800199840
8000473520
807449850
813016500
FOO00S52T0
800131180
823901100
800301400
817200420
809999140
802060000
000000000
111222535
511110030

[MVBMI [LEC]

o e o]

-~
&

leNoReoNoRel _NeNoNoRoRoRoNoRsRo)

0

Q
O
O

<~ [Date and Time stampl
= begin =

<— [Variable parameter at
lock—on—-timel

[Majority-voted broadcast
message (MVBM). Lines 1
to 14 are the variable
parameters and lines 1935
to 28 are the fixed
parameters.]

= end =

<— [User/Stn/Rec ID codel
“— [OFC]

10

Counts - Accumulated 30-second 400 MHz and scaled 150 MHz
nine-digit Doppler counts.

[LEC]1 - Line Error Code column vector with 31 elements.
Coding: O - no error detected
1 - non—-fatal error (warning)

9 - fatal ervror in matrix (bad MVBM or
insufficient counts)

LOFC1 ~ Option Code (511110030)
Coding seqgquence
digitss 1 15 = minimum number of paragraphs
21 - clear Doppler counts when
difference exceeds 1500 counts
3:1 —~ ctheck for sufficiency of counts
4 : 1 - reject pass if MVBM fails tests
Ss6 1 10 ~ minimum counts constituting a
good pass (2-digits)
7 + 0 - not used
8,9 ! 3.0 — SATNAV version code (2-digits)

(see section I.2.1a to I.2.1d for further
description on options)

3. CONCLUSIONS AND RECOMMENDATIONS

The structure of the SATNAV program under the Apple PASCAL operating
system enables easy tailoring of the program to suit user requirements
where options are lacking. SATNAV and the Apple II+ microcomputer allow an
economical alternative to other methods for controlling and recording data

from the CMA 722B Transit satellite receiver.

Further improvements, in descending order of importance, along the
lines mentioned below will undoubtedly enhance this system further.

(a) Acquisition of 9-digit data.

(b) Use of alert table to select optimal passes.

(¢) Generation of alerts on the Apple.

(d) Computation of satellite fixes on the Apple.

11

12

REFERENCES

Canadian Marconi Company (1975). "Satellite position location/navigation
system CMAT22B: Description and operation manual." Publication
No. 722-X-101, Change Ui.

Hill, K. (1980). "Computer controlled pass rejection for the Marconi 722
SATNAV receiver." Bedford Institute of Oceanography, August.

Lord, M.S. (1982). ™"A digital data recorder and transfer device for the
Marconi 722B satellite navigation receiver." Department of
Surveying Engineering Technical Report 88, University of New
Brunswick, Fredericton.

Stansell, T.A. (1978). "The TRANSIT navigation satellite system."
Magnavox Govermment and Industrial Electronies Co., R-5933/

October.

13

APFENDIX I

Program @ SATNAV

Author : S.H. Guek

Language : PASCAL

Compiler @ APFLE PASCAL (1.1)

Type : Interactive

Purpose ! Acquisition and Storage of Satellite

Doppler Data from the CMA722B Satellite

Position/Navigation Receiver

Date @ May 1983

14
SATNAYV - User’s Guide

Execution of Frogram

The following describes the start—up’or "buoting",procedure

for the execution of the SATNAV program.

1.

*

Before turning on the power slide the diskette named
TRACK into disk drive 1 (as identified by the label on
the front of the drive) and a Pascal-formatted blank
diskette into the other drive.

Fower on the Apple II+.

The screen should display the current time, i.e.
year/month/day hour/min/second. This should be in
Universal Time (UT). A request to type "I’ sometimes
appears.

If system fails to boot, try swapping the diskettes in
the disk drives. If problem persist, contact author.

If booting is successful the system is now in the AFPFLE
FASCAL Command Mode. To enter the Execution Mode, type
’X’*. The system then asks for the name of the file
(program) you wish to execute.

Type "GO0’ to execute the front program. Disk drive 1 will
whirr a bit and a menu of available programs will be
displayed.

Type 17 to access the SATNAV program (Figure I-1 will

appear on the screen).

(Note ¢ Type "X° means hitting the X key on the

keyboard without the guotes)

15

SATNAV - User®s Guide

Welcoming message to SATNAV

! ETTT TR T

! *¥ SATNAV *

" * *

-=[ANT J=— ¥ PROGRAM *
. HRHHRRWWNRRN ———e————

seasssnssasssseasas CMA-722!

AUTHORS

| mmommemme
(ORIGINAL) : MARK LORD (1981)
(REVISION) : SEE HEAN QUEK (1983)

VERSION P MAY 1983 (3.0)

eose sotme swees wures conen Gomee o4a0a Sones senen e Semae Seent puce Seses Soves Seies Seses e St Sones Sesms damee e e Saec Avemt SSest e Smee So02s Soean Snpnt e oo Smees Seten

16
SATNAY - User s Guide

Alternatively, one may directly access the SATNAV program
from the FASCAL Command Mode by typing "SATNAV® instead of

607 in response to the file-name prompt.

SATNAY
The following are the extended descriptions of the various
options available with the 3.0 version of the SATNAV

program.

I.2.1 Frogrammed Defaults

To accept all the programmed defaults (given below)

respond with N0 to the request to change defaults. To

enter new values or view option defaults, type *Y'es. The

following are the list of options available:

a) Minimum Faragraphs
The user has the option of setting a minimum number of
2-minute paragraphs of Doppler data that have to be
accumul ated before the pass is to be saved on the
diskette. This reduces the amount of marginal data
stored on the diskette and frees diskette space for
more useful passes.
(Default 1= 35)

b) Validation of Broadcast Ephemerides
SATNAY checks the broadcast majority-voted message for
a valid time of perigee, rate of change of mean
anomaly and the argument of the perigee. The user has
the option of rejecting a pass if the message fails

these tests. If the no-reject option is selected, the

c)

d)

SATNAV - Useizs Guide
failure of the majority-voted message is denoted by
9 in the second last element of the Line Error Code
(LEC) column vector associated with each
majority-voted matrix (see Figure I-3).
(Default = Yes)
Zero Dopplers
The accumulated 30-second counts displayed in the
majority-voted matrix (see Figure I-3) are derived
from the accumulated 4.6 second counts in the Z-minute
paragraphs. Due to weak signals or complete signal
loss one of the frequency channels (usually the 400
MHz channel) may unlock during a pass. If relock
occurs within the Z-minute paragraph the accumulated
Doppler counts between the two channels will be offset
by a fixed amount. SATNAV uses the actual 30-second
counts (not the displayed accumulated 30-second
counts) to reject Doppler measurements if the
difference between the 400 MHz and 150 MHz Doppler
counts exceeds 1500 counts. This option can be used to
clear one—freqguency Doppler measurements.
(Default = Yes)
Minumum Number of Counts
The number of accumulated 30-second Doppler counts is
totalled prior to writing the pass on the diskette. If
an insufficient number of counts has been collected,
SATNAV uses this option to reject the pass. If a
no-reject option is selected and the number of counts

falls below the preset limit, a "9 appears as the

SATNAV

FIGURE I-3

18

- User®s Guide

Majority—-voted matrix

83/02/711-5 16:51:55

081197000
151452700
234337300
307294400
083282900
159683000
248259900
326995200
092972200
174873900
273238800
361277200
104383900
196419900
Z06655000
404747400
1138330600
216014400
333331000
4403837400
000000000
000000000
Q00000000
000000000
Q00000000
(sslslelnlslelnle}
QOOOOOOO0
QO0000000
QO0O0O0OO0O0
Q00000000
QOOOO0000
L4000 MHz1

081198300
151456100
234343300
Z07303000
085286600
159689000
248270200
327007500
092974100
174879600
273243700
361282300
1043283300
196418100
206649000
404736600
115326200
216005500
335316400
440364800
QOOO00000
000000000
Q00000000
Q00000000
QOOOO0000
Q00000000
000000000
(slelelelnlelelele]
QQOO00000
000000000
QOOOO0000
C150 MHz 1]

Continue next page

090010014
600130134
610250334
620330393
630410894
640451231
2004513580
210372147
220342470

30282744
240202965
250103090
060013145
000000000
039300580
8373537250
818388360
800199840
800047320
807449850
813016500
F000035250
800131180
823901100
800301400
817200420
809999140
802060000
000000000
111222885

511110030

CMVBM] [LEC]

QO CO0OCOOO0OQCOCORO0COQOCCCOCOCO0OT

y O

C

Q
o]
O

+— [Date and Time stampl

= begin =

<= [Variable parameter at
lock-on-timel

[Majority voted broadcast
message (MVBM). Lines 1
to 14 are the variable
parameters and lines 195
to 28 are the fixed
parameters.]

“— [User/Stn/Rec ID codel
LOPC]

< -

19
SATNAY - User’s Guide

Note:

Counts - Accumulated 3I0-second 400 MHz and scaled 1350 MH=
nine—-digit Doppler counts.

[LEC] - Line Error Code column vector with 31 elements.
Coding: O — no error detected
1 - non—-fatal error (warning)

? - fatal error in matrix (bad MVBEM or
insufficient counts)

[OFC]1 - Option Code (511110030)
Coding sequence
digitss 1 ¢ S -~ minimum number of paragraphs
21 - clear doppler counts when
difference exceeds 1300 counts
I 1 - check for sufficiency of counts
4 1 1 - reject pass if MVBM fails tests
S,6 ¢ 10 - minimum counts constituting a
good pass (2-digits)
7 1 0 - not used
8,9 : 3.0 — SATNAV version code (2-digits)

(see section I.2.1a to I1.2.1d for further
description on options)

20
SATNAV — User®s Guide

last element of the LEC vector.
(Default = 10 counts)

e) Data type
SATNAY allows the user to select the type of data to
be stored on the diskettes. Only majority-voted data
(MJV) results in more passes per diskette and is
usually preferred.

(Default = MJIV data only)

I.2.2 USER/STN/REC
SATNAV allows the input of a user—defined nine-digit code
which shows up in the majority-voted matrix (see Figure
I-3). Preferably, the code is used to identify the user,
observing station and the serial number of the receiver.
No restriction is placed on the numerical code and the

user, if he so desires, is free to use his own coding

system.

Having fulfilled the last request for information by the
program, you should see a display similar to Figure I-2.
SATNAV now waits for the receiver to acquire signals from a
satellite. The MesSage Area displays the assigned next pass
number, the increment between pass numbers and the type of
file to be used. In the mean time, the timestamp (displayed
in the Message Area on the screen) is updated every two

minutes. When the CMA 722B acquires a message lock on a

21
SATNAY - User’s Guide

Screen setup during the execution of SATNAV

STATUS: SETUP ! SATELLITE PASS !'INPUT
PARA/LINE= 00/00! MONITOR FPROGRAM !'WORDS
o e e e s e e o ——— - ——— -

1]
' [Message Areal '
]]

e e e —_— +—= ———t

PROG! DOFPLER COUNT 'SATELLITE!
NEST ! 400-MHZ: 150-MHZ! MESSAGE !

22
SATNAY - User®s Guide

satellite signal, data is transmitted to the Apple II+ via
the Farallel Interface Adapter. The satellite number of any
pass tracked is displayed at the earliest possible moment in
the Message Area. The user can then reject the pass if he so
wishes using the ESC Unlock command. Data displayed on the
monitor during a satellite pass is stored in memory until
the end of the pass. Upon completion of the pass, the
Doppler data is checked and if it passes all tests selected
through the options, the data is transferred to the data
diskette. SATNAV then waits patiently for the next pass.
During execution of the program the keyboard will respond to
only 4 user commandsi all of which have to be preceeded by

the escape “ESC*> key. The 4 user commands are as follows:

L@ Quit -~ Sets a flag to terminate SATNAV upon
completion of the current pass. The pass
will be saved before the program exits.

<8* Gtay - Negates the effect of a previously
issued "0Quit® command.

“U>» Unlock - Causes SATNAV to discontinue acquiring
data from the receiver and saves
the current pass in the usual manner.

<k Kill - Causes immediate termination of
SATNAV. User is returned to the PASCAL
Command Mode.

I.

3

23
SATNAY - User®s Buide

General Comments

I.3.1 Pass Files

Two files per satellite pass are created on the diskette.
The first contains the majority-voted matrix (file-name
prefikxed by MIV). An example of the contents of the
majority-voted matrix is as shown in Figure I-3. The
second contains the Z2-minute paragraphs of the recorded
Doppler data (file—name prefixed by PASS). Figure I-4
illustrates the first part of the contents of a PASS
file.

Files can be saved either as ".TEXT" or ".CODE" files.
The distinction between the two types of files lies in
the use of the files. ".TEXT" files, unlike ".CODE"
files, can be edited by the FPASCAL System Editor. To
enable the editor to read the ".TEXT" files, esach file is
created with a four block header. Consequently, ".TEXT"
files consume available diskette space at a much faster
rate than ".CODE" files.

The option of the type of files to be created, along with
the starting number suffixed to each file and its
increment between passes are stored on the TRACK diskette
in a file named °TRACK:RCV.PARAM.TEXT". Currently,

changes can only be made using the System Editor.

1.3.2 Message Area

This is the 3-line block area on the screen reserved for
messages produced during the normal execution of the

program (see Figuwe I-2). The results of the various

24
SATNAY - User®s Guide

FIGURE I-4

Two—minute Paragraphs

[Date and Time stamp at beginning of 2-min paragraphl
83/02/11-3 16:51:55 “— Local lock-on-time (UT)

Q99999900 FIFFIFFN0 1801JT0034 = begin =
011884200 011554200 0920010014 .
0212000 02TL2T400 600130134 .
QI4706500 034707400 61025033 [Variable parameters]
0446305200 Q046306100 20350593 .
087919500 057920200 630410894 .
069TI0000 069351000 640451231 .
081197000 081198300 200451580 = end =
092861000 Q92863000 039300380 = begin =
1045423500 104544600 837537250 .
116241900 116244500 818388360 -
127939700 127962500 800199840 .
139696500 139699700 BOOO47320 .
151432700 131436100 807449850 .
163228900 1463232500 8130163500 [Fixed parameters]
175025600 173029700 200003250 .
1868433500 186848100 800131180 -
198683000 198688000 823901100 .
210544700 210550100 800301400 .
222429300 2224374800 817200420 -
2I4TIT7IO0 2I434TI00 809999140 .
246269400 246273800 802060000 = end =
2382246200 258232700 000000000
270208300 270213400 000000000
282216600 282224200 000000000
83/02/11-5 16:53:54 <- Local lock-on—time of next
307294400 3I07303000 090010014 2-minute paragraph (UT)
012092700 012093100 6001301734
024214400 024215300 610250323
eene sen EC. diaaaaann
[400 MHz 150 MHz1 [MVEMI]

(7-digit Dopplers in 9-digit format)

25
SATNAYV - User’®s Guide

checks on the majority-voted matrix are also displayed.

1-3-3

Diskette Maintanence

The floppy diskettes require the same precautions as

cassettes or phonograph records. Amongst the many don’ts

are the following:

a) Do not write on the diskettes.

b) Do not leave diskettes lying around unprotected.

c) Do not let the door of the disk drive snap shut. This
may pinch the diskette. Close door gently without
forcing it.

d) Do not bend or crimp diskettes.

e) Do not set anything on top the diskettes.

f) Do not contaminate the diskettes or drives with dust,
coffee, chemicals, soda pop, etc.

g) Do not use diskettes as towels, bookmarks or Frisbees.

h) Do not store diskettes in places where they are liable
to become hot.

Lastly

i) NEVER NEVER NEVER power off, hit CTRL RESET or remove

diskettes when the disk drives are in use (as

indicated by the red light).

Once a diskette is damaged, physically or otherwise,

chances are that all data on the diskette is lost forever.

26

I.4 System Messages

SATNAV uses the message area on the screen to display information
about the system and the satellite passes. The following are the messages

that can appear and their explanations.

UNABLE TO OPEN #4: RCV,SCREEN,TEXT

File RCV.SCREEN.TEXT is not present on the boot diskette.

UNABLE TO OPEN #4: RCV.PARAM,TEXT
File RCV.PARAM.TEXT containing the initial parameters relating to the

satellite pass file names is not present on the boot diskette.

MEMAVAIL AT SET UP = XXXX BYTES
Run-time random access memory available for further program

development and data storage.

PARAMS - PPPP (MMM)XXX.CCC(YY)
PPPP - prefix attached to pass files containing raw data.

MMM - prefix attached to majority-voted files.

XXX - number assigned to next pass too be saved.

CCC type of file - either .TEXT or .CODE.

YY

increment between pass numbers.

27

USER <ESC> COMMANDS: Q, U, S, K

Acceptable user commands, preceeded by the escape key

Q - Quit: Terminate SATNAV after current pass acquisition.
S - Stay: Negate effect of previously issued quit command.
U - Unlock: Request receiver to unlock from the current pass.

K - Kill: Immediate termination of SATNAV.

TRACKING SATELLITE NO. XX

Data is currently being acquired from satellite XX.

LAST PASS DELETED - BAD MJV
The last recorded pass was rejected because it did not satisfy all

the requirements of a majority-voted message.

MJV MESSAGE FAILS CHECKS
Similar to the message above except the pass is not rejected but

saved on the diskette.

PASS DELETED [X] - BAD COUNTS
The last recorded pass was rejected because it only had X number of

30-second Dopplers.

WARNING - BAD DOPPLERS
Similar to the above except that the no-reject option for passes with

insufficient 30-second Dopppler counts has been selected.

28

NEW FILE = # D:PPPP XXX.CCC

A new file name has been concatenated from the parameters contained

in RCV.PARAM.TEXT file and SATNAV will attempt to write pass data on

diskette.

UPDATING RCV.PARAM.TEXT

Incrementing the next pass number to be wused in the file

RCV. PARAM. TEXT.

NO SPACE FOR OUTPUT FILE <ESC> = KILL; <RETURN> = RETRY

Space cannot be found on any of the diskettes to write the current

pass. Insert a new diskette and press RETURN to save pass data or

press ESC to delete current pass data.

LAST PASS = # D:PPPP XXX.CCC

Last recorded pass on drive # D in the current tracking session.

29

APPENDIX II

The following is the 1list of hardware components required by the

SATNAV program.

Apple II+ microcomputer (with game I/0O ports interfaced as in Table

2.1).

Video monitor.

Disk controller, and two disk drives.

16K language board.

Model T424 calendar/clock module.

Model 7720B parallel interface adapter.

Canadian Marconi portable NNSS antenna and antenna cable.
Canadian Marconi CMA 722B NNSS receiver/signal processor.
Special cable 1linking CMA 722B data output port and Apple

parallel interface adapter and game I/0 ports.

II+

30

APPENDIX III

SATNAV

PROGRAM LISTINGS

Files

SNAPP2: SATLITE.TEXT - interface routine for CMA 722B.
SNAPP2: SATBCK31.TEXT - include file¥

SNAPP2: SATBCK32.TEXT - include file

SNAPP2: SATBCK33.TEXT - include file

SNAPP2: SATNAV3.TEXT - main program

¥Include files are TEXT files which are inserted into the main program
during compilation. SATNAV spans more than the maximum size allowable for

a single TEXT file.

31

9636 3 I 3 36 I I I 6 I I I I W I N IR W I W NI W I I I W I K I KKK

* *
* FILE @ SNAFP2:ISATLITE. TEXT *
* *

363 3 2636 3 36 W6 I I I I I I I I I I WK I I I N NI I I I NI KKK

32

.TITLE "SATLITE - SATELLITE INTERFACE ROUTINES"
-.NOMACROLIST
. NOPATCHLIST

MACRO TO POFP 16-BIT RETURN ADDRESS:

-MACRO POF
PLA

8STA %1
PLA

STA %Z1+1
- ENDM

i MACRO TO PUSH 16-BIT RETURN ADDRESS:

- MACRO FUSH

LDA “Li+1
FHA

L.DA %1
PHA

. ENDM

i MEMORY MAF FOR 6821 PERIFHERAL INTERFACE ADAFTER:

PIASLOT .EQU 7 i AFFLE SLOT NUMBER OF PARALLEL INTERFACE CARD
FIABASE .EGQU <PIASLOT*10>+0C0O8B0O

FIADRA .EGQU PIABASE+0O ;SIDE "A" DATA DIRECTION REGISTER

PIAPRA .EQU FPIABASE+O ;SIDE "A" PERIFHERAL INTERFACE REGISTER
FIASRA .EQU PIABASE+1 iSIDE "A" STATUS REGISTER

FPIACRA .EQU PIABASE+1 ;SIDE "A" COMMAND REGISTER

FIADRB .EQU PIABASE+2 iSIDE "B" DATA DIRECTION REGISTER

PIAPRB .EQU PIABASE+2 ;SIDE "B" PERIPHERAL INTERFACE REGISTER
FIASRB .EGU PIABASE+3 iSIDE "B" STATUS REGISTER

FIACRB .EQU PIABASE+Z $SIDE "B" COMMAND REGISTER

i SPECIAL SYSTEM MONITOR LOCATIONS:

IRQVECTR .EQU OFFFE s BASE ADDRESS OF IRG/BRK INTERRUPT VECTOR
LANGCARD .EQU 0CO80 s BASE ADDRESS FOR SLOT#0O = LANGUAGE-CARD

i PASCAL-SUPPLIED ZERO-FAGE TEMPORARY WOREK AREAS:

RTADDR LEQU 00 $SAVE AREA FOR FASCAL RETURN ADDRESS
STRING LEQU 02 SUSED TO HOLD INDIRECT ADDRESS FOR READFIA
i ROUTINE TO INITIALIZE PIA AND BUFFER QUEUE:

.PROC INITPIA SROUTINE TO INITIALIZE PIA HANDLING
.DEF OLDIRG
REF CGQFWDFTR,OBHKWFTR,QBYTE1l,@BYTEZ, IRGHANDL

33

START SEI $DISABLE INTERRUPTS UNTIL DONE

FOFP RTADDR $FOP RETURN ADDRESS FROM STACK

LDA #00 s CLEAR ACCUMULATOR

STA PIACRA $REQUEST ACCESS TO DDRA

8STA PIADRA $SET ALL BITS FOR INPUT

STA PIACRE f REQUEST ACCESS TO DDRB

8STA PIADREB $SET ALL BITS FOR INPUT

LDA #05 sLOAD IN COMMAND BITS

8TA PIACRA $SET UP COMMAND REGISTER A

LDA #04 sLOAD IN COMMAND BITS

STA FIACRE $SET UP COMMAND REGISTER B

LDA #OO $LOAD INITIAL VALUE FOR BCEWD FOINTER
8STA GBEWPTR § SAVE BACKWARD FOINTER

L.DA #0O1 $SET FWD FOINTER TO ONE > THAN GBEWFTR

STA GFWDPTR $ SAVE FORWARD FOINTER

L.DA LANGCARD+0OB i REMOVE WRITE LANG-CARD WRITE-PROTECT
L.DA LANGCARD+0OB 3 THIS INSTRUCTION HAS TO BE DONE TWICE

LDA IREVECTR $GET LSB OF CURRENT IRR VECTOR
STA OLDIRG $ SAVE FOR INTERRUFT HANDLER
LLDA IRQVECTR+1iGET MSB OF CURENT IR VECTOR
8STA OLDIRG+1 $SAVE FOR INTERRUPT HANDLER

LDA IRGADR $BGET MSB OF IRG ROUTINE ADDRESS
STA IRGVECTR $STORE IN MSB OF IRG VECTOR
L.DA IRGADR+1 FGET LSB OF IRE ROUTINE ADDRESS
STA IREBVECTR+13STORE IN LSB OF IRG VECTOR

LLDA LANGCARD+8: WRITE FROTECT THE LANGUAGE-CARD AGAIN

CLI $ENABLE INTERRUPTS AGAIN

PUSH RTADDR sPUSH RETURN ADDRESS BACK ONTO STACK

RTS $RETURN TO CALLING PROGRAM
OLDIRQ «WORD 0000 $SAVE AREA FOR ORIGINAL MONITOR IRG VECTOR
IRQADR .WORD IRGHANDL $ADDR OF INTRPT ROUTINE, LO-BYTE FIRST

5§ PROCEDURE TO DISABLE FIA INTERRUPTS AND RESTORE IRG/BRK VECTOR

.PROC RESETIRG ;FCLEANUFP ROUTINE FOR END-OF-FPROCESSING
.REF QOLDIRQ

START SEI s DISABLE INTERRUPTS

LDA #00 sLOAD CMD WORD FOR FIA = NO INTRPTS ALLOWED
8TA PIACRA $STORE IN A-SIDE COMMAND REGISTER

34

STA PIACREB $STORE IN B-SIDE COMMAND REGISTER

LDA LANGCARD+0OB sREMOVE WRITE LANG-CARD WRITE-PROTECT
LDA LANGCARD+0OB 3 THIS INSTRUCTION HAS TO BE DONE TWICE

LDA OLDIRG 3GET LSB OF ORIGINAL IRGR ADDRESS
STA IRGQVECTR sSTORE IN IRG VECTOR
LDA OLDIRG+1 $GET MSB OF ORIGINAL IRE ADDRESS

STA IRQVECTR+1 §$STORE IN IR® VECTOR
LDA LANGCARD+8 SWRITE FPROTECT THE LANGUAGE-CARD AGAIN

RTS FRETURN TO CALLING PROGRAM
5 PROCEDURE TO RETURN THE NEXT "WORD" FROM THE QUEUE:
.FROC GETWORD,1 iPROC TO REPLACE CHARLC41 FPARAM WITH 4 DIGITS

.DEF IRQHANDL. ,QBYTE1l,QBYTEZ2, QABKWFTR, GFWDPTR
.REF OLDIR®

EMPTYCHR .EGQU 20 §EMPTY QUEUE INDICATOR CHARACTER = SPACE
START FOP RTADDR $ SAVE PASCAL RETURN ADDRESS
FOP STRING $ SAVE ADDRESS OF STRING PARAMETER
LDy #00 fUSE Y AS STR INDEX - SET TO "LENGTH" BYTE
LDX GBKWFPTR $BET BACKWARD FOINTER FOR BUFFER GUEUE
INX $POINT TO NEXT WORD IN BUFFER

CFX GFWDFTR sCHECE. FOR EMPTY QUEUE
BNE GETBYTE1l $§$BRANCH IF NOT EMPTY

UNDFFLOW LDA #0OO $SET LENGTH OF STRING TO ZERO
STA E@STRING,Y $STORE A SPACE CHARACTER
BEQ® EXITGET $ALWAYS BRANCH (TO EXIT)

GETBYTE1L LDA #04 $SET LENGTH OF STRING TO 4 BYTES
8STA BSTRING,Y ;SAVE IN."LENGTH" BYTE
LDA GBYTEL1,X 3SGET FIRST HALF OF INPUT WORD FROM BUFFER

LSR A $SHIFT UPPER NIBBLE TO LEFT SIDE OF ACC
LSR A
LSR A
LSR A
ORrRA #30 sCONVERT TO ASCII
CMP #32A s CHECKE FOR NON-NUMERIC DIGIT
BMI 5T1 s BRANCH IF DIGIT IN RANGE 0-:9
cLC i CLEAR CARRY FOR ADD
ADC #0O7 sCONVERT DIGIT TO HEX CHAR A->F
8T1 INY $POINT AT FIRST BYTE OF STRING

8TA BSTRING,Y §SAVE AS FIRST CHARACTER IN STRING
L.DA GBYTEL1,X $GET ORIGINAL VALUE AGAIN

AND #OF ;s ISOLATE LOWER NIBBLE

ORA #3I0 $CONVERT TO ASCII

35

INY SFOINT AT SECOND BYTE OF STRING
STA EBSTRING,Y 3SAVE AS SECOND CHARACTER IN STRING

GETBYTEZ LDA GBYTEZ2,X $GET 2ND HALF OF INPUT WORD FROM BUFFER

L8R A $SHIFT UPPER NIBBLE TO LEFT SIDE OF ACC
LS8R A

LSR A

LSR A

ORA #30 sCONVERT TO ASCII

INY $POINT AT THIRD BYTE OF STRING

STA ESTRING,Y §SAVE AS THIRD CHARACTER IN STRING
LDA @BYTE2,X $6GET ORIGINAL VALUE AGAIN
8TX GBEWPTR $SAVE NEW QUEUE FOINTER

AND #OF $ ISOLATE LOWER NIBBLE

ORA #30 sCONVERT TO ASCII

INY $POINT AT FOURTH BYTE OF STRING

8STA EBSTRING,Y §SAVE AS FOURTH CHARACTER IN STRING
EXITGET PUSH RTADDR $FUSH PASCAL RETURN ADDRESS ON STACK

RTS $RETURN TO CALLING FROGRAM
GBYTE1L .BLOCK 256 s QUEUE AREA FOR FIRST 8 BITS (15-8)
GBYTEZ .BLOCK 256 $OUEUE AREA FOR SECOND 8 BITS (7-0)

§ FPOINTER TO NEXT EMFPTY LOCATION IN QUEUE

GFWDPTR .BYTE 00

$ POINTER TO ITEM BEFORE NEXT INFUT VALUE IN QUEUE
GBEWPTR .BYTE 0O

INTERRUFT-DRIVEN ROUTINE TO BUFFER DATA FROM THE FIA.

TO MINIMIZE THE TIME REQUIRED TO SERVICE INTERRUFTS,

THIS ROUTINE IS NOT CODED FOR RE-ENTRANCY. A8 A RESULT,
INTERRUPTS ARE LEFT DISABLED WHILE THIS ROUTINE EXECUTES,
AND ARE RE-ENABLED BY THE RTI INSTRUCTION.

‘ER 'mm ‘8% am am

OVFLCHAR .EQU 11 $ "UNUSED" SEQ CODE - OVERFLOW INDICATOR
IREBHANDL STA SAVEACC s SAVE ACCUMULATOR

FLA $GET STATUS REG FROM STACK

PHA sRESTORE ONTO STACK

AND #10 $sTEST "B" BIT

BEQR NOTERE $SKIF NEXT SECTION IF TRUE INTERRUPT

NOTFIA LDA SAVEACC sRESTORE ACCUMULATOR CONTENTS
JMP E2OLDIRG $BRANCH TO MONITOR™S IRG/BRK ROUTINE

NOTBRK LDA FIASRA $WAS IRGQ CAUSED BY FIA?
BFL NOTFIA $IF NOT, BRANCH TO MONITOR®S IRG/BRE ROU
TXA §BAVE INDEX-X ON STACK

PHA

36

L.DX QFWDFPTR $SET UP QUEUE POINTER IN INDEX-X
CPX GBEWPTR $CHECE. FOR FULL QUEUE
BNE SAVEDATA {BRANCH IF QUEUE IS OK

OVERRUN LDA #OVFLCHAR ;LOAD QUEUE OVERFLOW CHARACTER
DEX iPOINT AT PREVIOUS QUEUE ELEMENTS
STA OBYTE1,X 3SAVE IN PLACE OF LAST 16-BITS IN QUEUE
STA GBYTEZ, X
BNE EXITIRQ ;ALWAYS BRANCH

SAVEDATA LDA PIAPRB sGET BITS 15-8 OF INPUT FROM PIA-B
EOR #OFF 3 INVERT ALL BITS
8TA GBYTE1,X 3$SAVE THEM AS GBYTE1
LDA PIAPRA $GET BITS 7-0 OF INPUT FROM PIA-A
EOR #OFF s INVERT ALL BITS
8TA GBYTE2,X $SAVE THEM AS GBYTEZ2
INX s ADVANCE QUEUE FOINTER TO NEXT POSITION
8TX GFWDPTR i SAVE NEW FORWARD POINTER FOR QUEUE
EXITIRR PLA $RESTORE INDEX-X FROM STACK
TAX
LLDA SAVEACC $RESTORE ACCUMULATOR
RTI $RETURN TO INTERRUPTED ROUTINE
SAVEACC .BYTE 0O §ACCUMULATOR SAVE AREA FOR INTRPT ROUTINE

- END

37

36 3 I I I3 K I I I I I I I I I I I I W I I I I A I I I AW N

* *
* FILE : SNAFPZ2: SATBCK31. TEXT *
* *

36 36 36 3 K I I W W I I K I I K I I I I I I I W K I WK I WK I I K

38

PROCEDURE CHARYTOINT (VAR NUMBER:MESSVALUE;

VAR NUMBCHR:MESSCHAR) ;
(3969696 96 963 3636 96 363636 3636 36 396 06 36 96 36 96 3 3696 3636 36 36 3 0 90696 36 6

* VERSION @ 19 JULY 1982 *
AUTHOR © SEE HEAN QUEK *
% DESCRIPTION : *
* CONVERTS NINE CHAR *
* VARIABLE NUMBER TO LONG INTEGERS *

WK 3 J K H NI I J6 I H NI I NI H I I I W W W NN NN)

VAR

I ¢ INTEGERS

NO : INTEGERL?1;
BEGIN

NUMBER = 03
FOR I = 9 DOWNTO 1 DO

BEGIN
NO = ORD(NUMBCHRLCI1) - 483
IF NOT (NUMBCHRLI1 IN [°07.."971) THEN
BEGIN
WRITELN(I,”TH NUMBER ILLEGAL - CHARYTOINT™)3J
EXIT (PROGRAM)
END
ELSE
CASE I OF
9 ¢ NUMBER := NUMBER + NOj
8 ! NUMBER := NUMBER + NO*10j
7 ¢ NUMBER := NUMBER + NO%*1003%
& ¢ NUMBER := NUMBER + NO%*1000j
S ¢ NUMBER := NUMBER + NO¥*10000j;
4 : NUMBER := NUMBER + NO#100000j
3 ¢ NUMBER = NUMBER + NO*1000000%
2 U NUMBER := NUMBER + NO%¥100000003j
1 ! NUMBER := NUMBER + NO*100000000

END (%CASE %)
ENDs (#IF AND LOOFP*)
END; (¥ CHARPTOINT*)

PROCEDURE MAJORITY (VAR WORD1,WORD2, WORD3: CHAR)
(€2 T T2 LTI L LTI LTI IS LS ST E LY

* AUTHOR @ QUEK *
* DATE t JUNE 22 1982 *
DESCRIFTION 3 *
* COMPARISON BETWEEN THREE CHARACTER#*
* VARIBLES AND ASSIGNS THEM *
* ACCORDING TO THEIR VALUES. *

LI I AT L LI LSS LS LI L LD

39

BEGIN (¥ MAJORITY %)
(% NON NUMERIC CASE %)
IF NOT(WORD3 IN L£°0°..7971) THEN
EXIT(MAJORITY) }
IF WORD1=* * THEN
BEGIN
WORD1 := WORD3:
EXIT(MAJORITY)
END
ELSE IF WORD2 = * * THEN
BEGIN
WORDZ := WORD3Z3
EXIT(MAJORITY)
END
ELSE IF WORD1=WORDZ THEN
EXIT(MAJORITY)
ELSE IF WORD1=WORD3 THEN
BEGIN
WORDZ = WORD3J;
EXIT(MAJORITY)
END
ELSE IF WORDZ2=WORD3 THEN
BEGIN
WORD1 := WORDZ:
EXIT(MAJORITY)
END
ELSES
END: (% MAJORITY *)

FPROCEDURE MJVLINE (LNCT,PARAG: INTEGER; XLINE:DATALINE) §
CHEH A6 336069606 36 9636 3636 36 9636 36 36 96 3636 36 36 36 36 96 9 2 36 96 06 2 0 2 2 2

* AUTHOR : QUEK *
* DATE : AUGUST 28 1982 *
DESCRIFTION *
* MAJORITY VOTING BY LINE *
* INPUT - LINE,PARAGRAFH NUMBER AND *

*

*

* MESSAGE L INE
W H I KT I I)
VAR

ILINE : INTEGER};

WORD : CHAR;:

PROCEDURE LOCSAT (ILINE: INTEGER) ;
CH 30300036336 30696 36363636966 36 9696 96 9696 96 96 36 96
SUBPROCEDURE TO FIND SATELLITE
*NUMBER AT THE FIRST AVAILABLE *
*OFPPERTUNITY. *
AN NN NI 2B 0)
VAR STRNUM : STRING;
BEGIN

40

IF ILINE = 25 THEN
BEGIN

ISAT = (ORD(MJVPASSLILINE,&1)-48) %10

+ ORD (MJVPASSLILINE,S]1)-483

IF ISAT IN [13,14,19,48,201 THEN
BEGIN

SATLAOCK := TRUE;
STR(ISAT,STRNUM) ;

SHOWMSGE (0, CONCAT (" TRACKING SATELLITE NO. *,STRNUM))
END3

END3
END: (% LOCSAT *)

BEGIN (¥ MJIVLINE #)

(¥ TRANSFER OF MESSAGE TO ARRAY *)
FOR K = 21 TO 29 DO
BEGIN
L i= K-203%
UNPACESLL] = XLINELK]
END 3

IF LNCT <=8 THEN

(¥ SECTION FOR VARIABLE FARAMETERS %)
BEGIN

ILINE = PARAG + LNCT -~ 23 (* FIND POSITION IN ARRAY
IF (ILINE <=ENDEPHEMERAL) AND (ILINE >0) THEN
BEGIN '

PACKS := TEMPORARYLILINEJ:
FOR K =1 TO 9 DO

BEGIN
WORD := PACKSLKI;
MAJORITY (MIVFASSLILINE,K],

WORD,
UNPACKS CK1)§
PACK9LK1:= WORD:

END;
TEMPORARYL IL INE1: =PACKY3
END;

END

ELSE

(¥ SECTION ON FIXED PARAMETERS %)
BEGIN

ILINE = LNCT -9 + ENDEFHEMERAL + 13

IF ILINE <= MAXFRMETERS THEN
BEGIN

*)

41

PACKS := TEMPORARYLILINEI:
FOR Ki= 1 TO 9 DO

BEGIN
WORD = PACK9LKI;
MAJORITY (MOVPASSLILINE, K],

WORD,
UNPACK?LK 1) 5
FPACK?LKII= WORDS
END3§
TEMPORARYLILINE]: =PACKY}
END3
IF NOT SATLOCK THEN LOCSAT (ILINE) 3
END3
END: (¥ MIVLINE #)

PROCEDURE CLEARMJVFILE;:
633636 9690 96 9636 96 36 96 96 36 36 96 36 36 96 36 36 3 36 9 96 36 36 36 36 3 9 N 2 %

* AUTHOR : SEE HEAN QUEK *
* DATE : MAY 12 1982 *
* DESCRIPTION *
* CLEAR MAJORITY VOTE FILE AND TEMP*
* ORARY ARRAYS , *

A3 IE I I I NI NN)
CONST

EMPTY = * 73j
ZERO = "073
VAR
BLANK. ¢ PACKED ARRAYL1..91 OF CHARS
BLANK2: FACKED ARRAYL1..91 OF CHARS
BEGIN
FOR I = 1 TO 9 DO
BEGIN
BLANKLII = EMFTY; (¥ ASSIGN BLANKS
BLANK2LI1:= ZERO$
END3
FOrR I:= 1 TO MAXPRMETERS DO
BEGIN
FOR J =1 TO 9 DO
MIVPASSLI,J1 1= EMPTYS
TEMFORARYLIJ = BLANKS]
END3
FOR I = 1 TO MAXMJV DO
BEGIN
DOF3OFQ1IS0OLI] = BLANKZ2§
DOPIOFR400LI1 := BLANK2S
MIVCODECLI] += ZERO3

*)

42

END;
ENDs (¥ END CLEARMJVFILE %)

FROCEDURE CONDFPASSFILES
(336366 3636 96 3696 263696 36 96 36 36 9696 36 9696 6 36 36 3696 36 3696 96 3696 36 96 3 36 % %)

(¥ AUTHOR : SEE HEAN GUEK *)
(% DATE : AUGUST 28 1982 *)
(¥ DESCRIPTION *)
(% REFORMAT 30 SECOND DOPPLER *)

(# COUNTS AND MAJORITY VOTED SATELLITE =)

(¥ MESSAGE. WRITES THE REFORMATED LINE *)

(¥ ONTO THE DISKETTE FILE, ON AT A TIME%)

CHE A2 I AT I IE I I I N I T I I I I I 3T 3633 I NN N N N)

VAR
DOFMESSAGE : PACKED ARRAYI[1..32]1 OF CHAR;:
LINE, COUNT,MJLINE: INTEGERS

BEGIN (% CONDPASSFILE *)

SHOWFPROC (* WMJIV® , SHOW) 3

DOFMESSAGELI2] = CHR(13)3;

FOR NO:= 1 TO 31 DO
DOPMESSAGELNO] = " "3j

FOR LINE = 1 TO MAXMJV DO
BEGIN

(* SECTION FOR TIMESTAMP *)
IF LINE = 1 THEN
BEGIN
FOR COUNT = 1 TO 19 DO

DOFPMESSAGELCOUNT] = LOCKONTIMELCOUNT 13

END

ELSE

(¥ SECTION FOR LONG DOPFLERS AND MAJORITY VOTED MESSAGE %)

BEGIN
DOPMESSAGEL10] ¢
DOPMESSAGEL20] :
DOPMESSAGEL3I0] @

LI

~

uh
. u
cax can ‘as

»

(¥ CASE WHEN MESSAGE COLUMN EXCEEDS MESSAGE ARRAY

MILINE = LINE - 13
IF MJLINE <= MAXPRMETERS THEN
BEGIN
FOR COUNT = 1 TO 9 DO

PACKPLCOUNT] = MJVPASSLIMJLINE,COUNTI1:

END
ELSE

*)

43

BEGIN
IF LINE = MAXMJV THEN
FPACKS? = OPTIONCODE
ELSE IF (LINE = MAXMJV-1) THEN
PACK? := RCVCODE
ELSE

FACK? :=’000000000" 3
END3

(¥ CASE WHEN PASS PARAGRAFHS ARE LESS THAN MAXIMUM

IF PACK9L11 = > ° THEN
FPACK? =" Q000000007 §

(¥ TRANSFER OF DOPPLER COUNTS SCALED BY 100
PACK? = DOP3OFQ1S50LMJILINE];
FOR NO =1 TO 9 DO

DOFPMESSAGELNO] := PACK?PLNO]l;

PACKS9 = DOP30OFR400LCMJILINEID;
FOR NO := 11 TO 19 DO
BEGIN
COUNT = NO - 10§

DOFPMESSAGELNO] := PACKILCOUNTI1:
END3§

(¥ TRANSFER OF CODED ARRAY
DOPMESSAGELZ1] := MJVCODECLMJILINE];

(¥ MAJORITY VOTED BROADCAST EMPHEMERIS TRANSFER
FOR NO := 21 TO 29 DO
BEGIN
COUNT = NO - 203
DOPMESSAGELNO] = PACKPLCOUNTI

END3
END3$

MIVFILE™ = DOPMESSAGE}:
PUT (MIJVFILE)

END3

SHOWPROC (" WMJV* , ERASE) §
SHOWMSG (1, CONCAT (*MJV FILE= °,MINAME))}
SHOWMSG (2, SUCCESSFULLY WRITTEN ON DISK®)

END: (x CONDPASSFILE %)

*)

*)

*)

*)

PROCEDURE L.ONGDOPFLERS (LNCT,PARAG: INTEGER: XLINE:DATALINE) §

€636 3696 2 36 3 36 3636 36 36 36 36 3696 36 96 36 3 96 96 9 96 36 36 36 36 36 6 I6 36 36 36 6 9696

44

AUTHOR § SEE HEAN QUEK *
DATE i AUGUST 28 1982 *
DESCRIPTION *
ROUTINE ACCUMULATES THE *
30 SECOND DOPFLERS AND STORES THEM *
IN TWO ARRAYS : DOPIOFQ150 FOR THE %
150MHZ DOPFPLER COUNTS AND *
DOP30FR400 FOR THE 400MHZ COUNTS *
K3 2 I I K He I I FE I I I W I I I I I I I W I I I W N
VAR
LINE : INTEGERS

* k ok k k k k X

)

BEGIN (% LONGDOPPLERS *)

IF NOT (LNCT IN [1,8,14,211) THEN
EXIT (LONGDOPPLERS) ;

LINE :=((PARAG—1)%*4 + LNCT DIV &)}

IF LINE = O THEN EXIT(LONGDOFPPLERS)

FOR NO = 1 TO 9 DO
PACK9LNO] = XLINELCNOI:
DOFP3OFQISOLLINE] := PACKY?:

FOR NO = 11 TO 19 DO

BEGIN

B I= NO - 103

PACKSLK] 1= XLINECNOI13
END3

DOPIOFQA4OQOLLINE] = PACKY:
END: (% LONGDOPPLERS *)

PROCEDURE ZERODOPPLERSS
G333 360636636 36 96 96 39696 3696 36 96 960606 263696 960696 636 36 36 00 396 60

* AUTHOR @ SEE HEAN QUEK *
* DATE : STH SEPTEMBER 1982 *
* DESCRIPTION : *
* ZERO 30 SECOND COUNTS =

* THAT EXCEED THE REFMAX DIFFERENCE. *
W I I KK)
VAR

CDOP40Q0, CDOP150, LDOF40O0,LDOP1IS0O ¢ INTEGERL?1:

DOP400,DOP150,DIFF : INTEGERLC91:

PREVDOP : BOOLEAN;
BEGIN

SHOWPROC ¢* ZDOP?* , SHOW) 3
FREVDOP := FALSE;}
FOR NO = 1 TO MAXMJV DO

45

BEGIN
IF (DOP3OF@150LNO1 = 70000000007) OR
(DOP3OFRQ400LNO] = *0000000007) THEN

BEGIN
DOPIOF@A1S0LNO] = *000000000” §
DOP3IOFR400LNO]T = "0000000007§
LDOP1350 HE o H
LDOFP400 i= 03
PREVDOP := FALSE

END

ELSE
BEGIN

PACKS? := DOP3OFQ150LCNO1;

FOR L := 1 TO 9 DO
BEGIN
UNPACKYLL] = PACKFLL]
END3
SHOWPROC (" CNO1*° , SHOW) 3
CHARITOINT (CDOP400, UNPACKS) §
SHOWPROC (*CNO1° ,ERASE) §

FPACK? = DOP3OFR400LCNO1;
FOR L 2= 1 TO 9 DO

BEGIN

UNPACKILL] = PACKILL 13

END3
SHOWPROC (" CNO27* , SHOW) 3
CHARITOINT (CDOFP 1350, UNPACKS) §
SHOWPROC (" CNOZ2° , ERASBE) §

IF(NO = 1) THEN
BEGIN
DOFP400 1= CDOF4003;
DOF1S0 = CDOFP150
END
EL.SE
BEGIN
DOP40O0 := CDOP40O0-LDOP4COS
DOP150 = CDOF150-LDOP1S0
END3

(¥ ENSURE FOSITIVE DIFFERRENCES #*)
DIFF := (DOP40OO-DOP130) DIV 1003
IF(DIFF<0Q) THEN DIFF := -DIFF3}

(* REJECTION SECTION %)
IF(DIFF » REFMAX) THEN
BEGIN
IF NOT ¢ NO IN [1,5,9,13,17,21,25,29,33,371)

THEN

46

BEGIN
IF PREVDOP = FALSE THEN
BEGIN
L = NO -1;
DOP3OFQ@ISOLL] = * 0000000007
DOP3IOFR400CL] 1= * 000000000 ;
END
ELSE
BEGIN
DOP30OFQ1SOLNOT = °000000000";
DOPIOFR400LNO] = * 000000000’
CDOP150 := Of
CDOP400 = O
END3
PREVDOP := FALSE
END;
IF NO IN [4,8,12,16,20,24,28,32,361 THEN
BEGIN

L &= NO - 13
IF (DOP3OFRA150LL]
AND (DOPIOFQ400CL.]

T Q00000000™)
000000000) THEN

"

BEGIN
DOP3OFQ@LISOLCNOT = *000000000” %
DOF3OFQ400LNOT = "000000000°
END3
END3
END
ELSE
FREVDOF = TRUES:

(¥ PREPARE FOR NEXT COUNT %)
LDOFP400O := CDOP40O03
LDOP1S0O 1= CDOF1350%

IF(ND IN [4,8,12,16,20,24,28,32,361) THEN

BEGIN
LDOP40OO = Of
LDOF150 = O
END3;

END; (% ELSE SECTION %)
END3 (#* FOR SECTION %)

SHOWFROC (* ZDOP* , ERASE) §

END3

PROCEDURE CHECKDOFPPLERSS

W00 3000036000306 363003 9636960606069 56 06 0698
* AUTHOR : SEE HEAN QUEK *
* VERSION : 10 AUGUST 1982 *

47

* DESCRIFTION :
* ROUTINES CHECKS IF
% THE NUMBER OF RECORDED COUNTS
* EXCEED THE PRESELECTED MINIMUM.
363 3 I I I I WA NI I H I I I I I I I I I NN
VAR
NOCOUNT : STRINGLZ21j

¥ %k %k kx *

)

BEGIN (¥ CHECKDOFPLERS #*)
NO = 0O3f
SHOWFROC (" CDOFP* , SHOW) §

FOR I = 1 TO MAXMJV DO
IF(DOP3OFQ1S0LI]
(DOP3IOFQ400LI]

NO = NO + 13

* Q000000007) AND
0000000007) THEN

NO = MAXMJIV - NOj
STR(NO, NOCOUNT) §

IF(NO <= MINDOP30) THEN
BEGIN
IF FAILDOPRJ = "Y* THEN
BEGIN
SHOWMSG (O,

CONCAT (" PASS DELETEDL® ,NOCOUNT, 1 — BAD COUNTS?))3
SHOWPROC (* CHECKMJV® , ERASE) §
EXIT(WRITEPASS)

END
ELSE
BEGIN
SHOWMSGE (2, "WARNING — BAD DOFPLERS®):
I = MAXMJV-13}
MIVCODELI] = *9°
END3

END3
SHOWPROC (" CDOP* , ERASE) 3
END: (¥ CHECKDOPPLERS #*)

FROCEDURE CHECKMJVFILE;
606 3636 3626 26 06 3 3636 6260606 9636 96606006 3 3636 36 9606 06 06 96 96 36 363636

AUTHOR : SEE HEAN QUEK *
DATE D19 JULY 1982 *
DESCRIPTION *

PERFORMS A SERIES OF CHECKS#*
TO ASCERTAIN THE QUALITY OF THE *
MAJORITY VOTED MESSAGE. *

* %k Xk k k ¥

48

369 3 96 36 I I I I I I I I I I I 6B I I I I I I I I I I I I I XX)
VAR

VALUE : INTEGERL®91:
NUMCHR T MESSCHAR:

BEGIN (% CHECEMJVFILE #*)

(¥ CHECKING FOR BLANKS AND IF

*)
(¥ DETECTED LINE ZEROED *)
FOR NO := 1 TO MAXPRMETERS DO
BEGIN
FOR kK 2= 1 T0O 9 DO
IF MJVPASSINO,K1 * " THEN

FOR L := 1 TO 2 DO
L1 2

MIVPASSINGO,L] t= "07;
END3;
(¥ CHECKING THE FIRST NUMBER OF ALL %)
(* 9 0OF THE 9 FIXED FPARAMETERS *)
(¥ IF FAILS TEST ASSIGN CODE 9 *)
FOR K =

ENDEPHEMERAL + 2 TO ENDEFPHEMERAL +13 DO
IF(MIJVPASSLK,11 IN [°07..7771) THEN

MJVCODECLK] = "9°3%

(% CHECKING FOR ZEROED ROWS IN *)
(¥ MESSAGE. TESTING VALUES OF FIXED %)
(* PARAMETERS *)

FOR NO = 1 TO MAXPRMETERS DO
BEGIN

FOR K = 1 TO 9 DO
BEGIN

NUMCHRLK] = MJVPASSINO,K1:

PACKILKI = NUMCHRLK]
END3

SHOWFROC (" CNUM™ , SHOW) 3§

IF PACK? = "000000000° THEN
VALUE = 0
ELSE

CHARYTOINT (VALUE , NUMCHR) §
SHOWFPROC (* CNUM® , ERASE) §

(* NO VALUE
IF(VALUE = 0) THEN
MJVCODELNO] := *1°7
(¥ TIME OF PERIGEE *)

ELSE IF (NO = ENDEPHEMERAL + 1) THEN
BEGIN

IF (VALUE > 400000000) THEN
VALUE = VALUE - 4000000003

*)

49

VALUE = VALUE DIV 1000003
IF(VALUE < 0) OR (VALUE>1440) THEN
MIJVCODELNQO] = "9°3
END
(* RATE OF CHANGE OF MEAN ANOMALY *)
ELSE IF (NO = ENDEPHEMERAL + 2) THEN
BEGIN
VALUE = (VALUE-800000000) DIV 10000000j
IF(VALUE<3) OR (VALUE >»4) THEN
MJVCODECNO] = 97§

END
(¥ ARGUMENT OF PERIGEE AT TP *)
ELSE IF (NO = ENDEPHEMERAL + 3) THEN
BEGIN

VALUE = (VALUE -800000000) DIV 1000003
IF(VALUE < 0) OR (VALUE > 360) THEN
MJVCODELNQO] = "97§
END3

END3
SHOWMSG (O, ° ") 3

(# DOPPLER COUNT ZEROING AND CHECKING#*)
IF ZEROUNDOP = *Y" THEN ZERODOFFLERS;

CHECKEDOFPFLERS:
(¥ CHECKING FOR ZEROS IN FIXED *)
(¥ PARAMTERS. IF DETECTED SWITCHES =)
(¥ MJVCODE FROM 1 TO 9. *)

FOR NO := ENDEPHEMERAL + 1 TO ENDEPHEMERAL + 14 DO
IF (MJVCODELNO] = "17) THEN
MJVCODELNO] = *97j

(¥ MESSAGE TO SCREEN *)

FOR NO := 1 TO MAXPRMETERS DO
BEGIN
IF (MJVCODEILNO] = *9°) THEN
BEGIN
SHOWMSG (1, "MJV MESSAGE FAILS CHECES®)j
I = MAXMJV-23
MJVCODELI] = *9°§

IF(FAILMJVRJ = "Y") THEN
BEGIN
SHOWMSG (0, "LAST FASS DELETED - BAD MJV MESSAGE™)
SHOWPROC (" CMJV* , ERASE) §
EXIT(WRITEPASS)
END3

50

EXIT(CHECKMJIVFILE) §
END3
END3
SHOWMSG (1, "MJV MESSAGE CHECKED -~~~ OK?")3j

END; (x CHECEKMIVFILE %)

51

I3 3 3 I I I I A I I K K I K I I K H I K I eI I I I I I K I I K KK

* *
* FILE : SNAPP2: SATBCK32. TEXT *
* *

636 3 I 3 I K WK I I K I I I K W I Je I I I I NI KK

52

FROCEDURE SHOWMODE (MODE:STRING) 3
(¥ DISFPLAYS STATUS: "ACTIVE®, WAIT", "DISKIO® %)
BEGIN (¥ SHOWMODE *)
GOTOXY (XMODE, YMODE) 3
WRITE (MODE:7)
END: (% SHOWMODE =)

FROCEDURE SHOWMSG (MSGNUM: INTEGER; MESSAGE: STRING) §
(¥ USED TO DISFLAY MOST MESSAGES IN 3-LINE MESSAGE AREA *)
(* MESSAGES ARE CENTRED IN THE 33-CHAR DISPLAY AREAS. *)
VAR FILLER: INTEGER:
BEGIN (% SHOWMSG *)

GOTOXY (XMSG, YMSG+MSGNUM) §

FILLER:=(3I3-LENGTH(MESSAGE)) DIV 23;

IF FILLER<O THEN FILLER:=0j

WRITE (MESSAGE: (Z3-FILLER), " " :FILLER)}
END; (% SHOWMSG *)

PROCEDURE SHOWL INE (VALUE:DATALINEIFTNIFTNTYPE) §
(¥ USED TO DISFPLAY FORMATTED SATELLITE DATA LINES ON SCREEN %)
BEGIN (¥ SHOWLINE %)
IF FTN=SHOW THEN
BEGIN

GOTOXY (XLINE,SCRLINE) §

WRITE (VALUE:29) 3

IF SCRLINE=YLINEMAX THEN

SCRLINE: =YLINEMIN

ELSE
BEGIN
SCRLINE: =SCRL.INE+13;
GOTOXY (XLINE, SCRLINE) §
WRITE(™ "2129)
END3
CLEARLINES: =FALSE
END
ELSE IF (FTN=CLEAR) AND (NOT CLEARLINES) THEN
BEGIN
FOR SCRLINE:=YLINEMAX DOWNTO YLINEMIN DO
BEGIN

GOTOXY (XLINE, SCRLINE) §
WRITE(® *:29)
END3
SCRLINE:=YLINEMIN;
CLEARLINES: =TRUE
END
END; (% SHOWLINE %)

53

FPROCEDURE SHOWWORD (VALUE: DATAWORD) §
(¥ USED TO DISFLAY INCOMING DATA FROM RECEIVER AS-IS %)
BEGIN (¥ SHOWWORD *)
GOTOXY (XWORD, SCRWORD) §
WRITE(VALUE:S) }
IF SCRWORD=YWORDMAX THEN
SCRWORD : =YWORDMIN
ELSE
BEGIN
SCRWORD: =SCRWORD+1 3
BGOTOXY (XWORD, SCRWORD) §
WRITE(® *:5)
END
END: (% SHOWWORD *)

FROCEDURE SHOWPROC (NAME:STRING:FTNIFTNTYFE) §

(* USED TO DISPLAY CURRENTLY EXECUTING PROCEDURES FOR DEBUGGING #*)
(¥ IF THIS ROUTINE IS CALLED WITH FTN=SHOW, THEN THE PROCNAME *)
(* IS DISPLAYED ON THE SCREEN, UNDERNEATH ALL PREVIOUS NAMES. *)
(¥ A SUBSEQUENT CALL WITH FTN=ERASE WILL CAUSE ALL PROCNAMES UP %)
(¥ TO THE NAME SPECIFIED TO BE DELETED FROM THE SCREEN. IN THIS *)
(¥ WAY, A SUBROUTINE CAN "EXIT" FROM ITS CALLER AND REMOVE BOTH *)
(* NAMES FROM THE SCREEN AT ONCE. *)
VAR FOUND: BOOLEANS
BEGIN (% SHOWPROC %)
IF FTN=SHOW THEN
BEGIN
GOTOXY (XPROC, SCRPROC) §
PROCNAMESLSCRFROC] : =NAME
WRITE (NAME: 4) §
SCRPROC: =SCRPROC+1
END
ELSE IF FTN=ERASE THEN
BEGIN
FOUND: =FALSES}
REPEAT
GOTOXY (XPROC, SCRPROC) 3
WRITE(® ":4)3
FOUND: =PROCNAMESLSCRFROC 1=NAME §
FROCNAMELSCRPROCI:=" "3
SCRPROC: =SCRFROC-1
UNTIL FOUND3
SCRPROC: =5CRFROC+13
END3
END: (% SHOWPROC %)

FROCEDURE FORMATSCREEN:

54

(¥ ROUTINE TO READ SCREEN FILE AND INITIALIZE SCREEN DISPLAY

VAR SCRNFILE:FILES
BLOCKCNT: INTEGER3
BUFFER: PACKED ARRAY[O..S5111 OF CHARS:

BEGIN (% FORMATSCREEN)
PAGE (OUTPUT) 3
(%$1-%) RESET (SCRNFILE,’#4:RCV.SCREEN. TEXT®)§ (#$I+%)
IF IORESULTZ >0 THEN
BEGIN
GOTOXY (0, 7) 3
WRITELN(®UNABLE TO OPEN #4:RCV.SCREEN.TEXT’) 3
NOTE (35, 50) ;
EXIT (PROGRAM)
END;
BLOCKCNT : =BLOCKREAD (SCRNF ILE, BUFFER, 1, 1)}
WHILE (IORESULT=0) AND (NOT EOF (SCRNFILE)) DO
BEGIN
UNITWRITE (1, BUFFER,512,0,2)
BLOCKCNT: =BLOCKREAD (SCRNFILE, BUFFER, 1)
END3
UNITWRITE (1, BUFFER, 358, 0,2) 3
CLOSE (SCRNFILE)
SCRPROC :=YPROCMIN;
SCRWORD :=YWORDMINS
SCRLINE :=YLINEMIN;
CLEARLINES: =FALSE;
END: (% FORMATSCREEN %)

FROCEDURE READANSWER (VAR ANS:CHAR) i
T3 T I T I I T I T 96 36 396 36 36 36 36 3 36 36 36 36 36 2 e
VERSION @ AUGUST 1982 *
AUTHOR : SEE HEAN QUEK *
DESCRIFTION : *
*
*
*

*

*
*
* CHECES YES AND NO
* REPLY TO QUESTIONS.
D96 36 I 36 I69E 6 69 3669 6666 I I I I I I 6K I I NN)
BEGIN (¥ READANSWER %)
REPEAT
READLN (ANS) &
IF NOT (ANS IN [°Y","N","D"1) THEN
BEGIN
WRITELNS
WRITELN(” ILLEGAL REPLY. RE-ENTER *)3j
WRITE (P == ")
END3
UNTIL (ANS IN [°Y", N","D"1)i
END: (¥ READANSWER *)

*)

55

PROCEDURE READNUMBER (VAR NUMBER: INTEGER) §
(269 3 363636 2606 36 3636 30 60606 06 36 36 36 636 3 H6 363636 0 3 3 36 3696 6 36 36 36 36

% VERSION : 1 FEB 1983 *
* AUTHOR 1 SEE HEAN, RUEK *
* DESCRIPTION : *
* CHECK NUMERICAL INPUT. ONLY *
* CHECKS SIZE DIGITS OF INPUT. *
I I I B e W2 H I I I I I I I N I I W NI R)
VAR

TEXT t STRING:

SIZE,I : INTEGER;

ERROR : BOOLEAN;:

FUNCTION IEXP(I:INTEGER) : INTEGER:
(#SUBPROCEDURE~EXFONENT FUNCTION®*)
VAR
TEN,J : INTEGER;
BEGIN (¥ IEXF %)
TEN = 1%
IF(I=0) THEN
BEGIN
IEXF = 1%
EXIT(IEXF)
END
ELSE
FOR J 2= 1 TO I DO
BEGIN
TEN 1= TEN*10;
IF(TENX>10000) THEN
BEGIN
WRITELN(" IEXP TO LARGE ** FATAL %%")3
EXIT(PROGRAM) 3
END3:
END3s
IEXP = TEN;
END3; (% IEXP *)

BEGIN (% READNUMBER *)
REFPEAT
ERROR &= FALSE:
READLN(TEXT) §
SIZE = LENGTH(TEXT)3:
IF (SIZE=0) THEN ERROR = TRUE;};
IF NOT ERROR THEN
FOR I 1= 1 TO SIZE DO
IF(NOT (TEXTLI1 IN C707..°97,°D*1)) THEN
BEGIN
ERROR := TRUESWRITELN;j
WRITELNC(® ILLEGAL INPUT. RE-ENTER !7)3

56

WRITE(== ")
END3
UNTIL NOT ERROR3 3
IF(TEXTL1] = *D*) THEN EXIT(READNUMBER) i
IF(SIZE>37) THEN
BEGIN
WRITELN(*NUMBER EXCEED 27 DIGITS ** FATAL *%")3j
EXIT (PROGRAM) §
END3
NUMBER = O3}
FOR I = 1 TO SIZE DO
BEGIN
L i= SIIE+1-13
NUMBER:= NUMBER + (ORD(TEXTLL1) — 48)*IEXF(I-1)3
END3
END3: (% READNUMEBER #*)

FROCEDURE WEL.COME3
(63 33 3 26 363636 3696 36 96 3636 36 96 96 36 96 96 3696 3696 36 36 36 36
* VERSION @ 10 AUGUST 1982 *
* AUTHOR @ SEE HEAN, QUEK *
* DESCRIPTION : *
* WELCOMING MESSAGE *
* TO THE SATNAV PROGRAM. *
Ry St)]
VAR
ANS : CHARj
BEGIN (¥ WELCOME #)
PAGE (QUTPUT) §
GOTOXY (0,2) 3

WRITELN(® *)s
WRITELN(® ! UMD
WRITELNC(" ! ! WK N LD B
WRITELN(® ! ! * BATNAV % LD
WRITELN(® ! " * * LA
WRITELN(® ! —=[CANTI=- % PROGRAM * LA B
WRITELNC(™ ! . ¥RRRERHRNNR e HED B
WRITELN(™ ! cresenesnsannnsns CMA-722! 17)3
WRITELNC * ee——— D R |
WRITELNC(® ! AUTHORS A]
WRITELN(® ! ======= LA B
WRITELNC(® ! (ORIGINAL) : MARK LORD (1981) LMD R
WRITELNC(® ! (REVISION) ! SEE HEAN QUEK (1983) !'7)j
WRITELNC(® ! LD R
WRITELN(® ! VERSION : MAY 1983 (3.0) LA |
WRITELNC® ! LD R
WIRITELN (7 e o e e et e)

GOTOXY (0,22} %

57

WRITELN(® DO YOU WISH TO ALTER PROGRAMMED®) i
WRITE (7 DEFAULTS ? ==> 7)j;
READANSWER (ANS) §

IF(ANS IN [°N”,7D"1) THEN SAVEOFPTION:
PAGE (QUTPUT) §

WRITELN(*TO KEEP DEFAULT VALUES, TYPE <DX")3j
OPTION;

END; (% WELCOME %)

FROCEDURE ADDINFO3
(TN I Te I T e e N e e N N

* VERSION @ JANUARY 12TH 1983 *
* AUTHOR & SEE HEAN QUEK *
* DESCRIFTION : READS IN A NINE DIGIT %
* NUMBER IDENTIFYING RECEIVER . *

2T 23T T STILITI I LI L LSS IL LSS LT
VAR

RCVSTR : STRING:
IONERR : BOOLEAN;
DIGIT < INTEGERS
ANS 1 CHAR;:

BEGIN (* ADDINFO *)
PAGE (OUTPUT) &
GOTOXY (0,5)
WRITELN (" INPUT 9-DIGIT CODE TO IDENTIFY *)3j
WRITELN("USER/STN/REC E.G. 1234567897)%

REFEAT
GOTOXY (0, 8)SWRITELN(™ " :130)3;GOTOXY(0,8)3%
WRITE("==> ") jiREADLN(RCVSTR) }
GOTOXY (O, D FWRITELN(® 7130)GOTAUXY (0,9) 5
IONERR = TRUE}
IF (LENGTH(RCVSTR) < >9) THEN
BEGIN
WRITELN(*9-DIGITS EXPECTED. RE-ENTER®)
IONERR := FALSES

END3
IF (IONERR) THEN
BEGIN
FOR I := 1 T0 9 DO

IF NOT (RCVSTRLCII IN [70°..7971) THEN
IONERR := FALSE;
IF NOT IONERR THEN

WRITELN("NUMERICAL INPUT PLEASE !'7*)3j
END3

58

UNTIL IONERR3:

FOR I = 9 DOWNTO 1 DO
BEGIN
DIGIT 2= ORD(RCVSTRLI1):
RCVCODELI] = CHR(DIGIT);
END3

END: (#ADDINFO#*)

59

I3 3 I I I K I I I I W I K I I W W I I I I I W I I ;W I N KM N
*

*
* FILE : SNAPF2: SATBCK33. TEXT *
* *

W3 I K I W I K I NI I I KNI I I NI I I NI I I N KN KN NN NN

60

(¥ ROUTINES RELATED TO THE READING *)
(¥ AND PROCESSING OF THE DOPPLER DATA #)

FPROCEDURE READPARAS FORWARD;
PROCEDURE READFASS: FORWARDS

FROCEDURE READWORDS

(¥ PROCEDURE TO GET NEXT 4-DIGIT INPUT WORD FROM RECEIVER %)
(* USING ASSEMBLER INPUT QUEUE HANDLER, "GETWORD". *)
VAR ENDOFPARA, ENDOFPASS: BOOLEAN;

PROCEDURE SCANKBj;

(¥ SUB-PROCEDURE TO SCAN KEEYBOARD FOR USER INPUT. TO ISSUE
(* A COMMAND, USER MUST FIRST HIT <ESC> KEY, AND THEN THE
(¥ APFROPRIATE KEY FOR HIS COMMAND.

CONST QUIT = "Q% 3 (* EXIT P6M AFTER CURRENT PASS
STAY = "§73 (¥ CANCELS EFFECT OF ISSUED "QUIT"
UNLOCE = "U"j (¥ ISSUE UNLOCK-PASS CMD TO REC
KILL = K"} (¥ TERMINATE PROGRAM IMMEDIATELY!

VAR KBCHR:CHARS

BEGIN

SHOWFROC (" SCKB® , SHOW) 3
READ (KEYBOARD, KBCHR) §
IF NOT ESCFRESSED THEN
ESCFRESSEDI= KBCHR=CHR (27)
ELSE
BEGIN
ESCPRESSED: =FALSE}
UNITCLEAR (2) 3§
IF KBCHR IN [QUIT,STAY,UNLOCK,KILL] THEN
CASE KBCHR OF
RUIT: QUITREQUESTED: =TRUE;
STAY: QUITREQUESTED: =FALSE3}
UNLOCK :BEGIN
UNLOCKPASSS
ENDOFPASS: =TRUE
END3
KILL:BEGIN
FARACNT : =03
AUITREQUESTED: =TRUES
ENDOFPASS: =TRUE
END3
END (% CASE #*)
ENDj
SHOWFPROC (" SCKB" , ERASE) §
END; (% SCANKB %)

BEGIN (* READWORD #)
SHOWPROC (* RDWD* , SHOW) 3

*)
*)
*)
¥*)
*)
*)
*)

61

ENDOFFPARA: =FAL.SES
ENDOFPASS: =FAL.SE}

IF KEYPRESS THEN SCANKBS
GETWORD (INPUTWORD) 3

IF LENGTH(INPUTWORD) =0 THEN
BEGIN
SHOWMODE (" WAIT®) 3§
REPEAT
IF KEYPRESS THEN SCANKES;
GETWORD (INPUTWORD)
UNTIL (LENGTH(INFUTWORD)<>0) OR ENDOFPARA OR ENDOFPASSS
SHOWMODE (" ACTIVE?®)
END3

IF LENGTH(INFUTWORD)=4 THEN
CASE INPUTWORDC11 OF
Qs IF INPUTWORD<Z >’ 0000° THEN
BEGIN
ENDOFFARA: =TRUE;
SHOWWORD (* T2MIN®)
END
ELSE
BEGIN
ENDOFFPASS: =TRUE;
SHOWWORD ¢ > R2ZMIN®)
END3
1,2, 3" ,"4° :BEGIN
ENDOFPARA: =TRUE}
SHOWWORD (INPUTWORD) §
WRITE(CHR (7))
END;
’8° 1 BEGIN
ENDOFPARA: =TRUE;
SHOWWORD (> S2MIN®)
END;
C :BEGIN
ENDOFPASS : =TRUE 3
SHOWWORD ¢ * ENDFS”)
END:
?5."?6"."7?’?9."!A’,?BS’ED,,’E,’?F":
SHOWWORD (INFUTWORD) §
END; (% CASE *)

IF ENDOFFASS THEN
BEGIN
SHOWFROC (" RDPS*® , ERASE) 3
EXIT (READPASS)
END

62

ELSE IF ENDOFFARA THEN

BEGIN

SHOWFROC (" RDFA™ , ERASE) §
EXIT (READPARA)

END3

SHOWPROC (" RDWD " , ERASE)
END: (% READWORD #*)

PROCEDURE READLINE:

(¥* ROUTINE TO FORMAT NEXT LINE OF RECEIVER INPUT (9 WORDS)
(¥ INTO VARIABLE "INPUTLINE". SERUENCE CODES OF THE INPUT
(¥ WORDS ARE CHECKED FOR FROFPER SEGQUENCE, AND THE DOPFLER

(¥ COUNTS ARE TESTED TO ENSURE THAT THEY CONTAIN ONLY BCD

(¥ DIGITS. THIS TESTING IS NOT DESIRED FOR THE SATELLITE

(¥ MESSAGE (LAST X WORDS).

VAR WORDNUM,DIGIT: INTEGER;

DATAERROR

: BOOLEANS

BEGIN (¥ READLINE *)
SHOWFROC (* RDLN® , SHOW) 3
DATAERROR: =FALSE3:

DIGITI=13}
FOR WORDNUM:=1 TO 9 DO
BEGIN
READWORD 3

IF INPUTWORDC11<>SEQCODESLWORDNUMI THEN
DATAERROR: =TRUE

ELSE

CASE WORDNUM OF

1,2,4,5:

IF NOT ((INPUTWORDL21 IN ["0°..*971) AND
(INPUTWORDE31 IN [°0°.."971) AND
(INPUTWORDL43 IN [°0°..°971)) THEN

DATAERROR: =TRUE

ELSE

BEGIN
INPUTLINELDIGIT] :=INPUTWORDLCZ21:
INPUTLINELDIGIT+11:=INFPUTWORDLZ]}
INPUTLINELDIGIT+21:=INFPUTWORDL41];
DIGIT:=DIGIT+3

END3

3,68

IF NOT (INPUTWORDLC4] IN [*07..7971) THEN
DATAERROR: =TRUE
ELSE
BEGIN
INFUTLINELDIGITI:=INPUTWORDL413
INPUTLINECDIGIT+11:="0"3§
INFUTLINECDIGIT+21:="0";

*)
*)
*)
¥*)
*)
*)

63

DIGIT:=DIGIT+4
END3
7,8,9:
BEGIN
INPUTLINECDIGIT] :=INPUTWORDL21;
INPUTLINECDIGIT+11:=INPUTWORDC31;
INPUTLINECDIGIT+21:=INPUTWORDL41;
DIGIT:=DIGIT+3
END;
END: (% CASE %)
IF DATAERROR THEN
BEGIN
WRITE (CHR(7)) 3}
SHOWPROC (* RDPA’ , ERASE) §
EXIT (READPARA)
END3
ENDj;
SHOWPROC (* RDLN® , ERASE) 3

END: (¥ READLINE %)

PROCEDURE READPARAS
ROUTINE TO SET TIMESTAMP FOR NEXT PARAGRAPH OF INPUT *)

(%
(%
(%
(%
(%
(%
(%
(%
(%

AND THEN TO CALL READLINE ENOUGH TIMES TO OBTAIN A

*)

COMPLETE FPARAGRAPH. IF ANY ERRORS OCCUR IN READLINE,*)

OR IF READWORD ENCOUNTERS 2-MINUTE MARKS, THEN THIS
ROUTINE WILL NEVER COMFLETE AND THUS THE PARACNT

*)
*)

POINTER WILL NOT BE ADVANCED, THUS CAUSING THE INPUT %)

PARAGRAFH TO BE IGNORED. NOTE THAT 2-MINUTE MARKS
BETWEEN FPARAGRAPHS WILL CAUSE THE TIMESTAMP TO BE
UFDATED, BUT WILL HAVE NO ILL EFFECTS OTHERWISE.

VAR FARANUM, LINECNT: INTEGERS

CURRENTTIME: TIMESTAMP §
DISPLAYSTRING: STRING:

BEGIN (¥ READFARA *)

SHOWPRQOC (" RDFA™ , SHOW) §
PARANUM: =FARACNT+13

GOTOXY (XPNUM, YPNUM) 3 WRITE (FPARANUMIZ) 3

READTIME (CURRENTTIME) §
CURRENTTIMELSIZEQF (CURRENTTIME) 1:=CHR(13) 3§

IF PARANUM = 1 THEN
LOCKONTIME := CURRENTTIMES

DISFLAYSTRING: =" "8 (¥ 19 SPACES

MOVELEFT (CURRENTTIMEL11,DISPLAYSTRINGL11,19)3%
SHOWMSGE (2, CONCAT (* TIMESTAMF = * ,DISPLAYSTRING))}

*)

*)
¥*)
*)

64

SHOWL INE (INFPUTLINE,CLEAR) §
WITH PASSPARALFARANUMI DO
BEGIN
PASSTIME:: =CURRENTTIMES
FOR LINECNT:=1 TO MAXLINE DO
BEGIN
GOTOXY (XLNUM, YLNUM) ; WRITE(LINECNT:IZ) s
READL INES;
PASSLLINECLINECNTI =INFUTLINES
SHOWL. INE (INPUTL.INE, SHOW) 3
SHOWFROC (*VOTE® , SHOW) 3
MJIVLINE (LINECNT, PARANUM, INPUTL.INE) §
SHOWFROC (" VOTE? , ERASE) &

LONGDOPPLERS (LINECNT, PARANUM, INPUTLINE)§

END
END3
PARACNT : =PARANUM;
SHOWFROC (" RDPA™ , ERASE) 3
END;: (¥ READFPARA %)

FPROCEDURE READPASS:

(* THIS FROCEDURE COLLECTS PASS DATA UNTIL EITHER THE #*)
(¥ END OF PASS IS REACHED (READWORD WILL CAUSE EXIT), *)
(¥ OR UNTIL IT HAS COLLECTED THE MAXIMUM ALLOWABLE *)

(¥ NUMBER OF DATA FPARAGRAFHS - WHICHEVER OCCURS FIRST.*)
BEGIN (% READPASS *)
SHOWFROC (° RDPS™ , SHOW) §
FPARACNT: =03
(* CLEAR MAJORITY VOTING AND TEMFPORARY ARRAYS. *)
CLEARMJVFILE};
SATLOCK = FALSE:

REFEAT
READFARA
UNTIL (PARACNT=MAXPARA) ;
UNLOCKPASS:
SHOWPRQOC (* RDPS” , ERASE) §
END: (* READPASS *)

65

336 3 3 363 3 3 I I KWW KK I I I KK I NN T I KN NN NN NN

* *
* FILE : SNAFP2: SATNAVI. TEXT *
* *

H 3 I I I I I I N I I I I W I WK N

(%E5+%)

66

€T T I LTI LI AL LSS LS T LI L E L LS LT LY L]

* %k %k *k %k %k %k %k %k *

VERSION @ 3.0 *
ORIGINAL AUTHOR : MARE LORD *
MODIFICATION BY : SEE HEAN GUEK *
REVISED MANUAL. : MAY 1983 *

*
AS THE FROGRAM HAS EXCEED THE MAX#*
TEXT FILE SIZE, CERTAIN FROCEDURES #
ARE NOW KEFT IN A DIFFERENT FILE. *
CONSUL.T THE DOCUMENTATION TO CLARIFY*
ANY MAJOR DETAILS. *

L2 S S s3I 2 2222222222222 T T
FROGRAM SATNAVI:
USES APFLESTUFF, PEEKFOKES

CONST MAXPARA = 8
MAXLINE = 25
REFMAX = 15

(%

(%
(%
(%
[€.3

TYPE FTNTYPE

NOTE: MAXMJYV MUST BE > MAXFRAMETERS + 1 — ESSENTIAL

143 (% LENGTH OF VARIABLE PARAMETERS

285 (¥ MAXIMUM LENGTH OF ALL PARAMETERS
323 (% MAXIMUM LENGTH OF COMPACT DOFPLERS

ENDEFHEMERAL.
MAXPRMETERS
MAXMJV

W

(¥ AND MESSAGE

THE FOLLOWING CONSTANTS ARE USED FOR
POSITIONING ITEMS ON THE SCREEN, AND
MOST CAN BE SAFELY ALTERED TO MODIFY
THE SCREEN FORMAT.

XMODE=73 YMODE=0O3;

XPNUM=115 YPNUM=13

XLNUM=1435 YLNUM=13

XM56 =15 YMSG =33

XLINE=5 § YLINEMIN=103YLINEMAX=27Z;

XPROC=03; YPROCMIN=10; YFROCMAX=23}

XWORD=353; YWORDMIN=3I:; YWORDMAX=23}

(SHOW, ERASE,, CLEAR) 3

DATAWORD = STRINGLS1;
DATAL INE = PACKED ARRAY[1..301 OF CHAR:
TIMESTAMP = PACKED ARRAYL1..20]1 OF CHARS
PARARECORD = RECORD

FASSTIME: TIMESTAMP

PASSLINE: ARRAYL1..MAXLINE] OF DATALINE

END3

LONGL INE = PACKED ARRAY[1..301 OF CHAR}
MESSAGELINE = PACKED ARRAYL1..91 OF CHARj;
PACKL. INE = PACKED ARRAY[1..321 OF CHAR}

*)
*)
*)
*)

(¥ TURN LEVEL-1 COMPILER SWAFFING ON FOR LARGE FROGRAM *)

§ (¥ THIS LINE SPECIFIES # OF FARAGRAPHS/FASS #)
i (¥ THIS LINE SPECIFIES # OF LINES/PARAGRAPH %)
Q03 (¥ MAXIMUM DIFFERENCE BETWEEN 2 FREG COUNTS*)

*)
*)
*)
*)
*)

67

DOFPLINE = PACKED ARRAY[1..91 OF CHAR3
MESSCHAR = ARRAY[1..91 OF CHAR}
MESSVALUE = INTEGERLC91:

VAR PROCNAMES: ARRAYLYFROCMIN. . YPROCMAX] OF STRINGL81j
PASSPARA :ARRAYL1..MAXPARA] OF PARARECORD;
SEQCODES :PACKED ARRAY[1..91] OF CHAR;3

INPUTWORD :DATAWORDS

INPUTLINE :DATALINES

PARACOMPLETED : BOOLEAN;

MEMUNUSED tSTRINGLSI:

SCRPROC, SCRLINE, SCRWORD, PARACNT : INTEGER3:
CLEARLINES, QUITREQUESTED, ESCPRESSED :BOOLEAN;
FARAMF ILE STEXTS

PASSFILE tFILE OF PARARECORD;:
FPFNUMBER, PF INCREMENT : INTEGER3;

FPFDEVICE :STRINGL713
FFRODTNAME, FFEXT,MJROOTNAME :STRINGL1413
PFNAME , MOINAME tSTRINGL261]:

MJVFASS * ARRAYL1..MAXPRMETERS] OF MESSCHAKS
TEMPORARY ©: ARRAY[L1l..MAXPRMETERS1 OF MESSAGEL INE:
DOPIOFQ150, DOPIOFR400: ARRAYL1..MAXMJIVI OF DOPLINES

LOCKONTIME: PACKED ARRAYL1..201 OF CHAR:
MJIVFILE : FILE OF PACKLINES

MJVCODE : PACKED ARRAYL1..MAXMJIV] OF CHAR:
OPTIONCODE, RCVCODE: MESSAGEL INES

MINPARA, MINDOF 30 : INTEGER;
FAILMJVRJ,FAILDOPRI : CHAR;
ZEROUNDOP : CHAR;
MJVONLY, SATLOCK : BOOLEAN;
ISAT ¢ INTEGER;
(* GLOBAL VARIABLES %)
NO,I,J,K.L : INTEGER;
PACKS : MESSAGELINE;
UNFACKD : MESSCHAR;

PROCEDURE WRITEPASS: FORWARD;
PROCEDURE OPTIONS FORWARD§
PROCEDURE SAVEOPTION;FORWARDS

(¥61 #5:SATBCKI2. TEXT *)

PROCEDURE SAVEOPTION:
CH 30 3636 30 2000 06969636 3606 2096 36 96 36 36 96 6 36 2696 36 36 36 06 96 96 9696 36 96 36 36 36 96 %

68

VERSION : SEPTEMBER STH 1982
AUTHOR & SEE HEAN, QUEK
DESCRIFTION :

* k %k k Xk

ON THE LAST LINE OF MJV PASS FILE.

P B I I I I B I I I3 9 T I I 29I I I
VAR

OPT : CHAR;3

*
*
*
WRITES OFTION SELECTED *
¥*
*

)

BEGIN
(¥ MINPARA %)
OPT = CHR(MINFARA + 48)3;
OPTIONCODEC1] := OPT:
(# ZERQO DOPFPLERS %)
IF ZEROUNDOF = "Y? THEN
OPTIONCODEL2] 1= *1°7
ELSE
OPTIONCODEL2] 1= 073
(¥ REJECT FASS ON DOFPPLERS %)
IF FAILDOFRJ = "Y* THEN
OPTIONCODEL3]Y = *1°
ELSE
OFTIONCODEL3] = Q%3
(# REJECT PASS ON MJIV *)
IF FAILMJIJVRJI = *Y® THEN
OPTIONCODEL4] = 17
ELSE
OFTIONCODEL4] 2= "Q*
(¥ MINDOF30O *)
OPT = CHR((MINDOP3O DIV 10) + 48);
OPTIONCODELS] = 0OPT:
OPT 2= CHR((MINDOPZIO - ((MINDOF3IO DIV 10)%10)) <+ 48);
OPTIONCODELSG] 1= OPT:
(¥ NOT USED *)
OPTIONCODEL7]1 1= 0"
(#* VERSION CODE-1ST DECIMAL*)
OPTIONCODEL8] = "3Z°;
(¥ VERSION CODE-2ND DECIMAL %)
OPTIONCODEL?] 1= 0"

EXIT (WELCOME)
END3

PROCEDURE OPTION;
CH U TN H T T T T I I H 0 3
* VERSION : SEPTEMBER STH 1982
* AUTHOR :© SEE HEAN, QUEE
* DESCRIPTION :
* ALLOWS A CHANGE OF
* PROGRAMMED DEFAULTS.

* %k %k ¥ ¥

69

W N B BT)
VAR

ANS, TEXT : CHAR3:

MINDOP : INTEGER:

PROCEDURE OPTCONT:
BEGIN
WRITELN; WRITELN:
WRITELNC'DO YOU WANT A MINIMUM NUMBER OF 30-SECT)3
WRITELN(?COUNTS FOR EACH PASS TO BE ENFORCED 7?7)3
WRITE (" <DEFAULT = *,FAILDOFRJ, "> CHANGE TO ?7)3
READANSWER (ANS) §
IF(ANS = "N") THEN FAILDOPRJ I= “N?3j
IF(ANS = "Y”) THEN
BEGIN
WRITELNS
WRITELNCTINPUT MINIMUM 30-SEC TWO FRER® COUNTS 7?7)3
WRITE (° <DEFAULT = ~ ,MINDOP3O,” > CHANGE TO 7?7)3§
READNUMEBER (MINDOP) §
IF (MINDOP >=MAXMJIV) THEN
WRITELN(®ERROR - VALUE = OR > °,
MAXMJV, . DEFAULT USED®)
ELSE
MINDOF30 = MINDOFj3
END3

WRITELN;WRITELN;
WRITELN(*SELECT DATA TO BE SAVED ON DISEK.)%
WRITELNC(? 1. MJIV DATA ONLY®):
WRITELNC(® 2. MJV AND RAW DATA®)3;
WRITELN;S
WRITELN(® (NOTE: IF INPUT <> 1 OR 2, DEFAULT USED)?®)3:
IF MJVONLY THEN
NO 1= 1
ELSE
NO = 2%
WRITE ("<DEFAULT = *,NO,”> CHANGE TO ? °)}
READNUMBER (NO) 3
IF NO = 1 THEN
MJIVONLY := TRUE
ELSE
MJIVONLY := FALSE3;

WRITELNS WRITELNS
WRITE (" DONE") §
FOR I = 1 TO 1000 DO
MINDOF:= MINDOP + 13}
(¥ KEEFP OPTIONS %)
SAVEOFTIONS
END3

70

BEGIN (% OPTION #*)
WRITELN;
WRITELN(*MINIMUM NUMBER OF TWO MINUTE PARAGRAPHS®) i
WRITELN("TO BE OBTAINED BEFORE WRITING TO7)3
WRITELN('DISK DRIVES 7? ")3;
WRITE (" <DEFAULT = *,MINPARA, "> NEW VALUE 77)3
READNUMEER (MINFARA) §

WRITELNS

WRITELN(*IN THE EVENT THAT THE MAJORITY VOTED®)3%
WRITELN (*MESSAGE FAILS THE BUILT-IN TESTS,)3
WRITELN(*DO YOU STILL WISH TO SAVE THE ")3
WRITELN("FPASS ON THE DISKETTE ?7)3;

IF (FAILMJVRJ="Y") THEN

TEXTi= *N’
ELSE
TEXTi= "Y'

WRITE (" <DEFAULT = * ,TEXT,” > CHANGE TO ?7)3
READANSWER (ANS) 3
IF(ANS = *Y¥Y") THEN FAILMJVRJ = °*N?

ELSE FAILMJVRI = "Y°}§

WRITELNSWRITELNS

WRITELN("IF THE DIFFERENCE BETWEEN THE DOPPLER®)3:
WRITELN(°COUNTS AT 400MHZ AND 150MHZI EXCEEDS *,REFMAX)j
WRITELN(°COUNTS, DO YOU WANT THEM TO BE ZEROED 7?7)3
WRITE ("<DEFAULT = 7 ,ZEROUNDOP, * > CHANGE TO ?7)3
READANSWER (ANS) §

IF(ANS = "N?) THEN ZEROUNDOP :t= "N7"3j

OFTCONTS
END; (% OPTION %)

(#$]1 #S5:ISATBCKI1.TEXT *)

PROCEDURE INITPIA; EXTERNAL :
PROCEDURE GETWORD (VAR STRING4)3: EXTERNAL;
FROCEDURE RESETIRQ; EXTERNAL 3

PROCEDURE READTIME (VAR FKCHAR1?)3; EXTERNAL;

FROCEDURE UNL.OCKPASSS
(¥ ROUTINE TO SET ANNUNCIATOR OUTPUTS AND STROBE TO COMMAND #*)
(¥ RECEIVER TO UNLOCK FROM THE CURRENT PASS. THESE OUTPUTS %)
(¥ ARE PART OF THE APFLE GAME I/0 CONTROLLERS. *)
VAR STROBE: INTEGEK;
BEGIN (% UNLOCKPASS *)

TTLOUT (O, TRUE) §

TTLOUT(1,FALSE) ;

71

TTLOUT (2,FALSE) §

TTLOUT (Z, TRUE) 3

STROBE: =FEEK (-16320) 3§

END: (# UNLOCKEPASS #*)

(*$1 #35:S5ATBCKI3.TEXT *)

PROCEDURE OPENPASSFILES

(%
(%
(%
(*
(%
(%
(%
(%
(%
(*
(%
(%
(%

THIS PROCEDURE ATTEMPTS TO OPEN A NEW PASS FILE FOR %)
SAVING CURRENT PASS DATA IN. FILE SIZE IS *)
COMPUTED, AND RCV.PARAM IS USED TO MAKE A NEW FILE %)
NAME UP. ATTEMPTS ARE THEN MADE TO PRE-EXTEND THIS %)
FILE TO ITS FULL SIZE ON AN OUTPUT DISK, GIVING LAST*)
PREFERENCE TO THE (USUALLY) BOOT DISKETTE IN DRIVE *)
#4. IF ALL ATTEMPTS FAIL, THE USER IS FROMPTED BY A#%)
HIGH-FPITCHED BEEP-BEEF NOISE TO SFPECIFY A FURTHER #)
COURSE OF ACTION FOR THE FROGRAM: EITHER TERMINATE, #*)
OR TRY AGAIN TO FIND SPACE (IE. IF THE USER FIRST *)

INSERTS A NEW DISEETTE). *)
MODIFIED - S.H. QUEK *)
OFENS BOTH FASS AND MAJORITY VOTED DISK FILES. *)
VAR FFBLOCKCNT, PREFERENCE, DUMMY: INTEGERS$
IERMJ, IERFF, MIBLOCKCNT P INTEGERS
REFLY 1 CHAR3:
FFSIZE,FFDIGITS,MJSIZE tSTRINGLS1:

PFPARTIALNAME, MIJIPARTIALNAME (STRINGL191:

PROCEDURE. CHECKSFACES:

BEGIN
FFNAME: =CONCAT (FFDEVICE, PFPARTIALNAME) 5
MINAME: =CONCAT (FFDEVICE, MIPARTIALNAME) §
IF MJIVONLY THEN
SHOWMSGE (0, CONCAT (*NEW FILE= °,MJINAME))

ELSE
SHOWMSG (O, CONCAT (°NEW FILE= * ,PFNAME)) 3
(¥$]—%)
IERPF = 03
IF NOT MJVONLY THEN
BEGIN
REWRITE (PASSFILE, PFNAME) §
IERPF = IORESULT;
END3

REWRITE (MJVFILE,MINAME) § (*$I+%)
IERMJ = IORESULT:
IF (IERPF=0) AND (IERMJ=0) THEN
BEGIN
SHOWFROC ("OF IL’ ,ERASE) §

72

EXIT(OPENFASSFILE)
END3
(¥ CASE WHEN ONLY ONE FILE IS SUCCESSFULLY OPENED %)
IF NOT MJVONLY THEN
IF IERPF=0 THEN
CLOSE (PASSFILE)
IF IERMJ=0 THEN
CLOSE (MJVFILE)§
END: (*CHECKSPACE#*)

BEGIN (¥ OPENFPASSFILE %)
SHOWFROC (" OF IL" , SHOW) §
STR(PFNUMBER, PFDIGITS) ;

(¥ THE FOLLOWING LINES DETERMINE THE REQUIRED FILE SIZE %)
(¥ IN BLOCKS OF THE OUTPUT FASS FILE. ".TEXT" FILES ARE*)
(¥ A SPECIAL CASE BECAUSE THEY REQUIRE A 2-BLOCK HEADER #)
(* RECORD (WRITTEN BY OFERATING SYSTEM) AND THEY MUST *)
(* BE WRITTEN (CREATED) IN EVEN INCREMENTS OF 2-BLOCKS. #*#)

IF FFEXT=".TEXT" THEN
BEGIN

FFBLOCECONT: =2% (1+ (PARACNT*SIZEOF (PARARECORD) DIV 1024))+2%

MIBLOCKONT: =2 + 1+ (MAXMIV*SIZEOF (PACKLINE) DIV 512)
END

ELSE
BEGIN
FFBLOCKCNT:: =1+ (PARACNT*SIZEOF (PARARECORD) DIV 512)3

MJIBLOCKCNT: =1+ (MAXMJV*SIZEOF (PACKLINE) DIV 512)
END3

STR(PFBLOCKCNT,FFSIZE) §
FFRARTIALNAME: =CONCAT (PFROOTNAME ,PFDIGITS,PFEXT,’[* ,FFSIZE, *1%)}

STR(MJBLOCKCNT,MJSIZE) §
MIPARTIALNAME: =CONCAT (MJROOTNAME ,PFDIGITS,PFEXT, [,MISIZE, 1)}

(¥ WE CAN USE THE SAME DISKE AS LAST TIME ONLY IF IT WAS *)
(¥ NOT THE BOOT DRIVE (#4:). OTHERWISE, WE HAVE TO GO *)
(# SEARCHING FOR SPACE ELSEWHERE FIRST. *)

IF PFDEVICE<«>"#4:° THEN
CHECKSFACES;

(¥ THE FOLLOWING LOGIC SEARCHES FOR AN OUTPUT DISK, IN)
(¥ THE ORDER OF FPRIORITY SPECIFIED WITHIN THE CASE BELOW*)

REFEAT
SHOWMSGE (2, * [SEARCHING FOR NEW OUTPUT DISKI1%)3j
FOR PREFERENCE:=1 TO 6 DO
BEGIN

73

CASE FPREFERENCE OF
(¥ THESE ARE PASCAL DISK DRIVE UNITS %)

1 PFDEVICE:="#5I"§ (¥ FIRST CHOICE %)
PFDEVICE:="#11:"§ (¥ SECOND CHOICE#*)
PFDEVICE:="#12:"§ (¥ THIRD CHOICE *)
PFDEVICE:="#9:"§ (¥ FOURTH CHOICE#*)
PFDEVICE:="#10:"§ (¥ FIFTH CHOICE %)
PFDEVICE:="#4:" (% LAST RESORT ONLY! %)

END: (% CASE *)
END3
CHECKSFACE;
SHOWMSG (1, "NO SPACE FOR OUTPUT FILE®)S
SHOWMSGE (2, " <ESC>=KILL; <RETURN>=RETRY")3}
UNITCLEAR(2) §
WHILE NOT KEYPRESS DO

‘&Eﬁ#&?N

BEGIN
NOTE (45, 25) 3 (* BEEP AND %)
FOR DUMMY:=1 TO 2000 DO (¥ DELAY! *)
END:

READ (KEYBOARD, REPLY) §
SHOWMSG (1,7 ") 3
UNTIL REPLY=CHR(27); (¥ ESCAPE CHARACTER %)
AUITREQUESTED: =TRUE};
SHOWPROC (" WPAS® , ERASE) 3
EXIT(WRITEFASS)
END: (% OPENPASSFILE %)

PROCEDURE CLOSEPASSFILES
(* THIS ROUTINE CLOSES THE CURRENT PASSFILE AND UFDATES *)
(% RCV.PARAM.TEXT TO REFLECT THE NEXT FASS NUMBER TO BE %)
(% USED IN CREATING FASS FILES. *)
(% MODIFIED - QUEK ; CLOSE ALL FILES *)
BEGIN (% CLOSEFASSFILE)
SHOWFROC (" CFIL® , SHOW) 3
IF NOT MJVONLY THEN
BEGIN
CLOSE(PASSFILE,LOCK) §
SHOWMSG (1, PASS FILE SUCCESSFULLY WRITTEN®)S
END3
CLOSE (MIJVFILE,LOCE) 3
SHOWMSG (2, " CTUPDATING RCV.PARAM.TEXTI")%
FPFNUMBER : =FFNUMBER+PF INCREMENT 3
(¥EI— *) (# PURGE EXISTING FILE %)
RESET (PARAMFILE, "#4:RCV.PARAM. TEXT) §
IF IORESULT = O THEN
CLOSE (PARAMF ILE , PURGE) 3
(BT +%)
REWRITE (PARAMFILE, "#4:RCV.PARAM. TEXTL417)&
WRITELN(PARAMFILE, PFROOTNAME) §

74

WRITELN (PARAMF ILE, MJROOTNAME) 3§
WRITELN (PARAMFILE,PFNUMBER,” °,PFINCREMENT):
WRITELN(PARAMFILE,FPFEXT) ;
CLOSE (PARAMFILE, LOCK) §
IF NOT MJVONLY THEN
SHOWMSG (0, CONCAT (*LAST PASS= " ,FFNAME))
ELSE
SHOWMSGE (0, CONCAT ("LAST FPASS= " MINAME)) &
SHOWMSG (1, " ") §
SHOWMEG (2, ")
END§ (# CLOSEPASSFILE *)

PROCEDURE WRITEFPASS:
(¥ THIS ROUTINE HANDLES THE (VERY) FAST TRANSFER OF A GROUF *)
(* OF DATA PARAGRAPHS (IE. THE CURRENT PASS) TO A PASS FILE *)
(¥ ON DISKETTE. THE TWO FROCEDURES ABOVE AID IN THIS QUEST.#*)
VAR PARANUM: INTEGERS
BEGIN (¥ WRITEPASS *)
SHOWPROC (" CMJV*™ , SHOW) §
CHECEMJVFILE: (% CHECK ON CONTENTS OF MJV ARRAY %)
SHOWPROC (" CMJIV® , ERASE) §
SHOWPROC (* WPAS® , SHOW) 3
RESETIRG: (% DISABLE INTERRUPTS WHILE USING DISKETTE DRIVES %)
SHOWMODE (" DISKIO®) 3

OPENPASSF ILES
CONDPASSFILES

IF NOT MJVONLY THEN
BEGIN
FOR PARANUM:=1 TO FPARACNT DO
BEGIN
PASSF ILE": =PASSFPARALPARANUMI 3
PUT (PASSFILE)
END3
END3

CLOSEPASSFILES

INITPIA: (¥ ENABLE INTERRUFTS AGAIN *)
SHOWMODE (" ACTIVE®) §
SHOWPROC (" WPAS ™ , ERASE) §

END: (¥ WRITEPASS *)

FROCEDURE SETFPARAMETERS:

(¥ THIS ROUTINE ATTEMPTS TO READ THE PASS FILE NAMING *)
(* PARAMETERS FROM #4:RCV.PARAM.TEXT. IF THE FILE *)
(¥ CANNOT BE OPENED, AN ERROR MESSAGE IS DISPLAYED *)

(%
(%
(%
(%
(%
(%
(%
€
va

75

AND THE PROGRAM TERMINATES.

THE PARAMETERS EXPECTED ARE: (ON SEPARATE LINES)
1. ROOTSUFFIX — FOR FASSES
2. ROOTSUFFIX - FOR VOTED PASS FILE
3. NEXT PASSNUMBER & PASSNUMBERINCREMENT
4. EXTENSION

MODIFIED -~ SH QUEK

ADD LINE 2 TO READ MAJORITY VOTED FILE NAME PREFIX

R

STRNUM, STRINC,STRST & STRING:

BEGIN

EN

BE

SHOWPROC (° SETP” , SHOW) §
SHOWMODE (" DISKIO™) 3
PFDEVICE:="#5: "3
(*$1-%) RESET(PARAMFILE, #4:RCV.FPARAM.TEXT")3 (*x$I+
IF IORESULT< >0 THEN
BEGIN
SHOWMSG (1, >UNABLE TO OPEN #4:RCV.PARAM.TEXT™)
NOTE (35, 50) §
EXIT(PROGRAM)
END3
READLN (FARAMF ILE, PFROOTNAME) 3
READLN (PARAMFILE, MIJRODOTNAME) §
READLN (PARAMF ILE, PFNUMBER, PF INCREMENT) §
READLN (FARAMF ILE, PFEXT) }
STR (PFNUMBER, STRNUM) 3
STR{PFINCREMENT, STRINC) ;

*)
*)
*)
*)
*)
*)
*)
*)

*)

.
s

STRST:= CONCAT (* (* ,MJROOTNAME, >) * , STRNUM, PFEXT, " (" ,STRINC, ") ") &

SHOWMSG (0, CONCAT (° PARAMS — ° , FFROOTNAME, STRST)) &
CL.OSE (PARAMF ILE , NORMAL)
SHOWPROC (" SETP” , ERASE) §

Ds

GIN (* SATNAV *)

(¥ DEFAULT OPTIONS FOR THE FPROGRAM %)

MINDOP3O = 10 ;i (% MIN. NO OF 3I0-SEC DOPRS FOR PASS ACCFT
MINFARA = 5§ § (¥ MINIMUM PARAGRAPHS ACCUMULATED B4 SAVING
FAILMIJVRJ = *Y"; (¥ REJECT PASS IF FAILS MJV MESSAGE TESTS
ZEROUNDOP := Y73 (% ZERO 30-SECOND DOPPLERS IF DIFF > REFMAX
FAILDOPRJ = Y3 (% REJECT PASS IF FAILS MIN COUNT

MJVONLY += TRUES (¥ SAVE ONLY MJV DATA ON THE DISE

WEL.COME:

ADDINFO3

FORMATSCREENS

SHOWFROC (" SATN® , SHOW) §

STR((2¥MEMAVAIL) , MEMUNUSED) §

*)
*)
*)
*)
3*)
¥*)

76

SHOWMSG (1, CONCAT (" MEMAVAIL AT SETUP = ° ,MEMUNUSED,® BYTES®))3j
SETPARAMETERS:

INITPIAS

SHOWMODE (" ACTIVE?®) §

INPUTLINEL10JI= * *3
INFPUTLINELZ20]:= * "3
INFUTLINEL301:= CHR(13)3
SEQCODES +="5&679ABDEF " §
ESCPRESSED :=FALSE:
QUITREQUESTED: =FALSES
UNITCLEAR(2) 3
REPEAT

SHOWMSG (1, USER <ESC> COMMANDS: @,S,U,K")3

READPASS:

IF PARACNT »= MINFARA THEN

WRITEFASS

UNTIL QUITREQUESTED;

SHOWMODE (*QUIT) §
RESETIRQO:
SHOWFROC (" SATN® , ERASE) 3
PAGE (ODUTPUT)

END. (¥ SATNAV *)

77

PROGRAM LINK

DESCRIPTION AND USER'S GUIDE

78

ABSTRACT

This supplement describes the various modifications to the Digital
Data Transfer (TALK) program developed originally by Mark S. Lord, and
described in Technical Report 88 of the Department of Surveying
Engineering, University of New Brunswick.

These changes have been implemented in a revised version of the TALK
program, called LINK.

The program can now communicate with VSPC on the IBM 3032 at 1200
baud and has the capability of saving VSPC files on Apple diskettes.

A user's guide to LINK is provided in Appendix I.

79

PROGRA

TABLE OF

Abstract < . .
Table of Contents
1. Introduction e e e e e e
2. LINK . . . « « .« « .« .
2.1 1200 Baud Communication .
2.2 Additional features . e
3. Conclusions and Recommendations
References + .+ .
Appendix I - User's Guide . .

Appendix II - Components of the Apple

Appendix III - LINK Program Listing .

M LINK

CONTENTS

. .

II+ system

Page

78
9
80
81
61
82
83
b4
85
94
95

1. INTRODUCTION

The TALK program was initially developed to enable the Apple II+ to
communicate with VSPC. This allowed the transfer of accumulated Doppler
pass files to the IBM for further processing. Since the inception of the
program, the communication line from VSPC has been upgraded to support a
1200 baud data rate. Accessing the higher baud rate decreases considerably
the time needed to transfer a set of passes from the Apple to VSPC. To
achieve 1200 baud communication, it was necessary to develop an assembler
interface to handle the transmissions between the Apple and the IBM. The
basic structure of the program, however, remains identical to that

described in Lord [1982].

80

2. LINK

LINK is the latest version of the TALK program developed originally
by Lord [1982] to transfer Doppler data to the IBM. To support 1200 baud
communication between the Apple and the IBM, several assembler routines
were added. The program has been segmented to accommodate more object

code; i.e., only part of the program remains in memory at a time.

2.1 1200 Baud Communication

The TALK program was designed to use a 300 baud communication link to
the IBM. When the hardware was upgraded to support 1200 baud
communication, the program, due to the inherent slowness of the PASCAL
language in which TALK is written, was unable to keep up, and this resulted
in missing characters. In an effort to speed the operation of the program,
the transfer and receiving routines have been rewritten in assembler
language. Data coming in from the IBM is placed in a 256 character buffer
by the assembler routines. The program then empties the buffer at its own
pace. Data going out to the IBM is sent whenever the transmit register is
free.

To ensure that all incoming characters are placed in the buffer, the
interrupt capability of the Apple II+ is employed. Whenever data is
received from the IBM, the program is interrupted and the assembler
interrupt service routine picks up the input character from the receive
register and places it in the input queue. The program later picks up the
data from the queue in the order in which they arrived. When the rate at
which data are received exceeds the rate the program is emptying the queue,

the buffer starts to fill up. There may be instances when the buffer gets

81

82

full. In this unlikely event a '?' appears, denoting missing characters

due to the buffer overflowing.

2.2 Additional Features

2.2.1 Pass Transfer Routine
The pass transfer routine now has the capability of transferring
both the majority-voted data file and the raw pass file to VSPC. It can be

requested to transfer only the majority-voted file.

2.2.2 Copy Routine
The LINK program now supports two-way transfers of text files
between VSPC and the Apple. The copy routine, which enables a VSPC file to

be saved on the Apple diskette, was extracted from Slipp [1982].

3. CONCLUSIONS AND RECOMMENDATIONS

The LINK program, although primarily developed for the IBM 3032, can
be modified to operate with any computer. Changes to the communication
protocol can easily be done with the LINK program. Baud rate, parity and
data bit changes are achieved by writing appropriate values to the command
and control registers of the Super Serial Card.

Versatility of the LINK program will allow data to be transmitted

from and to the field via a telephone link.

83

84

REFERENCES

Apple Pascal: Language Reference Manual (1980). Apple Computer Inc.,
Cupertino, CA.

Apple Pascal: Operating System Reference Manual (1980). Apple Computer
Inc., Cupertino, CA.

Lord, M.S. (1982). "Digital data recorder and transfer device for the
Marconi 722B satellite navigation receiver." Department of

Surveying Engineering Technical Report 88, University of New
Brunswick, Fredericton.

Slipp, L. (1983). "The evaluation and implementation of an Apple II
micro-computer as an interactive graphics terminal." Department

of Surveying Engineering Technical Report 89, University of New
Brunswick, Fredericton.

Super Serial Card: Installation and Operation Manual (1981). Apple
Computer Inc., Cupertino, CA.

85

APFENDIX I

Program & LINEK

Author : S.H. Quek

Language : FASCAL

Compiler : APPLE PASCAL (1.1)

Type : Interactive

Purpose : Software Fackage for Apple II1+ to VSFC

Communications.

Date ! June 1983

86
LINE - User®s Guide

2P N 2 R

The following describes the start~up,or "booting")procedure

for the execution of the LINK program.

1.

Before turning on the power to the Apple slide the
diskette named TRACE into disk drive 1 (as identified by
the label on the front of the drive) and a
Fascal-formatted diskette into the other drive.

Fower on the Apple.

The screen should display the current time, i.e.
vear/month/day hour/min/second. A request to type *1I°
sometimes appears. Do this if requested.

If system fails to boot, try swapping the diskettes in
the disk drives. If problem persists, contact author.

If booting is successful the system is now in the AFPLE
FASCAL Command Mode. To enter the Execution Mode, type
’X’*. The system then asks for the name of the file
(program) you wish to execute.

Type 60" to execute the front program. Disk drive 1 will
whirr a bit and a menu of available programs will be
displayed.

Type 2% to select the LINK program. Note that the LINK
program requires the use of the Super Serial Card in the

Apple for communication to VSFC.

(Note: Type "X means hitting the X key on the keyboard

without the gquotes)

87
LINK — User’s Guide

Link

The LINEK program is an extended version of the original TALK
program (by Mark Lord - see reference) currently existing in
the Department of Surveying Engineering. The original
program was modified to

a) operate at 1200 baud,

b) allow for the transfer of a satellite Doppler
majority—-voted matrix along with the pass file down
to VSPC,

and <) copy VSPC files onto Apple diskettes.

The name of the program was changed to identify this version
of the software.

After the program identification message (see figure 1), a
short menu (see figure 2) appears and a "beep" prompts the
user to select an option from the menu. The following are

the options supported by this program.

i. Dumb Terminal Mode
This option allows the Apple keyboard and screen to be
used as a half-duplex asynchronous ASCII terminal. This
allows the user full control over the VSFC logon

procedure, since it is up to

et

he user to achieve logon.
(Two keystrokes of the *RETURN® key should elicit a
response from VSPC). The scintillating cursor is used to
identify this mode of operation. To exit from this mode,

type a *CTRL <C>".

88
LINKE - User’s Guide

Figure 1 — Program LINK Identification Message

APPLE II COMMUNICATIONS INTERFACE

USING S8C TO VSFC

BY

SEE HEAN QUEK

(1983)

89
LINK - User®s Guide

Figure 2 - Program Menu

SUFER SERIAL COMMUNICATIONS FPROGRAM ==

== COMMAND MODE ==

OFPTIONS ARE:
D = DUMB TERMINAL MODE
F = TRANSFER SATELLITE PASS FILES
T = TRANSFER ANY TEXT FILE
C = COPY ANY VSFC FILE

8] QUIT

== ENTER COMMAND ==

90
LINK - User®s Guide
2. Pass File Transfer Mode
This mode allows the user to transfer pass and
majority-voted files, created by the SATNAV program, to
VSPC. Before this mode is entered, the user should first
sign on to VSPC using the Dumb Terminal Mode.
To transfer pass and majority-voted data to VSPC, the
user has to specify which files are to be sent. The
program first prompts for a "rootname" of the pass file,
which is the name of the diskette and files (residing on
it) to be transferred, less the file number suffixed to
each name. For example, if the pass file and
majority—-voted file are called "PASS100.TEXT" and
"MIVIOO.TEXT" respectively on the diskette in drive #95,
then the rootname of the pass file will be
"HSIPASSI TEXT".
The program next prompts for the majority-voted file
prefix. Using the above example, the prefix would be
TMIve.,
The program then requests the starting, ending and
increment of the range of suffixed numbers associated
with each file(s) to be transferred. The starting number
is incremented until it sequence through the specified
range of files to be transferred. The program further
asks the user whether to transfer only the majority-voted
file (i.e. only "#3:MJIVIOO.TEXT) for each pass file or
both files (i.e. both "#5:MJVIOO.TEXT" and
"HE5IFASS100.TEXT"). If a given file is not found or

cannot be opened, the reason for it is displayed and the

91

LINE - User’ s Buide
program proceeds to the next file until all requested
file transfers are attempted or until the user interrupts
the routine by hitting a "CTRL <C>»’ to return to the main
menu.
Each pass file in VSPC has the majority-voted data and,
depending on the above option chosen, the raw tracking
data. Each pass is stored in a separate VSPC file. The
name of each VSPC file is constructed from the pass file
name on the diskette. If the pass file name is

"#3:PASS100. TEXT", the VSPC file name would be "PASS100".

Text File Transfer Mode
This mode is similar to that described above for the
transfer of pass files, except that it will work for any

diskette file with a ".TEXT" suffix. This mode must be

The program prompts for a file name, including diskette
name, and then asks for a VSPC workspace name under which
to save the text. Once the user has entered these two
items, the program proceeds to transfer all the text
contained in the diskette file until all has been sent
and saved in VSFC, or until the user hits “CTRL <C*° to
return to the main menu. An example of a diskette file
name isi *DATAIMYPROG.TEXT?

Copy VSFC files

This option allows the user to copy text files in the

VSFC library onto Apple diskettes. The maximum file size

LINK -~ User’§28uide

that can be copied at one time is about 25000 characters.
If the size of the file exceeds 13000 characters, it is
stored as two separate .TEXT files on the diskette. If
the file size exceeds 25000 characters, a warning to that
effect is issued and LINK attempts to save the text file up

to the last carriage return before exceeding 25000
characters.
fuitting the LINEKE program
This option allows the user to gracefully exit from the

LINK program.

Special Keys

During execution of the program the following keys are

programmed for non-standard purposes:

1. Left Arrow - This key generates a VSPC "RUBOUT"
sequence of a backspace followed by a
linefeed. This effectively "deletes"
the last character typed on the
current line.

2. Right Arrow - This key generates tab characters, the
same as a "TAB" key on most standard
terminals. The tabs will show up as
a single space on the display screen.

3. CTRL LC> — This code is obtained by typing a “C*
while holding down the "CTRL® key. It
causes an immediate return to the
LINK program®s main menu and can be
used to terminate file transfers
prematurely. Note that all I/70 will
remain in the state prior to exit from
the transfer routines, i.e. all
files remain in the open state and
VSPC in the Input Mode.

LINE - User’:36uide
Warnings
Terminating the LINK program does not log you off from VSPC.
Therefore you have to return to the Dumb Terminal Mode in
order to sign off after accessing the other routines.
It is not advisable to go for coffee or tea when the
transfer routine starts transmitting data to VSPC. Data
loss does occur during transmission and when that happens,
the input line (i.e. the last data line shown on the screen)
has to be manually typed in (hit "RETURN® at the end of the
input) and the data transfer continues upon receiving the
"RETURN® signal.

Switching off the Apple will log you off from VSPC.

i+
10
I
jrt
T
i
X
i
I3
in
10
i3
=
IN
]
]
{e:]
1
i
it
im
=
o
jr
irt
im
12
it
i<
-
io
w
Irt
™
ig
i3

Eng., U.N.B., April 1982.

Slipp,L (1983) The Evaluation and Implementation of

Technical Report 89, University of New Brunswick,

Fredericton.

94

APPENDIX II

Components of the Apple II+ System

The following is the list of hardware components required by the LINK

program.

1. Apple II+ microcomputer.

2. Video monitor.

3. Disk controller, and two disk drives.

L, 16K language board.

5. Apple Super Serial Card.

95

APPENDIX III

LINK Program Listing

Files
FTAPP2: FTACIA,TEXT - assembler code
FTAPP2: FTCOPY.TEXT - include file¥

FTAPP2: FTCOM,TEXT - main program

¥ Include files are files that are inserted into the main program at the
time of compilation. They are usually used when the text files are too

large for the PASCAL editor.

926

3 3 I I I I I I I I I I I I I K I I NI I I I I K I I I I I N W KR

* *
* FILE : FTAFF2IFTACIA. TEXT *
* *

33636 36 36 3 3 I 3 I I I I I I K I K I K I I I I K I I I I I I K I KN NN KR

97

L.TITLE "COMMUNICATION ROUTINES"
-MACROLIST
~FATCHLIST

MACRO TO FOP 16-BIT RETURN ADDRESS:

.MACRO POF
PLA

8TA %l
PLA

STA “1+1
- ENDM

§ MACRO TO PUSH 16-BIT RETURN ADDRESS:

«MACRO PUSH

LDA Z1+1
PHA

LDA %1
FHA

. ENDM

§ MEMORY MAFP FOR SYS6551 ACIA

SAFPLE SLOT NUMBER OF SUFPER SERIAL CARD
S8CSLOT ERU 2

SSCBASE .EGQU <SSCSLOT*10x+0C080
DIPSW1 .EQU SSCBASE+1 ;DIP SWITCH 1 MEMORY
DIFPSW2 .EQU SSCBASE+2 sDIP SWITCH 2 MEMORY

TDREG LEQU SSCBASE+8 § TRANSMIT REGISTER
RDREG .EQU SSCBASE+B8 (RECEIVE REGISTER
STATUS <EQU SSCBASE+Y §8TATUS REGISTER
SSCMD LEQU SSCBASE+OAZCOMMAND REGISTER
SSCNTL -EQU SSCBASE+OB; CONTROL REGISTER

i SPECIAL SYSTEM MONITOR LOCATIONS:

IRGVECTR .EGU OFFFE i BASE ADDRESS OF IRQ/BRK INTERRUPT VECTOR
LANGCARD .EGU 0COBO s BASE ADDRESS FOR SLOT#0O = LANGUAGE-CARD

3 PASCAL-SUPPLIED ZERO-PAGE TEMPORARY WORK AREAS:

RTADDR LEQU 00 §SAVE AREA FOR PASCAL RETURN ADDRESS
CHRINT .EQU 02 ;s TEMPORARY WORKAREA — WORD
CHRCHR LEQU 04 i TEMPORARY WORKAREA — WORD

i ROUTINE TO INITIALIZE SSC AND BUFFER GQUEUE:

START

OLDIRG
IRGQADR

98

.FROC INITSSC sROUTINE TO INITIALIZE SSC HANDLING
.DEF OLDIRQ

.REF GQFWDFTR,GBKWPTR,GBYTE1, IRGHANDL

SEI $DISABLE INTERRUFPTS UNTIL DONE

POP RTADDR $POFP RETURN ADDRESS FROM STACK

LDA #38 $LOAD CONTROL REGISTER

STA SSCNTL

LDA #29 iLOAD COMMAND REGISTER

STA S8CMD

LDA #00 $SET BACKWARD POINTER

8TA EBKWPTR § SAVE BACKWARD FOINTER

LDA #01 $SET FOWARD POINTER

STA QFWDPTR $ SAVE FORWARD POINTER

LDA LANGCARD+0OB i REMOVE WRITE LANG-CARD WRITE-PROTECT
LDA LANGCARD+ORB 3 THIS INSTRUCTION HAS TO BE DONE TWICE
LDA IRQVECTR $GET LSB OF CURRENT IRG VECTOR

STA OLDIRG §SAVE FOR INTERRUPT HANDLER

L.DA IRGVECTR+15 GET MSB OF CURENT IRQ VECTOR

STA OLDIRG+1 $SAVE FOR INTERRUFT HANDLER

LDA IRGADR $GET MSB OF IRQ ROUTINE ADDRESS

STA IRQVECTR $STORE IN MSB OF IRG VECTOR

LDA IREADR+1 FGET LSB OF IRG ROUTINE ADDRESS

STA IRGVECTR+13:STORE IN LSEB OF IR® VECTOR

L.DA LANGCARD+83 WRITE PROTECT THE LANG—-CARD AGAIN

CLI $ENABLE INTERRUPTS AGAIN

PUSH RTADDR $PUSH RETURN ADDRESS BACK ONTO STACK
RTS sRETURN TO CALLING PROGRAM

- WORD 0000 §SAVE AREA FOR ORIGINAL MONITOR IR® VECTOR
-WORD IRGHANDL 3ADDRESS OF INTERRUPT ROUTINE, 16-BIT

§ PROCEDURE TO DISABLE SSC INTERRUPTS AND
i RESTORE ORIGINAL IRG/BRE VECTOR

START

. PROC
«.REF

SEI

LDA
8STA

RESETIRG CLEANUP ROUTINE FOR END-OF-PROCESSING
OLDIRG

s DISABLE INTERRUPTS

#29 sLOAD COMMAND WORD
SSCMD

99

LDA LANGCARD+OB ;REMOVE WRITE LANG-CARD WRITE-FROTECT
LDA LANGCARD+0OB § INSTRUCTION HAS TO BE DONE TWICE

LDA OLDIR® $GET LSB OF ORIGINAL IRG ADDRESS
8TA IRQVECTR $STORE IN IRG VECTOR
LDA OLDIR@+1 $GET MSB OF ORIGINAL IRG ADDRESS

STA IRQVECTR+1 STORE IN IRQ VECTOR
LDA LANGCARD+8 FWRITE FROTECT THE LANGUAGE-CARD AGAIN

RTS $RETURN TO CALLING PROGRAM

$FROCEDURE TO SEND CHARACTER
.FROC SENDCHAR, 1 jFPROCEDURE TO TRANSMIT DATA

POP RTADDR i SAVE PASCAL. RET ADDR
POF CHRINT i SAVE PARAMMETER
NOTCLEAR LDA STATUS i CHECK STATUS BIT
AND #10
BEG NOTCLEAR
TRANSMIT LDA CHRINT $CLEAR FOR TRANSMIT
AND #7F $STRIP PARITY
STA TDREG § TRANSMIT
CLI $ENABLE INTERRUPT
RESTORE PUSH RTADDR $PUSH RETURN ADDRESS
RTS SEXIT SUBROUTINE

+ PROCEDURE TO RETURN THE NEXT "CHAR" FROM THE QUEUE:

.PROC GETCHAR,2 3PROCEDURE TO EXTRACT CHAR
.DEF IRGHANDL,QBYTEL, QBKWPTR, CIFWDPTR
.REF OLDIR@

START FOP RTADDR $ SAVE PASCAL RETURN ADDRESS
POP CHRINT $ SAVE ADDRESS OF INTEGER PARAMETER
POP CHRCHR $ SAVE ADDRESS OF CHAR FPARAMETER
LDY #01
LDA #00 s CLEAR ACCUMULATOR

8TA @CHRINT,Y ;CLEAR HIGH BYTE
8TA BCHRCHR,Y $CLEAR HIGH BYTE
DEY

LDX GBKWFTR sGET BACKWARD POINTER FOR BUFFER
INX sPOINT TO NEXT WORD IN BUFFER
CFX GFWDPTR sCHECE. FOR EMPTY GUEUE

BNE GETBYTE1 §BRANCH IF NOT EMPTY

UNDFFLOW LDA #00
STA BCHRINT,Y
STA BCHRCHR, Y
BEQ@ EXITGET

GETBYTE1l LDA GBYTEL,X
STA @CHRINT,Y
STA @CHRCHR, Y
STX OBKWPTR

EXITGET FUSH RTADDR
RTS

@BYTE1 .BLOCK 256

GFWDPTR .BYTE 0O
GBEWPTR .BYTE 00

mz cam am

OVFLCHAR .EQU
IRGHANDL STA

PLA
PHA
AND
BEQR

NOTSSC LDA
JMP

NOTBRE LDA
BFL
TXA
FPHA

LDX
CPX
BNE

OVERRUN LDA
DEX
STA
BNE

SAVEDATA LDA

IF

SAVEACC

#10
NOTBRE

SAVEACC
BOLDIRG

STATUS
NOTSSC

BFWDFTR
@BEKWPTR
SAVEDATA
#0OVFL.CHAR

@BYTEL, X
EXITIRG

RDREG

100

$ALWAYS BRANCH (TO EXIT)

$BET CHARACTER FROM BUFFER
$SAVE VALUE FROM BUFFER
$SAVE ASCII FROM BUFFER

i PUSH FASCAL RETURN ADDRESS ON STACK
SRETURN TO CALLING PROGRAM

SOUEUE AREA FOR 8 BITS OF INPUT DATA
$POINTER TO NEXT EMPTY LOCATION IN QUEUE
sFOINTER TO ITEM B4 NEXT VALUE IN GQUEUE

INTERRUFT~-DRIVEN ROUTINE TO BUFFER DATA FROM THE S8SC.
NOT CODED FOR RE-ENTRANCY.
INTERRUPTS ARE RE-ENABLED BY THE RTI INSTRUCTION.

$USE AS OVERFLOW INDICATOR
$ SAVE ACCUMULATOR

$GET STATUS REG FROM STACK

$RESTORE ONTO STACK

s TEST "B" BIT

$SKIF NEXT SECTION IF TRUE INTERRUPT

$RESTORE ACCUMULATOR CONTENTS
§BRANCH TO MONITOR™S IRG/BRE ROUTINE

s WAS IRG CAUSED BY S8S8C?
$IF NOT, BRANCH TO MONITOR"S IRQ/BRE
$SAVE INDEX-X ON STACK

sSET UP QUEUE POINTER IN INDEX-X
s CHECK. FOR FULL GQUEUE
$ BRANCH IF QUEUE I8 OK

;LOAD QUEUE OVERFLOW CHARACTER
sFOINT AT PREVIOUS GQUEUE ELEMENTS
$SAVE IN PLACE OF LAST IN QUEUE
f§ALWAYS BRANCH

iGET 8-BIT DATA

EXITIRQ®

SAVEACC

AND #7F

STA GBYTE1, X
AND #75

BER EXITIRG
INX

8TX GFWDPTR
PLA

TAX

LDA SAVEACC
RTI

.BYTE 00

«END

101

$STRIP FARITY

$SAVE THEM AS GBYTEL
$STRIP LINEFEEDS

$NO SAVE

s ADVANCE QUEUE FOINTER
$SAVE NEW FORWARD POINTER FOR QUEUE

iRESTORE INDEX~X FROM STACK

$RESTORE ACCUMULATOR
$RETURN TO INTERRUPTED ROUTINE

$ACCUMULATOR SAVE AREA

102

X3 3 26 I I W A I I I I I I I I I KK I I I I K I I W I I W NN
*

*
* FILE : FTAPP2:FTCOPY.TEXT *
* ¥*

I3 3 I I I I I I H I I I I I I I I I A I I K I A I K K I A I K

103

SEGMENT FPROCEDURE TEXTCOPY3:

€2 T2 sl s eIl aadtilllly
#*PROCEDURE TO COPY TEXT FILES IN VSPC %
*ONTO THE APFLE DISK DRIVES. *
W I I NI I I I NI IEIE I NN)

CONST BUFFLIMT = 250003 (* MAX SIZE OF VSPC CHAR BUFFER%)

VAR ONEFILE : BOOLEANS
BUFFSIZE : INTEGERS

FILEL : INTEGERS
CHARBUFF tPACKED ARRAY [1..BUFFLIMTI1 OF CHAR:
TEXTFILE P TEXTS

BLKS, FILENAME, VSPCNAME :(STRINGL201:

PROCEDURE DUMP (NAME : STRING:
START, STOP : INTEGER):

VAR
I, IOERR : INTEGER:
SUFFIX : STRINGL11:
TEXTNAME @ STRINGL40OI1;
BEGIN
REFEAT
WRITE(® RECEIVING FILE : 7)3§

IF ONEFILE THEN
SUFFIX = *°
ELSE
IF O=LENGTH(NAME) THEN
SUFFIX 1="1"
ELSE
SUFFIX = "27%
IF O=LENGTH(NAME) THEN
BEGIN
READLN (FILENAME) 3
IF O=LENGTH(FILENAME) THEN
EXIT(FROCESSCOMMAND) §
I 1= POSC .TEXT® ,FILENAME)
IF I<>0 THEN
FILENAME := COPY(FILENAME,1,I-1)
END
ELSE
BEGIN
WRITELN(NAME,SUFFIX, . TEXT?)3:
FILENAME := NAME
END;
TEXTNAME = CONCAT(FILENAME,SUFFIX, .TEXTL",BLKS,"1")3;
(*E]—%)

104

REWRITE(TEXTFILE, TEXTNAME) §
IOERR := IORESULT:
(#EI+%)
WRITELNS
IF IOERR< >0 THEN
BEGIN
WRITE(CHR (7)) 5
WRITE(® Y3
IF IOERR=8 THEN
WRITELN(*NO ROOM ON DISK?)
EL.SE
WRITELN(*I/0 ERROR #°,I0ERR) i
WRITELN
END;
UNTIL IOERR=0j
FOR I := START TO STOF DO
WRITE (TEXTFILE, CHARBUFFCI1);:
WRITELN (TEXTFILE) S
CLOSE (TEXTFILE, LOCE)
ENDs (% DUMP %)

PROCEDURE COPYWS13
3636 96 96 26 96 3636 36 33 296 3 36 36 36 36 3 3 3 36 36 I 26 36 36 36 I 33 9936 36 3 6 %
THIS ROUTINE COPIES A BLOCK OF DATA *
FROM A USER SFECIFIED VSPC WORKSFACE#*
OR THE OUTPUT FROM A FORTRAN FROGRAM#
AND STORES IT ON A DISKETTE. THE #
BLOCK SIZE IS DEFENDENT UFON THE %
"BUFFLIMT" CONSTANT DECLARED AT THE *
BEGINNING OF THIS PROGRAM. *
363696 3 36 363 96 69 I 3636 3 I I6 9 I 36 I I 963 3 I I I N)
VAR MESSAGE :STRING:

IOERR, I ! INTEGERS

* k k K k X Xk

BEGIN
WRITELN(’== PROCEDURE TO COPY IBM FILES ==")i
WRITELNS
WRITELN(== SELECT 1 OF THE FOLLOWING OFTIONS ==")3

i= MEMAVAIL*23

WRITELNCT (MEMORY LEFT ¢ *,I:3," BYTES) *)}
WRITELNS
WRITELNC® . = COPY VSFC FILE CONTENTS®)j;

i

WRITELNC® 2. - RUN A VS FORTRAN FROGRAM®)
WRITELNS
WRITE(== ENTER 1 OR 2 I ")3§
REFPEAT

READ (KEYBOARD, KBCHR)
UNTIL KBCHR IN C[C"1°,"2713%
WRITELN (KBCHR) 3
WRITELNS

105

IF KBCHR = *1° THEN
BEGIN
WRITELN("== ENTER THE VSFC FILE NAME ==")j
WRITE (== FILE NAME ==> ")}
READL.N (VSPCNAME) §
IF O=LENGTH (VSFPCNAME) THEN
EXIT (PROCESSCOMMAND) §
FAGE (QUTFUT) 3
XMITVSPC (" TAPE") §
XMITVSFC (™ ")3
XMITVSPC(CONCAT ("LOAD * ,VSPCNAME)) §
MESSAGE: =" LIST NOLINE °

END
ELSE
BEGIN
WRITELN("== ENTER THE FORTRAN FROGRAM®"S NAME®) i
WRITE (*== PROGRAM NAME ==X ")}

READLN (VSFCNAME) ;
IF O=LENGTH(VSFCNAME) THEN
EXIT (FROCESSCOMMAND) ;
FAGE (OUTPUT) 5
XMITVSPC (" TAFE™) §
XMITVSPC(® ") 3§
MESSAGE := CONCAT("RUN *,VSPCNAME, ")
END3;
MESSAGELLENGTH(MESSAGE) 1 = CHR(13)3;
I:=0;
REFEAT
t=I+13
SCANKEYBOARD 3
SCANACIA;
WRITE (MESSAGELI1) §
SENDACIA (ORD (MESSAGELI1))
UNTIL MESSAGELI] = CHR(13)
END: (% COPYWS1 %)

FROCEDURE COPYWSZ2;
VAR LASTCR :BOOLEAN;
I,L : INTEGER;
BEGIN
t=13
SCANACIAS
WHILE (REPLYVAL <> DC1) AND (I <= BUFFLIMT) DO
BEGIN
CHARBUFFLI1 := CREPLYVAL;
IF REFLYVAL <> O THEN
I :=1 + 1%
SCANKEYBOARD
SCANACIA

106

END3
FILE1l = 130003
t=130003
IF (IX13000) THEN
REPEAT

L i=L + 13
IF ORD(CHARBUFFCL1)=13 THEN
FILEL = L3
UNTIL (FILE1=L) OR (L=I1)3

IF I > BUFFLIMT THEN
BEGIN
WRITELN(® *x% BUFFER FULL *%%7)g§
WRITE(CHR (7))}
LASTCR = FALSE;
I := BUFFLIMTS
REFEAT
I 't=1 - 1%
IF (ORD (CHARBUFFLI1)=13) THEN
LASTCR = TRUE:
UNTIL LASTCRS
END3
BUFFSIZE = I - 13}
PAGE (OUTPUT)
END: (% COPYWS2 *)

FROCEDURE COPYWS3Z;
VAR I1, I2 : INTEGERS

BEGIN
IF BUFFSIZE <= 16000 THEN
BEGIN
I1 = 2#ROUND(1.S+BUFFSIZE/1024);
ONEFILE := TRUE
END
ELSE
BEGIN
I1 = 2#ROUND (1.S+FILE1/1024)3%
I2 1= 2%#ROUND (1.5+(BUFFSIZE~FILE1-1)/1024)}
ONEFILE := FALSE
END3

GOTOXY (10,1)SWRITELN(* == COPY IBM FILES ==’)j§
GOTOXY (0,4); WRITELN(1. IBM --> MEMORY®)3;
GOTOXY (31,4);
WRITELN(*ASCII™)
GOTOXY (S5,6)F WRITELN('SOURCE FILE : °,VSPCNAME)$
GOTOXY (5,10 i WRITELN(BUFFSIZE:S,” CHARACTERS WITHIN BUFFER®)}
GOTOXY (0,13)SWRITELN(*2. MEMORY --> DISK?)j;
IF ONEFILE THEN
BEGIN

107

GOTOXY (S,15) s WRITELN("ESTIMATED BLOCK REGQUIREMENT?,I1:4)3:
WRITELN; STR(I1,BLKS)3
DUMP (**,1,BUFFSIZE)
END
ELSE
BEGIN
GOTOXY (30,13); WRITELN('2 FILES®);
GOTOXY (4,15);WRITELN('-FILE #1 : BLOCK REQUIREMENT®,I1:5);
WRITELNS STR (I1,BLKS);
DUMP (**,1,FILE1);
WRITELN;
WRITELN(® ~FILE #2 : BLOCK REQUIREMENT?,I2:5):
WRITELN; STR (I2,BLKS);
DUMP (FILENAME,FILE1+1,BUFFSIZE)
END
END; (% COPYWS3 %)

BEGIN (*TEXTCOPY#*)
COPYWS13
COFPYWSZ2s
COFYWS3

END; (*TEXTCOPY#*)

108

%33 3 3 I I I I I WK I W I I I K I K I W I W WK I WKW

* *
* FILE @ FTAFPF2:FTCOM. TEXT *
* *

363 2 H 3 I3 W I K I I I I I3 I NI N I I I KWW NI I I KWK

109

(#$5+%) (¥ SWAFPING MODE ON *)
€I I I LTI IL AL IL L LI I L LSS L LSl et L
FROGRAMIFTCOM (OLD NAME & TALK)
WRITTEN: 19-APR-82 BY MARK S LORD
MODIFIED BY
21-JAN-82 BY SEE HEAN QUEK
REMODIFIED
8-AFR-83 RBRY SEE HEAN QUEK
THIS FROGRAM ALLOWS COMMUNICATIONS
BETWEEN THE AFPLE COMFPUTER AND AN
OUTSIDE SOURCE, VIA THE SUPER SERIAL*
INTERFACE CARD IN AFPLE SLOT #2.
INTERFACE CARD -~ 88C
FOUR DIFFERENT MODES OF OPERATION
CAN BE USED AS SELECTED FROM THE
FPROGRAM™S MAIN MENU:

* ¥ %k %k %k %k %k % %

DYUMB TERMINAL MODE:
KEYS: <CTRL™C> RETURNS USER TO
MAIN PROGRAM MENU.
<RIGHTARROW> ACTS AS A
VSPC CHARACTER
KEY.
<“LEFTARROW> SENDS A TAB
CHARACTER TO VSPC.

*k %k %k k %k Xk ¥ % %k %

TIRANSFER TEXT MODE:
<ESC> AND <CTRL™C> KEYS MAY BE
USED TO PREMATURELY
TERMINATE THE TRANSFER.

CYOrPY VSPC FILE
RECEIVES AND STORES FILES ON
DISKETTE. USING IBM FPROTOCAL.

FPYASSFILE TRANSFERING:

THE STANDARD CHARACTER SEGUENCE:
#5: PASS340. TEXT
#5:PASSIS0. TEXT
#5: PASSI70. TEXT

THEN THE AFPPROPRIATE ROOTNAME

WOULD BE: #5:PASS.TEXT

THIS IS FOLLOWED BY A

REQUEST FOR THE 2ND ROOTSUFFIX

WHICH FOLLOWING THE ABOVE EXAMPLE*
#5:MIVI40. TEXT *
#5IMIVIESO. TEXT *
#5:IMIVIT70.TEXT *

%k %k ok %k %k ok k &k k %k %k %k %k %k k %k %k %k %k ok ok ok ok %k k k %k %k %k %k %k ¥k k %k *k *k k %k k% k k ¥k k Xk *k ¥k ¥
¥ sk ok ok %k ok k ok k %k %k %k k sk k k Xk %k %k ¥k %X ¥

110

WHERE THESE ARE THE MAJORITY *
VOTED DATA FILES FOR THE ABOVE *
PASSES, THEN THE APPROPRIATE *
*
*

* k k %k

2ND ROOTSUFFIX WOULD BE : MJV
963636 3 I I I KT I I3 I I 66606

PROGRAM FTCOM:

USES APPLESTUFF, PEEKPOKE]

CONST ESCAFE 273 (¥ ASCII CODE FOR <ESC> CHAR.

)

LINEFEED = 105 (% ASCII CODE FOR <LF> CHAR.
LEFTARROW = 8: (% CODE FOR SPECIAL APPLE KEY
RIGHTARROW = 213 (% CODE FOR SPECIAL APPLE KEY
CTRL.C = 35 (* ASCII CODE FOR CONTROL™C
DC1 = 173 (% ASCII CODE FOR DC1 CHAR.

TYPE LONGSTRING = STRINGL25513
VAR KBCHR : CHAR;
KBVAL ,REFPLYVAL @ INTEGERS
CREPLYVAL :CHAR;
GUITREQUESTED :BOOLEANS
I,J I INTEGERS

PROCEDURE INITSSC: EXTERNAL;j
PROCEDURE RESETIRG:; EXTERNALS
PROCEDURE GETCHAR (VAR CHRCHR:CHAR:
VAR CHRINT: INTEGER) § EXTERNALS
FROCEDURE SENDCHAR (OUTVALUE: INTEGER)§ EXTERNAL;:

(¥ FORWARD BLOCK *)
PROCEDURE SENDACIA (QUTVALUE: INTEGER) § FORWARDS

FROCEDURE SCANACIAS FORWARDS$
PROCEDURE SCANKEYBOARDS FORWARD§
FROCEDURE PROCESSCOMMANDS FORWARDS

PROCEDURE XMITVSPC(MESSAGE:LONGSTRING) s FORWARD:

SEGMENT FROCEDURE DUMBTERMINALS
BT T T I I T T T I T 36 T3 33 33 00 2
* THIS ROUTINE ALLOWS DIRECT USER *
* COMMUNICATIONS WITH A REMOTE DEVICE =%
* BY CAUSING THE APFLE TO BEHAVE AS A *
* NON-INTELLIGENT ASYNC ASCII TERMINAL*
F 22626 I 6T 6T 6NN)
BEGIN (% DUMBTERMINAL)

WRITELN (== DUMB TERMINAL MODE ==%)3

WRITELNS

WRITELN(®== HIT <CTRL™C> TO QUIT ==7)3}

WRITELN(CHR (7))}

KBVAL: =03

#*)
*)
*)
*)
*)
*)

111

REPEAT
SCANACIAS
SCANKEYBOARD
UNTIL KBVAL=CTRLCS
END§ (% DUMBTERMINAL *)

(6] #SIFTCOPY.TEXT *)

SEGMENT FROCEDURE PASSTRANSFERS
(3 36 96 36 9 J696 36 3 I 6 I I 36 3 W 36 3 I I I 363 I I I I I I K XX
THIS ROUTINE SERVES AS THE DRIVER *
FOR THE SENDPASS ROUTINE. IT PROMPTS#*
THE USER FOR THE PASS FILE RANGES *
AND THEN LOOPS, CALLING SENDFPASS TO *
TRANSFER INDIVIDUAL PASS FILES. OPEN#®
ERRORS ARE LOGGED ON THE SCREEN FOR *
THE USER TO OBSERVE AS THE PROGRAM %
* CONTINUES WITH THE NEXT FILE IN SEQ.*
LR LT AL I LTI LI LSS T AL LT ST)
TYFE DATALINE FPACKED ARRAYL1..2&61 OF CHAR;

* Kk k ¥k k k *k

TIMESTAMF = PFPACKED ARRAYL1l..201 OF CHAR:
MESSLINE = PACKED ARRAY[1..321 OF CHAR;:
FARARECORD = RECORD

FASSTIME: TIMESTAMF;

FPASSLINE: ARRAYL1..23]1 OF DATALINE

END3j

VAR ROOTNAME, PASSNAME, NUMSTRING, VSPCNAME , OUTSTRING: STRING:
MIVNAME , MIVBUFFIX:STRINGS

PASSFARA : PARARECORD;

MJIVPASS tMESSLINE;

MIVONLY : BOOLEAN: (% PASS TO IBM ONLY MJV FILES %)
PASSFILE tFILE OF PARARECORD;

MIVFILE tFILE OF MESSLINE;S

ANSWER : CHAR;

DOTFOS, IOERR, PASSNUM, LASTNUM, INCREMENT: INTEGER
I0ERR2, SEMICOLON: INTEGER}

PROCEDURE SHORTRANSFERS
BEGIN
WRITELN;WRITELN(® TRANSFER ONLY MAJORITY VOTED DATA 77)3
REPEAT
WRITE(== ")3j
READLN (ANSWER) 3§
IF NOT (ANSWER IN [°Y®, N"1) THEN
WRITELNC('Y OR N. RE-ENTER *)3j
UNTIL ANSWER IN L[°Y?,"N"1;
IF ANSWER="Y" THEN

112

MJIJVONLY = TRUE
ELSE
MJVONLY := FALSE}
END3

FROCEDURE SENDPASS:

(36 36 36 36 36 36 3 3 3 36 3 36 3 3 36 36 3 36 3 I 36 36 3 3 W 3696 3 9 36 3 36 3 3 X ¥
THIS ROUTINE HANDLES THE ACTUAL *
TRANSFER OF A PRE-OPENED PASS FILE *
TO V8SPC. A VSPC WORKSPACE IS NAMED *
AND SAVED FOR THE PASS, THE NAME *
USED BEING THE SAME AS THAT OF THE =
FPASS FILE, LESS DEVICE NAME AND *
EXTENSION OF COURSE. *
3 3B I I T2 I 36 I I 36 396 36 6 I I I6 36 3 I 6 I I 36 6 9636 36 36 3606 36 36
VAR DOTPOS, LINENUM: INTEGERS

* k& %k %k %k k %

)

BEGIN (% SENDPASS *)
XMITVSPC (" CLEAR™)
VEPCNAME : =FPASSNAME$
DELETE(VSFCNAME, 1,FOS (" 27, VEPCNAME)) §
DOTPOS:=POS (" .7 , VEFCNAME)
DELETE (VSFCNAME, DOTPOS, (1+LENGTH (VSFCNAME) ~DOTFOS)) §
XMITVSPC (CONCAT (" NAME ° , VSPCNAME)) §
XMITVGPCC(TINPUT 1 1 %)%

REFEAT
BEGIN
MIVPASS: =MIVFILE™}
OUTSTRING =" *3

MOVELEFT (MJVPASS, OUTSTRINGL11,31) 3§
XMITVSPC (OUTSTRING) §
GET (MJVFILE)
END
UNTIL EOF (MJVFILE):
(#* AVOIDED IF MJV TRANSFERED ONLY %)
IF NOT MJVONLY THEN
BEGIN
REFEAT
WITH PASSFARA DO
BEGIN
PASSPARAL =PASSFILE";
OUTSTRING: =" *3
MOVELEFT (PASSTIMEL11,0UTSTRINGL113,19) 3
XMITVSPC(OUTSTRING) 3

OQUTSTRING: =" i
FOR LINENUM:I=1 TO 25 DO
BEGIN
MOVELEFT (PASSLINECLINENUMI, OUTSTRINGL11,25) 3
XMITVSFC(DUTSTRING)

END3

113

XMITVSPC (" TAPE™) §
XMITVSPC (" ") 3
XMITVSPC ("ENTER DATA®) 3§
XMITVSPC (™ ") 3§
REFEAT
SCANACIA;
SCANKEYBOARD
PASSNAME : =ROOTNAME
MJVNAME := ROOTNAME;
STR(PASSNUM, NUMSTRING) §

SEMICOLON :=POS(" 1" sMIVNAME) §

DELETE (MJVNAME, (SEMICOLON+1) , (DOTPOS-SEMICOLON~-1)) 3§

INSERT (CONCAT (MIJVSUFFIX,NUMSTRING) , MIVNAME,FOS (" . " MJVNAME)) ;

INSERT (NUMSTRING, FPASSNAME, DOTPOS) §
(x$]~%) RESET (FPASSFILE,FASSNAME) §
I0ERR: =I0RESULTS

RESET (MIJVFILE,MJVNAME) § (*$I1+x%)
IOERR2:=I0RESULTS

WRITELNS
WRITELN(PASSNAME, ™ AND/OR ° ,MJVNAME) §
WRITELNS
IF (I0ERR=0Q) AND (IOERRZ=0) THEN
BEGIN
WRITELN(== NOW BEING SENT ==7)3}
SENDPASS:
CLOSE (PASSFILE)
CLOSE (MJVFILE)
END
ELSE

IF (IOERR=10) OR (IOERRZ=10) THEN
WRITELN(*== NOT FOUND ==%)
ELSE
BEGIN

WRITELN(CHR(7) , PASSNAME, > OPEN ERR#", IOERR,’
WRITELN(CHR(7) ,MJVNAME, * OPEN ERR#’, IOERRZ2,?

ENDs§
PASSNUM: =PASSNUM+INCREMENT
UNTIL PASSNUM>LASTNUMS
END: (x PASSTRANSFER *)

SEGMENT PROCEDURE TEXTTRANSFER:

(36363636 36 363 3 363636 3636 3630 36 3636 36 30 3 3 0 3 30 3 36 3 3 30 36 2030 3 4
* THIS ROUTINE HANDLES TRANSFERING OF *
* NORMAL TEXT FILES TO VSPC. THE USER %
* IS FROMPTED FOR A FILE SPECIFICATION®

o
(]

“

114

GET (PASSFILE)

END
UNTIL EOF (PASSFILE):
END3
XMITVSFC (™")3

XMITVSPC (CONCAT (" SAVE * , VEFCNAME)) §
CLOSE (PASSFILE) ;
CLLOSE (MJVFILE) &

END: (% SENDFASS *)

BEGIN (¥ FASSTRANSFER %)
WRITELN (" == PASS FILE TRANSFER PROCEDURE ==7)}
WRITELNS
WRITELN(?== ENTER ROOT-NAME (DEVISUFFIX.EXT) ==")3§
(¥E1—%)
REPEAT
REFEAT
WRITE ("== ENTER ==> ")j§
READLN (ROOTNAME) §
IF LENGTH (ROOTNAME) =0 THEN
EXIT(PASSTRANSFER) ;
DOTFOS: =P0OS (. " , ROOTNAME)
UNTIL NOT(DOTPOS IN [0, 1,LENGTH(ROOTNAME) 1)3
RESET (PASSF ILE,ROOTNAME) §
IOERR:=I0RESULTS
CLOSE (FASSFILE)
UNTIL (IOERR<>7)3% (% WAIT FOR VALID FILE SPEC %)
WRITELNS
WRITELN(*== ENTER MAJORITY VOTED FILE"*S PREFIX == ")}
WRITE ("== ENTER ==} ")3;
READLN (MJVSUFFIX) 3§
WRITELN (== ENTER FASS NUMBER RANGE ==7)3}
FASSNUM: =03
REFEAT
WRITE ("== ENTER FIRST NUMBER ==> ")j
READLN (FASSNUM)
UNTIL (IORESULT=0) AND (PASSNUM>»=0)}
LASTNUM: =03

REFEAT
WRITE("== ENTER LAST NUMBER ===} ®)3j
READLN (LASTNUM)

UNTIL (IORESULT=0) AND (LASTNUM>=0)3;
INCREMENT: =03

REFEAT
WRITE(*== ENTER INCREMENT =====3 *)j
READLN (INCREMENT)
UNTIL (IORESULT=0) AND (INCREMENT>O)}
SHORTRANSFERS

(X I1+%)

115

* IN WHICH THE ".TEXT" IS OFPTIONAL, *
* AND THEN PROCEEDS TO TRANSFER THE *
* FILE TO A USER-SPECIFIED VSPC WS. *
LR e 2 e s IR 22222222 2222222222222 T LY
VAR TEXTNAME, VSPCNAME: STRING:
TEXTLINE: LONGSTRING:
I0ERR: INTEGERS

TEXTFILE: TEXTS
BEGIN (% TEXTTRANSFER #*)
WRITELN(== PROCEDURE TO TRANSFER TEXT FILES ==%)3}
WRITELN:
WRITELN(== ENTER NAME OF FILE ==")3§
REPEAT
WRITE(== FILE NAME == ")j}

READLN(TEXTNAME) 3
IF LENGTH(TEXTNAME) =0 THEN
EXIT(TEXTTRANSFER) 3
(BT —%)
RESET(TEXTFILE, TEXTNAME) §
IOERR: =I0RESULT3:
IF IOERR=10 THEN
BEGIN
INSERT(® . TEXT® , TEXTNAME, (1+LENGTH(TEXTNAME)))
RESET(TEXTFILE, TEXTNAME) ;
IOERR: =IDRESULT
ENDs
(%$I+%)
IF I0ERR< >0 THEN
BEGIN
IF IOERR=10 THEN
WRITELN('FILE NOT FOUND - RE-ENTER®)
ELSE
WRITELN("OPEN ERROR #°, IOERR," - RE-ENTER")

END
UNTIL IOERR=03%
WRITELNS
WRITELN("== ENTER NAME FOR VSPC WORKSFACE ==’)3
WRITE ("== WORKSPACE NAME ==> ")}

READLN (VSPCNAME) 5
IF O=LENGTH(VSPCNAME) THEN
BEGIN
CLOSE(TEXTFILE) ;
EXIT(TEXTTRANSFER)
END3
XMITVSFC (" TAFE™) 3
XMITVSPC (™")3
XMITVSFC (°CLEAR?) §
XMITVSPC (CONCAT (" NAME * , VSPCNAME)) 3
XMITVSPC (" INPUT 1 17)3
IF NOT EOF(TEXTFILE) THEN

116

REFEAT
READLN(TEXTFILE, TEXTLINE):
IF LENGTH(TEXTLINE)=0 THEN
TEXTLINE:=" 73§
XMITVSPC(TEXTLINE)
UNTIL EOF(TEXTFILE)S
XMITVSFC(™ ") 3§
XMITVSPC (CONCAT (* SAVE * ,VSFPCNAME)) §
CLOSE (TEXTFILE)
ENDS (% TEXTTRANSFER #*)

PROCEDURE SCANACIAS

CH63636 3636 36 36 96 36 36 36 36 36 36 36 96 36 36 96 36 36 36 36 36 36 36 3 36 36 36 1 36 36 26 6 3 4 3
* THIS ROUTINE SCANS THE INTERNAL *
* BUFFER FOR INCOMING DATA. IF PRESENT*
* IT IS DISPLAYED ON THE APPLE MONITOR%
* AND THE ASCII NUMERIC VALUE IS *
* FPLACED IN "REFLYVAL". *
WK KRBT J BT I I I I T I 323 I T3 N)

BEGIN (* SCANACIA *)
GETCHAR (CREPLYVAL , REPLYVAL) 3§
WRITE(CREPLYVAL)

END:; (% SCANACIA *)

PROCEDURE SENDACIAf (#0UTVALUE: INTEGER#*)
(96 96 96 36 36 36 3 3 36 36 96 36 I I 3 I 36 36 3 3 3 I I3 I I I I I I I W I WKW
THIS ROUTINE WILL TRANSMIT A BYTE *
OUT THROUGH THE ACIA. IT WAITS *
UNTIL THE "READY" FLAG OF THE ACIA *
I8 SET, AND THEN TRANSFERS THE DATA *
BYTE SPECIFIED BY ITS ASCII NUMERIC =*
VALUE IN "OQUTVALUE". *
F 363 I I3 I I I I I I I I I I I I W I I W I A K KR KN
BEGIN (% SENDACIA %)

SENDCHAR (QOUTVALUE)
END; (¥ SENDACIA *)

* %k Kk k k X

)

FROCEDURE SCANKEYBOARDS
T2 I T LILE L L LT IL LTI SIS L L L L L L L3
* THIS ROUTINE CHECKES TO SEE IF ANY *
* MORE KEYBOARD INPUT HAS BEEN ENTERED*
* BY THE USER. IF 80, IT IS PROCESSED*
* AS DESCRIBED AT THE TOFP OF THIS *
* PROGRAM IN THE D)DUMB TERMINAL CMD. *
LZ TR LT ST LS SIS TSI AL AL S L L ST S LT D
BEGIN (% SCANKEYBOARD #*)
IF KEYPRESS THEN
BEGIN
READ (KEYBOARD, KBCHR) §

117

IF EOLN(KEYBOARD) THEN
KBCHR:=CHR (13) 3
KBVAL.: =0RD (KBCHR) §
IF KBVAL IN [ESCAFE,CTRLC,LEFTARROW, RIGHTARROW1 THEN
CASE KBVAL OF
ESCAPE:

BEGIN

(¥ NOT AVAILABLE *)

END3

CTRLC:

BEGIN
WRITELN(CHR(7) , " <CTRL™C>")3
EXIT(PROCESSCOMMAND)

END3

LEFTARROW:

BEGIN
WRITE(KBCHR,®> *,KBCHR);
SENDACIA (KBVAL) §
SENDACIA (LINEFEED)

END3

RIGHTARROW:

BEGIN
KBCHR: =CHR (9) ;

WRITE (KBCHR) §

SENDACIA(F)
END3
END (% CASE #*)
ELSE

BEGIN
WRITE (KBCHR) §
SENDACIA (KBVAL)

END

END3;

END: (¥ SCANKEYBOARD %)

FROCEDURE XMITVSPC (#MESSAGE:LONGSTRING*) 3
36 3 3696 36 63 3 269 3 36 2 3 3 I I 9 J6 I I W I 6360 3632 36 K %
THIS ROUTINE USES "SENDACIA" TO *
TRANSMIT A LINE OF CHARACTERS TO *
VEFC. A CARRIAGE-RETURN IS SENT AT *
THE END OF THE LINE, AND ALL CHARS %
SENT ARE ALSO ECHOED ON THE AFPPLE™S #*
MONITOR AS THEY ARE TRANSMITTED. *
Y Yy Y Y I IR TR T R
VAR I:INTEGER:
BEGIN (¥ XMITVSPC *)

MESSAGE: =CONCAT (MESSAGE, > *)3

MESSAGELLENGTH(MESSAGE) 1:=CHR(13) &

I:=03

REFEAT

* k k k ¥ Xk

)

118

I:=1I+13%
SCANKEYBOARDS
SCANACIAS
WRITE(MESSAGELII)§
SENDACIA (ORD (MESSAGELI1)) 3
UNTIL MESSAGELII=CHR(13)3;
REPEAT
SCANKEYEBOARD:
SCANACIA
UNTIL REPLYVAL=DC13
END: (% XMITVSFC *)

PROCEDURE PROCESSCOMMAND:
39636 3696 96 36 3636 96 3636 36 36 3696 36 36 36 36 36 36 9636 336 96 36 36 96 36 6 0 96 36 36 96 3¢
* THIS ROUTINE SERVES AS A COMMON *
INTERFACE BETWEEN THE MAIN FROGRAM %
AND THE COMMAND-PROCESSING PROC®S. =
IT°S PRESENCE IS RERUIRED IN ORDER %
TO ALLOW SCANKEYBOARD TO HAVE A *
COMMON EXIT POINT FOR HANDLING A *
* USER <CTRL"C»> COMMAND. *
3696 36 36 36 36 3 36 3 36 36 33 366336 36 3 6 I 6 6 36 6 6 6 I -1 6 36 36 6
BEGIN (* PROCESSCOMMAND *)
CASE KBCHR OF
AT IAUITREQUESTED: =TRUES
"D iDUMBTERMINAL§
TP IPASSTRANSFERS
TT* i TEXTTRANSFERS
TCTITEXTCORYS
END;: (% CASE %)
END; (% FROCESSCOMMAND #)

* Xk %k *k Xk

)

€T TTTTETTLELLLLLLLLLLLLLLLLLL L L LLLLLLLL
%* THE MAIN ROUTINE (BELOW) HANDLES *
* GENERAL INTIALIZATION AND THE *
%* PROMPTING FOR, AND INPUT OF, USER %
%* COMMAND OPTIONS FROM ITS MAIN MENU. *
LTI TTIETIL LTSI SIS LTS L L E L L L L D)
BEGIN (% FTCOM %)
QUITREQUESTED: =FALSE;
PAGE (OUTPUT) 3
GOTOXY (0, 5)
WRITELN(*APPLE I1 COMMUNICATIONS INTERFACE
WRITELN;
WRITELN(? USING SSC TO VSFC ")
WRITELN;
WRITELN;
WRITELNC? BY®)3;

")

8

WRITELN;
WRITELNC®
WRITELN;
WRITELNS
WRITELN;S
WRITELNS
WRITELNC(®

INITSSC
FOR I :
J =

H
Js
PAGE (OUTPUT) 3
REFEAT
PAGE (OUTPUT) §
WRITELN (" ==
WRITELNS

WRITELN(® ==
WRITELNS

COMMAND MOD

119

SEE HEAN QUEK *)j

(1983) 7) 3§

1 TO 2000 DO

ma=?

) §

WRITELN(OPTIONS ARE: ")}

WRITELNC? D
WRITELNC(® F
WRITELNC® T
WRITELN(C® c
WRITELNC® @
WRITELNS
WRITE
REPEAT

(P ==

ENTER COMMAND

DUMB TERMINAL MODE?®):

SUPER SERIAL COMMUNICATIONS PROGRAM

TRANSFER SATELLITE PASS FILES®):

TRANSFER ANY TEXT FILE
COPY ANY VSPC FILE
QUIT)3

==

:‘);

WRITE (CHR(7)) 3
READ (KEYBOARD, KBCHR)
UNTIL KBCHR IN [°D’,"P*,?T",°C", Q" 13

PAGE (OUTPUT)

PROCESSCOMMAND 3

WRITELNS
WRITELNS

UNTIL QUITREQUESTED:

RESETIRGS
PAGE (OUTPUT) §
END. (% FTCOM #*)

’);

:‘);

P -
===

