
PROGRAMS SATNAV AND LINK
DESCRIPTIONS AND

USER’S GUIDES

SEE HEAN QUEK

June 1983

TECHNICAL REPORT
NO. 98

PREFACE

In order to make our extensive series of technical reports more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.

PROGRAMS SATNAV AND LINK

DESCRIPTIONS AND USER'S GUIDES

by

SEE HEAN QUEK

Department of Surveying Engineering
University of New Brunswick

P. 0. Box 4400
Fredericton, N.B.

Canada
E3B 5A3

Technical Report 98

June 1983

PREFACE

This technical report contains the second and third contributions in

a series of reports detailing the development of a system for microcomputer

control of a CMA 722B satellite Doppler positioning receiver.

ii

ACKNOWLEDGEMENT

This work would not have been possible without the support of Dr.

D.E. Wells and Dr. R.B. Langley. Improvements to the CMA 722B/Apple II+

operating system were funded by an operating grant held by Dr. Wells from

the Natural Sciences and Engineering Research Council of Canada.

iii

PROGRAM SATNAV

DESCRIPTION AND USER'S GUIDE

iv

ABSTRACT

This supplement describes the changes and improvements to the Digital

Data Recorder program (RECEIVER) developed originally by Mark S. Lord, and

described in Technical Report 88 of the Department of Surveying

Engineering, University of New Brunswick.

These changes have been implemented in a new version of the RECEIVER

program called SATNA V.

SATNAV (version 3. 0) optimizes the storage of the Doppler data on the

diskette and has a realtime majority voting capability for the broadcast

satellite message. The following is a list of the new features available

under SATNAV (version 3.0).

(1) Realtime majority voting of satellite message.

(2) Realtime accumulation of 30-second Doppler counts.

(3) Validation of majority-voted satellite message.

(4) Verification of 30-second Doppler count sufficiency for pass

computation.

(5) Optimization of data storage, i.e., choice of saving only the

majority-voted file instead of the much larger raw data file.

(6) Addition of pass diagnostic messages and improved screen display.

(7) Realtime verification of satellite tracked.

(8) Manual rejection of satellite pass.

A user's guide to SATNAV is in Appendix I.

v

PROGRAM SA TNA V

TABLE OF CONTENTS

Preface
Acknowledgement •
Abstract
Table of Contents

1. Introduction

2.

3.

SATNAV •
2.1 Realtime Majority Voting
2.2 Accumulation of 30-Second Dopplers •
2.3 Validation of Satellite Message •
2. 4 30-Second Doppler Sufficiency Test •
2.5 Data Storage
2.6 Screen Display
2.7 Realtime Identification of Satellite
2.8 Pass Rejection Capability •
2.9 Description of the Majority-Voted File

Conclusions and Recommendations

References

Appendix I -User's Guide •
Appendix II - Components of the CMA 722B/Apple II+ System
Appendix III - SATNAV program listing

PROGRAM LINK

TABLE OF CONTENTS

Abstract
Table of Contents

1. Introduction •

2. LINK
2.1 1200 Baud Communication
2.2 Additional Features •

3. Conclusions and Recommendations

References

Appendix I - User's Guide •
Appendix II - Components of the Apple II+ System
Appendix III - LINK Program Listing

vi

ii
iii

v
vi

2
2
3
3
4
5
6
6
7
7

11

12

13
29
30

78
79

80

81
81
82

83

84

85
94
95

1. INTRODUCTION

In 1982, an economical digital recording system was devised as an

alternative to the punched paper tape for the CMA 7228 Transit satellite

receiver. The system software and hardware specifications are detailed in

Lord [1 982].

Several modifications have been made to both hardware and software

components of the system to improve its utility as an intelligent recording

device. This supplementary report highlights the alterations made to the

program, its implementation, and contains a user's guide to the software

(SATNAV). With the exception of the changes mentioned in this report, the

rest of the operating environment of the system is as described in Lord

[1982] (pp. 28-44).

1

2. SATNAV

SATNAV is the latest version of the RECEIVER program developed

originally by Lord [1982]. The program has been extensively revised and

now contains twice as much code which is partitioned into three source text

files (Appendix III). A description of the features available under SATNAV

(version 3.0) follows.

2. 1 Realtime Majority Voting

The satellite broadcast message consists of a set of fixed parameters

and a set of variable parameters [Stansell, 1978]. The program majority

votes the incoming satellite message in realtime using two 9-character word

arrays. The first two paragraphs of the satellite broadcast message are

stored in these two separate arrays. Majority voting is done on a digit by

digit basis. When the next digit in the third paragraph is received, it is

compared with the corresponding digits in the two previously received

paragraphs. If the number from the first and second paragraphs agree, the

digit from the third data set and subsequent data paragraphs are ignored.

If a disagreement exists, a three-way comparison is made and the odd one

dropped. If they all disagree, the digit from the latest paragraph is

dropped and the process is repeated until two are in agreement.

There are 28 lines in the majority-voted arrays. The variable and

fixed parameters each occupy one half of the array. Hence there exists

space for the variable parameters from the period (tk - 4) minutes to (tk +

22) minutes, with tk being the lock-on time of the satellite pass. As for

the fixed parameters, only the first 14 of the received parameters are

kept. This can be extended to 15 to allow for the detection of the

2

3

satellite message injection during a satellite pass.

The present version of SATNAV accepts only numeric data for majority

voting. Hence the injection flag (three rows of equal signs) is ignored.

This may result in inconsistent majority-voted data on injection passes.

It would be possible to further modify SATNAV to detect and correctly

handle injection passes, but this has not yet been done.

2.2 Accumulation of 30-Second Dopplers

Many Doppler processing programs are based on 30-second Doppler data

rather than on the short 4. 6-second counts that the CMA 722B provides.

SATNAV extracts and stores, in realtime, the long (approximately) 30-second

Doppler counts from the array of 4. 6-second accumulated Doppler counts.

Both 150 MHz and 400 MHz, 30-second Doppler counts are extracted and kept

in a 9-character word array of 32 rows.

2.3 Validation of Satellite Message

In an effort to weed out bad passes due to errors in the received

satellite message, SATNAV has the capability of checking and testing

satellite ephemerides. Prior to writing the pass on the diskette, SATNAV

does the following:

(a) If any of the digits in the 9-character words are undefined, all

the digits are set to zero.

(b) If any of the fixed parameters have been zeroed, a 1 9 1 appears

in the line error code column in the majority-voted file (see

Section 2. 9).

(c) If any of the fixed parameters do not contain an 1 8 1 or a 1 9 1 as

the first digit, an error flag 1 9 1 appears in the line error

4

code column in the majority-voted file.

(d) If all the fixed parameters pass the above data format checks,

the quality of the message is assessed by decoding and testing

for the following:

i) time of satellite perigee (0 ~ tp < 1440);

ii) rate of change of mean anomaly (3 ~ n ~ 4);

iii) argument of perigee at time of perigee (0 ~ w ~ 360).

A 1 1 1 appearing in the line error code indicates a warning and

usually appears when the parameter is zeroed and is not detrimental to the

pass computations. A 19 1 , on the other hand, indicates a fatal error in

the received broadcast message and will appear in the majority-voted file

if the no-reject option for a pass with a bad message is chosen.

Regardless of the option, SATNAV assesses the quality of the majority-voted

message and displays the final verdict in the message area on the screen

(see Appendix I, figure I-2).

2.4 30-Second Doppler Sufficiency Test

The advantage of tallying the number of 30-second Doppler counts

accumulated in a pass is the ability to assess the quality of the resulting

position determinations based on the number of Doppler observations

available. Due to interference, single frequency Doppler counts may

result, leading to seemingly good passes. To remove single frequency

measurements, a criterion is imposed of a maximum difference of 1500

Doppler counts between the 150 MHz and 400 MHz Dopplers. Care has been

taken in implementing this constraint because, if erroneously applied, it

will result in loss of valuable data. A straight difference in the

recorded long Dopplers can result in losses of whole 2-minute paragraphs of

5

data. Hence SATNAV uses the Doppler counts reset every (approximately) 30

seconds, rather than the Dopplers accumulated up to two minutes to

implement this restriction.

All actual two-frequency 30-second Doppler counts with differences

greater than 1500 counts are zeroed. The remaining counts are tallied and

if they do not exceed the selected minimum (program option; default 10),

the pass may be rejected. In either case, if the number of counts falls

below the preset minimum, a warning to that effect appears in the message

area of the screen.

2.5 Data Storage

The raw and majority-voted data are buffered until the end of the

satellite pass and then dumped onto the diskette. SATNAV has the user

selected capability of either dumping the raw and majority-voted data or

only the majority-voted data. Raw and majority-voted data are kept in two

separate files. The composition of the majority-voted files is given in

Section 2. 9. Each majority-voted code file occupies 2 data blocks on a

diskette that has a maximum capacity of 270 blocks.

possible to store about 135 passes per diskette.

Therefore it is

If raw data also is to be stored on the diskette, the nunber of

passes drops dramatically to about 20. The actual nl.lllber varies with the

nl.lllber of paragraphs per pass that was tracked. To enable a longer period

of unattended operation, the boot diskette may be removed, and in its place

a blank PASCAL formatted diskette can be inserted. This diskette will be

used once the primary data diskette is filled. Based on collecting only

the majority-voted data and on an average of 30 good passes per day, the

system may be left unattended for about 9 days before a change of data

6

diskettes is required.

2.6 Screen Display

The original screen display has been modified to accept 9-digit

Doppler counts.

column.

This was made possible by squeezing the program nesting

Currently only 7-digit data are accessed from the CMA 7228. Two zero

digits are appended to the 7 digits to make the Dopplers conform to the

9-digit format. In order to use 9-digit data, the interface to the CMA

7228 must be changed from the present parallel interface (connected to the

CMA 7228 computer interface board) to a serial interface (connected to the

CMA 7228 serial interface board). Within the Apple, the serial interface

should be accessed by an input interrupt driven buffer. For the purposes

of displaying incoming data from the CMA 7228, the digits should be packed

into 4-digit words. This should improve the execution speed of the

program.

2.7 Realtime Identification of Satellite

SATNAV constantly attempts to identify, in realtime, the satellite

number. When it manages to decode a valid satellite number, it displays it

on the screen for possible manual rejection of the pass via the ESC unlock

command sequence (see Appendix I). This facility was developed to allow

for the future use of an alert table to select desired satellites or

passes.

7

2.8 Pass Rejection Capability

The original design of the CMA 7228 does not allow software

controlled rejection of a satellite pass. To have this facility, we have

constructed a feedback board based on the diagrams and description in a

report by Ken Hill [1980], and installed it in the empty slot in the CMA

7228. The end of pass command, used to reject a satellite pass, is issued

by SATNAV through the game I/0 port of the Apple. Wiring diagrams for the

CMA 7228 are as indicated in Lord [1 982] (page 26) • A separate cable

leading from the 48-pin female edge connector to the game I/0 port has been

constructed. Table 2.1 shows the pin connections for this cable.

Game I/0 Connector
on Apple Motherboard

Pin 5
12
13
14
15

to

HP Edge Connector on
CMA 7228 Interface Cable

Pin 22
45
46
47
48

Table 2.1
Pass Rejection Feedback Signal Wiring Connections.

2.9 Description of the Majority-Voted File

The majority-voted file is comprised of the majority-voted matrix,

30-second Dopplers, information codes, and the line error code (see Figure

2-1). It contains a 31 by 4 matrix of numbers, preceded by a line giving

the date and time at lock-on. The first two columns of the matrix contain

the 30-second accumulated Doppler counts at 400 MHz and 150 MHz,

respectively. The first 28 rows of the third column comprise the

majority-voted broadcast satellite message. Of these, the first 14 rows

are the ephemeral parameters spanning (tk - 4) minutes to (tk + 22)

8

minutes; with tk being the lock-on time of the pass. The remaining 14 rows

hold the fixed parameters. The 29th row is, at present, uncoded and can be

used to indicate satellite message injection during the satellite pass, if

so desired. The second to last row (30th from the top) contains a user

defined code describing station, receiver and/or user. The last row of the

third column gives the options used in accumulating the Doppler data. The
'

breakdown of the coding is given in Figure 2-1.

The line error-code vector is the fourth column of the majority-voted

matrix. The 'health' of the data in each row of the matrix is identified

by a corresponding row in the line error-code column. If a '1' appears in

the 4th column, it denotes a zeroed or undefined parameter in the

majority-voted message; a '9' indicates bad or missing fixed parameters or

insufficient Doppler counts. Under the no-reject option, a bad fixed

parameter results in a '9' in the penultimate row of the fourth column. A

'9' in the last row indicates insufficient Doppler counts have been

recorded.

9

Majority-voted matrix

83/02/11-5 16:51:55
081197000 081198300
151452700 151456100
234337300 234343300
307294400 307303000
085282900 085286600
159683000 159689000
248259900 248270200
326995200 327007500
092972200 092974100
174875900 174879600
273238800 273243700
361277200 361282300
104383900 104383300
196419900 196418100
306655000 306649000
404747400 404736600
115330600 115326200
216014400 216005500
335331000 335316400
440383400 440364800
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
[400 MHzJ [150 MHzJ

Continue next page

090010014 0
600130134 0
610250334 0
620350593 0
630410894 0
640451231 0
200451580 0
210372147 0
220342470 0
230282744 0
240202965 0
250103090 0
060013145 0
000000000 1
039300580 0
837537250 0
818388360 0
800199840 0
800047520 0
807449850 0
813016500 0
900005250 0
800131180 0
823901100 0
800301400 0
817200420 (I

809999140 0
802060000 0
000000000 0
111222555 0
511110030 0

[MVBMJ [LECJ

<- [Date and Time stamp]
= begin =
<- [Variable parameter at

lock-on-time]

[Majority-voted broadcast
message <MVBM>. Lines 1
to 14 are the variable
parameters and lines 15
to 28 are the fixed
parameters.]

= end =
<- [User/Stn/Rec ID code]
<- COPCl

10

Counts - Accumulated 30-second 400 MHz and scaled 150 MHz
nine-digit Doppler counts.

[LECJ - Line Error Code column vector with 31 elements.

[OPCJ

Coding: 0 no error detected
1 - non-fatal error <warning>
9 - fatal error in matrix (bad MVBM or

insufficient counts>
Option Code <511110030)
Coding sequence
digits; 1 5

2 1
minimum number of paragraphs
clear Doppler counts when
difference exceeds 1500 counts

3 1 - check for sufficiency of counts
4 1 - reject pass if MVBM fails tests

5,6 10 - minimum counts constituting a
good pass <2-digits)

7 0 - not used
8,9 3.0 - SATNAV version code <2-digits>

<see section I.2.1a to I.2.1d for further
description on options)

3. CONCLUSIONS AND RECOMMENDATIONS

The structure of the SATNAV program under the Apple PASCAL operating

system enables easy tailoring of the program to suit user requirements

where options are lacking. SATNAV and the Apple II+ microcomputer allow an

economical alternative to other methods for controlling and recording data

from the CMA 7228 Transit satellite receiver.

Further improvements, in descending order of importance, along the

lines mentioned below will undoubtedly enhance this system further.

(a) Acquisition of 9-digit data.

(b) Use of alert table to select optimal passes.

(c) Generation of alerts on the Apple.

(d) Computation of satellite fixes on the Apple.

11

12

REFERENCES

Canadian Marconi Company (1975). "Satellite position location/navigation
system CMA722B: Description and operation manual." Publication
No. 722-X-101, Change 4.

Hill, K. (1980). "Computer controlled pass rejection for the Marconi 722
SATNAV receiver." Bedford Institute of Oceanography, August.

Lord, M.S. (1982). "A digital data recorder and transfer device for the
Marconi 722B satellite navigation receiver." Department of
Surveying Engineering Technical Report 88, University of New
Brunswick, Fredericton.

Stansell, T.A. (1978). "The TRANSIT navigation satellite system."
Magnavox Government and Industrial Electronics Co., R-5933/
October.

13

APPENDIX I

Program SATNAV

Author S.H. Quek

Language PASCAL

Compiler APPLE PASCAL (1.1)

Type Interactive

Purpose Acquisition and Storage of Satellite

Doppler Data from the CMA722B Satellite

Position/Navigation Receiver

Date May 1983

14

SATNAV - User•s Guide

The following describes the start-up,or "booting",procedure

for the execution of the SATNAV program.

1. Before turning on the power slide the diskette named

TRACK into disk drive 1 <as identified by the label on

the front of the drive> and a Pascal-formatted blank

diskette into the other drive.

2. Power on the Apple II+.

3. The screen should display the current time, i.e.

year/month/day hour/min/second. This should be in

Universal Time <UT>. A request to type "I" sometimes

appears.

4. If system fails to boot, try swapping the diskettes in

the disk drives. If problem persist, contact author.

5. If booting is successful the system is now in the APPLE

PASCAL Command Mode. To enter the Execution Mode, type

•x•~. The system then asks for the name of the file

<program> you wish to execute.

6. Type •eo• to execute the front program. Disk drive 1 will

whirr a bit and a menu of available programs will be

displayed.

7. Type "1" to access the SATNAV program <Figure I-1 will

appear on the screen>.

~
<Note Type •x• means hitting the X key on the

keyboard without the quotes>

15

SATNAV - User's Guide

Welcoming message to SATNAV

II

-=CANTJ=-

* SATNAV *
* * * PROGRAM *

.•••••.••.•.•••.•. !CMA-722!

AUTHORS
=======
<ORIGINAL>
<REVISION>

VERSION

MARK LORD < 1981)
SEE HEAN QUEK <1983)

MAY 1983 (3.0>

16

SATNAV - User's Guide

Alternatively, one may directly access the SATNAV program

from the PASCAL Command Mode by typing 'SATNAV' instead of

'GO' in response to the file-name prompt.

1.2 3B!Ma~

The following are the extended descriptions of the various

options available with the 3.0 version of the SATNAV

program.

1.2.1 Programmed Defaults

To accept all the programmed defaults <given below>

respond with 'N'o to the request to change defaults. To

enter new values or view option defaults, type •v•es. The

following are the list of options available:

a) Minimum Paragraphs

The user has the option of setting a minimum number of

2-minute paragraphs of Doppler data that have to be

accumulated before the pass is to be saved on the

diskette. This reduces the amount of marginal data

stored on the diskette and frees diskette space for

more useful passes.

<Default := 5)

b) Validation of Broadcast Ephemerides

SATNAV checks the broadcast majority-voted message for

a valid time of perigee, rate of change of mean

anomaly and the argument of the perigee. The user has

the option of rejecting a pass if the message fails

these tests. If the no-reject option is selected, the

17
SATNAV - User's Guide

failure of the majority-voted message is denoted by

'9' in the second last element of the Line Error Code

<LEC> column vector associated with each

majority-voted matrix <see Figure I-3).

<Default := Yes>

c) Zero Dopplers

The accumulated 30-second counts displayed in the

majority-voted matrix <see Figure I-3> are derived

from the accumulated 4.6 second counts in the 2-minute

paragraphs. Due to weak signals or complete signal

loss one of the frequency channels <usually the 400

MHz channel) may unlock during a pass. If relock

occurs within the 2-minute paragraph the accumulated

Doppler counts between the two channels will be offset

by a fixed amount. SATNAV uses the actual 30-second

counts <not the displayed accumulated 30-second

counts) to reject Doppler measurements if the

difference between the 400 MHz and 150 MHz Doppler

c:ounts exceeds 1500 counts. This option can be used to

clear one-frequency Doppler measurements.

<Default := Yes)

d) Minumum Number of Counts

The number of accumulated 30-second Doppler counts is

totalled prior to writing the pass on the diskette. If

an insufficient number of counts has been collected,

SATNAV uses this option to reject the pass. If a

no-reject option is selected and the number of counts

falls below the preset limit, a '9' appears as the

18

SATNAV - User~s Guide

Majority-voted matrix

83/02/11-5 16:51:55 <- [Date and Time stampJ
081197000 081198300 090010014 0 = begin =
151452700 151456100 600130134 0
234337300 234343300 610250334 0 <- [Variable parameter at
307294400 307303000 620350593 0 lock-on-timeJ
085282900 085286600 630410894 0
159683000 159689000 640451231 0
248259900 248270200 200451580 0
326995200 327007500 210372147 0
092972200 092974100 220342470 0
174875900 174879600 230282744 0
273238800 273243700 240202965 0
361277200 361282300 250103090 0
104383900 104383300 060013145 0
196419900 196418100 000000000 1
306655000 306649000 039300580 0
404747400 404736600 837537250 0
115330600 115326200 818388360 0
216014400 216005500 800199840 0
335331000 335316400 800047520 0
440383400 440364800 807449850 0
000000000 000000000 813016500 0
000000000 000000000 900005250 0
000000000 000000000 800131180 0
000000000 000000000 823901100 0
000000000 000000000 800301400 0
000000000 000000000 817200420 0
000000000 000000000 809999140 0

[Majority voted broadcast
message <MVBM>. Lines 1
to 14 are the variable
parameters and lines 15
to 28 are the fixed
parameters.J

000000000 000000000 802060000 0 = end =
000000000 000000000 000000000 0
000000000 000000000 111222555 0 <- [User/Stn/Rec ID codeJ
000000000 000000000 511110030 0 <- [OPCJ
[400 MHzJ [150 MHzJ [MVBMJ [LECJ

Continue next page

19

SATNAV - User's Guide

Counts - Accumulated 30-second 400 MHz and scaled 150 MHz
nine-digit Doppler counts.

CLECJ

COPCJ

Line Error
Coding: 0

1
9

Code column vector with 31 elements.
no error detected
non-fatal error <warning>

- fatal error in matrix (bad MVBM or
insufficient counts>

Option Code (511110030)
Coding sequence
digits; 1 5

2 1
- minimum number of paragraphs
- clear doppler counts when

difference exceeds 1500 counts
3 1 check for sufficiency of counts
4 1 reject pass if MVBM fails tests

5,6 10 minimum counts constituting a
good pass <2-digits>

7 0 - not used
8,9 3.0 SATNAV version code <2-digits>

<see section I.2.1a to I.2.1d for further
description on options>

20

SATNAV - User's Guide

last element of the LEC vector.

<Default := 10 counts>

e> Data type

SATNAV allows the user to select the type of data to

be stored on the diskettes. Only majority-voted data

<MJV> results in more passes per diskette and is

usually preferred.

<Default := MJV data only>

!.2.2 USER/STN/REC

SATNAV allows the input of a user-defined nine-digit code

which shows up in the majority-voted matrix (see Figure

I-3>. Preferably, the code is used to identify the user,

observing station and the serial number of the receiver.

No restriction is placed on the numerical code and the

user, if he so desires, is free to use his own coding

system.

Having fulfilled the last request for information by the

program, you should see a display similar to Figure I-2.

SATNAV now waits for the receiver to acquire signals from a

satellite. The Message Area displays the assigned next pass

number, the increment between pass numbers and the type of

file to be used. In the mean time, the timestamp (displayed

in the Message Area on the screen> is updated every two

minutes. When the CMA 7228 acquires a message lock on a

21

SATNAV - User's Guide

Screen setup during the execution of SATNAV

STATUS: SETUP ! SATELLITE PASS !INPUT
PARA/LINE= 00/00! MONITOR PROGRAM !WORDS
+---------------+-----------------+-----

[Message Area]

+---+-------------------+---------+
PROG! DOPPLER COUNT !SATELLITE!
NEST!400-MHZ: 150-MHZ! MESSAGE !
----+-------------------+---------+

22

SATNAV - User's Guide

satellite signal, data is transmitted to the Apple II+ via

the Parallel Interface Adapter. The satellite number of any

pass tracked is displayed at the earliest possible moment in

the Message Area. The user can then reject the pass if he so

wishes using the ESC Unlock command. Data displayed on the

monitor during a satellite pass is stored in memory until

the end of the pass. Upon completion of the pass, the

Doppler data is checked and if it passes all tests selected

through the options, the data is transferred to the data

diskette. SATNAV then waits patiently for the next pass.

During execution of the program the keyboard will respond to

only 4 user commands; all of which have to be preceeded by

the escape <ESC> key. The 4 user commands are as follows:

<Q> Quit

<S> Stay

Sets a flag to terminate SATNAV upon
completion of the current pass. The pass
will be saved before the program exits.

Negates the effect of a previously
issued 'Quit' command.

<U> Unlock - Causes SATNAV to discontinue acquiring
data from the receiver and saves

<K> Kill

the current pass in the usual manner.

Causes immediate termination of
SATNAV. User is returned to the PASCAL
Command Mode.

23

SATNAV - User's Guide

1.3.1 Pass Files

Two files per satellite pass are created on the diskette.

The first contains the majority-voted matrix (file-name

prefixed by MJV>. An example of the contents of the

majority-voted matrix is as shown in Figure 1-3. The

second contains the 2-minute paragraphs of the recorded

Doppler data (file-name prefixed by PASS>. Figure 1-4

illustrates the first part of the contents of a PASS

f i 1 e.

Files can be saved either as ".TEXT" or ".CODE" files.

The distinction between the two types of files lies in

the use of the files. ".TEXT" files, unlike ".CODE"

files, can be edited by the PASCAL System Editor. To

enable the editor to read the ".TEXT" files, each file is

created with a four block header. Consequently, ".TEXT"

files consume available diskette space at a much faster

rate than ".CODE" files.

The option of the type of files to be created, along with

the starting number suffixed to each file and its

increment between passes are stored on the TRACK diskette

in a file named "TRACK:RCV.PARAM.TEXT". Currently,

changes can only be made using the System Editor.

1.3.2 Message Area

This is the 3-line block area on the screen reserved for

messages produced during the normal execution of the

program <see Figure 1-2>. The results of the various

24

SATNAV - User's Guide

Two-minute Paragraphs

£Date and Time stamp at beginning of 2-min paragraph]
83/02/11-5 16:51:55 <- Local lock-on-time <UT>
999999900 999999900 180150034 = begin =
011554200
023123000
034706500
046305200
057919500
069550000
081197000
092861000
104542500
116241900
127959700
139696500
151452700
163228900
175025600
186843500
198683000
210544700
222429300
2~>4337300

246269400
258226200
270208300
282216600

011554200
023123400
034707400
046306100
057920200
069551000
081198300
092863000
104544600
116244500
127962500
139699700
151456100
163232500
175029700
186848100
198688000
210550100
222434800
234343300
246275800
258232700
270215400
282224200

090010014
600130134
610250334
620350593
630410894
640451231
200451580
039300580
837537250
818388360
800199840
800047520
807449850
813016500
900005250
800131180
823901100
800301400
817200420
809999140
802060000
000000000
000000000
000000000

83/02/11-5 16:53:54 <-
307294400 307303000 090010014
012092700 012093100 600130134
024214400 024215300 610250334

etc. . ••.•.•.•
£400 MHz 150 MHzJ £MVBMJ

£Variable parameters]

= end =
= begin =

[Fixed parameters]

= end =

Local lock-on-time of ne:<t
2-minute paragraph <UT>

<7-digit Dopplers in 9-digit format>

25
SATNAV - User•s Guide

checks on the majority-voted matrix are also displayed.

I.3.3 Diskette Maintanence

The floppy diskettes require the same precautions as

cassettes or phonograph records. Amongst the many don•ts

are the following:

a) Do not write on the diskettes.

b) Do not leave diskettes lying around unprotected.

c) Do not let the door of the disk drive snap shut. This

may pinch the diskette. Close door gently without

forcing it.

d) Do not bend or crimp diskettes.

e) Do not set anything on top the diskettes.

f) Do not contaminate the diskettes or drives with dust,

coffee, chemicals, soda pop, etc.

g) Do not use diskettes as towels, bookmarks or Frisbees.

h) Do not store diskettes in places where they are liable

to become hot.

Lastly

i> NEVER NEVER NEVER power off, hit CTRL RESET or remove

diskettes when the disk drives are in use (as

indicated by the red light).

Once a diskette is damaged, physically or otherwise,

chances are that all data on the diskette is !9§t fgc~~~~·

26

1.4 System Messages

SATNAV uses the message area on the screen to display information

about the system and the satellite passes. The following are the messages

that can appear and their explanations.

UNABLE TO OPEN #4: RCV.SCREEN.TEXT

File RCV.SCREEN.TEXT is not present on the boot diskette.

UNABLE TO OPEN #4: RCV.PARAM.TEXT

File RCV.PARAM.TEXT containing the initial parameters relating to the

satellite pass file names is not present on the boot diskette.

MEMAVAIL AT SET UP = XXXX BYTES

Run-time random access memory available for further program

developnent and data storage.

PARAMS- PPPP(MMM)XXX.CCC(YY)

PPPP - prefix attached to pass files containing raw data.

MMM - prefix attached to majority-voted files.

XXX - nunber assigned to next pass too be saved.

CCC -type of file- either .TEXT or .CODE.

YY - increment between pass numbers.

27

USER <ESC> COMMANDS: Q, U, S, K

Acceptable user commands, preceeded by the escape key

Q - Quit: Terminate SATNAV after current pass acquisition.

S -Stay: Negate effect of previously issued quit command.

U - Unlock: Request receiver to unlock from the current pass.

K- Kill: Immediate termination of SATNAV.

TRACKING SATELLITE NO. XX

Data is currently being acquired from satellite XX.

LAST PASS DELETED - BAD MJV

The last recorded pass was rejected because it did not satisfy all

the requirements of a majority-voted message.

MJV MESSAGE FAILS CHECKS

Similar to the message above except the pass is not rejected but

saved on the diskette.

PASS DELETED [X] - BAD COUNTS

The last recorded pass was rejected because it only had X number of

30-second Dopplers.

WARNING - BAD DOPPLERS

Similar to the above except that the no-reject option for passes with

insufficient 30-second Dopppler counts has been selected.

28

NEW FILE = # D:PPPP XXX.CCC

A new file name has been concatenated from the parameters contained

in RCV. PARAM. TEXT file and SATNAV will attempt to write pass data on

diskette.

UPDATING RCV.PARAM.TEXT

Incrementing the next pass number to be used in the file

RCV. PARAM. TEXT.

NO SPACE FOR OUTPUT FILE <ESC> = KILL; <RETURN> = RETRY

Space cannot be found on any of the diskettes to write the current

pass. Insert a new diskette and press RETURN to save pass data or

press ESC to delete current pass data.

LAST PASS = # D:PPPP XXX.CCC

Last recorded pass on drive # D in the current tracking session.

29

APPENDIX II

The following is the list of hardware components required by the

SATNAV program.

1. Apple II+ microcomputer (with game I/0 ports interfaced as in Table

2. 1) •

2. Video monitor.

3. Disk controller, and two disk drives.

4. 16K language board.

5. Model 7424 calendar/clock module.

6. Model 7720B parallel interface adapter.

7. Can ad ian Marconi portable NNSS antenna and antenna cable.

8. Canadian Marconi CMA 722B NNSS receiver/signal processor.

9. Special cable linking CMA 722B data output port and Apple II+

parallel interface adapter and game I/0 ports.

30

APPENDIX III

Files

SATNAV

PROGRAM LISTINGS

SNAPP2: SATLITE. TEXT - interface routine for CMA 7228.

SNAPP2: SATBCK31. TEXT - include file*

SNAPP2: SATBCK32.TEXT- include file

SNAPP2: SATBCK33. TEXT - include file

SNAPP2: SATNAV3.TEXT- main program

*Include files are TEXT files which are inserted into the main program

during compilation. SATNAV spans more than the maximum size allowable for

a single TEXT file.

31

**
*
*
*

FILE : SNAPP2:SATLITE.TEXT *
*
* **

32

.TITLE "SATLITE- SATELLITE INTERFACE ROUTINES"

.NOMACRDLIST

.NOPATCHLIST

MACRO TO PDP 16-BIT RETURN ADDRESS:

.MACRO PDP
PLA
STA /.1
PLA
STA %1+1
.ENDM

; MACRO TO PUSH 16-BIT RETURN ADDRESS:

.MACRO PUSH
LDA %1+1
PHA
LDA /.1
PHA
.ENDM

MEMORY MAP FOR 6821 PERIPHERAL INTERFACE ADAPTER:

PIASLDT .EQU 7 ;APPLE SLOT NUMBER OF PARALLEL INTERFACE
PI ABASE .EQU <PIASLDT*10>+0C080
PIADRA .EQU PIABASE+O SIDE "A" DATA DIRECTION REGISTER

CARD

PIAPRA .EQU PIABASE+O SIDE "A" PERIPHERAL INTERFACE REGISTER
PIASRA .EQU PIABASE+l SIDE "A" STATUS REGISTER
PIACRA .EQU PIABASE+l SIDE "A" COMMAND REGISTER
PIADRB .EQU PIABASE+2 SIDE "B" DATA DIRECTION REGISTER
PIAPRB .EQU PIABASE+2 SIDE "B" PERIPHERAL INTERFACE REGISTER
PIASRB .EQU PIABASE+3 SIDE "B" STATUS REGISTER
PIACRB .EQU PIABASE+3 SIDE usn COMMAND REGISTER

SPECIAL SYSTEM MONITOR LOCATIONS:

IRQVECTR .EQU OFFFE
LANGCARD .EQU OCOSO

;BASE ADDRESS OF IRQ/BRK INTERRUPT VECTOR
;BASE ADDRESS FOR SLOT#O = LANGUAGE-CARD

PASCAL-SUPPLIED ZERO-PAGE TEMPORARY WORK AREAS:

RTADDR .EQU 00 ;SAVE AREA FOR PASCAL RETURN ADDRESS
STRING .EQU 02 ;USED TO HOLD INDIRECT ADDRESS FOR READPIA

ROUTINE TO INITIALIZE PIA AND BUFFER QUEUE:

.PROC INITPIA ;ROUTINE TO INITIALIZE PIA HANDLING

.DEF DLDIRQ

.REF QFWDPTR,QBKWPTR,QBYTE1,QBYTE2,IRQHANDL

START

OLD IRQ
IRQADR

SEI
POP RTADDR

LOA #00
STA PIACRA
STA PIADRA
STA PIACRB
STA PIADRB
LDA #05
STA PIACRA
LDA #04
STA PIACRB

LDA
STA
LOA
STA

#00
QBKWPTR
#01
QFWDPTR

33

;DISABLE INTERRUPTS UNTIL DONE
;POP RETURN ADDRESS FROM STACK

;CLEAR ACCUMULATOR
;REQUEST ACCESS TO DDRA
;SET ALL BITS FOR INPUT
;REQUEST ACCESS TO DDRB
;SET ALL BITS FOR INPUT
;LOAD IN COMMAND BITS
;SET UP COMMAND REGISTER A
;LOAD IN COMMAND BITS
;SET UP COMMAND REGISTER B

;LOAD INITIAL VALUE FOR BCKWD POINTER
;SAVE BACKWARD POINTER
;SET FWD POINTER TO ONE > THAN QBKWPTR
; SAVE FO'RWARD PO INTER

LDA LANBCARD+OB ;REMOVE WRITE LANG-CARD WRITE-PROTECT
LDA LANBCARD+OB ;THIS INSTRUCTION HAS TO BE DONE TWICE

LDA IRQVECTR ;BET LSB OF CURRENT IRQ VECTOR
STA OLDIRQ ;SAVE FOR INTERRUPT HANDLER
LDA IRQVECTR+l;BET MSB OF CURENT IRQ VECTOR
STA OLDIRQ+l ;SAVE FOR INTERRUPT HANDLER

LDA IRQADR ;BET MSB OF IRQ ROUTINE ADDRESS
STA IRQVECTR ;STORE IN MSB OF IRQ VECTOR
LDA IRQADR+l ;BET LSB OF IRQ ROUTINE ADDRESS
STA IRQVECTR+l;STORE IN LSB OF IRQ VECTOR

LDA LANBCARD+B;WRITE PROTECT THE LANGUAGE-CARD AGAIN

CLI ;ENABLE INTERRUPTS AGAIN

PUSH RTADDR
RTS
.WORD 0000
.WORD IRQHANDL

;PUSH RETURN ADDRESS BACK ONTO STACK
;RETURN TO CALLING PROGRAM
;SAVE AREA FOR ORIGINAL MONITOR IRQ VECTOR
;ADDR OF INTRPT ROUTINE, LO-BYTE FIRST

; PROCEDURE TO DISABLE PIA INTERRUPTS AND RESTORE IRQ/BRK VECTOR

.PROC RESET IRQ ;CLEANUP ROUTINE FOR END-OF-PROCESSING

.REF OLD IRQ

START SEI ;DISABLE INTERRUPTS

LDA #00 ;LOAD CMD WORD FOR PIA = NO INTRPTS ALLOWED
STA PIACRA ;STORE IN A-SIDE COMMAND REGISTER

STA

LDA
LDA
LDA
STA
LDA
STA
LDA

RTS

34

PIACRB ;STORE IN B-SIDE COMMAND REGISTER

LANGCARD+OB
LANGCARD+OB
OLD IRQ
IRQVECTR
OLDIRQ+l
IRQVECTR+l
LANGCARD+S

REMOVE WRITE LANG-CARD WRITE-PROTECT
THIS INSTRUCTION HAS TO BE DONE TWICE
GET LSB OF ORIGINAL IRQ ADDRESS
STORE IN IRQ VECTOR
GET MSB OF ORIGINAL IRQ ADDRESS
STORE IN IRQ VECTOR
WRITE PROTECT THE LANGUAGE-CARD AGAIN

;RETURN TO CALLING PROGRAM

PROCEDURE TO RETURN THE NEXT "WORD" FROM THE QUEUE:

EMPTYCHR

START

UNDFFLOW

GETBYTEl

STl

.PROC GETWORD,l ;PROC TO REPLACE CHAR[4J PARAM WITH 4 DIGITS

.DEF IRQHANDL,QBYTE1,QBYTE2,QBKWPTR,QFWDPTR

.REF OLDIRQ

.EQU 20 ;EMPTY QUEUE INDICATOR CHARACTER = SPACE

POP RTADDR ;SAVE PASCAL RETURN ADDRESS
POP STRING ;SAVE ADDRESS OF STRING PARAMETER

LDY #00 ;USE Y AS STR INDEX - SET TO "LENGTH" BYTE
LDX QBKWPTR ;GET BACKWARD POINTER FOR BUFFER QUEUE
INX ;POINT TO NEXT WORD IN BUFFER
CPX QFWDPTR ;CHECK FOR EMPTY QUEUE
BNE GETBYTEl ;BRANCH IF NOT EMPTY

LDA #00 ;SET LENGTH OF STRING TO ZERO
STA ISSTRING,Y ;STORE A SPACE CHARACTER
BEQ EXITGET ;ALWAYS BRANCH <TO E>tiT>

LDA #04 ;SET LENGTH OF STRING TO 4 BYTES
STA ISSTRING,Y ;SAVE IN,"LENGTH" BYTE
LDA QBYTEl,X ;GET FIRST HALF OF INPUT WORD FROM BUFFER
LSR A ;SHIFT UPPER NIBBLE TO LEFT SIDE OF ACC
LSR A
LSR A
LSR A
ORA #30 CONVERT TO ASCII
CMP #3A CHECK FOR NON-NUMERIC DIGIT
BMI STl BRANCH IF DIGIT IN RANGE 0->9
CLC CLEAR CARRY FOR ADD
ADC #07 CONVERT DIGIT TO HEX CHAR A->F
INY POINT AT FIRST BYTE OF STRING
STA ISSTRING,Y SAVE AS FIRST CHARACTER IN STRING
LDA QBYTEl,X GET ORIGINAL VALUE AGAIN
AND #OF ISOLATE LOWER NIBBLE
ORA #30 CONVERT TO ASCII

35

INY ;POINT AT SECOND BYTE OF STRING
STA @STRING,Y ;SAVE AS SECOND CHARACTER IN STRING

GETBYTE2 LOA QBYTE2,X ;GET 2ND HALF OF INPUT WORD FROM BUFFER
LSR A ;SHIFT UPPER NIBBLE TO LEFT SIDE OF ACC
LSR A
LSR A
LSR A
ORA #30 ;CONVERT TO ASCII
INY POINT AT THIRD BYTE OF STRING
STA I!STRING,Y SAVE AS THIRD CHARACTER IN STRING
LDA QBYTE2,X GET ORIGINAL VALUE AGAIN
STX QBKWPTR SAVE NEW QUEUE POINTER
AND #OF ISOLATE LOWER NIBBLE
ORA #30 CONVERT TO ASCII
INY POINT AT FOURTH BYTE OF STRING
STA @STRING,Y SAVE AS FOURTH CHARACTER IN STRING

EXITGET PUSH RTADDR ;PUSH PASCAL RETURN ADDRESS ON STACK
RTS ;RETURN TO CALLING PROGRAM

QBYTE1 .BLOCK 256
QBYTE2 .BLOCK 256
; POINTER TO NEXT
QFWDPTR .BYTE 00

;QUEUE AREA FOR FIRST 8 BITS <15-8)
;QUEUE AREA FOR SECOND 8 BITS (7-0)

EMPTY LOCATION IN QUEUE

; POINTER TO ITEM BEFORE NEXT
QBKWPTR .BYTE 00

INPUT VALUE IN QUEUE

; INTERRUPT-DRIVEN ROUTINE TO BUFFER DATA FROM THE PIA.
TO MINIMIZE THE TIME REQUIRED TO SERVICE INTERRUPTS,
THIS ROUTINE IS NOT CODED FOR RE-ENTRANCY. AS A RESULT,
INTERRUPTS ARE LEFT DISABLED WHILE THIS ROUTINE EXECUTES,
AND ARE RE-ENABLED BY THE RTI INSTRUCTION.

OVFLCHAR .EQU 11

IRQHANDL STA SAVEACC
PLA
PHA
AND #10
BEQ NOTBRK

NOTPIA LDA SAVEACC
JMP @OLDIRQ

NOTBRK LOA PIASRA
BPL NOTPIA

TXA
PHA

;"UNUSED" SEQ CODE- OVERFLOW INDICATOR

;SAVE ACCUMULATOR
;GET STATUS REG FROM STACK
;RESTORE ONTO STACK
;TEST "B" BIT
;SKIP NEXT SECTION IF TRUE INTERRUPT

;RESTORE ACCUMULATOR CONTENTS
;BRANCH TO MONITOR"S IRQ/BRK ROUTINE

;WAS IRQ CAUSED BY PIA?
;IF NOT, BRANCH TO MONITOR'S IRQ/BRK ROU

;SAVE INDEX-X ON STACK

36

LOX QFWDPTR ;SET UP QUEUE POINTER IN INDEX-X
CPX QBKWPTR ;CHECK FOR FULL QUEUE
BNE SAVEDATA ;BRANCH IF QUEUE IS OK

OVERRUN LOA #OVFLCHAR ;LOAD QUEUE OVERFLOW CHARACTER
DEX ;POINT AT PREVIOUS QUEUE ELEMENTS
STA QBYTE1,X ;SAVE IN PLACE OF LAST 16-BITS IN QUEUE
STA QBYTE2,X
BNE EXITIRQ ;ALWAYS BRANCH

SAVEDATA LOA PIAPRB ;GET BITS 15-8 OF INPUT FROM PIA-B
EOR #OFF ;INVERT ALL BITS
STA QBYTE1,X ;SAVE THEM AS QBYTE1
LOA PIAPRA ;GET BITS 7-0 OF INPUT FROM PIA-A
EOR #OFF ;INVERT ALL BITS
STA QBYTE2,X ;SAVE THEM AS QBYTE2
INX ;ADVANCE QUEUE POINTER TO NEXT POSITION
STX QFWDPTR ;SAVE NEW FORWARD POINTER FOR QUEUE

EXITIRQ PLA ;RESTORE INDEX-X FROM STACK
TAX
LOA SAVEACC ;RESTORE ACCUMULATOR
RTI ;RETURN TO INTERRUPTED ROUTINE

SAVEACC .BYTE 00 ;ACCUMULATOR SAVE AREA FOR INTRPT ROUTINE

.END

37

**
*
*
*

FILE : SNAPP2:SATBCK31.TEXT *
*
* **

38

PROCEDURE CHAR9TOINTCVAR NUMBER:MESSVALUE;
VAR NUMBCHR:MESSCHAR>;

<**************************************
* VERSION : 19 JULY 1982 *
* AUTHOR : SEE HEAN QUEK *
* DESCRIPTION : *
* CONVERTS NINE CHAR *
* VARIABLE NUMBER TO LONG INTEGERS *
**************************************)
VAR

I INTEGER;
NO INTEGERC9J;

BEGIN
NUMBER := O;
FOR I := 9 DOWNTO 1 DO

BEGIN
NO := ORDCNUMBCHRCIJ) - 48;
IF NOT CNUMBCHRCIJ IN t•o• .. •9"J) THEN

BEGIN
WRITELN<I,"TH NUMBER ILLEGAL- CHAR9TOINT">;
EXIT<PROGRAM>

END
ELSE

CASE I OF
9 NUMBER := NUMBER + NO;
8 NUMBER := NUMBER + N0*10;
7 NUMBER := NUMBER + NO*lOO;
6 NUMBER := NUMBER + NO*lOOO;
5 NUMBER := NUMBER + NO*lOOOO;
4 NUMBER := NUMBER + NO*lOOOOO;
3 NUMBER := NUMBER + NO*lOOOOOO;
2 NUMBER := NUMBER + NO*lOOOOOOO;
1 NUMBER := NUMBER + NO*lOOOOOOOO

END <*CASE *>
END; <*IF AND LOOP*>

END; <* CHAR9TOINT*>

PROCEDURE MAJORITY<VAR WORD1,WORD2,WORD3:CHAR>;
<************************************
* AUTHOR : QUEK *
* DATE : JUNE 22 1982 *
* DESCRIPTION ; *
* COMPARISON BETWEEN THREE CHARACTER*
* VARIBLES AND ASSIGNS THEM *
* ACCORDING TO THEIR VALUES. *
*************************************>

39

BEGIN <* MAJORITY *>
<* NON NUMERIC CASE *>

IF NOT<WORD3 IN c•o• •• '9'l) THEN
EXIT<MAJORITY>;

IF WORDl=• • THEN
BEGIN

WORDl := WORD3;
EXIT<MAJORITY>

END
ELSE IF WORD2 = • ' THEN

BEGIN
WORD2 := WORD3;
EXIT<MAJORITY>

END
ELSE IF WORD1=WORD2 THEN

EXIT<MAJORITY>
ELSE IF WORD1=WORD3 THEN

BEGIN
WORD2 := WORD3;
EXIT<MAJORITY>

END
ELSE IF WORD2=WORD3 THEN

BEGIN
WORDl := WORD3;
EXIT<MAJORITY>

END
ELSE;

END; <* MAJORITY *>

PROCEDURE MJVLINE<LNCT,PARAG:INTEGER;XLINE:DATALINE>;
<*************************************
* AUTHOR : QUEK *
* DATE : AUGUST 28 1982 *
* DESCRIPTION *
* MAJORITY VOTING BY LINE *
* INPUT - LINE,PARAGRAPH NUMBER AND *
* MESSAGE LINE *
**************************************)

VAR
!LINE : INTEGER;
WORD : CHAR;

PROCEDURE LOCSAT<ILINE:INTEGER>;
(********************************
SUBPROCEDURE TO FIND SATELLITE
*NUMBER AT THE FIRST AVAILABLE *
*OPPERTUNITY. *
********************************)
VAR STRNUM : STRING;
BEGIN

40

IF ILINE = 25 THEN
BEGIN

ISAT := (0RD<MJVPASSCILINE,6J)-48>*10
+ ORD<MJVPASSCILINE,5J)-48;

IF ISAT IN C13,14,19,48,20J THEN
BEGIN

SATLOCI< := TRUE;
STR<ISAT,STRNUM>I
SHOWMSG<O,CONCAT<•TRACKING SATELLITE NO. ',STRNUM>>

END;
END;

END; <* LOCSAT *>

BEGIN <* MJVLINE *>

<* TRANSFER OF MESSAGE TO ARRAY *>
FOR K := 21 TO 29 DO

BEGIN
L := 1<-20;
UNPACK9CLJ := XLINECKJ

END;

IF LNCT <=8 THEN

<* SECTION FOR VARIABLE PARAMETERS *>
BEGIN

ILINE := PARAS + LNCT - 2; <* FIND POSITION IN ARRAY *>
IF <ILINE <=ENDEPHEMERAL> AND <ILINE >O> THEN

BEGIN
PACK9 := TEMPORARYCILINEJ;
FOR K := 1 TO 9 DO

BEGIN
WORD := PACK9CKJ;
MAJORITY<MJVPASSCILINE,KJ,

WORD,
UNPACK9 CKJ);

PACK9CKJ:= WORD;
END;

TEMPORARYCILINEJ:=PACK9;
END;

END

ELSE

<* SECTION ON FIXED PARAMETERS *>
BEGIN

ILINE := LNCT -9 + ENDEPHEMERAL + 1;
IF ILINE <= MAXPRMETERS THEN

BEGIN

41

PACK9 := TEMPORARYCILINEJ;
FOR K:= 1 TO 9 DO

BEGIN
WORD := PACK9CKJ;
MAJORITY<MJVPASSCILINE,KJ,

WORD,
UNPACK9CKJ>;

PACK9CKJ:= WORD;
END;

TEMPORARYCILINEJ:=PACK9;
END;

IF NOT SATLOCK THEN LOCSAT<ILINE>;
END;

END; <* MJVLINE *>

PROCEDURE CLEARMJVFILE;
(*************************************
* AUTHOR : SEE HEAN QUEK *
* DATE : MAY 12 1982 *
* DESCRIPTION *
* CLEAR MAJORITY VOTE FILE AND TEMP*
* ORARY ARRAYS , *
**************************************>
CONST

VAR

EMPTY= • •;
ZERO = 'o•;

BLANK: PACKED ARRAYC1 •• 9J OF CHAR;
BLANK2: PACKED ARRAYC1 •• 9J OF CHAR;

BEGIN
FOR I := 1 TO 9 DO

BEGIN
BLANKCIJ := EMPTY;
BLANK2CIJ:= ZERO;

END;

FOR I:= 1 TO MAXPRMETERS DO
BEGIN

FOR J := 1 TO 9 DO
MJVPASSCI,JJ := EMPTY;

TEMPORARYCIJ := BLANK;
END;

FOR I := 1 TO MAXMJV DO
BEGIN

DOP30FQ150CIJ :=
DOP30FQ400Cil :=

BLANK2;
BLANK2;

:= ZERO; MJVCODECIJ

<* ASSIGN BLANKS *>

42

END;
END; <* END CLEARMJVFILE *>

PROCEDURE CONDPASSFILE;
(***************************************)
<* AUTHOR : SEE HEAN QUEK *>
<* DATE : AUGUST 28 1982 *>
<* DESCRIPTION *>
<* REFORMAT 30 SECOND DOPPLER *>
<* COUNTS AND MAJORITY VOTED SATELLITE *>
<* MESSAGE. WRITES THE REFORMATED LINE *>
<* ONTO THE DISKETTE FILE, ON AT A TIME*>
<***************************************)
VAR

DOPMESSAGE : PACKED ARRAY[1 •• 32l OF CHAR;
LINE,COUNT,MJLINE: INTEGER;

BEGIN <* CONDPASSFILE *>

SHOWPROC<"WMJV",SHOW>;
DOPMESSASE[32l := CHR<13>;
FOR NO:= 1 TO 31 DO

DOPMESSAGECNOJ := • •;

FOR LINE := 1 TO MAXMJV DO
BEGIN

<* SECTION FOR TIMESTAMP *)
IF LINE = 1 THEN

BEGIN
FOR COUNT := 1 TO 19 DO

DOPMESSAGECCOUNTJ := LOCKONTIME[COUNTJ;
END

ELSE

C* SECTION FOR LONG DOPPLERS AND MAJORITY VOTED MESSAGE *>
BEGIN

DOPMESSAGEC10l := • •;
DOPMESSAGE[20l := • •;
DOPMESSASEC30l := • •;

<* CASE WHEN MESSAGE COLUMN EXCEEDS MESSAGE ARRAY *>
MJLINE := LINE - 1;
IF MJLINE <= MAXPRMETERS THEN

BEGIN
FOR COUNT := 1 TO 9 DO

END
ELSE

PACK9[COUNTJ := MJVPASSCMJLINE,COUNTJ;

43

BEGIN
IF LINE = MAXMJV THEN

PACK9 := OPTIONCODE
ELSE IF <LINE = MAXMJV-1> THEN

PACK9 := RCVCODE
ELSE

PACK9 :=·ooooooooo•;
END;

<* CASE WHEN PASS PARAGRAPHS ARE LESS THAN MAXIMUM *>
IF PACK9[1J = • • THEN

PACK9:=•ooooooooo•;

<* TRANSFER OF DOPPLER COUNTS SCALED BY 100
PACK9 := DOP30FQ150CMJLINEJ;
FOR NO := 1 TO 9 DO

DOPMESSAGEtNOl := PACK9CNOl;

PACK9 := DOP30FQ400CMJLINEJ;
FOR NO := 11 TO 19 DO

BEGIN
COUNT := NO - 10;
DOPMESSAGECNOl := PACK9CCOUNTJ;

END;

<* TRANSFER OF CODED ARRAY
DOPMESSAGEC31J := MJVCODECMJLINEJ;

(* MAJORITY VOTED BROADCAST EMPHEMERIS TRANSFER
FOR NO := 21 TO 29 DO

END;

BEGIN
COUNT := NO - 20;
DOPMESSAGECNOl := PACK9CCOUNTl

END;

MJVFILEA := DOPMESSAGE;
PUT<MJVFILE>

END;

SHOWPROC<"WMJV',ERASE>;
SHOWMSG<l,CONCAT('MJV FILE= ',MJNAME>>;
SHOWMSG<2,'SUCCESSFULLY WRITTEN ON DISK'>;

END; <* CONDPASSFILE *>

PROCEDURE LONGDOPPLERS<LNCT,PARAG:INTEGER;XLINE:DATALINE>;
(**************************************

44

* AUTHOR ; SEE HEAN QUEK *
* DATE ; AUGUST 28 1982 *
* DESCRIPTION *
* ROUTINE ACCUMULATES THE *
* 30 SECOND DOPPLERS AND STORES THEM *
* IN TWO ARRAYS : DOP30FQ150 FOR THE *
* 150MHZ DOPPLER COUNTS AND *
* DOP30FQ400 FOR THE 400MHZ COUNTS *
**************************************)

VAR
LINE : INTEGER;

BEGIN <* LONGDOPPLERS *>

IF NOT <LNCT IN [1,8,14,21J) THEN
EXIT<LONGDOPPLERS>;

LINE :=<<PARAG-1>*4 + LNCT DIV 6>;
IF LINE= 0 THEN EXIT<LONGDOPPLERS>;

FOR NO := 1 TO 9 DO
PACK9[NOJ := XLINE[NOJ;

DOP30FQ150[LINEJ := PACK9;

FOR NO := 11 TO 19 DO
BEGIN

K := NO - 10;
PACK9[KJ := XLINE[NOJ;

END;
DOP30FQ400[LINEJ := PACK9;

END; <* LONGDOPPLERS *>

PROCEDURE ZERODOPPLERS;
<**************************************
* AUTHOR : SEE HEAN QUEK *
* DATE : 5TH SEPTEMBER 1982 *
* DESCRIPTION *
* ZERO 30 SECOND COUNTS *
* THAT EXCEED THE REFMAX DIFFERENCE. *
**************************************>
VAR

CDOP400,CDOP150,LDOP400,LDOP150
DOP400,DOP150,DIFF
PREVDOP

BEGIN

SHOWPROC<•ZDOP',SHOW>;
PREVDOP := FALSE;
FOR NO := 1 TO MAXMJV DO

INTEGER[9J;
INTEGER[9J;
BOOLEAN;

45

BEGIN
IF <DOP30FQ150CNOl = •ooooooooo•> OR

<DOP30FQ400CNOl = •ooooooooo•> THEN
BEGIN

DOP30FQ150CNOl := •ooooooooo•;
DOP30FQ400CNOl := •ooooooooo•;
LOOP 150 : = 0;
LDOP400 : = O;
PREVDOP : = FALSE

END
ELSE

BEGIN
PACK9 := DOP30FQ150[NOl;

FOR L := 1 TO 9 DO
BEGIN

UNPACK9[Ll := PACK9CLl
END;

SHOWPROC<•CN01•,sHOW>;
CHAR9TOINT<CDOP400,UNPACK9>;
SHOWPROC<•CN01",ERASE>;

PACK9 := DOP30FQ400[N0l;
FOR L := 1 TO 9 DO

BEGIN
UNPACK9[LJ := PACK9[Lll

END;
SHOWPROC<•CN02•,SHOW>;
CHAR9TOINT<CDOP150,UNPACK9>;
SHOWPROc<•cNo2•,ERASE>;

IF <NO = 1> THEN
BEGIN

DOP400 := CDOP400;
DOP150 := CDOP150

END
ELSE

BEGIN
DOP400 := CDOP400-LDOP400;
DOP150 := CDOP150-LDOP150

END;

<* ENSURE POSITIVE DIFFERRENCES *>
DIFF := <DOP400-DOP150) DIV 100;
IF<DIFF<O> THEN DIFF := -DIFF;

<* REJECTION SECTION *)
IF<DIFF > REFMAX> THEN

BEGIN
IF NOT < NO IN [1,5,9,13,17,21,25,29,33,37]) THEN

46

BEGIN
IF PREVDOP = FALSE THEN

BEGIN
L : = NO -1;
DOP30FQ150CLJ := •ooooooooo•;
DOP30FQ400[L] := '000000000';

END
ELSE

BEGIN
DOP30FQ150CNOJ := •ooooooooo•;
DOP30FQ400CNOJ := •ooooooooo•;
CDOP150 := O;
CDOP400 := 0

END;
PREVDOP := FALSE

END;
IF NO IN C4,8,12,16,20,24,28,32,36J THEN

BEGIN

END
ELSE

L := NO - 1;
IF <DOP30FQ150CLJ = •ooooooooo•>

AND <DOP30FQ400CLJ = 'OOOOOOOOO">THEN
BEGIN

END;

DOP30FQ150CNOJ := •ooooooooo•;
DOP30FQ4oocNoJ := ·ooooooooo•

END;

PREVDOP := TRUE;

<* PREPARE FOR NEXT COUNT *>
LDOP400 := CDOP400;
LDOP150 := CDOP150;
IF<NO IN C4,8,12,16,20,24,28,32,36J) THEN

BEGIN
LDOP400 := O;
LDOP150 := 0

END;

END; <* ELSE SECTION *>
END; <* FOR SECTION *>

SHOWPROC<'ZDOP',ERASE>;

END;

PROCEDURE CHECKDOPPLERS;
(**************************************
* AUTHOR SEE HEAN QUEK *
* VERSION : 10 AUGUST 1982 *

47

* DESCRIPTION : *
* ROUTINES CHECKS IF *
* THE NUMBER OF RECORDED COUNTS *
* EXCEED THE PRESELECTED MINIMUM. *
**************************************)

VAR
NOCOUNT : STRINGC2l;

BEGIN C* CHECKDOPPLERS *>
NO : = O;
SHOWPROCC"CDOP",SHOW>;

FOR I := 1 TO MAXMJV DO
IFCDOP30FQ150Cil = "000000000"> AND

<DOP30FQ400CIJ = •ooooooooo•> THEN
NO := NO + 1;

NO := MAXMJV - NO;
STRCNO,NOCOUNT>;

IFCNO <= MINDOP30> THEN
BEGIN

IF FAILDOPRJ = •y• THEN
BEGIN

ELSE

END;

SHOWMSGCO,
CONCATC'PASS DELETEDC',NOCOUNT,'l- BAD COUNTS'>>;

SHOWPROCC'CHECKMJV",ERASE>;
EXITCWRITEPASS>

END

BEGIN
SHOWMSG<2,'WARNING- BAD DOPPLERS">;
I : = MAXMJV-1;
MJVCODE[IJ := •9•

END;

SHOWPROC<"CDOP',ERASE>;

END; <* CHECKDOPPLERS *>

PROCEDURE CHECKMJVFILE;
<**************************************
* AUTHOR : SEE HEAN QUEK *
* DATE : 19 JULY 1982 *
* DESCRIPTION *
* PERFORMS A SERIES OF CHECKS*
* TO ASCERTAIN THE QUALITY OF THE *
* MAJORITY VOTED MESSAGE. *

48

**************************************)
VAR

VALUE : INTEGER[9l;
NUMCHR : MESSCHAR;

BEGIN <* CHECKMJVFILE *>

<* CHECKING FOR BLANKS AND IF *>
<* DETECTED LINE ZEROED *>

FOR NO := 1 TO MAXPRMETERS DO
BEGIN

FOR K := 1 TO 9 DO

END;

IF MJVPASSENO,Kl = • • THEN
FOR L := 1 TO 9 DO

MJVPASSENO,Ll := •o•;

<* CHECKING THE FIRST NUMBER OF ALL *>
<* 9 OF THE 9 FIXED PARAMETERS *>
<* IF FAILS TEST ASSIGN CODE 9 *>

FOR K := ENDEPHEMERAL + 2 TO ENDEPHEMERAL +13 DO
IF<MJVPASSCK,1l IN r•o• •• •7•J> THEN

MJVCODECKl := "9";

<* CHECKING FOR ZEROED ROWS IN *>
<* MESSAGE. TESTING VALUES OF FIXED *>
(* PARAMETERS *)

FOR NO := 1 TO MAXPRMETERS DO
BEGIN

FOR K := 1 TO 9 DO
BEGIN

NUMCHRCKl := MJVPASSCNO,Kl;
PACK9CKl := NUMCHRCKl

END;

SHOWPROC<"CNUM",SHOW>;
IF PACK9 = "000000000" THEN

VALUE := 0
ELSE

CHAR9TOINT<VALUE,NUMCHR>;
SHOWPROC<"CNUM",ERASE>;

<* NO VALUE *>
IF<VALUE = 0) THEN

MJVCODECNOl := "1"
<* TIME OF PERIGEE *)

ELSE IF <NO = ENDEPHEMERAL + 1> THEN
BEGIN

IF <VALUE > 400000000) THEN
VALUE := VALUE - 400000000;

49

VALUE := VALUE DIV 100000;
IF<VALUE < 0) OR <VALUE>1440) THEN

MJVCODE[NOJ := •9•;
END

<* RATE OF CHANGE OF MEAN ANOMALY *>
ELSE IF <NO = ENDEPHEMERAL + 2> THEN

BEGIN
VALUE := <VALUE-800000000> DIV 10000000;
IF<VALUE<3> OR <VALUE >4> THEN

MJVCODE[NOJ := "9';
END

<* ARGUMENT OF PERIGEE AT TP *>
ELSE IF < NO = ENDEPHEMERAL + 3) THEN

BEGIN

END;

VALUE := <VALUE -800000000) DIV 100000;
IF<VALUE < O> OR <VALUE > 360> THEN

MJVCODE[NOJ := '9';
END;

SHOWMSG <O, ' • >;

<* DOPPLER COUNT ZEROING AND CHECKING*>
IF ZEROUNDOP = •y• THEN ZERODOPPLERS;
CHECKDOPPLERS;

<* CHECKING FOR ZEROS IN FIXED *>
<* PARAMTERS. IF DETECTED SWITCHES *>
<* MJVCODE FROM 1 TO 9. *>

FOR NO := ENDEPHEMERAL + 1 TO ENDEPHEMERAL + 14 DO
IF<MJVCODE[NOJ = '1'> THEN

MJVCODE[NOJ := '9';

<* MESSAGE TO SCREEN *>

FOR NO := 1 TO MAXPRMETERS DO
BEGIN

IF<MJVCODE[NOJ = '9' > THEN
BEGIN

SHOWMSG<l,'MJV MESSAGE FAILS CHECKS'>;
I : = MAXMJV-2;
MJVCODE[IJ := '9';

IF<FAILMJVRJ = "Y') THEN
BEGIN

SHOWMSG<O,'LAST PASS DELETED- BAD MJV MESSAGE'>;
SHOWPROC<'CMJV",ERASE>;
EXIT<WRITEPASS)

END;

END;

50

EXIT<CHECKMJVFILE>;
END;

SHOWMSG<1,"MJV MESSAGE CHECKED

END; <* CHECKMJVFILE *)

OK">;

51

**
*
*
*

FILE : SNAPP2:SATBCK32.TEXT *
*
* **

52

PROCEDURE SHOWMODE<MODE:STRING>;
<*DISPLAYS STATUS: "ACTIVE","WAIT","DISKIO' *)
BEGIN <* SHOWMODE *>

GOTOXY<XMODE,YMODE>;
WRITE<MODE:7)

END; <* SHOWMODE *>

PROCEDURE SHOWMSG<MSGNUM:INTEGER;MESSAGE:STRING>;
<* USED TO DISPLAY MOST MESSAGES IN 3-LINE MESSAGE AREA *>
(* MESSAGES ARE CENTRED IN THE 33-CHAR DISPLAY AREAS. *>
VAR FILLER:INTEGER;
BEGIN <* SHOWMSG *>

GOTOXY<XMSG,YMSG+MSGNUM>;
FILLER:=<33-LENGTH<MESSA6E>> DIV 2;
IF FILLER<O THEN FILLER:=O;
WRITE<MESSAGE: (33-FILLER>,"':FILLER>;

END; <* SHOWMSG *>

PROCEDURE SHOWLINE<VALUE:DATALINE;FTN:FTNTYPE>;
<* USED TO DISPLAY FORMATTED SATELLITE DATA LINES ON SCREEN *>
BEGIN <* SHOWLINE *>

IF FTN=SHOW THEN
BEGIN

GOTOXY<XLINE,SCRLINE>;
WRITE<VALUE:29>;
IF SCRLINE=YLINEMAX THEN

SCRLINE:=YLINEMIN
ELSE

BEGIN
SCRLINE:=SCRLINE+l;
GOTOXY<XLINE,SCRLINE>;
WRITE<" ":29>

END;
CLEARLINES:=FALSE

END
ELSE IF <FTN=CLEAR> AND <NOT CLEARLINES> THEN

BEGIN

END

FOR SCRLINE:=YLINEMAX DOWNTO YLINEMIN DO
BEGIN

GOTOXY<XLINE,SCRLINE>;
WRITE<" ":29>

END;
SCRLINE:=YLINEMIN;
CLEARLINES:=TRUE

END; <* SHOWLINE *>

53

PROCEDURE SHOWWORD<VALUE:DATAWORD>;
<* USED TO DISPLAY INCOMING DATA FROM RECEIVER AS-IS *>
BEGIN <* SHOWWORD *>

GOTOXY<XWORD,SCRWORD>;
WRITECVALUE:5>;
IF SCRWORD=YWORDMAX THEN

SCRWORD:=YWORDMIN
ELSE

BEGIN

END

SCRWORD:=SCRWORD+l;
GOTOXY<XWORD,SCRWORD>;
WRITE<" •: 5>

END; <* SHOWWORD *>

PROCEDURE SHOWPROC<NAME:STRING;FTN:FTNTYPE>;

<* USED TO DISPLAY CURRENTLY EXECUTING PROCEDURES FOR DEBUGGING *>
<* IF THIS ROUTINE IS CALLED WITH FTN=SHOW, THEN THE PROCNAME *>
<* IS DISPLAYED ON THE SCREEN, UNDERNEATH ALL PREVIOUS NAMES. *>
<* A SUBSEQUENT CALL WITH FTN=ERASE WILL CAUSE ALL PROCNAMES UP *>
<* TO THE NAME SPECIFIED TO BE DELETED FROM THE SCREEN. IN THIS *>
<* WAY, A SUBROUTINE CAN "EXIT" FROM ITS CALLER AND REMOVE BOTH *>
<* NAMES FROM THE SCREEN AT ONCE. *>
VAR FOUND:BOOLEAN;
BEGIN <* SHOWPROC *>

IF FTN=SHOW THEN
BEGIN

END

GOTOXY<XPROC,SCRPROC>;
PROCNAMES[SCRPROCJ:=NAME;
WRITE<NAME:4>;
SCRPROC:=SCRPROC+l

ELSE IF FTN=ERASE THEN
BEGIN

FOUND:=FALSE;
REPEAT

GOTOXY<XPROC,SCRPROC>;
WR I TE (• • : 4) ;
FOUND:=PROCNAMESCSCRPROCJ=NAME;
PROCNAMECSCRPROCJ:=••;
SCRPROC:=SCRPROC-1

UNTIL FOUND;
SCRPROC:=SCRPROC+l;

END;
END; <* SHOWPROC *>

PROCEDURE FORMATSCREEN;

54

<* ROUTINE TO READ SCREEN FILE AND INITIALIZE SCREEN DISPLAY *>
VAR SCRNFILE:FILE;

BLOCKCNT:INTEGER;
BUFFER: PACKED ARRAYC0 •• 511J OF CHAR;

BEGIN <* FORMATSCREEN *>
PAGE<OUTPUT>;
<*SI-*> RESET<SCRNFILE,P#4:RCV.SCREEN.TEXTP>; <*SI+*)
IF IORESULT<>O THEN

BEGIN
GOTOXY<0,7>;
WRITELN(PUNABLE TO OPEN #4:RCV.SCREEN.TEXT'>;
NOTE<35,50>;
EXIT<PROGRAM>

END;
BLOCKCNT:=BLOCKREAD<SCRNFILE,BUFFER,l,l>;
WHILE <IORESULT=O> AND <NOT EOF(SCRNFILE>> DO

BEGIN
UNITWRITE<1,BUFFER,512,0,2>;
BLOCKCNT:=BLOCKREAD<SCRNFILE,BUFFER,l>

END;
UNITWRITE<1,BUFFER,358,0,2>;
CLOSE<SCRNFILE>;
SCRPROC :=YPROCMIN;
SCRWORD :=YWORDMIN;
SCRLINE :=YLINEMIN;
CLEARLINES:=FALSE;

END; <* FORMATSCREEN *>

PROCEDURE READANSWER<VAR ANS:CHAR>;
<***************************************
* VERSION : AUGUST 1982 *
* AUTHOR : SEE HEAN QUEK *
* DESCRIPTION : *
* CHECKS YES AND NO *
* REPLY TO QUESTIONS. *
***************************************)

BEGIN <* READANSWER *>
REPEAT

READLN<ANS>;
IF NOT <ANS IN ['Y','N','D'J) THEN
BEGIN

WRITELN;
WRITELN<'ILLEGAL REPLY. RE-ENTER '>;
WRITE<'==>')

END;
UNTIL <ANS IN ['Y',"N",'D'J>;

END; <* READANSWER *>

55

PROCEDURE READNUMBER<VAR NUMBER:INTEGER>;
<***************************************
* VERSION : 1 FEB 1983 *
* AUTHOR : SEE HEAN, QUEK *
* DESCRIPTION : *
* CHECK NUMERICAL INPUT. ONLY *
* CHECKS SIZE DIGITS OF INPUT. *
***************************************)

VAR
TEXT
SIZE, I
ERROR

STRING;
INTEGER;
BOOLEAN;

FUNCTION IEXP<I:INTEGER> : INTEGER;
<*SUBPROCEDURE-EXPONENT FUNCTION*>
VAR

TEN,J : INTEGER;
BEGIN <* IEXP *>

TEN := 1;
IF (I=O) THEN

BEGIN
IEXP : = 1;
EXIT<IEXP>

END
ELSE

FOR J := 1 TO I DO
BEGIN

TEN := TEN*10;
IF<TEN>10000) THEN

BEGIN

END;

WRITELN<"IEXP TO LARGE** FATAL**'>;
EX IT <PROGRAM>;

END;

IEXP := TEN;
END; <* IEXP *>

BEGIN <* READNUMBER *>
REPEAT

ERROR := FALSE;
READLN <TEXT>;
SIZE := LENGTH<TEXT>;
IF <SIZE=O> THEN ERROR := TRUE;
IF NOT ERROR THEN

FOR I := 1 TO SIZE DO
IF<NOT <TEXT[IJ IN ['0' •• '9','D'J)) THEN

BEGIN
ERROR := TRUE;WRITELN;
WRITELN<'ILLEGAL INPUT. RE-ENTER !'>;

WRITE < • == > • >
END;

UNTIL NOT ERROR;;

56

IF<TEXT[1J = 'D'> THEN EXIT<READNUMBER>;
IF<SIZE>37) THEN

BEGIN
WRITELN<'NUMBER EXCEED 37 DIGITS** FATAL**">;
EXIT<PROGRAM>;

END;
NUMBER := O;
FOR I := 1 TO SIZE DO

BEGIN
L : = SIZE+1-I;
NUMBER:= NUMBER+ <ORD<TEXT[LJ> - 48>*IEXP<I-1>;

END;
END; <* READNUMBER *>

PROCEDURE WELCOME;
(**************************************
* VERSION : 10 AUGUST 1982 *
* AUTHOR : SEE HEAN, QUEK *
* DESCRIPTION : *
* WELCOMING MESSAGE *
* TO THE SATNAV PROGRAM. *
**************************************)

VAR
ANS : CHAR;
BEGIN <* WELCOME *)

PAGE<OUTPUT>;
GOTOXY <0, 2>;
WRITELN<' ----------------------------------- ')
WRITELN <'

II

-=CANTJ=-

* SATNAV *

* * * PROGRAM *

WRITELN< •
WRITELN< •
WRITELN< •
WRITELN <'
WRITELN ('
WRITELN < •
WRITELN <'
WRITELN ('
WRITELN ('
WRITELN < •
WRITELN< •
WRITELN<'
WRITELN<'
WRITELN < •
WRITELN < •

••••••••••••••••• ! CMA-722!

AUTHORS
=======
<ORIGINAL>
<REVISION>

VERSION

GOTOXY <O, 22>;

MARK LORD < 1981 >
SEE HEAN QUEK <1983)

MAY 1983 (3.0)

.) .) .) .) .) .) .) .) .) .) .) .)
! •)
! •)
! •) .)

57

WRITELN(' DO YOU WISH TO ALTER PROGRAMMED'>;
WRITE (• DEFAULTS?==>'>;
READANSWER<ANS>;
IF<ANS IN ['N",'D"J> THEN SAVEOPTION;
PAGE<OUTPUT>;
WRITELN<'TO KEEP DEFAULT VALUES, TYPE <D>'>;
OPTION;

END; <* WELCOME *>

PROCEDURE ADDINFO;
<***************************************
* VERSION : JANUARY 12TH 1983 *
* AUTHOR : SEE HEAN QUEK *
* DESCRIPTION : READS IN A NINE DIGIT *
* NUMBER IDENTIFYING RECEIVER • *
***************************************)
VAR

RCVSTR
IONERR
DIGIT
ANS

STRING;
BOOLEAN;
INTEGER;
CHAR;

BEGIN <* ADDINFO *>
PAGE<OUTPUT>;
GOTOXY <0, 5);
WRITELN<'INPUT 9-DIGIT CODE TO IDENTIFY">;
WRITELN('USER/STN/REC E.G. 123456789'>;

REPEAT
GOTOXY<0,8>;WRITELN<' ':30>;GOTOXY<0,8>;
WRITE<"==> •>;READLN<RCVSTR>J
GOTOXY<0,9>;WRITELN(' ":30>;GOTOXY<0,9);
IONERR := TRUE;
IF<LENGTH<RCVSTR><>9> THEN

BEGIN
WRITELN<"9-DIGITS EXPECTED. RE-ENTER'>;
IONERR := FALSE;

END;

IF< IONERR> THEN
BEGIN

FOR I := 1 TO 9 DO
IF NOT <RCVSTR[IJ IN ['0' •• '9'J) THEN

IONERR := FALSE;
IF NOT IONERR THEN

WRITELN<'NUMERICAL INPUT PLEASE !'>;
END;

UNTIL IONERR;

FOR I := 9 DOWNTO 1 DO
BEGIN

58

DIGIT := ORD<RCVSTR[IJ>;
RCVCODECIJ := CHR<DIGIT>;

END;

END; <*ADDINFO*>

59

**
*
*
*

FILE : SNAPP2:SATBCK33.TEXT *
*
* **

60

<* ROUTINES RELATED TO THE READING *>
<* AND PROCESSING OF THE DOPPLER DATA *>

PROCEDURE READPARA; FORWARD;
PROCEDURE READPASS; FORWARD;

PROCEDURE READWORD;
<* PROCEDURE TO GET NEXT 4-DIGIT INPUT WORD FROM RECEIVER *>
<* USING ASSEMBLER INPUT QUEUE HANDLER, "GETWORD". *>
VAR ENDOFPARA,ENDOFPASS:BOOLEAN;

PROCEDURE SCANKB;
<* SUB-PROCEDURE TO SCAN KEYBOARD FOR USER INPUT. TO ISSUE *>
<* A COMMAND, USER MUST FIRST HIT <ESC> KEY, AND THEN THE *>
<* APPROPRIATE KEY FOR HIS COMMAND. *>

CONST QUIT = "Q"; (*EXIT PGM AFTER CURRENT PASS *>
STAY = •s•; <*CANCELS EFFECT OF ISSUED "QUIT"*>
UNLOCK= •u•; <* ISSUE UNLOCK-PASS CMD TO REC *>
KILL = "K"; <*TERMINATE PROGRAM IMMEDIATELY! *>

VAR KBCHR:CHAR;
BEGIN

SHOWPROC('SCKB',SHOW>;
READ<KEYBOARD,KBCHR>;
IF NOT ESCPRESSED THEN

ESCPRESSED:= KBCHR=CHR<27>
ELSE

BEGIN
ESCPRESSED:=FALSE;
UNITCLEAR<2>;
IF KBCHR IN [QUIT,STAY,UNLOCK,KILLJ THEN

CASE KBCHR OF
QUIT:QUITREQUESTED:=TRUE;
STAY:QUITREQUESTED:=FALSE;
UNLOCK: BEGIN

UNLOCKPASS;
ENDOFPASS:=TRUE

END;
KILL: BEGIN

PARACNT:=O;
QUITREQUESTED:=TRUE;
ENDOFPASS:=TRUE

END;
END <* CASE *>

END;
SHOWPROC<"SCKB',ERASE>;

END; <* SCANKB *>

BEGIN <* READWORD *>
SHOWPROC<"RDWD",SHOW>;

61

ENDOFPARA:=FALSE;
ENDOFPASS:=FALSE;

IF KEYPRESS THEN SCANKB;
GETWORD<INPUTWORD>;

IF LENGTH<INPUTWORD>=O THEN
BEGIN

SHOWMODE(PWAITP);
REPEAT

IF KEYPRESS THEN SCANKB;
GETWORD<INPUTWORD>

UNTIL <LENGTH<INPUTWORD><>O> OR ENDOFPARA OR ENDOFPASS;
SHOWMODE<PACTIVE">

END;

IF LENGTHCINPUTWORD>=4 THEN
CASE INPUTWORDCll OF

PO': IF INPUTWORD<>"OOOO' THEN
BEGIN

ENDOFPARA:=TRUE;
SHOWWORD<'T2MIN')

END
ELSE

BEGIN
ENDOFPASS:=TRUE;
SHOWWORD<"R2MIN')

END;
'lp,"2','3','4":BEGIN

ENDOFPARA:=TRUE;
SHOWWORDCINPUTWORD>;
WRITE<CHR<7>>

END;
"B':BEGIN

ENDOFPARA:=TRUE;
SHOWWORD<"S2MIN">

END;
•c•:BEGIN

ENDOFPASS:=TRUE;
SHOWWORD<'ENDPS'>

END;
'5','6','7','9','A','B','D",'E','F":

SHOWWORDCINPUTWORD>;
END; <* CASE *>

IF ENDOFPASS THEN
BEGIN

SHOWPROC<"RDPS',ERASE>;
EXIT<READPASS)

END

62

ELSE IF ENDOFPARA THEN
BEGIN

SHOWPROC<~RDPA~,ERASE>;

EXIT<READPARA>
END;

SHOWPROC<"RDWD",ERASE>;
END; <* READWORD *>

PROCEDURE READLINE;
<* ROUTINE TO FORMAT NEXT LINE OF RECEIVER INPUT <9 WORDS> *>
<* INTO VARIABLE "INPUTLINE". SEQUENCE CODES OF THE INPUT *>
<* WORDS ARE CHECKED FOR PROPER SEQUENCE, AND THE DOPPLER *>
(* COUNTS ARE TESTED TO ENSURE THAT THEY CONTAIN ONLY BCD *>
(* DIGITS. THIS TESTING IS NOT DESIRED FOR THE SATELLITE *>
<*MESSAGE <LAST 3 WORDS>. *>
VAR WORDNUM,DIGIT:INTEGER;

DATAERROR :BOOLEAN;
BEGIN <* READLINE *>

SHOWPROC<"RDLN",SHOW>;
DATAERROR:=FALSE;
DIGIT: =1;
FOR WORDNUM:=1 TO 9 DO

BEGIN
READWORD;
IF INPUTWORDClJ<>SEQCODESCWORDNUMJ THEN

DATAERROR:=TRUE
ELSE

CASE WORDNUM OF
1,2,4,5:

IF NOT <<INPUTWORDC2J IN ["0" •• '9"J) AND
<INPUTWORD[3J IN ['0" •• "9"l> AND
<INPUTWORDC4J IN ["0" •• "9"])) THEN

DATAERROR:=TRUE
ELSE

3,6:

BEGIN
INPUTLINECDIGITJ :=INPUTWORDC2J;
INPUTLINECDIGIT+1J:=INPUTWORDC3J;
INPUTLINECDIGIT+2J:=INPUTWORDC4ll
DIGIT:=DIGIT+3

END;

IF NOT <INPUTWORDC4J IN ['0" •• '9'J) THEN
DATAERROR:=TRUE

ELSE
BEGIN

INPUTLINECDIGITJ:=INPUTWORDC4J;
INPUTLINECDIGIT+ll:=•o•;
INPUTLINECDIGIT+2J:=•o•;

63

DIGIT:=DIGIT+4
END;

7,8,9:
BEGIN

INPUTLINECDIGITJ :=INPUTWORDC2J;
INPUTLINECDIGIT+1J:=INPUTWORDC3J;
INPUTLINECDIGIT+2J:=INPUTWORDC4J;
DIGIT:=DIGIT+3

END;
END; <* CASE *>

IF DATAERROR THEN
BEGIN

WRITE<CHR<7>>;
SHOWPROC<'RDPA',ERASE>;
EXIT<READPARA>

END;
END;

SHOWPROC<'RDLN',ERASE>;
END; <* READLINE *>

PROCEDURE READPARA;
<* ROUTINE TO SET TIMESTAMP FOR NEXT PARAGRAPH OF INPUT *>
<* AND THEN TO CALL READLINE ENOUGH TIMES TO OBTAIN A *>
<* COMPLETE PARAGRAPH. IF ANY ERRORS OCCUR IN READLINE,*>
<* OR IF READWORD ENCOUNTERS 2-MINUTE MARKS, THEN THIS *>
<* ROUTINE WILL NEVER COMPLETE AND THUS THE PARACNT *>
<* POINTER WILL NOT BE ADVANCED, THUS CAUSING THE INPUT *>
<* PARAGRAPH TO BE IGNORED. NOTE THAT 2-MINUTE MARKS *>
<* BETWEEN PARAGRAPHS WILL CAUSE THE TIMESTAMP TO BE *>
<* UPDATED, BUT WILL HAVE NO ILL EFFECTS OTHERWISE. *>
VAR PARANUM,LINECNT:INTEGER;

CURRENTTIME:TIMESTAMP;
DISPLAYSTRING:STRING;

BEGIN <* READPARA *>
SHOWPROC<'RDPA',SHOW>;
PARANUM:=PARACNT+l;

GOTOXY<XPNUM,YPNUM>; WRITE<PARANUM:2>;

READTIME<CURRENTTIME>;
CURRENTTIMECSIZEOF<CURRENTTIME>J:=CHR<13>;

IF PARANUM = 1 THEN
LOCKONTIME := CURRENTTIME;

DISPLAYSTRING:=• •; <* 19 SPACES*>
MOVELEFT<CURRENTTIMEC1J,DISPLAYSTRINGC1l,19>;
SHOWMSG<2,CONCAT<'TIMESTAMP = ',DISPLAYSTRING>>;

SHOWLINE<INPUTLINE,CLEAR>;
WITH PASSPARA[PARANUMJ DO

BEGIN
PASSTIME:=CURRENTTIME;

64

FOR LINECNT:=l TO MAXLINE DO
BEGIN

END

GOTOXY<XLNUM,YLNUM>; WRITE<LINECNT:2>;
READLINE;
PASSLINE[LINECNTJ:=INPUTLINE;
SHOWLINE<INPUTLINE,SHOW>;
SHOWPROC<PVOTE',SHOW>;
MJVLINE<LINECNT,PARANUM,INPUTLINE>;
SHOWPROC<PVOTE',ERASE>;

LONGDOPPLERS<LINECNT,PARANUM,INPUTLINE>;

END;
PARACNT:=PARANUM;
SHOWPROC<"RDPA',ERASE>;

END; <* READPARA *>

PROCEDURE READPASS;
<* THIS PROCEDURE COLLECTS PASS DATA UNTIL EITHER THE *>
<*END OF PASS IS REACHED <READWORD WILL CAUSE EXIT>, *>
<* OR UNTIL IT HAS COLLECTED THE MAXIMUM ALLOWABLE *>
<* NUMBER OF DATA PARAGRAPHS - WHICHEVER OCCURS FIRST.*>
BEGIN <* READPASS *>

SHOWPROC(PRDPS',SHOW>;
PARACNT:=O;

<* CLEAR MAJORITY VOTING AND TEMPORARY ARRAYS. *>
CLEARMJVFILE;
SATLOCK := FALSE;

REPEAT
READPARA

UNTIL <PARACNT=MAXPARA>;
UNLOCKPASS;
SHOWPROC<'RDPS',ERASE>;

END; <* READPASS *)

65

**
* *
*
*

FILE : SNAPP2:SATNAV3.TEXT *
* **

66

(*$S+*) <* TURN LEVEL-l COMPILER SWAPPING ON FOR LARGE PROGRAM *>
<***************************************
* VERSION : 3. 0 *
* ORIGINAL AUTHOR : MARK LORD *
* MODIFICATION BY : SEE HEAN QUEK *
* REVISED MANUAL MAY 1983 *

* * * ## AS THE PROGRAM HAS EXCEED THE MAX*
* TEXT FILE SIZE, CERTAIN PROCEDURES *
* ARE NOW KEPT IN A DIFFERENT FILE. *
* CONSULT THE DOCUMENTATION TO CLARIFY*
* ANY MAJOR DETAILS. *
***************************************)

PROGRAM SATNAV3;
USES APPLESTUFF, PEEKPOKE;

CONST MAXPARA =
MAXLINE
REFMAX

8; <* THIS LINE SPECIFIES # OF PARAGRAPHS/PASS *)
= 25; <* THIS LINE SPECIFIES # OF LINES/PARAGRAPH *>
= 1500; <* MAXIMUM DIFFERENCE BETWEEN 2 FREQ COUNTS*>

<* NOTE: MAXMJV MUST BE > MAXPRAMETERS + 1 - ESSENTIAL *)
ENDEPHEMERAL = 14; <* LENGTH OF VARIABLE PARAMETERS *>
MAXPRMETERS = 28; <* MAXIMUM LENGTH OF ALL PARAMETERS *>
MAXMJV = 32; <* MAXIMUM LENGTH OF COMPACT DOPPLERS *>

(* AND MESSAGE * >

<* THE FOLLOWING CONSTANTS ARE USED FOR *>
<* POSITIONING ITEMS ON THE SCREEN, AND *>
<* MOST CAN BE SAFELY ALTERED TO MODIFY *)
<* THE SCREEN FORMAT. *>

XMODE=7; YMODE=O;
XPNUM=11; YPNUM=1;
XLNUM=14; YLNUM=l;
XMSG =1; YMSG =3;
XLINE=5 ; YLINEMIN=10;YLINEMAX=23;
XPROC=O; YPROCMIN=10;YPROCMAX=23;
XWORD=35; YWORDMIN=3; YWORDMAX=23;

TYPE FTNTYPE = <SHOW,ERASE,CLEAR>;
DATAWORD = STRING[5J;
DATALINE =PACKED ARRAY[1 •• 30J OF CHAR;
TIMESTAMP =PACKED ARRAY[1 •. 20J OF CHAR;
PARARECORD = RECORD

PASSTIME:TIMESTAMP;
PASSLINE:ARRAY[l •• MAXLINEJ OF DATALINE

END;
LONGLINE =PACKED ARRAY[1 •• 30J OF CHAR;
MESSAGELINE =PACKED ARRAY[1 •• 9J OF CHAR;
PACKLINE =PACKED ARRAY[1 •. 32J OF CHAR;

67

DOPLINE
MESSCHAR
MESSVALUE

=PACKED ARRAY[1 •• 9J OF CHAR;
= ARRAY[1 .. 9J OF CHAR;
= INTEGER[9J;

VAR PROCNAMES:ARRAY[YPROCMIN •• YPROCMAXJ OF STRIN6[8J;
PASSPARA :ARRAY[l •• MAXPARAJ OF PARARECORD;
SEQCODES :PACKED ARRAY[1 •• 9J OF CHAR;
INPUTWORD :DATAWORD;
INPUTLINE :DATALINE;
PARACOMPLETED :BOOLEAN;
MEMUNUSED :STRING[5J;
SCRPROC,SCRLINE,SCRWORD,PARACNT :INTEGER;
CLEARLINES,QUITREQUESTED,ESCPRESSED :BOOLEAN;

PARAMFILE
PASSFILE

:TEXT;
:FILE OF PARARECORD;

PFNUMBER,PFINCREMENT :INTEGER;
PFDEVICE :STRING[7J;
PFROOTNAME,PFEXT,MJROOTNAME :STRING[14J;
PFNAME,MJNAME :STRING[26J;

MJVPASS : ARRAY[l •• MAXPRMETERSJ OF MESSCHAR;
TEMPORARY : ARRAY[l •• MAXPRMETERSJ OF MESSAGELINE;
DOP30FQ150,DOP30FQ400: ARRAY[l •• MAXMJVJ OF DOPLINE;

LOCKONTIME: PACKED ARRAY[1 •. 20J OF CHAR;
MJVFILE : FILE OF PACKLINE;
MJVCODE : PACKED ARRAY[l •• MAXMJVJ OF CHAR;
OPTIONCODE,RCVCODE: MESSAGELINE;

MINPARA,MINDOP30
FAILMJVRJ,FAILDOPRJ
ZEROUNDOP
MJVONLY,SATLOCK
ISAT

<* GLOBAL VARIABLES *>

: INTEGER;
CHAR;
CHAR;
BOOLEAN;
INTEGER;

NO,I,J,K,L INTEGER;
PACK9 : MESSAGELINE;
UNPACK9 MESSCHAR;

PROCEDURE WRITEPASS; FORWARD;
PROCEDURE OPTION; FORWARD;
PROCEDURE SAVEOPTION;FORWARD;

<*SI #5:SATBCK32.TEXT *>

PROCEDURE SAVEOPTION;
(***************************************

68

* VERSION : SEPTEMBER 5TH 1982 *
* AUTHOR : SEE HEAN, QUEK *
* DESCRIPTION : *
* WRITES OPTION SELECTED *
* ON THE LAST LINE OF MJV PASS FILE. *
***************************************>
VAR

OPT : CHAR;

BEGIN
<* MINPARA *>

OPT := CHR<MINPARA + 48);
OPTIONCODEC1l := OPT;

<* ZERO DOPPLERS *>
IF ZEROUNDOP = ~v~ THEN

OPTIONCODE[2J := ~1•

ELSE
OPTIONCODEC2l := ~o•;

<* REJECT PASS ON DOPPLERS *>
IF FAILDOPRJ = •y~ THEN

OPTIONCODEC3l := •t~
ELSE

OPTIONCODEC3l := •o•;
<* REJECT PASS ON MJV *>

IF FAILMJVRJ = •y• THEN
OPTIONCODEC4l := "1'

ELSE
OPTIONCODEC4l := •o•;

<* MINDOP30 *>
OPT := CHR<<MINDOP30 DIV 10> + 48>;
OPTIONCODEC5l := OPT;
OPT := CHR<<MINDOP30- <<MINDOP30 DIV 10>*10)) + 48>;
OPTIONCODEC6l := OPT;

<* NOT USED *>
OPTIONCODEC7l := •o•;

<* VERSION CODE-1ST DECIMAL*>
OPTIONCODEC8l := "3";

<* VERSION CODE-2ND DECIMAL*>
OPTIONCODEC9l := •o•;

EXIT<WELCOME>
END;

PROCEDURE OPTION;
<***************************************
* VERSION : SEPTEMBER 5TH 1982 *
* AUTHOR : SEE HEAN, QUEK *
* DESCRIPTION : *
* ALLOWS A CHANGE OF *
* PROGRAMMED DEFAULTS. *

69

***************************************)
VAR

ANS,TEXT : CHAR;
MINDOP : INTEGER;

PROCEDURE OPTCONT;
BEGIN

WRITELN;WRITELN;
WRITELN<'DO YOU WANT A MINIMUM NUMBER OF 30-SEC'>;
WRITELN<'COUNTS FOR EACH PASS TO BE ENFORCED?'>;
WRITE<'<DEFAULT = ',FAILDOPRJ,'> CHANGE TO?'>;
READANSWER<ANS>;
IF<ANS = 'N'> THEN FAILDOPRJ := 'N';
IF<ANS = 'Y'> THEN

BEGIN
WRITELN;
WRITELN<'INPUT MINIMUM 30-SEC TWO FREQ COUNTS?'>;
WRITE<'<DEFAULT = ',MINDOP30,'> CHANGE TO?">;
READNUMBER<MINDOP>;
IF <MINDOP>=MAXMJV> THEN

WRITELN('ERROR- VALUE= OR > ',
MAXMJV,•. DEFAULT USED')

ELSE
MINDOP30 := MINDOP;

END;

WRITELN;WRITELN;
WRITELN<'SELECT DATA TO BE SAVED ON DISK.'>;
WRITELN<' 1. MJV DATA ONLY'>;
WRITELN(' 2. MJV AND RAW DATA'>;
WRITELN;
WRITELN<'<NOTE:IF INPUT<> 1 OR 2, DEFAULT USED>'>;
IF MJVONLY THEN

NO := 1
ELSE

NO := 2;
WRITE<'<DEFAULT = •,No,•> CHANGE TO?'>;
READNUMBER<NO>;
IF NO = 1 THEN

MJVONLY := TRUE
ELSE

MJVONLY := FALSE;

WRITELN;WRITELN;
WRITE< • DONE'>;
FOR I := 1 TO 1000 DO

MINDOP:= MINDOP + 1;
<* KEEP OPTIONS *>

SAVEOPTION;
END;

BEGIN <* OPTION *>
WRITELN;

70

WRITELN<"MINIMUM NUMBER OF TWO MINUTE PARAGRAPHS">;
WRITELNC"TO BE OBTAINED BEFORE WRITING TO">;
WRITELN<"DISK DRIVES ? ">;
WRITE<'<DEFAULT = ",MINPARA,"> NEW VALUE?">;
READNUMBER<MINPARA>;

WRITELN;
WRITELN<"IN THE EVENT THAT THE MAJORITY VOTED">;
WRITELN<'MESSAGE FAILS THE BUILT-IN TESTS,">;
WRITELN<"DO YOU STILL WISH TO SAVE THE ">;
WRITELN<"PASS ON THE DISKETTE?">;
IF CFAILMJVRJ="Y"> THEN

TEXT:= 'N"
ELSE

TEXT:= •y•;
WRITE<"<DEFAULT =",TEXT,"> CHANGE TO?'>;
READANSWERCANS>;
IFCANS = "Y'> THEN FAILMJVRJ := 'N"

ELSE FAILMJVRJ := •y•;

WRITELN;WRITELN;
WRITELNC"IF THE DIFFERENCE BETWEEN THE DOPPLER'>;
WRITELNC'COUNTS AT 400MHZ AND 150MHZ EXCEEDS ",REFMAX>;
WRITELN<"COUNTS, DO YOU WANT THEM TO BE ZEROED?">;
WRITE<"<DEFAULT = ',ZEROUNDOP,"> CHANGE TO?">;
READANSWERCANS>;
IFCANS = "N"> THEN ZEROUNDOP := 'N';

OPTCONT;
END; C* OPTION *>

<*SI •s:SATBCK31.TEXT *>

PROCEDURE INITPIA; EXTERNAL;
PROCEDURE GETWORD CVAR STRING4>; EXTERNAL;
PROCEDURE RESETIRQ; EXTERNAL;
PROCEDURE READTIME<VAR PKCHAR19>; EXTERNAL;

PROCEDURE UNLOCKPASS;
<* ROUTINE TO SET ANNUNCIATOR OUTPUTS AND STROBE TO
<* RECEIVER TO UNLOCK FROM THE CURRENT PASS. THESE
C* ARE PART OF THE APPLE GAME I/0 CONTROLLERS.
VAR STROBE:INTEGER;
BEGIN <* UNLOCKPASS *>

TTLOUTCO,TRUE>;
TTLOUT<1,FALSE>;

COMMAND *>
OUTPUTS *>

*)

TTLOUT<2,FALSE>;
TTLOUT<3,TRUE>;
STROBE:=PEEK<-16320>;

END; <* UNLOCKPASS *>

(*$I #5:SATBCK33.TEXT *>

PROCEDURE OPENPASSFILE;

71

<* THIS PROCEDURE ATTEMPTS TO OPEN A NEW PASS FILE FOR *>
<* SAVING CURRENT PASS DATA IN. FILE SIZE IS *>
<* COMPUTED, AND RCV.PARAM IS USED TO MAKE A NEW FILE *>
<* NAME UP. ATTEMPTS ARE THEN MADE TO PRE-EXTEND THIS *)
<* FILE TO ITS FULL SIZE ON AN OUTPUT DISK, GIVING LAST*>
<* PREFERENCE TO THE <USUALLY> BOOT DISKETTE IN DRIVE *>
C* #4. IF ALL ATTEMPTS FAIL, THE USER IS PROMPTED BY A*>
C* HIGH-PITCHED BEEP-BEEP NOISE TO SPECIFY A FURTHER *>
<* COURSE OF ACTION FOR THE PROGRAM: EITHER TERMINATE, *>
<* OR TRY AGAIN TO FIND SPACE CIE. IF THE USER FIRST *>
<*INSERTS A NEW DISKETTE>. *>
<* MODIFIED - S.H. QUEK *>
<* OPENS BOTH PASS AND MAJORITY VOTED DISK FILES. *>
VAR PFBLOCKCNT,PREFERENCE,DUMMY:INTEGER;

IERMJ,IERPF,MJBLOCKCNT :INTEGER;
REPLY :CHAR;
PFSIZE,PFDIGITS,MJSIZE :STRINGC5J;
PFPARTIALNAME,MJPARTIALNAME :STRINGC19J;

PROCEDURE CHECKSPACE;
BEGIN

PFNAME:=CONCAT<PFDEVICE,PFPARTIALNAME>;
MJNAME:=CONCAT<PFDEVICE,MJPARTIALNAME>;
IF MJVONLY THEN

SHOWMSG<O,CONCAT<•NEW FILE= •,MJNAME>>
ELSE

SHOWMSB<O,CONCAT<"NEW FILE= ",PFNAME>>;
(*$1-*)
IERPF := O;
IF NOT MJVONLY THEN

BEGIN
REWRITECPASSFILE,PFNAME>;
IERPF := IORESULT;

END;

REWRITECMJVFILE,MJNAME>; (*$I+*)
IERMJ := IORESULT;
IF <IERPF=O> AND CIERMJ=O> THEN

BEGIN
SHOWPROCC"OFIL",ERASE>;

72

EXIT<OPENPASSFILE>
END;

<* CASE WHEN ONLY ONE FILE IS SUCCESSFULLY OPENED *)
IF NOT MJVONLY THEN

IF IERPF=O THEN
CLOSECPASSFILE>;

IF IERMJ=O THEN
CLOSE<MJVFILE>;

END; <*CHECKSPACE*>

BEGIN <* OPENPASSFILE *>
SHOWPROC<"OFIL",SHOW>;
STR<PFNUMBER,PFDIGITS>;

<* THE FOLLOWING LINES DETERMINE THE REQUIRED FILE SIZE *>
<* IN BLOCKS OF THE OUTPUT PASS FILE. ".TEXT" FILES ARE*>
<* A SPECIAL CASE BECAUSE THEY REQUIRE A 2-BLOCK HEADER *>
<* RECORD <WRITTEN BY OPERATING SYSTEM> AND THEY MUST *>
<* BE WRITTEN <CREATED> IN EVEN INCREMENTS OF 2-BLOCKS. *>

IF PFEXT=".TEXT" THEN
BEGIN

PFBLOCKCNT:=2*<1+<PARACNT*SIZEOF<PARARECORD> DIV 1024))+2;
MJBLOCKCNT:=2 + l+CMAXMJV*SIZEOF<PACKLINE) DIV 512)

END
ELSE

BEGIN
PFBLOCKCNT:=l+<PARACNT*SIZEOF<PARARECORD> DIV 512>;
MJBLOCKCNT:=l+CMAXMJV*SIZEOF<PACKLINE> DIV 512)

END;
STR<PFBLOCKCNT,PFSIZE>;
PFPARTIALNAME:=CONCAT<PFROOTNAME,PFDIGITS,PFEXT,"C',PFSIZE,'J">;

STR<MJBLOCKCNT,MJSIZE>;
MJPARTIALNAME:=CONCAT<MJROOTNAME,PFDIGITS,PFEXT,•c•,MJSIZE,•J•);

<* WE CAN USE THE SAME DISK AS LAST TIME ONLY IF IT WAS *>
<*NOT THE BOOT DRIVE (#4:>. OTHERWISE, WE HAVE TO GO *>
<* SEARCHING FOR SPACE ELSEWHERE FIRST. *>

IF PFDEVICE<>'#4:" THEN
CHECKSPACE;

<* THE FOLLOWING LOGIC SEARCHES FOR AN OUTPUT DISK, IN *>
<* THE ORDER OF PRIORITY SPECIFIED WITHIN THE CASE BELOW*>

REPEAT
SHOWMSG<2,"CSEARCHING FOR NEW OUTPUT DISKJ'>;
FOR PREFERENCE:=! TO 6 DO

BEGIN

73

CASE PREFERENCE OF
<* THESE ARE PASCAL DISK DRIVE UNITS *>

1: PFDEVICE:=~#5:'; <*FIRST CHOICE*>
2: PFDEVICE:='#ll:~; <*SECOND CHOICE*>
3: PFDEVICE:='#12:'; <*THIRD CHOICE*>
4: PFDEVICE:="#9:•; <*FOURTH CHOICE*>
5: PFDEVICE:='#lO:•; <*FIFTH CHOICE*>
6: PFDEVICE:="#4:' <*LAST RESORT ONLY! *>

END; <* CASE *)
END;

CHECKSPACE;
SHOWMSG<l,'NO SPACE FOR OUTPUT FILE">;
SHOWMSG<2,'<ESC>=KILL; <RETURN>=RETRY">;
UNITCLEAR<2>;
WHILE NOT KEYPRESS DO

BEGIN
NOTE<45,25>; <*BEEP AND*>
FOR DUMMY:=l TO 2000 DO <* DELAY! *)

END;
READ<KEYBOARD,REPLY>;
SHOWMSG<l,''>;

UNTIL REPLY=CHR<27>; <*ESCAPE CHARACTER*>
QUITREQUESTED:=TRUE;
SHOWPROC<"WPAS~,ERASE>;

EXIT<WRITEPASS>
END; <* OPENPASSFILE *>

PROCEDURE CLOSEPASSFILE;
<* THIS ROUTINE CLOSES THE CURRENT PASSFILE AND UPDATES *>
(* RCV.PARAM.TEXT TO REFLECT THE NEXT PASS NUMBER TO BE*>
<* USED IN CREATING PASS FILES. *>
<* MODIFIED - QUEK ; CLOSE ALL FILES *>
BEGIN <* CLOSEPASSFILE *>

SHOWPROC<'CFIL',SHOW>;
IF NOT MJVONLY THEN

BEGIN
CLOSE<PASSFILE,LOCK>;
SHOWMSG<l,"PASS FILE SUCCESSFULLY WRITTEN">;

END;
CLOSE<MJVFILE,LOCK>;
SHOWMSG<2,'[UPDATING RCV.PARAM.TEXTJ'>;
PFNUMBER:=PFNUMBER+PFINCREMENT;
<*SI- *> <* PURGE EXISTING FILE *>
RESET<PARAMFILE,"#4:RCV.PARAM.TEXT'>;
IF IORESULT = 0 THEN

CLOSE<PARAMFILE,PURGE>;
<*SI+*>
REWRITE<PARAMFILE,'#4:RCV.PARAM.TEXT[4l');
WRITELN<PARAMFILE,PFROOTNAME>;

74

WRITELN<PARAMFILE,MJROOTNAME>;
WRITELN<PARAMFILE,PFNUMBER,' ',PFINCREMENT>;
WRITELN<PARAMFILE,PFEXT>;
CLOSE<PARAMFILE,LOCK>;
IF NOT MJVONLY THEN

SHOWMSG<O,CONCAT<"LAST PASS= ",PFNAME>>
ELSE

SHOWMSG<O,CONCAT<'LAST PASS= ",MJNAME>>;
SHOWMSG<t,••>;
SHOWMSG<2,'')

END; <* CLOSEPASSFILE *>

PROCEDURE WRITEPASS;
<* THIS ROUTINE HANDLES THE <VERY> FAST TRANSFER OF A GROUP *>
<* OF DATA PARAGRAPHS <IE. THE CURRENT PASS> TO A PASS FILE *)
<* ON DISKETTE. THE TWO PROCEDURES ABOVE AID IN THIS QUEST.*>
VAR PARANUM:INTEGER;
BEGIN <* WRITEPASS *>

SHOWPROC<'CMJV',SHOW>;
CHECKMJVFILE; <* CHECK ON CONTENTS OF MJV ARRAY *)
SHOWPROC<'CMJV',ERASE>;
SHOWPROC<'WPAS',SHOW>;
RESETIRQ; <* DISABLE INTERRUPTS WHILE USING DISKETTE DRIVES *>
SHOWMODE<'DISKIO'>;

OPENPASSFILE;
CONDPASSFILE;

IF NOT MJVONLY THEN
BEGIN

FOR PARANUM:=1 TO PARACNT DO

END;

BEGIN
PASSFILEA:=PASSPARACPARANUMJ;
PUT<PASSFILE>

END;

CLOSEPASSFILE;

INITPIA; <* ENABLE INTERRUPTS AGAIN *>
SHOWMODE<'ACTIVE'>;
SHOWPROC<'WPAS',ERASE>;

END; <* WRITEPASS *>

PROCEDURE SETPARAMETERS;
<* THIS ROUTINE ATTEMPTS TO READ THE PASS FILE NAMING *>
<*PARAMETERS FROM #4:RCV.PARAM.TEXT. IF THE FILE *>
<* CANNOT BE OPENED, AN ERROR MESSAGE IS DISPLAYED *>

75

<* AND THE PROGRAM TERMINATES. *>
<* THE PARAMETERS EXPECTED ARE: <ON SEPARATE LINES> *>
< * 1 • ROOTSUFF I X - FOR PASSES *)
<* 2. ROOTSUFFIX - FOR VOTED PASS FILE *)
<* 3. NEXT PASSNUMBER ~ PASSNUMBERINCREMENT *)
<* 4. EXTENSION *>
<* MODIFIED - SH QUEK *>
<* ADD LINE 2 TO READ MAJORITY VOTED FILE NAME PREFIX *>
VAR

STRNUM,STRINC,STRST : STRING;
BEGIN

SHOWPROC<'SETP',SHOW>;
SHOWMODE<'DISKIO'>;
PFDEVICE:='#5:';
<*SI-*> RESETCPARAMFILE,'#4:RCV.PARAM.TEXT">; (*$I+*>
IF IORESULT<>O THEN

BEGIN
SHOWMSGCl,'UNABLE TO OPEN #4:RCV.PARAM.TEXT">;
NOTE<35,50>;
EXIT<PROGRAM>

END;
READLN<PARAMFILE,PFROOTNAME>;
READLN<PARAMFILE,MJROOTNAME>;
READLN<PARAMFILE,PFNUMBER,PFINCREMENT>;
READLN<PARAMFILE,PFEXT>;
STRCPFNUMBER,STRNUM>;
STR<PFINCREMENT,STRINC>;
STRST:= CONCATC' <',MJROOTNAME,">",STRNUM,PFEXT,•(•,sTRINC,•)•);
SHOWMSG<O,CONCAT<"PARAMS- ",PFROOTNAME,STRST>>;
CLOSE<PARAMFILE,NORMAL>;
SHOWPROCC'SETP",ERASE>;

END;

BEGIN <* SATNAV *>

<* DEFAULT OPTIONS FOR THE PROGRAM *>
MINDOP30 . - 10 ; (* MIN. NO OF 30-SEC DOPRS FOR PASS ACCPT .-
MINPARA . - 5 ; (* MINIMUM PARAGRAPHS ACCUMULATED B4 SAVING .-
FAILMJVRJ . - • y•; (* REJECT PASS IF FAILS MJV MESSAGE TESTS .-
ZEROUNDOP . - • y• ; (* ZERO 30-SECOND DOPPLERS IF DIFF .-
FAILDOPRJ . - • Y' ; (* REJECT PASS IF FAILS MIN COUNT .-
MJVONLY . - TRUE; <* SAVE ONLY MJV DATA ON THE DISK .-
WELCOME;
ADD INFO;
FORMATSCREEN;
SHOWPROC<'SATN',SHOW>;

STR<<2*MEMAVAIL>,MEMUNUSED>;

> REFMAX

*)
*)
*)
*>
*)
*>

76

SHOWMSG<l,CONCAT<"MEMAVAIL AT SETUP= ",MEMUNUSED,~ BYTES'>>;
SETPARAMETERS;
INITPIA;
SHOWMODE<"ACTIVE">;

INPUTLINE[lOJ: = • •;
INPUTLINE[20J:= • •;
INPUTLINE[30J:= CHR<13>;
SEQCODES :=~5679ABDEF";

ESCPRESSED :=FALSE;
QUITREQUESTED:=FALSE;
UNITCLEAR<2>;

REPEAT
SHOWMSG<l,"USER <ESC> COMMANDS: Q,S,U,K"J;
READPASS;
IF PARACNT >= MINPARA THEN

WRITEPASS
UNTIL QUITREQUESTED;

SHOWMODEC'QUIT'J;
RESET IRQ;
SHOWPROC<"SATN',ERASEJ;
PAGE<OUTPUT>

END. <* SATNAV *)

77

PROGRAM LINK

DESCRIPTION AND USER'S GUIDE

78

ABSTRACT

This supplement describes the various modifications to the Digital

Data Transfer (TALK) program developed originally by Mark S. Lord, and

described in Technical Report 88 of the Department of Surveying

Engineering, University of New Brunswick.

These changes have been implemented in a revised version of the TALK

program, called LINK.

The program can now communicate with VSPC on the IBM 3032 at 1200

baud and has the capability of saving VSPC files on Apple diskettes.

A user's guide to LINK is provided in Appendix I.

79

PROGRAM LINK

TABLE OF CONTENTS

Abstract •
Table of Contents •

1 • Introduction

2. LINK
2. 1 1200 Baud Communication
2.2 Additional features

3. Conclusions and Recommendations

References

Appendix I - User's Guide

Appendix II - Components of the Apple II+ system

Appendix III - LINK Program Listing •

78
79

80

b1
81
82

83

b4

85

94

95

1. INTRODUCTION

The TALK program was initially developed to enable the Apple II+ to

communicate with VS PC. This allowed the transfer of accumulated Doppler

pass files to the IBM for further processing. Since the inception of the

program, the communication line from VSPC has been upgraded to support a

1200 baud data rate. Accessing the higher baud rate decreases considerably

the time needed to transfer a set of passes from the Apple to VSPC. To

achieve 1200 baud communication, it was necessary to develop an assembler

inter face to handle the transmissions between the Apple and the IBM. The

basic structure of the program, however, remains identical to that

described in Lord [1982].

80

2. LINK

LINK is the latest version of the TALK program developed originally

by Lord [1982] to transfer Doppler data to the IBM. To support 1200 baud

communication between the Apple and the IBM, several assembler routines

were added. The program has been segmented to accommodate more object

code; i.e., only part of the program remains in memory at a time.

2. 1 1200 Baud Communication

The TALK program was designed to use a 300 baud communication link to

the IBM. When the hardware was upgraded to support 1200 baud

communication, the program, due to the inherent slowness of the PASCAL

language in which TALK is written, was unable to keep up, and this resulted

in missing characters. In an effort to speed the operation of the program,

the transfer and receiving routines have been rewritten in assembler

language. Data coming in from the IBM is placed in a 256 character buffer

by the assembler routines. The program then empties the buffer at its own

pace. Data going out to the IBM is sent whenever the transmit register is

free.

To en sure that all incoming characters are placed in the buffer, the

interrupt capability of the Apple II+ is employed. Whenever data is

received from the IBM, the program is interrupted and the assembler

interrupt service routine picks up the input character from the receive

register and places it in the input queue. The program later picks up the

data from the queue in the order in which they arrived. When the rate at

which data are received exceeds the rate the program is emptying the queue,

the buffer starts to fill up. There may be instances when the buffer gets

81

82

full. In this unlikely event a '?' appears, denoting missing characters

due to the buffer overflowing.

2.2 Additional Features

2. 2. 1 Pass Transfer Routine

The pass transfer routine now has the capability of transferring

both the majority-voted data file and the raw pass file to VSPC. It can be

requested to transfer only the majority-voted file.

2.2.2 Copy Routine

The LINK program now supports two-way transfers of text files

between VSPC and the Apple. The copy routine, which enables a VSPC file to

be saved on the Apple diskette, was extracted from Slipp [1982].

3. CONCLUSIONS AND RECOMMENDATIONS

The LINK program, although primarily developed for the IBM 3032, can

be modified to operate with any computer. Changes to the communication

protocol can easily be done with the LINK program. Baud rate, parity and

data bit changes are achieved by writing appropriate values to the command

and control registers of the Super Serial Card.

Versatility of the LINK program will allow data to be transmitted

from and to the field via a telephone link.

83

84

REFERENCES

Apple Pascal: Language Reference Manual (1980),
Cupertino, CA.

Apple Computer Inc.,

Apple Pascal: Operating System Reference Manual (1980). Apple Computer
Inc., Cupertino, CA.

Lord, M.S. (1982). "Digital data recorder and transfer device for the
Marconi 722B satellite navigation receiver." Department of
Surveying Engineering Technical Report 88, University of New
Brunswick, Fredericton.

Slipp, L. (1983). "The evaluation and implementation of an Apple II
micro-computer as an interactive graphics terminal." Department
of Surveying Engineering Technical Report 89, University of New
Brunswick, Fredericton.

Super Serial Card: Installation and Operation Manual (1981). Apple
Computer Inc., Cupertino, CA.

85

APPENDIX I

Program LINK

Author S.H. Quek

Language PASCAL

Compiler APPLE PASCAL (1.1>

Type Interactive

Purpose Software Package for Apple II+ to VSPC

Communications.

Date June 1983

86
LINK - User's Guide

The following describes the start-up,or "booting~procedure

for the execution of the LINK program.

1. Before turning on the power to the Apple slide the

diskette named TRACK into disk drive 1 <as identified by

the label on the front of the drive) and a

Pascal-formatted diskette into the other drive.

2. Power on the Apple.

3. The screen should display the current time, i.e.

year/month/day hour/min/second. A request to type 'I'

sometimes appears. Do this if requested.

4. If system fails to boot, try swapping the diskettes in

the disk drives. If problem persists, contact author.

5. If booting is successful the system is now in the APPLE

PASCAL Command Mode. To enter the Execution Mode, type

•x•~. The system then asks for the name of the file

<program> you wish to execute.

6. Type 'GO" to execute the front program. Disk drive 1 will

whirr a bit and a menu of available programs will be

displayed.

7. Type "2" to select the LINK program. Note that the LINK

program requires the use of the Super Serial Card in the

Apple for communication to VSPC.

* <Note: Type •x• means hitting the X key on the keyboard

without the quotes>

87
LINK - User's Guide

b!.n!;.

The LINK program is an extended version of the original TALK

program Cby Mark Lord - see reference> currently existing in

the Department of Surveying Engineering. The original

program was modified to

a> operate at 1200 baud,

b> allow for the transfer of a satellite Doppler

majority-voted matrix along with the pass file down

to VSPC,

and c) copy VSPC files onto Apple diskettes.

The name of the program was changed to identify this version

of the software.

After the program identification message <see figure 1>, a

short menu <see figure 2) appears and a "beep" prompts the

user to select an option from the menu. The following are

the options supported by this program.

1. Dumb Terminal Mode

This option allows the Apple keyboard and screen to be

used as a half-duplex asynchronous ASCII terminal. This

allows the user full control over the VSPC logon

<Two keystrokes of the •RETURN• key should elicit a

response from VSPC>. The scintillating cursor is used to

identify this mode of operation. To exit from this mode,

type a "CTRL <C>".

88
LINK - User's Guide

Figure 1 - Program LINK Identification Message

APPLE II COMMUNICATIONS INTERFACE

USING SSC TO VSPC

BY

SEE HEAN QUEK

(1983)

89
LINK - User"s Guide

Figure 2 - Program Menu

-- SUPER SERIAL COMMUNICATIONS PROGRAM ==

== COMMAND MODE --

OPTIONS ARE:
D = DUMB TERMINAL MODE
P = TRANSFER SATELLITE PASS FILES
T = TRANSFER ANY TEXT FILE
C = COPY ANY VSPC FILE
Q = QUIT

== ENTER COMMAND ==>

90
LINK - User•s Guide

2. Pass File Transfer Mode

This mode allows the user to transfer pass and

majority-voted files, created by the SATNAV program, to

VSPC. Before this mode is entered, the user should first

sign on to VSPC using the Dumb Terminal Mode.

To transfer pass and majority-voted data to VSPC, the

user has to specify which files are to be sent. The

program first prompts for a "rootname" of the pass file,

which is the name of the diskette and files <residing on

it) to be transferred, less the file number suffixed to

each name. For example, if the pass file and

majority-voted file are called "PASSlOO.TEXT" and

"MJVlOO.TEXT" respectively on the diskette in drive #5,

then the rootname of the pass file will be

"#5:PASS:TEXT".

The program next prompts for the majority-voted file

prefix. Using the above example, the prefix would be

"MJV".

The program then requests the starting, ending and

increment of the range of suffixed numbers associated

with each file(s) to be transferred. The starting number

is incremented until it sequence through the specified

range of files to be transferred. The program further

asks the user whether to transfer only the majority-voted

file (i.e. only "#5:MJV100.TEXT> for each pass file or

both files (i.e. both "#5:MJV100.TEXT" and

"#5:PASS100.TEXT">. If a given file is not found or

cannot be opened, the reason for it is displayed and the

91
LINK - User's Guide

program proceeds to the next file until all requested

file transfers are attempted or until the user interrupts

the routine by hitting a 'CTRL <C>' to return to the main

menu.

Each pass file in VSPC has the majority-voted data and,

depending on the above option chosen, the raw tracking

data. Each pass is stored in a separate VSPC file. The

name of each VSPC file is constructed from the pass file

name on the diskette. If the pass file name is

"#5:PASS100.TEXT", the VSPC file name would be "PASSlOO".

3. Text File Transfer Mode

This mode is similar to that described above for the

transfer of pass files, except that it will work for any

diskette file with a ".TEXT" suffix. It!;l!! !!12Q!! !!1Y§j; !:!.!!

The program prompts for a file name, including diskette

name, and then asks for a VSPC workspace name under which

to save the text. Once the user has entered these two

items, the program proceeds to transfer all the text

contained in the diskette file until all has been sent

and saved in VSPC, or until the user hits 'CTRL <C>' to

return to the main menu. An example of a diskette file

name is; 'DATA:MYPROG.TEXT'

4. Copy VSPC files

This option allows the user to copy text files in the

VSPC library onto Apple diskettes. The maximum file size

92

LINK - User's Guide

that can be copied at one time is about 25000 characters.

If the size of the file exceeds 13000 characters, it is

stored as two separate .TEXT files on the diskette. If

the file size exceeds 25000 characters, a warning to that

effect is issued and LINK attempts to save the text file up

.to the last carriage return before exceeding 25000

characters.

5. Quitting the LINK program

This option allows the user to gracefully exit from the

LINK program.

During execution of the program the following keys are

programmed for non-standard purposes:

1. Left Arrow - This key generates a VSPC "RUBOUT"
sequence of a backspace followed by a
linefeed. This effectively "deletes"
the last character typed on the
current 1 i ne .

2. Right Arrow - This key generates tab characters, the
same as a "TAB" key on most standard
terminals. The tabs will show up as
a single space on the display screen.

3. CTRL <C> This code is obtained by typing a •c•
while holding down the 'CTRL' key. It
causes an immediate return to the
LINK program's main menu and can be
used to terminate file transfers
prematurely. Note that all I/0 will
remain in the state prior to exit from
the transfer routines, i.e. all
files remain in the open state and
VSPC in the Input Mode.

93
LINK - User•s Guide

Terminating the LINK program does not log you off from VSPC.

Therefore you have to return to the Dumb Terminal Mode in

order to sign off after accessing the other routines.

It is not advisable to go for coffee or tea when the

transfer routine starts transmitting data to VSPC. Data

loss does occur during transmission and when that happens,

the input line (i.e. the last data line shown on the screen>

has to be m~nM~i!~ typed in Chit "RETURN" at the end of the

input> and the data transfer continues upon receiving the

• RETURN" signal.

Switching off the Apple will log you offfrom VSPC.

B~~~!~~~' Technical Report No.88, Dept of Sur.

Eng., U.N.B., April 1982.

Ia!:~Qb.i~!! !~~m!.n~!, Department of Surveying Engineering

Technical Report 89, University of New Brunswick,

Fredericton.

94

APPENDIX II

Components of the Apple II+ System

The following is the list of hardware components required by the LINK

program.

1. Apple II+ microcomputer.

2. Video monitor.

3. Disk controller, and two disk drives.

4. 16K language board.

5. Apple Super Serial Card.

95

APPENDIX III

LINK Program Listing

Files

FTAPP2: FTACIA.TEXT - assembler code

FTAPP2: FTCOPY.TEXT- include file*

FTAPP2: FTCCl1. TEXT - main program

* Include files are files that are inserted into the main program at the

time of compilation. They are usually used when the text files are too

large for the PASCAL editor.

96

**
* *
* FILE : FTAPP2:FTACIA.TEXT *
* * **

97

.TITLE "COMMUNICATION ROUTINES"

.MACROLIST

.PATCHLIST

MACRO TO POP 16-BIT RETURN ADDRESS:

.MACRO POP
PLA
STA %1
PLA
STA %1+1
.ENDM

.
' MACRO TO PUSH 16-BIT RETURN ADDRESS:

.MACRO PUSH
LDA %1+1
PHA
LDA %1
PHA
.ENDM

MEMORY MAP FOR SYS6551 ACIA

;APPLE SLOT NUMBER OF SUPER SERIAL CARD
SSCSLOT .EQU 2

SSCBASE
DIPSW1
DIPSW2
TDREG
RDREG
STATUS
SSCMD
SSCNTL

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

<SSCSLOT*10>+0C080
SSCBASE+l ;DIP SWITCH 1 MEMORY
SSCBASE+2 ;DIP SWITCH 2 MEMORY
SSCBASE+S ;TRANSMIT REGISTER
SSCBASE+S ;RECEIVE REGISTER
SSCBASE+9 ;STATUS REGISTER
SSCBASE+OA;COMMAND REGISTER
SSCBASE+OB;CONTROL REGISTER

SPECIAL SYSTEM MONITOR LOCATIONS:

IRQVECTR .EQU OFFFE
LANGCARD .EQU OCOSO

;BASE ADDRESS OF IRQ/BRK INTERRUPT VECTOR
;BASE ADDRESS FOR SLOT#O = LANGUAGE-CARD

PASCAL-SUPPLIED ZERO-PAGE TEMPORARY WORK AREAS:

RTADDR
CHRINT
CHRCHR

.EQU 00

.EQU 02

.EQU 04

;SAVE AREA FOR PASCAL RETURN ADDRESS
;TEMPORARY WORKAREA - WORD
;TEMPORARY WORKAREA - WORD

ROUTINE TO INITIALIZE SSC AND BUFFER QUEUE:

START

OLD IRQ
IRQADR

98

.PROC INITSSC ;ROUTINE TO INITIALIZE SSC HANDLING

.DEF OLDIRQ

.REF QFWDPTR,QBKWPTR,QBYTEl,IRQHANDL

SEI
POP

LDA
STA
LDA
STA

LDA
STA
LDA
STA

LDA
LDA

LDA
STA
LDA
STA

LDA
STA
LDA
STA

LDA

CLI

RTADDR

#38
SSCNTL
#29
SSCMD

#00
QBKWPTR
#01
QFWDPTR

;DISABLE INTERRUPTS UNTIL DONE
;POP RETURN ADDRESS FROM STACK

;LOAD CONTROL REGISTER

;LOAD COMMAND REGISTER

;SET BACKWARD POINTER
;SAVE BACKWARD POINTER
;SET FOWARD POINTER
;SAVE FORWARD POINTER

LANGCARD+OB ;REMOVE WRITE LANG-CARD WRITE-PROTECT
LANGCARD+OB ;THIS INSTRUCTION HAS TO BE DONE TWICE

IRQVECTR ;GET LSB OF CURRENT IRQ VECTOR
OLDIRQ ;SAVE FOR INTERRUPT HANDLER
IRQVECTR+l;GET MSB OF CURENT IRQ VECTOR
OLDIRQ+l ;SAVE FOR INTERRUPT HANDLER

IRQADR ;GET MSB OF IRQ ROUTINE ADDRESS
IRQVECTR ;STORE IN MSB OF IRQ VECTOR
IRQADR+l ;GET LSB OF IRQ ROUTINE ADDRESS
IRQVECTR+l;STORE IN LSB OF IRQ VECTOR

LANGCARD+B;WRITE PROTECT THE LANG-CARD AGAIN

;ENABLE INTERRUPTS AGAIN

PUSH RTADDR
RTS

;PUSH RETURN ADDRESS BACK ONTO STACK
;RETURN TO CALLING PROGRAM

.WORD 0000

.WORD IRQHANDL
;SAVE AREA FOR ORIGINAL MONITOR IRQ VECTOR
;ADDRESS OF INTERRUPT ROUTINE,16-BIT

PROCEDURE TO DISABLE SSC INTERRUPTS AND
; RESTORE ORIGINAL IRQ/BRK VECTOR

START

.PROC RESETIRQ ;CLEANUP ROUTINE FOR END-OF-PROCESSING

.REF OLDIRQ

SEI

LDA
STA

#29
SSCMD

;DISABLE INTERRUPTS

;LOAD COMMAND WORD

LDA
LDA
LDA
STA
LDA
STA
LDA

RTS

LANBCARD+OB
LANBCARD+OB
OLD IRQ
IRQVECTR
OLDIRQ+l
IRQVECTR+l
LANBCARD+S

99

;REMOVE WRITE LANG-CARD WRITE-PROTECT
;INSTRUCTION HAS TO BE DONE TWICE
;BET LSB OF ORIGINAL IRQ ADDRESS
;STORE IN IRQ VECTOR
;BET MSB OF ORIGINAL IRQ ADDRESS
;STORE IN IRQ VECTOR
;WRITE PROTECT THE LANBUABE-CARD AGAIN

;RETURN TO CALLING PROGRAM

;PROCEDURE TO SEND CHARACTER

NOT CLEAR

TRANSMIT

RESTORE

.PROC SENDCHAR,l ;PROCEDURE TO TRANSMIT DATA

POP RTADDR
POP CHRINT

LOA STATUS
AND #10
BEQ NOTCLEAR

LOA CHRINT
AND #7F
STA TDREB
CLI

PUSH RTADDR
RTS

;SAVE PASCAL RET ADDR
;SAVE PARAMMETER

;CHECK STATUS BIT

;CLEAR FOR TRANSMIT
;STRIP PARITY
;TRANSMIT
;ENABLE INTERRUPT

;PUSH RETURN ADDRESS
;EXIT SUBROUTINE

; PROCEDURE TO RETURN THE NEXT "CHAR" FROM THE QUEUE:

START

.PROC BETCHAR,2 ;PROCEDURE TO EXTRACT CHAR

.DEF IRQHANDL,QBYTEl,QBKWPTR,QFWDPTR

.REF OLDIRQ

POP RTADDR ;SAVE PASCAL RETURN ADDRESS
POP CHRINT ;SAVE ADDRESS OF INTEGER PARAMETER
POP CHRCHR ;SAVE ADDRESS OF CHAR PARAMETER
LOY #01
LOA #00 ;CLEAR ACCUMULATOR
STA @CHRINT,Y ;CLEAR HIBH BYTE
STA I!!CHRCHR,Y ;CLEAR HIBH BYTE
DEY

LDX QBKWPTR ;BET BACKWARD POINTER FOR BUFFER
INX ;POINT TO NEXT WORD IN BUFFER
CPX QFWDPTR ;CHECK FOR EMPTY QUEUE
BNE BETBYTE1 ;BRANCH IF NOT EMPTY

UNDFFLOW LDA
STA
STA
BEQ

GETBYTEl LDA
STA
STA
STX

#00
@CHRINT,Y
@CHRCHR,Y

100

EXITGET ;ALWAYS BRANCH <TO EXIT>

QBYTEl,X ;GET CHARACTER FROM BUFFER
@CHRINT,Y ;SAVE VALUE FROM BUFFER
@CHRCHR,Y ;SAVE ASCII FROM BUFFER
QBKWPTR

EXITGET PUSH RTADDR
RTS

;PUSH PASCAL RETURN ADDRESS ON STACK
;RETURN TO CALLING PROGRAM

QBYTEl
QFWDPTR
QBKWPTR

.BLOCK 256

.BYTE 00

.BYTE 00

;QUEUE AREA FOR 8 BITS OF INPUT DATA
;POINTER TO NEXT EMPTY LOCATION IN QUEUE
;POINTER TO ITEM B4 NEXT VALUE IN QUEUE

INTERRUPT-DRIVEN ROUTINE TO BUFFER DATA FROM THE SSC.
NOT CODED FOR RE-ENTRANCY.
INTERRUPTS ARE RE-ENABLED BY THE RTI INSTRUCTION.

OVFLCHAR .EQU 3F ;USE AS OVERFLOW INDICATOR

IRQHANDL STA SAVEACC ;SAVE ACCUMULATOR

NOTSSC

NOTBRK

PLA
PHA
AND
BEQ

LDA
JMP

LDA
BPL
TXA
PHA

LDX
CPX
BNE

OVERRUN LDA
DEX
STA
BNE

SAVEDATA LDA

#10
NOTBRK

SAVEACC
@OLD IRQ

STATUS
NOTSSC

QFWDPTR
QBKWPTR
SAVEDATA

;GET STATUS REG FROM STACK
;RESTORE ONTO STACK
;TEST "B" BIT
;SKIP NEXT SECTION IF TRUE INTERRUPT

;RESTORE ACCUMULATOR CONTENTS
;BRANCH TO MONITOR"S IRQ/BRK ROUTINE

;WAS IRQ CAUSED BY SSC?
;IF NOT, BRANCH TO MONITOR"S IRQ/BRK
;SAVE INDEX-X ON STACK

;SET UP QUEUE POINTER IN INDEX-X
;CHECK FOR FULL QUEUE
;BRANCH IF QUEUE IS OK

#OVFLCHAR ;LOAD QUEUE OVERFLOW CHARACTER
;POINT AT PREVIOUS QUEUE ELEMENTS

QBYTEl,X ;SAVE IN PLACE OF LAST IN QUEUE
EXITIRQ ;ALWAYS BRANCH

RDREG ;GET 8-BIT DATA

101

AND #7F ;STRIP PARITY
STA QBYTEl,X ;SAVE THEM AS QBYTEl
AND #75 ;STRIP LINEFEEDS
BEQ EXITIRQ ;NO SAVE

INX ;ADVANCE QUEUE POINTER
STX QFWDPTR ;SAVE NEW FORWARD POINTER FOR QUEUE

EXITIRQ PLA ;RESTORE INDEX-X FROM STACK
TAX
LOA SAVEACC ;RESTORE ACCUMULATOR
RTI ;RETURN TO INTERRUPTED ROUTINE

SAVEACC .BYTE 00 ;ACCUMULATOR SAVE AREA

.END

102

**
*
*
*

FILE : FTAPP2:FTCOPY.TEXT *
*
* **

103

SEGMENT PROCEDURE TEXTCOPY;
<***************************************
*PROCEDURE TO COPY TEXT FILES IN VSPC *
*ONTO THE APPLE DISK DRIVES. *
***************************************)

CONST BUFFLIMT = 25000; <* MAX SIZE OF VSPC CHAR BUFFER*)

VAR ONEFILE :BOOLEAN;
BUFFSIZE :INTEGER;
FILE1
CHAR BUFF
TEXTFILE
BLKS, FILENAME, VSPCNAME

:INTEGER;
:PACKED ARRAY
:TEXT;
: STRING[20J;

PROCEDURE DUMP <NAME : STRING;
START, STOP: INTEGER>;

VAR
I, IOERR INTEGER;
SUFFIX STRING[1J;
TEXTNAME STRING[40J;

BEGIN
REPEAT

WRITE< • RECEIVING FILE • >;
IF ONEFILE THEN

SUFFIX : = • •
ELSE

IF O=LENGTH<NAME> THEN
SUFF I X : = • 1 •

ELSE
SUFF I X : = • 2 • ;

IF O=LENGTHCNAME> THEN
BEGIN

READLNCFILENAME>;
IF O=LENGTHCFILENAME> THEN

EXITCPROCESSCOMMAND>;
I := POSC".TEXT",FILENAME>;
IF I<>O THEN

FILENAME := COPYCFILENAME,1,I-1>
END

ELSE
BEGIN

WRITELNCNAME,SUFFIX,".TEXT'>;
FILENAME := NAME

END;

[1 •• BUFFLIMTJ OF CHAR;

TEXTNAME := CONCATCFILENAME,SUFFIX,•.TEXT[",BLKS,"J">;
(*$I-*)

104

REWRITE<TEXTFILE,TEXTNAME>;
IOERR := IORESULT;
(*$I+*)
WRITELN;
IF IOERR<>O THEN

BEGIN
WRITE<CHR<7>>;
WRITE<" ">;
IF IOERR=8 THEN

WRITELN<"NO ROOM ON DISK">
ELSE

WRITELN<"I/0 ERROR I",IOERR>;
WRITELN

END;
UNTIL IOERR=O;
FOR I := START TO STOP DO

WRITE CTEXTFILE, CHARBUFF[IJ>;
WRITELN CTEXTFILE>;
CLOSE <TEXTFILE, LOCK>

END; <* DUMP *>

PROCEDURE COPYWSl;
(***************************************
* THIS ROUTINE COPIES A BLOCK OF DATA *
* FROM A USER SPECIFIED VSPC WORKSPACE*
* OR THE OUTPUT FROM A FORTRAN PROGRAM*
* AND STORES IT ON A DISKETTE. THE *
* BLOCK SIZE IS DEPENDENT UPON THE *
* "BUFFLIMT" CONSTANT DECLARED AT THE *
* BEGINNING OF THIS PROGRAM. *
***************************************)

VAR MESSAGE :STRING;
IOERR,I :INTEGER;

BEGIN
WRITELN<"== PROCEDURE TO COPY IBM FILES=='>;
WRITELN;
WRITELN<"== SELECT 1 OF THE FOLLOWING OPTIONS ==•>;
I:= MEMAVAIL*2;
WR I TELN < • <MEMORY LEFT : • , I : 5, • BYTES) ,..) ;
WRITELN;
WRITELN(" 1. -COPY VSPC FILE CONTENTS">;
WRITELN(" 2. -RUN A VS FORTRAN PROGRAM">;
WRITELN;
WRITE<"== ENTER 1 OR 2 : ">;
REPEAT

READ<KEYBOARD, KBCHR>
UNTIL KBCHR IN ["1","2"J;
WRITELN<KBCHR>;
WRITELN;

105

IF KBCHR = '1' THEN
BEGIN

WRITELN<'== ENTER THE VSPC FILE NAME ==•>;
WRITE<•== FILE NAME==>');
READLN<VSPCNAME>;
IF O=LENGTH<VSPCNAME> THEN

EXIT <PROCESSCOMMAND>;
PAGE<OUTPUT>;
XMITVSPC<"TAPE'>;
XMITVSPC<''>;
XMITVSPC<CONCAT<"LOAD ",VSPCNAME>>;
MESSAGE:='LIST NOLINE '

END
ELSE

BEGIN
WRITELN<"== ENTER THE FORTRAN PROGRAM''S NAME'>;
WRITE<'== PROGRAM NAME==>'>;
READLN <VSPCNAME>;
IF O=LENGTH<VSPCNAME> THEN

EXIT <PROCESSCOMMAND>;
PAGE<OUTPUT>;
XMITVSPC<'TAPE">;
XMITVSPC<••>;
MESSAGE := CONCAT<'RUN ',VSPCNAME,' ')

END;
MESSAGECLENGTH<MESSAGE>l := CHR<13>;
I: =O;
REPEAT

I:=I+l;
SCANKEYBOARD;
SCANACIA;
WRITE<MESSAGECil>;
SENDACIA<ORD<MESSAGECIJ))

UNTIL MESSAGECil = CHR(13)
END; <* COPYWS1 *>

PROCEDURE COPYWS2;
VAR LASTCR :BOOLEAN;

I, L :INTEGER;
BEGIN

I: =1;
SCANACIA;
WHILE <REPLYVAL <> DCl> AND <I <= BUFFLIMT> DO

BEGIN
CHARBUFFCil := CREPLYVAL;
IF REPLYVAL <> 0 THEN

I := I + 1;
SCANKEYBOARD;
SCANACIA

END;
FILE1 : = 13000;
L:=13000;
IF <I>13000> THEN

REPEAT
L := L + 1;

106

IF ORD<CHARBUFF[LJ>=13 THEN
FILE1 : = L;

UNTIL CFILE1=L> OR CL=I>;

IF I > BUFFLIMT THEN
BEGIN

WRITELNC~ ***BUFFER FULL***~>;
WRITECCHR<7>>;
LASTCR := FALSE;
I : = BUFFLIMT;
REPEAT

I := I - 1;
IF<ORDCCHARBUFF[IJ>=13> THEN

LASTCR := TRUE;
UNTIL LASTCR;

END;
BUFFSIZE := I - 1;
PAGECOUTPUT>

END; <* COPYWS2 *>

PROCEDURE COPYWS3;
VAR I1, I2 : INTEGER;
BEGIN

IF BUFFSIZE <= 16000 THEN
BEGIN

I1 := 2*ROUND<1.5+BUFFSIZE/1024>;
ONEFILE := TRUE

END
ELSE

BEGIN
I1 := 2*ROUNDC1.5+FILE1/1024>;
I2 := 2*ROUNDC1.5+CBUFFSIZE-FILE1-1)/1024>;
ONEFILE := FALSE

END;
GOTOXY ClO,l>;WRITELN<"== COPY IBM FILES ==•>;
GOTOXY <0,4>; WRITELNC'1. IBM--> MEMORY">;
GOTOXY <31,4>;
WRITELNC"ASCII'>;
GOTOXY <5,6>; WRITELNC'SOURCE FILE : ',VSPCNAME>;
GOTOXY C5,10>;WRITELN<BUFFSIZE:5,• CHARACTERS WITHIN BUFFER">;
GOTOXY C0,13);WRITELNC"2. MEMORY--> DISK'>;
IF ONEFILE THEN

BEGIN

107

GOTOXY <5,15>;WRITELN<'ESTIMATED BLOCK REQUIREMENT',I1:4>;
WRITELN; STR<Il,BLKS>;
DUMP<'",1,BUFFSIZE>

END
ELSE

BEGIN
GOTOXY (30,13>; WRITELN('2 FILES'>;
GOTOXY <4,15>;WRITELN<'-FILE #1 : BLOCK REQUIREMENT',I1:5>;
WRITELN; STR <I1,BLKS>;
DUMP('',l,FILEl>;
WRITELN;
WRITELN<" -FILE #2: BLOCK REQUIREMENT',I2:5>;
WRITELN; STR <I2,BLKS>;
DUMP <FILENAME,FILE1+1,BUFFSIZE>

END
END; <* COPYWS3 *)

COPYWS1;
COPYWS2;
COPYWS3

108

**
* * * FILE : FTAPP2:FTCOM.TEXT *
* * **

109

(*$S+*> <* SWAPPING MODE ON *>
<***************************************
* PROGRAM:FTCOM <OLD NAME : TALK > *
* WRITTEN: 19-APR-82 BY MARK S LORD *
* MODIFIED BY *
* 21-JAN-82 BY SEE HEAN QUEK *
* REMODIFIED *
* 8-APR-83 BY SEE HEAN QUEK *

* THIS PROGRAM ALLOWS COMMUNICATIONS *
* BETWEEN THE APPLE COMPUTER AND AN *
* OUTSIDE SOURCE, VIA THE SUPER SERIAL*
* INTERFACE CARD IN APPLE SLOT #2. *
* INTERFACE CARD - SSC *
* FOUR DIFFERENT MODES OF OPERATION *
* CAN BE USED AS SELECTED FROM THE *
* PROGRAM"S MAIN MENU: *

* * * D>UMB TERMINAL MODE: *
* KEYS: <CTRLAC) RETURNS USER TO *
* MAIN PROGRAM MENU. *
* <RIGHTARROW> ACTS AS A *
* VSPC CHARACTER *
* KEY. *
* <LEFTARROW> SENDS A TAB *
* CHARACTER TO VSPC. *

* * * T>RANSFER TEXT MODE: *
* <ESC> AND <CTRLAC) KEYS MAY BE *
* USED TO PREMATURELY *
* TERMINATE THE TRANSFER. *

* * * C>OPY VSPC FILE *
* RECEIVES AND STORES FILES ON *
* DISKETTE. USING IBM PROTOCAL. *

* * * P>ASSFILE TRANSFERING: *
* THE STANDARD CHARACTER SEQUENCE: *
* #5:PASS340.TEXT *
* #5:PASS350.TEXT *
* #5:PASS370.TEXT *
* THEN THE APPROPRIATE ROOTNAME *
* WOULD BE: #5:PASS.TEXT *
* THIS IS FOLLOWED BY A *
* REQUEST FOR THE 2ND ROOTSUFFIX *
* WHICH FOLLOWING THE ABOVE EXAMPLE*
* #5:MJV340.TEXT *
* #5:MJV350.TEXT *
* #5:MJV370.TEXT *

*
*
*
*

110

WHERE THESE ARE THE MAJORITY
VOTED DATA FILES FOR THE ABOVE
PASSES, THEN THE APPROPRIATE
2ND ROOTSUFFIX WOULD BE : MJV

*
*
*
*

***************************************)
PROGRAM FTCOM;
USES APPLESTUFF,PEEKPOKE;
CONST ESCAPE = 27; <* ASCII CODE FOR <ESC> CHAR. *)

LINEFEED = 10; <* ASCII CODE FOR <LF> CHAR. *>
LEFTARROW = 8; (* CODE FOR SPECIAL APPLE KEY *>
RIGHTARROW = 21; <* CODE FOR SPECIAL APPLE KEY *>
CTRLC = 3; <* ASCI I CODE FOR CONTROL·"'C *)
DCl = 17; <* ASCII CODE FOR DCl CHAR. *>

TYPE LONGSTRING = STRINGC255J;

VAR KBCHR
KBVAL,REPLYVAL
CREPLYVAL
QUITREQUESTED
I,J

:CHAR;
:INTEGER;
:CHAR;
:BOOLEAN;
:INTEGER;

PROCEDURE INITSSC; EXTERNAL;
PROCEDURE RESETIRQ; EXTERNAL;
PROCEDURE GETCHAR<VAR CHRCHR:CHAR;

VAR CHRINT:INTEGER>; EXTERNAL;
PROCEDURE SENDCHAR<OUTVALUE:INTEGER>; EXTERNAL;

<* FORWARD BLOCK *>
PROCEDURE SENDACIA<OUTVALUE:INTEGER>; FORWARD;
PROCEDURE SCANACIA; FORWARD;
PROCEDURE SCANKEYBOARD; FORWARD;
PROCEDURE PROCESSCOMMAND; FORWARD;
PROCEDURE XMITVSPC<MESSAGE:LONGSTRING>;FORWARD;

SEGMENT PROCEDURE DUMBTERMINAL;
(***************************************
* THIS ROUTINE ALLOWS DIRECT USER *
* COMMUNICATIONS WITH A REMOTE DEVICE *
* BY CAUSING THE APPLE TO BEHAVE AS A *
* NON-INTELLIGENT ASYNC ASCII TERMINAL*
***************************************)

BEGIN <* DUMBTERMINAL *>
WRITELN<'== DUMB TERMINAL MODE=='>;
WRITELN;
WRITELN<'== HIT <CTRLAC> TO QUIT=='>;
WRITELN<CHR<7>>;
KBVAL:=O;

REPEAT
SCANACIA;
SCANKEYBOARD

UNTIL KBVAL=CTRLC;
END; <* DUMBTERMINAL *>

C*$I 15:FTCOPY.TEXT *>

lll

SEGMENT PROCEDURE PASSTRANSFER;
<***************************************
* THIS ROUTINE SERVES AS THE DRIVER *
* FOR THE SENDPASS ROUTINE. IT PROMPTS*
* THE USER FOR THE PASS FILE RANGES *
* AND THEN LOOPS, CALLING SENDPASS TO *
* TRANSFER INDIVIDUAL PASS FILES. OPEN*
* ERRORS ARE LOGGED ON THE SCREEN FOR *
* THE USER TO OBSERVE AS THE PROGRAM *
* CONTINUES WITH THE NEXT FILE IN SEQ.*
***************************************)

TYPE DATALINE =PACKED ARRAYC1 •• 26J OF CHAR;
TIMESTAMP =PACKED ARRAYC1 .• 20J OF CHAR;
MESSLINE =PACKED ARRAYC1 •. 32J OF CHAR;
PARARECORD = RECORD

PASSTIME:TIMESTAMP;
PASSLINE:ARRAYC1 •• 25J OF DATALINE
END;

VAR ROOTNAME,PASSNAME,NUMSTRING,VSPCNAME~OUTSTRING:STRING;
MJVNAME,MJVSUFFIX:STRING;
PASSPARA :PARARECORD;
MJVPASS :MESSLINE;
MJVONLY : BOOLEAN; <* PASS TO IBM ONLY MJV FILES *>

PASSFILE
MJVFILE
ANSWER

:FILE OF PARARECORD;
:FILE OF MESSLINE;
:CHAR;

DOTPOS,IOERR,PASSNUM,LASTNUM,INCREMENT:INTEGER;
IOERR2,SEMICOLON:INTEGER;

PROCEDURE SHORTRANSFER;
BEGIN

WRITELN;WRITELNC'TRANSFER ONLY MAJORITY VOTED DATA?">;
REPEAT

WRITE<"==>">;
READLNCANSWER>;
IF NOT <ANSWER IN c•y•,•N•J> THEN

WRITELNC'Y OR N. RE-ENTER');
UNTIL ANSWER IN C'Y','N"J;
IF ANSWER='Y' THEN

END;

MJVONLY := TRUE
ELSE

MJVONLY := FALSE;

112

PROCEDURE SENDPASS;
(***************************************
* THIS ROUTINE HANDLES THE ACTUAL *
* TRANSFER OF A PRE-OPENED PASS FILE *
* TO VSPC. A VSPC WORKSPACE IS NAMED *
* AND SAVED FOR THE PASS, THE NAME *
* USED BEING THE SAME AS THAT OF THE *
* PASS FILE, LESS DEVICE NAME AND *
* EXTENSION OF COURSE. *
***************************************>

VAR DOTPOS,LINENUM:INTEGER;

BEGIN (* SENDPASS *>
XMITVSPCC'CLEAR'>;
VSPCNAME:=PASSNAME;
DELETE<VSPCNAME,l,POSC':',VSPCNAME>>;
DOTPOS:=POSC'.',VSPCNAME>;
DELETECVSPCNAME,DOTPOS, Cl+LENGTHCVSPCNAME>-DOTPOS>>;
XMITVSPCCCONCATC'NAME ',VSPCNAME>>;
XMITVSPC<'INPUT 1 1 '>;
REPEAT

BEGIN

END

MJVPASS:=MJVFILEA;
OUTSTRING :=•
MOVELEFTCMJVPASS,OUTSTRINGC1J,31>;
XMITVSPCCOUTSTRING>;
GETCMJVFILE)

UNTIL EOF<MJVFILE>;
(* AVOIDED IF MJV TRANSFERED ONLY *>
IF NOT MJVONLY THEN

BEGIN
REPEAT

WITH PASSPARA DO
BEGIN

PASSPARA:=PASSFILEA;
OUTSTRING:=' ';

..
'

MOVELEFTCPASSTIMEC1J,OUTSTRING[1J,19>;
XMITVSPCCOUTSTRING>;
OUTSTRING:='
FOR LINENUM:=l TO 25 DO

..
'

BEGIN
MOVELEFTCPASSLINECLINENUMJ,OUTSTRING[1J,25);
XMITVSPC<OUTSTRING>

END;

XMITVSPC<'TAPE">;
XMITVSPC(''>;
XMITVSPC<'ENTER DATA'>;
XMITVSPC<"'>;
REPEAT

SCANACIA;
SCANKEYBOARD;
PASSNAME:=ROOTNAME;
MJVNAME := ROOTNAME;
STR<PASSNUM,NUMSTRING>;

113

SEMICOLON :=POS<":",MJVNAME>;
DELETE<MJVNAME, <SEMICOLON+l>, <DOTPOS-SEMICOLON-1>>;
INSERT<CONCAT<MJVSUFFIX,NUMSTRING>,MJVNAME,POS<'.',MJVNAME>>;

INSERT<NUMSTRING,PASSNAME,DOTPOS>;
<*$I-*> RESET<PASSFILE,PASSNAME>;
IOERR:=IORESULT;

RESET<MJVFILE,MJVNAME>; (*$I+*>
IOERR2:=IORESULT;

WRITELN;
WRITELN<PASSNAME," AND/OR ",MJVNAME>;
WRITELN;
IF <IOERR=O> AND <IOERR2=0> THEN

BEGIN

END
ELSE

WRITELN<"== NOW BEING SENT==">;
SENDPASS;
CLOSE<PASSFILE>;
CLOSE<MJVFILE)

IF <IOERR=10) OR <IOERR2=10) THEN
WRITELN<'== NOT FOUND==">

ELSE
BEGIN

WRITELN<CHR<7>,PASSNAME,• OPEN ERR#',IOERR,• ==•>;
WRITELN<CHR<7>,MJVNAME," OPEN ERR#",IOERR2,' ==">

END;
PASSNUM:=PASSNUM+INCREMENT

UNTIL PASSNUM>LASTNUM;
END; <* PASSTRANSFER *>

SEGMENT PROCEDURE TEXTTRANSFER;
(***************************************
* THIS ROUTINE HANDLES TRANSFERING OF *
* NORMAL TEXT FILES TO VSPC. THE USER *
* IS PROMPTED FOR A FILE SPECIFICATION*

114

GET<PASSFILE>
END

UNTIL EOF<PASSFILE>;
END;

XMITVSPC<"">;
XMITVSPC<CONCAT<"SAVE ",VSPCNAME>>;
CLOSE<PASSFILE>;
CLOSE(M.JVFILE>;

END; <* SENDPASS *>

BEGIN <* PASSTRANSFER *>
WRITELN<"== PASS FILE TRANSFER PROCEDURE ==•>;
WRITELN;
WRITELN<"== ENTER ROOT-NAME <DEV:SUFFIX.EXT> ==•);
<*$I-*>
REPEAT

REPEAT
WRITE <"==ENTER==>">;
READLN<ROOTNAME>;
IF LENGTH<ROOTNAME>=O THEN

EXIT<PASSTRANSFER>;
DOTPOS:=POS<".',ROOTNAME>

UNTIL NOT<DOTPOS IN CO,l,LENGTH<ROOTNAME>J>;
RESET<PASSFILE,ROOTNAME>;
IOERR:=IORESULT;
CLOSE<PASSFILE>

UNTIL <IOERR<>7>; <*WAIT FOR VALID FILE SPEC*>
WRITELN;
WRITELN<"== ENTER MAJORITY VOTED FILE"'S PREFIX== ">;
WRITE <"==ENTER==>">;
READLN<MJVSUFFIX>;
WRITELN<"== ENTER PASS NUMBER RANGE ==•>;
PASSNUM:=O;
REPEAT

WRITE<"== ENTER FIRST NUMBER==>');
READLN<PASSNUM>

UNTIL <IORESULT=O> AND <PASSNUM>=O>;
LASTNUM:=O;
REPEAT

WRITE<"== ENTER LAST NUMBER===>'>;
READLN<LASTNUM>

UNTIL <IORESULT=O> AND <LASTNUM>=O>;
INCREMENT:=O;
REPEAT

WRITE<"== ENTER INCREMENT=====> ">;
READLN<INCREMENT>

UNTIL <IORESULT=O> AND <INCREMENT>O>;
SHORTRANSFER;
(*$I+*>

115

* IN WHICH THE ".TEXT" IS OPTIONAL, *
* AND THEN PROCEEDS TO TRANSFER THE *
* FILE TO A USER-SPECIFIED VSPC WS. *
***************************************)

VAR TEXTNAME,VSPCNAME:STRING;
TEXTLINE:LONGSTRING;
IOERR:INTEGER;
TEXTFILE:TEXT;

BEGIN <* TEXTTRANSFER *>
WRITELN('== PROCEDURE TO TRANSFER TEXT FILES==">;
WRITELN;
WRITELN<"== ENTER NAME OF FILE==">;
REPEAT

WRITE<"== FILE NAME==>">;
READLN<TEXTNAME>;
IF LENGTH<TEXTNAME>=O THEN

EXIT<TEXTTRANSFER>;
<*SI-*>
RESET<TEXTFILE,TEXTNAME>;
IOERR:=IORESULT;
IF IOERR=lO THEN

BEGIN
INSERT('.TEXT",TEXTNAME, <l+LENGTH<TEXTNAME>>>;
RESET<TEXTFILE,TEXTNAME>;
IOERR:=IORESULT

END;
(*$I+*}
IF IOERR<>O THEN

BEGIN

END

IF IOERR=lO THEN
WRITELN<'FILE NOT FOUND- RE-ENTER'>

ELSE
WRITELN<'OPEN ERROR I',IOERR,' -RE-ENTER'>

UNTIL IOERR=O;
WRITELN;
WRITELN<'== ENTER NAME FOR VSPC WORKSPACE ==•>;
WRITE<"== WORKSPACE NAME==>'>;
READLNCVSPCNAME>;
IF O=LENGTH<VSPCNAME> THEN

BEGIN
CLOSE <TEXTFILE>;
EXIT<TEXTTRANSFER>

END;
XMITVSPC('TAPE'>;
XMITVSPCC'');
XMITVSPC<"CLEAR'>;
XMITVSPC<CONCAT<'NAME ',VSPCNAME>>;
XMITVSPC('INPUT 1 1'>;
IF NOT EOFCTEXTFILE> THEN

116

REPEAT
READLN<TEXTFILE,TEXTLINE>;
IF LENGTH<TEXTLINE>=O THEN

TEXTLINE: =' ';
XMITVSPC<TEXTLINE>

UNTIL EOF<TEXTFILE>;
XMITVSPC <'');
XMITVSPC<CONCAT<'SAVE ',VSPCNAME>>;
CLOSE <TEXTFILE>;

END; (* TEXTTRANSFER *>

PROCEDURE SCANACIA;
<***************************************
* THIS ROUTINE SCANS THE INTERNAL *
* BUFFER FOR INCOMING DATA. IF PRESENT*
* IT IS DISPLAYED ON THE APPLE MONITOR*
* AND THE ASCII NUMERIC VALUE IS *
* PLACED IN "REPLYVAL". *
***************************************)

BEGIN <* SCANACIA *>
GETCHAR<CREPLYVAL,REPLYVAL>;
WRITE<CREPLYVAL>;

END; <* SCANACIA *>

PROCEDURE SENDACIA; <*OUTVALUE:INTEGER*>
<***************************************
* THIS ROUTINE WILL TRANSMIT A BYTE *
* OUT THROUGH THE ACIA. IT WAITS *
* UNTIL THE "READY" FLAG OF THE ACIA *
* IS SET, AND THEN TRANSFERS THE DATA *
* BYTE SPECIFIED BY ITS ASCII NUMERIC *
* VALUE IN "OUTVALUE". *
***************************************>

BEGIN <* SENDACIA *>
SENDCHAR(OUTVALUE>

END; <* SENDACIA *>

PROCEDURE SCANKEYBOARD;
(***************************************
* THIS ROUTINE CHECKS TO SEE IF ANY *
* MORE KEYBOARD INPUT HAS BEEN ENTERED*
* BY THE USER. IF SO, IT IS PROCESSED*
* AS DESCRIBED AT THE TOP OF THIS *
* PROGRAM IN THE D>DUMB TERMINAL CMD. *
***************************************)

BEGIN <* SCANKEVBOARD *)
IF KEYPRESS THEN

BEGIN
READ<KEYBOARD,KBCHR>;

117

IF EOLN<KEYBOARD> THEN
KBCHR: =CHR < 13);

KBVAL:=ORD<KBCHR>;
IF KBVAL IN tESCAPE,CTRLC,LEFTARROW,RIGHTARROWJ THEN

CASE KBVAL OF
ESCAPE:

BEGIN
<* NOT AVAILABLE *>
END;

CTRLC:
BEGIN

WRITELN<CHR<7>,"<CTRLAC>">;
EXIT<PROCESSCOMMAND>

END;
LEFT ARROW:

BEGIN
WRITE<KBCHR,• ',KBCHR>;
SENDACIA<KBVAL>;
SENDACIA<LINEFEED>

END;
RIGHTARROW:

BEGIN
KBCHR:=CHR<9>;
WRITE<KBCHR>;
SENDACIA<9>

END;
END <* CASE *>

ELSE
BEGIN

WRITE<KBCHR>;
SENDACIA<KBVAL>

END
END;

END; <* SCANKEYBOARD *)

PROCEDURE XMITVSPC <*MESSAGE:LONGSTRING*>;
(***************************************
* THIS ROUTINE USES "SENDACIA" TO *
* TRANSMIT A LINE OF CHARACTERS TO *
* VSPC. A CARRIAGE-RETURN IS SENT AT *
* THE END OF THE LINE, AND ALL CHARS *
* SENT ARE ALSO ECHOED ON THE APPLE"S *
* MONITOR AS THEY ARE TRANSMITTED. *
***************************************)

VAR I:INTEGER;
BEGIN <* XMITVSPC *>

MESSAGE:=CONCAT<MESSAGE," ">;
MESSAGEtLENGTH<MESSAGE>J:=CHR<13>;
I: =O;
REPEAT

118

I:=I+l;
SCANKEYBOARD;
SCANACIA;
WRITE<MESSAGE[IJ>;
SENDACIACORD<MESSAGE[IJ>>;

UNTIL MESSAGE[IJ=CHR<13);
REPEAT

SCANKEYBOARD;
SCANACIA

UNTIL REPLYVAL=DC1;
END; <* XMITVSPC *>

PROCEDURE PROCESSCOMMAND;
(***************************************
* THIS ROUTINE SERVES AS A COMMON *
* INTERFACE BETWEEN THE MAIN PROGRAM *
* AND THE COMMAND-PROCESSING PROc•s. *
* IT'S PRESENCE IS REQUIRED IN ORDER *
* TO ALLOW SCANKEYBOARD TO HAVE A *
* COMMON EXIT POINT FOR HANDLING A *
* USER <CTRLAC> COMMAND. *
***************************************)

BEGIN <* PROCESSCOMMAND *>
CASE KBCHR OF

'Q":QUITREQUESTED:=TRUE;
'D•:DUMBTERMINAL;
'P":PASSTRANSFER;
'T':TEXTTRANSFER;
'C':TEXTCOPY;

END; <* CASE *>
END; <* PROCESSCOMMAND *>

'***************************************
* THE MAIN ROUTINE <BELOW> HANDLES *
* GENERAL INTIALIZATION AND THE *
* PROMPTING FOR, AND INPUT OF, USER *
* COMMAND OPTIONS FROM ITS MAIN MENU. *
***************************************>

BEGIN <* FTCOM *>
QUITREQUESTED:=FALSE;
PAGE<OUTPUT>;
GOTOXYC0,5>;
WRITELNC"APPLE II COMMUNICATIONS INTERFACE '>;
WRITELN;
WRITELN <"
WRITELN;
WRITELN;
WRITELN < •

USING SSC TO VSPC

BY">;

.) ;

119

WRITELN;
WRI TELN <'
WRITELN;
WRITELN;
WRITELN;
WRITELN;
WRITELN <'

SEE HEAN QUEK '>;

INITSSC;
FOR I := 1 TO 2000 DO

J : = J;

PAGE <OUTPUT> ;
REPEAT

PAGE<OUTPUT>;

(1983) •) ;

WRITELN<'== SUPER SERIAL COMMUNICATIONS PROGRAM=='>;
WRITELN;
WRITELN<'== COMMAND MODE==">;
WRITELN;
WRITELN('OPTIONS ARE:">;
WRITELN(' D =DUMB TERMINAL MODE'>;
WRITELN<' P =TRANSFER SATELLITE PASS FILES'>;
WRITELN<' T =TRANSFER ANY TEXT FILE '>;
WRITELN<' C =COPY ANY VSPC FILE '>;
WRITELN<' Q =QUIT'>;
WRITELN;
WRITE <'==ENTER COMMAND==>'>;
REPEAT

WRITE<CHR<7>>;
READ<KEYBOARD,KBCHR>

UNTIL KBCHR IN C'D','P','T','C','Q'J;
PAGE<OUTPUT>;
PROCESSCOMMAND;
WRITELN;
WRITELN;

UNTIL QUITREQUESTED;
RESET IRQ;
PAGE<OUTPUT>;

END. <* FTCOM *>

