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ABSTRACT 

A generalized approach to deformation analysis has been 

developed and successfully applied to five examples of monitoring 

networks within the activity of the "ad hoc" committee on the analysis 

of deformation surveys of the International Federation of Surveyors 

(FIG). 

The approach is applicable to any type of geometrical analysis, 

both in space and in time domain, including detection of unstable points 

in reference networks, and determination of strain components and 

relative rigid body motion within relative networks. It allows 

utilization of not only geodetic observations, but also physical-

mechanical measurements. Functional relations between deformation 

parameters and various types of observables have been developed. The 

approach is capable of handling any datum defects and configuration 

defects in monitoring networks. The problem of datum defects has been 

approached through the projection theory in the parameter space. 

The generalized approach consists of three basic processes: 

preliminary identification of deformation models, estimation of the 
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deformation parameters and diagnostic checking of the models. The 

MINQUE principle has been adopted for the assessment of multi-epoch 

observations prior to the final adjustment of monitoring networks. A 

method of iterative weighted projection in the parameter space has been 

created for the identification of the deformation models in space 

domain. Formulation and computation strategies for the estimation of 

the deformation parameters are provided in great detail. The statistic 

for testing linear hypotheses in the General Gauss-Markoff Model has 

been formulated using the theory of vector spaces and, from this 

statistic, all the hypothesis tests used in the different phases of 

deformation analysis were derived. Compared with other methods, the 

generalized approach permits a systematic step-by-step analysis of 

deformations. 

During the development of the generalized approach some 

problems encountered by other authors have been rectified. Examples of 

the problems and their solution are also given in the thesis. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Deformation measurements are of major importance in the broad 

spectrl..lll of activities covered by surveying engineering. Man-made 

structures must be supervised during their lifetime; man-induced ground 

movements, for exanple, ground subsidence due to mining exploitation, 

withdrawal of oil or underground water, or construction of large 

reservoirs, have to be controlled; accumulation of tectonic stress near 

the active plate boundaries has to be monitored. With technological 

advancements in the construction of sensitive engineering projects, with 

increasing exploitation of minerals beneath populated areas, and with 

growing interest in the studies of crustal movements, requirements both 

in accuracy and in the frequency of resurveys for deformation monitoring 

are increasing. 

Essentially, there are both practical and scientific reasons 

for the study of deformations. Practical reasons include checking the 

stability of a structure, assessment of the degree of geological 
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hazards, and detection of the precursors of earthquakes or failure 

signals of structures. The anticipated cumulative monetary losses from 

earthquakes in California alone are estimated to exceed $2 billion by 

the year 2000 (The Committee on Geodesy and the Committee on Seismology 

of the United States, 1981). At the same time, the same cost is 

estimated for damages due to the ground subsidence in coal mining areas 

in the U.S. (Chrzanowski and Faig, 1982). In terms of human suffering, 

more than 3000 lives were lost in the accident of the Vaiont dam in 

Italy in 1963 (Whitten, 1982). Scientific reasons include a need for a 

better understanding of the deformation mechanism, to test new theories 

which are applied to the design of structures, and to establish 

prediction methods. It can be said that any object, natural or manmade, 

undergoes changes in space and time. Through the study of deformation 

measurements our knowledge about behavior of deformable bodies will be 

greatly improved. 

Surveying engineers and scientists have played an important 

role in the field of deformation measurements. When people, in the 

1940s and 1950s, reasoned about the control of structures (e.g., dams), 

they emphasized geodetic triangulation as the only tool of research 

(Giussani, 1981). Even today, geodetic methods are still widely used to 

obtain the global status of a deformable body, although many specialized 

instrunents have been developed for collecting specific information. A 

few years ago a report of the U.S. Academy of Sciences contained the 

statement: "Virtually, everything we know about the nature of strain 

build-up that leads to earthquakes in the western United States comes 

from geodetic studies that began in the late 1800s" (Whitten, 1982). 

That statement was made by a non-geodesist and, thus, those of us 
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working in the field of deformation measurements find satisfaction in 

quoting it. 

Depending on their extent, deformation measurements may be 

categorized as being of a local, regional, continental or global scale 

(Whitten, 1982). Investigation of deformations which occur in man-made 

structures or in localities of coal mining, petroleun production, 

extensive water pumping for industry, and so forth, is of a local 

nature. Study of the deformation of the earth-crust near the plate 

boundaries is of a regional nature, and is usually carried out using 

special networks, for example, a fault-crossing network to monitor the 

creep between two tectonic blocks along the fault. Information about 

crustal movements on a continental scale can be obtained from the 

resurveys of national or continental geodetic networks. Geodetic space 

techniques, for example, very long baseline radio interferometry and 

satellite laser ranging, provide deformation data of global extent, such 

as polar motion, variation of the earth's rotation, and relative motion 

between tectonic plates. 

The study of deformation, from the point of view of time 

variation, can be classified into three groups (Wel~ch, 1981b): static 

model, in which examination of the existence or non-existence of 

deformation in the local domain is the only aim; kinematic model, in 

which not only the spatial characteristics of deformation but also its 

temporal attributes are of major concern; dynamic model, in which 

transformation of observed data, a time series, to the frequency domain 

is the usual practice. 

Compared with other types of surveys, deformation measurements 

have the following characteristics. 
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(1) Higher accuracy requirement. For example, according to 

Savage (1978), long-term deformation rates in seismic zones (such as the 

San Andreas Fault) are less than 3 parts in 107 per year. This might be 

considered as a threshold level for a long-term horizontal crustal 

deformation rate. In engineering projects, an accuracy of :t. 1 mm or 

higher might be a typical requirement (see Miechelev et al. (1977)). 

(2) Repeatability of observations. The periods of resurveys 

range from seconds to years, depending on the rate of deformation. 

(3) Integration of different types of observations. Here not 

only geodetic methods should be considered but also physical-mechanical 

instrumentation, e.g., pendula, tiltmeters, strain meters, mechanical 

and laser alignment, hydrostatic levels and others in order to get more 

complete information. 

(4) Sophisticated analysis of the acquired data in order to 

avoid the misinterpretation of measuring errors as deformation and local 

phenomena as a global status. 

(5) Greater requirement of interdisciplinary knowledge for 

appropriate physical interpretation. Geodesists have a good knowledge 

of data acquisition and other specialists, e.g., geophysicists, and 

civil engineers, are well acquainted with the behaviour of the 

deformable body. Efficient cooperation between them is indispensable in 

order to successfully interpret the measured results. Thus, a mutual 

understanding (use of the same technical language) is a major 

requirement. 

A considerable effort has been made in the last few years in 

the developnent of new methodologies and new instrumentation to satisfy 

the above requirements. More attention is being paid to the analysis of 
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deformation surveys than ever before. In 1978, Federation Inter-

nationale des Geometres (FIG) Commission 6 created an "ad hoc" committee 

on the analysis of deformation measurements, which involved many 

well-known scientists under the chairmanship of Dr. Chrzanowski, in 

order to prepare a proposal for guidelines and specifications for all 

computational procedures connected with deformation measurements. At 

the 3rd FIG Symposium on Deformation Measurements held in Budapest, 

Hungary, in August, 1982, the committee was expanded from the original 

five research centres (Delft, Fredericton, Hannover, Karlsruhe and 

Munich) to sixteen, involving 40 scientists. Research projects have 

been set up for the (Chrzanowski and Secord, 1983): 

( 1) optimization and design of monitoring networks with geodetic and 

non-geodetic observables; 

(2) evaluation of the observation data (including correlation of 

observations), detection of outliers, and systematic errors; 

(3) geometrical analysis of deformations; 

(4) physical interpretation of deformations. 

The Department of Surveying Engineering at the University of 

New Brunswick, referred to as the "Fredericton group", is a member of 

the FIG "ad hoc" committee. For a number of years, the Department has 

been involved in research projects related to the developnent of new 

deformation surveying techniques and new methods for the analysis of 

deformation surveys. One of the projects included the establishment of 

test networks in seismically active areas in Peru (Chrzanowski et al., 

1978; Dennler, 1980) to monitor tectonic faults by means of 

micro-geodetic observations. One network, known as the Huaytapallana 

network, was established in 1975 and has been remeasured four times. 
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The second network, known as the "Pitec11 network, was established in 

1978 and has been remeasured twice. Results of measurements of the 

Huaytapallana network have been used by the FIG "ad hoc" committee as 

one of their examples for a comparison of different approaches to the 

analysis of deformation surveys (Chrzanowski, 1981b). 

Two other examples used in the comparison studies of the FIG 

"ad hoc" committee were: a snall geodetic network (reference network) 

for the observation of deformations of a power dam (Lohmuhle dam) in 

Europe; and a simulated network, prepared at the Geodetic Department of 

the Delft University of Technology crossing a simulated tectonic fault. 

The results of the comparison of the analysis of the above two networks 

were discussed in reports by Heck (1982) and by Chrzanowski and Secord 

( 1 983) • 

In addition, five sets of data have been prepared for further 

comparison. They are: two sets of simulations of the 2-D relative 

network; the Hollister network, a 2-D trilateration for monitoring 

tectonic movements across the San Andreas fault in California; the 

Cossonay network in Switzerland, a 3-D triangulateration with spirit 

levelling for monitoring a land slide area; and the Adamow mine network 

in Poland, a 3-D monitoring of an open pit mine. 

The author has actively been involved in the work of the 

"Fredericton group" within the FIG committee since 1980 and has 

participated in the evaluation of the results of the above three 

comparison exanpl es. Recently, three sets of new data have been 

analysed by the author. This thesis has evolved from the author's 

contributions to the research work of the 11 Fredericton group". 
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1.2 Identification of Problems and Scope of the Thesis 

Generally, in deformation measurements by geodetic methods, 

whether they are performed for monitoring engineering structures or 

ground subsidence in mining areas or tectonic movements, two basic types 

of geodetic networks are distinguished (Chrzanowski, 1981b): 

( 1) absolute networks in which some of the points are, or are assumed to 

be, outside the deformable body (object) thus serving as reference 

points (reference network) for the determination of absolute 

displacements of the object points; 

(2) relative networks in which all the surveyed points are assumed to be 

located on the deformable body. 

In the first case, the main problem of deformation analysis is 

to confirm the stability of the reference points and to identify the 

possible single point displacements caused, for instance, by local 

surface forces or wrong monumentation of the survey markers. Numerous 

approaches have been suggested by different authors to determine the 

stability of the reference points, for instance, methods developed by 

Pelzer (1974), Heck et al. (1977), Lazzarini ( 1977), Polak ( 1978), 

van Mierlo (1978), Niemeier (1981), just to mention a few. A comparison 

of some of the methods has been a subject of studies of the 

aforementioned special committee (Chrzanowski, 1981 b) of Commission 6 of 

FIG. Once the stable reference points are identified, the determination 

of the geometrical state of deformation of the deformable body is rather 

simple. 

. .. ~. 
In the case of relative networks, deformation analysi~{,is more 

complicated because, in addition to the possible single point 
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displacements like in the reference network, all the points undergo 

relative movements caused by strains in the material of the body and by 

relative rigid translations and rotations of parts of the body if dis-

continuities in the materials, for instance, tectonic faults, are 

present. The main problem in this case is to identify the deformation 

model, i.e., to distinguish, on the basis of repeated geodetic 

observations, between the deformations caused by the extension and 

shearing strains, by the relative rigid body displacements, and by the 

single point displacements. 

For example, the geodetic monitoring of tectonic movements is 

usually done with relative geodetic networks unless extraterrestrial 

observations are included in the network. Thus the problem of 

identification of the deformation model is of primary importance in the 

analysis. 

As far as strain analysis is concerned, the computational 

procedures are well known and have been applied in mechanical and 

structural engineering as well as in the analysis of tectonic movements 

for many years. A brief review of some basic works on the subject of 

I v 
the strain analysis of geodetic observations is given by Vanicek and 

Krakiwsky (1982). Recent papers by Margrave and Nyland (1980), Snay and 

Cline (1980), Savage et al. (1981), Prescott (1981), and Chrzanowski and 

Chen (1982) serve as a good sample of different approaches being used by 

different authors in the strain analysis of tectonic movements. The 

approaches can be classified into two basic types (Chrzanowski and Chen, 

1982): 

(1) raw-observation approach; 

(2) displacement approach. 
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The first approach is based on the calculation of the strain components 

directly from differences in the repeated observations. In the second 

approach the strain components are calculated from differences in 

adjusted coordinates (displacements) of the geodetic points. 

In both approaches, if the number of repeated observations or 

the number of derived displacements at discrete points is larger than 

the number of unknown deformation parameters, then the least-squares 

fitting of a deformation model is performed to yield the parameters. 

The displacement approach is favoured by many authors, for instance by 

Bibby (1975), Brunner (1979) and Chrzanowski and Chen (1982). Its main 

advantage is the possibility of using all observables in the strain 

analysis, even if they differ from one epoch of observations to another, 

as long as they can be reduced to the same geodetic datum and can be 

used in the calculation of displacements. On the other hand , the 

raw-observation approach requires that the same observables and the same 

geometry of the network in each epoch be maintained and utili zed. Some 

other advantages of the displacement approach are also mentioned in 

Chapter 4. However, the displacement approach may be inconvenient to 

use if the geodetic network has configuration defects (lack of 

geometrical ties between the observables) . 

In addition, usually more than one deformation model can be 

fitted to the observation data which leads to the question of which of 

the models is the "best". Other difficulties and ambiguities in the 

deformation analysis develop when different minimum constraints must be 

used in the least-squares adjustments of individual epochs due to 

changes in the network geometry or when the geodetic observations must 

be combined with other types of observables such as tilt, strain, and 
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alignment measurements. 

In order to overcome the above problems, a generalized approach 

to the analysis of deformation surveys as part of a so-called 

"Fredericton approach" (Chrzanowski, 1981 b) has been developed by the 

author and successfully applied to evaluate the aforementioned 

comparison exanples. The aims of this thesis are the: 

( 1) developnent of the theoretical foundations of the approach; 

(2) full evaluation of the generalized approach; 

(3) clarification of some practical problems which cause ambiguities; 

(4) discussion of other aspects concerning deformation analysis which, 

in the author's opinion, should be included in the entirety of the 

"Fredericton approach". 

De formation measurements encompass a very broad spec tr urn 

ranging from the study of the deformation of the earth to the monitoring 

of engineering structures; from the investigation of dynamic phenomena 

to checking the stability of the points in reference networks. As 

suggested in the title of the thesis, only the analysis of deformation 

measurements is discussed. Furthermore, the focus is set on the 

analysis of snall deformations, where sophisticated analysis is highly 

required. Discussions on deformations of continental and global extent, 

as well as deformations of a dynamic nature are not included in this 

thesis. 

1.3 Organization of the Contents and Summary of the Contributions 

As a guide to the reader, a logical train of thought in the 

organization of the contents is presented in this section. At the same 
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time, the contributions in each chapter which the author has deemed 

significant, are listed. 

A deformed body in a geometric sense can be characterized by 

some deformation parameters. Determination of the parameters is one of 

the main tasks of deformation measurements. Usually the deformation 

parameters must be derived from some other physical quantities (e.g., 

changes in distances, angles) observed in the deformation surveys. A 

bridge between deformation parameters on one side and observed 

quantities on the other side is made through a deformation model. In 

Chapter 2, deformation and its monitoring, basic deformation parameters 

are first defined, followed by a comprehensive summary of monitoring 

techniques and methodologies coupled with their achievable accuracies, 

from traditional surveying instrumentation to special electro-mechanical 

devices; from geodetic means to photogrammetric methods; from 

conventional geodetic surveys to space techniques. Finally the general 

functional relations between the deformation parameters and various 

types of observables are developed. 

If the deformation model were exactly known; the observations 

did not contain outliers and systematic errors; and the accuracy of the 

observations and their possible correlations within each epoch or 

between epochs were given, then computation of the deformation 

parameters would have been simply a matter of applying the principle of 

least squares to the above established model. Unfortunately, this is 

not reality. Hence, chapters 3, 4 and 5 are indispensable, as they not 

only lay down a firm foundation for Chapter 6, but also contribute to 

the knowledge in three corresponding aspects: 

(1) evaluation of the observation data; 
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(2) solution to the datum defect problem; 

(3) statistical tests in data processing and deformation analysis. 

Chapter 3 is devoted to the assessment of observation data. In 

deformation analysis, an important step is firstly the assessment of the 

observations, on which the adjustment is based. Information regarding 

the behaviour of the instruments used and the influence of the 

environmental conditions on the observations can be obtained. Coupled 

with the adjustment, statistical inference pertaining to the signifi-

cance of the computed deformation parameters can be drawn. Chapter 3 

begins with a survey of the methods of estimation of variance and 

covariance components. Then the Minimum Norm Quadratic Unbiased 

Estimation (MINQUE) principle and its properties are introduced, which 

the author suggests can be used as a general tool in the assessment of 

observation data. Some developments are made in this chapter, including 

the creation of a general error structure model for the assessment of 

deformation surveys, and extension of the computation procedures to the 

condition adjustment. Finally, some results from the assessment of the 

observations in the aforementioned "Pitec" network are presented. 

Chapter 4 is devoted to the datl.lll defect problem, since 

geodetic deformation monitoring networks are mostly free networks. The 

study of the datl.lll defect problem provides a better understanding of the 

attributes of the displacements of the points and their covariance 

matrix obtained from the adjustments referred to a certain datum, which 

avoids committing the mistakes in deformation analysis; it also provides 

a good picture of the displacement field by selecting an appropriate 

datum, making it easier to identify the deformation model in space 

domain or the suspected unstable points of a reference network. The 
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main developnent lies in the solution to the datun defect problem using 

projection theory in parameter space and in the linkage of this method 

with the method of similarity transformation developed by Baarda ( 1973) 

and the method of generalized inverse. A thorough discussion of the 

relation between the datun defect problem and deformation analysis is 

also made. 

Statistical testing is especially important in deformation 

analysis. Screening of the observations for outliers and systematic 

errors, diagnostic checking of the deformation models, and examination 

of the significance of the derived deformation parameters, are to a 

large extent based on statistical tests. In Chapter 5 the statistic of 

linear hypothesis testing in the General Gauss-Markoff Model, where the 

configuration matrix may be deficient in rank and the dispersion matrix 

is possibly singular, is developed using the theory of vector spaces. 

The adoption of geometrical language provides better illustration and 

simplification. As a special case of general hypothesis testing, the 

statistic for outlier detection is formulated, which is valid for 

multiple outlier detection as well as for the case in which the 

observations are not independent. It has been demonstrated that the 

existing techniques for outlier detection (data snooping by Baarda 

(1968); -c:-test by Pope (1976); t-test by Heck (1981)) are again special 

cases of this statistic. Under a derived statistic the techniques for 

diagnostic checking of deformation model are discussed in more detail. 

The generalized approach to deformation analysis is developed 

by the author in Chapter 6, where the basic philosophy behind the 

approach and its capability are first described. The approach consists 

of three basic processes: preliminary identification of the deformation 
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models; estimation of the deformation parameters; and diagnostic 

checking of the models. After the mathematical model for the 

generalized approach is given, the three processes are fully evaluated 

in Sections 6.3, 6.4, and 6.5. A method of iterative weighted 

projection in the parameter space is developed in Section 6.3.2 for the 

preliminary identification of the deformation model in space domain. To 

estimate the deformation parameters, formulation and computation 

strategies are discussed in greater detail in Section 6.4.1. Under the 

title of "Remarks" (6.4.3) some ambiguities existing in the literature 

are pointed out; a numerical demonstration and theoretical analysis to 

remove the ambiguities are also given. Finally, as a summary of Chapter 

6, a diagram showing the computation and statistical testing procedures 

is presented. 

As illustrative examples of application of the developed 

approach as well as within the aforementioned projects under the 

activities of the FIG "ad hoc" committee, the results of the analysis of 

the Huaytapallana network, three sets of the simulation network, and a 

mine monitoring network are contained in Chapter 7. 

Chapter 8 provides an overview of the analysis and 

interpretation of deformation measurements. Three methods -- inter-

pretation by statistical method, deterministic method, and combination 

of both methods -- are introduced. A flowchart showing the different 

interpretation methods and their interactions is developed. 

The thesis terminates with Chapter 9, in which some conclusions 

are drawn and the recommendations for further study are made. 



CHAPTER 2 

DEFORMATION AND ITS MONITORING 

Under the action of forces (body forces or surface forces) a 

deformable body undergoes changes in its shape and position. These 

changes occur either gradually or suddenly. The determination and 

interpretation of the changes are the main goal of deformation surveys. 

In this chapter a brief review of the basic deformation parameters is 

first given; then monitoring methods, techniques and their achievable 

accuracies are summarized; finally, the functional relations between the 

deformation parameters and the observables are developed. 

2.1 Basic Deformation Parameters 

The deformation of a body is completely determined by the 

displacements of the particles in the body (Wempner, 1973). Let the 

position vector of a particle p in a three-dimensional Cartesian 

coordinate system (x,y,z) before and after deformation be r and r' 
-p -p 

respectively (the notations used in this thesis are given in Appendix 

15 
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I), then ~P can be, in general, expressed as 

r 1 = r 1 (x ,y ,z ;t) (2-1) -p -p p p p 

Equation (2-1) asserts that the terminal position of the particle 

depends on its initial coordinates and time. So does the displacement 

vector d of the particle p, written as -p 

d = r 1 - r = d ( x , y , z ; t) -p -p -p -p p p p 
(2-2) 

Although the relation (2-1) is in general very complicated in 

the theory of elasticity, it can be decomposed into three parts 

(Sokolnikoff, 1956): translation and rotation of the body as a whole, 

and pure deformation. Denoting the vector of rigid body translation by 

T 
t = (t , t , t ) , the matrix of the rotation of the rigid body by R and 

- X y Z 

the remaining part, pure deformation, by d , one can write -p 

rl = t + R r + d -p -p -p 

or 

d = t + (R-I) r + d -p -p -p 

( 2-1 I) 

( 2-2 I) 

Rigid body motion (translation and rotation) is of minor concern in the 

theory of elasticity, but from the engineering point of view, it is of 

the same importance as pure deformation. The creep of a gravity dam may 

be more dangerous than its elastic deformation. Monitoring the rate of 

the translation of tectonic "blocks" along the fault may be of the same 

interest as monitoring the strain accummulation within each block, 

Rigid body motion leaves unchanged the length of every vector joining a 

pair of points within the body, but pure deformation causes the 

extension of lines and the distortion of the angles between the lines in 

the body. Generally speaking, the nature and severity of the 

deformation vary from point to point. In order to describe the 

deformation in the vicinity of a point, the concept of strain is 



17 

employed. Since the displacements of the points of a deformable body 

are very much smaller compared with the dimension of the body in this 

study, differentiating (2-2) with respect to three coordinate axes 

results in the infinitesimal non-translational deformation tensor (e.g., 

Ramsay (1967)): 

au au au 
ax ay az 

E 
av av av 
ax av az 

a\-1 aw aw 
~X ay ~z 

(:;: :~ :;: ) 
e e e 

zx zy zz (2-3) 

where u, v, ware the three components of the displacement vector in the 

x, y, and z directions, respectively. The deformation tensor E is 

asymmetric and therefore can be decomposed into a symmetric part and a 

skew symmetric part by means of the relation E = t<E + ET) + t (E - ET) , 

that is to say, 

E = (E .. ) + (w .. ) 
~J ~J 

(2-4) 

with 
E • • 
~J 

1/2 (e .. + e .. ) 
~J J~ (2-5a) 

!.Uij 
1/2 (e. . e .. ) 

~J J~ 
(i,j x,y,z) 

(2-5 b) 

where ( E •• 
~J 

is called the strain tensor and ( w ) represents the 
ij 

rotation (Sokolnikoff, 1956). The diagonal elements E •• 
~J 

designate 

elongation in the corresponding direction, called extensional strain, 

and the off-diagonal elements characterize distortion of the angles 

between initially corresponding lines, called shear strain. Figure 2.1 

depicts the geometrical interpretation of the strain components, where 
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the original body plotted with dashed lines is a cube with edges of unit 

length and where its deformed state plotted with solid lines is a 

parallelepiped. 

Since the displacement vector d in (2-2) depends on position 

and time, the components of the strain tensor and the rotation are, in 

general, position and time dependent. Taking partial derivatives of 

them with respect to time, the strain rate E: 
ij 

and the rate of the 

rotation components w .. can be obtained. The rotation components w •. , 
1J 1J 

on the other hand, can be partitioned into two parts: the position 

independent w~. and the position dependent w~.. The former corresponds 
1J 1J 

to rigid body motion, but the later designates the local twists. When 

the different parts of the deformable body experience the same 

deformation independent of their position, the deformation is 

homogeneous, in which t: .. 
1] 

is invariant over the whole body and 

corresponds only to rigid body motion. 

The strain tensor provides enough information to compute the 

strain components for any direction. The computation procedure is a 

simple matter of transformation. Let t,, n, ~::; be the axes of the new 

coordinate system and have the direction cosines in the original system 

x,y,z as ca,,,a,2,a13), (a21'a22'a23) and (a31'a32'a33) respectively, 

then these direction cosines form an orthogonal matrix A = (aij). 

Analogous with the law of error propagation in the theory of errors, the 

strain tensor in the t, ~ n, s system, denoted by(s .' .l ,can be calculated from 
J.] 

(t: ~ . ) = A (t: .. ) AT 
1] 1] 

(2-6) 

which is in coincidence with the results given by Wempner ( 1973), who 

derived them from the definition of each strain component. 

Now, it is possible to show that there are always three 
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mutually perpendicular lines at each point of the undeformed body which 

remain perpendicular in the deformed one. The directions of these lines 

are called principal directions. By definition, the shear strains 

associated with the principal directions are zero. The computation of 

principal strains and principal directions can be carried out by 

eigenvalue decomposition, which can be found in any standard textbook on 

linear algebra. In (2-6) if A is a matrix such that (e:.'.) becomes 
1J 

diagonal, then the diagonal elements of (e:. ~ ) are principal strains, and 
1] 

the row vector of A represents the principal direction. The principal 

strains are the extremal values of the extensional strains at the point. 

In general, one principal strain is the max imun extensional strain at 

the point and another is the minimlrll. A special case arises if three 

principal strains are equal. In this case the extensional strain is the 

same in all directions and shear strain vanishes for all directions. 

Every direction is a principal direction. An infinitesimal sphere of 

the medium would dilate (or contract) in a spherically symmetric manner. 

Another special case arises if all the principal strains are 

equal except one. Then all lines in the plane formed by two principal 

directions having the same principal strain experience the same 

extensional strain, and the shear strain vanishes for any direction in 

this plane. An infinitesimal cylinder with its axis along another 

principal direction lengthens (or shortens) and dilates (or contracts) 

radially, but remains cylindrical. 

It is also possible to show that the shear strain has a 

stationary value for the pair of orthogonal lines which bisect the 

principal lines. Denote the three principal directions by the ~, 11 , 1:; 

axes and the corresponding principal strains by 
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then the stationary values of shear strain for a pair of orthogonal 

lines bisecting the t; , n axes, n, 1:_; axes and t; ,~:_; axes are !:zOq->..2 ), ~(>..?-) 

t.. 3 ), respectively. The maximum shear strain is 

(Wempner, 1973). 

In addition, some deformation parameters derived from the 

strain tensor often appear in the technical literature. 

i) Dilatation t:.. or the divergence of the displacement vector d 

(Sokolnikoff, 1956): 

/::,. = E + E + E 
XX yy ZZ (2-7) 

which expresses the change in volume per unit volume. Note that 

some authors give a different definition of dilatation as 

t:,. = ~(E +E )in the two-dimensional case (e.g., Bibby, 1976). 
XX yy 

ii) Two components of shear strain (Frank, 1966; Bibby, 1976): 

shear 

2 s 
xy 

(2-8) 

(2-9) 

where is sometimes called the engineering shear strain component 

(Mase, 1970). The quantities Yl and Y2 denote the angular change 

of right angles whose initial sides are oriented northeast and east 

(the x direction}, respectively. Yl and Yl are also called pure 

shear and simple shear, respectively (Borre, 1978). 

Another way to present shear strain is in the form of the total 

(2-10) 

and its azimuth 

tan(21/l) = YdY2 (2-11) 

The quantity 1/1, called the direction of maximum right-lateral shear 

strain, specifies the orientation of the right angle that experiences 
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the maximum angular change. The quantity y specifies the magnitude of 

the angular change for this right angle (Snay et al., 1982). 

Thus, the basic deformation parameters are given. They are: 

rigid body translation, rigid body rotation (or relative translation and 

rotation of one "block" with respect to another), strain tensor and 

rotation components. If a time factor is involved, the derivative of 

the above quantities with respect to time is used instead. 

Acquisition of these parameters is one of the main goals of 

deformation monitoring. Different methodologies and techniques have 

been developed for this purpose. A comprehensive summary of them is 

necessary because it is the opinion of the author that a successful 

analyst of deformation surveys should have a good knowledge of data 

acquisition techniques. 

2.2 Deformation Monitoring 

From the point of view of mechanics, the state of a deformable 

body may be static, or kinematic, or dynamic. Subsidence of the ground 

due to the withdrawal of minerals, and strain accummulation near active 

plate boundaries have a kinematic nature. Vibration of a building due 

to wind, oscillation of a bridge due to dynamic loading, and deformation 

of the earth due to tidal force and sea tide loading are some examples 

of dynamic movements. Selection of monitoring techniques depends 

heavily on the magnitude and rate of the deformation. The design of a 

monitoring system is a very important step in deformation measurement. 

Satisfactory results could not be obtained if the monitoring scheme was 

poor. Compared with the design of an ordinary geodetic network, the 
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design of the monitoring system is more complicated, involving different 

types of observables. As far as optimization of a geodetic monitoring 

network is concerned, it differs from the conventional network in the 

accuracy criterion, plan of the configuration, and consideration of 

reliability criterion. Although optimization of geodetic networks has 

been extensively discussed (Grafarend et al. 1979; Schmitt. 1982), 

little has dealt specifically with monitoring networks, especially prior 

to Niemeier and Rohde (1982) who considered levelling networks for the 

moni taring of vertical crustal movements. A discussion of this problem 

is given in a separate publication (Chen et al., 1983). 

In the following, different monitoring techniques and their 

achievable accuracies are reviewed and classified. 

2.2.1 Conventional geodetic methods 

Conventional geodetic methods have been widely used in 

deformation surveys for a long time. The reasons can be summarized as 

follows: 

(a) they supply the global status of a deformable body; 

(b) they contain the scheme of self checking the results and are 

capable of evaluating the measuring accuracy globally; 

(c) they provide versatility and suitability to any environmental and 

operative situation. 

In opposition to these undeniable merits, some drawbacks are: 

complexity of measurement requires the presence of many operators for 

several days; it is very difficult and expensive to adopt the geodetic 

methods for continuous monitoring. Thus, the methods provide 
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measurements of deformation at a number of discrete points and epochs of 

time. 

As mentioned in Chapter 1, geodetic monitoring networks are 

usually divided into relative networks and reference networks. The 

former provides the change in relative positions of the points, and the 

latter serves as a reference frame to which the displacements of object 

points are referred. A confirmation of the stability of reference 

points is the only aim of the measurements in the reference network. 

Horizontal triangulation monitoring networks have been 

gradually replaced by trilateration or triangulateration networks 

because the accuracy of angle measurements has remained from 0 .5" to 1" 

for the first-order observation scheme, but the accuracy of distance 

measurements has been much improved. Among the short range EDM 

instruments for the control of engineering structures the Mekometer and 

Tellurometer MA-100 are the most accurate. The first can be used to 

measure distances up to 3 km with a standard deviation of +0.2 mm 

+(1 to 2) ppm (0.2 mm is constant error and 1 to 2 ppm is scale error); 

the second has a measuring range of up to 1.5 km with a standard 

deviation of .:!:_1.5 mm !_2 ppm (Blachut et al., 1979). For medium ranges 

of up to 30 km distance measurements, the U.S. Geological Survey 

successfully uses a laser Geodolite and samples the meterological data 

using an aircraft along the line of sight to determine the atmospheric 

refractive index, and a standard deviation of !_3 mm !_0. 2 ppm has been 

reported (Savage and Prescott, 1973). Recent progress in distance 

measurements is the development of the multiple wavelength 

distance--measuring equipment, e.g., Terrameter (Hugget, 1982), where an 

accuracy in the order of 0. 1 ppm can be achieved. 
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First-order geodetic levelling constitutes the basic method of 

studying vertical movements. Its main merit lies in its high precision. 

Typical accuracy is about (0. 7 ~ 1.0) mmi/L (L - distance of levelling 

in kilometers), but the field procedure is time consuming, especially in 

hilly terrain. Accumulation of systematic errors, which may lead to 

misinterpretation of the reported deformation surveys (see Jackson et 

al. (1980); Strange (1981)) still requires more investigation. In order 

to overcome the troublesome aspect of geodetic levelling, a modified 

method based on a leap-frog trigonometric levelling has been recently 

developed and tested at UNB. An accuracy 3 mm/l<m is easy to achieve, 

and the method can be used for monitoring purposes in mountainous areas 

(Chrzanowski 1983). 

2.2.2 Photogrammetric methods 

Both terrestrial and aerial photogrammetry have been 

extensively used in the determination of deformations of large 

structures (e.g., Brandenberger and Erez (1972); Faig (1978); Veress and 

Sun (1978)) and ground subsidence (Faig and Armenakis, 1982). The 

advantages of photogrammetric monitoring are: 

(a) simultaneous determination of the deformation of any points on a 

deformable body; 

(b) provision of complete and instantaneous information in 

three-dimensional space; 

(c) reduction of field work to a minimum; 

(d) a spatial model of the deformable body can be recovered at any 

time. 
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The accuracy of photogrammetric point determination has been 

much improved in the past few years, which makes it attractive for high 

precis ion deformation measurements. The main reason for this 

developnent is the successful refinement of the mathematical model by 

using self-calibration techniques (e.g., Moniwa (1977)), including 

checks to guarantee the reliability of the results. The ace ur ac y 

reaches standard deviations of 2-3 m in the image coordinates (Forstner 

and Schroth, 1982) or in the order of 10-5 of object-camera distance 

(ASP, 1980). 

2.2.3 Specialized monitoring devices 

Whereas conventional geodetic instrunentation is usually used 

only at discrete epochs of time, some other instruments can be installed 

permanently in the area of interest to provide continually information 

at one site. 

Strainmeters measure the change t:.'l in the distance 'l between 

two points. Then strain in a particular direction can be calculated as 

E = t:.'l/1. Strain-meters can be classified into mechanical strainmeters 

and laser interferometers (the Committee on Geodesy and the Committee on 

Seismology of the United States, 1981). The "Distinvar" developed by 

CERN and the "Distometer" produced by Kern are of the mechanical type. 

Their reported accuracy is about 0. 05 mm over a range of 100 mm for 

and 50 m for (Keller, 1978; CERN, 1979). A fundamental progress in 

building strainmeters comes with the use of the laser as a coherent 

light source, extending the technique of optical interferometry to 

encompass a much greater distance. Presently, laser strainmeters or 

laser interferometers can be successfully operated up to 100 m in the 
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open atmosphere (e.g., HP5525B model) and 1 km or longer in a controlled 

atmosphere, with -7 an uncertainty of measurement of about 10 (e.g., 

Schuler (1981)). In a vacuum tube an accuracy of 4 

achievable (Chrzanowski, 1981a). 

The tilt of a structure or ground can be measured either by 

using: 

(a) hydrostatic 1 ev ell ing; or 

(b) electrolytic or electro-mechanical tiltmeters; or 

(c) vertical aligrnnent (using either mechanical pendula or optical 

plunb lines to measure displacements from the vertical). 

The achievable accuracy of the tilt measurement varies from one 

type of instrunent to another, for example (Chrzanowski, 1981a), 

tiltrneters: 

(a) electrolytic type, the standard deviation a:= 0.5"; 

(b) electro-mechanical type, a= 0.001" ,..._ 1"; 

hydrostatic levels: 

(a) water type, a = 0.03 mm/40 m; 

(b) mercury type, a= 0.001" 

Aligrnnent is a special procedure for measuring the relative 

displacements in a critical direction. Wire aligrnnent was adopted in 

the 1960s for monitoring horizontal displacements of dams. A recent 

developnent is in the use of laser al igrnnent in deformation surveys. 

Using Chrzanowski et. al., (1972) as the foundation, the author (Chen, 

1980; Chen, 1981) has developed a laser aligrnnent system for dam 

control. In this .system diffraction zoneplates were installed in the 

gallery of the dan as permanent targets, the laser beam was modulated 

mechanically to increase the signal-noise ratio, and an automatic 
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detector was developed. The results from the field test and from a 

comparison with other methods over two years indicate that an accuracy 

-6 of 10 or higher over a distance of up to km in open air i's 

achievable. 

The above electro-mechanical instrllllents and alignment devices 

have two advantages: 

( 1) they do not need any long and complex measurement procedures; and 

(2) they may easily be used for monitoring with automatic data 

recording and with telemetric data acquisition (Chrzanowski et al., 

1980; Pelzer, 1980). 

2.2.4 Space techniques 

An important element in monitoring strategy, especially in 

tectonic deformation monitoring, is the forthcoming availability of 

space methods. Very long baseline interferometry (VLBI) and satellite 

1 aser-rang ing tee hni ques appear to be capable of determining the 

difference between the positions of any two points with an accuracy of a 

few centimetres (e.g., Rogers et al. (1978); Smith, et al. (1979); Ma 

(1981). Signals from the satellites of the Global Positioning System 

(GPS) could be used to measure the baseline vector components with an 

accuracy of a few millimetres for baselines of a few kilometres and of a 

few decimetres for baseline lengths of up to 5000 lan (Langley et al., 

1982) • 

A well-known project proposed by Kumar and Mueller ( 1978) was 

to utilize orbital stations for a study of deformations in the area of 

the San Andreas fault. Under this project a laser range-finder would be 

installed aboard an orbital station, while ground stations (75 stations 
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as a variant) would be equipped only with passive reflectors. With a 

range finder ensuring an accuracy of 5 to 10 em, observations over one 

day may determine distances between ground stations with an error of 2 

to 3 em. 

A group of Canadian scientists have proposed a NASA crustal 

dynamics project in Canada (Langley, 1982, personal communication) • 

Under this proposal the deformation of the interior of the North 

American plate and the regional deformation at the boundary of the North 

American and Pacific plates would be monitored using a NASA 

transportable long baseline interferometry (LBI) data system. The LBI 

stations would be distributed over Can ad ian terri tory, forming 

triangles. The strain accunul ation and vertical movement across each 

triangle would be determined from annual LBI observations. In order to 

appropriately interpret the results, the possible local movements of the 

observing sites would be modelled using the conventional geodetic 

monitoring networks with an accuracy of 1 to 2 em. 

2.3 The Functional Relationship between the Deformation 
Parameters and Observed Quantities 

Our objective is to determine the deformation parameters 

defined in Section 2. 1 from the observations made in at least two 

different epochs. The observables may be in the form of coordinates, 

coordinate differences, azimuths, horizontal angles, vertical angles, 

distances, tilts and strains. The observations of horizontal and 

vertical alignments, and geodetic levelling or hydrostatic levelling may 

be categorized as coordinate differences. 

The observables are related to the deformation parameters 
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through a deformation model: 

where 

R.(t) = R.(t0 ) + b.dx,y,z; t-t ; e) 
0 -

( t) is the observation made at time t; 

(2-12) 

( t ) is the initial 
0 

observatio'n at time t 0 ; x ,y ,z are local Cartesian coordinates of the 

points to which the observable R. ( t) is related; ~ is a vector of the 

deformation parameters, in which the strain tensors and the rotation 

components are arranged in a vector form, to be included. The 

deformation model is, in general, very complicated, so that in practice 

it should be approximated by a simplified function. 

Let the displacement field of a deformable body be approximated 

by a general polynomial: 

where d is the displacement vector of a point located at (x ,y ,z) at time 

t with respect to time t 0 ; mx, my, mz, mt are maximun power in x,y,z and 

(t-t0 ) respectively; ~ijk is a vector of the unknown coefficients, 

which have three components corresponding to the displacements in x,y,z 

direction. Using matrix notation, (2-13) can be rewritten as 

i<x,y,z; t-t0 ) = B(x,y,x; t-t0 ) ~ (2-14) 

where B is a 3 by m matrix whose elements are functions of position and 

time, c is an m-vector of unknown coefficients with 

m = 3(mx+1)(my+1)(mz+1)mt 

Some simple models can be deduced from (2-13). If the 

deformation is of linear time variation, then k = 1; if a homogeneous 

deformation is assumed, then m = m = m = 
X y Z 

and h+i+j~1 in one term; 

if only the horizontal deformation is under investigation, then m = 0 z 
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and the vector d has only two components; if one analyses vertical 

movements, ~ has only one component representing subsidence or uplift of 

the ground; furthermore if one assumes that the subsidence or uplift is 

independent of the terrain elevation, then mz = 0, and the model is 

I v 
reduced to that given in (Vanicek et al., 1979). 

In reality a deformable body may be noncontinuous, consisting 

of separate continuous blocks. Thus, the form of the general polynomial 

(2-13) varies from one case to another. But the expression (2-14) will 

not lose its generality. From here on, the model (2-14) will be called 

the deformation model. The deformation model (2-14) is regarded as a 

medium, from which the deformation parameters can be derived and to 

which the observation quantities are related. 

Let us express the model (2-14) more explicitly as 

(

u(x,y,z; t-t0 )) 

d = V ( X , y , Z ; t- t ) 
0 

w(x ,y ,z; t-t 0 ) 

(

B (x,y,z; t-t) c ) u o -u 

= B (x,y,z; t-t) c v o -v 

B (x,y,z; t-t) c 
w o -w 

(2-14') 

The observable quantities are related to the model (2-14') in the 

following manner. 

(1) Observed coordinates. 

From equation ( 2-2), the position of point p at time t is expressed 

as 

r ( t) = r ( t ) + B( x ,y ,z ; t-t ) c + v( t) 
-p -p 0 p p p 0 -

(2-15) 

where v(t) is a vector of random errors. 

(2) Observed coordinate differences. 
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Levelling observes the coordinate difference in the z direction. 

In Section 2.2, hydrostatic levelling is considered as a tiltmeter. 

This is the case when the distance between the two points is small in 

comparison .with the dimension of the body under study. If it is not, 

the observation of hydrostatic levelling should be treated as that of a 

coordinate difference. The same idea is applied to the pendulum 

observations and the observations of interferometry (as distance 

observations). 

Let levelling be run between points P and Q at time t, then 

A pendulum observation gives the coordinate difference between two 

points, the one is the suspending point Q, while the other is point P, 

moving in the z direction. Therefore, 

R) t) = tx( t 0 )+ { Bu( x0 ,y 0 ,z0 ; t-t0 )-Bu( x0 ,y Q' zp; t-t0 )} ~u+V x( t) 

£ (t) = R. (t )+ {B (x0 ,y0 ,z0 ;t-t )-B cx0 ,y0 ,zp;t-t )} c +V (t) (2-17) 
y y o v o v o -v y 

where R.x, 'ly are the observations in the x and y direction, 

respectively. If the two axes of the pendulum observation devices are 

not parallel to the axes of the coordinate system, a transformation 

should be performed. The same idea is used below when it is necessary. 

An alignment observation provides the coordinate difference at 

point P with respect to two base points Q1 and Q2. Assume that the 

alignment is carried out in the plane z = zc along line they= yc; then 

£ (t) = £(t0 ) + {Bv(xP,yc,zc;t-t0 )- (1-k)B (xQ ,yc,z0 ; t-t0 )-

- k8~¢CQ ,y0 ,zc; t-t0)}~v+v(t) (2-18) 

where 
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( 3) Azimuth and horizon tal angle. 

Assume that the points P and Q are located in a deformable body. 

The distance S between the two points, the azimuth a, and the vertical 

angle S from P to Q are observed; then 

rQ- xp) c·~ c~sa) 
YQ Yp = s cos s s1n a 

ZQ Zp sin S 

(2-19) 

From (2-19), tan ( a ) = (yQ - Yp)/(xQ - xp). Differentiating this 

expression, one obtains 

cos (). 
s.cos 

(v -v ) -B . Q P 
sin a 
S•COS 

where up, vp and uQ, vQ are the components in x,y of the displacement at 

points P and Q respectively. Thus, 

a (t) = a(t ) + cos a {B (XQ,YQ, Z • t-t ) - B (X Y Z t-t )} · C 
o ScosS v Q' v p' p, p; o v 

- sin ct {B (XQ,YQ,ZQ; t-t ) - B (X ,Y ,z ; t-t ) } · C 
ScosS u o u p p p o u 

+ v(t) 

(2-20) 

The observation of a horizontal angle is simply expressed as the 

difference of the azimuths. 

(4) Distance observation. 

From (2-19), one can express the change in the distanceS as 

Therefore 

S(t) = S(t0 ) + (CosS Cos a, CosBsin·a, sinS) { H(XQ,YQ, Zq; t-t0 ) 

- B (X ,Y ,Z ; t-t ) } C+v(t) (2-21) 
p p p 0 -
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(5) Strain observation. 

Strain observations may be considered as a special case of distance 

measurements, in which points P and Q are close enough so that the term 

its differential. Thus the expression for a strain observation at time 

t is 

t(t) = Ht) +(cos~ cosa, cosS sina, sinS) E (cosScosa, cosS sina, 
0 

sinS) T + v( t) (2-22) 

where the deformation tensor E can be found from (2-25) 

(6) Vertical angle observation. 

From (2-19), one obtains 

sinS coset. tiS= ( =.:..:::.....,--=-=~ 
s 

sinS sina 
s 

cosS) (u -u w -w )T 
s Q p' vQ-vp, Q p 

Therefore 

S(t) S(t ) + ( sinS cosa 
0 s 

sinS sina 
s 

B(x, y, z · t-t )]· c+v(t) p p p, 0 

(7) Tilt observation. 

(2-23) 

A tilt observation, again, might be considered as a special case of 

a vertical angle observation when points P and Q are close enough. 

Therefore, the expression for a tilt observation is 

R,( t) ( ) { (lBw . (lBw ]c ( ) 
t t 0 + cos a a;z- + s1.n a ay- "-W· + v t 

(2-24) 
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The developnents made above are an extension of Reilly's work 

( 1981; 1982), where the treatment was restricted to homogeneous strain 

only. In the real world, a nonhomogeneous case with discontinuities is 

more likely. This is contained in matrix B(x,y,z; t-t0 ). 

After the vector of coefficients c of the deformation model (2-14) 

is estimated from the observation quantities, the deformation parameters 

can be calculated. The coefficients which are independent of position 

represent the rigid body translation. With the relations (2-3) and 

(2-4), the deformation tensor reads 

E=(~ C•1!!_ c crx·-:,ry·-
aB 
(3"Z • t;:) 

Consequently, the strain tensor is 

(e:ij) = ~(E + ET) 

and the rotational part of the deformation is 

T 
<wij) = ~(E - E ) 

(2-25) 

(2-26a) 

(2-26b) 

The position-independent part in (2-26b) corresponds to rigid body 

rotation. Taking the derivative of e: ij and w ij with respect to time, one 

obtains the strain rate f. ij and rotation rate~ ij. 

Based on the above developments, the problem of deformation 

analysis seems solved. But this is true only when 

( 1) the deformation model is known, including identification of the 

unstable points in a reference network; 

(2) the accuracies or the weight relationship of different types of 

observations are given; 

(3) no outliers and systematic errors exist in the observations. 

The ideal condition is never ful fi 11 ed • In reality geodetic 

monitoring networks are mostly free networks, suffering from datum 

defects, therefore the coordinates and displacements of points are 
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unestimable quantities; the network comprises different types of 

observables whose accuracies are not well defined; the deformation model 

is not fully understood or can even be completely unknown; and so forth. 

All this shows the need for the following three chapters, which 

contribute to the solution of these problems in deformation analysis. 



CHAPTER 3 

ASSESSMENT OF THE OBSERVATION DATA IN DEFORMATION SURVEYS 

USING THE MINQUE PRINCIPLE 

3.1 Estimation of Variance and Covariance Components 

3.1.1 Definition of the problem 

Deformation monitoring networks usually involve different types 

of observables. A typical example is a triangulateration geodetic 

monitoring network, which comprises measurements of both angle and 

distance. The measurement of the same observable might be made by 

different instrumentation. Moreover, each type of observable may be 

contaminated with errors having several components corresponding to 

different characteristics. Distance by EDM equiil'lent can serve as a 

good exanple--each measured distance contains a constant error and a 

scale error. Estimation of unknown parameters, e.g., coordinates of 

points, in a least-squares adjustment requires a knowledge of the 

variances of the observations or at least their weight relationship, and 

even their mutual correlations. Frequently, however, these weights are 

not known adequately, and a hypothetical establishment of them will 

37 
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inevitably lead to systematic deviation in the results. In addition, 

statistical inference about the significance of the computed deformation 

parameters (displacement, strain or strain rate, relative movement 

between blocks, and so forth) demands appropriate assessment of the 

observations. Moreover, the investigation of the variances and 

covariances of observations can aid further design by supplying 

information on the behaviour of the instruments and on the influence of 

the environmental conditions. 

Surveyors, before performing the adjustment of a network, 

usually acquire the variances of the observations from one of the 

following sources: 

( 1) accuracy of the instrunents as claimed by the manufacturers; 

(2) analysis of the observations prior to the network adjustment, e.g., 

estimation of angle accuracy from the Ferrero formula, or distance 

accuracy from the "double observation method"; 

(3) separate adjustments of the network using individual groups of 

observations; 

(4) trial and error method, in which different combinations of the 

suspected variances of the observations are entered into the 

adjustment until the a posteriori variance factor rf passes the 
0 

test on its compatibility with the a priori one (Dennler, 1980). 

Obviously, there are some limitations to the above methods. 

The accuracy of an instrument claimed by the manufacturer is generally 

an average one and may significantly differ from the actual. Methods 

(2) and (3) may not always be possible and may not take full advantage 

of the available observations. For example, when the accuracy of the 

angle measurements of the aforementioned Pitec network in Peru, 
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described below, was assessed from the Ferrero formula, only 40% of the 

observations could be used (Dennler, 1980). The last method usually 

requires many combinations of the suspected values of the error 

components and suffers by not having a very clear theoretical 

background. Therefore, it becomes necessary to suggest a more general 

method. 

3.1.2 A general model and summary of the estimation methods 

Let us consider a linear model of the parametric adjustment: 

J. = Ax + v (3-1} 

where ! is an n-vector of observations, ~ is a u-vector of unknown 

parameters, A is the first-order design matrix of n xu, and v is an 

error vector which, in general, can be written as 

where~ is a ci-vector, Ui is ann x ci matrix, n 

u = <u 1 I u2 I ~T 
-2 

k 
= r c., 

1 1 

I ~). 

( 3-2) 

It is assumed that the elements of ~- are uncorrelated with ....,. 

common mean and variance ~, and the elements of ~ and ~ are also 

uncorrelated. Then, the dispersion of v is 

~ = E {vvT} = U • D {_Q • UT ( 3-3) 

T 
with Vi = UiUi. E{•} and D{•} the expected value and dispersion, 

respectively. 

In the most general case, in which ~may contain variances and 

covariances, (3-3) can be rewritten as 
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(3-4) 

where ei are the distinct variance and covariance components, and Ti 

depends on the model. The problem on hand is to estimate the unknown 

parameters~· ~from the observation vector R. when the design matrices A 

and Ti are given. 

There is considerable literature on the variance components 

model in statistics, most of which is applied in the biological and 

behavioural sciences. Comprehensive reviews are given by Searle 

(1971b), Kleffe (1977), and Harvill (1977). Essentially, there have 

been three approaches. One is based on the assumption that the variable 

is normally distributed, in which case the likelihood function can be 

written in terms of variance-covariance components and mean values. 

Then the maximun likelihood estimates can be obtained by setting the 

partial derivative of the likelihood function with respect to unknown 

parameters~· ~equal to zero and solving the equations for~ and e 

simultaneously. The equations involved in this approach are complicated 

and have to be solved by iterative techniques. Furthermore, very little 

is known about the properties of the maximun likelihood estimators in 

this case (Rao, 1971a). Another approach is through the analysis of 

variances, in which variance-covariance components are obtained by 

making calculated mean squares of some kind equal to their expectation 

values and solving linear equations for these components. Different 

methods along this line can be found in Searle ( 1971 b). As pointed out 

by Rao (1971a), the theoretical basis of the approach is not clear, and 

the procedures suggested are ad hoc in nature, and much seems to depend 

on intuition. The third approach is based on optimization theory. The 
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most popular method of estimating e in an optimal way is the minimum 

norm quadratic unbiased estimation ( MINQUE) principle proposed by Rao 

and developed in a series of his papers (1970, 1971a, 1972, 1973). This 

estimation principle has the advantage of working without additional 

distributional assumptions. The method provides conventional estimators 

for the situation with the usual assumptions and offers a procedure of 

estimation for the less obvious cases. Unfortunately, as in some other 

methods of estimation, a somewhat troublesome aspect of the MINQUE is 

that negative estimates of variances may arise. If this happens, one 

may infer that a negative estimator corresponds to a snall positive true 

value or that the assumed model is not correct (Rao, 1972). But this is 

a rather arbitrary and symptomatic treatment. Therefore, many authors 

(e.g., Horn et al. (1975); Brown (1977); Rao et al. (1977)) have made 

contributions to overcome this drawback by disregarding certain 

properties of the t1INQUE, e.g., the condition for unbiased ness. 

In geodetic science, this problem has attracted the attention 

of geodesists only quite recently, although Helmert had proposed a 

method in 1924 (Grafarend, 1982). Among the publications, Kubik's 

approach (1970) is based on the maximum likelihood principle; Ebner 

(1972), Fo.rstner (1979), Grafarend et al. (1980), and Welsch (1978; 

1981a) extended the Helmert principle; Schaffrin (1981) has used the 

method of the best quadratic unbiased estimation (BQUE). 

The Helmert method is equivalent to the MINQUE as far as the 

estimation of variance components is concerned. But they differ when 

the covariance components are to be estimated. In general, the Helmert 

method gives unbiased estimators but not the "best". On the other hand, 

the BQUE is a special case of the MINQUE, when the variables are assumed 
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to be normally distributed. Therefore, it becomes obvious that the 

MINQUE principle should be adopted in this study. The possibility of 

providing negative values for the estimates of e. will seldom occur in 
l 

geodetic applications because of the much smaller number of 

variance-covariance components to be estimated compared with that of 

observations. The reason is that the estimated variance-covariance 

components are random variables, and their variances become small in 

comparison with their expected values when a relatively large number of 

observations is available, hence negative estimates would appear very 

rarely. 

3.2 The MINQUE and its Properties 

Let us assume that we wish to estimate a linear function of 

. . t Te h ( )T · var1ance-covar1ance componen s ~ , were~= p1, p2 , .•. , pk 1s 

known, with the quadratic form !:._TB~ A symmetric matrix B should be 

determined so that it satisfies the following conditions: 

(1) Invariant of translation of the unknown parameters~· i.e., for any 

u-vector ~0 the relation (!:._- A~0)TB(!:._- A~0) = _is!:_ holds, which 

implies BA = 0. 

(2) Unbiasedness, i.e., EUTBt} =~T_!. Since 

EUTBt} = Tr {B E{UT}} = Tr {BAxxTAT + Bl:} 

k 
= Tr {B 1: ei T i } 

1 

k 

= 1: ei Tr {BTi} 
1 

unbiasedness will be satisfied when Tr {BTi} = pi. 
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Minimun nonn. There exist 
T 

two estimators of E != one is the 

T T T T 
proposed quadratic form R. B R. = v Bv = ~ U BU ~· and the other is a 

so-called "natural one", that is, when the variable ~is known, the 

natural estimator of 2.T! is !;_T t.l, where t. is diagonal with elements 

(pi/ci)Ii. The difference between the above two quadratic forms is 

!"__T ( UTBU - •) r-_ and . . . 2 u 2 1s m1n1mized by minimizing the Euclidean norm 

It has been proved that minimizing this nonn is 

equivalent to minimizing Tr {BTBT}, where 

k 
T = .l.: T., (Appendix II.1). A similar derivation of the MINQUE for 

1 1 

covariance components was given in Rao ( 1972). 

Summarizing the above results, one can define the MINQUE as 

follows: a quadratic function R.TBR. is said to be the MINQUE of 2.T! if 8 

is such that Tr {BTBT} is minimum subject to BA = 0 and Tr {BTi} = pi (i = 

1,2, ... ,k). 

The extreme problem with linear constraints can be solved by 

the well-known method of Lagrange. The solution reads (Rao, 1970) 

( 3-5) 

where R = T-1Q = QTT-1 , Q =(I- PA) and PAis the projection operator 

onto space S(A), generated by the column vectors of matrix A, i.e., 

= The Lagrange multipliers 

obtained from 

k 

.l.: \ Tr {RT i RT j } = p j 
1 

j = 1,2, ••• ,k 

Therefore, the MINQUE of 2.T !• denoted by 2.T _!, is 

A. 
1 

in ( 3-5) are 

(3-6) 
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{3-7) 

where v is the residual vector, calculated from the least-squares 

adjustment using the weight matrix r-1• In matrix form, (3-6) and (3-7) 

become 

s~ = .E ( 3-6 I) 

and 

( 3-7 I) 

.... T-1 -1 ... = Tr {RT1. RTJ.} and q. = v T T. T v, termed the 
1 - 1 -

subquadratic form of the residuals. The variance-covariance components 

can be computed from (3-6 1 ) and (3-7 1 ) as 

! = s-1_g <3-8> 
Alternative derivations of the MINQUE can be found in Mitra (1971), 

Pringle (1974), and Pukelsheim (1976). 

Let e~ be an approximate value of ei. Then T~ = e~ Ti and 

k 
D {V} 

0 0 = r yi Ti, where y = ei/ ei, the scaled variance-covariance 
1 

components to be estimated. Figure 3. 1 shows the computational 

procedure. 

Some properties of the MINQUE are as follows. 

( ) d T T t" 1 1 Ad itive. If s1 and s2 are the MINQUE of ..e.,.! and ..e_2_! respec 1ve Y, 

T then cs 1 + s2 ) is the MINQUE of (_e1 +_£2 ) _!(Rao, 1970). 

(2) Invariant under a linear non-singular transformation of the 

variables (Rao, 1971a). 
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decomposition of 

covariance matrix 

k k 
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- l l 1 1 

T 

least squares adjustment 
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q 
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covariance components 
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A 
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8~ 
l 

8 

Fig. 3.1: The procedure of computation of 

variance-covariance components. 
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8~T. 

l l 
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(3) Identical with the best quadratic unbiased estimation when the 

variables are normally distributed (Lamotte, 1973). 

(4) Coincident with Helmert type estimation of variance components 

(Grafarend et al., 1980), but different from that of covariance 

components (Appendix II.2). 

(5) Asymptotically equivalent to the maximum likelihood estimator when 

the variables of the model are assumed to be normally distributed 

(Brown, 1976). 

(6) ~is unbiased when Sin {3-8) is regular (Appendix II.3). 

3.3 Application of the MINQUE to the Assessment of the 

Observations in Deformation Surveys 

3.3.1 Extension of the MINQUE to Condition Adjustment 

The original derivation of the MINQUE is based on model (3-1), 

parametric adjustment. But in surveying practice the adjustment of a 

network may be per formed by the condition method, whose mathematical 

model reads 

Cv + w = 0 

(3-9) 

where C is a configuration matrix of order r x n, y is an n-vector of 

residuals, w is an r-vector of misclosures, and the others have been 

defined before. From the least squares method comes the relation 

(Mikhail, 1976) CA = 0, where A is the design matrix in the parametric 

adjustment of the same problem. In a vector space, if the inner product 

is defined as(_!, :t_) = _!TT-1x_, then Z = TCT forms the orthogonal 
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complement of the space S(A) spanned by the column vectors of A, since 

ziT-1A = CTT-lA = 0. In (3-5), PAis the projection operator onto space 

S(A), and Q = I - PA is the orthogonal projection operator onto its 

orthogonal complement S( Z) • Thus 

(3-10) 

The corresponding expressions in (3-6') and (3-7') will be changed to 

(3-11a) 

Sij = Tr {RTi RTj} (3-11b) 

q. = w1 CCTCT)-1CT.c1 CCTCT)-lw 
1 - 1 -

{3-llc) 

It can be seen from (3-11) that the inversion ofT is not needed. This 

may be useful in some problems where T is not block diagonal and 

involves a large dimension matrix. 

3.3.2 A general error structure model in deformation surveys 

Deformation surveys involve multiple epochs of heterogeneous 

observations. Possible danage to benchmarks, extension or reduction of 

a monitoring network, as well as the utilization of newly developed 

instrumentation make the same repeated observation program unrealistic, 

that is, the first- and second-order designs may change from epoch to 

epoch. Thus, the function model of the adjustment for m epochs is given 

by 

0 0 

0 

= 

0 0 ••• ~ 

+ 

~2 

v -m 

(3-12) 
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or more compactly as 

i. = Ax + v (3-13) 

where i.. is an n .-vector of observations, v. is an n .-vector of errors, 
""""1 1 -1 1 

..!i is a ucvector of unknown parameters, and Ai is the first-order 

design matrix of ni x ui. The unsubscripted variables represent the 

corresponding block of vectors or matrices. Since the same instrunents 

may be used in different epochs and similar environmental conditions may 

have a common influence on the observations, the possiblity of 

stochastic dependency anong the observations, not only in the same epoch 

but also between different epochs, exists. The stochastic model is 

-
expressed by the expectation value E{v} = 0, E{i.} = Ax and dispersion 

matrix 

T D {v } = E {vv } = l: = ( l: .. ) 
- -- 1J 

i,j = 1, .•. ,m (3-14) 

with l: .. being a covariance matrix between i.. and i... As in model (3-2) 
1J ~ ~ 

each covariance matrix may contain several variance- covariance 

components to be estimated, say kij components for l:ij, i.e., 

kij 
i. i. 

E •• = E 6 .. T .. 
1J 

i.= 1 
1J 1J 

Therefore, the dispersion matrix l: can be decomposed into 

k .. 
1J 

E = E E 
i<j i.= 1 

i. -1 T e1.J.C1 + 6 .. ) (e.e. 
1J -1-J 

i. T 
T 1.J. + e.e. -,J-1 

(3-15) 

in which oij is a Kronecker symbol (i.e., oij = 1 when i = j, otherwise 

i. 
oij = 0) and Hij is defined as 

0 (i,j = 1, 2, ••• , m) 
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m 
with dimension being l: n . When R. = 1, the model ( 3-15)" corresponds to 

1 i 
the so-called generalized multi-variate regression model of 

heterogeneous observations developed by Schaffrin (1981). But R. = 1 

implies that there is only one variance component in one epoch and 

one correlation coefficient between epochs to be estimated. This will 

not be the case in general since a monitoring network usually includes 

different types of observables, each of which may have one or more error 

components to be estimated, and correlation coefficients between epochs 

will be different for different types of observations. As soon as the 

R. 
stochastic model (3-15) is ready, the computation of 6ij (total number 

k = l: kiJ., i, j = 1, ••• ,m) is just a straightforward matter following 
i_sj 

Figure 3.1. Model (3-15) may be reconstructed by defining 

1 
e: < 61 1 • 

2 
611 , ••• ' 

-R. 
H .. = 

1J 
( -1 R. R. 
1 + o .. ) (H .. + H1.J.), then 

1J 1J 

k 
l: = l: e. T. = r( a) 

1 1 1 
(3-1 6) 

If an approximate value 8~ is assigned to 8. , the least-squares 
1 1 

adjustment is perfonned using C 1 ( 6°) as a weight matrix. Subsequently, 

the following quantities can be calculated: 

R = l:-1( 6o) - l:-1( eo)A(AT l:-1( 6o)A)-1AT C1( eo) 

q. = vTC1(6°)T?C1(6°)v 
1 - 1 -

0 0 
Sij = Tr {RTi RTj} 

and the scaled variance-covariance components :r. are estimated from 
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"' -1 .l = s 3 

Thus, the estimated variance-covariance components are 

~ "' 0 o. = r. e. 
~ ~ l 

( i = 1 ' 2 ' ••• 'k) 

3. 4 Assessment of the Observations of the Pitec Network 

--An Example 

The Pitec network was established by the University of New 

Brunswick in 1977 (Chrzanowski et al., 1978) to monitor tectonic 

movements in Peru. The network is located about 10 km due east of 

Huaraz in central north Peru at an average elevation of 4000 m. The 

configuration of the network is shown in Figure 3.2. The distances were 

measured using HP 3800A and AGA 12 EDM instruments, and backward and 

foreward observations were made with different instrunents during the 

same observation campaign. The angles were measured using a Wild T2 

with independent angle method of four sets (Dennler, 1980). 

In the assessment of the observations, it is assumed that the 

measured angles and distances are all independent and have the variances 

2 2 2 2 2 2 2 e8 for the angle, and aHP + bHP S and aAGA + bAGA S for the distances 

measured with the HP 3800A and the AGA 12 respectively, where S is the 

measured distance. Then the model (3-3) can be constructed as 

0 

0 0 

0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 
2 

+ aAGA 0 

0 0 

0 0 

0 

0 

(3-18) 
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13 42 38m 

0.5 1 km 

10 

EL. 
3723 m 

Fig. 3.2: The Pitec Network. 
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where Ini is an identity matrix with dimension ni of the nunber of 

2 
observations, o1 is a diagonal matrix with non-zero elements being Si. 

The estimated values of those variance components using the MINQUE 

principle are presented in Table 3.1. For the sake of brevity, the data 

used and the progran developed will not be included in the thesis. (The 

same policy is adopted in the following chapters.) 

* 

MINQUE method 2.6 4.2 4.5 3.6 

Trial and error 
method * 2.0 2.0 4.0 2.0 

Accuracy claimed 
by manufacturer 3.0 1.0 5.0 5.0 

The values are taken from Dennler (1980). 

TABLE 3. 1 

The Variance Components of the Observations 
in the Pitec Network. 

3.2 

3.0 

From the assessment of the observation data of the Pi tee 

network, the following remarks can be made: 

( 1) The computation procedures using the MINQUE are straight-

forward. The iteration process converges very rapidly. Table 3.2 shows 

the iteration process. Actually, the values are acceptable after the 

first iteration. 
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Iteration aHP (mm) bHP (ppm) aAGA (mm) bAGA (ppm) e ( "> a ---------------------------------------------------------------------
0 
1 
2 
3 
4 

1.0 1.0 1.0 1. 0 1.0 
2.6 4.2 4.6 3.3 3.2 
2.5 4.2 4.4 3.6 3.2 
2.7 4.2 4.5 3.5 3.2 
2.6 4.2 4.5 3.6 3.2 

TABLE 3.2 

The Iteration Process in the Estimation of Variance 
Components of the Observations of the Pitec Network. 

(2) The estimated variance components for distance 

measurements using the MINQUE principle, in comparison with the value 

obtained by the trial and error method, are closer to those given by the 

manufacturers. The scale errors are smaller than those claimed by the 

manufacturers which was to be expected because the surveying site is 

located at high altitude, thus the environmental conditions have less 

influence. 

(3) Components bHP and bAGA reflect only the random part of 

the scale errors of the EDM instruments. The systematic part of the 

scale errors cannot be estimated from this free network. Moreover, the 

two error components of the EDM-measured distances cannot be separated 

if the distances in a network are more or less uniform. 

At the end of this chapter it should be stressed that the 

principle of the MINQUE seems to be as fundamental as the least-squares 

method of estimation, where no assumptions about the distribution of the 

variable is made. Although the method was proposed in 1970, application 

to geodetic practice is only beginning, and further investigation is 

required. 



CHAPTER 4 

DATUM DEFECT PROBLEM AND ITS RELATION TO DEFORMATION ANALYSIS 

4.1 Datum Defect Problem 

Geodetic deformation monitoring networks are mostly free 

networks, suffering from datum defects (Van Mierlo, 1978), that is, the 

network can be freely translated, rotated or scaled in space. These 

defects, of course, could be removed by external observations. For 

example, the orientation of a network can be determined by measuring a 

gyro-azimuth or an astronomic azimuth. However, the precision possible 

from such external observations is, at present, low in comparison to the 

precision possible from the internal observations of a network; in 

addition, the cost of acquiring such external observations is too high 

to be economically justified. Therefore, external observations are not 

used frequently. The quanti ties which define the network in space are 

known as datum parameters (Kruger, 1980) • The datum parameters for 

different types of geodetic networks are listed in Table 4.1. 

54 
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type of network datum defects datum parameters 

horizontal network 

a) triangulation net 4 2 translations 

rotation 

scale 

b) trilateration net 3 2 translations 

rotation 

vertical network 1 translation 

three-dimensional net 6 3 translations 

(+1) 3 rotations 

(1 scale) 

TABLE 4.1 

Datum Parameters of Networks. 

Let ~ be a n-vector of observations whose dispersion matrix is 

E, ~ be a u-vector of unknown coordinates, and A be a n by u 

configuration matrix or the first-order design matrix. The linear model 

of the parametric adjustment of the monitoring network reads: 

Ef~.\ = Ax 

D{!_} = E = cr 2Q (4-1) 

The information about datum defects, their number and types, is embedded 

in the configuration matrix A. Note that x should not be confused with 
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the coordinates in x direction of a Cartesian coordinate system. This 

should be clear from the context. If a network is complete, i.e., 

without configuration defects, the number of rank defects of A is equal 

to the number of datum defects of the network, denoted by d0 , and the 

basis of the null space of A characterizes the datum defects. It is 

easy to find a u by d0 matrix whose column vectors generate the null 

space of A by purely geometrical considerations. Considering a 

three-dimensional network, which comprises m points, one such matrix 

has, for the maximum case of seven datum defects, the structure 

(! 
0 0 0 ~ -Xo 

~) H = e 0 -z 0 X 1o -o -o 

0 e 1o -X 0 ~ 3m x 7 
(4-2) - -o 

with e being a vector of the form 

T 
( 1 • 1) (4-3) e = ••• t 

and x , y , z being vectors of the approximate coordinates with respect -o -=-() -o 

to the centroid of the network, i.e., 

X. X. 1 ~ X. = 
].0 ]. rn 1 ]. 

Y. Y. 1 ~ Y. - (4-4) 1.0 ]. rn 1 ]. 

z. z. 1 ~ Zi 
1.0 ]. rn 1 

where xio' Yio' zio are the ith elements of !o• Xo• ~ respectively, and 

the approximate coordinates of point i in a local 

Cartesian coordinate system. The first three columns of H correspond to 

the free translations in x, y, z, directions; the second three columns 

take care of the rotations of the network with respect to the centroid 

around x, y, z, axes respectively; the last column accounts for the 
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change in scale. For other types of geodetic networks, such a matrix H 

can be produced from (4-2) by simply deleting some irrelevant columns. 

For instance, for a vertical network H = ~· and for a horizontal 

trilateration network 

0 
(4-5) 

e 

Since the matrix H generates the null space of A, the relation 

AH = 0 (4-6) 

holds. 

The normal equation for model (4-1) reads 

Nx = w (4-7) 

Due to the rank deficiency in A, the 

coefficient matrix N of the normal equations is singular and shares the 

same null space as A, which can be proved by verifying NH = 0 using 

relation (4-6). Therefore, there exists an infinite number of vectors x 

which satisfy the equation (4-7). In general, the solution to (4-7) can 

be expressed by (Bjerhammar, 1973): 

(4-8) 

where N is a generalized inverse, and ~ is an arbitrary u-vector. The 

solution is, in general, biased, i.e., x does not belong to the 

estimable quantities. However, a linear function T 
E.! of unknown 

parameters x will be invariant of the choice of g-inverse of N provided 

that the condition pT(I - N-N) = 0 is satisfied, where E is a u-vector 

of scalars. The quantities .ET.! are said to be estimable. 

It is well known that derived spatial angles, distances, or 

distance ratios (if no distance was measured in a network) are estimable 

or datum independent (Grafarend and Schaffrin, 1974), but the 
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coordinates of the points or the azimuths are not. Neither are their 

variances and covariances. Obviously, in deformation analysis, the 

computed deformation parameters should be estimable, otherwise the 

conclusion ~ill be biased due to the choice of the datum. 

The coordinates of points are the quantities that geodesists 

and surveyors would like to work with because of some appealing 

benefits: the formulation of the deformation model is very transparent 

and easily schematicized for the computation; the plot of the results is 

straight forward and lucid ( Caspary, 1982). However, some scientists 

argue against the use of the coordinates in deformation analysis, 

especially in the study of tectonic movements because they consider that 

this introduces a datum problem and involves some difficulty in 

assessing the precision of the derived strain tensor (Reilly, 1982). 

Therefore, study of the datum defect problem is indeed significant and 

possesses the following purposes: 

(1) to better understand the attributes of the coordinates of the points 

and their covariances derived from the adjustment of a free network, 

which avoids committing the mistakes in deformation analysis; 

(2) to provide a good picture of the displacement field by selecting an 

appropriate datum, which makes it easier to identify the deformation 

model in the space domain or the suspected unstable points of a 

reference network. 

Definition of the datum of a network means specification of a 

datum equation DT~ = 0 with r{D} = d0 • However, how the problem of the 

datum defect is solved and what should be taken into consideration in 

deformation analysis concerning this problem are the topics of the next 

two sections. The main development in Section 4.2 lies in the solution 
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of the datum defect problem using projection theory in a parameter space 

and in the linkage of this method with the methods of similarity 

transformation and generalized inverse. A thorough discussion of the 

relation between the datum defect problem and deformation analysis is 

made in Section 4.3. 

4.2 Solution to the Datum Defect Problem Using 
Projection Theory in the Parameter Space 

As mentioned in Section 4.1, the coefficient matrix of normal 

equations is singular due to datum defects. The singularity problem can 

be solved by means of projection theory in the parameter space, which 

offers a better understanding of the problem. 

Let Eu be a u-dimensional Euclidean space with the inner 

T product being defined as <~.x> = ~X· Then all the ~ satisfying the 

equation (4-7) lie in a hyperplane ip (or linear variety): 

'¥ = N-!!_ + S(H) (4-9) 

where S(H) denotes the subspace spanned by the column vectors of H. A 

case of three-dimensional Euclidean space is portrayed in Figure 4.1. 

In Eu datum equation DT~ = Q defines a subspace EqCEu with q = u - dD 

and its orthogonal complement is subspace S(D) with dimension d0 , 

generated by the column vectors of D. The solution to the datum defect 

problem can be understood as projecting any solution ~ parallel to S(H) 

onto the subspace Eq (see Figure 4.1). Intuitively, it is clear from 

Figure 4.1 that the projected vector i 1 on the subspace Eq is unique, 

whatever the original solution l is. The theoretical proof of that is 

given in Note 3 below. 



60 

S(H) 

S(NJ 

Fig. 4.1 

Solution to the Datum Defect Problem Using Projection Theory 

in the Parameter Space. 
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The orthogonal projector in a vector space is widely discussed 

in the least-squares approximation theory, e.g., Luenberger (1969); 

Wells (1974); Adam (1980). However, the oblique projection operator, to 

be used here, is not very popular in surveying engineering, therefore 

more description is necessary. Further reference is made to Afrait 

(1957) and Rao (1974). 

Let A and B be disjoint matrices, each with the same number of 

rows n, which span the whole Euclidean space En. By disjoint matrices 

is meant that the intersection of two spaces S(A), S(B) is a zero 

vector, symbolized by S(A) n S(B) = 0. Any vector x_ in En(En:S(A)EB 

S(B}) has the unique resolution: 

X. = x_1 + x_2 , x_1 E S(A), 1.2 E: S{B) (4-10) 

where e denotes the direct sum of subspaces. Then PA/B is said to be a 

projector onto S(A) parallel to S(B) if and only if 

x_1 = PA/B x_ for all x_ E En ( 4-11} 

Since x_1 E S( A) and x.2 e S( B) , they can be expressed as linear 

combinations of the bases of the corresponding space, i.e., 

J.. = x.1 + x.2 = A ~ + B b (4-12) 

where a and b are arbitrary. Using (4-11) yields the following: 

PA/B(A ~ + B b) = Aa for all a and b 

which results in 

(4-13) 

T From (4-13), P A/BB = 0, P A/B can be considered as the matrix of maximum 

rank of B. By denoting a matrix of maximum rank by C, such that CTB = 
T 0, PA/B can be expressed as PA/B = KC for some K. By substituting in 

T T -1 PA/BA = A, KC A = A or K = A(C A) , the representation of the projector 

AA/B is established: 



T -l T 
PAIB = A(C A) C 
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(4-14) 

An alternative representation of PA/B is given by Afrait (1957) as 

T -1 T ) PA/B = A(A Q8A) A QB (4-15 

T )- T with Q8 = [I- B(B B B ]. The result is established by verification of 

the condition that 

PA/BA = A and PA/BB = 0. 

Now, the solution l 1 in the subspace Eq can be derived by using 

the oblique projector developed above. " ,.. From Figure 4.1 (~- ~1 ) is the 

projection of~ onto subspace S(H) parallel to Eq. Using (4-14) and 

considering S(D) ...1.. Eq, one can get 

Hence 

i 1 = (I - H(DTH)- 1DT)l 

= P D.l.. • ~ • ( 4 -1 6) 

" The alternative expression of ~1 can be obtained using (4-15). Note 

that Q8 in (4-15) is the orthogonal projector onto the subspace 

perpendicular to S(B). Thus 

(4-17) 

As a special case, the projection onto the subspace S(N) 

parallel to S(H) is orthogonal because S(H) ...1.. S(N). It has the shortest 

length among any other projected vectors. By the definition of the 

inner constraint solution, i.e., the solution having minimum Euclidean 

norm ( II~H =min), such a projected vector, denoted by x. , is the -1n 

solution of the inner constraint. Therefore 

/\ 
X. -1n 

(4-18) 

which suggests that the datum equation for the inner constraint solution 

has the form of 



T H ~ = 0 (4-19) 

Note 1. The inner constraint solution (4-18) is a special case 

of (4-16), where D =H. 

Note 2. The second term of the alternative expression (4-17) 

can be understood as an orthogonal projection of any solution vector x 

onto the subspace S(H) when the inner product in Eu is defined as (~,X) 

=~Twx with w = D(DTD)-1DT. This understanding is useful. When some 

components of x are more favored than the others, "heavier" weights can 

be imposed on the favored ones. 

Note 3. A projector has the property that PD~/H P0; 1H = PDt/H' 

This can be proved 

(I- H(D~H)- 1 D~). 

T -1 T T -1 T by verifying (I- H(D1H) D1)(I- H(D2H) D2) = 

This establishes the result that the projected vector 

l 1 on the subspace Eq is unique whatever the original solution~ is. 

Note 4. If G and E are any other matrices such that S(G) = 

S(H), S(E) = S(D), then 

(I - H(DTH)-1DT) = (I - G(ETG)-1ET) (4-20) 

So far, the general solution to the datum defect problem has 

been given. Koch (1982) has considered this problem from a different 

view, using a symmetric reflexive generalized inverse of N. Here the 

author has taken full advantage of projection theory in the parameter 

space, whose implications are essentially in terms of better insight and 

understanding of the mathematical formulations. 

Another way to look at the datum defect problem is through 

Baarda (1973), using similarity transformations, which was further 

discussed and developed by van Mierlo (1980) and Molenar (1981). Given 

a vector of coordinates l. it is required to transform x to a new one 

11 , which satisfies the datum equation DTi1 = 0. Denote the datum 
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parameters by a vector !• whose components correspond to the columns of 

the matrix H in (4-2). For instance, for a horizontal trilateration 

T network t = (t ,t ,t ) whose components represent the translation of x y r 

the network in x,y direction and rotation of the network. Then, the 

similarity transformation can be expressed as 

(4-21) 

The parameters! are determined so that ~1 satisfies the datum equation, 

i.e., DTi1 = DTx + DTHt = o. Therefore, 

Substituting (4-22) into (4-21), one obtains 

X = [I - H(DTH)- 1 DT]~ 
-1 -

which is the same as (4-16). 

(4-22) 

(4-23) 

As we know, the normal equation (4-7) can be solved by a 

generalized inverse (g-inverse). There are many ways to compute a 

g-inverse, see, e.g., Rao and Mitra (1971), Blaha (1971), Mittermayer 

(1972), Welsch (1979). However, one is interested in knowing the 

attributes of the computed vector of coordinates x and its covariance 

matrix. This is profitable in deformation analysis. The choice of a 

g-inverse implies the definition of a specified datum. Let us derive a 

general expression of the g-inverse, which is related to a particular 

datum. Denote the datum by equation DTx = 0, then the generalized 

inverse has the form 

(4-24) 

Proof. Since (N:D) is of full rank, (N + DDT) is nonsingular 

(Rao, 1973, p. 34). Accordingly, (N + DDT)-1 is one of the g-inverses 

of N, which is established by verification of the condition 

T -1 N(N + DD) N = N (Rao, 1973, p. 225). One solution to the normal 
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equation (4-7) becomes~ = (N + DDT)-1w. Using the formula (4-16), one 

obtains ~1 = [I - H(DTH)-1DT](N + DDT)- 1~ = N~ with 

N- = (I- H(DTH)-lDT)(N + DDT)-1 
D 

Further consider that 

(N + DDT)(H(DTH)- 1DT) = DDT (since NH = 0) 

H(DTH)-lDT = (N + DDT)- 1DDT 

D[(DTH)-1]THT = DDT(N + DDT)- 1 

[(DTH)-1}THT = DT(N + DDT)-1 

Substituting this into (4-25), 

H(DTH)-1DT(N + DDT)-1 = H(HTDDTH)-lHT 

which establishes (4-24).H 

(4-25) 

Note that N~ is a reflexive inverse and that when D = H the 

inverse N~ becomes the pseudo-inverse of N, i.e., N~ = N+. This is easy 

to verify from the definition of these two types of inverses. 

Projection of the vector of coordinates 2 from one datum to 

another is usually accompanied by the transformation of its cofactor 

matrix QA. Applying the law of error propagation to (4-16), the 
~ 

cofactor matrix of the projected vector l 1 is written as 

Qx = (I- H(DTH)-lDT)Qx(I- H(DTH)-1DT)T 
_I -

(4-26) 

On the other hand, since l, = N~ = N~AT0- 1!, by applying the 

law of error propagation one can obtain QA = N~NN~. Consequently, 
~. 

because 

QA = No !I 

N~ is a reflexive inverse. 

Note that 02 possesses the same rank defects as 
-1 

(I - H(DTH)-lDT) and has the property 

DTQA = 0 
!I 

which will be useful in the following chapters. 

(4-27) 

(4-28) 
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4.3 Datum Defect Problem in Deformation Analysis 

Without datum defects in a monitoring network, deformation 

analysis would be much simpler. Comparison of the calculated 

displacements with their accuracies would indicate whether the points 

have moved, and the identification of the deformation model would be 

easier because the obtained displacement field would not be distorted. 

Unfortunately, this is not so in reality, at least at present, due to 

the aforementioned reasons. 

Let 11 , i 2 be the vectors of coordinates calculated from the 

adjustment of the first and the second epochs of observations, 

respectively, and Q~ , QA be their cofactor matrices. The vector of 
!I !z. 

displacements d are computed as the differences between the two vectors, 

J\ "' ,.. 1\ 
i.e.,~= ~2 - ~,. If ~1 and ~2 are obtained from the adjustments 

referring to different datums, the quantity ci2- i,> will contain 

"false movements", caused by the different datum parameters. This may 

often happen in practice. 
A 

For example, ~2 is calculated using the 

minimum constraints which differ from those used in the first epoch 

adjustment due to the damage of some points; i 1 , i 2 are both calculated 

from inner constraint solutions, but some points are added in the second 

epoch; the observation schemes at two epochs of time are different, 

producing the change in the datum defects of the network. In these 

cases, projection of the calculated coordinates as well as their 

covariance matrices to the same datum is necessary. This can be 

achieved by means of the projection operator developed in Section 4.2. 

The vector of displacements ~ and its cofactor matrix Q~ with 
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respect to the datum defined by the equation DTx = 0 are computable from 

... " d = P0.1.(_~2 -~I) (4-29) 

and 

T 
Qd = PD.l.(Qx + Qi )PD.l. (4-30} 

- -1 -Z 

where the projector Prr= (I- H(DTH)-1Dr). Note that the matrices Hand 

D should consist of the appropriate columns corresponding to the union 

of the datum parameters of two epochs and of the appropriate rows for 

the common points in two epochs. For instance, if a monitoring network 

was a triangulation network in the first epoch, but triangulateration 

network in the second epoch, then the datum equations imposed on the 

separate adjustments have rank of four and three respectively. To 

formulate the projection operator P0 , the datum equation possessing rank 

of four should be used. 

In practice it often happens that one is interested in the 

investigation of a partial network. Let the vector of displacement d 

T and its cofactor matrix Qd be conformably partitioned as d 

and 

where ~1 and Q11 are referred to the portion under investigation. In 

general, Q11 is regular and ~1 contains translation, rotation components 

of the partial network with respect to the datum used in the adjustment. 

In order to study the change in the shape of this partial free network, 

T -for example, use of the quadratic form ~1 Q 11~ 1 tests the distortion of 

the partial network, the displacement vector ~1 and the cofactor matrix 

Q11 must be transformed to those referring to a datum specified for that 
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partial network. This can be achieved by means of a projector P0~ 

where P0 is established using (4-16) and refers to the datum equation 

for the partial network. 

Another problem in deformation analysis is to set up a 

criterion for the datum definition. Although the estimation of the 

deformation parameters using the method developed in Chapter 6 does not 

depend upon the choice of datum, careful selection of a datum will help 

a lot in the identification of a deformation model, which is an 

important step toward the estimation of deformation parameters. 

Free network adjustment of a conventional geodetic network in 

the concept of inner accuracy has been rather widely accepted after many 

elucidating discussions in the last years concerning the statistical 

properties of the results (Schmitt, 1982). However, it does not 

necessarily provide the best result as far as the identification of the 

deformation model is concerned. This point has been investigated by 

Caspary and Chen ( 1981) and Prescott ( 1981). In deformation analysis, 

the definition of the datum by the inner constraint method suggests 

that: 

{1) the summations of the displacement components of all the points are 

zero, i.e., ~u. = :L.V. = ~w. = 0 or the centroid of the network is 
~ l t l L l 

stationary, where ui, vi' wi are the components of the displacement 

of point i in x,y,z direction respectively; 

( 2) no rotation of the network during two epochs of time around three 

axes of the coordinate system about the centroid takes place, i.e., 

.?( y1. 0 w1. - z. v. ) = Z: ( z. u. - x. w. ) = ~ ( x. vi - yio u1. ) = 0; 
L lO 1 ~ 10 1 10 1 L lO 
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(3) there is no scale change between the two epochs, i.e., 

L(x. u. + y. v. + z 1. 0 w1.) = 0. 
l 10 1 10 1 

The above points are for the case of a three-dimensional geodetic 

monitoring network with seven datum parameters. The situation for other 

types of monitoring networks is easily deduced from this general case. 

If all the points of the network are stable during two epochs 

of time, the calculated displacements are caused only by the random 

observing errors. Then the inner constraint method will provide a 

better datum, compared with the minimum constraint method because it 

weakly depends on any particular point and keeps the influence of the 

random observing error small. But if some points in the network have 

moved, then the inner constraint solution would smooth the real 

displacements and bias the datum, making identification of unstable 

points in a reference network and of a deformation model in a relative 

network more difficult. Having recognized this point, many scientists 

have developed different approaches. 

The approach based on the examination of invariant quanti ties 

has been developed at UNB and used to select "best" minimum constraints 

for the adjustment of the monitoring network (Chrzanowski et al., 1981; 

Tobin, in prep.). In this approach the separate adjustments of two 

epochs of observations are performed, adjusted distances and angles from 

each point to the rest of the points of the network are calculated for 

both epochs, and the differences of these adjusted quantities and their 

variances are derived, which are invariant of the choice of the datum in 

the adjustment. The stability of any pair (in a distance) or of any 

triplet (in an angle) of points is examined by statistical testing of 

these differences. The failure of the test at a certain significance 
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level is the suspicion that any of the members of the pair or triplet of 

points is significantly unstable. In order to identify the specific 

points, i.e., isolate them from the pair or triplet, a listing of 

observation difference failures is made at several levels, viz. at 

Cl( = 0 • 1 0 ' 0 • 05 • The frequencies of failure for each point are 

tabulated. Then the points with the least frequency of involvement in 

failures of the statistical test are considered as the least unstable 

and so are used as control points serving as necessary minimum 

constraints of the adjustment. The method is successfully applied to 

preliminary identification of suspected moving points in several 

monitoring networks (Chrzanowski et al., 1982(a); Chrzanowski and 

Secord, 1983). 

Another approach (Koch and Fritsch, 1981) is to define the 

datum step by step. Based on the global statistical test (see Chapter 

5), some points, assumed to be stable, are selected to define the datum 

using the' inner constraint method, i.e., translating, rotating and 

scaling (if no distance in the network is observed) the network so that 

the sum of the squared displacement components of those stable points is 

minimized. Then one of the points remaining in the network enters the 

list of the stable points if the statistical test on the assumption that 

all the points are stable is accepted, and the datum is redefined 

including that point in the inner constraint solution. This successive 

estimation of the coordinates with the test for stable points stops when 

all the stable points are used to define the datum and all hypotheses 

for additional stable points have to be rejected. 

Rather than the trial and error approach, a new method for the 

location of the datum has been developed by Caspary and the author 
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(1981). In this method a special similarity transformation is used so 

that the sum of the length of final displacements of all the points is 

minimum. Assume that d is the 3m-vector of displacements in three-

dimensional space and d. is the 3-vector of displacement of the ith 
-1 

point. Then a special similarity transformation is carried out in such 

a way that the transferred vector of displacement .£!' satisfies the 

d . h ~II .s!~ll con 1 tion t at £. 

1 
= min, where .£!' = .£! + H~ with H and ~ being 

defined in (4-21). The datum defined in this manner is more robust to 

single point movement in a reference network than the inner constraint 

solution, particularly, when the network is comparatively small (Caspary 

and Chen, 1 981) • 

In a relative monitoring network the definition of an 

appropriate datum will provide a good picture for the identification of 

the deformation model. A method has been created by Prescott (1981) for 

analysing the crustal movement along the San Andreas fault, where there 

is a priori knowledge that station motion will most likely be along the 

direction of the fault, say the y direction. Consequently, the datum 

equation is constructed so that the centre of the mass of the network 

remains stationary and the components of displacement normal to the 

preferred direction are minimized, that is, the matrix D of the datum 

equation DTx = 0 has the form: 

(: 0 
D = 

e -

However, a priori knowledge about a deformable body in many 

cases is either poor or does not exist at all. Thus, the creation of 

the deformation model becomes difficult. A method elaborat:ing on the 



72 

merits of the different approaches is developed in Chapter 6 and serves 

as a tool for a preliminary identification of the deformation model in 

the space domain. 



CHAPTER 5 

ASPECTS OF STATISTICAL TESTING IN 

DEFORMATION ANALYSIS 

As pointed out by Pelzer ( 1971), statistical testing is 

especially important if geodetic networks are established for the 

detection of recent crustal movements or of deformation in man-made 

structures. Screening of the acquired data for outliers and systematic 

errors, diagnostic checking of the deformation models, examination of 

the significance of the derived deformation parameters and so on are 

based to a large extent on statistical tests. 

It is well known that no specification of the probability 

distribution of the observations is required, except for their mean 

values, variances and covariances, if the least-squares principle is 

adopted in the processing of data. However, an exact statement of the 

probability distribution of the observations is necessary in order to 

draw a statistical inference. In surveying engineering the acquired 

data are most often normally distributed about their mean values (e.g., 

Baarda, 1967; 1976}. Hence, the assumption of normality of the 

observations is made throughout this chapter. 

73 
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For the sake of self-containment some basic attributes of the 

sample statistic for functions of normal random variables are presented 

in Section 5.1. Then a general test statistic for linear hypotheses 

valid for a model with a singular dispersion matrix for the observations 

and with rank deficiency in the configuration matrix is developed using 

the theory of vector spaces. As special cases of the general test 

statistic, the techniques for the detection of outliers and systematic 

errors in observations and the methods for the testing of deformation 

model are presented in Sections 5.3 and 5.4, respectively. Finally, the 

practical problem of choosing the significance level, a, for hypothesis 

testing is discussed. 

5.1 Some Basic Attributes of the Sample Statistic 

for Functions of Normal Random Variables 

Let d 
1- N ( l1, 
- n- l:) denote an n-vector of random variables 

following a normal distribution with expected value ~ and dispersion 

matrix t. Then its density function is defined as 

n 
- 2 - 2 1 T -1 

(21T) jrj exp{- 2<~- _0 r (~- ~} (5-1) 

However, the density function defined in ( 5. 1) does not exist if the 

dispersion matrix r is singular, i.e., r{I:} = k < n. A singular 

dispersion matrix implies that the random observations R. are linearly 

dependent and accordingly some natural restrictions are imposed on the 

observations. Denote matrix r of order nx( n - k) as the matrix of 

maximum rank of r, such that ti" = 0, then 1 is restricted on the 

hyperplane ( t->T<.!_- ~ = 0. Khatri (1968) and Caspary (1983) express 
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the density function of the observations ton this hyperplane as 

(5-2) 

where the li are the nonzero eigen values of E, and k is called the rank 

of the distribution (Khatri, 1968). 

A linear function At also follows the normal distribution with 

T 
expected value E{At} = All and dispersion matrix D{At} = Ar.A • Two 

linear functions A1! and A2! are correlated with a covariance matrix 

T If A1 EA2 = 0, then they are statistically independent. The 

quadratic functions of normal variables have the following properties 

(Rao, 1973): 

i) The quadratic function q = 1TB1, where B is an arbitrary 

symmetric matrix, has an expected value of 

T 
E { q} = Tr { B E} + .!:. B.!:. (5-3a) 

and a variance of 

T 
V { q} = 41:. B I:B.!:. + 2Tr { B E13 I:} (5-3b) 

ii) The quadratic form q = (!- ~ TB(!- ~ has a / distribution 

iii) 

with degrees of freedom being tr{B 1:} under the condition that 

EB EB E = EB E, which will reduce to B EB = B if IE I i 0. 

T T 
Two quadratic forms q1 = (! - ~ B1 (! - ~ and q2 = (! - ~ 

B2C!- ~ are statistically independent if either the condition 

that I:B1 tB2 t = 0 in general or that B1 I:B2 = 0 when 1 1: 1 i 0 is 

fulfilled. Furthermore, if both quadratic forms are 

independently / distributed with degrees of freedom being k1 , 

k2 respectively, the ratio T = Cq1/q2) •Ck2/k1) follows a central 

F-distribution. 
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iv) T The linear function A R. and the quadratic form (!. - _0 B(!. - ~ 

are statistically independent of each other if the condition 

w LA T = 0 is fulfilled. 

There are four basic probability distribution functions widely 

used in surveying engineering, that is, the normal, "n"; the Fisher, 

"F"; the Student's, "t"; and the chi-squared, u/n distributions. They 

are related in the following manner ( Sche ffe, 1959): 

ic a;df) = df •F( a;df, ..,) 

t(~;df) = he a; 1 ,df) 

F(1- a;df1 ,df2) = 1/F(a;df2 ,df1) 

and for normal distribution (Baarda, 1968): 

n(? = ..f( a;1, oo) 

(5-4a) 

(5-4 b) 

(5-4c) 

(5-4d) 

in which the degrees of freedom are denoted by df i and significance 

level by a. 

5.2 Formulation of the Test Statistic for the General Gauss-Markoff 

Model Using the Theory of Vector Spaces 

Geodesists have developed a series of test statistics for different 

purposes using classical algebraic methods. Among others are the 

statistic by Caspary ( 1979), established from stepwise condition 

adjustment and parametric adjustment; the global congruency test by 

Pelzer (1971) for deformation analysis; data snooping by Baarda (1976), 

the •-test by Pope (1976) and t-test by Heck (1981) for the detection of 

outliers. A general hypothesis testing for the Gauss-Markoff model has 

been given by Koch (1975) and that for the Gauss-Helmert model has been 

derived by Wolf (1980). 

There is a more general case, viz. the General Gauss-Markoff Model 
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(GGM) (Rao, 1973). 
2 Let the triplet ( !• A_!, a Q) denote the stochastic 

model (4-1), i.e., E{ 1} = Ax and D{ 1} = 2 
a Q. In the GGM, the 

configuration matrix A might be deficient in rank or the cofactor matrix 

Q might be singular due to the linear dependency of the observations or 

both. This may be the case in deformation analysis since 

( 1) the geodetic monitoring networks are mostly free networks, as 

discussed in Chapter 4, thus the configuration matrix A would not 

be of full rank; 

(2) deformation parameters may be calculated from the adjusted 

coordinates (quasi-observations), whose covariance matrix may be 

singular due to datum defects or configuration defects. 

Therefore, the test statistic for the GGM applicable in these instances 

should be developed. The mechanism of the following derivation is based 

on the theory of vector spaces. The adoption of geometrical language 

provides better illustration and simplification of the derivation. 

As we know, examining the power characterictics of a test or 

constructing tests with certain desirable statistical properties 

requires the additional specification of the alternative hypothesis. 

Any statistical test must inevitably examine two hypotheses: the null 

hypothesis H , which would be conserved unless significant evidence is 
0 

found to support its rejection; and the alternative hypothesis Ha' in 

favour of which the null hypothesis would be rejected. Following Searle 

(1971), the derivation of the statistic for hypothesis testing can be 

done by imposing on the parameters !. in the GGM a linear constraint Hx = 

w. Thus, H0 : Hx = w is the null hypothesis against the alternative 

hypothesis Ha: H_! t. ~· where H is an m x u matrix of known coefficients 

and w is an m-vector of known elements. 
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In the theory of linear models, the original one, without any 

restriction on _!, is referred to as the full model, and that with the 

restrictions imposed on x is called the reduced model (Searle, 1971b). 

In the derivation of the test statistic, the full model reads ( ~· A_!, 

a2Q) and the reduced model reads (~, A_! IH..! = _!!, iQ) where H0 : H_! = _!! is 

the null hypothesis to be tested against the alternative hypothesis Ha: 

Hx i w. 

It should be stressed that systematic errors and outliers in 

the observations ~ are treated as model errors in this chapter since 

their existence makes the applied model poor in describing what actually 

has happened. Consequently, the derived test statistic is universally 

valid for any case. 

5.2.1 Constrained least-squares estimation in vector spaces 

The least-squares estimation in vector spaces without 

restrictions on parameters and with the configuration matrix being of 

full rank has been discussed in, e.g., Wells ( 1974) and Adam ( 1980). A 

more general case, that linear restrictions are imposed on parameters 

and the configuration matrix is of possible deficiency in rank, will be 

considered here. This establishes the preliminary step for the 

formulation of the test statistic in the GGM. 

Consider the model: 

( ~· A_!, il) with r{A} = r < u (5-5) 

where A is an n x u matrix. 
n 

In an n-dimensional Euclidean space E , 

where the inner product is defined as (_!,X) = ..!TX• the matrix A forms an 

r-dimensional subspace S(A), called the solution space, and its 

orthogonal complement S(A~) is the condition space. The direct sum of 
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these two subspaces establishes the sample space or observation space, 

i.e., En= S(A) Q S(A~) (Wells, 1974). 

In addition, if the homogeneous constraints H~ = Q are imposed 

in model (5-5), where the Hx are estimable functions, i.e., S(HT)C 

T S( A ) , and r{ H} = h ~ m, then the solution space is restricted to a 

subspace of S( A), denoted by ~ (see Fig. 5-1). The subspace ~ can be 

generated by the column vectors of the matrix A(I-H+H) and has dimension 

of (r- h). 

Proof. Any vector ~ e S( A) can be expressed as ~ = A~ with ~ 

being some constant vector. Furthermore, if ~ E ~ c S(A) then B will 

+ satisfy the condition that H.!!_= Q and can be represented by ! = 0-H H) .r. 
with .r. being an arbitrary vector. Hence, ~ = A(I-H+H) .!.• meaning that~ 

lies in the + space spanned by the column vectors of A( I-H H). The 

dimension of the subspace ~. denoted by d{ ~}, is computable from the 

formula (5-6), (Rao, 1973) 

A d{ ~} = r{(H)} - r{H} 

since S(HT) C S(AT), (5-6) becomes 

d{ ~} = r{A} - r{H} = r - h 

(5-6) 

II (5-7) 

In the solution space S( A) the orthogonal complement of the 

subspace ~. denoted by ~L. can be generated by the column vectors of the 

matrix A( ATA) -HT because 

H(ATA)-AT•A(I-H+H) = H(I-H+H) = 0 (~ S(HT) c S(AT)) . 

Moreover, the non-homogeneous constraints Hx = w force the 

solution space of the model (5-5) to be limited in a hyperplane, denoted 

by If, which is the translation of the subspace ~ and can be expressed as 

If = .!_ + ~ with .!. E If. One representation of .!. is AH+~. The proof 

follows the same line as the above, only s = H+ w + ( I-H+H) .r. and ~ = AH+ w 



Fig. 5 .1: 

so 

Constrained Least-Squares 

Estimation in Vector Space. 
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+ + A( I-H H) :r.· This suggests that 2. must lie on the hyperplane 'i' = 1 + t. 

As is known, the least-squares solution to model (5-5) is the 

orthogonal projection of .!:_ onto solution space S( A) and the residual 

vector v = .l - Ax is the projection of .l onto the condition space S(A.l.) 

(Wells, 1974). One representation of the orthogonal projection 

..i.. T - T operators onto S( A) and S( A ) are P A = A( A A) A and P A..i.. = ( I-P A) = 

I-A(ATA)-AT respectively, which are symmetric, idempotent and unique for 

T any choice of g-inverse of A A (Rao and Mitra, 1971). Moreover, if Cis 

any other matrix such that S(C) = S(A), then PA = A(ATA)-AT = C(CTC)-CT. 

A simpler form is PA = CCT when C is the orthonormal basic spanning the 

solution space S(A). 

The solution to model (5-5) with restrictions on parameters 

Hx = 0 can be obtained by the orthogonal projection of .!:_ onto the 

subspace t. The projection operator can be established in the same 

manner as above except the matrix A is replaced by A( I-H+H). 

Alternatively, ~can be calculated by projecting .!:_onto space t since 

( v - V> .J_ t. 
-$ -

The projection of .l onto the subspace t..i.. establishes the 

vector (v - V) as 
-$ -

(5-8) 

Therefore 

(5-9) 

However, if the non-homogeneous constraints Hx = w are forced 

on the model (5-5), the least-squares solution .l =Ax is obtained by 
1 -ljl 

projecting .!:_onto the hyperplane 'i'. This can be expressed as 

v = v - •1• 
-ljl -$ ~ 

(5-10) 

where la is the projection of any vector 1jl E 'i' onto the subspace t..i... 

Proof. From the theory of vector space (Luenberger, 1969), any 



82 

vector 4 in the hyperplane 'l' can be decomposed into 

4 = _t + ~· lJ -4 E 'l', .1f ~ E ~. _t E 'l' (5-11) 

Let 4 and 4 be the least-squares solutions in the subspace 41 and in 

the hyperplane 'l', respectively. By definition comes the relation: 

11!:.-411~11!:.-411 .1f4e'l' (5-12) 

Substituting (5-11) into (5-12) yields II!- 4- .!_II < II!.- ~- _til ¥ 

~ E ~. which leads to (5-13) if a _t.L ~· denoted by ~· 

II!.- 411 ~ II!.- ~II (5-13) 

The inequality (5-13) suggests that if ~ is the least-squares solution 

in ~. then so is 4 = 4 + ~ in 'l'. As mentioned above, one 

representation of _tis AH+w. Therefore, 

·'· = P .1. • AH+ w ..!() ~ -

= A(ATA)-HT(H(ATA)-HT)- w II (5-14) 

Substituting (5-8), (5-9), (5-14) into (5-10), the following 

relations are established: 

1 = A; = A[x- (ATA)-HT(H(ATA)-HT)- (H~-~)] 
--ljJ -1!1 -

(~ 111-{> = A(ATA)-HT(H(ATA)-HT)- (Hx.:..w) 

5.2.2 The test statistic for the model ( 1, Ax, o2I) 

(5-15) 

(5-16) 

First, some statistical attributes of the vectors in the 

observation spac~ are established. 

(1) Any two vectors, B1! and B2!:_, with B1 , B2 being arbitrary 

symmetric matrices, are statistically independent if they are 

perpendicular to each other. The result is easy to verify. Since the 

T T orthogonality of B1!:_and B2!:_implies that !:_B1B2!= 0 leading to B1B2 = 

0, so the statistical independency between them is established (see 

Section 5 • 1 ) • 
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(2) The squared length of the residual vector follows a 

x2-distribution with degrees of freedom being the dimension of the space 

in which the vector lies. 

Proof: Since a residual vector v is the orthogonal projecton 

of t onto a subspace, expressed as i = P! with P being the projection 

operator, the squared length of the residual vector is q = lPTP! = 

T t. pt. In terms of Section 5.1, the symmetry and idempotency of the 

orthogonal projecton operator P are the necessary and sufficient 

conditions for q to have a x2-distribution, in which case the degrees of 

freedom are r{P}, the dimension of the subspace in which flies. 11 

Furthermore, the squared lengths of two residual vectors are 

independently x2-distributed if they are perpendicular to each other. 

( 3) The vector resulting from the sum of two vectors, one of 

which is non-random, has the same statistical attributes as does the 

constituent random vector, except for the expected value. For example, 

~ = ~ + ~ and ~ in Figure 5-1 share the same statistical properties, 

except for their expected values, so do v and v,.. because 111 is 
-~~~ -... ~ 

non-random. 

As mentioned in the beginning of this section, hypothesis 

testing involves two models: the full model and the reduced model. The 

latter is produced by imposing the null hypothesis H :Hx = 
0 -

w as 

constraints on the former. If the H is correct, the results from the 
0 

two models are statistically the same. In Figure 5-1, i and v are 

obtained from the full model, and I and f., from the reduced model. Note 

that from here on the subscripts 111 or 41 will be omitted. The squared 

lengths of f and f, denoted by R and R1 respectively, follow 

x2-distributions with degrees of freedom being df = n- r{A}, df1 = n-
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r {A} + r {H }. Since £ .L (i_ - ;!_J, R and ( R1 - R) are statistically 

independent. Consequently, for the acceptance of the null hypothesis at 

certain significance level a, the test statistic T, which by definition 

would follow an F-distribution, should not exceed the critical value: 

T = 
R1 - R 

R 
df < F( a: d f 1 - d f , d f) 

df 1 - df 

Equivalently, the test statistic can be written in another way: 

I 

T = 
df 1 ·--df 1 - df 

< 
(df 1-df)+df •F( 1 - a; df, df 1-df} 

(5-17) 

(5-18) 

The expression (5-17) or (5-18) serves as the statistic for the 

general hypothesis testing. It can be seen from Figure 5-1 that the 

computation of (R1 - R) may be carried out in three ways, depending on 

the problems at hand. 

(1) From the results of the adjustment of the two models: 

R1 - R = llllfll2 = (i_ - !_) T (i_ - ;!_J (5-19) 

or 

R1 - R = ( x - X) T AT A(_! - _g) (5-20) 

(2) From the results of the adjustment of the full model ( R., A_!, in 
only. Considering (5-16), the expression (5-19 can be rewritten as 

" T T- T-R1 - R = (H_! - ~) [H(A A) H ] (Hx- w) (5-21) 

Note that although f. may not necessarily be estimable because of the 

possible existence of rank defects in A, the quantity (R1 - R) is 

invariant of any solution of the normal equation of the full model. 
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(3) From the results of the adjustment of the reduced model (~ A~IH~ = 
2 

~· a I) only. It is clear from Figure 5-1 that lsv is the orthogonal 

projection of J_ onto the subspace ~...Lc S(A). Thus 

(v - v) 
T T~ 

= A( A A)- A v 

= A(ATA)- HT[H(ATA)- HT]- H(ATA)- AT; 

Accordingly, 

R1 - R = vTA(ATA)-ATv 

= vTA(ATA)-HT[H(ATA)-HT]- H(ATA)-ATf. (5-22a) 

Considering v ~. which implies that vT A( I - H+H) = 0, the formula 

(5-22a) can be expressed in another form: 

R1 - R = !TAH+H(ATA)- H+HATv (5-22b) 

Consider an important case when the solution space S(A) can be 

explicitly expressed as the union of two subspaces, say S(A 1) and S(A2), 

which corresponds to the full model: 

The null hypothesis H :y = 0 suggests that the solution is restricted to o-
2 

the subspace ~ = S( A1) and that the reduced model reads ( .t, A 1~, a I) . 

Observe that the subspace ~.L can be generated by the column vectors of 

T -T T -T ~ 
the matrix (I - A1(A1A1) A1)A2 , and that (I - A1CA1A1) A1) = QJ_, the 

cofactor matrix of j_, which can be verified by applying error 

T - T propagation to i_ = (I - A1 ( A1 A1) A1) !_., Therefore, the projection of v 

onto the subspace ~.1. is computable from 

( - -::"\ ( T - T -v - v, = Qy A2 A2 Qy A2 ) A2 Qv ~ 

Since i ..L S( A1), Q; • i = i_. Consequently, 

( T - T v- 'f) = Qv • A2 CA2 Qy A2 ) A2 • v 

and CR 1 - R) can be written as 

(5-23) 
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(5.24) 

The expression (5-24) will be found useful in model 

diagnostics. The diagnostic techniques based o,n (5-24) could be called 

a generalized method of the analysis of residuals. As will be shown in 

the next section, all the techniques for the identificaton of outliers 

can be treated as special cases of (5-24). 

5.2.3 The test statistic for the GGM 

The principle of least squares in the processing of observation 

data was propounded by Gauss in 1795 (Krakiwsky, 1975) and Legendre in 

1806 (Robinson, 1981) under the model 

2 (.!_, A_!, a I) with r {A} = u (full rank) (5-25) 

Later, Markoff made a systematic presentation of the theory under the 

same model. Therefore, the model ( 5-25) is named after them as the 

standard Gauss-Markoff model. In 1934, Aitken extended the model to the 

case that D {R.} = a20 with 10 1 i 0; Bose was the first to consider the 

situation that r{A} = r ~ u; in 1964 Goldman and Zelen studied the case 

when the dispersion matrix of observations is singular; combining all 

the possible situations, Rao constructed the General Gauss-Markoff Model 

(GGM) (Rao, 1971c) as 

(.!_, A_!, iQ) (5-26) 

with Q possibly being singular, and A possibly having deficiency in 

rank. Note that the model with linear restrictions on the parameters ..!• 

i.e., (!_. A_!IR_! = ~· a2Q) is, indeed, a special case of the GGM since it 

can be expressed as ( Jl. , A x, 20 ) with JI.T = ( l --e e- a e --e 
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and 

The least-squares solution to the GGM may be found in Rao ( 1973) and 

Hallum et al (1973). 

However, it will be shown that other more complicated 

situations can be reduc.ed to the model (5-5), ( 1, A_!, ii> with r {A} = r 

~ u, for which the statistic of hypothesis testing has been developed in 

5.2.2. 

(1) Consider the model 

( 1, A_!, iQ) with r {A} = r ~ u and IQ 1 f. 0 (5-27) 

Let Q112 be the square root of the positive definite matrix Q. Then, 

under the transformation ~ = Q- 112 .!:. and At = Q- 112 A, the setup (5-27) 

2 
is reduced to(~, At..!• a I), coincident with the model (5-5). 

(2) In the General Gauss-Markoff Model (5-26), the singularity 

of the dispersion matrix implies that the random variables 1 are 

linearly dependent. Let i,•···•is be the eigenvectors corresponding to 

th . 1 2 2 2 f Q d b d e non-zero e1genva ues A1 , ~, ••• ,As o an ~, , ••• ·~ e = n - s 

eigenvectors corresponding to the zero root. Define the matrices F = 
-1 -1 T 

( A1 i 1 , ••. , As is>, G = <~ 1 , ••• ,~). Then the transformation ~ = F 1, 

~ = GT~· Af = FTA, Ag = GTA leads to the model 

E{~} = Af • _!, 

E{_!g} = Ag • _!, 

D{~J = rlr 
D {~} = 0 

(5-28a) 

(5-28b) 

Since D {~} = 0, ~ is a non-random vector, so that ~ = ~g • x become 

constraints on the parameters. Two cases exist: 

(i) S(A) c S{Q) in the GGM, then GT 1 = GTAx = Q, no constraints are 

imposed on the parameters..!· Hence the model (5-28) is reduced to (~, 
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(ii) S(A) does not belong to the subspace of S(Q), the setup (5-28a) is 

restricted by the condition that A x = !:, . g- -o 
As is known, a general 

solution of Ag.! = !:g is .! = A; ~ + (I - A; Ag) .!• in which z is an 

+ + 
arbitrary u-vector. Observe that E{~- Af Ag ~} = Af(I- Ag Ag).! and 

- + - + 
denote ~ = ~ - Af Ag ~· Af = Af(I - Ag Ag) so that the model (5-28) 

becomes 

<1. Ar-!· ln (5-29) 

which again is the model (5-5) . 

The above discussion may be summarized by saying: 

(1) 2 All possible linear models can be reduced to the model ( 1., A_!, a I) 

with r {A} = r ..:::_ u, for which the statistic for testing the general 

hypothesis has been developed in 5.2.2. 

(2) The acceptance of the null hypothesis H0 :H_! = w can be tested using 

either 

T = 

or 

T' = 

df < F( a; df1 - df, df) 
df 1 - df 

df - df 
1 

2.df,J[Cdf1-df)+df • F(1-a; df,df1-df)) 

( 5-30a) 

(5-30b) 

with df = n- r{A}, df1 - df = r{H}. The formulae for the computation 

of all the quantities involved in the statistic are listed in Table 5-1. 
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TABLE 5.1 

The Formulae for the Computation of the Quantities Needed in the Test Statistic (5-30). 

CXl 
\0 
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5.3 Detection of Outliers and Systematic Errors in Observations 

Errors are often inherent in the observation data. The sources 

are diverse: either in the phase of data acquisition or in that of data 

transcription to computer-readable form; either caused by the influences 

of the environmental conditions or due to the defects of the 

in strum en ts. Outlying and systematic errors in observations are of 

major concern to geodesists, for their existence may produce large 

falsification in the results. In the past few years more attention has 

been given to this problem. Screening of the observations is one of the 

research topics, set up by the FIG "ad hoc" Committee on deformation 

analysis (Chrzanowski, 1981b). Different techniques for outlier 

detection have been developed (e.g., Baarda, 1968; Pope, 1976; 

Stefanovic, 1978; Heck, 1981) and widely used in surveying and 

photogrammetry (e.g., El-Hakim, 1981). A comprehensive review is given. 

by van Mierlo ( 1982) and Kavouras ( 1982). It is the purpose of this 

section to link the different techniques for outlier detection by 

providing a generalized method which is derived from the general test 

statistic developed in Section 5.2. 

Let n-vector of observations ~be partitioned into two groups: 

~ and ~ with ~ of dimension n1 free from outliers and ~ of dimension 

n2 , containing suspected outliers, denoted by vector 6. Then the 

mathematical model reads 

(5-31a) 

(5-31b) 
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where Q is assumed to be non singular. For outlier detection the null 

hypothesis is H0 : !_ = 0 versus the alternative hypothesis Ha: 6 f. 0. In 

the practice of outlier detection, the adjustment is performed for the 

reduced model, i.e., without considering outliers in the observations 

or, in other words, the restriction 6 = 0 is forced on the model 

(5-31a). 
"1' T "1' 

Let ~ = <!1 : ~2 > be the vector of residuals, whose subvector 

corresponds to ~ and ~· and Q; be its cofactor matrix with 

The test on the null hypothesis H0 : !_ = _Q, can be carried out 

using the statistic (5-30a) or (5-31b). The quantities involved can be 

computed from Table 5.1 as 

-T -1 -
R1 = v Q v 

R1 
-T -1 A [AT Q-1 Q- Q-1 A ]-1 AT Q-1 v - R = v Q 2 2 v 2 2 

df 1 - df = n2 , 

with A~= (0 : I). This general method is capable of testing multiple 

outliers in correlated observations. 

As a special case, if only one outlier is suspected of existing 

in the ith observation, T then A2 is replaced T 
by e. = 

-1 
(0. 0' ••• ' 1 • 

0, ... ,0), ith unit-vector, and the corresponding formula reduces to 

(5-32) 

Now, depending on how the denominator in (5-30a) and (5-31b) is 

calculated, the test statistic for flagging the outlier may have the 

following cases: 
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(1) When the a priori variance factor a0 is available, it results in 

the method of data snooping by Baarda (1968): 

<e! 0-1 ;)2 
l. -

T = -=--~~--~------~-! -1 - -1 2 
> F( a; 1 , "") (5-33) 

ee Q Q Q e .• ao 
-J. v -l. 

(2) When the a posteriori variance factor 

statistic can be either 

or 

where 

with df1 

> d f 1 I [ 1 + ( d f 1-1) F ( 1- a; d f 1-1 , 1 ) ] 

-
= n -r { (~1)} 

Az 

a is used, the test 
0 

(5-35) 

In addition, if the observations are uncorrelated, then (5-32) 

..2 
reduces to CR1 - R) = vi/qii' where qii is the ith diagonal element of 

o; and vi is the ith component of £. The statistics (5-34) and (5-35) 

become the t-test proposed by Heck (1981), and the -r-test by Pope 

(1976), respectively; namely, 

v. 
ff = ___ l._....,.- > t(~ df1- 1) (5-34') 

IQ"ii • ~ 

and 
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(5-35') 

With independence among the observations R. or between ~ and ~· the 

quantity (R1 - R) can be simplified as 

which has /-distribution with degrees of freedom equal to n2 and is 

called the partial quadratic form of residuals, in accordance with the 

result of Stefanovic (1978). 

It is clear from the above discussion that the generalized 

method for outlier detection has covered all the situations or, in other 

words, the existing techniques for outlier detection are embedded in 

this generalized method. 

Another group of errors in observations is systematic errors, 

which are in general difficult to model and perhaps more difficult to 

detect than outliers (Niemeier et al., 1982). But it is extremely 

important to discover and eliminate them in order to ensure that the 

derived deformation parameters are not caused by systematic errors in 

the observations. Successful localization of the systematic errors 

depends largely on the experience of an analyst, who should be well 

acquainted with the instrumentation used in the data collection and 

field operation as well as the theory of errors. Statistical testing on 

the significance of suspected systematic errors can follow the method 

developed in Section 5.2. 

Assuming that the observations !• or part of them, are 

contaminated by systematic errors ~· then the mathematical model reads 



E {~} = A.! + Dz 
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2 
D {.t} = a Q (5-36) 

The null hypothesis is H0 : 1. = 0 versus the alternative hypothesis Ha: 1. 

~ 0. From Section 5. 2, the test statistic can be established in two 

ways: from the adjustment of the full model ( 5-36) , in other words, 

additional unknown parameters 1. are introduced to the adjustment; from 

the adjustment of the reduced model or the model without additional 

parameters. 

If the estimated y and its cofactor matrix Q"' are obtained from 
- y 

the adjustment of the full model, the test statistic can be derived from 

Table 5.1, case 2, and the following inequality holds in favour of the 

null hypothesis 

'T -1 " 
1. QY zlq 

T = "2 ~ F( o.; q, d f) 
a 

0 

(5-37) 

with of being the a posteriori variance factor, q being the dimension of 
0 

vector 1. and df = n - r {(A I D) }. This is a well known test on the 

estimated parameters. 

If the adjustment of the reduced model is performed, the method 

for testing systematic errors is focused on the analysis of the 

residuals. The vector of residual v and its cofactor matrix 

obtained from the adjustment of the model without introducing additional 

unknown parameters X· Thus, from Table 5.1, Case 3, the test statistic 

(5-37) can be equivalently set up as 

T = ..:;;6R.....;/-=q,:.,-..,~ 
( R1 - llR) /df (5-38) 

Some systematic errors cannot be discovered through the 
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adjustment procedure, e.g., scale error of an E.D.M. instrument in a 

free network, therefore other measures, such as regular calibration of 

instruments, should be taken to eliminate the systematic errors as much 

as possible. 

At the end of this section an example is cited to illustrate 

the importance of the analysis of measuring errors. There is an ongoing 

debate about the reported aseismic uplift in southern California. As 

reported by the Committee on Geodesy and Committee on Seismology of the 

United States ( 1981), levelling data showed that a large region of 

southern California was uplifted by as much as 450 mm between 1960 and 

1974, then subsided to its previous elevation after 1974. The implied 

tilts were in the order of several microradians, well above the claimed 

accuracy of precise levelling. However, some scientists have recently 

suggested that the apparent uplift may be the result of height-dependent 

systematic error. Regardless of the outcome of these discussions, it is 

clear that the effects of systematic errors need to be studied 

thoroughly. 

5.4 Hypothesis Tests on Deformation Models 

The deformation model describing the changes of a body in space 

and time is generally not well known. Therefore, the main interest of 

an analyst is to select an appropriate model from among many feasible 

ones. 

Let~ (i = 1, 2) be ni-vectors of observations, ~i be vectors 

of residuals, Ai be the configuration matrices of ni X U 1 and x. be 
-1 

u-vectors of coordinates of the points in a monitoring network. They 
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are related by 

(5-39) 

with D {R.. } = 
~ 

Here only two epochs of observations are 

considered, but the results can easily be extended to multiple epochs of 

observations (see Chapter 6). 

Assume that the deformation model is ~ = (_!2 - .!.1) = 8 • c 

where c is the vector of coefficients for the model and 8 is a proper 

matrix whose elements are functions of the positions of the points, as 

defined in Chapter 2. The deformation model is regarded as a null 

hypothesis and can be arranged in the form 

or more compactly as 

H : X = u y 
0 - -

(5-40) 

(5-40') 

From the discussion in Section 5.2, the model (5-39) is regarded as the 

full model, and the model with the null hypothesis being imposed on it 

is the reduced one, which has the form 

(5-41) 

From the adjustment of two modelss, (5-30a) or (5-30b) can be 

readily applied to test the appropriateness of the deformation model. 

The null Hypothesis is accepted if 
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df 
T = 

df ,-df 
2._ F( a; df 1 - df, df) 

where R and R1 are the quadratic form of the residuals from the model 

(5-39) and (5-41) respectively; and 

(5-42a) 

(5-42b) 

with nc being dimension of~· 

If the adjustment is performed only to the full model (5-39), 

(R1 - R) can be calculated from the formula in Table 5.1, Case 2. 

In order to apply the statistic developed in Section 5. 2, the 

null hypothesis H0 in (5-40') should be altered to the form H~ = O. It 

is well known that the general solution to H~ = 0 is ~ = U z, where U is 

a matrix of rank r{U} = 2u- r{H} such that HU = 0 (Rao and Mitra, 1971) 

and z is a vector having dimension r {U }, if U is of order 2u x r {U }. 

One representation of H is H = (I - U( UTWU)- UTW) with W being an 

T arbitrary matrix such that r{U WU} = r{U}, which is easy to establish by 

verification of HU=O. Therefore, the null hypothesis (5-40') is 

equivalent to 

Thus the quantity t.R = R1 R is computable from 

(Hi)T[H(ATQ-1A)-HTJ-H{ 

(5-40") 

(5-43) 

where i. = (~; i ~~), A = diag {A1, A2 } and Q = diag {Q 1 , Q2 } • 

In (5-40"), H can be considered as a projection operator onto 

the orthogonal complement of the space S(U). Hence, Hx is the 
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projection of ~· denoted by ; onto this space and H(ATQ- 1A)-HT is the 
-x 

cofactor matrix of~. Therefore, llR is equivalent to the quadratic form 
-x 

of the residulas in the following quasi-observation equations with 

weight matrix being diag {N 1 , N2 }: 

that is, 

'T " 'T " 
llR = v 1N1v 1 + v 2N1v 2 -x -x -x -x 

with P = 
X 

(5-44) 

(5-45) 

So far the statistic for testing the deformation model is 

established. Some special cases are discussed below. 

Suppose that it is to be tested that the network is congruent 

during two epochs of time, then the null hypothesis becomes ~1 = ~2 or c 

=D. Using (5-30a), one obtains the statistic 

T::: ~ ·~fg_F(nx, df) (5-46) 
X 

with 

r { (-~) } 

A2 

Using the model (5-44) with~= 0, llR can be calculated from (5-45) as: 

(5-47) 

If .!1 , .!2 and o;,, 0~2 are referred to the same datum, using the 

properties of the parallel sum of N1 and N2 (Rao and Mitra, 1971), 

(5-47) reduces to 
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(5-48) 

Consequently, the global congruency test (5-46) for this case becomes: 

T = ( R/ df) • r {Q } 
.!1 

which was first derived by Pelzer (1971). 

~ F ( r {Q " } , d f) 
.!1 

~ can also be computed from the simultaneous adjustment of two 

epochs of observations. In the adjustment, two epochs of observations 

are merged for the one total adjustment with all the points being given, 

firstly, double designations except for the points used as minimum 

constraints, and then single designation. Two quadratic forms of the 

residuals R and R1 are obtained from these two adjustments, 

respectively. Then ~ = R1 - R. 

One may be interested in testing the partial congruency of a 

network. Let us divide the network into two parts, part 1 and part 2. 

T The vector of the coordinates is conformably denoted by _!1 

T T I T Then deformation model for the and .!2 = (_!21 I .!22). the 

( T I T ) 
: .!11 I .!12 

congruency of 

part 1 
T T The corresponding null hypothesis reads: becomes _!11 = .!21 • 

.!11 I 0 0 .!, 

.!12 0 I 0 .!12 

Ho: 
I 0 0 X 

-21 

.!22 0 I I c -

The hypothesis tests on this deformation model follow the same 

procedures as the above. 

Since the status of a deformed body is not well defined, 
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different deformation models may be applied. Therefore, the question 

arises as to which model is the "best". There exist diverse criteria 

for the "best". Here we restrict ourselves to the criterion concerning 

the statistical test. More will be said in Chapter 6. 

Assume that there are two models to be discriminated. One is 

of the form a1~1 and the other ( a1 

(5-45) is rewritten as 

0 

a, 

Thus, the model 

The null hypothesis H0 : ~2 = 0 is to be tested against the alternative 

hypothesis Ha: ~2 ~ 0. From the results in Section 5.2, the quadratic 

form of the residuals ix in the reduced model, denoted by R1 x, can be 

decomposed into two statistically independent parts: R , calculated from 
X 

the full model (5-49), and 

"r ...... , .... 
t.R = R1 - R = ~2 Qc ~2 with ~2 and Q" 

X X X _ 2 ~2 

being the estimators and their cofactor matrix. Two statistics on the 

deformation models can be evaluated. First, the estimated parameters f 2 

are significant at the ( 1 - a) level of confidence if 

T = 
t.Rx 
R 

> F( a; df) (5-50) 

where R, df have been previously defined, and n is the number of 
£2 

coefficients ~2 • Second, introducing ~2 into the deformation model will 

improve the modelling significantly if 
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Mlx nc 
T = -R- • 0 > F( a; 

x c2 
n , nc) 
c2 

(5-51) 

with nc being the total number of coefficients c. 

Thus, through a series of hypothesis testing the postulated 

deformation models can be distinguished. 

5.5 Discussion on the Selection of the Significance Level 

A practical problem in hypothesis testing is the choice of the 

significance level a of the test. It has become customary in most cases 

in geodesy to use a fixed value of a= 0.05 or a= 0.01, say, but there 

is no unique way of fixing a. Generally, it is a matter of personal 

intuition to choose the significance level. 

An attempt has been made to connect a global test or 

[-dimensional F test with a one-dimensional test by matching their 

significance levels a and a for the f-dimensional and one-dimensional 
0 

tests respectively, so that the decision will be consistent in both 

tests. From the point of view of testing strategy, the global test 

seems a preliminarily diagnostic tool to find whether the 

one-dimensional test is worth trying; and the one-dimensional test is 

used to localize the component which is responsible for the failure of 

the global test. The test on the a posteriori variance factor of versus 
0 

the a priori one is a global test, but testing an individual residual 

for outlier detection is one dimensional; checking the significance of 

the estimated deformation parameters on the whole is of a global nature, 

but examining an individual parameter belongs to the one-dimensional 

test. There are several schools of thought on these aspects (see Miller 
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(1966)). Three methods can be found in surveying engineering 

applications. 

The B-method proposed by Baarda (Baarda, 1968; van Mierlo, 

1977; Kok, 1977) is to relate the significance level a for the 

f-dimensional F-test to the characteristic value A( a0 , a0 , 1, m) of a 

one-dimensional test by choosing a common power of the test a = a and 
0 

keeping the non-centrality parameter A constant for both types of test. 

Therefore, the significance levels a and a0 become interdependent, 

symbolically denoted as 

A= A(Clo• a, 1, m) = A(a, a, f, oo) (5-52) 

Given a0 and a, a can be calculated through the common A· 

The B-method was originally created to relate the probability 

of the test statistic for the global test on the a posteriori variance 

factor if to the probability of the test statistic used in the data 
0 

snooping strategy for outlier detection. The values a0 = 0.001, I?> = 

0.80 are suggested and the nomograms for the relation (5-52) are given 

in Baarda ( 1968). The extension of the basic idea to the general F( a; 

f 1 , f 2) test is claimed by Heck (1982). 

The S-method proposed by Scheffe (1959) is based on the 

simultaneous confidence region. Let ~ be an f-vector of the 

least-squares estimates of e, f,.. be their covariance matrix, and if-0 be 
- .!! 

the a posteriori variance factor with degrees of freedom being df. The 

confidence ellipsoid is 

A T "?.1 
1~- e) 1:e C e - e) < f 'l-

- - 0 
F( a: f, df) (5-53) 

The probability is ( 1 - a) that simultaneously for all the functions of 

~. say any function 1jl 
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~ - s a ... < w < ~ + s a: 
ijJ- - 'I' 

(5-54) 

where the constant s is 

s = [ f F( a; f, d f)] 112 (5-55) 

The Bonferroni method is based on the first-order Bonferroni 

bounds. Denoting [ ( ij:. - 6·) I a ] = w1. , the Bonferroni inequality tells 
l l 6 

us that the events { 1wi 1 < ~. lJ i} have the probability (Cook and 

Prescott, 1981): 

( 1 - ~~- l: aij) >Pr{lw·l < ~. lJ i } > ( 1 - I: ~) • (5-56) 
i <j - l i l 

if ai = Pr {jwi I > 0 and aij = Pr {jwi 1 > E;, lwj I > 0 (i I. j) • The 

equality sign holds for uncorrelated ~- It may be required that the 

probability for a simultaneous test is ( 1 - a), then the significance 

level a0 for the individual test can be obtained from the relation: 

a < l: a0 
i 

(5-57) 

In practice, a = f a0 is usually taken. The maximum t-test for outlier 

detection by Pope (1976) is based on this method. 

Because of the correlation between the parameters ~ to be 

tested, the upper and lower Bonferroni bounds never coincide 

theoretically. But the practical usefulness of the lower bounds has 

been exploited by many statisticians (e.g., Quenouille, 1952; Stefansky, 

1972; Cook and Prescott, 1981). Many simulation studies have shown that 

the upper and lower Bonferroni bounds differ little (John and Prescott, 

1975) . 

In order to get rid of the correlation between the parameters 

!_, an attempt is made to transform the correlated ! into a new set of 

uncorrelated parameters and then perform the statistical test on the new 
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parameters. However, this does not make much sense, especially in 

deformation analysis, unless the transformed parameters have definite 

physical meaning and can be used to reply to the question asked in 

performing the statistical test. 

The three methods are based on different philosophies. The 

B-method incorporates type I error and type II error, but the other two 

do not. The S-method projects a hyperellipsoid onto a subspace, while 

the Bonferroni method computes the lower bound of the joint probability. 

Figure 5.2 shows the relation between the critical value of the 

one-dimensional test for three methods and the degrees of freedom f in 

the multi-dimensional test when a is fixed. 

Regarding the selection of the significance level, it is the 

philosophy of the author that different tests have different purposes. 

In deformation analysis, the global test may serve the investigation of 

global phenomena, but a one- or two-dimensional test is used to study 

the local behaviour of the deformable body. In many cases it may happen 

that the global test on all the points together fails at a certain 

significance level a, but the test on the individual points may pass 

even at the same significance level because of the existence of a 

deformation trend; conversely, the real movement of a single point may 

not be easily discovered by the global test unless a large significance 

level a is selected. Analogously, examining the deformation parameters 

as a whole may indicate significance, while not all the parameters may 

do so individually. Therefore, no attempt is made in this thesis to 

relate the one-dimensional test to the multi-dimensional test. Instead 

a fixed value of a= 0.05 or a= 0.01 is used. 

At the end of this chapter it should be emphasized that the 
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statistical test is a powerful tool in deformation analysis, but it is 

not a panacea generating all required remedies automatically. The 

logical judgement of a skillful analyst is always necessary. Blindly 

performing the statistical test without realizing the problem fully can 

never be condoned. 



CHAPTER 6 

A GENERALIZED APPROACH TO DEFORMATION ANALYSIS 

6.1 Basic Philosophies, Criteria, and Procedures of the Approach 

As mentioned in Chapter 1, data fron deformation surveys have 

contributed to the understanding of the deformation mechanism and 

deformation processes. It is important to analyse the acquired data 

thoroughly for several reasons. First, the data may contain important 

scientific findings. 

cursory inspection. 

Sometimes these findings are not evident in a 

Second, different types of analyses may suggest 

important generalizations. Third, when new experiments are planned, the 

lessons learned from previous experiments should be used. The Committee 

on Geodesy and the Committee on Seisnology of the United States (1981) 

have made an important recommendation: "theoretical studies and analysis 

of existing data should be given much higher priority than they 

currently enjoy." 

Regarding the data, on the one hand it should be recognized 

that data acquisition is expensive and any observation, geodetic or 

physical-mechanical measurement, will contribute to the determination of 

107 
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deformation paraneters. Therefore they should be fully utili zed in the 

analysis. The approach based on direct comparison of raw observations 

may not take full advantage of the data unless the same observation 

scheme remains in all epochs. On the other hand, it should be 

recognized that the data, besides random measuring errors, may contain 

gross and systematic errors. Identification and elimination of them 

should be made prior to the estimation of deformation parameters in 

order to avoid misinterpreting measuring errors as deformation 

phenomena. As pointed out in Chapter 2, the deformation parameters 

could be directly estimated from the observations. The approach based 

on this idea, referred to as the simultaneous reduction method of strain 

analysis (Bibby, 1981), or the simultaneous adjustment of network and 

strain parameters, might make it more difficult to distinguish between 

the errors in the observations and the errors in the deformation model. 

Regarding the construction of the deformation model, it should 

be recognized that the deformation model is usually not fully understood 

or it may even be completely unknown. Careful identification and 

checking of the models is necessary in order to avoid misinterpreting 

local deformation phenomena (e.g., a single point movement) as a global 

deformation. By directly setting a postulated model to the data one may 

miss an important deformation pattern. It should also be recognized 

that the deformation analysis, in many cases, is to answer some 

fundanental questions, not just to fit any polynomial to the data in 

order to use the data in the form of a function (rather than use 

tabulated data). Therefore, statistical testing should be performed on 

those parameters which have definite physical meaning, not on something 

else. This problem has been mentioned in Chapter 5. 
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Based on the above, the basic criteria and basic procedures of 

the approach are established. 

In developing the generalized approach, the following criteria 

are ·set up. 

(a) The approach should be applicable to any type of deformation, i.e., 

the same canputational procedure should be used in the analysis of 

single point displacements in reference networks and in the 

analysis of rigid body displacements as well as in the 

determination of strain components in relative survey networks. 

(b) The same approach should be used for one-, two-, and three

dimensional survey data for the determination of deform at ion 

parameters either in a local danain or in a time domain, or both. 

(c) Any type of survey data, i.e., not only geodetic (distances, 

angles, etc.) but also physical-mechanical measurements of tilts, 

strains, pendula deviations, etc., should be utilized in a 

simultaneous analysis as long as the differences in the observed or 

quasi-observed (e.g., derived coordinates) quantities could be 

expressed as functions of relative displacements of the points at 

which the measurements were made. 

(d) The approach should be applicable to any geometrical configuration 

of the survey network including incomplete networks with 

configuration defects. These isolated observations, which are not 

connected to other points of the network, would be taken as long as 

approximate coordinates of all survey stations are given in the 

same coordinate system. 

(e) Different minimun constraints (including inner constraints) could 

be used in the nunerical processing of each epoch of observations 
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as long as the same approximate coordinates of points are used in 

each of the epochs. 

Generally, the approach consists of three basic processes. 

(1) Preliminary identification of deformation models. 

(2) Estimation of the deformation parameters. 

(3) Diagnostic checking of the models and the final selection of the 

"best" model • 

Identification procedures are rough methods applied to a set of 

data to indicate the kind of deformation that warrants further 

investigation. The process having led to a tentative formulation of the 

deformation trend, then efficient estimates of deformation paraneters or 

the coefficients of the model are obtained using the least-squares 

estimation techniques. After the parameters have been estimated, 

· diagnostic checks are per formed to determine the adequacy of the fitted 

model or to indicate potential improvements. Of course, the 

identification, estimation and diagnostic checking of the deformation 

model are not independent procedures, so they necessarily overlap. 

Therefore, these methods should be per formed as an iterative three-step 

procedure. 

6.2 Mathematical Model 

As described in Chapter 2, a deformation model acts as a medium 

which links together the observed quanti ties on one side and the 

deformation paraneters on the other side. In order to connect the 

observations to the deformation model, we can either 
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(a) express all the observed quantities in terms of the coordinates, 

even in the case of there being configuration defects in the 

network, and then transform the differences of the coordinates into 

the deformation model; or 

(b) express each difference of the observed quanti ties in terms of the 

deformation model. 

Let Jl.. be the n.-vector of observations in epoch i ( i=1, ••. ,k), 
-~ ~ 

_!i be the ui-vec tor of coordinates, and Ai be the ni x ui con figuration 

matrix. In addition, assume that the deformation model is of the form 

-d(x, y, z; t~ - t 1 ) = B(x, y, z; t.- t 1 )c or, in short, d. = B.c, where 
.... 1 - -1 1-

~(x, y, z; ti - t 1) is the vector of displacements at time ti with 

respect to t 1 ; B(x, y, z; ti- t 1) is the matrix of the deformation 

model whose elements are functions of position and time; c is the vector 

of coefficients of the model to be estimated. Then the first case is 

symbolically represented by 

E{JI..} = A.x. = A.x 1 + A.B.c 
-~ l-l 1- 1 1-

(6-1) 

and the second case by 

(6-2) 

The approach based on (6-1) should be called the "coordinate approach" 

and that based on (6-2) the "observation approach". Using the principle 

of least squares, the coefficients c of the deformation model can be 

estimated from (6-1) or (6-2). 

However, it has been emphasized in Chapter 2 and the beginning 

of this chapter that it is worthwhile to separate into two parts, if 

possible, the mathematical model which relates the observations to the 

deformation parameters. The first part is an adjustment model of a 

geodetic monitoring network for screening the observations for outliers 
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and systematic errors as well as for statistical evaluation of the 

quality of the observations. In addition, the displacements calculated 

from the adjustment will give a better picture for identification of the 

deformation pattern. In the second part, transformation of the 

coordinate differences of the points into the deformation model is 

formulated. 

6.2.1 The model of the adjustment of observations 

Consider the 

( i=l, 2, ••• ,k) such that 

!, v 
-1 

~ !..2 

A 
n, 

A 
n2 

of ob serv at ions 1. 
-1 

A1 

A2 

in epoch i 

.!l, 

.!lk 

+ = (6-3) 

.!., 

A Ak .!k nk 

where ~i is the ni-vector of residuals, li = (Ani : Ai) is the ni 

configuration matrix, x. is the u.-vector of coordinates, and n· is the 
-1 1 -1 

vector of nuisance parameters (e.g., the orientation unknowns in 

direction observations, unknown scale factor in the EDM measuring 

distances). More compactly, (6-3) can be written as 

.!_ + ;!_ = (', i A) (;) 
(6-3 I) 

Its dis per sian matrix reads 
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D {1} = (6-4) 

where r .. and Q .. are the covariance matrix and cofactor matrix between 
1J 1J 

the observations in epoch i and epoch j, respectively. The correlations 

between the observations not only in the same epoch but in different 

epochs may exist because of the use of the same instrunents and the 

existence of similar environmental conditions. In order to provide the 

stochastic model (6-4), a technique to assess multi-epoch observations 

has been discussed in Chapter 3. 

The model (6-3) can be solved using the least-squares 

adjustment technique. If rij i 0 ( i i j), simultaneous adjustment of 

multiple epoch observations is required. However, if rij = 0, which is 

the customary assunption in present practice because the study of 

correlations between the observations has just started, then the 

solution to the model (6-3) breaks down into a separate adjustment for 

each epoch of observations. The different methods of the least-squares 

adjustment technique are well synthesized in Krakiwsky (1975). But, the 

rank deficiency in the configuration matrix Ai calls for more 

discussion, which has been done in Chapter 4. 

It is possible that rii is singular due to the existence of 

some functional relations among the observations. Then the solution in 

the sense that the best estimator of any estimable function .!?.! is E.T! 

is x T- - T-= (A.Q .. Ai} AiQ . . 1. only when the condition that S(A.) c S(Q .. ) is 
1 11 11-1 1 11 
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fulfilled ( Rao, 1973). The singular dispersion matrix of observations 

seldan occurs in the adjustment of networks, hence the problem will not 

be fully discussed here but later, where the singular dispersion matrix 

of qua si-observ at ions appears in the estimation of de formation 

parameters. 

Following the present practice, a separate adjustment of each 

epoch of observations is performed. The normal equation for epoch i 

after the nuisance parameters are eliminated has the form: 

N.x. = w. 
1-1 -1 

(6-5) 

Using the method developed in Chapter 4, any specific solution x. and 
-1 

its cofactor matrix Q.... are obtained. 
X. 
-1 

It has been proved that Q.... is a 
X. 
-1 

reflexive inverse of Ni' that is, r{Q~.l = r{Ni} and Q~. • N1 o~. = Q£.· 
-1 -1 -1 -1 

Because Qx. is singular, the conventional weight matrix of ii, defined 
-1 

-I 
as o~.· does not exist. However, whatever the solution ii and Q£. is, 

-1 -1 

Ni is one of the g-inverses of Ql? • Therefore, we define Ni as the 
-i 

"weight matrix" of x .. 
-1 

In addition, a monitoring network may be 

incomplete, suffering fran configuration defects, Ni in (6-5) will have 

more rank defects if all the observations are entered into the 

formulation of the normal equation (6-5). The "weight matrix" for any 

solution x. is also defined as N1. for the same reason as above. It 
-1 

should be mentioned that the "weight matrix" here does not have physical 

meaning, and is used only for nunerical treatment in the second step--

the computation of deformation parameters. 

Another way to look at the problem of "weight matrix" is 

through the direct estimation of the coefficients of the defonnation 

model from (6-1). Assuming that outliers and systematic errors have 
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been excluded from the observations R.. and the cofactor matrix of _!:1. is 
-1 

Qii, then the normal equation for the model (6-1) reads 

k 

( 

I:N. 
1 1 

k T 
I:B.N. 
2 1 1 

(6-6) 

where N. 
1 

T -1 = A. Q .. A., w. = 
1 11 1 -1 

Equation (6-6) is also the normal 

equation for the model: 

(6-7) 

with the "weight matrix" of x being N -i i. 

In the adjustment step, the outliers and systematic errors are 

detected using the techniques discussed in Chapter 5. The outcomes are 

the vector of estimated coordinates x. and its "weight matrix" N. or 
-1 1 

cofactor matrix Q~ . 
-i 

6.2.2 The model of the estimation of deformation parameters 

Let .Xi (i=1,2, ••. ,k) be the vector of observations in epoch i, 

including quasi-observations (e.g., the coordinates of points from an 

adjustment), physical-mechanical measurements and individual geodetic 

observations, and P. be the weight matrix of y.. The weight matrix for 
1 -1 

the coordinates of points has been discussed in Section 6. 2.1, and for 

the other observed quantities it is taken in the conventional way as the 

inverse of the covariance matrix. Because of datun and configuration 

defects in a monitoring network, the weight matrix Pi is in general 

considered singular (Chrzanowski et al., 1982a). The process of the 

least-squares determination of the coefficients of a deformation model, 
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~(x, y, z; t- t 1 ) = B((x, y, z; t- t 1 )_£, is based on the null 

hypothesis: 

with x. being the vector of coordinates of the points at epoch i. For 
-1 

the individual observation, it can be either transferred to the 

coordinates or expressed in the form of (6-2) depending on the problem 

on hand. This will be further discussed in Section 6.4. For the other 

physical-mechanical measurements, the expressions for this hypothesis 

have been derived in Chapter 2. In general, the above null hypothesis 

leads to the functional relation: 

.x, ~, I 0 

1.2 ~ I 82 ( ~ l + = (6-8) 

yk ~ I Bk 

with weight matrix 

(6-9) 

where the matrix B. is a function of the position of points and time, 
1 

but may differ from the matrix B in the deformation model depending on 

the type of _xi (coordinate or individual geodetic observation, or 

physical-mechanical measurements, or both); I is a vector of unknown 

constants; and o. is a vector of residuals at epoch i. In order to keep 
-1 

the same population of vector _xi in each epoch, dunmy observations with 

zero weights will be put in the place of the missing observations in the 

vector .1i. Applying the principle of least squares to model (6-8), the 

normal equation reads: 



k 

( 

1.:P. 
1 1 

k T 
1.:B.P. 
2 1 1 
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(6-10) 

The coefficient matrix of the normal equation (6-10) is singular with 

k 
rank defects rd{Ep.} = d, equal to the nunber of remaining datun defects 

1 l. 

and configuration defects which are not determined in at least one 

epoch. The nunber and types of defects can be figured out by purely 

geometrical consideration. Eliminating I from (6-1 0) allows the vector 

c and its accuracy to be calculated from 

and 

k T 
C = [rB.P.B. 

2 1 1 1 

k T 
[EB.P.y. 

1 1-1 
2 

k T k _ k _ 1 
EB.P.(EP.) 1.:P.B.J 
2 1 1 1 2 1 1 

k 
1.:P. y.] 

l.-1 
1 

(6-11a) 

(6-11b) 

k 
Because the space generated by the colunn vector of the matrix EP. D. is 

2 1 1 

k 
a subspace of that generated by 1.:P. , c is invariant of any choice of the 

1 1 -

k 
g-inverse of (I:Pi). 

1 

However, how to select the deformation models, what strategies 

should be taken in the formulation and computation of (6-11), and how to 

test the appropriateness of the selected model are the topics of the 
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next three sections. 

6.3 Preliminary Identification of Deformation Models 

6.3.1 Deformation Models 

A preliminary deformation model may come from 

(a) an a priori knowledge, either assUlled or expected fran previous 

experience, of the behaviour of the deformable body; 

(b) a graphical demonstration of the displacement field in the space 

domain or of displacements versus time. 

When using the generalized approach in deformation analysis, 

the whole area covered by the deformation surveys is treated as a 

noncontinuous deformable body consisting of separate continuous 

deformable blocks. Thus the blocks may undergo relative rigid body 

displacements and rotation, and each block may change its shape and 

dimensions. In the case of single point movement, the given point is 

treated as a separate block being displaced as a rigid body in relation 

to the undeformed block composed of the remaining points in the network. 

Deformation parameters and deformation models in the general 

case have been discussed in Chapter 2. For illustration, the situations 

in two-dimensional space are repeated here with some examples of typical 

deformation models. For each block the following deformation parameters 

in an x, y coordinate system will be considered: two components (a and 
0 

and g0 , etc.) of the rigid body displacement; rotation 

paraneter w(x, y); extension strain components e:x(x, y) and e:y<x, y); 

and shearing strain, e:xy(x, y). 

The deformation of a block is completely determined by a 
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displacement function ..2_(x, y). If its two components u(x, y) and 

v(x, y), in x, y direction respectively, are given, then the strain 

components and differential rotation at any point can be calculated from 

the well-known infinitesimal strain-displacement relation (2-4) and 

(2-5): 

au 
£ = x ax 

av 
£ = Y ay 

£ = ..!c~ + av> 
xy 2 ay ax 

(6-12) 

w = lc~- ~> 2 ax ay 

The displacement function is usually complicated, therefore it 

is approximated by a polynomial. From (2-13), a simplified polynomial 

in two-dimensional space can be written as 

u( x, y) i j 
= I:I:a .. x y 

. . ~J 
~J 

(6-13a) 

v( x, y) I:I:b .. x 
i yj = 

ij ~J 
(6-13b) 

Depending on the selected deformation model, some of the coefficients in 

the polynomial (6-13a) and (6-13b) will vanish. Examples of typical 

deformation models are given below. 

(a) Single point movement or a rigid body movement (Figure 6. 1a) of a 

group of points (say, block B) with respect to a stable block (say, 

block A); the deformation model is 

u(xA, yA)=O, v(xA' yA)=O, uCx 8 , y8)=a0 , vCx8 , y8):b0 , (6-14) 

where (x A, y A) represents all the points located in block A; 

( x8 , y8) all the points in block B. 

(b) Homogeneous strain (Figure 6.1 b) in the whole body without 

discontinuities; for the whole body, the linear deformation model 

is 
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u(x, y) = a 1x + a2y and v(x, y) = b1 x + b2y 

which, after substituting (6-12) into (6-15) becomes 

u(x, y) = e: X + £ Y - wy x xy 

v(x, y) = E: X + E: y + wX xy Y 

(6-15) 

(6-15a) 

(6-15 b) 

(c) A deformable body with one discontinuity, say, between blocks A and 

B, with different linear deformation of each block plus a rigid 

body movement of B with respect to A (Figure 6. lc) 

u(x A, yA) = a 1 x + a2y 

v( x A' y A) = b1 x + b2y (6-16a) 

u(x 8 , Ys> = c + c1 X + c2y 0 

v( x8 , Ys> = go + glx + g2y (6-16b) 

In the above case, components f.x. 
. ~ 

and 6y i of a total relative 

dislocation at any point i located on the discontinuity line between 

blocks A and Bmaybe calculated as (Chrzanowski and Chen, 1982): 

axi = c 0 + (c1 - a 1)xi + (c2 - a2 )yi 

ayi =go+ <~, - b1)xi + (g2- b2)yi 

(6-17) 

Usually, the actual deformation model is a combination of the 

above simple models or, if more complicated, it is expressed by 

non-linear displacement functions which require fitting of higher order 

polynomials. However, if no a priori knowledge about the expected model 

exists, then the demonstration of deformation trend is of great help in 

the identification of the deformation model. 

In the study of tectonic movements near active plate 

boundaries, the dislocation model is of importance. Therefore, a brief 

review of this model is given in Appendix III. 

It should also be mentioned that, in strain analysis of 

horizontal crustal movements, an alternative expression of (6-13) is the 
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use of complex function, see, e.g., Bibby (1973, Appendix I), and 

Schneider (1982). 

6. 3. 2 Preliminary identification of deformation models in space using a 
method of iterative weighted projection in the parameter space 

The analysis of pairs of epochs of observations is an 

indispensable part in deformation analysis for the following reasons. 

( 1) Single point movement in a reference network does not usually 

follow cer.tain time functions, and therefore the main interest lies 

in the localization of unstable points between two epochs of time. 

(2) An analyst of deformation measurements is often curious about what 

happened to the deformable body between the most recent surveying 

campaign and the previous one. 

(3) Through the analysis of pairs of epochs of observations, the 

deformation trend in the time domain will be recognized. 

An important step in the analysis of pairs of epochs of 

observations is to identify the deformation pattern in the space domain. 

Moreover, if the deformation is postulated to be of a linear nature in 

time, then all the observations made at different epochs of time can be 

reduced to the observed rate of change of the observation (Prescott et 

al., 1981). Therefore, analysis of multi-epoch observations becomes the 

estimation of the deformation rate. In this case the main task is again 

to identify the deformation pattern in space. 

As discussed in Chapter 4, appropriate definition of a datun 

will aid in the identification of the deformation models. Some methods 

for this goal have already been discussed. The approach based on the 

examination of invariant quantities (derived distances and angles) by 

Chrzanowski (1981) and Tobin (1983), and the approach based on a special 
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similarity transfonnation by Caspary and Chen (1981) were initiated for 

the analysis of unstable points in a reference network. The method 

proposed by Prescott (1981) is to obtain a particularly illustrative 

picture of displacements in a relative network when there is an a priori 

expectation that station motion will most likely be along a certain 

direction, e.g., along the direction of a fault. However, a priori 

knowledge about a defonnable body is not always available. If it is, 

the step of preliminary identification of deformation models seems 

dispensable, and one can go directly to the step of the estimation of 

deformation parameters. 

In order to provide a general tool for the purpose of 

preliminary identification of a defonnation pattern, a method which 

coordinates the merits of different approaches is proposed. In this 

method the displacement field is obtained using an iterative weighted 

projection method as follows. 

Let d be the vector of displacements of a monitoring network 

with respect to a certain datun. The projection of~ onto another datun 

which is defined by datun equations DTd = 0 is computable from 

d = (I - H(HTWH)- 1HTW)d (6-18) 
-1 

where W = D(DTD)- 1DT, and H and D have been defined in Chapter 4. This 

problem differs from the one in Chapter 4 in that the datun equations 

are unknown and must be defined so that a clearer deformation pattern is 

provided. If all the points in a monitoring network are considered of 

the same importance in the definition of a datun, then W = I and the 

result is identical to that of the inner constraint solution or the 

Helmert transformation. However, the author focuses his interest on the 

case where some points in a reference network may not be stable, that 
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is, all the points should not be considered of equal importance, or 

where sane points in a relative network may be more likely to move in a 

certain direction, namely two components of the displacement of a point 

in a horizontal monitoring network should not be treated equally. Based 

on this idea, the weight matrix W is established iteratively. At the 

outset the projection of the displacement vector ~ is obtained with the 

weight matrix W =I, then in the (k + 1 )th projection the weight matrix 

is defined as 

W = d i ag { 1 I I d i ( k) 1 } (6-19) 

where di(k) is the ith component of the vector d(k) after kth iteration. 

The iterative procedure continues until the differences between the 

successive estimated datun parameters approach to zero. During this 

iterative procedure, some d. ( k) may come close to zero. This will cause 
l 

nunerical instabilities because the weight Wi = 1/ ldi(k) I becomes very 

large. To avoid this problem, a lower bound is set. When ldi ( k) I is 

smaller than the lower bound, its weight is set to zero. If in the 

following iterations the d. ( k + 1) becomes significantly large again, 
l 

the weights can change accordingly. 

This method is based on the work of Schlossmacher ( 1973). 

Theoretically, the procedure provides a datun so that the first norm of 

the final projected displacement vector ~(k + 1) is minimun. 

In the nunerical processing, two approximations are used: 

iteration is per formed only a few times, say, 4 to 6 times; 

[I - H(HTW(k)H)- 1HTW(k)] is treated as deterministic in the error 

propagation. As a matter of fact, [I H(HTWH)-lHTW] is stochastic 

since W is the function of d. However, these treatments are justified 

because the procedure is used only for preliminary identification of the 
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defonnation pattern, and W could be understood as the confidence that we 

have in each point. 

The following are some exanples which are used to illustrate 

the proposed method. Application to analysis of real monitoring 

networks is presented in Chapter 7. 

In a simulated geodetic network (Figure 7.4), where the 

directions were measured at the first epoch and both the directions and 

the distances were measured at the second epoch (a detailed description 

of the network is in Chapter 7), 200 mm relative movement in the y 

direction of one block with respect to the other is introduced. Without 

considering measuring errors, the displacement fields using the proposed 

method and the method of the inner constraint solution are portrayed in 

Figure 6.2(a) and (b), coupled with the real displacement pattern with 

dashed lines. As one can see, the displacement field obtained fran the 

proposed method is closer to the real situation, compared with the inner 

constraint solution. 

The same network was simulated by Kok from the Geodetic 

Computing Centre of Delft University of Technology (the simulation 

paraneters have not been given). Using the proposed method, the 

displacement field for one pair of epochs is presented in Figure 6. 3. 

The graphical deformation pattern coincides well with the final 

numerical results: 8.8 em in the x direction and 20.9 em in the Y 

direction of the relative movement of the block comprising points 3, 5, 

11, 39. 41, with respect to the remaining part. 

The method is also applied to the Lotmuhle network (Figure 

6.4), a reference network of six points from which a nunber of targetted 

points on a dan were positioned. Point 5 was moved progressively in the 
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y direction by 1 mm each time. Then the displacement field coupled with 

the error ellipses at 95% confidence level were calculated using the 

proposed method and the method of the inner contraint solution. If the 

displacement of a point is outside the confidence error ellipse, it 

would be considered as a suspected unstable point in the step of the 

estimation of deformation parameters. Table 6.1 summarizes the results. 

Suspected Simulated Displacement of Point 5 in mm 

Unstable Point* 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 
2 0 
3 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 
5 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 
6 0 0 

* X: using the proposed method; 
0: using the method of the inner constraint solution. 

made. 

TABLE 6. 1 

Points Outside the 95% Confidence Region After 
a Simulated Displacement is Introduced to Point 5 

in the Lohmi.ihle Network. 

From the above exanples and discussions some remarks can be 

( 1) In the definition of a datum the proposed method is more robust and 

therefore provides a more realistic picture of the displacement 

field. 

(2) The whole computation procedure can be performed automatically. 

(3) This method differs from that of Caspary and Chen (1981) in the 

optimization criterion and computation method; the latter ends up 

with minimization of the sum of the length of displacements, but 
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the former approaches the minimization of the total sun of the. 

absolute values of the displacement components. 

(4) In a very special case, theoretically it may be possible that 

(HTWH) in (6-18) is not of full rank, so no unique solution exists. 

But this will not occur in a real-world network. 

6. 3. 3 Some considerations in identification of deformation 
models in time domain 

As is well known, deformation of a body develops with time. 

The revelation of its temporal attributes is of the same importance as 

its spatial behaviour. Of course, this can be achieved only when 

multiple-epoch observations are available. 

Obviously, nothing would prevent us from a simultaneous 

estimation of deformation model in space and in time. The mathematical 

model has been given in Section 6. 2. 2 and appeared in the work of 

Chrzanowski et al. (1982a; 1982b). However, in practice this 

simultaneous estimation could be performed only when the deformation 

models are identified preliminarily. Otherwise, only through the trial 

and error method can complication of the analysis arise and sane 

important deformation phenomena may be missing. Thus, if possible, one 

should try to identify the deformation mooel in space and in time 

separately. 

As mentioned in the last section, analysis of pairs of epochs 

of observations will reveal the deformation trend in the time domain. 

But one should be aware that only by analysing successive pairs of 

epochs snall deformation patterns may not be disclosed. Comparison of 

the pair of the last and the first epochs can ascertain the Iflenomenon 
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of defonnation accunulation. 

When the observations scatter in time, a method developed in 

the U.S. Geological Survey (Prescott et al., 1981) should be mentioned. 

In their method, all the observations of each line ( trilateration 

network) are plotted as a function of time, and then a 1 inear time 

function (without precluding the possibility of nonlinearity) is fitted 

to each of the plots. The slope of each fitted straight line is an 

estimate of the average rate at which the line was changing during the 

time period covered by the observations. The standard deviation in the 

rate is also calculated. Then the problem reduces to the estimation of 

the deformation rate. 

6.4 Estimation of Deformation Parameters 

6.4.1 Formulation and computation strategies 

Regarding equation (6-11), three problems should be discussed 

in more detail. They are: form ul at ion of vee tor y. 
-1 

of the 

quasi-observations (or observations); establishment of the weight matrix 

k 
Pi; and computation of (1: Pi)-. 

1 

The basic consideration of the formulation of _xi and Pi has 

been mentioned in Section 6.2.2. For illustration, some typical 

situations are simulated in Figures 6.5, 6.6, and 6.7. Suppose that 

Figure 6.5 represents a five-epoch observation scheme. In the first 

epoch only directions were observed; in the second and third epochs both 

angles and distances were observed; in the fourth epoch only distances 

were observed; and in the fifth epoch a traverse was measured. A 



133 

Epoch 1 Epoch 2 Epoch 3 

a------------~7 

Epoch 4 Epoch 5 

Fig 6.5: A simulated five-epoch monitoring scheme. 
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Fig. 6.7: A simulated two-epoch monitoring scheme. 
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separate adjustment of each epoch of observations or each configuration 

(e.g., epoch 2) is carried out using any available program. The 

coordinates of each point in a local Cartesian coordinate system and the 

coefficient matrices of the normal equations are obtained from the 

adjustment. To obtain the coordinates of points 3 and 4 in epoch 4, the 

approximate azimuths from point 5 to point 3 and from point 6 to point 4 

are used. The coordinates of the points which do not appear in one 

epoch, for instance, points 6, 7, 8 in epoch 3 and points 1, 2 in epoch 

4, are assigned with their approximate value. In epoch 5 no adjustment 

is performed, but the coordinates of the points can be calculated using 

point 2 and direction 2-1, say, as fixed. 

As discussed in Section 6.2.2, the coefficient matrix of the 

normal equation is used as a "weight matrix". In epoch 1 the nuisance 

parameters of the orientation unknown should be eliminated from the 

normal equation. Using the notation defined in Section 6.2.1, the 

observation equation is 

The coefficient matrix of the normal equation 

reads 

After eliminating the nuisance parameters .!!.1 , the coefficient matrix of 

-1 the reduced normal equation becomes N1 = N22 - N21 N11 N12 • This can be 

used as a "weight matrix" for epoch 1. The rank defects of N 1 is 4 
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(datun defects). In epoch 2, the weight matrix can be constructed as P2. 

= diag{N~, N~}, where N~, N~ denote the coefficient matrix of the normal 

equation for subnetwork 1 and 2 respectively. P2 has rank defects of 6 

(datun defects of two subnetworks). In epoch 3, P3 = diag{N 3, O}, where 

the zero submatrix cooresponds to points 6, 7, 8. P3 has datun defects 

of 3 and configuration defects of 6. In epoch 4, P4 = diag{O, N4l, 

where the zero submatr'ix corresponds to points 1 and 2, and P4 has datun 

de fee ts of 3 and con figuration defects of 6. In epoch 5, P5 = N5 having 

datun defects of 3. 

When the monitoring network is a portion of a geodetic network, 

the "weight matrix" should be considered more carefully. Its datun 

defects, including the nunber and types of defects, should coincide with 

that of the original whole network. For instance, in Figure 6.7, at the 

first epoch is an old triangulation network, where the distances 4-5 and 

1-8 are the base 1 ines. The portion of this network was resurveyed at 

epoch 2. To determine the deformation parameters, the coordinates of 

points 2, 3, 6, 7 and their "weight matrix" should be available for both 

epochs. In the first epoch, the coordinates of these points can be 

obtained from the previous adjustment, but caution should be exercised 

in obtaining the "weight matrix". Denote the coefficient matrix of the 

normal equation of the whole network by N with 

where N22 corresponds to the portion of the network of interest. Then, 

the "weight matrix" for the first epoch is established as 

(6-20) 
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It is easy to prove that N has the sane datun defects as N. Two 

mistakes should be avoided. First, only the N22 is used. This means 

that the rest of the points of the network were held fixed, therefore 

the monitoring network becomes completely defined, without datum 

defects. Second, only the observations in that portion of the network 

are used in formulation of the "weight matrix". In this case, the 

nunber of datun defects would increase from 3 to 4, without scale 

factor, and full advantage of all the available observations would not 

be taken. Hence, the relative accuracy of the points in that portion of 

the network would decrease. 

Another way to compute the "weight matrix" of the coordinates 

is through their cofactor matrix. Let Qx be the cofactor matrix of the 

coordinates x of the points with respect to the datun defined by datun 

equation DT_! = 0 (see Chapter 4). It has been proved in Chapter 4 that 

DTQ ... = 0 and Q-. = (N + DDT)- 1 - H(HTDDTH)- 1HT. 
!. X 

Hence the "weight 

matrix" can be calculated from 

P = [Qx + H(HTDDTH)-1HTJ- 1 -DDT (6-21) 

If Q is the "inner accuracy" (Pelzer, 1971), we have HTQ .... = 0, then 
X X 

For a portion of a network, it is desirable to transform Qx 
into a new one which is referred to a datun specified for that portion 

of the network (see Section 4. 3). The above formulae are still 

applicable with matrix H being formulated only for that portion of the 

network. 

Brunner et al. ( 1981) used the formula Q:!: = lim(Q ..... + 62I) - 1 to 
X X 

6+0 

calculate the pseudo-inverse of a cofactor matrix in the computation of 
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crustal strain, but he found that reducing 6 had little change in the 

estimated strain canponents while their standard deviations changed 

sometimes by a comparatively large value. Therefore, the choice of the 

value of 6 should be considered for individual cases. However, the 

formulae (6-21) and (6-22) provide a general and a rigorous way. 

Figure 6.6 is a three-epoch observation scheme, where only 

distances were measured. One can either transform all the observations 

into coordinates, like model (6-1), or express each observed quantity in 

terms of the observations in the first epoch and the deformation 

parameters, like model (6-2). The normal equation for model (6-1) has 

3 
been formulated in (6-6). In this example E Ni has rank defects 8 (3 

1 

datun defects and 5 configuration defects). In the second case, model 

(6-2)- can be rewritten more explicitly as 

.!.1 ~1 I 0 

.!.2 ~2 I A2B2 

(~ l + = (6-23) 

~ ~k I ~Bk 

-1 -1 with P = diag{Q 11 , Q22 , -1} 
••• ' Qkk • The same formulation strategy as the 

above is adopted for the missing observations. Using (6-11), replacing 

k k -1 
y. by R.., B. by A. B. and E P1. by E Q .. , the coefficients c of the 
-l. -l. l. l. l. 1 1 ll. 

deformation model can be estimated. The advantage of this method is 

k -1 
that no inversion of a singular matrix is needed because E Q .. is of 

1 ll. 

full rank. In this example, the "observation approach" may be more 

convenient. However, the "coordinate approach" allows one to utilize 
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all the geodetic observations in the calculations of deformation 

parameters even if different observables appear in each of the repeated 

surveys. 

It is worthwhile mentioning that when using model (6-1), vector 

.!1 in all the epochs must refer to the same geodetic datun, otherwise 

the results will be distorted. Taking the well-known California 

monitoring networks as an example, where the distances are measured very 

precisely, the precision in a single observation of length is 3. 6 mm for 

a 10 krn line and 6.7 mm for a 30 krn line (Prescott, 1981), but the 

accuracy of the heights of the stations is low: only .! 1 m (Prescott, 

1982, personal communication). If _! 1 in (6-1) is referred to a 

horizontal geodetic datun, all the distances must be reduced to a common 

surface. In this case, a 30 krn line with the height difference of 300m 

between two terminal stations will be contaminated by a reduction error 

of about.! 10 mm, larger than the measuring error. Therefore, the model 

(6-1) is not suitable unless the conditions in note 3 of Section 6.4.2 

are fulfilled, or one formulates this problem in three-dimensional 

space, i.e., vector .!1 is referred to a three-dimensional coordinate 

system. But little will be gained from this type of formulation, hence 

the "observation approach" is much simpler. The generalized approach 

has been designed such that it can handle either or both types of 

formulation in a simultaneous solution. 

computed. 

k 
In equation (6-11), a generalized inverse 0: P.)- has to be 

1 1 

There are many techniques to calculate a g-inverse of a 

singular matrix, for example, singular value decomposition, 

orthogonalization method, rank factorization (Rao and Mitra, 1971). 
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k 
Here a simple method to compute a g-inverse of (1: Pi) is developed, 

1 

which transfers the inversion of a singular matrix to the inversion of a 

non-singular one. 

As mentioned in Section 6.2.2, the nunber of rank defects of 

k 
1: Pi is equal to the nunber of remaining datun defects and configuration 
1 

defects which are not determined in at least one epoch. In practice it 

is easy to figure out fran a purely geometrical consideration. For 

k 
exanple, in the five-epoch observation scheme (Figure 6.5) 1: P. has 3 

1 l 

datun defects and no configuration defects; but in the three-epoch 

k 
observation scheme (Figure 6.6) 1: Pi, when using the "coordinate 

1 

approach", has 5 configuration defects and 3 datun defects. 

k 
If matrix ( 1: P) has only datun defects remaining, computation 

1 

of its generalized inverse is rather simple. One of the g-inverses of 

k 
( 1: P.) can be calculated from 

l 

k 

(6-24) 

where H is a matrix such that S(H) () S(t Pi) = 0. One representation of 
1 

matrix H has been given in Chapter 4. The expression (6-24) can be 

k k k 
proved by verifying (1: P.)(t Pi+ HHT)-1(t P.) = 

1 l 1 1 l 

k 
Furthermore, if the matrix (1: p.) contains both datun defects 

1 l 

and configuration defects, the matrix H should be augmented by a matrix 
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He taking care of the configuration defects so that R = (H 

(6-25} 

The matrix HT can be considered as the configuration matrix of some 
c 

pse ud o-ob serv ati ons. After they are added into the configuration, the 

configuration defects will be removed. In Figure 6.5, assuming that 

k 
epoch 2 and 3 fonn a two-epoch observation scheme, the matrix (I: Pi} 

1 

contains one configuration defect. After adding a pseudo-distance 3-6, 

the combined figure is complete. Therefore He can be expressed as 

H~= ( 0, 0, ••• ,cosa3_6 , sina3_6 , 0, 0, 0, O,-cosa3_6 ,-sina3_6 , 0, ••• , O} . 

Actually, in the nunerical computation both datun defects and 

configuration defects can be treated in the same way. Some pseudo-

observations which remove both types of defects are introduced. Then 

the coefficient matrix of the normal equation for these pseudo-

k 
observations is formulated and added to 1: Pi. This results in a non-

1 

singular matrix. An example to demonstrate this idea is presented in 

Appendix IV. 1 • 

6.4.2 Special case--analysis of a pair of epochs of observations 

The analysis of a pair of epochs of observations is a special 

case of the general model (6-8). Its importance has been discussed in 

Section 6.3.2. 

Let _x1 , x2 be ~wo-epoch observations or quasi-observations. 

Then the mathematical models (6-8) and (6-9} reduce to 
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(6-26) 

and 

(6-27) 

Applying the principle of least squares, the nonnal equation is as 

follows: 

(6-28) 

Eliminating I• one gets 

A i'!T - ... -1 ~T -
c:[o CP 2-P 2 CP 1+P 2 ) P2 )o] [o (P~2 -P 2 CP 1 +P 2 ) (P,_r 1 +P~2 ))] .(6-29) 

Denote P2 - P2 CP 1 + P2 )-P2 by P1 ! P2 , called the parallel sum 

of matrices. According to Rao and Mitra (1971), it has the following 

properties: 

(1) P 1 ± P2 = P2 - P2 CP 1 + P2 )-P 2 is invariant for any choice of the 

(2) 

(3) 

(4) 

g-inver se. 

P 1 !_ P2 = P1 CP 1 + P2 )-P 2 = P2 CP 1 + P2 )-P 1• 

S(P 1 '± P2 ) = S(P 1 ) n S(P 2 ). 

and P2 respectively, PS is the orthogonal projection operator onto 

the space S(P 1) n S(P 2 >. 
From (1) and (2) the equation (6-29) becomes 

observation equation 

(_x2 - x1) + 6 = s • c (6-30) 

with weightmatrix PllY= CP 1 ~P2 ). 
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Note 1: If y. stands for observations 1.., the model (6-30) 
-1 ~ 

becomes the "raw observation approach11 (Chrzanowski and Chen, 1981), and 

where 

-1 - -1 ( }-1 
p 1 ±. p 2 = Q 11 :!: Q 22 = Q 11 + Q 22 

and all the notations have been de fined in Section 6. 2. 

(6-31} 

If y. stands 
-1 

for the coordinates x., then model (6-30) is called the 11 displacement 
-1 

approach" (Chrzanowski and Chen, 1981), and 

(6-32) 

with 

where Ni is the coefficient matrix of the normal equation in epoch i, 

which has been discussed in the last section. 

Note 2: Since ~2 and ~1 may be calculated from the adjustments 

with different datums, (~2 - ~1 } will contain the displacements caused 

by the translation, rotation, and scale change of the network, besides 

the true displacements. Nevertheless, these additional displacements 

will not have an effect on the estimated coefficient c of the 

deformation model because they lie in the null space of P1 ± ? 2 • This 

indicates that whatever minimum constraint (or inner constraint) is used 

in the processing of each epoch of observations, a unique solution for~ 

must be obtained. The concern expressed by Brunner (1979) and Brunner 

et al. ( 1981) that any constraint (minimum constraints) introduced into 

a deformation network can disguise the true deformation is not 

pertinent. This fact was first pointed out by Chrzanowski and Chen 

(1981). But caution should be exercised in the computation when the 

minimum constraint solution .!1 and its cofactor matrix o; are used 
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instead of weight matrix Ni. This problem will be fully discussed in 

the next section C6.4.3). 

Note 3: Let us compare the "raw observation approach" with the 

"displacement approach". Assume that both epochs have the same 

configuration matrix A, then N. =AT o-:-~ A Ci = 1,2). From C6-32) one 
1. 1.1. 

gets 

T _ -1 T T -1 T -1 -1 - T -1 -1 ) 
Oc=CB CP 1±P 2)8) :(8 A o11 ACA C0 11 + o22 )A) A 022 AB) .C6-33 

T T -1 -1 
Equation C6-33) is equivalent to C8 A co 11 + o22 > A8) , that is to 

say, the "raw observation approach" and the "displacement approach" 

yield identical results only when either 

(1) 0 11 = k 022 with k being a constant; or 

(2) -1 -1 T -1 -1 
r{Q11 +022} = r{A CQ11 +Q22)A}. 

The first condition is obvious and the second one can be 

satisfied only when no redundancies are available, thus no adjustment is 

possible. The second condition can be proved as follows. 

Proof: Under condition C2), A(AT(O~~ 
1 1 -1 T -1 

0 ; 2 )- ( Rao and Mitra, 1971 ) • Thus Q 11 A( A C Q 11 + 

-1 )-1 -1 -1 
+ 022 °22 = co,, + 022> ·I I 

-1 
= co,, + 

-1 -1 o,, co,, 

A simple exanple to demonstrate the difference between both 

approaches when the above two conditions are not fulfilled is presented 

in Appendix IV.2. 

6.4.3 Remarks 

In practice, there exist some problems that need be clarified. 

The first problem is related to results reported by Prescott C1981): 
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..• exanination of a trilateration network near San Francisco 
Bay demonstrates the large effect that the choice of 
adjustment technique can have on the inferred relative motion 
of the t~ sides of the fault. The inner coordinates solution 
gave a rate of about 1 mm/yr, whereas the preferred outer 
coordinate sol uti on rate was 36 nun/yr. 

This result contradicts the statement made in note 2 of Section 6. 3. 2, 

that whatever minimun constraints are used in the processing of each 

epoch of observations the unique result for the deformation parameters 

must be obtained. 

Another problem is related to the rotation parameter of the 

rigid body motion. It is well known that the rigid body rotation 

parameter w cannot be determined from a trilateration monitoring network 

unless an external azimuth observation is made. Thus in the case of the 

lack of external orientation the omission of the w component from a 

deformation model seems justified. This is true when the coefficients 

of the deformation model are estimated using the generalized approach or 

calculated from raw observations or from derived invariant quantities 

(derived angles, distances). However, if the deformation parameters are 

estimated fran the displacements coupled with their covariance matrix, 

caution should be taken. The omission of the w component may produce a 

biased' result, which was first pointed out by Chrzanowski and Chen 

( 1981). 

In order to clarify these practical problems, some nunerical 

examples are presented, followed by a theoretical study. 

In the first exanple, the same monitoring network (Figure 6. 8) 

used by Prescott (1981) in South Bay near San Francisco has been 

analysed using the survey data obtained from the American Geophysical 

Union. The line lengths were measured periodically between 1972 and 

1980. A linear least-squares fit to all the observations of a single 
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1 ine as a function of time was carried out to obtain the average rate of 

change for each line. These rates were then adjusted by three different 

methods: minimun constraints holding point 10 and the direction from 

point 10 to point 12 fixed; inner constraints; and a method of the 

"outer coordinate solution" proposed by Prescott (1981). Displacenent 

rate vectors for the three adjustments are given in Figures 6.9 to 6.11. 

Relative motion of the western block with respect to the 

eastern block of the network was determined using the generalized 

approach. The Heyward fault 1 ine was taken as the separation line of 

the relative movement (the same as used by Prescott). The results are 

shown in Table 6. 2, where a and b are components of the relative motion 

rates along and perpendicular to the fault line respectively. The 

motion is right lateral strike slip. 

Relative Motion 
Paraneter s 

a 

b 

Outer Coordinate 
Inner Constraints Solution 

12.8 mm/yr. 

- 1.6 mm/yr. 

12.8 mm/yr. 

- 1.6 mm/yr. 

TABLE 6.2 

Minimum 
Constraints 

12.8 mm/yr. 

- 1.6 mmlyr. 

The Relative Motion Rate Between Two Tectonic Blocks in South Bay, 
Estimated from the Results Using Different Adjustment Methods. 

As one can see, the parameters a and b are invariant of the choice of 

solution, although the displacenent fields are quite different. 

Prescott ( 1981) in his comparison directly used the 

displacenents (their projections on the fault line) which obviously are 

datun dependent. Therefore, each of his solutions gave different 

results due to different rotations introduced to the displacenent field. 
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Let us consider in more detail the aforementioned second 

problem related to the rotation paraneter of the rigid body motion. In 

the adjustment of a tr il ateration or triangulate ration (mixed 

triangulation and trilateration) network, a point P. and the direction 
1 

from Pi to a second point P j act as constraints on the degrees of 

freedom of the con figuration. This is imposed by fixing the 

coordinates (x 1., y.) of P. which is then taken as the origin of the 
1 1 

local coordinate system (Chrzanowski and Chen, 1982) and by assigning a 

very small variance to the azimuth aij. Consequently, when comparing 

the coordinates under the same constraints at two epochs, the 

displacement of Pj is confined to occur in the direction of the azimuth 

a . . so that 
1J 

dxj/dyj = tan(aij) 

If, for instance, the displacement field is approximated by the model 

expressed by (6-15a) and (6-15b), then the observation equations for the 

displacement components of point P j are: 

dxj + vxj = £xxj + £xyYj - wyj 

dyj + vyj = £xyxj + £yYj + wxj 

The very ::mall variance of a .. constrains these to have the relation 
1J 

= tan( aij) 

so that 

1 
w = -2 (£x - £ ) sin(2a .. ) + £ cos(2a .. ) 

y 1J xy 1J 
(6-34) 

Thus the variation associated with the change in minimun constraints is 

absorbed by the change in the value of w, rendering the values of the 

other strain parameters invariant. If w were omitted (considered as 
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being zero) in the model, as is done by sane authors when no absolute 

orientation of the network is available (no ties to external reference 

points), then the calculated strain parameters would vary with the 

choice of minimun constraints. The same applies to other deformation 

models, whenever the constrained direction a .. is within the deformed lJ 

part of the investigated body. For instance, in the case of rigid body 

displacements as shown in Figure 6. 1a, if point i of the constrained 

direction would be in block A and point j in block B, then the equations 

(6-14) of the deformation model should be written in the form: 

dxA =- wy, dyA = wx, dx 8 = a0 - wy, and dy8 = b0 + wx • 

Otherwise, the values of the paraneters a0 and b0 would be dependent on 

the choice of the direction aij to be constrained. The rotation 

paraneter w in the above cases plays the role of a nuisance parameter. 

Two-epoch observations from the aforementioned monitoring 

network in Peru (Figure 7.1) are used to demonstrate this point. The 

results with and without including w are presented in Table 6. 3( a) and 

(b), respectively. In Table 6.3( a) two deformation models are 

estimated. One is the homogeneous strain over the whole area; the other 

is the hcmogeneous strain in both blocks on opposite sides of the fault 

plus rigid body translation between the blocks. Parameters a and b are 

the two components of the translation in x and y directions, 

respectively. 
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MODEL 1 

Parameters 

Holding 
Pt. 4 & 
4-1 

Holding 
Pt. 5 & 
5-4 

Holding 
Pt. 4 & 
4-2 

Inner 
Constraint 

£ (10-6) - 1.57 - 1.55 - 1.55 - 1.54 
X 

Ex Y ( 1 0-6 ) - 1 • 66 - 1. 62 - 1. 64 - 1. 64 

£ ( 10-6) - 2. 72 - 2. 73 - 2. 67 - 2. 67 y 

a {mm) 

b (mm) 

w (10-6 ) 

w* (10-6) 

+ 0. 34 

+ 0. 34 

- 0.22 + 0.24 + 0.01 

- 0.26 + 0.22 0.00 

TABLE 6. 3( a) 

Holding Pt. 4 
Parameters and 4-1 

Holding Pt. 5 
and 5-4 

£ (10-6) 
X 

-6 
txy (10 ) 

-6 £y (10 ) 

- 1.62 

- 0.00 

- 1.88 

- 1.14 

- 0.78 

- 3. 72 

TABLE 6. 3 ( b) 

MODEL 2 

Holding 
Pt. 4 & 
4-1 

- 1.68 

- 0.96 

- 0. 40 

- 1.20 

Holding 
Pt. 5 & 
5-4 

- 1.70 

- 0.94 

- o. 38 

- 1.20 

- 1. 80 - 1. 75 

+ 0.20 - 0.38 

+ 0. 20 - 0. 35 

Holding Pt. 4 
and 4-2 

- 2.15 

- 1. 24 

- 0.90 

The Estimated Deformation Parameters from Two Epoch 
Observations in the Huaytapallana Network: (a) With and 

(b) Without Including the Rotation Parameter w. 

Note that w* in Table 6.3( a) for the first model are calculated from 

(6-34) using the estimated values £ , £ , £ , while w are obtained from x xy y 

the least-squares estimation. For the second deformation model, w* is 

expressed as 
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1 a b · 
w* = -(£ -£ +- --) sin(2a .. ) + £ cos(2a .. ) 

2 X y X j y j lJ X y lJ 

when the constrained azimuth crosses the fault, or is determined from 

(6-34) when the constrained azimuth does not cross the fault. The above 

contention has been further verified by Snay ( 1982, personal 

communication) who performed the test using a Utah data set. 

Let us analyse this problem in a more general case. Assune 

that the deformation model Be is to be estimated from the mathematical 

model: 

with 

d + v = (_!2 - _!1 ) + v = Be 

2 
D{d} = a Qd 

(6-35) 

where v is the vector of residuals,~ is the vector of displacements, 

and Qd is its cofactor matrix with respect to a datun defined by datun 

equation DT_! = 0 (see Chapter 4). Matrix QQ. is singular with rank 

defects being equal to the datun defects of the monitoring network. The 

singularity of QQ. implies that some natural constraints on the vector of 

displacements ~ exist. As discussed in Chapter 4, the following 

relation holds: 

and (6-36) 

Since D{DT~} = DTQ.QD = 0, DTd is non stochastic. Therefore, imposed on 

the deformation model is a restriction: 

According to Rao and Mitra ( 1971), the unbiased estimators of (6-35) are 

obtained by minimizing (~ - B~)T Q~(_s! - B~) subject to the constraints 

T 
D Be = 0. Obviously the estimated coefficients.§. will change due to the 

choice of the datun equations in the least-squares processing of the 

observations. In order to obtain the invariant coefficients .§., a set of 
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nuisance parameters, .£•, say, is introduced. The nunber and types of 

the parameter .£• should correspond to the defects of Qd. Therefore, 

(6-35) is modified as 

~ +::!.. = H~* + Be (6-38) 

2 
with D{~} = cr QQ, where matrix H has been defined in Chapter 4. The 

constraints on the unknown coefficients, due to singularity of Qd, read 

T T 
D H.£* + D Be = 0 (6-39) 

Expressing .£• as a function of c from (6-39) and substituting it into 

(6-38) , one gets 

d + v = (I - H(DTH)- 1 DT)~ = B~ (6-40) 

where ~ is the projection of B onto the subspace Er perpendicular to 

S(D) in Figure 4.1. It is easy 

DTD = DTQ 
d = 0, so that no more 

principle of least squares to 

estimated fran 

-c = (~T Q-d 8)-1 gT Q- d g-

to verify that 

constraints on c 

the ( 6-40)' the 

which is invariant of any choice of g-inverse Q~. 

S( -e) c S(QQ) because 

exist. Applying the 

coefficients c are -

(6-41) 

As discussed in Chapter 4' another solution ~1 Qd are related 
-1 

to d and Qd in the following manner: 

E., = PD.L E_ and Qd = PD.l. Qd 
T . . PD.L 

1 -1 1 1 

where P0.L is the projection operator with respect to datun equation 
1 

Similar to (6-40), the deformation model Be can be estimated 

from ~ 1 and Qd 
-I 

E_1 + ::!_1 = (I - H(D~H)-lDT)~ = 8,.£ 

Let ~1 be the least-squares estimator from (6-42) , then 

(6-42) 
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,.. nT - El )-1 T -
~1 ..£1 = ( 1 Qd s, Qd 

-1 1 -1 

From the that a, • B and T T )- Q~ comes the fact = PD.L PD.L(P D.L Qd PD.L p D.L = 
1 1 1 1 1 

relation: 

Therefore, introducing a set of nuisance parameters ~* renders the 

invariance of the estimated coefficients of the deformation model. 

However, if Qd is obtained from the inner constraint solution, 

and the pseudo-inverse Q~ is used in the estimation of the deformation 

model, then introducing the nuisance parameters is not necessary because 

+ Qd = P 1 .± P2 (see Section 6.4.2 (4)). But the above statement will not 

lose its generality. Only in this case are the estimated nuisance 

parameters zero if they are introduced into the model. 

6.5 Checking the Deformation Models and Selecting the "Best" Model 

The global appropriateness of a deformation model can be tested 

using the quadratic form of the residuals 6i in (6-8). Let t.R denote 

such a quadratic form, thus 

k T 
11R = E 1). P. !i_ 

1 ..:..]. l. 

In order to obtain 6. the vector of unknown constant -~ is to be 
-l. 

computed. This can be realized by 

k k 
i = (t P.)-[t P. y. 

1 l. 1 l. -l. 

k 

< t P 1. B.> • cJ 
2 l. -

(6-43) 

(6-44) 

where a have been estimated from (6-11) and the other quantities 

involved have been calculated in the process of the estimation of the 
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coefficients c. 

The degrees of freedom of the quadratic form AR are computable 

fran 

df = r{P} - u + d c (6-45) 

where, as defined in Section 6.2, P = diag{P 1 , P2 , ••• , Pk}; u is the 

dimension of the unknown vector (IT cT) in (6-8); d is the rank 

k 
defects of (l: Pi), equal to the nunber of remaining datun defects and 

1 

configuration defects which are not determined in at least one epoch. 

From the results in Section 5.4, the deformation model Be is 

globally acceptable at confidence level ( 1 - a) if the following 

inequality holds: 

T = 

or 

l!R 
R 

df 
df 2_ F(a; df0 , df) 

c 

T = AR/(a2 • df ) < F(a; df , df) 
0 c - c 

(6-46) 

(6-47) 

with R being the quadratic form of the residuals obtained from the step 

of the adjustment of the observations (see model (6-3)), and a~ = R/df, 

the a posteriori variance factor. If a monitoring network is adjusted 

separately for each epoch of observations, then R 

k 

k 
= ,. ... r 0-1 " 

... v. 1"1" v. 1 -1 -1 
and 

df = E df., where v. is the vector of residuals and df1. is the nunber of 
1 -1 

1 

degrees of freedom in epoch i. 

Note 1: If the a priori variance factor o2 is used instead of 
0 

~2 ( the a posteriori one o 0 , the expression 6-46) is replaced by 

llR 
T = ---'--2~ 2_ F( a; dfc, ... ) 

df • 0 
c 0 
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Note 2: When E_ = 0, the test statistic (6-46) can be regarded 

as an extension of the global congruence test, which originated from 

Pelzer (1971; 1974) and was further developed by Niemeier (1981). In 

their developnents, only the coordinates are considered. As suggested 

in the formulation of (6-8), coordinates and other observables enter 

into the global congruency test of multiple-epoch observations. 

Note 3: Consider the simpler case, the analysis of two epochs 

of observations. The quadratic form b.R can be derived from (6-30) as 

(6-48) 

where q,. 
c is the cofactor matrix of the estimators §.; and P b.J: is the 

weight matrix of Cy2 - y 1), its formulation has been considered in 

Section 6. 4. 2. 

As discussed in Chapter 5, the quadratic form t. R and the 

t ·t .... T -1,. quan 1 y ~ Q,. c in (6-48) are statistically independent. c -
Therefore, 

they can be used to test whether the introduction of the deformation 

model Be would reduce the noncongruency between two epochs 

significantly. 

The significance of the individual parameters ci or a group of 

u. paraneters, c. which is a subset of _c, is revealed by testing the 
l -l 

null hypothesis H : c. = 0 or c. = 0 versus the alternative hypothesis 
0 l -l 

Ha: c. i 0 or c. i 0. Following the developnents in Section 5.4, their 
l -l -

significances are indicated by 

and 

,.2 
c. 
- 1 - > F(a; 1, df) ,.2 
0 oqc. 

l 

or 
c. 
- 1-- > t(~; df) 
0 ,tq 

0 c. 
l 

(6-49) 
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-l 
> F( a: 
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u. ' d f) 
l 

(6-50) 

with q 
c. 

l 

being the ith diagonal element of Qc" and Q... being a submatrix 
c. 
-l 

of Q .... 
c The significance level a in all the tests are fixed, say a= D. 05 

or a=O.Ol. If the global test fails, localization in time domain or in 

the space domain should be performed. Displaying the residuals in space 

and in time will help in Clllelioration of the model (Chrzanowski and 

Chen, 1981). When a set of new paraneters is added into the model, its 

significance in the reduction of the quadratic form of the residuals can 

be tested using the test statistic (5-51). 

Because the behaviour of the deformable body is usually not 

completely known, there is often more than one possible model that may 

be appropriate. The choice of the "best" model has regard both for 

statistical significance and for physical appropriateness, which would 

have justified consideration a priori. The "best" model should possess 

at least one or a combination of the following characteristics 

(Himmelblau, 1970; Chrzanowski et al., 1982c): 

(1) fewer number of coefficients consistent with reasonable error; 

(2) simpler form consistent with reasonable error; 

(3) rationale that is based on physical grounds; 

(4) minimal error of fit; 

(5) significance of the coefficients. 
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6.6 Summary of the Computation Procedures 

Step 1. Assessnent of the observations using the MINQUE 

principle to obtain the variances of observations and possible 

correlations of the observations within one epoch or between epochs, if 

the a priori values are not available. 

Step 2. Separate adjustment of each epoch of observations if 

the correlations of the observations between epochs are negligible, 

otherwise simultaneous adjustment of multiple epochs of observations is 

required, for detection of outliers and systematic errors. 

Step 1 and 2 overlap because the existance of outliers and 

systematic errors will influence the estimated variances and covariances 

and adopted variances and covariances of the observations will affect 

the outlier detection. 

Step 3. Comparison of pairs of epochs; use of the method of 

iterative weighted projection to yield the "best" picture of the 

displacement field. 

Step 4. Selection of deformation models based on a priori 

considerations and the displacement pattern. 

Step 5. Estimation of the coefficients of deformation models 

and their covariances using all the information available. 

Step 6. Global test on the deformation model; testing groups 

of the coefficients or an individual one for significance. 

The above three steps should be considered as an iterative 

three-step procedure, so they necessarily overlap. 

Step 7. Simultaneous estimation of the coefficients of the 

deformation model in space and in time if the analysis of pairs of 
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epochs of observations suggests that it is worth doing so. 

This simultaneous estimation must be performed if the 

observations are scattered in time. The iterative three-step procedure 

is still valid. The possible deformation models can be selected either 

based on a priori considerations or by plotting the observations versus 

time. 

Step 8. Comparison of the models and choice of the "best" 

model; computation of deformation parameters. 

Step 9. Graphical display of the selected deformation model. 

Figure 6-12 shows the computation flowchart. 
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CHAPTER 7 

APPLICATION OF THE GENERALIZED APPROACH 

TO THE ANALYSIS OF MONITORING NETWORKS 

In the course of the development of the generalized approach to 

deformation analysis, three geodetic moni taring networks having 

different characteristics have been analysed within the ac ti vi ties of 

the aforementioned "ad hoc" committee of FIG. These networks were: the 

Huaytapallana network in Peru, provided by the Fredericton group of the 

FIG committee; a reference network for moni taring the Lohmuhle dam, 

provided by the Hannover group; a simulated network across a geological 

fault, provided by the Karlsruhe group (the data was prepared at the 

Geodetic Department of the Delft University of Technology). Some of the 

results are presented in this chapter. In addition, three more sets of 

new data have been analysed by the author during the preparation of this 

thesis. They are: two sets of new simulations of the 2-D relative 

network, and a 3-D monitoring network in the open pit mine of "Adamow" 

in Poland. 
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7.1 Analysis of the Huaytapallana Monitoring Network 

7.1.1 Description of the survey data 

The Huaytapallana network (Figure 7.1) is located in the 

Huaytapallana mountain range of the Peruvian Andes, at an average 

elevation of 4500 m, and crosses a reverse fault which was activated by 

an earthquake in 1969 ( Deza, 1971). At that time, a vertical 

displacement of 1.6 m and a horizontal strike-slip motion of 0.7 m were 

recorded. When designing the network and the survey (Chrzanowski et 

al., 1978; Nyland et al., 1979) no additional information on the 

expected deformations was available. The goal of this microgeodetic 

survey was to detect relative rigid body displacements of groups of 

points on both sides of the fault with a standard deviation in the order 

of 3 nun, or better, and to determine strain components with standard 

deviations in the order of -6 3 X 10 • 

Due to the difficult topographic conditions only horizontal 

surveys were carried out, and for economical reasons only standard 

surveying equipment could be used. The eleven points of the network 

were monumented in rock outcrops using brass markers. Table 7.1 

summarizes the type and number of observables and their estimated 

standard deviations in four epochs of observations. 

7.1.2 Identification of the deformation models 

Due to the lack of geophysical information on the expected 

deformation of the investigated area, several simple models were 

selected for further testing starting with the simplest assumption that 

no global deformations had taken place (dx = 0 and dy = 0 for the whole 
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Fig. 7.1: The Huaytapallana Network. 



Type of 

Observations 

Angles 

Directions 

Distances 

1975 

No. of 

Observ. 

73 

2.6" 

60 

4.0 rnrn 

166 

1976 

No. of 

Observ. 

81 

2.2" 

65 

3. 5 rnrn 

1977 

No. of 

Observ. 

2 

3.9" 

91 

2.8" 

74 

2.7 rnrn 

Table 7•1: Type and standard deviations of 
observations - Huaytapallana Network. 

1978 

No. of 

Observ. 

91 

2.5" 

70 

5.5 rnrn 
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area), followed by a model of the rigid body displacement along the 

fault line of the northern versus southern parts of the network, then a 

homogeneous strain model for the whole area, and then different 

homogeneous models on both sides of the fault. In addition, some more 

complicated models had been selected on the basis of the preliminary 

trend analysis. 

Figures 7. 2a and 7. 2b give the examples of the displacement 

field in epochs 1978-1977, based on the method of the "best" minimum 

constraints and the method of iterative weighted projection, 

respectively. In this pair of epochs, points 4 and 11 indicated a 

movement separate from the remaining portion of the network, thus 

indicating the possibility of an additional discontinuity running from 

the fault line through the vicinity of point 1 and isolating these two 

points. This trend had also been confirmed by the examination of epochs 

1976-1975. 

An examination of the displacement field for other pairs of 

epochs also led to a suspicion that point 2 was unstable. Therefore, 

additional deformation models had been selected for further 

investigation which took under consideration the possibility of the 

separate rigid body displacements of points 4 and 11 as one block and 

point 2 as another block with respect to the remaining portion of the 

network. 

7.1.3 Results and selection of the "best" model 

When the network had to be analysed, the computer program for 

the generalized approach was not completed. Therefore the computations 

followed the procedures contained in Chrzanowski and Chen (1981), where 
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Fig. 7.2a: Displacement field for the Huaytapallana Network 
in epochs 1978-1977, using the "best" minimum 
constraints. 
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0 
(2) 0 

0 10 20 MM 

Fig. 7.2b: Displacement field for the Huaytapallana Network 
using the method of iterative weighted projection. 
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the rotation parameter w was introduced as the "nuisance" parameter. A 

total of eight deformation models were fitted to the data and examined. 

Table 7.2 illustrates five models which had been accepted at the 95% 

confidence level by the global statistical test. Table 7.3 summarizes 

the results of the least-squares estimation of the deformation 

parameters and their confidence level at Pr%. 

As one can see, the first model, "no global-deformation", had 

passed the global tests at the 95% confidence level. However, after a 

close examination of the results, model no. 5 had been accepted as the 

"best" on the basis of the indicated trend of displacements and high 

confidence levels (> 99%) of its parameters. Figure 7.3 gives a 

graphical display of the estimated deformations of the area covered by 

the survey network using the "best" deformation model. In this model, 

block C contains points 4 and 11 of the network and block B contains 

point 2. Most probably, the estimated relative displacements of the 

blocks, particularly of point 2, are of a local, non-tectonic nature, 

such as surface movements of the marked survey points. However, the 

movement of points 4 and 11 as one block, if not coincidental, may 

indicate an additional crustal discontinuity and an action of tectonic 

forces. Only additional future remeasurements of the network will allow 

for more concrete conclusions. 

It is interesting to note that the survey data of the 

Huaytapallana network wer~ also analysed by Margrave and Nyland (1980). 

They considered only the homogeneous strain model in their analysis. 

They concluded that between 1975 and 1976 the area of the survey 

experienced a left-lateral shear strain of about -3 microstrains, which 

was possibly associated with tensional straining perpendicular to the 



Model 

No. 

1. 

2. 

3. 

4. 

5. 

171 

Deformation Model 

No global deformation 

YQ 
~-B 

X 

y 

ux 
y 

0 ------

0 
X 

y 

X 

dx 0 

dy = 0 

dx =0 A dx =a B o 

dy =0 A dy =b B o 

dX=E X+E y+w)' x xy 

dy=E X+E y+wX xy y 

dxA=E X+E y-wy x xy 

dyA=E X+E y+wx xy y 

dx =a +E X+E y-wy B o X xy 

dy =b +E X+E y+wx B o xy y 

dx =0 A dx =a B o 

dy =0 A dy =b B o 

dx =c r. 0 

dy =g c 0 

Global Tests 

Epochs 

'76-'75 

'77-'76 

'78-'77 

'78-'75 

'76-'75 

'77-'76 

'78-'77 

'78-'75 

'76-'75 

'77-'76 

'78-'77 

'78-'75 

'76-'75 

'77-'76 

I 78- 1 77 

'78-'75 

I 76- 1 75 

'77-'76 

'78-'77 

'78-'75 

2 
T < F95o > '0 

1.48<1. 63 

1.38<1.63 

1.44<1.63 

0.80<1.63 

1.35<1.69 

1. 39< 1. 68 

0.92<1.68 

0.60<1.69 

1. 32<1. 71 

1. 35<1. 7l 

1.15<1. 71 

0.68<1.71 

1. 43<1. 76 

1.51<1.76 

0.91<1. 76 

0.67<1.76 

0.44<1. 73 

l. 00<1. 73 

0.37<1.73 

0.69<1. 73 

Table 7.2: Deformation models and Global Tests 



Model Deformation 1976-1975 

No. 

1. 

2. 

parameters 

a [mm] 
0 

b [mm] 
0 

3. E [f.lstrain] 
X 

E [f.lstrain] 
y 

E [f.lstrain] 
xy 

4. E:x [f.lstrain] 

E:y [f.lstrain] 

E: [f.lstrain] 
xy 

a [mm] 
0 

b [mm] 
0 

5. a 
0 

c [mm] 
0 

g0 [mm] 

( 2 2)~ c +g 
0 0 

e. Pr% 
l. 

1. 8 89%. 

2:2 94!16 

2.9 93% 

-1.6 86% 

-2.6 80% 

-1.6 91% 

-1.7 88% 

-0.4 10% 

-0.8 36% 

1.3 51% 

1.6 54% 

-2.6 96% 

-2.9 94% 

3.9 99% 

2.7 99% 

1. 2 63% 

3.0 99% 
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1977-1976 

e. Pr% 
l. 

-1.6 89% 

0.0 1% 

1. 6 73% 

-0.4 33% 

0. 8 33% 

1. 7 96% 

-0.4 37% 

2.5 54% 

2.1 84% 

0. 7 28% 

1. 2 46% 

3.7 99% 

1. 2 58% 

3. 9 99% 

-0.0 1% 

0.3 4% 

1978-1977 

e. Pr% 
l. 

-3.4 99% 

-3.7 99% 

4.2 99% 

1. 6 81% 

3. 8 89% 

2.1 94% 

2.0 90% 

-2.5 41% 

-1.0 38% 

-4.8 95% 

-4.4 88% 

0.8 37% 

-0.4 16% 

0.8 15% 

-4.8 99% 

-4.0 99% 

6.2 99% 

1978-1975 

e. Pr% 
l. 

-3.2 97% 

-1.8 75% 

3. 6 93% 

-0.4 21% 

2.0 55% 

2.5 95% 

-0.2 ll% 

-1.8 28% 

1.1 39% 

-2.2 62% 

-2.7 63% 

0.0 1% 

-1.5 54% 

1. 5 26% 

-1.4 65% 

-2.9 91!1-'o 

3. 2 ss,, 

Table 7.3: Results of the least squares fitting of deformation 
models - Huaytapallana Neh10rk. 
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Fig. 7.3: Schematic representation of the "best" 
deformation model for Huaytapallana 
Network. 
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fault. From 1976 to 1978 a right-lateral shear strain of about +3 

microstrains occurred in this area and was associated with a probable 

tensional straining parallel to the fault. In their analysis, Margrave 

and Nyland used the raw observations approach, thus they were not able 

to utilize all the observables which differed from one epoch to another. 

This may partially explain the numerical deviations from the values 

shown for model no. 3 in Table 7.3. However, the overall conclusions of 

both studies would be in agreement if model no. 3 were accepted as the 

"best" model. Since that was not the case, the comparison of the final 

results indicates how important it is to follow the proposed generalized 

approach to the analysis with a careful examination of more than just 

one deformation model. 

7.2 Analysis of the Simulated Relative Network 

7.2.1 First simulation 

The network (Figure 7 .4) was simulated as a part of a 

first-order horizontal control network crossing a geological fault. A 

total of three simulations of deformations of the network were prepared 

at Delft University of Technology. 

The first simulation included two epochs of observations. In 

the first epoch, the network consisted of 16 points, which were 

connected by 70 direction measurements with equal a priori standard 

deviations of 0'!32. At epoch 2, one point (point 9) has been added; 

moreover, points 7 and 19 have been replaced by new points 207 and 209 

in the vicinity of the old ones. The observations in the second epoch 

included 70 direction measurements (uniform a priori standard deviation 
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of 0':32) and 37 distance measurements (standard deviation of 0.06 m). 

The simulated deformation model, which had not been known to the members 

of the FIG "ad hoc" committee before the analysis, consisted of single 

point displacement of points 3, 15 and 45, and a r,elative rigid body 

displacement of the two opposite parts of the network along the fault 

line. 

Separate adjustments of the network were carried out using the 

available program, GEOPAN, at UNB, in which the technique for outlier 

detection is T-max criterion. The adjusted coordinates and their 

covariance matrix with respect to a certain datum are obtained. Using 

the method of the iterative weighted projection discussed in Section 

6.3, the displacement field and the error ellipses at a = 5% of the 

displacements of the points have been plotted in Figure 7.5. 

A trend analysis of the displacement field led to a choice of 

several possible deformation models. The results are tabulated in Table 

7.4. Although model 2 corresponds to the actually simulated 

deformations, it is not the "best" one because the global test fails and 

point 3 shows no significant movement. A total number of six models 

were attempted. Finally, model 6 has been selected as the "best model". 

The whole area experiences a homogeneous shear strain and additional 

movements exist--points 3 and 5 form a separate block and also single 

points 11, 15, and 45, each treated as a separate block undergoing a 

rigid body displacement plus the same shear strain. The "best" model is 

graphically represented in Figure 7.6 

A comparison of the results with the other research groups 

(Heck, 1982; Chrzanowski and Second, 1983) is listed in Table 7.5. 
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Fig. 7.5: Displacement Field and Error Ellipses (a= 5%) 
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6 ! the whole body undergoing 

a homogeneous shear 
strain plus additional 
movements of the block 
(pt. 3 and 5) and of 

1 points 11, 15, 45 
I 

a = -14.1 em b = - 19.6 em (6.8 > 3.1) 0.68 < 1.82 

dx 11= -3.4 dy11 = 16.8 (5.5 > 3.1) 

dx15= -3.7 dy 15 = -20.9 (8.9 > 3.1) 

dx45= 7.6 dy45 = 10.5 (12.5> 3.1) 

I 

L---L----------------------------
c = 1.69 ~strain (critical value 1.1 ~strain) 

---~~---------------------------------------------------------------

Note: l. a, b are components of block translation in x, y direction respectively, 

dx., dy. are components of ith point displacement (SQme notation will be 
1 1 

used below); 

2. (t > t ) where value ~ is the quadratic form of the displacement of a point 
a 

and t corresponds the critical value at significance level a = 0.05. 
a 

Table 7.4: The Estimated Deformation Models -- The First 

Simulated Network. 
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Single Point Displacement 

Group 3* 5 11 15* 35 

Delft yes yes yes 
Fredericton yes** yes** yes yes 
Hanover yes yes 
Karlsruhe yes yes 
Munich yes yes yes yes 

Relative Movement of the 
Eastern vs. Western 

45* Block* 

yes 
yes yes** 
yes 
yes 

* Models are underlying the simulation. 
** The best model of the Fredericton Group treated points 3 and 5 as 
one block and the relative movement of the eastern block versus the 
western block was interpreted as a significant homogeneous shearing 
strain. 

TABLE 7.5 

Significant Deformation in the First Simulated 
Network--A Comparison. 

As one can see, the Fredericton Group gave a better result. 

Some inconsistencies exist among the groups. The reason is due to the 

selection of the significance levels. Since the Hannover group and the 

Karlsruhe group use the global congruency test at 95% confidence level 

as the only criterion for testing single point movements, one should 

expect them to detect a fewer number of unstable points than the 

Fredericton group and the Munich group, which use a = 0.05 significance 

level for testing single point movement and individual deformation 

parameters. The Delft group have their own philosophy in the selection 

of significance levels (see Chapter 5), so their results may be 

sometimes closer to the results of the Fredericton and Munich groups, 

but sometimes closer to the Hannover and Karlsruhe results, depending on 

the number of points in a network. The reasons for inclusion of this 

example here has been to give an explanation of why the different groups 

obtained different results and to test a newly developed program for the 
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generalized appproach. 

The first simulation was, obviously, not very successful 

because the simulated deformation parameters were too small in 

comparison with the accuracy of observations. Therefore, two more 

simulations of the same network have been prepared and their analyses 

follow. 

7.2.2 Second simulation 

The second simulation included three epochs of simulated 

observations (the nature of the deformation is unknown, the same for the 

third simulation). In all the epochs, distances and directions were 

observed, but their variances were not given. In the first epoch, the 

network consisted of 16 points, connected by 72 direction measurements 

and 34 distance measurements. In epochs 2 and 3, point 9 has been added 

and points 7 and 19 have been replaced by new points 97 and 99 in the 

vicinity of the old ones. The network contained 72 direction 

measurements and 37 distance measurements. 

Because the a priori variances of the observations ·in the 

second simulation were not given, evaluation of the accuracy of the 

observations had to be performed before the final adjustment of the 

network. The minimum norm quadratic unbiased estimation principle 

(MINQUE) has been employed in the assessment of the observation data, 

which was discussed in Chapter 3. Since the measured distances in the 

network are more or less uniform, which differs from the Pitec network 

which was given as an example in Chapter 3, isolation of two error 

components of the measured distances, a constant error and an error 

proportional to the measured distance, is not pertinent. Thus, all the 
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measured directions and distances in one epoch are assumed to have the 

same variances. The error structure for one epoch of observations t. is 
-1 

0 

0 

2 2 
where as and ar are the variances for the distances and directions; Is 

and I are identity matrices with dimensions being equal to the number 
r 

of the distances and directions, respectively. The estimated standard 

deviations are as= 0.026 m, ar = 0'!46 for the first epoch, as= 0.10 m, 

a = 0~35 for the rest. 
r 

Using the same method as in Section 7 .2.1, the displacement 

field is plotted in Figure 7. 7. Several possible models are estimated 

and the results are presented in Table 7.6. 

In epochs 2-1, point 3 does not follow the deformation 

trend--the block comprising points 3, 5, 11, 39, 41 moves with respect 

to the other block, and point 45 shows significant single point 

movement. In epochs 3-2, the block continues to move, but points 3 and 

11 undergo additional movements. Points 97 and 9 seem to be located in 

another block. In addition, points 15 and 45 are significantly 

unstable. In epochs 3-1, the block experiences rigid body displacement, 

but irregular movement of point 11 exists. Moreover, point 15 shows 

single point movement. Comparing these results, one can conclude: 

(1) the eastern block without including points 9 and 97 demonstrates a 

continuous northeast movement; 

(2) points 3 and 11 within this block undergo additional movements, 

with point 3 moving significantly in both pairs of 1-2 and 2-3 

epochs but point 11 moving significantly only in epochs 2-3. 
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-----~----~------------------------------------------------------------------------------------------------~ I I I I 1 I 
11 Em~ N . 11 Def t. M d 1 1 Estimated Deformation Parameters and Their 1 Gl b 1 T 1 r-u"' o. orma 1on o e 1 • • 1 o a est 1 
1 1 1 1 Stat1st1cs (o<=o.os} 1 1 
I I I I I (0( = 0, 0 5) I 

1-----~----~-------------------------~-----------------------------------------------------~----------------~ I I I I 1 I 
1 1 1 1 no global deformation 1 1 5. 99 > 1. 60 1 
I I I I I I 

...... 
..c:: 
u 
0 
p. 

tJJ 

----~-------------------------~-----------------------------------------------------~----------------~ I I 

2 1 relative block movement a= 7.0 em b = 22.1 em (38.2 > 3.1) 0.71 < 1.73 1 
I I 

: of points. 3, 5, 1~, 39, dx = 10.5 d = -25.8 (26.6 > 3.1) : 
: 41 plus s1ngle po1nt 3 Y3 : 
:movements of pts. 3, dx15= -3.8 dy15= 7.1 ( 2.4 < 3.1) : 
I 15 45 1 
: ' dx45 = - 7.4 dy45 = -12.5 (16.8 > 3.1) : 

____ J _________________________ ----------------------------------------------------- ----------------~ 
I I I I 

: 3 :relative block movement : a= 7.3 em b = 22.2 em (38.5 > 3.1) : 0.89 < 1.72 

: :of points.3, 5, 1~, 39, : dx = 10.1 d = -25.8 (27.7 > 3.1) : 
N 1 1 41 plus s1ngle po1nt 1 3 Y 3 1 

I I I I 
..c:: 
u 
0 
p. 

tJJ 

: :movements of pts. : dx45 = -7.4 dy45= -12.8 (16.6 > 3.1) : 
: : 3, 45 : : 1 
I ____ J _________________________ J _____________________________________________________ ~----------------~ 
I I I I I 

4 ! relative block movement : a= 6.7 em b = 21.7 em (30.3 > 3.1) : 0.82 < 1.75 

of poi~t 3, 5,,ll, 39, 4~ dx = 9.1 d = 26.3 (29.2 > 3.1) : 
plus s1ngle po1nt move- : 3 Y3 : 
ments of pts. 3, 21, : dx21 = -1.2 dy21 = -5.0 (0.28 < 3.1) : 

45 , 47 : dx45 = -7.5 dy45 = -14.0 (18.5 > 3.1) : 
I I I 

: dx47= -1.3 dy47= -7.3 ( 2.0 < 3.1) : : 
____ J ____ J _________________________ J-----------------------------------------------------~----------------~ 

continued ... 
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-------~---~------------------------~-------------------------------------------------r----------------, 

Ep Ch : N : 0 f t. M d 1 1 Estimated Deformation Parameters and Their : Gl b 1 T : o s , o., e orma lon o e s 1 S . . 1 o a est 1 
1 1 : tat l S t l C S ( 0(. = O. 0 5 ) I ( _ S ) 1 
I I I ()(- 0 · O I 

-----------~------------------------~-------------------------------------------------r----------------
1: relative block movement: a= 5.2 em b = 19.7 em (55.1 > 3.1): 1.86 > 1.65 

N 

I"') 

..c:: 
(.) 

0 
0.. 

(J.J 

:ofpts.3,5,ll,39, 1 d _ 29 d _ c 87 1): 
: 41 plus single point i x15- - · Y 15- -l 7 · 4 · > 3. : 
:displacements of pts. : dx45 = 8.9 dy45 = 9.6 (13.4 > 3.1) l 
: 15 and 45 : 1 
I I 

~---,------------------------~------------------------------------------------4----------------4 
: 2: model 1 plus single :a= 6.6 em b = 19.9 em (51.8 > 3.1): 0.2 < 1.72 : 
I 1 • f I I I 
1 1 polnt movements o 1 d = _6 8 d = 19 5 (l 4 9 > 3 l) 1 1 

t 3 d 11 I X3 • y3 • • • I I p S. an 1 I I 

dx11 = -9.8 dyll= -10.1 ( 6.0 > 3.1) l l 
dx15 = -3.5 dy15 = -17.4 c 8.7 > 3.1) l i 

dx45 = 9.1 dy45 = 9.4 (13.5 > 3.1) l l 
:--------~---i------------------------j------------------------------------------------~----------------~ 
I I I • I I I 
1 1 llrelatlvebloekmovement:a=l3.0em b=41.lem (131.3>3.1)1 0.83<1.72 1 
I I I f I I I 
I I I 0 ptS. 3, 5, 11, 39, I d = -11 7 d = -3 1 ( 4 0 3 1) I I 
I I I 41 1 • 1 • I Xll • Y11 • . • > • I I 
I I 1 P US Slng e pOlnt 1 I I 
I I I I ) I I 
1 1 1 movements of pts. 1 dx15 = -6.8 dy15 = -10.7 ( 5.5 >3.1 1 1 

~ I I 15 d 11 I I I 

I"') 

..c:: 
(.) 

0 
0.. 

(J.J 

1 an I I I 
1 1 I I 

--,------------------------,------------------------------------------------~----------------~ 

2: model 1 plus single :a= 13.1 em b = 41.0 em (142.4 >3.1) 1.16 < 1.75 : 
I • f I I 
1 polnt movement o 1 d = _11 7 d = _3 0 ( 4 0 > 3 l) 1 

: point 45 : x11 · Y 11 · · · · : 
l l dx15 = -6.7 dy15 = -10.6 ( 5.4 >3.1) l 

1 i i dx45 = -1.4 dy45 = -3.5 ( 0.9 <3.1) i 

-·-------~---~------------------------l-----------------------------------------------------------------! 
Table 7.6: The Estimated Deformation Model -- The Second Simulated Network. 

..... 
CXl 
CXl 
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(3) point 45 moved significantly between epoch and epoch 2, but moved 

back (also significantly) between epoch 3 and 2; therefore no 

significant movement is detected from the results for epochs 3-1; 

(4) point 15 has moved between epoch 3 and epoch 2. 

The final deformation parameters are estimated from three 

epochs of observations simultaneously using the above detected movements 

as the final deformation models. The results are given in Table 7.7 and 

displayed graphically in Figure 7.8. 

7.2.3 Third simulation 

The third simulation also included three epochs. The 

configuration of the network and the number of ·observations are 

identical with the second simulation. Moreover, both simulations share 

the common first epoch. The whole procedure of analysis is the same as 

above. The estimated standard deviations are: os = 0.026 m, or = 0~46 

for the first epoch; os = 0.10 m, or = 0'!35 for the second and third 

epochs. The displacement field is plotted in Figure 7.9 and the results 

of the estimated deformation models are given in Table 7.8. 

Examination of the results of epoch 2-epoch 1, epoch 3-epoch 2, 

and epoch 3-epoch 1 led to the conclusion that during the time interval 

of three epochs, the block consisting of points 3, 5, 11, 39, and 41 

experiences rigid body displacement in respect to the block containing 

all other points. The results of simultaneous estimation of the 

deformation parameters from three epochs of observations are given in 

Table 7.9 and displayed in Figure 7.10. 



,--------------------~--------------------~--------------~-------------~----------------------------------1 1 1 I I I I I 
1 1 1 I I I I .I 

: Deformation Model : Rigid Body Motion : Point 3 ** : Point 11 ** : Point 15 1

1

1 Point- 45 _J Globa~ 
1 I I I I 
1 1 of Eastern Block * 1 (em) 1 (em) 1 (em) 11 (em) : Test\ 
I I I I I 
1 1 (em) I I I I I I 
1 1 1 · 1 I I I I 

1--------------------~--------------------~--------------~-------------~-------------~------------~------i 1 1 1 I I I I 
1 1 1 I I I I 
1 1 1 I I I I 
1 Epoch 2- Epoch 1 1 6.5 ( 2.6) *** 1 10.3 ( 4.4) 11 \ :- 7.4 ( 2.4): 
I I - I 
1 1 1 1 I I I 
1 1 I I I I I 

I I 21.3 ( 2.5) I -25.4 ( 3.4): \ \ -12.7 ( 2.8): 0.36 
: : : 1 I I I 
1 I I I I I I 

--------------------~--------------------~--------------~--------~----~-------------J-----------~~ < 1 I I I I 
1 I I I I 
1 I I I I 

Epoch 3 -Epoch 2 : 6.6 ( 2.2) : - 6.8 ( 5.2): - 9.8 ( 3. 7):- 3.5 ( 3. 7): 9.1 ( 2.4) ~ 1.50 
1 I I I I 
1 I I I I 

1 19.6 r 2.o) : 19.6 c 3.9): -1o.1 c 4.2): -17.4 c 4.2): 9.4 c 2.4) 
I I I I 

1 I I I I 

1--------------------~--------------------J--------------J--------------L------------J-------------------

* 

** 

*** 

Without including points 97, 9 . 

Besides following block movement, the points undergo additional displacements. 

The value in parentheses are the standard deviations. The first value is the 
component in the x-direction and the second in the y-direction. 

Table 7.7: Simultaneous Estimation of Deformation Model from Three Epochs 

of Observations -- The Second Simulated Network. 
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;------;----;--------------------~------------------------------------------------------------------

:Epochs: No.: Deformation Model :Estimated Deformation Parameters and Their : Global Test : 
I I I s • • I I 
1 1 : I tatlStlCS (CX:::O.OS) : _ 1 
~------~----~--------------------i------------------------------------------------- (ex- o.o5) 1 

I I I I 

_______________ J 

I 
I 
I 
I 

0'4 
I 

N 

1 1 1 relative block move-:a = 5.6 em 
men t of pt s . 5 , 11 , : 
39, 41, plus single :dx = 9.9 
point movements of ' 3 

pts. 3, 45 and 47 dx45 = 1. 5 

b = 21.7 em ( 35.6 > 3.1) 

dy3 15.6 (12.2 > 3.1) 

dy45= -5.5 (1.7<3.1) 

~ : : :dx47= 0.5 dy47 = -6.2 ( 1.5 < 3.1) 1 
U I I I 1 
0 I I 1 1 
P,. I I I 1 

0.5 < 1.77 

~ 1 ---~--------------------r-------------------------------------------------r---------------
1 :1 I 
I .I 

2 1 relative block move-·1a = 6.3 em b = 21.4 em (36.7 > 3.1): 0.8 < 1.63 
I 
1 ment of pts. 3, 5, 
I 
I 11, 39, 41. 
I I 1 

I I I 1 

I 
I 

~------~----~--------------------~-------------------------------------------------r----------------1 
I I I I 1 1 
I I I • 1 1 

~ 1 1 1 relat1ve block move-1a = 8.8 em b = 20.9 em (63.5 > 3.1) 1 0.1 < 1.63 
.C I I I 
u N 1 1 ment of pts. 3, 5, 1 
0 I I I I 
P,. t"l I I 11 , 39 , 41 I 

I ~ I I I 1 1 
I I I I 1 1 
~------~-~--1---------------------~-------------------------------------------------r---------------, 
I I I I 1 1 
I ~ I I • 1 ) 1 1 , .c , 1 1 relatlVe block move- ,a= 15.3 b = 42.9 (151.6 >3.1 , 0.8 < 1.63 , 
I U 0'4 I I 
1 o 1' 1ment of pts. 3, 5, 
I P,. t"l I I 
I ~ I I 11 > 39, 41 I 1 1 
~-----} ____ } _____________________ ! _________________________________________________ L _______________ J 

Table 7.8: The Estimated Deformation Model -- The Third 

Simulated Network. 
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Rigid Body Motion of Eastern Block* 

Deformation Model x direction (em) y direction (em) Global Test 

Epoch 2-Epoch 6.2 (2.4)** 21.5 (2.3) 

21.0 ( 1.9) 
0.3 < 1.42 

Epoch 3-Epoch 2 8.7 (2.2) 

* 
** 

Without including points 97 and 9. 
The values in parenthesis are the standard deviations. 

TABLE 7.9 

Simultaneous Estimation of the Deformation Model from Three Epochs 
of Observations--The Third Simulated Network. 

7.3 Analysis of the 3-D Mining Network "Adamow" 

7.3.1 Description of the network 

A three-dimensional geodetic network (Figure 7.11) was 

established by the Institute of Geodesy and Applied Mathematics of the 

Academy of Agriculture, in cooperation with the Central Research and 

Design Institute for Open-pit Mining in Wroclaw, Poland ( Cacon et al., 

1982). The network is used to monitor rock mass deformations and 

landslide hazards. 

The observation data of the network was provided by Cacon in 

Wroclaw and is used by the FIG "ad hoc" committee as a numerical example 

for the comparison of different approaches. 

The data contains three epochs of observations, 1978, 1979, and 

1980. The types and numbers of observations are summarized in Table 

7. 10. 
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1978 
1979 
1980 

Horizontal 
Angles 

23 
23 
20 

199 

Vertical 
Angles 

24 
28 
28 

Spatial 
Distances Levelling 

13 
13 
13 

11 
12 
14 

TABLE 7.10 

Types and Number of the Observations in the Adamow Mine Network. 

The horizontal angles and zenith distances were measured using 

a Wild T3 theodolite; spatial distances were measured using an EOK-2000 

EDM instrument produced by Zeiss-Jena. Besides trigonometric levelling, 

geodetic levelling was run between the points using a Zeiss Jena level 

Ni-007. No detailed information on the field operation procedures and 

the accuracy achieved was given. 

7.3.2 Adjustment of the network and preliminary 

identification of the deformation models 

Due to the lack of information on the accuracy of the 

observations, the standard deviations for each type of observable were 

estimated using the MINQUE principle. The results are listed in Table 

7. 11 • 



1978 

1979 

1980 

Horizontal 
Angles 

1 '!2 

1 '!6 

0'!7 

200 

Vertical 
Angles 

3'!6 

4'!5 

4'!5 

Distance Levelling 

0.015 m 2.3 mm* 

0.012 m 2.8 mm 

0.009 m 2.8 mm 

* The standard deviation of each levelling line. 

TABLE 7.11 

The Standard Deviations of the Observations 
in the Adamow Mine Network. 

The estimated standard deviations are compatible with the 

positioning accuracy of points using this type of spatial network, which 

is given in (Cacon et al., 1982) as 

ox = (5.0 

cry= (5.7 

9.8) rom, 

11.1) rom, 

crz = (11.9- 21.8) rom, 

az(H) = (1.3- 3.6) mm- spatial network completed with 

levelling. 

The adjustment of the network was undertaken separately in the 

horizontal and the vertical because the vertical angles between the 

points in the network are small (the maximum is about 1°). Thus the 

correlations between the adjusted horizontal position and the vertical 

position is negligible. 

Using the method discussed in Section 6. 3, the displacement 

fields coupled with the error ellipses for horizontal components and 

error bars for vertical components at 95~ confidence level are plotted 

in Figures 7.12 to 7.14. 
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7.3.3 Results 

From the plotted displacement fields, various deformation 

models are estimated. The results are listed in Tables 7.12 to 7.15. 

It can be seen that as far as the horizontal movements are concerned, 

the scale of the EDM at epoch 2 seems different from that at epoch 1 and 

epoch 3. Thus, the estimated scale factors from epoch 79-78 and 80-79 

have opposite signs and their values are more or less close to each 

other, but still under the critical values (the result from epoch 79-78 

is very close to the critical value). This suspicion can only be 

confirmed by the field operators. Some deformation parameters are 

insignificant if they are estimated from successive pairs of epochs, but 

significant if they are estimated from the last epoch with respect to 

the first one. This may indicate that a deformation trend in time space 

exists particularly for points 3 and 4. 

Therefore, the final deformation model is accepted with points 

3 and 4 as not stable. They have a tendency to move horizontally, but 

show no significant vertical movement. As far as the vertical movements 

are concerned, point 6 shows uplift and point 1 shows subsidence. Point 

10 seems to have irregularity, in 1979-1978 it uplifts but subsides mm 

in 1980-1979. In 1979, point 10 was not connected to other points by 

geometric levelling, only by trigonometric levelling. The lower 

accuracy of trigonometric levelling may be responsible for this 

irregularity. If we compare the results in 1980 with 1978, point 10 

shows marginal significant uplift. The final estimation of the 

deformation parameters from a three-epochs simultaneous solution is 

presented in Table 7-16. 



---------------------------------------------------------------------------------------------------+ 
I I I I I 

: No. : Deformation Model : Estimated Deformation Parameters and Their : Global Test : 
I I I • • I I 
1 1 1 Stat1st1cs («=o.o5) 1 (cx=o.o'.)) 1 

~----~-------------------------~----------------------------------------------------~--------------+ 
I I I I I 
I I I I I 
I I I I I 
1 1 1 no global deformation 1 1 0. 58 < 1. 86 1 
I I I I I 
I I I I 1 

~----•-------------------------------------------------------------------------------~--------------+ I I I 

: 2: the whole area is K = -7.4 ppm (critical value at 95% confidence : 0.38 < 1.90 
I I I 

: : compressed or possible level: 7. 6 ppm) : 
: : change in the scale : 
: : of E.D.M. : 
I I I 

L----L------------------------~-----------------------------------------------------~--------------1 I I I 
I I I I 

: 3: single point : dx3 = -7.7 mm dy 3 = -15.0 mm (1.9 < 3.2) : 0.45 < 1.93 
1 : displacement : : 

: of points 3 and 4 : dx4 = -5.9 dy4 = -7.9 (0.9 < 3.2) : 
I I 1 

I I I I I 

L----L------------------------~----------------------------------------------------~---------------+ 

Table 7.12: The Estimated Deformation Model between 

1979 and 1978 -- the Adamow Mine 

Network. 

N 
0 
V1 



: N : D f t" M d 1 : Estimated Deformation Parameters and Their : Gl b 1 T t : 
1 o. 1 e orma 1on o e 1 S . . ) 1 o a es 1 
1 1 I tat1St1CS (0{=0.05 I ( ) I 
I I I I ()( := 0. 0 5 I 

~----~------------------------~-----------------------------------------------------L---------------L I I I I I 
I I I I I 

1 1 1 no global deformation 1 11 1. 53 < 1. 86 : 
I I I 
I I I I I 

~----~------------------------~-----------------------------------------------------L---------------L I I I . I I 
I I I I I 
1 2 1 relative block 1 a= 2.2 mm b = 4.2 mm (1.64 < 3.2) : 1.52 < 1.92 : 
I I d" f I 
1 1 1splacement o 1 1 11 
I I I I 
1 1 points 3, 4, 5, 6, 8 1 11 : 
I I I 
I I I I I 

~----~------------------------~-----------------------------------------------------L---------------! I I I I I 

: 3 : possible change in : k = 4.5 ppm (critical value at 95% confidence :1 1.47 < 1.90 : 
I I I 
1 1 the scale of E.D.M. 1 level: 5.8 ppm) 11 : 
I I I 
I I I I I 

~----~------------------------~-----------------------------------------------------~---------------! I I I I I 
1 1 I I I 

1 4 1 single point movement 1 dx2 = -8.0 dy2 = 3.3 (1.92 < 3.2) : 1.47 < 1.92 : 
I I • I 
I I Of p01nt 2 I I I 
I 1 I I I 
I I I I I 

+----~------------------------L-----------------------------------------------------~---------------1 I I I I I 
I 1 I I I 

: 5 : single point movement : dx4 = 22.3 dy4 = -21.1 (2.1 < 3.2) : 1.47 < 1.92 : 
I I 0 f point 4 I I I 
I I I I I 
1 1 1 I I 

------------------------------------------------------------------------------------~---------------~ 

Table 7.13: The Estimated Deformation Model between 1980 and 1979 

the Adamow Mine Network. 

N 
0 
0'1 



~----,------------------------,-----------------------------------------------------~---------------, 
I I I I I 

: N : D f t. ,1 d 1 : Estimated Deformation Parameters and Their : Gl b 1 T t : 
1 o. 1 e orma 10n 1• o e 1 1 o a es 1 

I I I s ' ' ( ) I I 
I 1 1 tatlStlCS ()(=0.05 1 (()(=O.OS) 1 

L----t------------------------t-----------------------------------------------------t---------------4 
I I I I 
I I I I 

l : no global deformation : : 2.29 > 1.86 : 
I I 
I I 

I I I I ----r------------------------r-----------------------------------------------------r---------------, 
I I 
I I 

2 single point movements : dx3 = -11.1 mm dy3 = -26.1 mm (9.2 > 3.2) ! 1.35 < 1.95 
I I 

of points 3 and 4 ! dx4 = 15.7 mm dy4 = -29.9 mm (4.6 > 3.2) ! 
I I 

----- ------------------------~-----------------------------------------------------~----------------

Table 7.14: The Estimated Deformation Model between 1980 and 1978 

the Adamow Mine Network. 

N 
0 
--.1 



o-. 
['-. 

0 
00 

2. 

3. 

4. 

single point 
movement 

single point 
movement 

single point 
movement plus 
block movement 

-31.9 (6.0) 

-31.9 (6.0) i 
I 
I 
I 
I 
I 

-31.5 (6.0): 

' I 
I I 

2.9 (4.6)i 
I I 

3.9 ( 4. 8)1 -35.0 (26.8)r 
I I I 
I I I 
I I I 
I I I 
I I I 
I I -33.1 (27.0}4.7 
I I I 

* The values in round brackets are the critical values. 

Table 7.15: The Estimated Deformation Models for Vertical Movements--

the Adamow Mine Network. 

N 
0 
co 
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Deformation Point 3 Point 4 Global 

Model dx (m) dy (mm) dx (mm) dy (mm) Test 

1979-1978 -9.9 (8.9)* -17.1 (9.5) -6.3 (13.8) -9.4 (13.3) 
0.82<1.58 

1980-1979 -0.9 (7.9) -9.0 (8.0) 22.2 (11.7) -20.7 (11.5) 

TABLE 7.16(a) 

Deformation Point 1 Point 6 Point 10 Global 

Model (mm) (mm) (mm) Test 

1979-1978 -5. 1 (2.7*) 5.5 ( 2. 2) 44. 1 (12.6) 
0.72 < 1.80 

1980-1979 -33.8 (2.6) 2.9 (2.7) -37.3 (12.7) 
------------------------------------------------------------------------
* The standard deviation. 

TABLE 7.16(b) 

Final Deformation Model--The Adamow Mine Network. 
(a) Horizontal Movement; (b) Vertical Movement. 
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CHAPTER 8 

AN OVERVIEW OF THE PHYSICAL INTERPRETATION OF 

DEFORMATION MEASUREMENTS 

The physical interpretation of deformations is one of the 

research topics of the FIG "ad hoc" Committee (Chrzanowski and Secord, 

1983) • In this chapter a general insight into the interpretation of 

deformation surveys is given, which provides a guideline for further 

study. 

8.1 Interpretation Methods and Their Interaction 

A deformation survey is to serve one, or both, of the two main 

purposes: 

(1) to give information on the geometrical status of a deformable body, 

the change in its position, shape and dimensions; 

(2) to give information on the physical status of a deformable body, 

the state of internal stresses and the load-deformation 

relationship. 
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In the first case, information on the acting forces and 

stresses (force per unit area) and on the mechanical properties of the 

body are of no interest to the interpreter or are unavailable. The 

process of transforming the deformation measurements into the geometric 

status should be called geometrical analysis (Chrzanowski et al., 

1982c). As a final result of the geometrical analysis, the relative 

movement of a single point or a group of points (a block) , strain 

parameters and their time-dependent attributes are presented. The 

generalized approach to the geometrical analysis of deformation surveys 

has been developed in the previous chapters. From the outcome of the 

geometrical analysis, one may make a qualitative interpretation of the 

causes of the deformation. 

In the second case, the process of deriving information on the 

load-deformation relation should be called physical interpretation 

(Chrzanowski et al., 1982c). Somewhat schematically, one can perform 

such interpretation by using either of the following. 

(1) A statistical method (empirical method) which analyses the 

correlations between observed deformations (e.g., displacements) 

and observed loads (external and internal causes producing the 

deformation). These correlations can be obtained by performing 

statistical analysis of the past data. Therefore this method is of 

an a posteriori nature. 

(2) A deterministic method which utilizes information on the loads, 

properties of the materials, geometry of the body and physical laws 

governing the stress-strain relationship. In contrast to the 

previous method, this one is of an a priori nature. 

The distinction between the two methods should not be taken as 
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absolutely clear cut. In fact each method includes a statistical and a 

deterministic part. The possible forms of the model sought under ( 1), 

relating the causative quantities to the response effects, are obtained 

by qualitative knowledge about the expected behaviour of the body; the 

model determined by the deterministic method may be further enhanced 

through the statistical method, for instance, calibration of the 

physical parameters of the material from the measured deformation 

quantities (Gicot, 1976). 

The deterministic method provides the expected deformation from 

the measured causative quantities. If the difference between the 

expected deformation and the measured one is small, compared with the 

various errors and uncertainties which characterize the process, then 

the body behaves as expected, and the deterministic model is justified. 

Otherwise a search for the reasons for the large discrepancies should be 

undertaken and the model should be improved. 

The statistical method establishes a prediction model. Using 

this model the forecasted deformation can be obtained from the measured 

causative quantities. A good agreement between the forecasts and the 

measurements then tells us that the deformable body behaves as in the 

past. Otherwise, as in the previous case, reasons should be found and 

the model should be refined. 

The flowchart in Figure 8.1 summarizes the interpretation 

methods and their interactions. 

8.2 Interpretation by Statistical Method 

Interpretation by statistical method always requires a suitable 
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amount of observations, both of causative quanti tes and of response 

effects. Let d be the vector of response effects. Then a functional 

relation between the "causes" and the "responses" can be established in 

the form 

d+v=Bc (8-1) 

where d may be directly observed or the outcome of the geometrical 

analysis; ~ is a vector of errors. In contrast to geometrical analysis, 

the elements of the matrix B are functions of the causative quantities. 

Different causative quantities may produce the deformations in 

different ways. Some effects can be approximated by polynomial 

functions, but others may be more adequately expressed as trigonometric 

functions, and so forth. All that is embedded in the matrix B. The 

vector c in (8-1), representing the magnitude of the effects, is to be 

estimated. 

Let us take as an example the modelling of the response of a 

power dam to the causative effects of water pressure and air 

temperature. The horizontal displacement di ( t) of a point i can be 

expressed as a function of the water elevation h(t) in the reservoir and 

of air temperature T(t- T), with T being the response delay of the dam. 

Such a relation may have the form 

(8-2) 

However, when the information on the air temperature is not available, 

the term b1T(t - T) in (8-2) can be replaced by a trigonometric 

function. Since the trend of the temperature is typically periodical 

over a year, the relation (8-2) can be rewritten as 

di(t) = a1h(t)+a2h2(t)+a3h3(t)+b1coswt+b2sinwt (8-2') 

where w corresponds to the annual frequency; the coefficients ai, bi are 
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unknown parameters to be estimated from the observations. 

The main interest in the previous chapters was focussed on the 

geometrical analysis, but the procedures and methods of statistical 

testing are applicable to this case. The three basic steps are usually 

followed, that is, preliminary identification of the response model, 

estimation of unknown parameters, and diagnostic checking of the model. 

This method of interpretation possesses some undeniable merits: 

(1) knowledge of the mechanical properties of a deformable body is not 

required; 

(2) good results from the point of view of prediction are usually 

obtained (ENEL, 1980). 

But it also contains some undesirable features: 

( 1) A comparatively large amount of data about both causative and 

response quantities is needed in order to obtain a reliable model; 

(2) less interest exists as far as research is concerned, for the 

deformable body in this case is acting only as a "black box". 

8.3 Interpretation by Deterministic Method 

In order to expand our knowledge about the behaviour of the 

deformable body, deterministic modelling of the load-deformation 

relation should be performed if possible. 

As is well known, any real material will be deformed if an 

external force is applied to it. The external forces may be of two 

kinds (Timoshenko and Goodier, 1970): surface forces, i.e., forces 

distributed over the surface of the body, such as the pressure of one 

body on another; and body forces which are distributed over the volume 
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of the body, such as gravitational forces, thermal stress or, in the 

case of a body in motion, inertial forces. Under the action of external 

forces, internal forces are produced between the parts of the body. The 

internal forces, when divided by unit areas of the surface on which they 

act, define the state of stress. 

As discussed in Chapter 2, the deformation is fully described 

if six components of the strain tensor are known at every point of the 

deformable body. The six components consist of three components of 

normal strain, ex, EY, and Ez' which describe change in the dimensions 

(elongations and compressions) at the point (x, y, z) along the x, y and 

z axes of the coordinate system, and three components of the shearing 

strain and cyz, which describe change in the shape of the 

element (angular changes) in the corresponding planes of the coordinate 

system. 

Similarly, the state of stress at any point of the medium is 

completely characterized by the specification of six components of 

stress tensor: three components of normal stress, ox, a and a • and y z. 

three components of shearing stress a , a and a xy xz yz 

The relation between the strain tensor and stress tensor is 

governed by the generalized Hooke 1 s law. For a homogeneous isotropic 

medium, the generalized Hooke's law can be written as (Sokolnikoff, 

1956): 

(i,j = x, y, z) (8-3) 

where 6ij is the Kronecker symbol; A, v are called Lame constants; and 

f.:E +£ +E 
X y Z 

(8-4) 

For instance, oxy = 2vExy' ox= A(Ex + Ey + Ez) + 2VEx· 

The elastic properties of materials are often described by 
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Young's modulus E and the Poisson ratio v. Young's modulus represents 

the ratio of the tensile stress, say ax, to the extension Ex' produced 

by the stress ax i.e., E = a/Ex· The Poisson ratio "denotes 

the ratio of the contraction, say in the y direction, of the linear 

elements perpendicular to the axis of the applied stress ax to the 

longitudinal extension Ex, i.e., v = E IE • y X 
They are related to the 

Lame constants in the following manner (Rockey et al., 1975): 

(1) for a plane strain problem 

A = E • \II ( 1 + v )( 1 - 2 v) (8-Sa) 

l1 = El2 ( 1 + v) (8-5b) 

(2) for a plane stress problem 

A = vEl ( 1 (8-6a) 

l1 = El2( 1 + v) (8-6b) 

In order to determine the relation between external forces, 

state of stress, and displacements, the solution must satisfy the three 

basic conditions (Timoshenko and Goodier, 1970): 

(1) the equilibrium of forces (external and internal), 

(2) the compatibility of displacements, and 

(3) the law of material behaviour (the stress-strain relation). 

The compatibility condition requires that the deformed structure fits 

together, i.e., that deformations of its elements are compatible. The 

equilibrium condition and stress-strain relations are ensured through 

the following differential equations (Sokolnikoff, 1956): 

2 iu 2 2 a2v 2 
<a u !J!) (A + )(a u ~) - f l1- + -+ + jJ -- + --+ = 2 ai ai ai X 

ax ax ay ax az 

2 2 2 
a2u a2v 2 a v a v .!.~) (A + ~) (8-7) u<-2 + -2 + + uH--- + 2+ = - f 2 y 

ax ay az axay ay ayaz 
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- f z 

with u, v, and w being the components of displacement, and fx, fy and fz 

being the components of body force. 

Expression (8-7) can be rewritten more compactly as 

L • d = - f (8-7 I) 

where E_T = (u, v, w), fT = (fx, fy, fz) and L is the corresponding 

differential operator. Summarily, the differential operator is obtained 

through the following three relations: 

(1) The strain-displacement relation, which is briefly written as (see 

Chapter 2) 

e: = L1 • d (8-8) 

with 

a 0 0 a 0 a 
ax ay az 

LT 0 
a 

0 
a a 

0 = ax ay 1 ay 

0 0 
a 0 a a 
az ay ax 

where e: is the vector of the strain components. 

(2) The stress-strain relation (8-3), which is rewritten as 

a = L2 ~ (8-3') 

with 

A+2~ A A 0 0 0 

A A+2~ >.. 0 0 0 

A A >-+2~ 0 0 0 
L2 = 0 0 0 2}1 0 0 

0 0 0 0 2}1 0 

0 0 0 0 0 2}1 
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(3) The equilibrium condition, which has the form (Sokolnikoff, 1956) 

-i. = L3 • a 

T 
with L3 = L1• 

Therefore, equation (8-7') is equivalent to 

T -i. = L3 L2 L1 ~ = L1 L2 L1 ~ 

and 

(8-9) 

(8-7") 

In principle, when the boundary conditions, either in the form 

of displacements or in the form of the' acting forces, are given and the 

body forces are prescribed, the differential equations ( 8-7) are 

completely solved. However, direct solutions to (8-7) may be difficult 

if boundary conditions and the geometric shape of the body are 

complicated. The finite element method provides a powerful numerical 

method to solve the boundary value problems. The finite element 

technique gives an exact solution to the problem which approximates the 

differential equations (8-7). 

The basic concept of the finite element method is that the 

continuum of the deformable body is replaced by an assemblage of 

individual small elements of finite dimensions which are connected 

together only at the nodal points of the elements. The elements may be 

of any shape but usually triangular or rectangular elements are chosen 

for two-dimensional analysis and rectangular or trapezoidal "bricks" are 

used in the three-dimensional solutions. 

For example, in the two-dimensional analysis with triangular 

elements, the displacement function may be chosen as 
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v = a4 + a5x + a6y (8-10) 

Since both these displacements are linear in x and y, the displacement 

continuity between the adjoining elements for any nodal displacement is 

ensured. Thus the finite element model of a deformable body involves a 

piecewise polynomial interpolation. The nodal displacements define 

several displacement fields that are 

vector of displacements for the three 

u2, v2, u3' v3) 

expression (8-10) 

d = M a -e e-

and T 
(a, ' ••• ' a = 

can be written as 

laid side by side. Let d be a -e 

nodal points, i.e., dT = 
-e ( u1 ' v 1 ' 

a6). Then, for an element, the 

(8-11) 

with M being a 6 by 6 matrix, easily obtained from (8-10). Applying e 

the relation (8-8) to (8-10), we obtain the strain vector 

T 
E = ( E , E , e: ) = ( a2 , a6 , a 3 + a5 ) - x y xy 

or, in shorthand matrix notation, 

e: = N a (8-12) 

Combining (8-11) and (8-12), the strain-displacement relation may be 

expressed briefly in the form: 

e: = N M- 1 d L- d = 1 e -e -e (8-13) 

Considering (8-3'), the internal stresses are related to nodal 

displacements by 

(8-14) 

Furthermore, the internal stresses are replaced with statically 

equivalent nodal forces f , resulting in the relationship between the -e 

nodal forces and displacements (Rockey et al., 1975): 

.f.e = [jL~ L 2 L1 d(vol)] E.e 
= ke E.e (8-15) 

where ke is called stiffness matrix of the element. Comparing (8-15) 
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with (8-7'), one can recognize that the key step in the finite element 

method is the approximation of the differential operator L by a linear 

algebraic operator. This can be accomplished by linearizing L1. 

Linearizing L1 is done by obtaining a displacement function such that 

the deformation of each element is required to be compatible with the 

deformation of every other element. 

Once the stiffness matrices for all elements of the deformable 

body have been calculated, an overall structural stiffness matrix K is 

composed by a superposition of the stiffness matrices for all the 

elements, and the total equilibrium equation for the whole body is 

written 

(8-16) 

where f is a vector of applied nodal loads in the whole body, and a is a 

vector of nodal displacements. The unknown displacements or unknown 

forces can be solved from (8-16). 

Nowadays, since programs for the finite element computations 

are available, the interpretation of deformations by the deterministic 

method becomes realistic. If there exist several causative quantities, 

the deformable body may be treated as a linear system (ENEL, 1980). The 

effect of each causative quantity is calculated separately and then the 

total effect is obtained by a superposition of each effect. 

At the end of this section it should be mentioned that only a 

brief introduction to the deterministic modelling and the finite element 

method is given so that surveying scientists and engineers might gain 

some appreciation of its utility and have an overview of the 

interpretation process. The deterministic modelling may find useful 

applications in deformation surveys, such as prediction of the extent of 
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deformation for the zero-order design of a monitoring network, 

prediction of the maximum deformations for selecting the location of the 

object points of a monitoring network, and for designing the types and 

required accuracy of the deformation surveys, and physical 

interpretation of deformation surveys. A pilot study of its 

applications in surveying engineering has been done by Chrzanowski et 

al. ( 1983). 

8.4 Interpretation by Combination of the 
Deterministic and Statistical Methods 

Due to many uncertainties in the deterministic model of 

deformations, the theoretically calculated displacements! (or any other 

deformation quantities) will generally depart from the observed values d 

by !· i.e., 

f.=6-d (8-17) 

The discrepancies may be due to: 

imperfect knowledge of the material properties, for example, errors 

in the elasticity constants; 

wrong modelling of the behaviour (elastic instead of plastic or 

creep neglected, etc.) of the material; 

errors in the thermal parameters of the material; 

approximation in calculations; 

measuring errors in ~; 

measuring errors in sampling and incomplete sampling of loading 

(causative) effects. 

The investigation of the discrepancies is useful in gaining a better 

knowledge of the behaviour of the deformable body. Let Ef.' Ed and E6 be 
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their covariance matrices, then 

I:ll = I:d + I:o (8-18) 

In order to test whether the discrepancies ! are of a systematic nature, 

we have a null hypothesis H : ll = 0 against an alternative hypothesis 
0 

HA: ! i 0. The test statistic is 

T -1 
T = ll. I:ll. ! (8-19) 

with a critical value: x2(a; df) where df is the rank of t 6 (degrees of 

freedom). If T > x2 Ca; df) at the (1 - a)% level of confidence, then H 
0 

is rejected and a further search for an explanation of the discrepancies 

is required. At this stage the deterministic and statistical methods 

are combined for the interpretation of the deformation measurements. 

One way of doing this is to assume that the systematic discrepancies are 

caused, for example, only by the improperly chosen material parameters, 

say E and u. In this case, new ("calibrated") values of the parameters 

can be estimated by applying the principle of least-squares: 

min 
E,u 

(8-20) 

However, this method for calibration of the constants of the material 

properties may lead to physically unacceptable values of the calibrated 

quanti ties if the real reason for the discrepancy is of a different 

source. In such a case, one has to try another approach to the 

interpretation by using, for example, the statistical analysis of the 

discrepancies as discussed above in Section 8.2 in order to find the 

reason and then enhance the deterministic model. 

Surveying engineers and scientists have not been very involved 

in the deformation interpretation which has usually been done by other 

specialists. This situation should be changed. As pointed out in 
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Chapter 1, surveyors have a good knowledge of data acquisition, 

therefore their involvement would contribute to the interpretation of 

deformation surveys. In addition, by participating in the 

interpretation of deformation surveys, surveyors would gain a good 

insight into deformation measurements, which would contribute to the 

optimal design of monitoring schemes. 



CHAPTER 9 

FINAL REMARKS, CONCLUSIONS AND RECOMMENDATIONS 

Research carried out in the developnent of the "Fredericton 

Approach" to deformation analysis has. resulted in a series of 

conclusions. In light of these conclusions and in looking ahead at 

further developments, some recommendations are coupled with the 

corresponding conclusions. 

1. Deformation surveys are one of the most important 

activities in surveying, especially in engineering surveying. Their 

results are directly relevant to the safety of human life and 

engineering structures. Deformation surveys can provide not only the 

geometrical status of the deformed object, but also information on its 

response to loading stresses. This provides a better understanding of 

the mechanics of deformations and the checking various theoretical 

hypotheses on a behaviour of the.deformable body. 

The design of a monitoring scheme, the field operation 

campaign, and the analysis of the acquired data have to be performed 

with special care because deformation surveys usually require a higher 

225 
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accuracy than any other type of survey. 

A look at the research activities in the surveying community 

reveals that optimization and design of monitoring schemes with geodetic 

and non-geodetic observables require further research, especially in 

engineering surveys where the design problem is complicated. A 

publication by the "Fredericton Group" (Chen et al., 1983) can serve as 

a starting point i? this respect. 

2. A thorough analysis of deformation surveys should be given 

a high priority. The reasons are that 

(a) the data acquisition is costly, and therefore, the processing of 

these data should be performed very carefully; 

(b) the data may contain important scientific findings and such 

findings cannot be revealed by a superficial inspection. 

Different approaches to deformation analysis have been 

developed. A comparison of them is profitable and may lead to a 

development of general guidelines. Here the research methodology of the 

FIG Commission 6 "ad hoc" committee should be followed--the comparison 

of different approaches is based not only on theory, but also on real 

examples. It is very true that the numerical examples which have 

different characteristics are the best witnesses in testing the 

efficiencies and limitations of each approach. 

3. Processing of deformation surveys can be distinguished into 

geometrical analysis and physical interpretation. Providing the 

geometrical status of a deformed body is the final goal of geometrical 

analysis. but looking deeply into the physical behaviour of the body, 

how the body responses to the applied stresses. is in the realm of 

physical interpretation. Until recently. the involvement of surveying 
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scientists and engineers in the analysis of deformation surveys has been 

limited mainly to the former. Their participation should be emphasized 

because of two significant aspects: 

(a) contributing of their knowledge on the data acquisition and 

statistical testing to the interpretation process; 

(b) allowing them to obtain a better understanding of the purpose of 

deformation surveys, which enables them to design better monitoring 

schemes. 

The "Fredericton Group" should continue its activity in 

physical interpretation. Chapter 8 gives general guidelines in this 

aspect. Other references can be made to Fanelli et al. (1975), Fanelli 

(1979), ENEL (1980) and Chrzanowski et al. (1982c and 1983). 

4. Deformation analysis involves two types of errors: the 

errors of observations, and the errors in deformation models. In order 

to avoid a misinterpretation of systematic errors or outliers in the 

observations as deformation phenomena, screening of the observations for 

outliers or systematic errors should be done prior to the estimation of 

the deformation models. Therefore, if possible, it is worth separating 

the whole process of deformation analysis into two steps: adjustment of 

the geodetic monitoring network and estimation of deformation 

parameters. 

Direct estimation of deformation parameters from the raw 

observations is no problem mathematically, but it makes it more 

difficult to distinguish between the errors in the deformation model and 

the errors of the observations. This approach is mainly adopted in the 

study of tectonic movements. One reason is that some monitoring schemes 

do not allow for the performance of a network adjustment. Another 
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reason is the attempt to avoid the datw defect problem in a monitoring 

network, which is reflected in the recent comments given in Reilly 

(1982): 

.•• the determination of the local deformation of the 
earth's crust from repeated geodetic measurements can be 
approached in a nwber of ways. One is to compare the 
coordinates resulting from the separate adjustments of 
surveys made at different epochs. This introduces a datum 
problem and involves some difficulty in assessing the 
precision of the derived strain tensor. 

Of course, his concern is not pertinent and is overcome by the 

generalized approach given in this thesis. 

The coordinates are the quantities with which geodesists and 

surveyors would like to work, because of such appealing benefits as: 

the preliminary identification of deformation models is more intuitive 

when using adjusted coordinates than when using raw observations; the 

formulation of deformation models is very transparent and easily 

schemati zed, The datum defect problem should be solved rather than 

avoided. 

5. In the practice of deformation analysis, there exist some 

anbigui ties which are directly related to the datun defect problem. 

There are some who worry about the dependency of the derived deformation 

parameters on the choice of adjustment techniques; but others overlook 

the datw defect problem, and this produces biased results in the 

analysis. 

A solution to the datum defect problem is the definition of a 

set of datum equations, say DT_!=O (Chapter 4). The solution vector x 
T.-. T 

and its cofactor matrix q ... will satisfy the relations, D x=O and D Q.-.:0, 
X - X 

The reason for causing the above ambiguities comes from the negligence 

of these functional relations. A numerical demonstration and 
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theoretical analysis in Chapter 6 have clarified these problems. 

The datum defect problem can be approached in different ways: 

use of the generalized inverse of the coefficient matrix N of the normal 

equation, similarity transformation from one solution to another, and 

the projection method in a parameter space. The choice of g-inverses 

implies the definition of a special datun. One of the g-inverses, which 

- T -1 T T -1 T 
corresponds to the datum equation, is ND = (N+DD ) - H(H DD H) H with 

H being a matrix such that NH=O (Chapter 4). The projection method 

projects any solution in the parameter space to the subspace defined by 

the datum equation. This is accomplished through the projection 

operator ?01. = (I - H(DTH)- 1DT). The results are equivalent to the 

S-transformation and the generalized inverse. 

6. A deformation monitoring network usually includes different 

types of observables. Evaluation of their variances and covariances is 

indispensable step prior to the final adjustment of a network. 

Hypothetical establishment of them should be avoided because it 

inevitably biases the results. 

The Minimum Norm Quadratic Unbiased Estimation principle 

(MINQUE) provides a general tool. This approach gives the conventional 

estimators for the simple cases and offers a procedure of estimation for 

more complicated ones. The principle of MINQUE seems to be as 

fundanental in nature as the least-squares method of estimation, where 

no assumptions on the distribution of the variables is needed. When the 

variables are postulated to follow a normal distribution, the approach 

provides results with minimum variance of a quadratic form. 

The numerical examples presented in Chapters 3 and 7 show that 

the approach works well. In geodetic applications, the estimation 
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process converges r~pidly, usually two to three iterations are enough 

because the approximate values of variance components are always 

available from the type of instruments used and field operation 

procedures. 

Concerning this topic, the author suggests the following. 

(1) When a program for network adjustment is to be written, the program 

for estimation of variance components of the observations should be 

included as a subroutine. 

(2) Statistical tests on the estimated variance-covariance components 

should be further evolved. 

(3) Estimation of the covariances or correlations between the 

observations in geodetic applications should be further studied. 

7. An important aspect in deformation analysis is statistical 

testing. All the hypothesis tests used in the different phases of 

deformation analysis are treated as a special case of a general 

hypothesis test developed in Chapter 5 which is valid for the general 

Gauss-Markoff Model (GGM). Derivation of a statistic for the GGM is 

facilitated using the theory of vector spaces. Three methods to 

compute the quanti ties involved in the statistic for examining a null 

hypothesis are distinguished and tabulated. Thus the statistical tests 

are easily understood and can be readily applied to various problems. 

A practical problem in hypothesis testing comes from the 

selection of the significance level a. Up to now, there is no unique 

way to do that. A fixed value a for different tests is suggested. 

However, a separate research topic should be set for this problem. The 

direction may be from statistical decision theory (e.g., Clerici, et al. 

(1980)) by setting a more objective criterion. 
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8. Deformation parameters in the geometrical sense· include 

single point movements, relative block movements, strain parameters, 

rotation components and their time derivatives. Determination of these 

parameters from the observables can be formulated in two ways: through 

the coordinates of the points (the "coordinate approach"); through the 

observations (the "observation approach"). 

The "coordinate approach" permits the utilization of all 

geodetic observations in the computation of deformation parameters even 

if different observables are measured in each of the repeated surveys 

and the network geometry is changed between the epochs. However, the 

"coordinate approach" requires that the coordinates in all the epochs 

should be referred to the same coordinate system and involves the 

inversion of a singular matrix caused by datum defects and configuration 

defects. The "observation approach" may be more convenient if the 

observations are scattered in space or in time, but requires that 

observables are the same in both epochs. In addition, the "observation 

approach" will be free from the systematic errors which are common in 

all epochs. If the same observables and geometry are maintained in both 

epochs, the two approaches produce identical results only when either 

( 1) the covariance matrices of the observations in both epochs are 

equal or proportional; or 

(2) no redundancy in the network is available (no adjustment is 

possible) • 

The "generalized approach" is elaborated so that it can combine two 

types of approaches in a simultaneous solution. 

9. Compared with other methods, the "generalized approach" has 

the following characteristics: 
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(a) Any observables can enter into the generalized approach. They may 

be the adjusted coordinates, individual geodetic observations or 

any physical-mechanical measurements of tilts, strains, pendula 

deviations, alignment observations, etc. In order to realize this 

point, two key measures are undertaken -- formulation of the weight 

matrix, and establishnent of the functional relations between 

observables and deformation parameters. 

The functional relations between different types of observables 

and deformation parameters are developed in Chapter 2, which is an 

extension of the work of Reilly (1981; 1982) and provides a general 

mathematical tool. 

Due to the datum defects and configuration defects in a 

monitoring network, the covariance matrix of the adjusted 

coordinates is singular and varies from one solution to another. 

Thus, the conventional weight matrix, the inverse of the covariance 

matrix, does not exist. However, the "weight matrix" can be 

defined as one of the g-inverses of the covariance matrix such that 

it is invariant of any solution. Two methods to obtain such a 

matrix are discussed in Section 6.3.1. One is to use the 

coefficient matrix of the normal equations after certain irrelevant 

parameters are eliminated; another is to compute it from the 

covariance matrix using (6-21) and (6-22). Since the weight matrix 

so defined is invariant, the "generalized approach" provides the 

deformation parameters independent of any minimum constraints used 

in the numerical processing of each epoch of observations. 

(b) The "generalized approach" is applicable to any type of deformation 

analysis. In this approach, the whole area covered by the 
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deformation survey is treated as a noncontinuous deformable body 

consisting of separate continuous deformable blocks. Thus the 

blocks may undergo relative rigid body displacements and rotations, 

and each block may change its shape and dimensions. In the case of 

single point movement, the given point is treated as a separate 

block being displayed as a rigid body. Therefore, the approach is 

valid for the analysis of a reference network and for the analysis 

of rigid body movements between blocks as well as for the 

determination of strain components in a relative network. 

(c) The 11 generalized approac h11 provides a systematic step-by-step 

analysis. Rather than the trial and error method, this approach is 

composed of three basic processes: preliminary identification of 

the deformation models, estimation of the deformation parameters, 

and diagnostic checking of the models. Although the three steps 

necessarily overlap, the strategies for each step are considered. 

An iterative weighted projection method is proposed to create 

an appropriate displacement field for preliminary identification of 

deformation models in space. The numerical examples show that the 

projection method is more robust in the definition of a datum, and 

therefore makes the selection of the deformation model easier. 

k 
In order to compute a g-inverse of I: Pi (Section 6.4.1), a 

1 

method is constructed which transfers the inversion of a singular 

matrix to the inversion of an non-singular one by introducing some 

pseudo-observations. The numerical examples indicate that the 

method is simple and rigorous. 

Based on a firm theoretical foundation, hypothesis tests are 



234 

formulated to test the global appropriateness as well as the local 

adequacy of the deformation model. 

10. Application of the "generalized approach" to the analysis 

of five numerical examples shows that the method works well. Further 

work is to continue and to expand the application of the approach to 

other numerical examples set by the FIG Commission 6 "ad hoc11 committee. 
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APPENDIX I 

NOMENCLATURE 

I.1. General Conventions 

1. Vee tors are lowercase letters under scored, e.g., ~. 

2. Matrices are uppercase letters, e.g., A, or letters in 

parentheses, e.g., (aij); or diag {a 1, a 2 ... } in the case of 

diagonal matrix with diagonal elements being a 1 , a 2 , ..• , or 

diag {A 1, A2 , •.. } in the case of block diagonal matrix with 

A. being a submatrix. 
1 

3. Terminologies are consistent with 

i) Wells and Krakiwsky (1971) for the least squares 

adjustment; 

ii) Rao (1973) for statistics; 

iii) Chrzanowski (1981a) and Heck (1982) for deformation 

analysis. 

I.2. Symbol Definition 

c: 

E 

n 

u 
:= 

inclusion or containment; is a subset of 

no inclusion, or is not a subset of 

is an element of 

intersection 

union 

equal by definition 
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® Kronecker product 

I identity matrix 

{~ 
i = j 

0 ij Kronecker symbol, o .. = lJ 
i ' j 

I.3. Notations and Operations on Matrices A and B 

S(A) 

r{ A} 

rd{A} 

Tr{A} 

A E B 

I. 4. Notations and 

En 

d{<l>} 

<I>..L.. 

<I>elJ' 

transpose of A 

determinent of a square matrix A 

a matrix of maximum rank such that ATA.J.=O 

any generalized inverse of A ( g-inverse) such 

pseudo-inverse or Hoore-Penrose inverse such 

linear vector space generated by the columns of 

A 

rank of A 

rank defect of A 

trace of A, equal to L a .. 
i 11 

parallel sum of A and B, defined by A( A+B) -B 

projection operator onto S(A) along (parallel 

to) S(B) 

Operations on Spaces 

Euclidean space with dimension n 

d imen sian of space <I> 

orthogonal complement of space <I> 

direct sum of spaces <I> and lJ', such that 
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1.5. Notations and Operations on Vectors and Random Variables 

II~ II 
<~.x> 

E{~} 

D{SI,} 

V{E} 

Pr{~>~} a 

the norm of, or the length of x 

inner product of x and 'i... 

Sl, is distributed as 

expected value of~ 

dispersion matrix of Sl, 

variance of randan variable E 

probability when ~ > ~ a 



APPENDIX II 

This appendix contains the mathematical proof of three 

statements in Chapter 3. 

II. 1. Minimizing the Euclidean Norm lluTBU- L1ll is Equivalent to 

Minimizing Tr{BTBT} • 

Proof. 

Euclidean norm) 

Therefore, 

Thus 

= Tr{BTBT}- Tr{Al:l.} ("."T = UUT) 

= min Tr{ BTBT} 
B 
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II.2. The MINQUE is Coincident with Helmert Type Estimation of Variance 

Components, but Different from that of Covariance Components. 

Let us introduce the variance covariance component estimation 

of Helmert type. Note that the notations used here are consistent with 

those in Chapter 3 in order to compare with the MINQUE. 

The variance covariance components of Helmert type are 

estimated from (Grafarend, et al., 1980): 

" e = s-1.Sl (II-1) 

T ( II-2a) with s .. = Tr{Q E. QT.) 
1J 1 J 

"TE "' (II-2b) qi = v . v 1-

Ei is obtained from the block decomposition of the inverse T-1 
' 

which 

. -1 
corresponds to Ti' 1.e., T = tEi. For ex anpl e, 

2 
~ = (cr1 Q 11 

q2Q21 

o; 2° 12) - 2 ( Q 11 
- o-, 

o;o22 o 

+ 

3 
= _LQ.T. 

I 1 1 

and 
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3 
= Z':_E. 

I 1 

If only variance components are to be estimated, i.e., Tis 

-1 -1 
block diagonal, then Ei = T TiT and 

S .. = Tr{QTE.QT.} = Tr{QTT-1T.T-1QT.} = Tr{RT1.RTJ.} 
1J 1 J 1 J 

( II-3a) 

1\T " AT -1 -1" q. = v E.v = v T T.T v 1 - 1- - 1 -
( II-3b) 

Therefore, the variance components calculated from formula that from 

(II-1) is identical with (3-8). However, if variance-covariance 

components are to be estimated, i.e., Tis not block diagonal, then 

-1 -1 
E. iT T.T and equalities (II-3a) and (II-3b) do not hold. Hence 

1 1 

formula (II-1) is different from (3-8). This establishes the statement. 

II. 3. is unbiased when S in (3-8) is Regular. 

Since ..r -1 -1" .r q. = v T T.T v = ~RT.Ri, its expectation value is 
1 - 1 - - 1-

= Tr{RT.RE{UT}} 
1 -

= Tr{RT.R(AxxTAT+E)} 
1 -

K 
= Tr{RT.R L9.T.} 1 I 1 1 



Thus 

E{e} = E{S-1_g} = i 

The proof is finished. 
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APPENDIX III 

DISLOCATION MODELS 

Dislocation models are used to relate surface displacements to 

the displacements on a fault. In dislocation theory, the earth is 

viewed as a perfectly elastic, isotropic, homogeneous half-space. 

Faults are represented as rectangles embedded in the half-space, and 

ground deformation corresponds to the elastic mediun' s response to slip 

on the rectangular surfaces (Snay, et al., 1982). 

There are three elementary dislocation models, which represent 

rigid block motion, the strike slip displacements for a locked fault and 

for a surface fault (Savage, et al., 1973; Turcotte, et al., 1974; 

Brunner, et al., 1980). In a local Carte sian coordinate system, where 

the y-axis is perpendicular to the fault line and the x-axis is 

coincident with the fault line (see Fig III.1), the displacement u. at a 
1 

point (yi) can be expressed as 

ui = % sign ( y i) 

for rigid body motion; 

u. = (E_) tan-1 (y./D) 
1 1f 1 

for a locked fault and 

(III....;1) 

(III-2) 

(III-3) 

for a surface fault, where b is the total relative displacement of the 

two sides of the fault and D is the depth of the locked fault or of the 
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surface fault. The displacement and strain patterns for these models 

are plotted in Fig. III. 1. 
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(b) 

i- ll 

- txy 

y 

y 

y 

(c) 

rig. III.l 

Dislocation Models (a) Rigid Body Motion; (b) Locked Fault; (c) Surface Fault. 



APPENDIX IV 

This appendix contains two examples which are relevant to the 

statements in Section 6.4. 

IV.1. An Example to Demonstrate the Proposed Method for the Computation 

K )-of (I:P. in (6-11). 
----1-1- ----~--~-

Let Fig. IV .1 represents a two-epoch monitoring scheme, where 

only the distances were measured. Of course, in this example the use of 

the "observation approach" is much simpler, but for the illustration of 

the proposed method the "coordinate approach" is used. Fran the 

discussion made in 6.4.1, the coefficient matrix Ni of the normal 

equation is taken as the weight matrix Pi. Obviously, N1 for epoch 1 

(Fig. IV.1a) has three datllll defects and two configuration defects; N2 

for epoch 2 (Fig. IV.2b) has three datum defects and three configuration 

defects. Combining the two epoch observations leads to Fig. IV.1c. 

Fig. IV. 1c has three datum defects and one con figuration defect, so does 

In order to transfer the inversion of singular matrix CN 1 + N2 ) 

to the inversion of a non-singular matrix, four pseudo-observations are 

added. They are: coordinates of point 1, azimuth from point 1 to point 

2, distance from point 3 to point 5. These observation equations are as 
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follows: 

Observation equations for the coordinates: 

+ V X = dx 1 X 

+ v = dy 1 y y 

with weights being 

(~ 0 ) 

Observation equation for the distance: 

S+vs = 

with weight of 1. 

Observation equation for the azimuth: 

with weight being S~_2 • Here the selection of the weight does not make 

much difference, just fran nunerical consideration (compatible with the 

other ob ser v ati on s) • Then the coefficient matrix from these 

observations, denoted by N, is formulated in the conventional way and 

added to CN 1 + N2), resulting in non-singular matrix N = (N 1 + N2 + N). 

The inverse of N is a g-inverse of (N 1 + N2). 

IV.2. A Numerical Example for the Comparison of the Displacement 

Approach" and the "Raw Observation Approach". 

Fig. IV.2 is a monitoring trilateration network. In epoch 1, 

all the distances were measured with the same accuracy, but in epoch 2 

the two diagonal distances were measured with accuracy one time higher 
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than the others. Using two approaches, the cofactor matrix of the 

estimated strain parameters (Ex, Ey, Exy) of a homogenous deformation 

model is computed as follows. 

Configuration matrix A and the matrix of deformation model B 

are: 

0 -1 0 

-1 0 

A 0 0 0 
= 

0 0 0 

I 
0 0 12. 
...L I -.rz -{2 0 

BT , (: 

0 

0 0 

0 0 

1) The "observation approach": 

{ 
0 

BTAT 0 

0 0 

p1 = diag { 1 • 1 • 1 • 

p2 = diag 1 • 1 • 1 • 

P 1 ~P2 = diag {0.5, 0.5, 0.5, 

0 

0 

-1 

0 

I 
-o/2 

0 

0 

0 

0 

0 

1 • 

1 • 

0.5, 

0.8 

1.8 

0 

0 

0 

0 

0 

I 

-12. 

0 

' 12. 
I 

12: 
2. 

-12 

1 • 

4. 

0.8. 

0 0 +1 

0 0 0 

0 0 

0 -1 0 

I I 
0 -o/2. {2 

I 

12 0 0 

0 0 0 

) 0 

0 

I 

{2. 

) I 

r/2. 
2 

.fi. 

4 

0.8} 

CIV-1) 
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2) The "coordinate approach": 

N1 = A TA N2 = ATP A 
2 

( 1. 93 
0.93 0.0 

) -1 T - ( IV-2) Qe = B N1 CN 1+N2 ) N2B = 0. 93 1. 93 0.0 

0.0 0.0 3.20 

Comparing (IV-1) and (IV-2), one can see that the "displacement 

approach" and the "raw observation approach" are not identical when the 

conditions in Section 6.4.2 are not fulfilled. The discrepancy of the 

obtained results using the two approaches depends on the strength of a 

network. 
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