OCEAN TIDE LOADING, BODY TIDE AND POLAR MOTION EFFECTS ON VERY LONG BASELINE INTERFEROMETRY

SPIROS D. PAGIATAKIS

December 1982

PREFACE

In order to make our extensive series of technical reports more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text.

OCEAN TIDE LOADING; BODY TIDE AND POLAR MOTION EFFECTS ON VERY LONG BASELINE INTERFEROMETRY

SPIROS D. PAGIATAKIS

PREFACE

This report is an unaltered printing of the author's M.Sc.E. thesis, entitled "Ocean Tide Loading, Body Tide and Polar Motion effects on Very Long Baseline Interferometry", submitted to this Department in December, 1982.

The principle thesis advisor for this research was Dr. Petr Vaníłek. Details of financial support and other assistance rendered are given in the acknowledgements.

ABSTRACT

Response functions for radial and horizontal displacements, gravity perturbations and tilt due to ocean tide loading were derived, using Green's functions computed by Farrell for the Gutenberg-Bullen A earth model. The general procedure of convolving response functions with an ocean tide model was used in this study. The ocean tide model used was that developed by Schwiderski, using the six leading constituents of the tidal spectrum.

The derived response functions for gravity perturbations were tested against existing determinations of the effect from actual data, at eight stations covering the whole earth. This comparison yielded a mean of the absolute differences between the observed gravity perturbations and those obtained in this study of 0.32 $\mu G a l$ with a root-mean-square scatter of 0.19 uGal.

A body tide model was also developed. The ephemerides of the moon and the sun were based on approximate formulae. Tests performed on the above approximate formulae indicated that the right ascension and declination of the moon and the sun can be obtained with an accuracy of the order of one minute of arc with respect to the values obtained in the astronomical ephemerides. This uncertainty affects the evaluation of
the radial displacement of the terrain by less than 1 cm.

The mathematical models for terrain deformations due to body tide and ocean loading as well as an interpolation procedure for polar motion were added to the Canadian VLBI software package. VLBI data pertaining to the observing period May 1977, obtained by a 3-station VLBI array were used to test the above models. Due to the large standard errors of these data, there is little that can be concluded from the analysis at this time. There is an improvement in the distribution of the delayrate residuals. Their root-mean-square scatter decreases by 9.2×10^{-5} picoseconds/second while the root-mean-square scatter of the group-delay residuals increases by 3 picoseconds. Co-range and co-tidal charts for north America were alsc produced, showing the radial and the horizontal displacements of the terrain due to load for the six leading tidal constituents.
Page
Abstract ii
List of Tables vi
List of Figures vii
Acknowledgements ix
Chapter I INTRODUCTION 1
1.1 General Background and Outline of the Present Study 1
1.2 Green's Functions and Load Deformation Coefficients 4
1.3 General Context and Contributions of this Study 5
Chapter II LOAD EFEECTS DUE TO OCEAN TIDE 8
2.1 General Considerations 8
2.2 Load Deformation Coefficients 10
2.3 Simplifying Assumptions 15
2.4 Loading Potential on a Rigid Earth. 16
Chapter III LOAD EFFECMS ON AN ELASTIC EARTH 20
3.1 Radial Displacemert 20
3.2 Horizortal Displacement 22
3.3 Gravity Perturbation 26
3.4 Complications with the Gravimetric Factor 28
3.5 Loads of Degree 0 and 31
Chapter IV BODY TIDE AND POLAR MOMION 33
4.1 Radial Displacement 33
4.2 North-South Displacement. 36
4.3 East-West Displacement 37
4.4 Ephemerides of the Moon and the Sun 37
4.5 Hour Angles of the Moor and the Sun 41
4.6 Polar Motion 42
Chapter V Computaitonal resulis 46
5.1 Gravity Perturbations due to Body Tide and Ocean Loading 46
5.2 Merrain Deformations and VLBI 50
5.3 The Canadian VLBI Array 64
Chapter VI CONCLUSIONS AND RECOMMENDATIONS 73
Appendix A CO-RANGE AND CO-TIDAL CHARTS 76
Appendix B RELATIVE TILT OF THE TERRAIN AND OTHER gFFECTS DUE TO OCEAN TIDE LOADING. 101
B. 1 Relative milt of the Terrain. 101
B. 2 Other Effects 102
Appendix C EVALUATION OF LOAD RESPONSE DIRBCTLYbeneath the load 105
Appendix D DATA SETS. 111
D. 1 Ocean Tide Data Set 111
D. 2 Polar Motion Data Set 112
Appendix E OCEAN TIDE 113
Appendix F PHASE LAGS 114
F. 1 Greenwich Phase Lag 114
F. 2 Greenwich Phase Lag in Local Time. 115
F. 3 Local Phase Lag with Respect to the Theoretical
Tide 116
Apperdix G SOFTWARE PACKAGES. 118
References 140

LIST OF TABLES

$$
\begin{array}{ll}
\text { Table 5.1 } & \text { M2 gravimetric tidal loading. } 48 \\
\text { Table 5.2 } & \text { Ocean tide loading deformations. } \\
& \text { Canadian VLBI array } \\
\text { Table G.1 } & \begin{array}{l}
\text { Ocean tide loading deformation of the }
\end{array} \\
& \text { lithosphere. Typical computer output. . . . } 139
\end{array}
$$

LIST OF FIGURES

PageFig. 2.1 Load deformation coefficients(Farrell, 1972)
Fig. 2.2 Geometry of th 14
17Fig. 3.1 Radial displacement Green's function.
23Fig. 3.2 Horizontal displacement Green's function.
25Fig. 3.3 Gravity Green's function
29
Fig. 3.4 Ocean tide loading sheet 30
Fig. 4.1 Geometry of the attraction effect of body tides 34
Fig. 5.1 Body tide correction at U.N.B., Fredericton N.B. 47
Fig. 5.2 Earth deformation and VLBI geometry 51
Fig. 5.3 Load effect on baseline length. Coordinate system parallel to geocentric system. 56
Fig. 5.4 An equatorial projection of the Canadian VLBI array (Langley, 1979). 65
Fig. 5.5 Canadian VLBI Array. Variation of
x - component of baselines 67
Fig. 5.6 Canadian VLBI Array. Variation of y - component of baselines 68
Fig. 5.7 Canadian VLBI Array. Variation of
z - component of baselines 69
Fig. 5.8 Canadian VLBI Array. Baseline length variation 70
Fig. A. 1 M2 load. Radial displacement in mm 77
Fig. A. 2 M2 load. Radial displacement Greenwich phases (degrees) 78
Fig. A. 3 S2 load. Radial displacement in mm. 79
Fig. A. 4 S2 load. Radial displacement Greenwich phases (degrees) 80
Fig. A. 5 K1 load. Radial displacement in mm 81
Fig. A. 6 K1 load. Radial displacement Greenwich phases (degrees) 82
Fig. A. 701 load. Radial displacement in mm. 83
Fig. A. 801 load. Radial displacemert Greenwich phases (degrees) 84
Fig. A. 9 N2 load. Radial displacement in mm. 85
Fig. A. 10 N2 load. Radial displacement Greenwich phases (degrees) 86
Fig. A. 11 P1 load. Radial displacement in mm 87
Fig. A. 12 P1 load. Radial displacement Greenwich phases (degrees) 38
Fig. A. 13 M2 load. North-south displacement in mm 89
Fig. A. 14 S2 load. North-south displacement in mm 90
Fig. A. 15 K1 load. North-south disolacement in mm 91
Fig. A. 1601 load. North-south displacement in mm 92
Fig. A. 17 N2 load. North-south displacement in mm 93
Fig. A. 18 P1 load. North-south displacement in mm 94
Fig. A. 19 M2 load. East-west displacement in mm 95

Fig. A. 20	S2 load. Fast-west displacement in mm
Fig. A. 21	K1 load. East-west displacement in mm
Fig. A. 22	01 load. East-west displacement in mm . . . 98
Fig. A. 23	N2 load. East-west displacement in mm . . . 99
Fig. A. 24	P1 load. East-west displacement in mm . . . 100
Fig. B. 1	Tilt Green's function
Fig. C. 1	Uniform half-space.
Fig. C. 2	Areal surface load.
Fig. G. 1	Programme LOADSDP. Flow char (U.N.B., May 1982).
Fig. G. 2	Canadian fringe frequency and delay analysis programme. Least squares ad.justment (U.N.B., May 1982).

ACKNOWLEDGEMENTS

This research was financially supported in part by the Earth Physics Branch, Ottawa (EMR grants \#7-3-80 and \#70-3-82). Financial assistance to the author has been also provided by the Surveying Engineering Department, through graduate teaching and research assistantships.

I wish to thank my supervisor Prof. Dr. Petr VaníXek for introducing me to the fascinating field of ocean tide loading, for his guidance, constant support and encouragement. His rigorous and detailed criticism of the manuscript has been of great profit to me.

I $3 m$ sincerely grateful to Prof. Dr. .Richard Langley for his continuous help when Prof. Vaníček was on leave from J.N.B. His constant supply of references and his patience in listening to the various problems as well as his demonstration of the use of the Canadian VLBI software package are greatfully acknowledged.

Thanks are also extended to Mrs. Laura Mills and the staff of the Computing Certre of the University of New Brunswick for their valuable assistance.

Dr. Jim Merriam of the Physics Department, Memorial University of Newfoundland and Dr. Clyde Goad of NGS/NOS/NOAA have also given assistance to this work.

I wish to extend my appreciation to my colleagues of the Geodesy Group in the Department of Surveying Engineering and particularly to my friends Niko Christou and Tom Inzinga, who took the time and trouble to discuss with me all my problems.

Last but not least I wish to express my sincere thanks to my wife Roula for her encouragement and understanding.
1.1. General Background and Outline of the Present Study.

The earth within the system of all celestial bodies is influenced by varying gravitational forces which produce deformations, generally called tides. The moon and the sun exert the most predominant forces whereas the forces due to the other celestial bodies are very small and can be negiected without any loss of accuracy. Concentrating on the deformations of the solid earth one talks about body tides, whereas tidal variations of sea level are called ocean tides.

The body tide is rather well understood. Part of the deformation of the earth's crust under time varying forces is also due to the variations coming from the varying ocean tide which produces the so called "load tide". As does the body tide, the load tide influences geodetic quantities observed on the surface of the earth such as gravity, tilt and terrain level. The body tide is a rather smoothly-varying phenomenon, depending upon the overall elastic properties of the earth, whereas the load
tide is more irregular due to the local features of the driving forces and the irregularities of the earth's lithosphere. Using the recent achievements in space geodesy, such as VLBI (very long baseline interferometry) and laser ranging, one can obtain repeatabilities of the order of a few centimetres for continental or transcontinental baseline lengths.

The deformation of the terrain due to ocean tide loading is of the order of a few centimetres depending on the locality and therefore it may play an important role for increasing the accuracy of VLBI baselines to the centimetre level.

The primary objective of this study was to develop a mathematical model which would evaluate the radial and horizontal displacements of the terrain due to ocean tide loading, to derive an improved approximation procedure for polar motion using existing data coming mainly from BIH (Bureau International de l' Heure) Circular D tables and to update the Canadian VLBI software package to account for the above effects.

As a mathematical model for the ocean tide loading, the general procedure of convolving a known ocean tide model with appropriate Green's functions was used in this study. The ocean tide noiel used, is that developed by Schwiderski (1978), who uses empirical tidal constants
coming from about 2,000 tide gauges scattered all over the globe. These empirical data were used as boundary conditions for the solution of the Navier-Stokes tidal equations on a $1^{\circ} \times 1^{\circ}$ spherical grid system in connection with hydrodynamically-defined bathymetry recognizing barrier effects of large boundary and bottom anomalies. The tidal equations were augmented by turbulent friction terms with novel mesh-area, eddy-viscosity and bottomfriction coefficients (Schwiderski, 1978).

In this study, the six leading constituents of the tidal spectrum were used. Schwiderski's ocean tide model predicts the tidal height with an accuracy of better than 5 cm anywhere in the open oceans for each of the leading tidal constituents. This estimate is based upon the worldwide agreement of the computed tidal constants with empirical data, which have the same accuracy. The accuracy for the coastal waters is expected to be worse due to local effects such as roughness of the sea bottom and a-priori resolution limits of $i^{\circ} 1^{\circ}$ imposed on the solution of the discrete tidal equations.

The Green's functions were derived from the geometry of the load effect and they involve the infinite summation of the load deformation coefficients with the Legendre polynomials. This infinite summation was evaluated indirectly using the Green's functions computed
by Farrell (1972).

Although gravity perturbations do not affect VLBI observations directly, Green's functions were derịed for gravity, to indirectly test the present technique against existing actual determinations of gravity perturbations.

Lagrange interpolation was used to determine the position of the earth's pole of rotation using BIH Circular D smoothed values. The software, which exists at the Department of Surveying Engineering was provided by the M.I.T. Department of Earth and Planetary Sciences and was integrated into the Canadian VLBI software package to give an improved estimate of the pole position. Data for the position of the pole are stored on tane and include information for the time span January 1969-April 1981.
1.2. Green's Functions and Load Deformation Coefficients.

The evaluation of the load effect can be done through a convolution integral by convolving an ocean tide model with aporopriate Green's functions (integration kernels). The geometry of the effect dictates the shape of such Green's functions. These functions include infinite summation of the load deformation coefficients multiplied by the Legendre polynomials. To evaluate this infinite series one must know the infinitely many load deformation
coefficients. A direct evaluation of these would require infinitely many observations of the load effect, which clearly are not available. Instead, an earth model must be postulated and the load deformation coefficients can be evaluated theoretically through the numerical solution of the equations of equilibrium of the earth. Such a solution is given by Longman (1962; 1963). Longman evaluated the load deformation coefficients up to order 40. Farrell (1972) determined these coefficients up to order 10,000 considering the Gutenberg-Bullen A earth model and tabulated (ibid, Table A3) Green's functions for different effects.

1.3. General Context and Contributions of This Study.

The Canadian VLBI software package GEOAIM (GEOdetic Analysis of Interferometric Measurements), which was developed initially at York University, Toronto, Ontario (Langley, 1979), accounted only for the body tide component of the earth tide. The correction for polar motion assumed a constant value for a whole observing period. As mentioned earlier, corrections of VLBI observations due to ocean tide loading and an interpolation routine for polar motion are necessary to increase the accuracy of the determination of the baselines to the centimetre level. Methods used in
previous studies of this kind have had varying degrees of success. In this work, an alternative approach is developed for the evaluation of the load effects. Green's functions for terrain deformations and gravity perturbations are derived, using Green's functions computed by Farrell (1972) (Chapter III). A Green's function for the relative tilt of the terrain is also derived (Appendix B).

A contribution is also made in the evaluation of load response directly beneath the load where there is a singularity in the formulation of Green's functions. Although not of concern in evaluating displacements of VLBI stations, this problem is treated for completeness in Appendix C based on the theory of Boussinesq (1885).

Another contribution is made by drawing co-range and co-tidal charts for the radial and horizontal displacements of the terrain due to ocean loading for North America, which represents a new source of information for deformations of this kind (Appendix A).

In terms of improving the computational efficiency of GEOAIM, a contribution is made by developing a mathematical model for body tide deformations
(Chapter IV). The ephemerides of the moon and the sun are determined through approximate formulae rather than from tables (e.g. Merriam, 1978).

```
Another contribution is made by modifying an existing routine (Chapter IV) for the determination of polar motion.
```

Finally, so that the software developed here can easily be applied by others as separate routines, it has been documented and is now readily available from the Surveying Engineering Department at U.N.B. (Appendix G).

CHAPTER II
LOAD EFFECTS DUE TO OCEAN TIDE

2.1. General Considerations.

As the water masses of the ocean move under the gravitational attraction of the moon and the sun, they load and unload periodically the ocean floor. This action brings about displacerents as well as changes in the gravity field not only on the ocean floor but also on land. The deformations can he described by the following three distinct but by no means independent phenomena (Vaníxek, 1980):
a) Deformation of the lithosphere under the weight of the adiditional water masses.
b) Gravitational attraction of the tidal waters.
c) Gravitational attraction of the crustal deformation caused by the load (indirect effect).

The most conspicuous effect is the first one. The amount of deformation depends upon the characteristics of the
lithosphere, i.e. thickness and rheological properties. Also; the closer a point is to the load the more it is affected. Due to the attraction of the additional water masses; the gravitational potential is disturbed and a deformation of the lithosphere as well as a change of the gravity field occur. This is the second phenomenon. As a consequence of the first two deformations a redistribution of masses is induced. This redistribution of masses changes the gravitational potential and therefore a new deformation comes about. Since the third phenomenon acts indirectly through the tidal potential the description as "indirect effect" is used in the literature (o.g. VaníXek and Krakiwsky, 1982).

All three effects are inter-related and must be considered simultaneously. The magnitude of the total effect depends upon the rheology of the earth, which therefore has to be taken into account. Rheology can be regarded as the study of the deformation and flow of matter under stress. It is the theory which relates the relative deformation (strain) of a medium due to stress. Stress is the acting force per unit, area and may be thought of as being composed of normal (σ) and tangential (τ) components (Eirich, 1950). The rheology of the earth can be taken into consideration through the load deformation coefficients introduced by Munk and MacDonald (1960), which are similar to the ordinary Love numbers.

2.2. Load Deformation Coefficients.

The elastic behaviour of the earth was first recognized by Kelvin in 1876. It is expressed through dimensionless quantities called Love numbers defined as follows (Vaníček and Krakiwsky, 1982): The ratio of the elastic radial displacement of a mass element of the real earth to the radial displacement of the corresponding element of a hypothetical fluid earth is the first Love number and is denoted by h. The changes of the shape of the earth under the tidal forces cause redistribution of masses within the earth and subsequently changes in its gravity field. These changes in the gravity field can be expressed as changes in the potential, briefly called deformation potential. The ratio of the deformation potential to the potential which produces it (i.e. tidal potential) is the second Love number and is denoted by k. The ratio of the horizontal elastic displacement of an actual mass element to the horizontal displacement of the corresponding element of the hypothetical fluid earth is the third Love number (or Shida's number) and is denoted by ℓ.

The load deformation coefficients or load numbers, like the Love numbers, are dimensionless quantities. They depend on the extent of the load and on the depth of the deformation. To distinguish between the load and Love
numbers a prime will be used for the former. Let u_{2}^{\prime} denote the vertical displacement of the earth's surface due to the load, u_{a}^{\prime} the displacement of a gravity equipotential surface caused by the attraction of water masses and u_{i}^{\prime} the indirect effect on the vertical displacement. The load deformation coefficients are defined as follows (Vaníček, 1980):

$$
\left.\begin{array}{l}
h^{\prime}=u_{l}^{\prime} / u_{a}^{\prime}, \tag{2.1}\\
k^{\prime}=u_{i}^{\prime} / u_{a}^{\prime}, \\
\ell^{\prime}=v_{l}^{\prime} / v_{a}^{\prime},
\end{array}\right\}
$$

where v_{l}^{\prime} denotes the horizontal displacement of a mass element under the load and v^{\prime} the horizontal displacement of a gravity equipotential surface caused by the attraction of additional water masses. The above definitions refer only to the geometry of the deformations. Expressing the radial displacement of the gravity equipotential surface under the load as a function of potential one obtains (Vaníček and Krakiwsky, 1982)

$$
\begin{equation*}
\left(u_{a}^{\prime}\right)_{n}=\frac{W_{n}^{L}}{g} . \tag{2.2}
\end{equation*}
$$

The subscript of the potential denotes the wave number i.e. the spatial extent of the load. Taking into
consideration the extreme values for $n, n=0$ describes a load that covers the whole earth, whereas for $n+\infty$ one deals with point mass load. Substituting (2.2) into the first two of the equations (2.1) yields

$$
\left.\begin{array}{l}
\left(u_{\ell}^{\prime}\right)_{n}=h_{n}^{\prime} \frac{w_{n}^{L}}{g}, \tag{2.3}\\
\left(u_{i}^{\prime}\right)_{n}=k_{n}^{\prime} \frac{w_{n}^{L}}{g} .
\end{array}\right\}
$$

The determination of the load numbers can be done through the numerical integration of the equations of equilibrium of a deformed earth, derived from the equations of free oscillations of the earth given by Pekeris and Jarosch (1958). The equations of equilibrium (Longman, 1962; Farrell, 1972) are differential equations of second order described in a geocentric spherical coordinate system. For the solution of these differential equations (Longman, 1952) a Green's function (in a closed form) can be derived for a certain earth model in which the Lamé coefficients (λ, μ) and density ρ are given as functions of the radius of the earth. The Lamé elasticity constant μ expresses the rigidity of a medium. Constant λ has no direct physical interpretation.

Using the derived Green's function which depends on the Lamé coefficients λ, μ and density ρ, the equations
of equilibrium can be solved by numerical integration. Such a solution was attempted by Longman (1963) considering a point mass load on the surface of the earth.

It is obvious that the load numbers are intimately related to a Green's function which; in turn; is dependent on the chosen density model. Different sets of load numbers can be obtained by assuming different density and elasticity models for the earth.

The load numbers obtained by Longman (1963) are not sufficient since the evaluation of the load effects includes infinite summation of the load numbers with the Legendre polynomials (Chapter III). 巨arrell (1972) obtained numerical values for all three load numbers up to $n=10 ; 000$ (Fig. 2.1).

The Gutenberg-Bullen A earth model belongs to the family of A-type models developed in late 30 's. An earth model can be generally considered as specified when numerical values of the set of variables (λ, μ, ρ) or some equivalent set are specified for all deptins. The basic assumption for constructing the A-type models is that the density of the layer below the crust (approximate depth $0-30 \mathrm{~km}$) as well as the values for the velocities of 0 and s waves inve to be assumed (Bullen, 1975). The seismic waves p and s travel through the earth's interior

Fig. 2.1
Load deformation coefficients (Farrell, 1972).
rather than around the surface and they are called body waves. The primary (p) wave is z compressional wave travelling with about twice the speed of the secondary (s) wave which is a transverse wave. In addition to the density ρ and the Lamé coefficients $\lambda ; \mu$, these models include a distribution of the earth's incompressibility (expressed through the bulk modulus); pressure and gravitational intensity (Bullen; 1975).

2.3. Simplifying Assumptions.

The load tide has different features from the body tide. It is more irregular than the body tide in respect of amplitude and phase and this is generally due to the local rheological characteristiss of the lithosphere as Well as to the ieatures of the coastal waters. For points more than about 1° inland (from the coast) the response of the lithosphere does not depend on the fine geological structure. For coastal points the local geology as well as the local tide govern the response. So, a global model is insufficient for such points. Also, the response of the earth is not purely elastic and a dissipation of energy will occur. The earth's response to harmonic surface loads will lag behind the driving force and the lag will vary with distance from the load as well as with frequency (Farrell, 1972).

In this study, the following simplifying assumptions were made:
a) The point at which one wants to determine the load effect must be an inland point i.e. a point which lies at least 100 km from the coast.
b) The response of the earth to loading is considered to be elastic.

For the first of the simplifying assumptions a distance of about 50 km might be sufficient, depending on the thickness of the lithosphere. Other investigators assume that points can be considered as inland points when they are 300 km to 500 km from the coast (7schau, 1976), or 500 km to 1000 km (Beaumont and Lambert, 1972), or 100 km (Farrell, 1972). The differences among the different models, beyond about 100 km are only a few percent.

2.4. Loading Potential on a Rigid Earth.

For the formulation of the load effects it is expedient to use the potential of the load. Considering a spherical earth, the loading potential induced at a point A by an infinitesimal water mass din, ψ distant from A (Fig. 2.2) can be written as

Fig. 2.2
Geometry of the attraction effect of load.

$$
\begin{equation*}
d w_{A}^{L}=G \frac{d m}{\rho} \tag{2.4}
\end{equation*}
$$

where G is the gravitational constant and ρ the chord distance between the point of interest A and the point of load P. Further, the infinitesimal mass dm can be written as

$$
\begin{equation*}
\mathrm{dm}=\zeta \sigma_{w} \mathrm{~d} S \tag{2.5}
\end{equation*}
$$

where ζ is the tidal height above mean sea level, σ_{w} is the density of sea water and $d S$ the infinitesimal surface element. By substituting (2.5) into (2.4) and integrating (2.4) all over the oceans, the total loading potential at the point of interest is obtained:

$$
\begin{equation*}
w_{A}^{L}=G \sigma_{w_{\text {oceans }}} \iint_{\rho} \frac{5}{\rho} d s . \tag{2.6}
\end{equation*}
$$

It is expedient to expand the inverse of the chord distance in Legendre polynomials. Using Carnot's formula (cosine law) for the triangle $A D P$, the inverse of the distance becomes

$$
\begin{equation*}
\frac{1}{\rho}=\frac{1}{R}(2-2 \cos \psi)^{-1 / 2} \text {, } \tag{2.7}
\end{equation*}
$$

where ψ is the geocentric angle between the point of interest and the load and R is the radius of the earth. The term in parentheses is the generating function of the Legendre polynomials from which they are uniquely determined (Rectorys, 1969). So, equation (2.7) can be
written as

$$
\begin{equation*}
\frac{1}{\rho}=\frac{1}{R} \sum_{n=0}^{\infty} P_{n}(\cos \psi) \tag{2.8}
\end{equation*}
$$

Substituting (2.8) into (2.6), the total loading potential in terms of Legendre polynomials becomes

$$
\begin{equation*}
W_{A}^{L}=\frac{G \sigma_{w}}{R} \iint_{\text {oceans }} \zeta \sum_{n=0}^{\infty} P_{n}(\cos \psi) d s \tag{2.9}
\end{equation*}
$$

Equation (2.9) can be written further as

$$
\begin{equation*}
W_{A}^{L}=\iint_{\text {oceans }} K(\psi) \zeta d S \tag{2.10}
\end{equation*}
$$

where $K(\psi)$ is a Green's function (integration kernel) given by

$$
\begin{equation*}
K(\psi)=\frac{G \sigma_{w}}{R} \sum_{n=0}^{\infty} P_{n}(\cos \psi) \tag{2.11}
\end{equation*}
$$

In the above formulation there is a singularity involved when $\psi \rightarrow 0$. This happens when the distance between the point of interest and the load tends to zero and (2.6) is not determined. This singularity does not affect the evaluation of the load effects since all the points under consideration are at least 100 km from the coast. Nevertheless, this singularity is physically meaningless and can be removed (Appendix C).

CHAPTER III

LOAD EFFECTS ON AN ELASTIC EARTH

3.1. Radial Displacement.

The development of the potential of the load on a rigid earth can be combined with the load numbers to give an expression for the radial iisplacement of the terrain on an elastic earth. Recalling the first of the equations (2.3) and (2.9) one obtains for the radial displacement

$$
\begin{equation*}
u_{\ell}^{\prime}=\frac{G \sigma_{w}}{R g} \iint_{\text {oceans }} \zeta \sum_{n=0}^{\infty} h_{n}^{\prime} P_{n}(\cos \psi) d s . \tag{3.1}
\end{equation*}
$$

The integration kernel reads

$$
\begin{equation*}
K^{u_{l}^{\prime}}=\frac{G \sigma_{w}}{R g} \sum_{n=0}^{\infty} h_{n}^{\prime} P_{n}(\cos \psi) . \tag{3.2}
\end{equation*}
$$

The integration kernel $K^{u_{l}^{\prime}}$ involves the evaluation of the infinite summation of the product of the first load number h^{\prime} with the Legendre polynomials. This task is impossible to carry out practically. Instead, the infinite summation in (3.?) was obtained by the Green's functions tabulated by Farrell (1972, Table A3).

Farrell gives the following expression for the radial displacement (ibid; Eq. 37):

$$
\begin{equation*}
u^{\prime}(\psi)=\frac{R}{M_{e}} \sum_{n=0}^{\infty} h_{n}^{\prime} P_{n}(\cos \psi) . \tag{3.3}
\end{equation*}
$$

where R is the radius of the earth and M_{e} its mass. Furthermore; Farrell tabulates (ibid; Table A3) the following:

$$
\begin{equation*}
\overline{u^{\prime}}(\psi)=u^{\prime}(\psi) \cdot 10^{12}(R \psi) \text {. } \tag{3.4}
\end{equation*}
$$

where $u^{\prime}(\psi)$ is given by (3.3), R is the radius of the earth in metres and ψ is the jeocentric angular distance between the point of interest and the load in radians. By substituting $M^{\prime}(\psi)$ from (3.3) into (3.4) one gets

$$
\begin{equation*}
\tilde{u}^{\prime}(\psi)=\frac{R^{2} \psi}{M_{e}} 10^{12} \sum_{n=0}^{\infty} h_{n}^{\prime} P_{n}(\cos \psi) . \tag{3.5}
\end{equation*}
$$

By solving (3.5) with respect to the infinite summation one obtains

$$
\begin{equation*}
\sum_{n=0}^{\infty} h_{n}^{\prime} P_{n}(\cos \psi)=\frac{M_{e}}{R^{2}} 10^{-12} \frac{\tilde{u}^{\prime}(\psi)}{\psi} . \tag{3.5}
\end{equation*}
$$

Equation (3.6) gives an expression for the infinite summation as a function of $\mu^{\prime}(\psi)$, which can be taken from Farrell's tables for a certain angle ψ. Combining (3.2) and (3.6) the integration kernel becomes

$$
\begin{equation*}
K^{u_{l}^{\prime}}=\frac{G M_{e}^{o} w}{R^{3}{ }_{\mathrm{g}}} 10^{-12} \frac{\dot{u}^{\prime}(\psi)}{\psi} \tag{3.7}
\end{equation*}
$$

The above kernel is plotted in Fig. 3.1. The values of $\tilde{u}^{\prime}(\psi)$ are tabulated in a form of discrete values for the angle ψ. An analytical expression for $\tilde{u}^{\prime}(\psi)$ for intermediate values of ψ is necessary for the evaluation of the derived kernel in (3.7). For this reason cubic spline interpolation was used.

3.2. Horizontal Displacement.

The horizontal (lateral) displacement due to an infinitesimal loading mass in the direction of the load can be writton as

$$
\begin{equation*}
\left(v_{\ell}^{\prime}\right)_{n}=\frac{\ell_{n}^{\prime}}{g} \frac{\partial w_{n}^{L}}{\partial \psi} \tag{3.8}
\end{equation*}
$$

Differentiating (2.3) with respect to ψ, (3.8) yields

$$
\begin{equation*}
v_{\ell}^{\prime}=\frac{G \sigma_{w}}{R g} \iint_{\text {oceans }} \zeta \sum_{n=0}^{\infty} \ell_{n}^{\prime} \frac{\partial P_{n}(\cos \psi)}{\partial \psi} d S \tag{3.9}
\end{equation*}
$$

Following the same procedure as in Subsection 3.1, the infinite sumation in (3.9) can be written as (Farrell 1972, Eq. 45 and Table A3)

$$
\begin{equation*}
\sum_{n=0}^{\infty} \ell_{n}^{\prime} \frac{\partial P_{n}(\cos \psi)}{\partial \psi}=\frac{M_{e}}{R^{2} 10^{12}} \frac{v^{\prime}(\psi)}{\psi} \tag{3.10}
\end{equation*}
$$

where \bar{v}^{\prime} is tabulated in Farrell (1972). Combining (3.9) and (3.10) one obtains

$$
\begin{equation*}
v_{q}^{\prime}=\frac{G \sigma_{w}}{R g} \iint_{\text {oceans }} \frac{M_{e^{\prime}} \bar{v}^{\prime}(\psi)}{R^{2} 10^{12}{ }_{\psi}} \zeta \mathrm{dS} . \tag{3.11}
\end{equation*}
$$

and the integration kernel becomes

$$
\begin{equation*}
K^{v_{l}^{\prime}}=\frac{-G \sigma_{w}}{R g} \frac{M_{e}}{R^{2} \cdot 1 \sigma^{12}} \frac{\bar{v}^{\prime}(\psi)}{\psi} . \tag{3.12}
\end{equation*}
$$

Since $\bar{\sigma}^{\prime}(\psi)$ is always negative the minus sign was used in (3.12) to indicate that a displacement is positive in the direction of the load. The above kernel is plotted in Fig. 3.2.

It is expedient to express the horizontal displacement in terms of north-south and east-west components. The azimutin of the line oonnecting the point of interest A and the point of load P was used in this study. If $\left(\phi_{A}, \lambda_{A}\right)$ and $\left(\phi_{P}, \lambda_{P}\right)$ are the coordinates of the points A and P respectively, the azimuth of the connecting line $P A$ is (Rectorys, 1969)

$$
\begin{equation*}
\cos A_{P A}=\frac{\sin \phi_{P}-\cos \psi \sin \phi_{A}}{\sin \psi \cos \phi} . \tag{3.13}
\end{equation*}
$$

Care is needed when using the above formula. When λ_{p} is smaller than λ_{A}, the azimuth is $360^{\circ}-A_{P_{A}}$ and when λ_{P} is greater than λ_{A} the azimuth is $A_{P A}$. Finally, the northsouth and east-west displacements are given by

$$
\left.\begin{array}{l}
v_{\phi}^{\prime}=v^{\prime} \cos A_{P A} \tag{3.14}\\
v_{i}^{\prime}=v^{\prime} \sin A_{P A}
\end{array}\right\}
$$

horizontal displacement creen's function

3.3. Gravity Perturbation.

The gravity perturbation due to load on a rigid earth is

$$
\begin{equation*}
\Delta g^{L}=\frac{\partial w_{A}^{L}}{\partial R} . \tag{3.15}
\end{equation*}
$$

Differentiating (2.9) with respect to R yields

$$
\begin{equation*}
\Delta g^{L}=-\frac{G \sigma_{w}}{R^{2}} \iint_{O C e a n s} \zeta \sum_{n=0}^{\infty} P_{n}(\cos \psi) d S . \tag{3.16}
\end{equation*}
$$

The integration kernel becomes

$$
\begin{equation*}
K^{\Delta g^{L}}=-\frac{G \sigma_{W}}{R^{2}} \sum_{n=0}^{\infty} P_{n}(\cos \psi) . \tag{3.17}
\end{equation*}
$$

Using the load numbers (Subsection 2.2), the integration kernel for an elastic earth yields

$$
\begin{equation*}
k^{\Delta g^{L}}=+\frac{G \sigma_{w}}{R^{2}} \sum_{n=0}^{\infty}\left\{n+2 h_{n}^{\prime}-(n+1) k_{n}^{\prime}\right\} p_{n}(\cos \psi) . \tag{3.18}
\end{equation*}
$$

where the term in brackets is referred to as gravimetric factor and it is explained in Subsection 3.4. Again, in this expression the infinite summation of the load numbers and the Legendre polynomials appears. Farrell (1972) gives the following expression for the gravity perturbation (ibid, Eq. 46):

$$
\begin{equation*}
g^{F}(\psi)=\frac{g}{M_{e}} \sum_{n=0}^{\infty}\left\{n+2 h_{n}^{\prime}-(n+1) k_{n}^{\prime}\right\}_{n}(\cos \psi) . \tag{3.19}
\end{equation*}
$$

He also tabulates (ibid, Table A3) the following:

$$
\begin{equation*}
\tilde{g}(\psi)=g^{E}(\psi) \quad 10^{18}(R \psi) \tag{3.20}
\end{equation*}
$$

where $g^{E}(\psi)$ is the "elastic" perturbation arising from the earth's elastic deformation and is given by (Farrell; 1972)

$$
\begin{equation*}
g^{E}(\psi)=g^{E}(\psi)-g^{N}(\psi), \tag{3.21}
\end{equation*}
$$

where $g^{F}(\psi)$ is the total perturbation due to load given by (3.19) and $g^{N}(\psi)$ is the perturbation due to the Newtonian attraction of the load only and is given by

$$
\begin{equation*}
g^{N}(\psi)=-\frac{g}{4 M_{e} \sin (\psi / 2)} . \tag{3.22}
\end{equation*}
$$

From (3.21) and (3.22) one obtains

$$
\begin{equation*}
g^{F}(\psi)=g^{E}(\psi)-\frac{g}{4 M_{e} \sin (\psi / 2)} . \tag{3.23}
\end{equation*}
$$

Substituting $g^{E}(\psi)$ from (3.20) and $g^{F}(\psi)$ from (3.19), into (3.23) yields

$$
\begin{equation*}
\frac{g}{M_{e}} A=\frac{1}{R} 10^{-18} \frac{\dot{g}(\psi)}{\psi}-\frac{g}{4 M_{e} \sin (\psi / 2)} . \tag{3.24}
\end{equation*}
$$

where:

$$
\begin{equation*}
A=\sum_{n=0}^{\infty}\left\{n+2 h_{n}^{\prime}-(n+1) k_{n}^{\prime}\right\} P_{n}(\cos \psi) . \tag{3.25}
\end{equation*}
$$

Solving (3.24) with respect to A and substituting into (3.19), one obtains:

$$
\begin{equation*}
K^{i g^{L}}=+\frac{G \sigma_{w}}{R^{2}}\left\{\frac{M}{R g} 10^{-18} \frac{\dot{g}(\psi)}{\psi}-\frac{1}{4 \sin (\psi / 2)}\right\} \tag{3.26}
\end{equation*}
$$

The gravity perturbation kernel given by (3.26) is a function of ψ and $\dot{g}(\psi)$ only and is plotted in Fig. 3.3. Again, $\bar{g}(\psi)$ is obtained from Farrell's tables and a cubic spline interpolation was used for intermediate values of ψ. The units of the integration kernel are $\mathrm{m}^{-2} \mathrm{sec}^{-2}$.
3.4. Complications with the Gravimetric Factor.

The gravimetric factor

$$
\begin{equation*}
\delta_{n}^{\prime}=\left\{n+2 h_{n}^{\prime}-k_{n}^{\prime}(n+1)\right\} \tag{3.27}
\end{equation*}
$$

was originally derived by Longman (1963) to apply to gravity measurements made at a point situated below the tidal loading sheet (ibid. Eq. 35). Since gravity measurements normally are taken at stations situated above the level of the tides, the question arises as to what formula one should use. Pekeris (1978) states that the gravimetric factor (3.27) is valid only at points right under the loading sheet (Fig. 3.4). For observations made above the tidal level, one must add an additional correction to the one determined using the gravimetric factor given by (3.27) which is $4 \pi G \sigma_{w}$. ${ }^{2}$ inis additional correction has to do with the increase in gravity as one crosses the tidal sheet from below. As a result of this correction, the gravimetric factor changes

OCEAN TIDE LOADING SHEET

Fig. 3.4
to

$$
\begin{equation*}
\delta_{n}^{\prime}=\left\{2 h_{n}^{\prime}-(n+1)\left(1+k_{n}^{\prime}\right)\right\} . \tag{3.28}
\end{equation*}
$$

According to Pekeris (1978), the gravimetric factor (3.28) applies to gravity measurements made at stations siturted right above the level of the tides. Care is needed when one applies (3.28) at island stations if gravity is measured right at the coast.

For gravity measurements made inland or at the bottom of the sea the correction $4 \pi \sigma_{W} 5$ must be put equal to zero (Pekeris, 1978). Other investigators (e.g. Goad, 1980) use the gravimetric factor given by (3.28) for points situated above the tidal sheet, which contradicts the theory. In this study, the gravimetric factor given by (3.27) was used since all the points are situated inland and are above the level of the tides.

3.5. Loads of Degree 0 and 1.

Loads of degree 0 and $1(n=0, n=1$ in the harmonic expansion) deserve special attention. The term $n=0$ describes a uniform load on the surface of the earth. Thus, if the adopted tidal model preserves water masses, this term disapears. Extensive computer experiments using Schwiderski's model showed that the inclusion or exclusion of the term $n=0$ has practically no effect on
the results. For gravity a maximum difference of about 0.1 uGals in the amplitudes and 2 in the phases was found. The corresponding effect on displacements would be about 0.2 cm .

Load $n=1$ is more complicated. Longman (1963) states that the load deformation coefficients are undetermined when $n=1$ since they depend on the displacement of the earth as a whole, and therefore concludes that load $n=1$ should not be included in the calculations. Cathles (1971) showed that load $n=1$ does not move the centre of mass of the earth in respect of surface mass loads such as ocean loading. The concensus appears to be that load $n=1$ should be included in the evaluation of the loading effects.

Experiments using the present gravity model showed that the effect of including or excluding the term $n=1$ depends on the locality. For points surrounded by oceans of generally high tides whose antipodes are open oceans, the use of the term $n=1$ gives erratic results compared to those obtained by actual observations. Alice Springs (Australia) is an example: resulting gravity, excluding load $n=1$ is very close to the observed value (Chapter. V, Table 5.1). A further investigation is needed to consider some other points located, for example, in Australia and Hawaii.

CHAPTER IV

BODY TIDE AND POLAR MOTION

4.1. Radial Displacement.

The absolute radial displacement of the terrain due to body tide for an elastic zarth is given by (Vaníxek and Krakiwsky, 1982):

$$
\begin{equation*}
u_{n}=h_{n} \frac{W_{n}^{T}}{g}, \tag{4.1}
\end{equation*}
$$

where W_{n}^{T} is the tidal potential, g is the magnitude of gravity and h_{n} the first Love number. The potential due to a celestial body of mass M, at a point P on the surface of the earth is (Fig. 4.1)

$$
\begin{equation*}
U=G \frac{M_{\star}}{r_{\star}} . \tag{4.2}
\end{equation*}
$$

Expanding $1 / r_{*}$ in Legendre series and disregarding the terms of the order $n=0$ and $n=1$ (they do not produce any tidal effect), one obtains for the tidal potential

$$
\begin{equation*}
W^{T}=\frac{G M_{\star}}{P_{\star}} \sum_{n=2}^{\infty}\left(\frac{R}{P_{\star}}\right)^{n} P_{n}\left(\cos z_{\star}\right) . \tag{4.3}
\end{equation*}
$$

where R is the radius of the earth, ρ_{*} is the apparent

distance of the celestial body from the earth and z is its apparent zenith distance. Keeping only the term $n=2$; which is the most predominant and using the mean distance, c_{*}; between the earth and the celestial body, one obtains

$$
\begin{equation*}
W_{2}^{T}=\frac{3}{4} \frac{G M_{\star} R^{2}}{c_{\star}^{3}}\left(\cos 2 z_{\star}+\frac{1}{3}\right) \frac{c_{\star}^{3}}{\rho_{\star}^{3}} \tag{4.4}
\end{equation*}
$$

and the radial displacement becomes

$$
\begin{equation*}
u_{\star}=\frac{3}{4} \frac{G M_{\star} R^{2}}{g c_{\star}^{3}} h_{2}\left(\cos 2 z_{\star}+\frac{1}{3}\right) k_{\star}^{3}, \tag{4.5}
\end{equation*}
$$

where $k_{*}=c / \rho_{\star}$. Substituting the constant terms in (4.5) for the moon and the sun yields

$$
\left.\begin{array}{l}
u_{q}=53.6 h_{2}\left(\cos ^{2} z_{\alpha}-\frac{1}{3}\right) k_{q}^{3} \tag{4.6}\\
(\mathrm{~cm}), \\
u_{\odot}=24.6 h_{2}\left(\cos ^{2} z_{\odot}-\frac{1}{3}\right) k_{\rho}^{3} \\
(\mathrm{~cm}) .
\end{array}\right\}
$$

The total radial displacement due to the moon and the sun yields:

$$
\begin{equation*}
u_{0}=u_{\sigma}+u_{0} . \tag{4.7}
\end{equation*}
$$

From the eohemerides of the moon and the sun one obtains

$$
\left.\begin{array}{l}
0.83<k_{g}^{3}<1.26, \tag{4.8}\\
0.95<k_{0}^{3}<1.05 .
\end{array}\right\}
$$

4.2. North-South Displacement.

The horizontal displacement due to body tide for an elastic earth in north-south direction is given by (VaníCek; 1980)

$$
\begin{equation*}
v_{\phi}=\frac{\ell_{2}}{g} \frac{\partial w_{2}^{T}}{\partial \phi} \tag{4.9}
\end{equation*}
$$

where ℓ_{2} is Shida's number and W_{2}^{T} is given by (4.4). Further, $\cos (z)$ is given by

$$
\begin{equation*}
\cos z_{\star}=\sin \phi \cdot \sin \delta_{\star}+\cos \phi \cdot \cos \delta_{\star} \cos H_{\star}, \tag{4.10}
\end{equation*}
$$

where δ_{*} and H_{*} are the declination and the hour angle of the cresestial body resnectivelv. Since the term in parentheses in (4.4) is a function of ϕ, one obtains

$$
\begin{equation*}
v_{\phi}=\frac{3}{2} \ell_{2} \frac{G M_{\star} R^{2}}{g c_{\star}^{3}} k_{\star}^{3} \frac{\partial}{\partial \phi}\left(\cos ^{2} z_{\star}-\frac{1}{3}\right) . \tag{4.11}
\end{equation*}
$$

Carrying out the differentiation one obtains

$$
\begin{align*}
v_{\phi} & =\frac{3}{2} l_{2} \frac{G M_{\star} R^{2}}{g c_{\star}^{3}} k_{\star}^{3}\left\{\sin 2 \phi\left(\sin ^{2} \delta_{\star}-\cos ^{2} \delta_{\star} \cos ^{2} H_{\star}\right)+\right. \tag{4.12}\\
& \left.+\sin ^{2} 2 \delta_{\star} \cos H_{\star} \cos 2 \phi\right\} .
\end{align*}
$$

The above formula gives the north-south displacement due to the moon or the sun and it is reckoned positive northwards.

4.3. East-West Displacement.

Similar to the north-south, the east-west displacement is given by (Vaní̌ek; 1980)

$$
\begin{equation*}
v_{\lambda}=\frac{\ell_{2}}{g} \frac{\partial W_{2}^{T}}{\cos \phi \partial \lambda} . \tag{4.13}
\end{equation*}
$$

Differentiating (4.4) with respect to λ, yields

$$
\begin{align*}
v_{\lambda} & =\frac{\ell_{2}}{g} \frac{3}{2} \frac{G M_{\star} R^{2}}{c_{\star}^{3} \cos \phi}\left\{2 \cos ^{2} \phi \cdot \cos ^{2} \delta_{\star} \cdot \sin H_{\star}+\right. \tag{4.14}\\
& \left.+\frac{1}{2} \sin 2 \phi \cdot \sin 2 \delta_{\star} \cdot \sin H_{\star}\right\} k_{\star}^{3} .
\end{align*}
$$

The above formula gives the east-west disolacement due to the moon or the sun and is reckoned positive eastwards. Note here that in the VLBI software Dackage, the eastwest component is considered positive westwards (Merriam, 1978) thus in the VLBI programme, (4.14) is used with opposite sign.

4.4. Ephemerides of the Moon and the Sun.

The zenith distance of the moon at a point P with geographic latitude ϕ is given by

$$
\begin{equation*}
\cos z_{q}=\sin \phi \cdot \sin \delta_{q}+\cos \phi \cdot \cos \delta_{q} \cdot \cos H_{q}, \tag{4.15}
\end{equation*}
$$

where δ_{d} is the declination of the moon and H_{c} its hour angle. For the sun one obtains

$$
\begin{equation*}
\cos z_{0}=\frac{\sin \delta_{0} \cdot \cos (\phi-\omega)}{\sin \omega}, \tan \omega=\frac{\tan \delta_{0}}{\cos H_{\odot}} \tag{4.16}
\end{equation*}
$$

All the angles in the above formulae must be used with proper signs. They can be derived from the astronomical triangles (Explanatory Supplement to the Astronomical Ephemeris and Nautical Almanac, 1978). North latitude is considered positive. The declination of the sun is given approximately by (Melchior, 1966, p.35)

$$
\begin{equation*}
\delta_{\odot} \doteq \arcsin \left(0.406 \sin \alpha_{0}+0.008 \sin 3 \alpha_{\theta}\right) \tag{4.17}
\end{equation*}
$$

The right ascension α_{0} of the sun is given by

$$
\begin{equation*}
\alpha_{\odot} \doteq x^{\prime}-0.043 \cdot \sin \left(2 x^{\prime}\right) \frac{180^{\circ}}{\pi} \text { (degrees) } \tag{4.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.x^{\prime} \doteq h+0.034 \cdot \sin \left(h-p^{\prime}\right) \frac{180^{\circ}}{\pi} \text { degrees }\right) \tag{4.19}
\end{equation*}
$$

where h is the geometric mean longitude of the sun and p^{\prime} its paralax. They are given in analytic form in the Explanatory Supplement to the Astronomical Ephemeris and Nautical Almanac (ESAENA) (1978). The ratio k_{o} is given by Melchior (1965, p.35):

$$
\begin{equation*}
k_{\odot} \doteq 1+0.017 \cos \left(h-p^{\prime}\right) \tag{4.20}
\end{equation*}
$$

Ratio k_{d} is given in Melchior (1978, p. 23).

The orbit of the moon is very complicated. For the derivation of an approximate formula for the ecliptic
latitude, 'Brown's theory (Improved Lunar Ephemeris 1952-1959, 1954) was used in this study.

The declination of the moon is given by the rigorous formula (ESAENA, 1978)

$$
\begin{equation*}
\sin \delta_{\mathbb{G}}=\cos \beta_{\mathbb{G}} \cdot \sin s_{\mathbb{C}} \cdot \sin \varepsilon+\sin \beta_{\mathbb{G}} \cdot \cos \varepsilon, \tag{4.21}
\end{equation*}
$$

where β_{d} is the ecliptic latitude, s_{d} is the mean longitude of the moon, measured on the ecliptic from the mean equinox of date to the mean ascending node of the lunar orbit and then along the orbit and ε is the obliquity of the ecliptic. The arguments s_{c} and ε can be computed using the formulae included in the ESAENA (1978).

The ecliptic latitude of the moon β_{a} is subject to complicated perturbations. It is expressed in Tables I,5 (Improved Lunar Ephemeris 1952-1959, 1954) in the form (ibid. p. 398):

$$
\begin{align*}
\beta_{q}^{\prime \prime} & =(1+C)\left(\gamma_{1} \cdot \sin S+\gamma_{2} \cdot \sin 3 S+\gamma_{3} \cdot \sin 5 S+N\right)+ \tag{4.22}\\
& + \text { planetary perturbations } .
\end{align*}
$$

where C, S and N are trigonometric series and $\gamma_{1}, \gamma_{2}, \gamma_{3}$ are constants. These constants are given as (ibid. p. 398)

$$
\begin{equation*}
r_{1}=18519: 7, \quad r_{2}=-6: 241, \quad r_{3}=0: 004 \tag{4.23}
\end{equation*}
$$

C in (4.22) is of the order of 4×10^{-3} (ibid. p.358), r_{2}, r_{3} and the planetary perturbations are very small too. Without any significant loss of accuracy, (4.22) can be written as

$$
\begin{equation*}
\beta_{G}^{\prime \prime} \doteq 18519: 7 \sin S+N . \tag{4.24}
\end{equation*}
$$

The principal part of N is (ibid. p. 411)

$$
\begin{equation*}
\mathrm{N} \doteq-526: \quad \sin \left(2 h-\mathrm{s}_{\mathbb{G}}-\mathrm{N}_{\mathbb{C}}\right), \tag{4.25}
\end{equation*}
$$

where h is the mean geometric longitude of the sun, mean equinox of date, given in the ESAENA (1973).

In (4.24) the argument S is (Improved Lunar Ephemeris 1952-1959, 1954, p. 402):

$$
\begin{equation*}
S=s_{\sigma}-N_{\mathbb{C}}+\text { periodic terms } . \tag{4.26}
\end{equation*}
$$

The most predominant part of the periodic terms in (4.26) is that of N and is given approximately by (ibid. p. 407)

$$
\begin{equation*}
\delta S \doteq 7: 4 \cos N_{g} . \tag{4.27}
\end{equation*}
$$

Combining (4.24, -25, -25, -27) one obtains

$$
\begin{equation*}
B_{G}^{\prime \prime} \doteq 18519: 7 \sin \left(s_{G}-N_{\mathbb{C}}+\delta S\right)-526: \sin \left(2 h-s_{G}-N_{\mathbb{C}}\right) . \tag{4.28}
\end{equation*}
$$

Using equations (4.21) and (4.28) the declination of the moon is determined with an accuracy of better than one minute of arc with respect to the values obtained in the
astronomical ephemerides which, in turn, gives an uncertainty in the determination of the radial displacement of the terrain less than 1 cm.

4.5. Hour Angles of the Moon and the Sun.

The hour angle of the moon or the sun can be determined by

$$
\begin{equation*}
H_{*}=S T+\lambda-\alpha_{*}, \tag{4.29}
\end{equation*}
$$

where $S T$ is the mean sidereal time at 00 hours UT, λ is the geographic longitude of the site and a_{*} is the right ascension of the moon or the sun. The sidereal time is given by (ESAENA, 1978)

$$
S T=99: 69098333+36000: 76892 \cdot \mathrm{~T}+3986708333.10^{-4} \mathrm{~T}^{2},(4.30)
$$

where T is in Julian centuries (of 36525 days) elapsed since 1 st January 1900.0 at 12.00 hours of ET. In (4.29) longitude λ is considered positive eastwards.

The right ascension of the sun is given by (4.18) and for the moon by (Melchior, 1966, p.35):
$\alpha_{G}^{\circ}=s_{\mathbb{G}}^{\circ}+\frac{180^{\circ}}{\pi}\left(-0.043 \sin 2 s_{\mathbb{C}}+0.019 \sin N_{\Phi}-0.019 \sin \left(2 s_{G}-N_{\sigma}\right)\right\} .(4.31)$

Equations (4.15) and (4.31) are used in the software to evaluate radial and horizontal displacements given by (4.6), (4.12) and (4.14).

4.6. Polar Motion.

In 1765 Euler had predicted that if the rotation axis of the earth didn't coincide with the axis of maximum moment of inertia; then the axis of rotation would move with respect to the earth with a period of 10 months. This polar motion was first observed in 1891 and in 1895 the International Union of Geodesy (now International Association of Geodesy) established the International Latitude Service (now under the direction of the International Polar Motion Service; IPMS), consisting of five observatories at the latitude of $3.9^{\circ} 08^{\prime}$ north; which have been recording the polar motion until today.

The obsarved polar path is fairly complicated and up to now there is not a clear explanation of it. The mean amplitude of polar motion is about $0 " .2$ but the period is not 10 months as Euler had predicted. Chandler, at the end of the 19 th century found that there are two basic periods; one of 14 months and one of 12 months. The period of 14 months has the same origin as Euler's but is longer because of the deformability of the earth. The other one (12 months) seers to have its origin in the seasonal changes in the redistribution of the mass of the atmosphere. Also, there is a suspicion that the pole moves secularly in the direction of the meridian 75° west.

Two of the major sources of information on polar motion are the International Polar Motion Service (IPMS) and the Bureau International de l' $^{\prime}$ Heure (BIH). Also, data are available from the Doppler Polar Motion Service (DPMS). The BIH produces polar motion data from data of the IPMS and from data provided by a large number of independent observatories. The DPMS is a part of the U.S.A. Department of Defense (DoD) and has no official commitments outside the Department (Henriksen, 1977).

In this study, information for polar motion was obtained from BIH Circular D smoothed values of pole position based on the "1979 BIH system". The Circular D publication of BIH is published monthly and contains smoothed and raw values of JT1-UTC, UT2-UTC and coordinates of the pole (BIH Annual Report for 1979, 1980).

Simultaneous computations of UT1 and polar motion were initiated by BIH in 1967, based on available data in 1966-1967. The initial solution was affected by annual errors due to star catalogues, errors in the astronomical constants, refraction and instrumental effects (BIH Annual Report for 1979 , 1980). In the BIH annual report for 1978 , recommendations were included for corrections to UT1 and pole position from the annual errors. The correction for UT1 was based on EROLD (Earth ROtation by

Lunar Distances) results and the corrections for the coordinates of the pole were based on the results of Doppler observations of TRANSIT satellites. The corrected values of the polar path form the so called "1979 BIH system". The maximum systematic errors remaining in UT1 and polar coordinates in the "1979 BIH system" should be of the order of 0.01 seconds and $0 " .001$ respectively, for the period 1972-1979 (BIH Annual Report for 1979, 1980).

The computational procedure used in the software provided by the M.I.T. Department of Earth and Planetary Sciences, is the Lagrangian interpolation, using cubic polynomials. Each time the pole position is desired, the Lagrange's interpolation is used for four values of the pole position; two before and two after the desired time (R. B. Langley, personal communication). The time interval between the known values is five days, although a monthly separation could be used with less precise results. The values of the pole coordinates x, y are known at four epochs $t_{i}, t_{2}, t_{3}, t_{4}$. A cubic polynomial P has to be determined to satisfy the following conditions for the x coordinate:

$$
P_{x}\left(x_{1}\right)=x\left(t_{1}\right), P_{x}\left(x_{2}\right)=x\left(t_{2}\right), P_{x}\left(x_{3}\right)=x\left(t_{3}\right), P_{x}\left(x_{4}\right)=x\left(t_{4}\right)(4.32)
$$

and for the y coordinate
$P_{y}\left(t_{1}\right)=y\left(t_{1}\right), P_{y}\left(t_{2}\right)=y\left(t_{2}\right), P_{y}\left(t_{3}\right)=y\left(t_{3}\right), P_{Y}\left(t_{4}\right)=y\left(t_{4}\right) \cdot(4 \cdot 33)$
These polynomials; if they exist, are unique (Apostol; 1962) and they are determined by the formulae

$$
\left.\begin{array}{l}
P_{x}(t)=\sum_{k=1}^{4} x\left(t_{k}\right) L_{k}(t), \\
P_{y}(t)=\sum_{k=1}^{4} y\left(t_{k}\right) L_{k}(t) \tag{4.34}
\end{array}\right\}
$$

Each of the above formulae is called Lagrange's interpolation formulz. $L_{k}(t)$ is determined by

$$
\begin{equation*}
L_{k}(t)=\prod_{\substack{j=1 \\ j \neq k}}^{4} \frac{t-t_{j}}{t_{k}-t_{j}} \tag{4.35}
\end{equation*}
$$

where t is the desired time for the interpolation, which in the present model, satisfies the inequality

$$
\begin{equation*}
t_{2}<t<t_{3} \tag{4.36}
\end{equation*}
$$

The above interpolation scheme was used in GEOAIM to give values for the oole position.

CHAPTER V
COMPUTATIONAL RESULTS

5.1. Gravity Perturbations due to Body Tide and Ocean Loading.

The mathematical model for the body tide developed in this study was tested against Merriam's model (Merriam, 1978) and against actual recordings of the gravity perturbation at the Universitv of New Brunsirick, using the recording gravimeter LaCoste and Romberg G-28. The comparisons indicated that there are small differences of the order of a few μ Gals between Merriam's and that developed in this study. Both models gave quite similar results to the actual gravity perturbations (Fig. 5.1).

The mathematical model for the load effects was indirectly tested $\exists g$ ginst existing determinations of the load effect on gravity, based on actual data, since gravity perturbations are the only ones which can be determined with high enough accuracy. Observed gravity perturbations of the semidiurnal principal lunar tide $\left(M_{2}\right)$ were used for comparisons.

BODY TIDE GRAVITY CORRECTION
U. K. B., FREDERICTON

JULYं 1982

Fig. 5.1

As it can be seen (Table 5.1), the M_{2} amplitudes for inland points such as Alice Springs and Potsdam are almost identical with the observed. There is still a very good agreement at the $0.5 \mu \mathrm{Gal}$ level for points situated about 100 km from the coast (Canberra; Brussels, Mizusawa). The predicted phases for these stations are also in good agreement with the observed phases: :This agreement appears to be better than that obtained by Goad (1979).

Including all the stations listed in Table 5.1; the mean of the absolute lifferences of the amplitudes between the observed and those obtained in this study is $0.53 \mu \mathrm{Gal}$ witi a root-mean-square (rms) scatter of 0.56 μ Gal. Excluding La Jolla, which is a coastal point, the nean reduces to $0.32 \mu \mathrm{Gal}$ with an r⿴s scatter of 0.19 μ Gal. Goad (1979) obtained z mean difference of $0.43 \mu \mathrm{Gal}$ with an rms scatter of $0.36 \mu \mathrm{Gal}$ both including and excluding La Jolla. In other words, the comparison using La Jolla does not affect his results. For the phases, a mean of the absolute differences of $3^{\circ} .5$ with an rms scatter of 5° was obtained in this study (all stations included). Goad (1979) gave $11^{\circ} .8$ for the mean with an rms scatter of 8 ㅇ. 5 .

OBSERVATION SITE	observed		THIS STUOY		$\frac{G O A D}{\operatorname{amR}}$	$\begin{aligned} & \text { (1979) } \\ & \hline \text { phase } \\ & \hline \end{aligned}$
	amp:	phase	amp.	phase		
la jolla ${ }^{\text {a }}$	3.64	-81^{1}	1.68	-84^{1}	3.35	-96^{1}
Pinon Flat ${ }^{4}$	1.42	-74^{1}	0.90	-75^{1}	1.74	-107
Alice Springs ${ }^{\text {s }}$	0.53	-48^{2}	0.60	-46^{2}	0.02	41^{2}
Canberras	3.57	-41^{2}	3.32	-58^{2}	2.35	-56^{2}
Brussels ${ }^{6}$	2.02	60^{3}	1.53	59^{3}	2.02	66^{3}
Halferdange ${ }^{\top}$	1.81	55^{3}	1.31	54^{3}	1.90	59^{3}
Potsdam ${ }^{8}$	0.86	44^{3}	0.88	43^{3}	1.30	38^{3}
Mizusawa ${ }^{\text {a }}$	1.82	46^{3}	2.21	44^{3}	223	56^{3}
- Amplitudes in μ Gals			$S_{\text {Melchior }}$ (1978)			
'Groormich phaso lag in local time			${ }^{6}$ Matchior ot at (1976)			
${ }^{3}$ Phase lead with respect to the thoordical tide			${ }^{8}$ Altmann ot al. (1977)			
			Sources of obsorved tide Hosoyama			

Table 5.1

5.2. Terrain Deformations and VLBI.

It was in 1967 that the first successful measurements using very long baseline interferometry (VLBI) were made. Nowadays, it is possible using this technique, to measure transcontinental distances with a precision of a few centimetres. A VLBI system consists of an array of at least two antennae that observe the same set of compact extragalactic radio sources (such as quasars) simultaneously. These radio sources are at a grate enough distance from the earth to allow the assumption of being at infinity with negligible proper motion. The radio source is weak and so large directional antennae of between 20 and 40 metres in diameter have in general been used for reception. Because the signal is coming from sources essentially at infinity, it reaches the earth in the form of plane wave-fronts and it is this property that is used for the VLBI observations (Fig. 5.2).

The basic observables in geodetic VLBI experiments are (i) the difference in times of arrival at two antennae of a signal from the source; and (ii) the rate of change of this time difference. The first one can be a phase-delay difference or a group-delay difference. The phase-delay difference is obtained through phase measurements which generally are very precise but ambiguous (because of the difficulty to resolve the " $2 \pi n "$ problem), and the group-

Fig. 5.2
Earth deformation and VLBI geometry.
delay which is less precise but unambiguous, determined by the rate of change of phase-delay with frequency. The rate of change of the phase delay is called fringe frequency and is due principally to the earth's rotation. It is nothing else but the classical differential Doppler shift of the frequency of the signal between the moving antennae (Cannon, 1978).

The situation encountered in VLBI is actually far more complicated than simply observing phase-delays and fringe frequencies. There are a lot of geodynamic phenomena as well as small effects due to the observing systems, which affect the observations and knowledge of them is necessary to reduce the uncertainties of the determination of baselines to the centimetre level. Geodynamic effects include precession and nutation of the earth, crustal motions, body tides, ocean loading, variations in the rate of rotation of the earth and polar motion. In the second category, clock instabilities, source characteristics and propagation medium effects dominate. Under the heading of geodynamic phenomena, only body tides, ocean loading and polar motion are considered in the present study.

Due to the very long distances between the VLBI antennae, the effects of body tide and ocean loading are different at each site. Simultaneous observations of a
radio source give phase-delays and fringe frequencies pertaining to the baseline $A^{\prime} B^{\prime}$ (Fig. 5.2, page 51). In Fig. 5.2 the three orthogonal vectors at each site indicate the deformation of the terrain due to both body tide and ocean loading expressed in a local coordinate system. The $x-y$ plane is perpendicular to the local vertical at the site $(x-$ is positive towards west and y is positive towards north) and z axis along the local vertical (positive outwards). In order to determine the unperturbed length of the baseline $A B$, the radial as well as the horizontal displacements (north-south, east-west) must be known.

The deformations due to body tide and ocean loading are entered into the VLBI programme in terms of three components $3 s$ described zhove, expressed in local coordinate system. This system is rotated so that it becomes parallel to the geocentric coordinate system in which the components of the VLBI baselines are expressed. If $\overrightarrow{\Delta S}_{A}$ is the vector for the displacement of the terrain at z station $A\left(\phi_{A}, \lambda_{A}\right)$ due to body tide and ocean loading expressed in the geocentric coordinate system, one can write

$$
\overrightarrow{\Delta S}_{A}=\left[\begin{array}{c}
\Delta X_{A} \tag{5.1}\\
\Delta Y_{A} \\
\Delta Z_{A}
\end{array}\right]=\left[\begin{array}{c:c:c}
\sin \phi_{A} \cdot \cos \lambda_{A} & -\sin \lambda_{A_{1}} & \cos \phi_{A} \cdot \cos \\
\hdashline \sin \phi_{A} \cdot \sin \lambda_{A} & \cos \lambda_{A_{1}} & \cos \phi_{A} \cdot \sin \\
\lambda_{A} \\
\hdashline-\cos \phi_{A} & 0 & \sin \phi_{A}
\end{array}\right]\left[\begin{array}{l}
v_{N-S}^{A} \\
N \\
v_{A} \\
E-W \\
u^{A}
\end{array}\right],
$$

where V_{N-S}^{A}, V_{E-W}^{A} are the horizontal displacements of the terrain due to body tide and ocean loading in north-south and east-west directions respectively and u^{A} is the radial displacement. All three displacements are expressed in a local left-handed coordinate system (Subsection 4.3) and can be obtained by

$$
\left.\begin{array}{l}
v_{N-S}^{A}=v_{\phi}+v_{\phi}^{\prime} \tag{5.2}\\
v_{E-W}^{A}=v_{\lambda}+v_{\lambda}^{\prime} \\
u^{A}=u_{0}+u_{\ell}^{\prime}
\end{array}\right\}
$$

where u_{0}, v_{ϕ} and v_{λ} are given by (4.7), (4.12) and (4.14). respectively. The displacements $u_{\ell}^{\prime}, v_{\phi}^{\prime}$ and v_{λ}^{\prime} due to load can be :ritten as a supernosition of six harmonic terms as follows:

$$
\left.\begin{array}{l}
u_{l}^{\prime}=\sum_{i=1}^{6} \xi_{i}^{\ell} \cos \left(\omega_{i} t+v_{i}-\delta_{i}^{l}\right), \\
v_{\phi}^{\prime}=\sum_{i=1}^{6} \xi_{i}^{\phi} \cos \left(\omega_{i} t+v_{i}-\delta_{i}^{\phi}\right), \tag{5.3}\\
v_{i}^{\prime}=\sum_{i=1}^{6} \xi_{i}^{\lambda} \cos \left(\omega_{i} t+v_{i}-\delta_{i}^{\lambda}\right),
\end{array}\right\}
$$

Subscript i in the above formulae denotes the constituent, superscripts ℓ, ϕ, λ denote radial, northsouth and east-west displacements respectively, ξ and δ are the amplitude and the Greenwich phase lag of the deformation obtained by the software developed in this study (Appendix G); ω_{i} and V_{i} are the frequency and the
astronomical argument of the constituents respectively and t the universal time (UT). In order to derive an analytical expression for the effect of load on the baseline length it is expedient to express radial, northsouth and east-west displacements in the direction of the baseline. For simplicity, only one of the loading constituents is considered for the derivation of the analytic expression. For the rest of the constituents the same formulae can be used by changing only the frequency. Consider a 3-D Cartesian coordinate system parallel to the geocentric system with origin at one end of the baseline (Fig. 5.3). Let X, Y and Z be the components of the baseline, α the direction angle of the projection of the baseline onto the $X-Y$ plane with respect to X axis and β the direction angle of the baseline with respect to Z axis. Let $\delta X_{A}, \delta y_{A}$ and δz_{A} be the variations of the coordinates of point A of the baseline due to load and $\delta S_{x}, \delta S_{y}, \delta S_{z}$ the projections of the above variations on the baseline. From Fig. 5.3 one can write

$$
\left.\begin{array}{l}
\delta S_{x}=\frac{\delta x_{A}}{\sin \beta \cdot \cos \alpha}, \tag{5.4}\\
\delta S_{y}=\frac{\delta y_{A}}{\sin \alpha \cdot \sin \beta}, \\
\delta S_{z}=\frac{\delta z_{A}}{\cos \beta},
\end{array}\right\}
$$

where

Fig. 5.3. Load effect on baseline length. Coordinate system parallel to geocentric system.

$$
\left.\begin{array}{rl}
\tan \alpha & =\frac{y}{X} \tag{5.5}\\
\tan \beta & =\frac{\left(x^{2}+y^{2}\right) 1 / 2}{z}
\end{array}\right\}
$$

From (5.1) one gets

$$
\begin{align*}
& \delta x_{A}=\sin \phi_{A} \cos \lambda_{A} v_{\phi}^{\prime}-\sin \lambda_{A} v_{\lambda}^{\prime}+\cos \phi_{A} \cdot \cos \lambda_{A} u_{l}^{\prime}, \\
& \delta y_{A}=\sin \phi_{A} \sin \lambda_{A} v_{\phi}^{\prime}+\cos \lambda_{A} v_{\lambda}^{\prime}+\cos \phi_{A} \sin \lambda_{A} u_{l}^{\prime}, \tag{5.6}\\
& \delta z_{A}=-\cos \phi_{A} v_{\phi}^{\prime}+\sin \phi_{A} u_{l}^{\prime} .
\end{align*}
$$

Setting

$$
\begin{aligned}
& a=\sin \phi_{A} \cos \lambda_{A} \\
& b=-\sin \lambda_{A}, \\
& c=\cos \phi_{A} \cos \lambda_{A} \\
& d=\sin \phi_{A} \sin \lambda_{A} \\
& e=\cos \lambda_{A} \\
& f=\cos \phi_{A} \sin \lambda_{A} \\
& i=-\cos \phi_{A} \\
& p=\sin \phi_{A}
\end{aligned}
$$

one obtains from (5.6)

$$
\left.\begin{array}{l}
\delta x_{A}=a v_{\phi}^{\prime}+b v_{\lambda}^{\prime}+c u_{e}^{\prime}, \tag{5.8}\\
\delta y_{A}=d v_{\phi}^{\prime}+e v_{\lambda}^{\prime}+f u_{l}^{\prime} \\
\delta z_{A}=k v_{\phi}^{\prime}+p u_{l}^{\prime} .
\end{array}\right\}
$$

Equations (5.8) describe harmonic motions along $X ; Y$ and Z axes. Considering only one constituent of the load effect, (5.3) can be written as

$$
\left.\begin{array}{l}
u_{l}^{\prime}=\xi^{\ell} \cos \left(\omega t+v-\delta^{\ell}\right) \tag{5.9}\\
v_{\phi}^{\prime}=\xi^{\phi} \cos \left(\omega t+v-\delta^{\phi}\right) \\
v_{\lambda}^{\prime}=\xi^{\lambda} \cos \left(\omega t+v-\delta^{\lambda}\right)
\end{array}\right\}
$$

Combining (5.8) and (5.7) one obtains
$\delta x_{A}=a^{\prime} \cos \left(\omega t+v-\delta^{\phi}\right)+b^{\prime} \cos \left(\omega t+v-\delta^{\lambda}\right)+c^{\prime} \cos \left(\omega t+v-\delta^{\ell}\right)$,
$\delta y_{A}=d^{\prime} \cos \left(\omega t+v-\delta^{\phi}\right)+e^{\prime} \cos \left(\omega t+v-\delta^{\lambda}\right)+f^{\prime} \cos \left(\omega t+v-\delta^{\ell}\right)$,
$\delta z_{A}=k^{\prime} \cos \left(\omega t+v-\delta^{\phi}\right)+p^{\prime} \cos \left(\omega t+v-\delta^{\ell}\right)$,
where

$$
\begin{align*}
& a^{\prime}=a \xi^{\phi}, \quad e^{\prime}=e \xi^{\lambda}, \\
& b^{\prime}=b \xi^{\lambda}, \quad f^{\prime}=f \xi^{\ell}, \\
& c^{\prime}=c \xi^{\ell}, \quad k^{\prime}=k \xi^{\phi}, \tag{5.11}\\
& d^{\prime}=d \xi^{\phi}, \quad p^{\prime}=p \xi^{\lambda} .
\end{align*}
$$

The first of the equations (5.10) can be written as

$$
\begin{equation*}
\delta x=\delta x_{1}+c^{\prime} \cos \left(\omega t+v-\delta^{l}\right), \tag{5.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta x_{1}=a^{\prime} \cos \left(\omega t+v-\delta^{\phi}\right)+b^{\prime} \cos \left(\omega t+v-\delta^{\lambda}\right) \tag{5.13}
\end{equation*}
$$

Equation (5.13) expresses a superposition of two harmonic motions with the same frequency and direction but with different phase. The result is a harmonic motion of the same frequency but with different amplitude and phase and can be written as

$$
\begin{equation*}
\delta x_{1}=a \cos \left(\omega t+v-\theta_{1}\right), \tag{5.14}
\end{equation*}
$$

where

$$
\begin{equation*}
a^{\prime \prime}=\left\{\left(a^{\prime}\right)^{2}+\left(b^{\prime}\right)^{2}+2 a^{\prime} b^{\prime} \cos \left(\delta^{\phi}-\delta^{\lambda}\right)\right\}^{1 / 2} \tag{5.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan \theta_{1}=\frac{a^{\prime} \sin \delta^{\phi}+b^{\prime} \sin \delta^{\lambda}}{a^{\prime} \cos \delta^{\phi}+b^{\prime} \cos \delta^{\lambda}} . \tag{5.16}
\end{equation*}
$$

Substituting (5.14) into (5.12) and following the same procedure one obtains

$$
\begin{equation*}
\delta x=A_{x} \cos \left(\omega t+V-\theta_{x}\right) \tag{5.17}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{x}=\left\{\left(a^{\prime \prime}\right)^{2}+\left(c^{\prime}\right)^{2}+2 a^{\prime \prime} c^{\prime} \cos \left(\theta_{1}-\delta^{\ell}\right)\right\}^{1 / 2} \tag{5.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan \theta_{x}=\frac{a^{\prime \prime} \sin \theta_{1}+c^{\prime} \sin \delta^{\ell}}{a^{\prime \prime} \cos \theta_{1}+c^{\prime} \cos \delta^{\ell}} \tag{5.19}
\end{equation*}
$$

Equation (5.17) gives the effect of loading along the X axis corresponding to one component. Combining the first of the equations (5.4) with (5.17) one obtains for the effect of load along the baseline due to the X component of load:

$$
\begin{equation*}
\delta S_{x}=\frac{A_{x} \cos \left(\omega t+v-\theta_{x}\right)}{\sin \beta \cos \alpha} . \tag{5.20}
\end{equation*}
$$

Similarly, one obtains for δ_{y}

$$
\begin{equation*}
\delta S_{Y}=\frac{A_{y} \cos (\omega t+V-\theta)}{\sin \alpha \sin B} . \tag{5.21}
\end{equation*}
$$

A_{y} and θ_{y} can be obtained from (5.15), (5.18) and (5.19) by changing $a^{\prime}, b^{\prime}, c^{\prime}$ with $d^{\prime}, e^{\prime}, f^{\prime}$ respectively. For δS_{z} one obtains

$$
\begin{equation*}
\delta S_{z}=\frac{A_{z} \cos \left(\omega t+V-\theta_{z}\right)}{\cos B} \tag{5.22}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{z}=\left\{k^{\prime}+p^{\prime}{ }^{2}+2 k^{\prime} p^{\prime} \cos \left(\delta^{\phi} \delta^{l}\right)\right\}^{1 / 2}, \tag{5.23}\\
& \tan \theta_{z}=\frac{k^{\prime} \sin \delta^{\phi}+p^{\prime} \sin \delta^{l}}{k^{\prime} \cos \delta^{\phi}+p^{\prime} \cos \delta^{l}} . \tag{5.24}
\end{align*}
$$

The total load effect at one station, along the baseline is given by the superposition of (5.20), (5.21) and (5.22) :

$$
\begin{equation*}
\delta S=A \cos (\omega t+V-\theta) \tag{5.25}
\end{equation*}
$$

where

$$
\begin{align*}
& A=\left\{A_{X Y}^{\prime 2}+A_{X Y}^{\prime 2}+2 A_{X Y}^{\prime} A_{z}^{\prime} \cos \left(\theta_{X Y}^{\left.\left.-\theta_{z}\right)\right\}^{1 / 2},}\right.\right. \tag{5.26}\\
& \tan \theta=\frac{A_{X Y}^{\prime} \sin \theta_{X Y}+A_{z}^{\prime} \sin \theta_{z}}{A_{X Y}^{\prime} \cos \theta_{X Y}+A_{z}^{\prime} \cos \theta_{z}} \tag{5.27}
\end{align*}
$$

and

$$
\begin{align*}
& A_{x y}^{\prime}=\left\{A_{x}^{\prime}{ }^{2}+A_{y}^{\prime}{ }^{2}+2 A_{x}^{\prime} A_{y}^{\prime} \cos \left(\theta_{x}-\theta_{y}\right)\right\}^{1 / 2} \\
& \tan \theta_{x y}=\frac{A_{x}^{\prime} \sin \theta_{x}+A_{y}^{\prime} \sin \theta_{y}}{A_{x}^{\prime} \cos \theta_{x}+A_{y}^{\prime} \cos \theta_{y}} \tag{5.28}
\end{align*}
$$

where

$$
\begin{align*}
& A_{x}^{\prime}=\frac{A_{x}}{\sin \beta \cos \alpha}, \\
& A_{y}^{\prime}=\frac{A_{y}}{\sin \alpha \sin \beta}, \tag{5.29}\\
& A_{z}^{\prime}=\frac{A_{z}}{\cos \beta} .
\end{align*}
$$

Using equation (5.25) for both ends of the baseline one obtains

$$
\begin{align*}
& \delta S_{A}=A_{A} \cos \left(\omega t+V-\theta_{A}\right), \\
& \delta S_{B}=A_{B} \cos \left(\omega t+V-\theta_{B}\right) . \tag{5.30}
\end{align*}
$$

Combining equations (5.30) yields

$$
\begin{equation*}
\delta S_{A B}=A_{A B} \cos \left(\omega t+v-\theta_{A B}\right), \tag{5.31}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{A B}=\left\{A_{A}^{2}+A_{B}^{2}+2 A_{A} A_{B} \cos \left(\theta_{A}-\theta_{B}\right)\right\}^{1 / 2}, \\
& \tan \theta_{A B}=\frac{A_{A} \sin \theta_{A}+A_{B} \sin \theta_{B}}{A_{A} \cos \theta_{A}+A_{B} \cos \theta_{B}} . \tag{5.32}
\end{align*}
$$

Equations (5.31) and (5.32) give the effect of load on the baseline length due to one constituent. Similar equations hold for the rest of the constituents. As an example of the effect of load on baseline length, baseline Chilbolton-Owens Valley Radio Observatory was selected (Subsection 5.3, Table 5.2). For this particular baseline, the effect of loading on its length can reach $2.33 \mathrm{~cm}\left(M_{2}: 1.19, S_{2}: 0.23, K_{1}: 0.30,0_{1}: 0.25\right.$, $\mathrm{N}_{2}: 0.25, \mathrm{P}_{1}: 0.11$) due to radial displacement, 0.43 cm $\left(M_{2}: 0.22, S_{2}: 0.08, K_{1}: 0.06, O_{1}: 0.02, N_{2}: 0.03, P_{1}: 0.02\right)$ due to north-south displacement and $0.78 \mathrm{~cm}\left(M_{2}: 0.36\right.$, $\left.S_{2}: 0.10, K_{1}: 0.11,0_{1}: 0.11, \mathbb{N}_{2}: 0.07, P_{1}: 0.03\right)$ due to eastwest displacement.

The uncertainty in polar motion affects only the direction of the baseline, which is usually expressed by declination and longitude. This is because polar motion affects only the orientation of the orthogonal coordinate system.

OCEAN TIDE LOADING DEFORMATIONS
CANADIAN VIBI ARRAY

	A	R	0	0	$V \quad R$	0	C H			$E \cdot W^{3}$
	VERTICAL	$\mathrm{N} \cdot \mathrm{S}^{2}$	E.W ${ }^{3}$	VERTICAL	NS^{2}	E.W ${ }^{3}$	VERTI	Tcal	$\mathrm{N} \cdot \mathrm{S}^{2}$	
	Amp iphaso	Amp iptaso	Amp Phase	Amp Prase	Amp Phase	Amp IPrase	Amp	Praso	Amp Phaso	Amp iphase
M2	$0.54: 158.87$	$0.06: 169.05$	0.16 350.40	0.57 $39^{\circ} 29$	$0.37{ }^{1} 272.94$	0.17: 44.40	1.92	302. 13	0.01 1342.53	0.64
S2	0.20194 .02	$0.021223^{\circ} 26$	0.03 1333.31	0.04 131.69	0.14 28646 	0.04:118:204	0.40	[349.94	$0.02: 11.50$	0.19:0.51
K1	0.26: 7.17	\% 0.021300 .87	0.04 98.5	0.88 42.24	0.01: 8.33	0.24 ตio4	0.51	119436	0.06 1239.84	0.19 ก90\% 22
01	0.16 0.21	$\begin{array}{l:l}0.01 & 6.62\end{array}$	0.02 64.52	(1) 0.52 26.07	0.07 1257.54	0.14: 50.76	0.53	$160^{\circ} 62$	0.001147 .09	$0.18{ }^{1859.10}$
N2	0.09 155.33	0.011600^{1}	0.05 3326.06		$0.081256^{\circ} 9$	0.031359 .30	0.36	\%269.38	0.02	0.12
P1	0.10:1157	0.09	0.01 94.78	a31: 11.82	0.04: 50.46	0.08: 62.12	0.17	195.74	0.0012030	0.07

'Positive upwards
${ }^{2}$ Positive northwards
${ }^{3}$ Positive westwards

Table 5.2
Amplitudes (in centimetres) and Greenwich Phases

The coordinates of the pole are entered into the VLBI programme in terms of x and y, in milliarcseconds. Then the Wobble matrix, which is used in the programme, reads (Langley, 1979):

$$
W=\left[\begin{array}{ccc}
1 & 0 & -x \tag{5.33}\\
0 & 1 & y \\
x & -y & 1
\end{array}\right]
$$

In the wobble matrix, x and y are in radians and they are determined by equations (4.34). The wobble matrix transforms coordinates expressed in the earth-fixed coordinate system to coordinates in a system defined by the instantaneous pole of rotation and the Greenwich mean astronomic meridian (GMAM).

5.3. The Canadian VLBI Array.*

The Canadian VLBI array consists cf three stations: Algonquin Radio Observatory (ARO), Lake Traverse, Ontario; Owens Valley Radio Observatory (OVRO), Big Pine,

[^0]

Fig. 5.4
An equatorial projection of the Canadian VLBI array (Langley, 1979).

California; and Chilbolton Observatory (CHIL), Chilbolton, England (Fig. 5.4). This system was used in seven observing sessions between February 1975 and January 1978 (Langley, 1979). The observations were made at frequencies near 10 GHz . Two of the observing sessions yielded good quality data (fringe frequency and delay) and have been analysed in the past. The observing session in May 1977 was used to test the body tide, ocean loading and polar motion models developed in this study. Unfortunately very little can be concluded because of the noisy data and the resulting large standard errors of the baseline lengths which vary from 43 cm (CHIL-ARO) to 80 cm (OVRO-ARO).

Applying only the body tide model developed in this study, there is a considerable difference in the components of the baselines with those obtained by Merriam's model (Langley, 1979), ranging from -47 cm to +14 cm (Figures 5.5, $-6,-7$) and for the baseline lengths from +4 cm (OVRO-ARO) to +11 cm (CYIJ,-OVRO) (Fig. 5.8). The rms scatter of the delay-rate residuals decreases oy 9.2×10^{-5} picoseconds/sec and of the group-delay residuals increases by 3 picoseconds (1 cm). There is an improvement in the distribution of the standardized delay rate residuals when one applies the present body tide model. The x^{2} test on the standardized delay rate residuals passes while previously it failed. The

Fig. 5.5. Canadian VLBI Array.

A--No Tidal Correction applied.
B--Body Tide Correction applied (previous model).
C-- Body ride Correction applied (present study).
D-- Body Tide and Ocean Loading Corrections applied.

Fig. 5.6. Canadian VLBI Array.

A--No Tidal Correction applied.
B-- Body Tide Correction applied (previous model).
C-- Body Tide Correction applied (present study).
D-- Body Tide and Ocean Loading Corrections applied.

VARIATION OF \quad-COMPONENT

Fig. 5.7. Canadian VLBI Array.
A--No Tidal Correction applied.
B-- Body Tide Correction applied (previous model).
C-- Body ride Correction applied (present study).
$0-$ - Body Tide and Ocean Loading Corrections applied.

baSEline length variation

Fig. 5.8. Canadian VLBI Array.
A--No Tidal Correction applied.
B-- Body Tide Correction applied (previous model).
C-- Body Tide Correction applied (present study).
D--Body Tide and Ocean Loading Corrections applied.
distribution of the group delay residuals remains almost unchanged.

Applying load corrections, no significant change appears in the results. A change in the baseline components, ranging from -8.3 mm to +9 mm and in the baseline lengths from 0.0 mm to -2.5 mm was found. The standard errors for the components as well as for the baseline lengths improved slightly, although the improvement is less than 1 cm .

Polar motion affects only the orientation of the baselines and a maximum difference of 0 . 010 was found in the declination, from the previous version, which used a constant value for the pole position for the whole observation period.

The computational efficiency of the Canadian VLBI programme (Appendix G) increases significantly. The simplicity of the body tide model developed in this study, increases the computational efficiency by 25% with respect to the previous version. Routine TIDEUP (Fig. G.2, Appendix G) evaluates the deformation of the lithosphere in terms of radial, north-south and east-west components due to body tide and ocean loading. Entry DISP evaluates the body tide deformation. Routine LOAD evaluates the load effect, which is stored in terms of amplitudes and phases. The coordinates of the pole are
evaluated from routine WOBRED. The total computer time for the modified GEOAIM is now used as follows; 83.0\% least squares adjustments and other corrections (e.g. precession and nutation); 1.4% body tide corrections; 1.4% ocean loading corrections; and 14.2% polar motion corrections.

The total time (CPJ) for the VLBI programme is now 35.27 seconds for the 180 observations. For the previous version it was 39.5 seconds including only body tide corrections.

Results of the effect of the ocean loading using (3.12) and (3.13) on the three stations of the Canadian VLBI array are presented in Table 5.2 (p. 63). Also, corange and co-tidal charts for the radial displacements for North America are presented in Figures A. 1 to A. 12 (Appendix A). Co-range maps for north-south and eastwest displacements were also produced for North America (Figures A. 13 to A.24).

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The objectives of the work undertaken for this thesis were to develop a mathematical model for the evaluation of the deformation of the terrain due to body tide and ocean loading; to derive an approximation procedure for polar motion; and to update the Canadian VLBI software package (GEOAIM) to account for the above effects.

Green's functions were derived for radial and horizontal displacements due to load as well as for gravity perturbations and tilt. These functions were based on the Green's functions published by Farrell (1972) for the Gutenberg-Bullen A earth model. They were derived under the assumptions that the points of interest are at least 100 km from the coast and that the earth responds elastically under tidal frequencies.

To test the derived G̛reen's functions, gravity perturbations were determined for eight stations from Aifferent points of the earth. At these stations, gravity perturbations due to ocean loading have been determined in the past with high accuracy, from actual observations.

The comparisons show very good agreement. A mean absolute difference between the observed and predicted effects for inland locations of $0.32 \mu \mathrm{Gal}$ with an rms scatter of $0.19 \mathrm{\mu Gal}$ was obtained.

The Green's functions tabulated by Farrell (1972) were interpolated for intermediate values of ψ; using cubic splines. There is some room here for improvements in this procedure. An approximating function for the Green's functions computed by Farrell or even better for the Green's functions derived nere (which seem to be smoother) would be computationally more efficient.

The body tide model develoned here gives results (in three dimensions) with an accuracy of 1 cm . Its algorithm is simpler than that of Merriam's (1978) and consequently more efficient, since it reduces the somputer processing time of GEOAIM by 25% with respect to the previous version.

Polar motion was determined using data based on the "1979 BIH system" and Lagrangian interpolation of four values separated by five days centered at the time of observation. The software for the interpolation was developed in the M.I.T. Department of Earth and Planetary Sciences and has been modified by the author to fit the Canadian VLBI programme. The data for the pole position are stored on tape. A transfer of these data on disk in a
form of a direct access file would improve the computational efficiency.

The use of the above models with the Canadian VLBI data didn't show any significant change in the results, due to the large standard errors. Another set(s) of good quality data could be used such as, Mk III with a repeatability in the determination of the baseline lengths of a few centimetres.

Dcean tile loading is a rather complicated phenomenon and it has been studied by several investigators. Here; in this study, only a simple view of the mechanism of the phenomenon was given, allowing some simplifying assumptions to be mall. The ef:zct becones even nore complicated if one considers points near the coast. The thickness of the lithosphere, local geology as well as uncertainties in the ocean tide models near the coast start playing an important role. Further investigations are neaded for the evaluation of the load effect in coastal regions.

With improvements in the VLBI data zquisition system and in the modelling of the load effects a lot can be concluded about the internal constitution of the earth and its response to load.

APPENDIX A

CO-RANGE AND CO-TIDAL CHARTS

Fig. A.1. $\quad M_{2}$ load. Radial displacement in mm .

Fig. A.2. M_{2} load. Radial displacement Greenwich phases (degrees).

Fig. A.3. $\quad S_{2}$ load. Radial displacement in mm .

Fig. A.4. S_{2} load. Radial displacement Greenwich phases (degrees).

Fig. A.5. K, load. Radial displacement in mm.

Fig. A.6. K_{1} load. Radial displacement Greenwich phases (degrees).

Fig. A.7. 0, load. Radial displacement in mm .

Fig. A.8. 0, load. Radial displacement Greenwich phases (degrees).

Fig. A.9. $\quad N_{2}$ load. Radial displacement in mm .

Fig. A.10. N_{2} load. Radial displacement Greenwich phases (degrees).

Fig. A.12. P_{1} load. Radial displacement Greenwich phases (degrees).

Fig. A.13. M_{2} load. $N-S$ displacement in mm .

Fig. A.14. S_{2} load. N-S displacement in mm.

Fig. A.15. K_{1} load. N-S displacement in mm.

Fig. A.16. 0 , load. N-S displacement in mm .

Fig. A.17. N_{2} load. N-S displacement in mm.

Fig. A.18. P_{1} load. $N-S$ displacement in mm .

Fig. A.19. M_{2} load. $E-W$ displacement in mm .

Fig. A.20. S_{2} load. E-W displacement in mm .

Fig. A.21. K_{1} load. E-W displacement in mm.

Fig. A.22. 0_{1} load. E-W displacement in mm .

Fig. A.23. N_{2} bad. E-W displacement in mm .

Fig. A.24. P_{1} load. E-W displacement in mm.

APPENDIX B

RELATIVE TILT OF THE TERRAIN AND OTHER EFFECTS DUE TO OCEAN TIDE LOADING

B.1. Relative Tilt of the Terrain.

The relative tilt of the terrain (observed by terrestrial means) is

$$
\begin{equation*}
\theta_{n}^{R}=\left(1+k_{n}^{\prime}-h_{n}^{\prime}\right) g^{-1} \frac{\partial w_{n}^{L}}{\partial \psi} . \tag{B.1}
\end{equation*}
$$

Combining (B.1) and (2.9) yields

$$
\begin{equation*}
\theta^{R}=\frac{G \sigma}{R^{2} g} \iint_{\text {oceans }} \zeta \sum_{n=0}^{\infty}\left(1+k_{n}^{\prime}-h_{n}^{\prime}\right) \frac{\partial P_{n}(\cos \psi)}{\partial \psi} d s . \tag{B.2}
\end{equation*}
$$

Farrell (1972) gives for tilt (ibid. Eq. 47):

$$
\begin{equation*}
t(\psi)=-\frac{1}{M_{e}} \sum_{n=0}^{\infty}\left(1+k_{n}^{\prime}-h_{n}^{\prime}\right) \frac{\partial P_{n}(\cos \psi)}{\partial \psi} . \tag{B.3}
\end{equation*}
$$

He also tabulates (ibid. Table A3) the following:

$$
\begin{equation*}
\tilde{t}(\psi)=t^{E}(\psi) \quad 10^{12}(R \psi)^{2}, \tag{B.4}
\end{equation*}
$$

where $t^{E}(\psi)$ is the "elastic" tilt and is given by

$$
\begin{equation*}
t^{E}(\psi)=t(\psi)-t^{N}(\psi) . \tag{B.5}
\end{equation*}
$$

Here, $t^{N}(\psi)$ is the Newtonian tilt given by

$$
\begin{equation*}
t^{N}(\psi)=\frac{\cos (\psi / 2)}{4 M_{e} \sin ^{2}(\psi / 2)} \tag{B.6}
\end{equation*}
$$

Following the same procedure as in the derivation of the
gravity kernel one obtains for tilt

$$
\begin{equation*}
K^{\theta^{R}}=\frac{G_{w}}{R_{g}^{2}}\left\{\frac{M_{e}}{10^{12} R^{2}} \frac{\tilde{\tilde{t}}(\psi)}{\psi^{2}}+\frac{\cos (\psi / 2)}{4 \sin ^{2}(\psi / 2)}\right\} \tag{B.7}
\end{equation*}
$$

where $\bar{t}(\psi)$ corresponds to Farrell's tabulated values: $K^{e^{R}}$ is plotted in Fig. B.1. The above formula refers to tilt in the direction of the load. Similar to the horizontal displacement, (3.13) must be used to express tilt in north-south and east-west components. Tilt is considered positive towards load.

B.2. Other Effects.

There are also some other effects of interest arising from the load phenomena. Only a list (VaníXek, 1978) is given here for completeness, since they do not affect significantly VLBI observations.
a. Vertical movement of the equipotential surface with respect to the geocentre (variation in the geoid)

$$
\begin{equation*}
u^{G}=\sum_{n=0}^{\infty}\left(1+k_{n}^{\prime}\right) \frac{w_{n}^{L}}{g} . \tag{B.8}
\end{equation*}
$$

b. Relative movement of the terrain with respect to the equipotential surface (this is observable by terrestrial means)

$$
\begin{equation*}
u^{R}=\sum_{n=0}^{\infty}\left(1+h_{n}^{\prime}-k_{n}^{\prime}\right) \frac{w_{n}^{L}}{g} \tag{B.9}
\end{equation*}
$$

c. Tilt of the terrain in the direction of ψ with respect to its undisturbed position

$$
\begin{equation*}
\theta^{D}=\sum_{n=0}^{\infty} h_{n}^{\prime} g^{-1} \frac{\partial W_{n}^{L}}{\partial \psi} \tag{B.10}
\end{equation*}
$$

d. Tilt of the equipotential surface with respect to its undisturbed position (variation in the deflection of the vertical)

$$
\begin{equation*}
\theta^{G}=\sum_{n=0}^{\infty}\left(1+k_{n}^{\prime}\right) g^{-1} \frac{\partial W_{n}^{L}}{\partial \psi} \tag{B.11}
\end{equation*}
$$

APPENDIX C

EVALUATION OF:LOAD RESPONSE DIRECTLY BENEATH THE LOAD

It has been mentioned in Subsection 2.4; the potential of the load is undefined when the distance between the point of interest and the load becomes zero. This happens when one is interested in evaluating the load effects at the bottom of the sea. This singularity must be treated as a special case.

To evaluate the depression of the bottom of the sea due to tidal waters, in close vicinity to the point of interest (e.g. circular area with radius approximately $\left.0^{\circ} .5\right)$, onee nore the response of the earth to nearly diurnal and semidiurnal frequencies is considered to be elastic. Furthermore, the medium above some starting depth z_{o} is considered as a uniform half-space. A uniform half-space (elastic, isotropic and homogeneous halfspace) can be regarded as a body of revolution whose envelope and lower surface (defined by z_{0}) are not loaded and tend towards infinity; the upper surface is loaded in the axis of the body by a concentrated load (Fig. C.1). In other words, the deformations coming from the load are present only in the half-space, whereas outside of it they are negligible. The depth z_{0} of the lower surface of the uniform half-space depends on the rheology of the medium and the wavelength of the deformation (Farrell;

UNIFORM HALF-SPACE

Fig. C. 1
1972).

For the determination of strains and stresses in a uniform half-space; the following conditions must be satisfied (Suklje; 1969):
a) At infinity $(r \rightarrow \infty)$ stresses vanish and strains are zero.
b) The shear stresses are zero over all the boundary surface $(z=0)$ of the half-space.
c) The normal stresses at this surface are zero also, except at the point of the application of the load.
d) The resultant of stresses acting at the surface of an arbitrary complete segment of the half-space (e.g. at the surface of the hemisphere) has the direction of the z axis and is in equilibrium with the force P.

If R is the radius of the henisphere and θ is the radial distance of the complete segment from z axis, the following solution for the radial displacement holds (Suklje, 1969)

$$
\begin{equation*}
u=\frac{P}{4 \pi R} \frac{1}{\Gamma}\left\{2(1-v)+\cos ^{2} \theta\right\}, \tag{C.1}
\end{equation*}
$$

where Γ is the shear modulus given by (Nadeau, 1964)

$$
\Gamma=\frac{E}{2(1+v)},
$$

E and v are the Young modulus and Poisson's ratio respectively. The Young modulus E is defined as the ratio of a normal force per unit area applied to a body; to its relative longitudinal extension (Nadeau; 1964). Poisson's ratio is defined as the negative ratio of a relative lateral contraction to the relative longitudinal extension.

In order to obtain the radial displacement u_{0} of an arbitrary point P on the axis of a circular loaded area one has (Fig. C.2)

$$
\begin{equation*}
\mathrm{dA}=r \mathrm{~d} \phi \mathrm{dr} . \tag{C.3}
\end{equation*}
$$

The elementary concentrated load is

$$
\begin{equation*}
P=q \cdot d A \tag{C.4}
\end{equation*}
$$

or

$$
\begin{equation*}
P=q \cdot r d \phi d r, \tag{C.5}
\end{equation*}
$$

where q is the load per unit area. Jsing (C.1) and (C.5) one obtains

$$
\begin{equation*}
d u=\frac{q r d \phi d r}{4 \pi R} \frac{1}{\Gamma}\left\{2(1-v)+\cos ^{2} \theta\right\} . \tag{c.6}
\end{equation*}
$$

Integration of (C.6) with respect to ϕ and r yields

$$
\begin{equation*}
u_{0}=\frac{2 a q}{E} \frac{1+v}{\sin \alpha}\left\{2(1-v)-(1-2 v) \cos \alpha-\cos ^{2} \alpha\right\}, \tag{C.7}
\end{equation*}
$$

where a is the radius of the loaded area. In the case of

fig. C. 2
the ocean loading, since the water is incompressible, a is transfered at the bottom of the sea unchanged and thus radial displacement is obtained by (C.7); setting $\alpha=90^{\circ}$:

$$
\begin{equation*}
u_{0}^{L}=\frac{-4 q a}{E}\left(1-v^{2}\right) \tag{C.8}
\end{equation*}
$$

where the minus sign denotes depression. Equation (C.8) can be used to evaluate the load depression coming from an area of radius less than $0: 5$ and centered over the point of interest.

APPENDIX D

DATA SETS

D.1. Ocean Tide Data Set.

The ocean tide data set maintained at U.N.B. contains data for the six leading tidal constituents ($M_{2} ; S_{2}, K_{1}$, $0_{1}, N_{2}, P_{1}$), in the form of amplitudes $\xi_{m, n}^{i}$ (in metres) and Greenwich phases $\delta_{m, n}^{i}$ (in degreas, $0^{\circ}-350^{\circ}$) on a $i^{\circ} 1^{\circ}$ spherical grid system. This data was obtained from the NSWC GOTD-1978 tape. The entire data set $\left(\xi_{m, n}^{i}, \delta_{m, n}^{i}\right)$ is arranged by tables on disk (SEOOO2) in the following form:

There are 168 such files corresponding to the same constituent i. The number of file corresponds to the colatitude number n, which takes values from 1 to 169 . Each of the above tables consists of 360 values corresponding
to the longitude number m. The tidal constants ($\xi_{m, n}^{i}$; $\delta_{m, n}^{i}$) are representatives of the $1^{0} \times 1^{\circ}$ square with geographical centre point $\left(\lambda_{m}, \theta_{n}\right)$ (Schwiderski and Szeto; 1981); where

$$
\begin{aligned}
& \lambda_{m}=(m-095)=\text { East longitude } \quad\left(m=1,2,3, \ldots, 360^{\circ}\right), \\
& \theta_{n}=(n-095)=\text { Co-latitude } \quad\left(n=1,2,3, \ldots, 168^{\circ}\right)
\end{aligned}
$$

For the rest of the constituents, the file number is determined by

```
number of file = n + (i-1)\cdot168
```

where i is the constituent $(i=1,2,3,4,5,5$, and $i=1$ for M_{2}). On land all tidal constants have been set to

$$
\xi_{m, n}^{i}=9.9999, \quad \delta_{m, n}^{i}=999.9
$$

D.2. Polar Motion Data Set.

Polar motion data in "1979 BIH system" are stored on tape PEP583 (1600 bpi, SL), slot 3115 (U.N.B. Computing Centre) file 108 under the name PEPRLL. 191.WOBBIH79.DATA.B1. The rile contains data for the time period January 1969-April 1981.

APPENDIX E

OCEAN TIDE

The instantaneous partial ocean tide is determined by (Schwiderski, 1978)

$$
\begin{equation*}
\zeta_{i}=\xi_{i} \cos \left(\omega_{i} t+v_{i}-\delta_{i}\right) \tag{E.1}
\end{equation*}
$$

where the subscript i denotes the constituent, ξ_{i}, δ_{i} are the amplitude and the Greenwich phase of the $i-t h$ constituent respectively, ω_{i} is the frequency, t is the Universal Time (UT) of day and V_{i} the astronomical argument of the $i-t h$ constituent at 00 hours UT. The mean astronomical argument is given by Schwiderski (1979, 1981 a-1981f) in terms of the mean orbital elements of the moon and the sun. Also, there are tables prepared by the German Hydrographic Irstitute, which give the astronomical argument for each individual constituent at the beginning of each year, at 00 hours $J T$ for the years 1900 to 2000 , incorporating automatically the nodal correction (Godin, 1980). Using these values, t must be the UT elapsed since the beginning of the year.

APPENDIX F

PHASE LAGS

Throughout this study; different definitions for the phases of the load effects were used. Since the phase varies with the time origin chosen for the analysis; it is always a source of confusion. It is expedient to give here the different definitions for the phase.

F.1. Greenwich Phase Lag.

The load effect as any other tidal phenomenon can be written as a superposition of n harmonic terms; e.g. the radial disolacement can be written as

$$
\begin{equation*}
u_{\ell}^{\prime}(t)=\sum_{i=1}^{n}\left\{a_{i} \cos \left(\omega_{i} t+v_{i}\right)+b_{i} \sin \left(\omega_{i} t+v_{i}\right)\right\}, \tag{F.1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
u_{\ell}^{\prime}(t)=\sum_{i=1}^{n} A_{i} \cos \left(\omega_{i} t+v_{i}\left(t_{0}\right)-\delta_{i}\right) \tag{F.2}
\end{equation*}
$$

where ω_{i} is the frequency of the constituent i, t is UT, $V_{i}\left(t_{0}\right)$ is the astronomic argument of the constituent i at 00 hours IJT and δ_{i} is the Greenwich phase lag. The amplitude of the constituent i i.e. A_{i} can be determined by

$$
\begin{equation*}
A_{i}=\left(a_{i}^{2}+b_{i}^{2}\right)^{1 / 2} \tag{F.3}
\end{equation*}
$$

and the Greenwich phase lag by

$$
\begin{equation*}
\delta_{i}=\arctan \frac{b_{i}}{a_{i}} . \tag{F.4}
\end{equation*}
$$

Note here that (F.4) will give the Greenwich phase lag of the i-th constituent if the effect is expressed by (F.1).

Greenwich phase lag is the phase lag between the instant the component in the tidal force reaches its peak and the instant of maximum contribution of the constituent to the local tide. Physically, it is the delay between the time a force is applied and the time it causes maximum deformation (Godin, 1930). Needless to say the Greenwich phase lag is independent of the time origin.

F.2. Greenwich Phase Lag in Local Time.

In some cases it is expedient to use local time instead of $U T$ for t in (F.1). Thus, one must use the Greenwich phase lag in local time for δ_{i}. Suppose that one wants to translate the Greenvich phase lag δ_{i} for a local time zone $2=r$, where r is the number of hours local time is behind iJT. The Greenwich phase lag in local time is given by

$$
\begin{equation*}
\delta_{i}^{r}=\delta_{i}-r \omega_{i}, \tag{F.5}
\end{equation*}
$$

where ω_{i} is the frequency of the constituent i in degrees
per hour.
For stations with east longitude, r is negative.

F.3. Local Phase Lag with Respect to the Theoretical

Tide.

Local phase lag with respect to the theoretical tide is defined as the time elapsed since the transit of the moon or the sun over the local meridian; up to the oscurrence of maximum deformation.

The local time of the transit of the moon or the sun over the local meridian is determined by the hour angle. When the hour angle is zero, the celesti:al body is over the local meridian. The local hour angle in local time can be determined as follows:

$$
\begin{equation*}
H_{\star}^{\text {Local }}=S T-\Delta T+\lambda-\alpha_{\star}, \tag{F.5}
\end{equation*}
$$

where; (a) $S T$ is the sidereal time at 00 hours $J^{m} ;(b) \Delta T$ is the local standard time and is considered nositive east of Greenwich; (c) λ is the longitude of the site and is considered positive east of Greenwich; (d) α_{*} is the right ascension of the celestial body at 00 hours $\mathbb{J T}$ and is taken with its sign.

If τ is the local time at which maximum deformation occurs, then the local phase lag with respect to the
theoretical tide can be determined by

$$
\begin{equation*}
\beta=H_{\star}^{\text {Local }}-\tau . \tag{F.7}
\end{equation*}
$$

If β is positive, the deformation will lead the
theoretical tide.

APPENDIX G

SOFTWARE PACKAGES

```
The programme for the evaluation of the load effects (LOADSDP) is stored on tape (TAPE=TIDE; SLOT=3721; 1600 bpi, NL) as separate subroutines as follows:
FILE 1: SUBROUTINE AMPHA.
FILE 2: SUBROUMINE AREA.
FILE 3: SUBROUTINE AZMTH.
FILE 4: SUBRROUTINE KERNEL.
FILE 5: SUBROUTINE PSIO.
FILE 6: REAL FUNCTION SEVALS.
FILE 7: SUBROUTINE TOAD.
FILE 8: SUBROUTINE TIDE.
Three of the subroutines of GEOAIM which have been changed in this study are also stored on the same tape as follows:
FILE 9: SUBROUMINE FFWDI,Y.
FILE 10: SUBROJTINE RDWRm.
FILE 11: SUBROUTINE WOBRED.
The rest of the subroutines of GEOAIM are stored on another tape ( \(\mathrm{CAPE}=\mathrm{YORKO1}, \mathrm{SLOM}=3441,1600 \mathrm{bpi}, \mathrm{NL})\).
```


PROGRAM LOADSDP
 FLOW CHART
 (U.N.B. MAY '82)

Fig. G. 1

CANADIAN FRINGE FREQUENCY aNd delay analysis program LEAST SQUARES ADJUSTMENT (U.N.B. MAY 1982)

Fig. G. 2
I Pr \bar{P} G R A M M E L $\bar{O} A$ O $\bar{S} D$ D
THIS PROGRAM EVALUATES THE RADIAL AND LATERAL DISPLACEMENTS OF THE TERRAIN DUE OCEAN TIDE LOADING．
COMPUTATIONAL ALGORITHM: CONVOLUTION OF APPROPRIATE GREEN'S
FUNCTIONS XITH KNOWN OCEAN TIDE MODEL.
OCEAN TIDE MODEL : NAVAL SURFACE MEAPONS CENTRE•S
HYOROOYNAMICALLY INTERPOLATED MOOEL
HYOROOYNAMICALLY INT
(SCHWIDERSKI. 1978).
CONSTITUENTS IN USE : M2. S2. K1. O1.N2. P1.
INPUT DATA
$=========$

1. COLAT = CO-LATITUDE OF THE POINT OF INTEREST IN (O MIN SEC).
2. ELONG = EAST LONGITUDE OF THE POINT OF INTEREST IN (D MIN SEC)
3. STN = NAME OF THE STATION (MAXIMUM AO CHARACTERS).
OUTPUT
$=====$
=ニニニニニ
AMPLITUOES (CM) AND GREENYICH PHASE LAGS (DEGREES) FOR EACH OF THE
CONSTITUENTS.
EXTERNALS
=ニニニニニニニ
4. SUBROUTINE LOAD.
5. SUBROUTINE AMPHA.
REFERENCES
=ニニ=ニ===
FARRELL, W.E. (1972): DEFORMATION OF THE EARTH UNOER SURFACE MASS
LOADS REVIEWS OF GEOPHYSICS AND SPACE PHYSICS.
LOADS: REVIEWS OF GEOPHYSI
PAGIATAKIS. S.D. (1982): OCEAN TIDE LOADING. BODY TIDE AND POLAR
MOTION EFFECTS ON VERY LONG BASELINE INTERFEROMETRY
MOTION EFFECTS ON VERY LONG BASELINE INTERFER
$M . S C . ~ T H E S I S . ~ D E P T . ~ O F ~ S U R V E Y I N G ~ E N G I N E E R I N G . ~$
M.SC\& THESIS. DEPT. OF SURVEYING ENGINEERING.
UNIVERSITY OF N. BRUNSMICK. FREDERICTON. N.B.

SN 0002

```
C SCHWIDERSKI. E.W. (IG78): GLOBAL OCEAN TIDES, PART IV: A DETAILED
                                    HYDRODYNAMICAL INTERPOLATION MODEL. NSWC/DL TR-3866,
                                    NAVAL SURFACE WEAPONS CENTRE, DAHLGREN, VA.
    DEVELOPEDGY SPIROS O. PAGIATAKIS. DEPT. OF SURVEYING ENGINEERING.
    IMPLICIT REAL *8 (A-H,O-Z)
    REAL *8 LLAT.LLON.NORTH.LOADUP
    DIMENSION C(6),NORTH(2.0),WEST(2.6),UPLIFT(2.6)
    READ (5,1000) Kl,K2.AK,LI,L2.AL.STN1,STN2.STN3,STN4,STNS
    REAO (5,1001) (C(I).I=1.0)
    GRITE (6.1002) STN1.STN2.STN3.STN4.STNS,K1,K2,AK,L1,L2,AL
    D=3.14159265358979300/180.00
    COL AT = ((( (AK/60)+K2)/60)+K1)
    *OLAT=(N(AK)
    00 30 II=1.6
    J=1
    J=I AII=60.62500
    1O CALL LOAD (COLAT, ELONG.AII.LOADUP,LLAT,LLON,II)
    UPLIFT(JOII)=LOADUP
    NORTH(J.II)=LLAT
    MEST(J.II)=LLON
    AII=AII +0.04166666060660666606660700
        J=J+l
        IF (J.GT.2) GO TO 20
        GO TO 10
        CALL AMPHA (UPLIFT.C.II,AMP.GPL
        WRITE (6.1003) C(II).AMP.GPL
        CALL AMPHA (NORTH,C.II.AMP,GPL)
        MRITE (6.1004) AMP.GPL
        CALL AMPHA (WEST,C,II,AMP,GPL)
        WRITE (G.1005) AMP.GPL
    CONTINUE
    000 FORMAT (13.1X,12.1X.F6.3.3X.13,1X,12.1X,F6.3.3X,5A8)
    1001 FORMAT (13(11)
    OO2 FORMAT (:1.///////.26X
    * OCEAN TIDE LOADING DEFORMATIONS OF THE LITHOSPHERE.
```



```
    * COONSTITUENT
    *E-WOISP. (CM)': (OUTWARDS +) (NORTH +)
    *//.39X. AMP. PHASE
    */!39X,:==== =====
(NORTH +
AMP. PHASE
```


$m+n 0 N$ MmMMM 00000
z Z Z Z いいいのい

$8(2.1)=-0.033834567800$
$8(2,2)=0.866896749100$
$\mathrm{B}(2.3)=-0.61826574100$
$B(2,4)=-0.084415244500$
$8(2,5)=0.999804834300$
$B(2.6)=0.260679751400$

COMPUTE THE AMPLITUDE ANO THE PHASE OF THE CONSTITUENT I I USING
the formulae:
$A M P=\operatorname{SQRT}(A A * * 2+8 B * * 2)$. GPH=ARCTAN(B8/AA).
$A M P=O S Q R T(A A * * 2+B B * * 2)$
$A O=D A B S(A A)$
$B O=D A B S(B A)$
$A R C=D A T A N(B O / A O) * 57.295779513100$
IF (BB.LT.O) GO TO 20
IF (AA.LT.O) GO TO 10
$G P L=A R C$
GO TO 40
10 GPL $=180 \cdot D O-A R C$
GO TO 40
20 IF (AA.GT.O) GO TO 30
$G P L=180 . D O+A R C$
GO TO 40
30 GPL $=360 . D O-A R C$
40 RETURN
END

ISN 0O1O
RETURN

```


1 SN 0003
SN 0004

PSIO=DBLE(PSI)



* \(130 \cdot \cdot 140 \cdot \cdot 150 \cdot 1160 \cdot .170 \cdot 1180.1\)
 \(* 10.53396,6.060144,4.225441\), 3. \(327042,3.466377\), 3.50744 . 3.222597 . \(* 2.74966,2.210661,1.751688,1 \cdot 106537,0 \cdot 7101553,0.4658393,0.3214873\).
 *0.1089537.0.119657.0.1231491.0.1011455,0.626682E-1.0.1.1868154E-1. *-0.2309424E-1.-0.5830476E-1. - 0.0.8478686E-1.-0.1029475.0-0.1130224. \(*-0.1157619,-0.1118291 .-0.1014214,-0.8518505 E-1 .-0.6333833 E-1.0 .0 /\) DATA C/237.749.215.4141.-128.0876.-7.070815.-143.4733.-19.15434. \(*-170.8666 .-122.2634,-165.228,-160.2745,-125.7859 .-96.94793\). *-62.41717.-31.20083.-13.45739.-4.889625.0.3976281.0.2990446. *-0.9373021E-1.
*-0.6183763.-0.563968.-0.5140285. - 0.4039167. -0. 2412346 .
\(*-0.61551482,-0.8916753 E-1 .-0.551844 E-1.1-0.3509115 E-1 .-0.2045537 E-1\).
\(*-0.1551482,-0\).
\(*-0.1208516 E-1\).
\(*-0.1208516 E-1\).
\(*-0.451669 E-2.0\)
*-0.451669E-2.0.2802172E-3.0.9580501E-3.0.1247051E-2.
* \(0.8936205 E-3 .-0.5444141 E-3 .-0.1655951 E-2,-0.219178 E-2\),
*-0.2206885E-2.-0.1970693E-2.-0.1550356E-2. - 0. \(1.1097854 E-2\).
\(*-0.7182224 E-3,-0.2892659 E-3,0.1531781 E-4 \cdot 0.3779658 E-3\).
* O.662805E-3.0.9608315E-3.0.1223836E-2.0.0\%

DATA D/-8272.195,-12722.28.4033.895, -4540.75.4143.964.-2528.536 * \(810.0529,-716.0742 .27 .51896 .287 .406 .192 .253 .230 .205,103.7877\). * \(59.41151,28.5592 .8 .812088,-0.1643058,-0.6546252,-0.4372043 .1\) * \(0.4534025 E-1\). 0.33293E-1.0.7340788E-1.0.5422735E-1.0.2869545E-1. *0.2199357E-1.0.113272E-1.0.6697751E-2,0.4878591E-2.0.27900071E~2,
 *. - 0.4793447E-4.-0.37051121E-4.-0.1778096E-4.-0.5035195E-6. *0. \(7873098 E-5 \cdot 0 \cdot 1401121 E-4 \cdot 0 \cdot 1508339 E-4 \cdot 0 \cdot 126544 E-4 \cdot 0.1429854 E-4\). *0.1015279E-4.0.1208827E-4.0.9494632E-5.0.9934215E-5.0.8766841E-5. *0.9000277E-5.0.01
 \(-14.90999 .-14.40999 .-13.68990,-10.02,-18 \cdot 308.10 .94999 .-9.756999\). - \(-8.519 .-7.532999 .-6.130999,-5.237,-4.659999,-4.272 \cdot-3.998999\). \(*-3.798,-3.64 .-3.392 .-2.998999 .-2.619 .-2.102999 .-1.529999\). * 0. 2919999.0 .8479999 .1 .675999 .2 .083 .2 .057 .1 .642999 .0 .92. *-0.2499999E-i.-1.112.-2.260999.-3.404999.-4.475999.-5.413999. \(*-0.2499999\)
\(*-6.161 .0 .01\)
, TAB1/-0.1089914.0.1084709.2.036993.3.982547.6.032793.7.886245. \(* 11 \cdot 11684 \cdot 13.64647,15 \cdot 2979.16 \cdot 78209.15 \cdot 30119 \cdot 12 \cdot 57496.9 .758868\). * 5. 396829.2.673806,1.157958.0.1846549.0.3984202.0.7566754. *1.1881.1.24091.1.120029.0.9569600.0.6581335.0.4454995.0.295867 * 0.1950311 . \(19.1300093 .0 .8293056 E-1.0 .5426794 \mathrm{E}-1,0.2753351 \mathrm{E}-1\) *0.1201266E-1.0.1291584E-1.0.1720066E-1.0.2328102E-1.0.3261248E-1
 * \(0196917 E=1,0 \cdot 1951079 E-1,0.687588 E-3,-0.1746118 E-1,-0.3044285 E-1\). *-0.3596739E-1. \(-0.3328746 E-1,-0.2378264 E-1,0-0.9282138 E-2\).
* \(0.8111041 E-2,0.266381 E-1\). \(0.4463656 E-1,0.597156 E-1,0\). 01
0. * \(80.99313 .45: 48814,37.04786,-12.28934,-24.74835,-29.77619\). * \(-26 \cdot 54576,-17,07464,-10,15557,-50002902,0,1363839,0.9324422\), * \(0.8588358,0,219727,-0.8770143 E-1,-0.1540607,-0.1720664,0-0.1267665\), *-0.858674E-1,-0.6376487E-1,-0.3707101EE1, -0.2795077E-1., -0.19128E-1 *. \(-0.9534657 E-2,-0.3832558 E-2,-0.4765622 E-4,0.273453 E-3\). * \(0.5835094 E-3 \cdot 0.6325603 E-3,0.3005855 E-3,-0.3649157 E-3,-0.8809212 E-3\) \(*-0.1001399 E-2,-0.8134776 E-3.0 .04846886 E-3 .-0.6776554 E-4\).
*0.3357585E-3.0:6147238E-3.0.8353258E-3.0.903991E-3.0.9487154E-3.
*0.8511305E-3.0.6567731E-3.0.01
OATAD 1/ - \(644.3786,-948 \cdot 2658 \cdot 195 \cdot 935 \cdot 153.0425,-809.0285 \cdot 7.601165\) *- \(591 \cdot 75 \cdot-140 \cdot 6709,-274 \cdot 0954,-103 \cdot 8252 \cdot-33 \cdot 51892 \cdot 21 \cdot 53625\).
 * -0.5325897 . - 0. \(2561906,-0.4423953 E-1,-0.120038 E-1.0 .1509996 E-1\) *0.1363305E-1.0.7367499E-2.0.8897967E-2.0.3040079E-2.0.2940922E-2. *0. \(3197782 E-2.0 .9503499 E-3,0.3154084 E-3,0.2675912 E-4,0.2067041 E-4\), *0.3270068E-5.-0.1106583E-4.-0.2218337E-4.-0.1720017E-4. *-0.4015932E-5.0.6264051E-5,0.1095962E-4.0.1389744E-4.0.134508E-4. *0.929885E-5.0.7353391E-5.0.2288841E-5.0.1490814E-5.
\(*-0.3252829 E-5 .-0.6478581 E-5 .-0.5833412 E-5.0 .0\)
OATAY1/-11.25.-11.25.-11.23999.-11.21.-11.15999.-11.0.1.1.1.10.10.89999. - 10. \(04999 .-10.35999 .-9.368 .-8.722999 .-8.024 .-7.467 .-6.725,-6.333\), * \(-149999 .-6.05 .-5.996999 .-5.880999 .-5.475,-4.980999 .4 .387999\). \(-3.868 .-3.067999 .-2.522999 .-2.156,-1.914999 .-1.753999 .-1.649\).

\(4-1.592,-0.3259999 .-0.2229999 .-0.31,-0.555 .00 .8939999 .-1.246999\).
\(*-0.592,-0.3259999,-0.2229999 .0 .31 .-0.555 .-0.89399990 .182 .0 .057 .0 .0 \%\)
SII=SEVALS(N,PSI, X,Y, B, C.Di/ (PSI\#CI)
 S \(11=\) SEVALS (N,PSI, X,Y, B,C,O)/(PSI*CI)
S \(31=(M E /(R * * 2)) * 1 \cdot D-12 * D B L E(S 11)+0.2720\)
\(S 31=(M E /(R * * 2)) * 1 \cdot D-12 * D B L E(S 11)+0,2720\)
\(S 1=S E V A L S(N, P S I \cdot X, Y 1, B 1 . C 1, D 1) /(P S I * C I)\)
\(S 1=S E V A L S(N ; P S I \cdot X, Y 1, B 1, C 1)\)
\(S 2=-(G * 1 \cdot 027 D O) /(R * G R * 1 \cdot D 4)\)
\(S 3=(M E / R * * 2) * 1 \cdot O-12 * D B L E(S 1)\)
\(K E R=S 2 * S 3\)
RKER=S31*G*1.027D0/(R*1.D4*GR)
RETURN
END

SUBROUTINE LOAD (COLAT, ELONG,AII.LOADUP.LLAT.LLON.II)
SUBROUTINE LOAD COMPUTES THE RADIAL AND LATERAL (N-S. E-N) DISPLACEMENTS OF THE EARTH•S CRUST DUE TO OCEAN TIDE LOAOING. Called from: main.

INPUT
=ニ===
1. COLAT = COLATITUDE OF THE POINT OF INTEREST IN RADIANS. 2. ELONG = EAST LONGITUDE OF THE POINT OF INTEREST IN DEGREES. 3. AII = MODIFIED JULIAN DAYS ELAPSED SINCE THE BEGINNING OF THE YEAR
output
\(====\)
1. LOADUP \(=\) RADIAL DISPLACEMENT OF THE EARTH'S CRUST IN CM
2. LLAT = NORTH-SOUTH DISPLACEMENT IN CM (POSITIVE NORTMYARDS)
3. LLON = EAST-MEST DISPLACEMENT IN CM (POSITIVE WESTMARDS).

EXTERNALS
==ニ======
1. SUBROUTINE TIDE COMPUTES THE PARTIAL OCEAN TIDAL MEIGMT FOR EACH OF THE FIRST SIX LEADING CONSTITUENTS OF THE TIDAL SPECTRUM.
2. subroutine area computes the area of the mesh cell under CONSIDERATION.
3. SUBROUTINE PSIO COMPUTES THE GEOCENTRIC ANGLE BETMEEN THE POINT OF INTEREST ANO THE POINT OF LOAD.
4. subroutine kernel evaluates the integration kernel CORRESPCNOING TO THE GEOCENTRIC ANGLE PSI DETERMINED BY CORRESPCNDING TO.
5. SUBROUTINE AZMTH COMPUTES THE AZIMUTH CONNECTING THE POINT OF INTEREST AND THE POINT OF LOAD.


SUBROUTINE PSIO（LATA．LONA．LAT，LON．PSI）
```

```
SUBROUTINE PSIO DETERMINES THE SPHERICAL ANGLE PSI, DEFINED BY THE
```

SUBROUTINE PSIO DETERMINES THE SPHERICAL ANGLE PSI, DEFINED BY THE
THE POINT OF INTEREST AND THE POINT OF LOAD.
THE POINT OF INTEREST AND THE POINT OF LOAD.
CALLED FROM: LOAD.
CALLED FROM: LOAD.
INPUT
INPUT
ニ====
ニ====
LATA = CO-LATITUDE OF THE POINT OF INTEREST.
LATA = CO-LATITUDE OF THE POINT OF INTEREST.
LONA = EAST LONGITUDE OF THE POINT OF INTEREST.
LONA = EAST LONGITUDE OF THE POINT OF INTEREST.
LAT = CO-LATITUDE OF THE POINT OF LOAD.
OUTPUT
OUTPUT
=ニ====
=ニ====
PSI = GEOCENTRIC SPHERICAL ANGLE IN DEGREES.
PSI = GEOCENTRIC SPHERICAL ANGLE IN DEGREES.
VARIABLES
VARIABLES
ニ==ニニ====
ニ==ニニ====
LATAO = LATITUDE OF THE POINT OF INTEREST (NORTH OR SOUTH).
LATAO = LATITUDE OF THE POINT OF INTEREST (NORTH OR SOUTH).
LONAO = LONGITUOE OF THE POINT OF INTEREST (EAST OR WEST).
LONAO = LONGITUOE OF THE POINT OF INTEREST (EAST OR WEST).
LATO = LATITUDE OF THE POINT OF LOAD (NORTH OR SOUTH).
LATO = LATITUDE OF THE POINT OF LOAD (NORTH OR SOUTH).
LONO = LONGITUDE OF THE POINT OF LOAD (EAST OR WEST).
LONO = LONGITUDE OF THE POINT OF LOAD (EAST OR WEST).
NOTICES
NOTICES
==ニ=ニ==
==ニ=ニ==
ALL THE INPUT ANGLES AS wELL AS THE varIABLES ARE IN DEGREES.
ALL THE INPUT ANGLES AS wELL AS THE varIABLES ARE IN DEGREES.
NORTH LATITUOE AND EAST LONGITUDE ARE CONSIDERED POSITIVE WHILE
NORTH LATITUOE AND EAST LONGITUDE ARE CONSIDERED POSITIVE WHILE
SOUTH LATITUDE AND WEST LONGITUDE ARE CONSIDERED NEGATIVE.
SOUTH LATITUDE AND WEST LONGITUDE ARE CONSIDERED NEGATIVE.
WRITTEN BY: SPIROS D. PAGIATAKIS, DECEMBER 1981.
WRITTEN BY: SPIROS D. PAGIATAKIS, DECEMBER 1981.
REAL *8 LATA.LATAO.LONA.LONAO.LAT.LATO.LON.LONO,DO.P1,P2
REAL *8 LATA.LATAO.LONA.LONAO.LAT.LATO.LON.LONO,DO.P1,P2
REAL *4 PSI
REAL *4 PSI
OO=3.141559265358979300/180.000
OO=3.141559265358979300/180.000
LATAO=9O-LATA
LATAO=9O-LATA
LATO=9O-LAT

```
    LATO=9O-LAT
```


SUBROUTINE TIDE（NA，K，N，AII．TZ，II）
SUBROUTINE TIDE COMPUTES THE PARTIAL DCEAN TIDE ALL OVER THE GLOBE FOR EACH OF THE FIRST SIX LEADING CONSTITUENTS OF THE TIOAL SPECTRUM．

THE MODEL IN USE IS THE N．S．K．C．HYORODYNAMICALLY INTERPOLATEO MODEL DEVELOPED BY SCHMIDERSKI（1978）．

THE TIDAL CONSTANTS（AMPLITUOES ANO PHASES）ON A 1×1 DEGREE GRID ARE STORED ON THE SURVEYING ENGINEERING OISK（SEOOO2．UNE COMPUTING CENTRE）UNDER THE FOLLOWING CHARACTERISTICS：

FILE 1（2016．2888．L．N1），DSN＝SPIROS．SEADATA．UNIT＝M3330．
CALLED FROM：LOAD．
CONSTITUENTS
＝＝＝＝＝＝＝＝＝＝＝
$\mathrm{I}=$
$M 2$
S 2

2	52
3	K

$\begin{array}{ll}3 & K 1 \\ 4 & 01 \\ 5 & 1\end{array}$
5 N2
6 P1
INPUT
＝＝＝＝＝
1．NA＝LONGITUDE NUMBER．
2．K＝CO－LATITUDE NUMBER
3．N＝YEAR OF THE OUSERVATION．
4．AII＝DAYS ELAPSED SINCE THE BEGINNING OF THE YEAR N UP TO THE
5．II＝TIME OF OBSERVATION．
output
$=====$
1．TZ＝TOTAL TIOAL HEIGHT IN METRES．
EXTERNALS
ニニニニニニニニ＝
FILE 1（2016．2888．L．NI）OISK＝SE0002．

OCEAN TIDE LOADING DEFORMATIONS OF THE LITHOSPHERE

STATION NAME $=$ DIONYSSOS SATELLITE TRACKING CENTER CO-LATITUDE $=515514.000$ (D MIN SEC) EAST LONGITUOE $=23561.000$ (D MIN SEC)

CONSTITUENT

RAOIAL DISP. (CM)	N-S DISP• (CM)
(OUTWARDS +)	(NORTH +)

E-■ DISP. (CM)
(WEST + 1

	$\triangle M P$. $===$ $=$	PHASE $=====$	AMP. $===$	$\begin{aligned} & \text { PHASE } \\ & ===== \end{aligned}$	$\begin{aligned} & \text { AMP. } \\ & ==== \end{aligned}$	$\begin{aligned} & \text { PHASE } \\ & ===== \end{aligned}$
M2	0.36	41.1	0.11	255.0	0.09	333.4
S2	0.11	48.0	0.03	275.3	0.05	348.2
$\times 1$	0.15	171.3	0.03	307.5	0.06	250.6
01	0.07	168.6	0.02	279.2	0.04	$250 \cdot 3$
N2	0.06	33.7	0.03	250.3	0.02	331.7
P1	0.05	156.9	0.01	311.1	0.02	253.5

REFERENCES

Alterman, Z., H. Jarosch and C.L. Pekeris (1961), "Propagation of Rayleigh. waves in the earth", Geophysical Journal of the Royal Astronomical Society, 4, 219-241.

Altmann, W., H.J. Dittfeld and C. Eistner (1977), Results of gravimetric earth-tide observations 1970-1976. Presented at the 8th International Symposium on Earth Tides, Institut fur Theoretische Geodasie der Universitat Bonn, 19-24 Sept.

Apostol, T.M. (1962), Calculus, Vol. 1 , Blaisdell Publishing Company, New York.

Beaumont, C. and A. Lambert (1972), "Coastal structure from surface load tilts, using a finite element model", Geophysical Journal of the Royal Astronomical Society, 29, 203-226.

Boussinesq, J. (1885), Application des Potentiels a l' Etude de l'Equilibre et du Mouvement des Solides Elastiques, Gauthier-Villars, Paris.

Bretreger, K. and R.S. Mather (1978), "Modelling ocean loading effects on tidal gravity in Australia", Geophysical Journal of the Royal Astronomical Society, 52, 241-257.

Bullen, K.E. (1975), The Earth's Density, John Wiley and Sons, New York.

Bureau Internatinal de l' Heure (1980), Annual Report for 1979, Paris.

Cannon, W.H. (1978), "The classical analysis of the response of a long baseline interferometer", Geophysical Journal of the Royal Astronomical Society, 53, 503-530.

Cathles, L.M. (1971), The viscosity of the earth's mantle, Ph.D Thesis, Princeton University, Princeton, N.J.

Chiaruttini, C. and E. Livieratos (1978), "Oceanic loading on European laser ranging sites", Geophysical Journal of the Royal Astronomical Society, 54, 593-500.

Courant, R. and D. Hilbert (1970), Methods of Mathematical Physics, Interscience Publishers Inc., New York.

Davidson, D.A. (1980), A least squares adjustment for long baseline interferometry, M.Sc. Thesis, Dept. of Surveying Engineering, J.N.B., Fredericton N.B.

Eirich, R.F. (1950), Rheology, Vol 1, Academic Press, New York.

Farrell, W. E. (1972), "Deformation of the earth under surface mass loads", Reviews of Geophysics and Space Physics, Vol. 10, 3, 761-797.

Goad, C. C. (1979), Gravimetric tidal loading computed from integrated Green's functions, NOAA Technical Memorandum NOS NGS 22, Rockville, MD.

Godin, G. (1972), The Analysis of Tides, University of Toronto Press, Toronto, Ontario.

Godin, G. (1980), Cotidal charts for Canada, Manuscript report series No 55, Marine Sciences and Information Directorate, Dept. of Fisheries and Oceans, Ottawa, Ontario.

Haddon, R.A.W. and K.E. Buller (1969), "An earth model incorporating free earth oscillation data", Physics of the Earth and Planetary Interiors, 2, 35-49.

Henriksen, S.W. (1977), Systems for the determination of polar motion, NOAA Technical. Report NOS 72 NGS 7, Rociville, MD.

Hosoyama, K. (1977), On the tidal constant of gravity at Mizusawa. Proceedings of the Sth International Symposium on Earth Tides, Institut für Theoretische Geodäsie der Universitat Bonn, 19-24 Sept., 593-596.

Improved Lunar Ephemeris 1952-1959 (1954): A Joint Supplement to the American Ephemeris and the (British) Nautical Almanac, United States Government Printing Office, Washington.

Jeffreys, H. (1976), The Earth, Cambridge University Press, London.

Kuo, J.T. (1977), Tidal corrections at McDonald and Haleakala, Scientific Applications of Lunar Laser Rangin, ${ }^{2}$, 241-254, Reidel Publishing Company, Holland.

Langley, R.B. (1979), Precision geodesy and astrometry with a three station long baseline interferometer, Ph.D Thesis, York University, Toronto, Ontario.

Longman, I.M. (1962), "A Green's function for determining the deformation of the earth under surface mass loads. 1. Theory", Journal of Geophysical Research, Vol. 67, 2, 845-850.

Longman, I.M. (1963), "A Green's function for determining the deformation of the earth under surface mass loads. 2. Computational results", Journal of Geophysical Research, Vol. 68, 2, 485-496.

Melchior, P. (1966), The Earth Tides, Pergamon Press, Oxford.

Melchior, P. (1978), The Tides of the Planet Earth, Pergamon Press, Oxford.

Melchior, P., J.T. Kuo and B. Ducarme (1976), "Earth tide gravity maps for western Europe", Physics of the Earth and Planetary Interiors, 13, 184-196.

Merriam, J.B. (1978), A parametarized earth tide model for advanced geodynamics, Technical Report, Department of Earth and Environmental Sciences, York University, Toronto, Ontario.

Merriam, J.B. (1980), "The series computation of the gravitaticral perturbation due to ar ocean tide", Physics of the Earth and Planetary Interiors, 23, 81-86.

Merriam, J.B. (1981), "An investigation of dispersive effects on tidal gravity measurements at Alice Springs", Physics of the Earth and Planetary Interiors, 27, 187-193.

Mikhlin, S.G. (1967), Linear Equations of Mathematical Physics, Holt, Rinehart and Winston, Inc., New York.

Mcens, M. (1976), "Solid earth tide and Arctic oceanic loading tide at Longyearbyen (Spitsbergen)", Physics of the Earth and Planetary Interiors, 13, 197-211.

Moens, M. (1980), "About the relation between Love numbers and load numbers in earth tides theory", Manuscripta Geodaetica, Vol. 5, 217-233.

Munk, W.H. and G.J.F. MacDonald (1960), The Rotation of the Earth, Cambridge University Press, London.

Nadeau, G. (1964), Introduction to Elasticity, Rinehart and Winston, New York.

Pekeris, C.L. (1978), "The bodily tide and the yielding of the earth due to tidal loading", Geophysical Journal of the Royal Astronomical Society, 52, 471-478.

Pekeris, C.L. and H. Jarosch (1958), The free oscillation of the earth, in Contributions in Geophysics in honour of Beno Gutenberg, Vol. 1. Edited by H. Benioff, M. Ewing, B. Howell and F. Press, Pergamon Press, New York.

Rectorys, K. (editor) (1969), Survey of Applicable Mathematics, M.I.T. Press, Cambridge, MA.

Shapiro, I.I. (1978), Principles of very long baseline interferometry in Dept. of Geodetic Science Report No 280, The Ohio State University, Colombus, Ohio.

Schwiderski, E.W. (1978), Global ocean tides; part I: A detailed hydrodynamical interpolation model, NSWC/DL TR-3866, Naval Surface Weapons Center, Dahlgren, VA.

Schwiderski, E.W. (1979), Global ocean tides, part II: The semidiurnal principal lunar tide (M2), Atlas of tidal charts and maps, NSWC TR 79-414, Naval Surface Weapons Center, Dalhgren, VA.

Schwiderski, E.W. (1931a), Global ocean tides, part III: The semidiurnai principal solar tide (S2), Atlas of tidal charts and maps, NSWC mR 81-122, Naval Surface Weapons Center, Dalhgren, VA.

Schwiderski, E.W. (1981b), Global ocean tides, part IV: The diurnal luni-solar declination tide (K1), Atlas of tidal charts and maps, NSWC TR 81-142, Naval Surface Weapons Center, Dalhgren, VA.

Schwiderski, E.W. (1981c), Global ocean tides, part V: The diurnal principal lunar tide (01), Atlas of tidal charts and maps, NSWC TR 81-144, Naval Surface Weapons Center, Dalhgren, VA.

Schwiderski, E.W. (1981d), Global ocean tides, part VI: The semidiurnal elliptical lunar tide (N2), Atlas of tidal charts and maps, NSWC TR 81-218, Naval Surface Weapons Center, Dalhgren, VA.

Schwiderski, E.W. (1981e), Global ocean tides, part VII: The diurnal principal solar tide (P1), Atlas of tidal charts and maps, NSWC TR 81-220, Naval Surface Weapons Center, Dalhgren, VA.

Schwiderski, E.W. (1981f), Global ocean tides, part VIII: The semidiurnal luni-solar declination tide (K2), Atlas of tidal charts and maps, NSWC TR 81-222, Naval Surface Weapons Center, Dalhgren, VA.

Schwiderski, E.W. and L.T. Szeto (1981), The NSWC Global Ocean Tide Data Tape (GOTD), its features and application, random-point tide program, NSWC TR 81-254, Naval Surface Weapons Center, Dalhgren, VA.

Suklje, L. (1969), Rheological Aspects of Soil Mechanics, Wiley-Interscience, London.

Torge, W. and H.G. Wenzel (1977), Comparison of tide observations with nine different gravimeters at Hannover, Proceedings of the 8th International Symposium on Earth Tides, Institut für Theoretische Geodäsie der Universitat Bonn; 19-24 Sept.; 632-640.

Vanícek, P. (1978), Loading effects, personal notes, (unpublished).

Vaníとek, P. (1980), Tidal corrections to geodetic quantities, NOAA Technical Report, NOS 83 NGS 14, Rockville, MD.

Vaní̌ek, P. and E. Krakiwsky (1982), Geodesy: The Concepts, North Holland, Amsterdam.

Wahr, J.M. and T. Sasao (1981), "A diurnal resonance in the ocean tide and in the earth's load response due to the resonant free 'core nutation'", Geophysical Journal of the Royal Astronomical Society, 64, 747-765.

Warburton, R.J., C. Beaumont and J.M. Goodkind (1975), "The effect of ocean tide loading on tides of the solid earth observed with a superconducting gravimeter", Geophysical Journal of the Royal Astronomical Society, 43, 707-720.

Zschau, J. (1976), "midal sea load tilt of the crust and its application to the study of crustal and upper mantle structure", Geophysical Journal of the Roval Astronomical Society, 44, 577-593.

[^0]: *The name "Canadian VLBI Array" is used in this study only.

