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ABSTRACT 

The analysis of repeated geodetic observations has become an important 

tool for the investigation of the kinematics of tectonic plate boundary 

zones. The most appropriate analytical method for such investigations 

of contemporary crustal deformation is the strain analysis, a method of 

differential geometry. 

In attempting to find an elegant mathematical formulation to describe 

plane strain, the use of complex analysis proves to be very 

advantageous. The analytical modeling of spatially and temporally 

continuous and discontinuous displacement fields is developed using 

least-squares approximation of generalized polynomials. Algebraic 

polynomials are proposed for the continuous approximation, whereas 

specifically designed step functions are used to model the 

discontinuities in space and time. 

A mathematical model of simultaneous network adjustment and strain 

approximation is elaborated. It yields a general analytical method 

which enables strain-rates, or accumulated strain and fault-slip, to be 

determined from various types of geodetic measurements. In contrast to 

the widely used observation method (Frank's method), this approach does 

not rely on repeated observations of the same observables. Repeatedly 

observed networks of non-identical design can be analyzed. The 

constraints incorporated by the approximation model allow strain 

estimation even when the network of some observation epochs suffer from 
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formulation or configuration defects with respect to positions. 

Experiments whith various graphical representations of strain are 

carried out. Strain pedal-curves and shear-rosettes expressing 

extension and shear in a given direction, plotted at equally spaced 

grid points, provide a comprehensive display of non-homogeneous 

strain-fields in space. Confidence regions associated with extension 

and shear in a given direction are plotted together with these strain 

figures. 

A software package 'CRUSTRAIN' is developed for the simultaneous 

adjustment and strain approximation and for the display of the 

estimated strain parameters. The method is first tested with synthetic 

data and then with a real kinematic network. 

The method is applied to the 1970-80 Hollister network, which had been 

observed by the U.S. Geological Survey. This application reveals the 

strength as well as the limitations 

approximation model is evaluated 

of the 

which 

proposed technique. An 

incorporates third-degree 

complex algebraic polynomials with four block translation terms in 

space and fifth-degree algebraic polynomials with three episodic terms 

in time. This approximation estimates co-seismic fault-slip and strain 

release associated with three moderate earthquakes which occurred in 

the Hollister area within the time interval in question. 
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SECTION 1 

SECTION 1 

INTRODUCTION 

1.1 Geodesy, Crustal Dynamics and Earthquake Research 

The determination of the earth's shape and its gravity field were the 

main aims of geodesy for many centuries. With only few exceptions, the 

theory and methods applied were based on the model of a rigid earth 

body. At the time when geodetic networks were established all over the 

continents, the positions of the monumented network stations, once 

determined, were regarded as time invariant for decades or centuries. 

Only twenty years ago the introduction of new terrestrial, as well as 

extra-terrestrial geodetic observation techniques, increased the ease 

and the accuracy of geodetic positioning (Van{~ek and Krakiwsky,1982). 

In the same decade, the revolutionary hypothesis of plate tectonics 

finally gained universal acceptance (Kahle,1980). The rate of relative 

tectonic movement estimated from geological evidence is so large at 

some places that its determination with modern geodetic means seemes 

feasible. Today,there is no doubt that the old assumptions of a rigid 

earth's crust are no longer acceptable in light of the new dynamic 

concept of plate tectonics. 

Geodesy of the modern era is characterized by a systematic treatment of 

all dynamic phenomena that change the shape and the gravity field of 
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the earth and, consequently, influence the positions of points on it. 

Reductions which account for the different temporal variations have to 

be considered in geodetic positioning. Information that geodesy can 

offer on the earth's temporal deformation is also most welcome in 

contemporary geodynamics research. 

Earthquakes are among the most destructive of all natural catastrophes. 

They are feared in seismic active areas because they occur suddenly and 

often without warning. Until recently, one would not have considered 

earthquake prediction a serious scientific topic. In the 1960's, 

prediction oriented earthquake research programs were started in 

countries with high seismic activity, such as Japan and the U.S. 

(Rikitake,1976; Kisslinger et al.,1978). 

Geodesy plays an important role in this interdisciplinary research as 

it provides the geometrical information on the temporal deformation of 

the earth's crust. Repeated surveys of horizontal and vertical 

geodetic networks and of special monitoring configurations are carried 

out in order to detect deformations of the crust associated with 

seismic events. Recently developed geodetic space techniques will 

increasingly be used in this decade for the investigation of tectonic 

motions and crustal deformations (Committee on Geodesy,1978). The 

symbiotic relation with modern geophysics and its challenging problems 

is one of the main reasons for the recent impulse in geodetic science. 

As geodesists are concerned with the treatment of observations of 

geometrical quantities in three-dimensional space, the kinematical 
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analysis of repeatedly observed networks is clearly one of their 

domaines. 

1.2 Geophysical Background 

The following introduction to plate tectonics, seismology and 

earthquake processes provides a brief review of terms and definitions 

relevant to the geodetic crustal movement analysis. 

The origin of the theory of global plate tectonics goes back to 1910, 

when the geophysicist Alfred Wegener noticed the astonishing congruency 

of the Atlantic coasts of America and Africa (Wegener,1929) on a world. 

map. It took almost 50 years from the time when he first published his 

ideas on the 'Continental Drift' until the plate tectonics hypothesis 

found universal acceptance by earth scientists. The modern model of 

global plate tectonics convincingly explains various geological and 

geophysical phenomena. According to this hypothesis, the earth's crust 

and uppermost mantle form the lithosphere, the solid upper layer of the 

earth of variable thickriess (25 to 90 km for the oceanic and 50 to 150 

km for the continental lithosphere). The lithosphere is divided into 6 

main plates: the American, Eurasian, Indo-Australian, African, Pacific 

and Antarctic plates. The limits of the global lithospheric plates are 

defined by narrow zones of high seismic activity. 

Extensive geomagnetic investigations of the phenomenon of sea floor 

spreading revealed the motion of the tectonic plates through geological 

history. Magmatic material from the mantle rises and accretes onto the 
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plates. Symmetrical patterns of magnetic anomalies on the sea floor 

centered about the mid-oceanic ridges have been explored in all major 

oceans. The plates spread in opposite directions along the worldwide 

mid-ocean ridge system (extrusion zones). Beneath continents or island 

arcs, the oceanic plates are thrust under the continental plates, the 

descending slab moving down into the mantle to be melted and recycled 

(subduction zones). 

The combination of mechanisms which drive the plates, and the way the 

plates respond to these forces, are not perfectly understood at 

present. Current hypothesis involve three possible mechanisms : 

1) coupling of the plates to convective flow in the mantle, 

2) negative buoyancy of subducted slabs, 

3) gravitational sliding down from the slopes of the oceanic ridges. 

Modern plate tectonics distinguishes four principal 

interaction between lithospheric plates (Lomnitz,1975) : 

a) Subduction boundaries: 

modes of 

Where an oceanic plate converges with a continental plate, the 

oceanic plate is thrust under the continental plate (cf. Figure 

1.1a). Typical subduction boundaries can be found along the 

Pacific island arcs. The trace of the boundary is located 

offshore in a deep trench filled with sediments. The subduction 

process is associated with intermediate deep-focus 

earthquakes. Their foci are located on the surface or in the 

thrusting slab (Benioff zones). 
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b) Transcurrent, or Strike-Slip, Plate Boundaries: 

Transcursion occurs either between two oceanic plates, or between 

an oceanic plate and a continent. The plates slide horizontally 

in opposite directions, neither creating nor destroying crustal 

material. Horizontal shear across the strike-slip faults (cf. 

Figure 1.1b) characterizes these zones. 

c) Extrusion Zones or Spreading Centers 

Along the mid-ocean ridges, two thin lithospheric plates grow 

apart as mantle material is added to create new crust (cf. 

Figure 1.1c). The spreading rates are estimated to vary between 

2 - 5 em/yr. 

d) Accretion Zones and Zones of Orogenic Collisions 

Accretion is defined as a slow collision between an oceanic plate 

and a continental plate, the latter growing at the expense of the 

former (cf. Figure 1.1d). Where two continental plates are 

being pushed together, an upheaval of crustal material resulting 

in mountain building takes place (orogenic collision). 
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a) - -- - ---- - - b) - - - - - - - - -

c) - - - - - - - - - - d) - - - - - - - - - -

::__ -_-_-_--=._ -=-~ asthenosphere 1111111111 it hosphere 

Figure 1.1 

Interaction between tectonic plates 

a) subduction boundary, b) strike-slip boundary, c) extrusion zone, d) 
accretion zone 
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a} b) 

c) d). 

Figure 1.2 

Tectonic faults 

a) right-lateral, b) left-lateral strike-slip faults; c) normal, d) 
reverse dip-slip faults 
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All plate boundaries are marked by different kinds of faults and 

trenches. The strike-slip, or transcurrent, faults (cf. Figure 1.2) 

are designated as right or left lateral (dextral or sinistral), 

depending on their sense of relative displacement. If the relative 

displacement of a fault is perpendicular to the line formed by the 

intersection of the fault plane with the horizontal surface, the fault 

is called a dip-slip fault (cf. Figure 1.2c and d). Combinations of 

dip-slip and strike-slip faulting also occur. 

The occurrence of most earthquakes is a result of the interaction of 

plates at their boundaries. 98 percent of the energy released in 

shallow earthquakes is released in the areas of tectonic 

boundaries (Lomnitz,1975). 

Seismic events can be defined in terms of three different aspects: 

- mechanical rupture in the lithosphere, 

- energy released from the earth's interior, 

- radiation of elastic waves. 

plate 

When a seismic event takes place in the earth's crust, two kinds of 

waves propagate through the body of the earth: P-waves (dilatational 

waves) and S-waves (shear waves). Two other kinds of waves travel 

along the earth's surface: Rayleigh-waves and Love-waves 

(Jeffrey,1970). 

Seismic events are described by their position, depth, time and energy 
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released. Instead of energy measures, measures of earthquake size are 

also used. Richter's magnitude M is the most common measure. M is a 

logarithmic function of the observed maximum amplitude on a standard 

type of seismograph corrected for the distance. 

The focus, or hypocenter, is the point within the earth where the 

movement is initiated, whereas the epicenter is the vertical projection 

of the focus on the earth's surface. Earthquakes are classified as 

shallow, intermediate or deep, depending on their focal depths. 

Type: 

shallow 

intermediate 

deep 

Depth: 

0 60 km 

60 - 150 km 

150 - 700 km 

The seismic process in the earth's crust can be summarized as follows: 

1) A non-hydrostatic stress field is being generated in a finite 

region of the crust around the fault. Elastic energy is being 

accumulated. 

2) A rupture occurs along the fault and a part of the accumulated 

energy is suddenly released by radiation of seismic waves. 

Another part of the energy is transformed into heat and potential 

energy. 

3) The medium tends to reach a state of equilibrium by means of 

aftershocks and fault-creep. 
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a) b) 

--~--

c) d) 

Figure 1.3 

Reid's Elastic Rebound Model 
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Reid analyzed the relative horizontal crustal movements along the San 

Andreas Fault associated with the 1906 San Francisco earthquake 

(Benioff,1964). In order to interpret the data from repeatedly 

observed geodetic networks, he set up the elastic rebound model, a 

theoretical model for the strike-slip faulting process. 

According to his theory, the blocks on either side of the fault begin 

to move laterally, relative to each other, some time after an 

earthquake. Because of the friction at the fault surfaces, the blocks 

are locked together and become strained. (cf. Figure 1.2b). 

As the movement continues and strain is accumulated, there comes a time 

when at some point the stress exceeds the restraints. At that point, 

the surface suddenly slips or rebounds (cf. Figure 1.2c). The slip 

increases the stress at adjacent points where the surface. slips as 

well, with the result that the slip is propagated along the fault. The 

sudden movement of the rocks in opposite directions on both sides of 

the fault generates seismic waves. During the earthquake most of the 

stress is released and the accumulation of strain starts again (cf. 

Figure 1.2d). 

The source mechanism can be investigated from the observed relative 

displacements at the fault trace and from the seismic waves recorded 

from local and remote seismographs. The co-seismic slip displacements 

observed vary from a few centimeters in small earthquakes to more than 

10 m in large ones. The duration of the slip is estimated to be a 

fraction of a second up to 10 seconds. 
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An insight into the source mechanism of earthquakes can be found by 

determining the direction of initial wave motion from the seismograms 

at different stations. The result of this seismo-tectonic analysis is 

the so called fault plane solution which provides the orientation of 

the fault plane at the focus in space. 

1.3 Geodetic Techniques for Detecting Contemporary Horizontal 

Crustal Movements 

In investigating the deformation of a section of the crust within a 

certain interval of time, the ideal data should be of an areal nature 

and continuous in space and time. Unfortunately, geodetic methods do 

not provide such data. Only a finite number of points suitable for 

network stations can usually be found on a solid crustal formation. 

The observations between these points are repeated a limited number of 

times. Typical geodetic observables are therefore discrete functions 

in space as well as in time. Provided that a sufficient number of 

appropriately distributed discrete data is available, continuous 

information in space and time may, however, be estimated by computing 

best approximations of continuous models on the given discretizations. 

This method will be extensively used in the present work. 

Local relative movements of the earth's crust have to be regarded in a 

three-dimensional Cartesian coordinate system. Purely horizontal or 

purely vertical movements do not exist in reality. Despite this fact, 

it has been common practice to investigate the horizontal and vertical 

components of the relative displacements separately. 
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There is little that distinguishes the two components of movement other 

than their directions. The horizontal components are, in general, 

expected to be much larger than the vertical ones. In addition, there 

is theoretically a difference as far as the driving forces are 

concerned. If crustal masses are displaced vertically, gravitational 

potential energy is accumulated or released. The gravitational forces, 

however, are not relevant (except for second order effects) for the 

horizontal components of the motion. 

The main reason for the separate treatment of the two components is the 

separately available horizontal and vertical observation data. It is a 

traditional geodetic practice to observe horizontal and vertical 

networks separately, as they require different kinds of 

observations (triangulateration or levelling). 

field 

In mountainous regions the situation is different, levelling being 

often replaced by trigonometric height 

Three-dimensional networks (Schneider,1979) 

difference 

may be 

determination. 

a preferable 

alternative in this case. Three-dimensional networks are also the most 

natural configurations if extra-terrestrial geodetic observations are 

to be used for crustal movement analyses in the future. If 

three-dimensional configurations are observed, in which the horizontal 

and the vertical components of the displacement vectors are determined 

with approximately the same accuracy, the analysis of relative 

movements in three-dimensional space is clearly preferable. 

As three-dimensional data are not available to date, the conventional, 
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separate treatment is adopted in this work. Horizontal components of 

relative crustal movements will then be the only concern in this study. 

Geometrical configurations in which geodetic observations are 

repeatedly being collected, will be called kinematic networks in this 

study. A more comprehensive definition of this term will be provided 

in Section 3. 

The following three types of horizontal kinematic networks can be 

distinguished: 

a) Resurveyed Horizontal Geodetic Networks: 

These networks are established for horizontal position control, thus 

being of regional character and covering large areas. Their advantage 

is that their observation epochs stretch back for decades or even for 

more than a century. These networks, however, are not designed for the 

investigation of crustal movements, and it is thus uncertain if the 

kinematical questions can be answered through their analysis. The 

network design at the observation epochs may differ considerably: Pure 

triangulation networks from the beginning of this century may be 

resurveyed using modern EDM-techniques. Possible effects of 

incompleteness in the mathematical model of the network adjustment have 

to be considered carefully in this case, as they may cause network 

distortions which could be misinterpreted. Resurveyed horizontal 

geodetic networks are the largest source of data presently available 

for crustal kinematics investigations. 
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b) Horizontal Monitoring Configurations: 

In regions of special interest, where horizontal movements are 

suspected, local horizontal networks or simple configurations, such as 

quadrilaterals or base lines, are established. These networks are 

optimally designed for crustal kinematics investigations. Monitoring 

configurations are frequently resurveyed using accurate observation 

techniques. The operations of the observation campaigns usually follow 

standard observation programs. In this way, the most straight-forward 

case of an invariant network design for the epochs of reobservation is 

obtained. 

c) Repeated Relative Positioning: 

High relative position accuracies over distances of a few kilometres 

can be achieved with classical terrestrial geodetic methods. If 

geodetic networks are designed over distances of hundreds or thousands 

of kilometres as would be required in geodynamic projects (e.g. for 

measurements of mean relative interplate motions), the accumulated 

relative position errors exceed the expected relative displacements. 

Besides this, the cost of resurveying extended high accuracy networks 

is prohibitive. 

Repeated point positioning by means of space geodesy techniques is the 

best suited approach to detect relative motions of widely separated 

points of the earth's surface. Present VLBI-techniques allow the 

precise determination of three-dimensional position differences between 

points on different tectonic plates (NASA,1979). Accuracies of a few 
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centimetres can be achieved over long distances of intercontinental 

scale. 

Unfortunately, the accuracy of the point positioning technique for 

regional or local investigations is at present not high enough. 

However, various space techniques are under development and are 

expected to be operational within this decade. 

As point positioning data will not be used in this study, we will 

conclude this discussion on point positioning techniques by just 

mentioning the most promising space techniques under development: 

Observatory VLBI: 

These systems are suitable for the detection of mean relative 

velocities of global tectonic plates. 

systems for the measurement of 

The current precision of VLBI 

three-dimensional position 

differences is 3 to 6 em. It is planned to upgrade the VLBI 

technique by using water vapor radiometers to achieve precisions of 

1 to 3 em (NASA,1981). 

Mobile Station VLBI: 

A mobile astronomical VLBI unit specifically designed for field 

operations is being developed (NASA,1981). Measurement precision of 

5 em are expected from the ARIES project by using an observatory 

antenna as a base station (CSTG,1980). 

- Mobile Laser Ranging to Satellites: 

The systems are designed for regional crustal kinematics 
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investigations. The following ranging accuracies are claimed for 

the different systems: NASA-Stalas: 1-2 em ; Mobals: 3-5 em 

TLRS: 1-2 em (NASA,1981 ). 

Satellite Emission Systems: 

Satellites of the NAVSTAR Global Positioning System (GPS) will be 

used for range difference determinations by simultaneous satellite 

microwave measurements for regional crustal kinematics 

investigations. Prototypes of receivers under development are 

either based on the interferometric mode of operation, or on the 

reconstruction of the GPS carrier phase (NASA,1981 ). Relative 

po'si tion accuracies of 2 em over a distance of 100 200 km are 

expected from the SERIES project of the Jet Propulsion Laboratory 

( CSTG, 1980). 

1.4 Recent Development of the Crustal Strain Analysis Technique 

Earliest reports on the analysis of crustal strain from repeated 

geodetic observations were published in the Bulletin of the Institute 

for Earthquake Research of the University of Tokyo at least 50 years 

ago. Pope (1966) compiled the history of the method and outlined the 

traditional computational techniques. 

Japanese seismologists, Terada and Miyabe (1929) and Tsuboi (1930), 

developed computational and graphical methods of strain determination 

based on the coordinate approach. According to Terada's and Miyabe's 

method, separate network adjustments by variation of coordinates are 
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performed. The strain in each triangle is then assumed to be 

homogeneous, or uniform in space. Displacement gradients, and 

subsequently strain components, are computed from the displacement 

differences at the three points of each triangle of the network. The 

derived strain components are then associated with the centroid of each 

triangle. 

Kasahara and Sugimura (1964) made an attempt to get a smoother 

approximation to the relative displacement field than the fit of 

piece-wise linear functions. Two second-degree algebraic polynomials 

of two· variables are fitted to the discrete fields representing both 

horizontal displacement components. Whitten (1968) suggested a time 

varying model from which components of strain could be computed over· 

the entire area for each location and instant of time. 

Frank (1966) formulated the observation method. Differences of 'raw' 

observations, rather than adjusted values, are used to compute the 

strain without first having to evaluate station coordinates and 

displacements. The preference for 'raw' observation data is a sign of 

the apparent distrust in the geodetic least-squares model which is 

wide-spread among geophysicists. A large number of successful 

applications of this method by the investigation of horizontal crustal 

movements in California are reported by researchers of the USGS: 

Savage and Burford (1970), Savage and Prescott (1976), Thatcher (1979), 

Savage et al. (1979), King et al. (1980) and Prescott et al. (1981 ). 

Applications of the coordinate method are reported by geodesists of the 
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USNGS. Pope (1969) analyzed relative co-seismic movements associated 

with the 1964 Alaska earthquake. An interesting comparison of results 

from coordinate and observation (using 'raw' observations) approaches 

is given by Miller et al. (1969) of their investigations in the Taft -

Mojave area in California. The results from the observation method 

with 'raw' data show higher and more random shear, but do not differ 

significantly from the results of the coordinate method. 

Brunner (1979, I) uses the 'inner coordinate' approach to derive unique 

displacement vectors for the least-squares estimation of the 

homogeneous strain components. As any method based on the coordinate 

approach, this method allows the analysis of networks with different 

designs in both epochs. The method is only developed for the two-epoch 

case and for the approximation of strain uniform in space. A 

theoretical comparison of the observation method with the (inner) 

coordinate method reveals that under certain conditions (invariant 

design) both methods yield identical results 

Brunner,1980). 

(Brunner,1979, II; 

Margrave and Nyland (1980) utilize two-dimensional polynomials of low 

order to model the displacement field. It is assumed that the state of 

strain over the network can be represented as a spatially continuous 

tensor field. Observation equations relating the observation 

differences to the unknown polynomial coefficients are solved directly 

by generalized matrix inversion techniques. This method is only 

developed for the two-epoch case with invariant design. 
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Snay and Cline (1980) describe a method of simultaneous adjustment of 

station coordinates and velocities from multiple repeated surveys with 

non-identical network design. B,y introducing an arbitrary set of 

minimal-constrains, strain-rates uniform in space and constant in time 

are derived. A very similar method of simultaneous reduction of 

multiple surveys is proposed by Bibby (1982). He shows that any 

incorporation of appropriate minimal-constraints yields the same 

solution for the strain coefficients. These coefficients can be 

estimated free of bias. He concludes that the use of 'inner 

coordinate' solutions (station coordinates) for the analysis of strain 

from repeated surveys is not justified. 

Dermanis (1981) investigated the geodetic estimability of crustal 

deformation parameters as computed by the coordinate method. A finite 

element strain analysis technique, with which the area of investigation 

is dissected into finite elements, is proposed and practically tested 

by Welsch (1982). Chrzanowski et al. (1982,I and II) present a 

general approach to the deformation analysis, using polynomial fitting 

and strain estimation based on the coordinate method. 

1.5 Contribution of this Research 

Among the developed ideas concerning the mathematical modeling of 

displacement fields and strain fields and their interpretation, the 

following findings are considered to be contributions to the present 

state of crustal strain research: 
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1) Complex analysis is applied to the theory of plane strain. This 

mathematical formulation considerably simplifies the analytical 

treatment. 

2) A comprehensive geometrical interpretation of the components of 

strain is found by relating the components of strain to the general 

affine transformation. 

3) A compact complex approximation function is proposed for the 

approximation of displacement fields continuous in space. Strain 

can easily be derived from this function. An extension of this 

function which takes into account temporal variations is provided 

for the approximation of deformations in space and time. 

4) Solutions are found for the problem of modeling the discontinuities 

of the displacement field in space and time. 

5) A new method of simultaneous network adjustment strain 

approximation is developed. It estimates the most significant trend 

of the deformation and simultaneously filters out the noise from the 

observations. 

6) Various possibilities for graphically displaying the estimated 

strain quantities and their confidence regions are tested and 

compared. 

7) A software package 'CRUSTRAIN' is developed containing computer 

programs for the simultaneous network adjustment and strain 

approximation and the graphical display of the estimated strain 

quantities and their confidence regions. 
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8) The pre-analysis of kinematic network projects is advocftted and 

practically tested. This is considered a useful tool for optimal 

design studies of kinematic networks. 
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SECTION 2 

KINEMATIC NETWORKS 

2.1 Definitions and Assumptions 

The presently available geodetic techniques for detecting relative 

horizontal crustal movements were described in 1 .2 from a general point 

of view. In this section, the kinematic aspects of horizontal geodetic 

networks will be treated in a more systematic manner. The techniques 

of repeated geodetic observations can be used for various purposes. 

This work will be limited to the tectonic crustal movement analysis, 

although some considerations in this section may also be valid for 

kinematic networks in engineering surveying. 

Let us first look at the object of our investigation, the uppermost 

layer of the earth's crust. No assumptions are made at this point as 

to the physical properties (rheology) of this continuum. It is only 

assumed that there is repeated access to a set of well defined material 

points of the continuum. Each point is represented by one monument, or 

better by a whole group of monuments, which defines the points 

(stations) of a network configuration in a three-dimensional Euclidean 

space. Monumentation will not be discussed in this work, although it 

should be emphasized that monumentation is one of the practical 

problems in kinematic networks which is to be considered with great 

care. For the present case, it is assumed that each station of the 

network coincides at any instant of time with the same material point 
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of the crust. 

The traditional geodetic concept of a separate treatment of horizontal 

and vertical networks (cf. 1.3) is adopted. The horizontal network is 

to be understood as 

configuration in space. 

a two-dimensional mapping of the original 

The following types of geodetic observations 

will be considered: angles or directions, distances, azimuths and 

relative positions all being observed at a well defined (measured) 

instant of time. 

A configuration which is compatible with the assumptions above and in 

which such geodetic observations have repeatedly been collected will be 

called a kinematic network. No difference will be made between the 

different types of kinematic networks, such as repeated relative 

positioning networks, resurveyed geodetic networks or monitoring 

configurations. The distribution of the observations in space .and time 

and their stochastical model define the accuracy with which the 

parameters of the deformation can be determined. 

It is further assumed that all observations collected in 

three-dimensional physical space have been properly reduced to a 

conformal mapping plane. Euclidean plane geometry can thus be applied 

to formulate the functional model of the network adjustments. 

As a consequence of the time dependence of the observations, the 

kinematic network is not only defined by its geometry in space, but 

also by the distribution of the observations in the time domain. It is 
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common geodetic practice to carry out surveys during relatively short 

observation campaigns. Groups of observations collected at the same 

time, or within a short span of time, are called simultaneous or 

near-simultaneous. In seismically active areas, the question of 

simultaneity has to be considered with care, as the relative movements 

may be relativly fast and non-linear in time. 

2.2 Determinacy Problems 

2.2.1 Formulation and Configuration Defects in Horizontal Geodetic 

Networks 

Let us consider a local, horizontal geodetic network with npstations in 

which n geodetic observations! with regular covariance matrix gthave 

been collected. After linearization and elimination of the orientation 

unknowns from the observation equations, the well-known linear model 

for the network adjustment on the mapping plane (by the variation of 

coordinates) reads 

1 (2 .1 ) 

where: A design matrix 

! - !o u - dimensional parameter vector 

!'!o vector of unknown and approximate coordinates 

y residual vector 

which, by applying the least-squares principle, yields the system of 

normal equations 
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Nj !! Q (2.2) 

where N l 
_, 

\:h A 

AT -· and u Q! l 

Up to this point, no constraint among the coordinates has been 

incorporated. The matrix of the normal equations ! is thus singular 

det(N) 0 (2.3) 

with a rank defect 

def(N) def(A) (2.4) 

u rank(~) ; u = dim(row(A)) 

even if all stations of the network are sufficiently related to their 

neighbors by geodetic observations. This is not surprising if one _ 

considers that the geodetic observations provide only relative 

information on the positions of the connected stations; yet absolute 

positions are introduced as unknown parameters in the model. A 

suitable set of constraints is missing which relates the configuration 

to the coordinate frame. The network is said to suffer from a 

formulation defect (called datum defect by other authors; 

(Pelzer,1980)). The rank defect def(A) depends on the type of network. 

The design matrix of a pure triangulation network, without any 

constraint among the coordinates, which contains only direction 

observations will, for example, have the rank defect def(!) = 4 with 2 

indeterminable translations, rotation and scale factor. 

Formulation defects def(!) = 3 and def(A) = 2 are encountered with pure 

trilateration networks and combined networks containing azimuth, 

direction and distance observations respectively. 
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By selecting an appropriate set of constraints, one particular solution 

among the infinite set of possible solutions is chosen. This is done 

by augmenting the deficient design matrix in the following manner 

(Vani~ek and Krakiwsky,1982) 

Any set of constraints ~m• satisfying the equation 

rank [A 
nn 

rank(A) + rank(~m) = u 

(2. 5) 

(2.6) 

is called minimal-constraints. In the example above, of a combined 

network with two indeterminable translations, fixing the position of 

one station would be sufficient. For each selection of minimal-

constraints, a 
A 

different solution ! with a different covariance matrix 

CA is obtained. -! 

One particularly appealing choice among 

fulfiling the condition 

0 

the minimal-constraints, 

(2. 7) 

which leads to the property of the covariance matrix of the solution 

vector 

(2.8) 

is the inner constraints solution. It can also be expressed by the 

pseudo-inverse (Moore-Penrose g-inverse) of N: + 
!!. 

In addition to (2.8) this solution has the property 

(2.9) 

(2.10) 



,_T " 

min ( cl 4) 
~ 
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(2.11) 

The complete set of minimal-constraint solutions is obtained from a 

particular minimal constraints solution by applying a similarity 

transformation which reads in complex notation 

z.l<' J Zr + m·exp(iw) z .lPl 
J 

(2.12) 

ZT + a ~.(P> 
J 

Z'f + (1 + p) . z.<P' 
J 

z.lrl + Zr + g>. ~/Pl 
J 

Zj(Pl + f(xT ,yT ,m,oo) 

where: j "' 1 , 2, ••• , np 

.z. <pl "' 
J 

(X .tP) + iy,<J>l) 
J J 

ec particular solution 

z·'C) 
J 

(~.Cc)+iyi(c~ 
J J 

ec complete solutions 

Zr (xT +iyT) EC translation parameter 

m "' Ia I €.R scale factor 

w arg(a) ER rotation angle 

a ,'f E.C conformal parameters. 

Note: For networks with scale control (if l contains at least 

distance) : m 1 ; for networks with orientation control (if l 

contains at least 1 azimuth): w"' Q. 

It is obvious from eqn. (2.12) that the adjusted point coordinates 

depend on the parameters xT ,yT ,m and w , which are indeterminable from l 

of the network. 

We insist that the coordinate systems used to describe the different 
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solutions do not greatly depart from each other. Then the four 

parameters m-1, w , xT and yT are small quanti ties which fulfil the 

inequalities: 

m - (2 ·13) 

E 

Yr E 

where E. is a small distance (e.g.£~ 0.1m). 

If, after selecting a set of minimal-constraints, the position of some 

individual network stations can still not be determined geometrically 

from the observations 1 the network is said to suffer from a 

configuration defect (Pelzer,1980). The rank defect def(!) = def(M) 

depends on the number of indeterminable coordinates of the 

configuration. 

2.2.2 Determinacy Defects in Kinematic Networks 

Let us consider a two-epoch horizontal kinematic network, surveyed 

twice at the instants of time t 1 and tzwith the observations 

; k=1,2 (2.14) 

and their covariance matrices 

c1k1 ; k=1, 2 -1 

(Note: The observations of different observation epochs are assumed to 

be uncorrelated; problems concerning possible cross-correlations 

between the sets of observations will be discussed in 2.4). 
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Let ~:~~ ; k=1, 2 be a vector of particular solutions of separate 

minimal-constraints adjustments. The difference of these complex 

positions is a particular solution of the complex 

associated with the time interval [t1 ,t2] 

t:.i(p) = .. ,p, ~) fttl - -(I) . 
The complete solution follows from eqn • (2.12) 

.6.'Z<cl = 

.6.~~cl = 
J 

where: j 

"(cl 
~(2) - /1 (C) 

E<t> 
•qpl 
zttlj + zC2l 

T 

ll.~!Pl + 
J ll.zr 

1,2, ••• ,np 

~(Pl - ~ CPJ 
-('t) -(1) 

Z (1) z (I) 
T - T • 

+ If. "CPl iz <1lj -
A (p) 
ZCI)j - z~J 

+ Cf. " (p) Cf.." CPJ izc1J' J I z 11lj ' 

Denoting 'f't- Y', by .6. '! yields 

A~~cl= A~Jpl + Azr (~+A~ ( "<pl + Azj'P1) + Z(1)· J . J 

= ll~·<pl + llz + Cf .... (pl + C:f.·a~·<r> !J.. • z<,l· J T J 'l. ~ 

-

displacement field 

(2.15) 

(2.16a) 

"(P) (2.16b) - <J;·z<llj 

" Cp) (2.17) Cf. Zco· 
f J 

j=1,2, ••• ,np 

This relationship expresses the dependence of the complete set of 

displacement fields on the indeterminable parameters 

If one considers the expected displacements to be small, i.e. 

; j= 1 , 2, ••• , n (2. 18) 

with £being a small distance (e.g. £ ~ 0.5m) and the inequalities 

(2.13), the last term in eqn. (2.17), being a product of small 

numbers, can be neglected 

+ ~Cf.zj ; j=1 ,2, ••• ,np (2.19) 

where zj = (x0 + iY0 ~ are approximate positions. 

If we further realize that 
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t/f = g'2 - ~ - mz- ml+ i(W,_-w,) .Om + i.l1W (2.20) 

it follows 

..1~·(') - ..1 z.<PI + d ZT + (A.m + ill.W) · zj j=1,2, ••• ,np (2.21) 
I J 

. [lz.<p> + f(A.x • ~y ,ll.m,~w) j = 1 , 2, ••• , np • 
J 

In the first approximation, the displacement field depends on 

indeterminable translation ll.z, scale difference .1m and rotation 

difference parameter f). W • It is interesting to note that the 

indeterminable parameters of geodetic networks in eqn. (2.12) are 

replaced by new indeterminacies in eqn. (2.21), the latter being 

differences of the former. Consequently, the displacement field does 

not depend on the choice of the minimal constraints if the same set of 

constraints is introduced in the adjustment of both epochs. If the 

networks of both epochs each contain at least one distance (scale 

control), the parameter: ll. m o. Analogously, if both sets of 

observations Ik1each contain at least one azimuth, the parameter ll.W= 0. 

In the case of tectonic crustal movement analysis, the object (the 

crust) is to be monitored by resurveyed geodetic networks which are, as 

a whole, established on the deformable body without any external 

reference. Therefore, it is not possible, in general to make any 

assumption about the movement of an individual point or a group of 

points. 
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2.3 Kinematic Functional Models 

2.3.1 Displacement Models 

A general mathematical model for kinematic networks is obtained from 

the generalization of the model 

(2.22) 

(Note: Eqn. (2.22) is called Gauss-Markoff model in German literature 

(Niemeier, 1979)) 

where: ! observation vector 

A design matrix 

J ! !.o parameter vector 

€. error vector ' 
taking into account the time dependency 

~(t) !·cJ(t) + E(t) (2. 23) 

Present geodetic techniques provide only a discrete series of 

observations in time. The continuous time functions in eqn. (2.23) 

are therefore replaced by their discretizations 

+ EC t·) - L i == 1 , 2 , ••• , ne • (2.24) 

The re-observations of the network usually take place during short 

observation campaigns. This procedure is not only favorable for 

operational and economical reasons, it also provides reliability checks 

of the redundant observations. The observations of one campaign, 

belonging to the same epoch of time lt-~/2,t+~1/2], are treated as 
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simultaneous. A separate least-squares adjustment by variation of 

coordinates yields a unique solution if the design of the re-observed 

network does not suffer from formulation or configuration defects. 

In seismically very active areas, the length of the observation epochs 

L:."[ has to be kept as short as possible. The maximum length AT which 

can be tolerated without danger of biasing the results depends on the 

expected maximum rate of change of the observables. 

a) Two-Epoch Case with Invariant Design: 

In the ideal case of a two-epoch kinematic network, the configuration 

which was observed at time t 1 , is being reobserved at time t 1 according 

to the same observation program. This is expressed by the following 

mathematical model, with both the design and covariance matrices 

remaining invariant, 

(2. 25) 

If the first subvectors in eqn. (2.25) are subtracted from the second, 

it follows that 

+ (2. 26) 

This is the simple displacement model (Van{C5ek and Krakiwsky,1982) 

ill + ~Aj A . .t.! (2.26a) 

where: .61 1(1)- 1(1) ... vector of observation differences 

.6x i2)- <1 (1) ••• vector of relative displacements. 
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b) Multi-Epoch Case with Invariant Design: 

The observation equations (2.25) extended to the multi-epoch case read 

1 

with 

+ 

c''l.l = 
-.!. 

v 
= 

v<nel) 
'-

C (ne) 
-l . 

= A 

(2.27) 

J = 

(2.28) 

The observation vectors l<i> are said to belong to the same observation 

space 

€.1 (2.29) 

Particular effects of line-dependent systematic errors, such as effects 

of erroneous station heights in EDM-networks, are eliminated to a large 

degree if this ideal, invariant design model is applied. As a 

consequence of the changing environment and the development of geodetic 

observation techniques, the design, as well as the stochastic model of 

the repeatedly observed networks, is invariant only in exceptional 

cases. 

c) Multi-Epoch Case with Varying Design: 

If individual design matrices A .. 
- LL 

are introduced, a more general 

functional model is obtained 
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1(1) y(ll 
An A at A13 A1n1 

cf(ll 

1<11 v<2) ~11 Au Au Atne 4(11 

+ (2. 30) 

line) vln,) _h,., ~n,1 ~) ••• ~nen, 
Q(llel 

b;,~r. = Q Hk . ( 2 0 31 ) 

A further extension of the model (2.30, 2. 31 ) with 

i=lk (2~32) 

allows the introduction of unknown parameters common to different 

epochs. Examples of such parameters are unknown instrument scale 

factors or zero errors of EDM instruments. 

2.3.2 Constrained Models 

In all the functional models which were discussed above, no assumptions 

where made concerning the kind of relative movement of the individual 

points. No constraints were introduced among the individual positions 

:l!:CLl of each epoch of observation. If we reliably know the physical laws 

that govern the movements, the movements can be restricted by 

introducing an appropriate set of constraints among the unknown 

displacements. The models 
. 

A' (2.33) l + V- X 
-~ 

or 

II 

(2.34) l + v .. A X 
-t 

where: l .! vector of time derivatives of the observables 

X ,x vector of point velocity or acceleration 
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! ,K' ... design matrices, relating point velocity or 

acceleration to changes in the observables. 

SECTION 2 

are examples of temporally constrained models in which a constant 

velocity or acceleration in time is being assumed. 

An alternative selection of constrained models are the spatially 

constrained models. The slip displacement model, for example, 

postulates that motion consists of pure translation in a prescribed 

direction. The introduction of this particular type of constraint will 

be discussed in Section 4. Other spatially constrained models could be 

based on mathematical models of the fault displacement (e.g. the 

dislocation theory; (Chinnery,1961)). 

A special class of spatially constrained models is the spatially 

continuous or piecewise continuous displacement model. According to 

this approach, the sought relative displacement field is assumed to be 

a continuous function in space 

6 z : z - 6 z ( z) = f( z) 0 (2.35) 

This assumption, which will be adopted in this study, will be further 

discussed with the following strain models. 
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2.3.3 Models using Differential Geometry 

None of the models discussed above is free of the problem of 

indeterminacy. Even if the resurveyed configurations all have scale 

and orientation control, the indeterminacy in translation still 

remains. The problem is inherently 

these are not the most appropriate 

introduction of the strain tensor (cf. 

associated with displacements; 

quantities to seek. The 

Section 3), is the most elegant 

approach, as it circumvents the indeterminacy problem if second order 

effects are excluded. 

What assumptions have to be made for these differential models? The 

only condition is that the field of displacement vectors must be once 

differentiable almost everywhere. If the investigated section of the 

earth's crust were an ideal elastic continuum, the deformation it would 

undergo by stresses applied to it would simply be governed by the 

generalized Hooke's law. This means the strain would always be 

proportional to the stress induced by the driving tectonic forces. The 

assumption of continuity and differentiability would, in this case, be 

based on the physics of continuum. The assumption of differentiability 

can, however, be made without knowledge about the rheology of the 

crustal material. 

2.4 Stochastic Models 

The most general covariance matrix of the entire set of observations is 

given by 



c 

gil g,'l. Q,3 
~hz Qu 
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(2. 36) 

The off-diagonal submatrices express the cross-covariances between 

observations of different observation epochs. One reason for such 

non-zero cross-correlations could be, for example, line dependent 

systematic errors. The neglect of these off-diagonal sub-matrices 

leads to an underestimation of the accuracy of the estimated relative 

displacements (Van!~ek and Krakiwsky, 1982). It should, however, be 

noted that it is very difficult to find reliable estimates for these 

cross-correlations. Well knowing that the cross-correlations have an 

effect on the statistical estimates of the deformation parameters, we 

are going to neglect them. 
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SECTION 3 

DEFORMATION OF A CONTINUUM 

The basic terms relevant to strain analysis, starting with the 

kinematics of a deformable body, will be defined in this section. The 

theory of the deformation of continua is to be treated in 

three-dimensional space. The analytical treatment of crustal 

kinematics is definitely a three-dimensional problem. Only particular 

problems of plane deformation are formulated in two-dimensional 

subspaces. Mainly for operational reasons discussed in Sub-section 

1.3, it is, however, common geodetic practice to investigate horizontal 

and vertical relative crustal movements separately. This study follows 

the traditional geodetic concept, even though this separation is rather 

artificial. The theory of two-dimensional strain will be presented in 

Section 4. 

3.1 Deformation of Bodies 

3.1.1 Deformation and Displacement Gradients 

Let ! = (x,y,z) denote the initial coordinates of the material point P, 

(cf. Figure 3.1) of a deformable body with respect to a fixed 

Cartesian frame. (Note: A Lagrangean coordinate frame, defining 

'material coordinates' is being used here; (Fraeijs de Veubeke,1979).) 
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Each vector r i=1,2, •• n identifies a material point of the body at a 

state to of evolution (where r belongs to the initial position vector 

space, r t: P). Let !: 1 = (x 1 ,y 1 
1 z 1 ) denote the final coordinates of the 

same material point in a deformed or final configuration at time t 1 

(where !: 1 belongs to the final position vector space, !: 1 e. P1
). The 

displacement vector of ~in the time interval [t0 ,t 1] is denoted 

by 

(u,v,w) r 1 
- r (3. 1 ) 

(where d belongs to the displacement vector space, d ED). 

The displacements, and therefore also the final coordinates, may be 

expressed as functions of the initial coordinates 

d 

rl riC!) . 

(3.2) 

(3.3) 

The functions (3.2) and (3.3) define two transformations: P-* P 1 from 

initial to final position vector space, and P -. D from position into 

displacement space. 

Let the field d(r) be once differentiable almost everywhere. Let point 

P7 be another material point in the infinitesimal neighborhood of P1 • 

Figure 3.1 shows the displacement which the material points in the 

neighborhood of ~experience if the body is deformed. 



41 SECTION 3 

Figure 3.1 

Deformation of a body 
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The relative position vector dr of the original configuration is 

deformed into dr' at the final state. This change of neighborhood is 

characterized by the linear neighborhood transformation (Fraeijs de 

Veubeke, 1979) 

where: V= 

E 

dr' 
T 

'l_r_' . <g 

(0 C) 0 T 
ox • o:t •oz) 

'5l(T 

I ex ' 
I 

C>x 'OX 
o)( by Oz 

oY 
I 2..i 9£ ax O'J oz 

<>z' ""2'> z' oz' 
ox cy '07 

gradient operator 

dyadic product of two vectors 

deformation matrix or 
Jacobian matrix of the 
transformation: r -+ r' 

The differential displacement dQ is the difference 

dd dr' - dr 

F·dr dr 

(! .! ) . <g' 

, T ( )T T 
If one realizes that YJ.;:_ = Y. r + .£ = I + Y' £ it follows that 

dd (I + 'J.{) dr dr 

T 
~£ · dr 

E · dr 

(3. 4) 

(3.5) 

(3.6) 

(3. 7) 
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where 

dU au (')u 
~ oY C>Z 

~ K-l ov dV ov (3.8) ox C>y S7; 

dW dW dW 
dX o:t o"Z 

is the strain matrix, or displacement gradient matrix (Fraeijs de 

Veubeke,1979). 

The strain matrix ~ is the Jacobian matrix of the transformation ~ ~ g 

(3.2) from the position into the displacement vector space P -+ D • 

3.1.2 Progressive Deformation 

Figure 3.1 describes a deformation of a deformable body by 

instantaneous position vectors of its material points at two successive 

instants of time. The deformation is understood as the change in 

configuration between the initial (undeformed) state and the final 

(deformed) state. 

In reality a body can pass through various intermediate stages before 

it arrives from its initial state at its final state of deformation. 
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This evolution of the configuration of material points, called 

progressive deformation, can be described either by finite or by 

infinitesimal strain. The finite deformation expressed by finite 

strain relates the instantaneous 

(undeformed) state. Incremental (or 

configuration 

infinitesimal) 

to the initial 

strain, on the 

other hand, relates instantaneous changes in configuration to the 

instantaneous configuration (Means,1967). In incremental strain theory 

the distortions and the parameters describing them are considered so 

small that their products and squares can be neglected without any 

influence on the results. Considerable simplifications of the 

formulation result from these considerations. 

In crustal strain analysis (from re-surveyed geodetic networks), the 

relative displacements are always very small compared to the pos~tion 

differences. The incremental strain theory is thus applicable without 

restriction. 

Progressive deformation can be described by a succession of changes in 

the configuration. Let the deformation~-+ K' (cf. Figure 3.1) in 

the interval [t0 , t 1]be followed by a second change of configuration r.' -+ 

r'' between the instants t, and t 2 • The sequence of deformation r-+ r' 

-+ ~·· is expressed by the functions r' r.'(r) followed by r'' 

!:"(r'), or for the displacements d = d(r) followed by d'' = d''(r') • - -- - - -
The combined deformation is described by 

r'' r"(r'(~)) (3.9) 

and its displacements by 
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d I I r'' (3.1 0) 

Let us now consider the neighborhood transformation (3.4) corresponding 

to the sequence !:. - r.' - r' ': d.r' = E.·d_r followed by dr_'' = !:_' · dr', 

where the deformation matrices are defined according to eqn. (3.5). 

The resulting deformation matrix ! '' of the composed transformation r 

-- r'' is the product of the component Jacobian matrices taken in the 

appropriate order 

dr'' (3 .11 ) 

The same sequence of deformations expressed by the differential 

displacements is found .if the deformation matrix r is replaced by. the 

strain matrix ~ 

d_g !]· d_r (3.12) 

(E - I) dr followed by 

dd' (3.13) 

(:f- ;I) dr' 

and for the composed transformation 

dd''= E' ~dr = (K''-I)· d_! = (~'· ~- I) dr (3.14) 

(!)!' + I)·(.!)! + I)· d~ 

(~' ~ + ~· + ~) dr 

I · dr 

For incremental deformations, the relative displacements are small 

compared to the relative positions. Thus the elements of the 

displacement gradient matrices ~and !' satisfy the following condition 
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i,k = 1,2,3. (3.15) 

In this case the field d(r) is said to satisfy the condition of 

geometric linearity (Fraeijs de Veubeke,1979). If the product E'·~ is 

neglected, the strain matrix of the total change of configuration E'' 

is simply found as the sum of the component gradient matrices 

E' I (3.16) 

For the displacement, follows the linearized law of superposition for 

incremental deformations 

dd I I d.Q. + d.Q. I (3.17) 

3.2 Temporal Variation of Strain 

The strain tensor of the earth's crust is not only a function of the 

position vector r, but also varies in time. According to the law of 

superposition of incremental deformations (3.16 and 3-17), the 

progressive deformation can be considered as a summation of 

infinitesimal deformations. 

Let the relative velocity field dy(T,t) be a continuously varying 

function in space and time. The relative displacement in the time 

interval [to, t,]is then 

d<:!lt.,t,] 

From eqn. 

. 

(3.16) it 

E (to,t 1] 

obtained from the integral 

= Jtdy(r,t) dt • 
to 

follows analogously for the strain matrix 
tl f ~ Cr,t) dt 

to . 

(3.18) 

(3.19) 

where E is the gradient of velocity matrix, which is generally time 

dependent. 
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SECTION 4 

TWO-DIMENSIONAL STRAIN ANALYSIS 

In an attempt to find a compact and elegant mathematical formulation of 

the horizontal components of relative crustal motion, the use of 

complex analysis was studied. In the theory of plane stress and 

strain, the use of complex functions of complex variables is clearly 

indicated because of the ease with which the solution can be formed and 

manipulated. The advantages of this treatment are comparable to those 

achieved when complex analysis is applied to conformal mapping. 

The basic definitions, as well as the mathematical relations among the 

complex components of plane strain, are hardly found in recent 

literature of the mechanics of continua (Sokolnikoff,1956; 

Jaeger,1961; Ramsay,1967; Means,1967; Fraeijs de Veubeke,1979). The 

basic theory of plane strain will therefore be outlined in this 

section. 

4.1 Infinitesimal Strain Tensor-Field in Two Dimensions 

As we are only concerned with the horizontal components of the relative 

displacements in the x-y mapping plane in this study, the 

three-dimensional formulation of strain presented in Section 3 can be 

reduced to a two-dimensional one. In this section, the vectors ~ and 1 

represent the two-dimensional projections of the position 
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displacement vectors onto the mapping plane. The three-dimensional 

gradient operator ~ is to be replaced by the two-dimensional operator 

I <!I ~ T 
\J = (5X,ay) • (4.1) 

The infinitesimal strain matrix~ (3.8), containing 9 elements, is to 

be replaced by a two-dimensional matrix with 4 elements 

ou ~u exJC e><y ()JC 51 
E (4. 2) 

dV C>v ey>l eyy b)( o'i . 
There are different possibilities for splitting the strain matrix ~ 

into parts. We shall introduce two kinds of decompositions which are 

particularly useful for the deformation analysis. 

4.1.1 Decomposition into Symmetrical and Anti-Symmetrical Parts 

The general neighborhood transformation (3.4) can be accomplished in 

two steps. The first step is a pure deformation, whereas the second is 

an infinitesimal rotation. Analytically this is achieved by the 

decomposition of the strain matrix (Jacobian matrix) into a symmetrical 

and a anti-symmetrical (skew-symmetrical) part 
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E ( ~T) + 1/2 ~ (4.3) 

+ .J} 

symmetric anti-symmetric • 

The matrix § , called symmetric strain tensor (Jaeger, 1961), is a 

tensor of order two which expresses the pure deformation which remains 

after separating any rigid block motion (translation or rotation). 

The symmetric strain tensor e can be transformed into a diagonal form 

by solving the two-dimensional eigenvalue problem. The eigenvalues £1 

and c1represent the maximum and minimum extensions in the direction of 

the eigenvectors (cos8,sin8) and (-sin8,cos8). The eigenvalues c1 and E1 

are called principal strains; the eigendirections, principal strain 

directions. 

The transformation into the system of principal strain axes is 

expressed by the following spectral decomposition of the symmetric 

strain tensor 

= 

s 

cose -sine ]·!£, 
sinS cos8 0 

D 
T s 

o l [ cos e sine l 
£'1. -sine cos 8 

where: D diagonal strain tensor (spectral matrix) 

S modal matrix 

(4.7) 
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e ... orientation of the principal axes system • 

4.1.2 Decomposition into Conformal and Anti-Conformal Parts 

The neighborhood transformation ~ -+ dr' (3.4) is conformal if the 

Cauchy-Riemann equations are satisfied by the components of the 

Jacobian matrix: 

} (conformal) • (4.8) 

Conversly, dr-+ dr' is anti-conformal (Grove and Ladas,1974) if: 

} (anti-conformal) • (4.9) 

In eqn. (4.3) the deformation tensor was decomposed into a symmetrical 

and an anti-symmetrical part. It can just as well be decomposed into a 

conformal and an anti-conformal part 

[O'+'L O-W [: 
-W [: -: l E + (4.10) 

l) +W G'-'L (J 

~c + ~a 

conformal anti-conformal • 

The elements (J,W,'L and tJ introduced in eqn. (4.10) are linear 

combinations of the gradients of displacement; their interpretation 

is: 
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(J 1/2 (e)(x + e:t) dilation or average extension 

w 1/2 (e:;x- e>~) average differential rotation 
(4.11) 

't 1/2 (e)Cl(- eyy) . . . tensor shear components • 
v 1/2 (eyx + el{) 

Their geometrical meaning will be discussed in Sub-section 4.3. The 

matrices Jc and Ja in eqn. (4.10) can be interpreted as the Jacobian 

matrices of two successive transformations. The differential of the 

total transformation is then 

dg J ·dr -c - + (4.12) 

where the first term expresses a conformal and the second an 

anti-conformal transformation. 

4.2 Strain Components as Complex Variables 

4.2.1 Elements of Complex Analysis 

A brief introduction into complex analysis is presented in this 

chapter. This theory is required for the derivation of the complex 

equivalent of the functional relationship between position and 

displacement vector space. 

Let z = x + iy be a complex variable, z(x,y) ~c , and let the complex 

function 

w : z - w ( z) w(z) e.C (4.13) 

have the real and imaginary parts 
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w = u(z) + i·v(z) u(x,y), v(x,y) ER (4.14) 

where u(x,y) and v(x,y) are real functions 

w = u(x,y) + i·v(x,y) x,y ~ R (4.15) 

which are continuously differentiable with respect to x and y in the 

neighborhood of x .. ,y.,. In this case, the differentials 

du, dv of u and v exist in X 0 ,y .. : 

where 

du = u~(xo ,y.,) dx + u1 (x., ,y.,) dy 

dv v,. (x., rYo ) dx + Vy (x., rYo) dy 

dx x - X 0 and dy = y - Yo • 

(Note: The notation u"(x.. rYo) is used for the partial derivative 

in this study. ) 

au I oX K"Xo 

'i•;J., 

(4.16) 

The differential of w = w(z) at Z0 {xo + i Yo) is the linear function 

dw = du + i dv (4.17) 

w,. ( x .. ,y., ) · dx + Wy ( x .. ,y., ) · dy , 

where: ( ) + i VJ (X., rY.o ) Ux X., rYo A 

( ) + 1. ( ) u 1 X., ,yo Vy X., ,yo 

The complex increments dz and dz (complex conjugate) are defined as 

follows: 

dz z - z .. (x + iy) (xo + i Yo) dx + i dy dz e.C 

(4.18) 
dz z - zo = (x - iy) - (x .. - i Yo) = dx - i dy dz ~tC 

and the real increments are inversely given by 

dx = 1/2 (dz + d-;) dy = 1/2i (dz - dz) (4.19) 

The differential expressed by the complex increment and its conjugate 
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follows from eqns. ( 4 • 1 7 ) and ( 4 • 1 9 ) • It has the form 

dw = 'f(z0 ) dz + '\f(z0 ) d-; , (4.20) 

where: Cf (zo) 1/2 [wx ( Z0 ) i w1 ( Zo )] <f(z) ~c 

( 4. 21 ) 
't( Zo) 1/2 {wx ( Z0 ) + i w1 (z0 )} 'l.((z) E.C 

The complex function w (z) is said to be complex differentiable at 

z0 if, and only if, 1f(z 0 ) = O, 

or (4.22) 

0 

which is the complex equivalent to the Cauchy - Riemann differential 

equations (4.8). Only in this case does the complex derivative 

w' (z) dw/dzl lim W(l.o+.dZ)- W(Zo) = :f'(zo) (4.23) 
"Zo .oz ... o LlZ 

exist and w(z) is said to be analytic or holomorphic (Henrici,1974). 

The properties of holomorphic (anti-holomorphic) functions are 

recapitulated as follows: 

/:: 
w : z - w (z) } ~: 
is holomorphic or ~ 
analytic at z0 iff ~ 

3) 

w: z- w (z) }-----1) 
is anti-holomorphic ---------
at z0 iff 2) 

~= 0 (Cauchy-Riemann 
equations (4.8) satisfied) 

w(z) complex differentiable 
at z0 ; the complex derivative 
w'(z 0 ) exists 

w(z) conformal at z0 

Cf= 0 {eqn. 4.9 satisfied) 

w(z) anti-conformal at z0 • 

Holomorphic and anti-holomorphic functions possess precisely the 

property of conformality and anti-conformality which is prescribed for 

the two Jacobian matrices J, and Ja by the eqns. (4.8) to (4.10), 

(Grove and Ladas,1974). 
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4.2.2 Complex Strain Elements 

The equivalence between the real differential of the total 

transformation (4.12) and the complex differential (4.20) will be shown 

in this chapter. The real vector space R1 is said to be isomorphic to 

the complex space C. Any mapping C -+ C can therfore be redefined by a 

real vector transformation R~-. R1 • The matrix form 

a X -y 
(4. 24) 

b y X 

is equivalent to the product of two complex numbers (Budden, 1 968) 

(a + i b) = (x + i y)· (c + i d) . (4.25) 

If one realizes that the products 

[: 
-W dx 

[: 
v 

[ dx and 
u dy .![ dy 

~c dr !!a dr -

are equivalent to the complex products 

( v + i. w ) ( dx + i dy) and ( T + i I) ) ( dx - i dy) 

dz 

it is clear that the differential (4.12) 

dg J d.£ a 

can be replaced by the complex differential 

dw (v+ iW) dz + ('I+ i \J) cfZ (4. 26) 

It follows for the complex variables 'f and "t' in eqn. (4.20) that 

( u+ i w) 

('t + i \)) 

(4.27) 

(4. 28) 

These two terms will be called conformal and anti-conformal complex 

strain elements. 
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4.3 Geometry of Two-Dimensional Strain ----------------------------------

4.3.1 Strain and Affine Transformation 

The strain matrix ~ (4.2) contains all the information needed for 

describing the distortions of a configuration by means of incremental 

strain. ~(x,y) is a tensor field of second order which varies, in 

general, from point to point. An important special case discussed in 

theory of elasticity is the uniform (or homogeneous) strain field ~. 

invariant in x and y. This exceptional case occurs theoretically with 

ideal, homogeneous elastic bodies which possess spatially uniform 

moduli of elasticity. 

An attempt will be made in this chapter to relate the components of 

homogeneous strain to the parameters of a general affine 

transformation. The geometrical meaning of the components of strain 

can easily be understood in this way. 
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In the case of a homogeneous strain field, the transformation r -+ r' 
- t 

analytically expressed by eqn. (3.4) is uniform (or constant) in 

space. The transformation equation has the same form as the linear 

expressions for the real (3.4), or for the complex differentials (4.20) 

r' 

z' 

F·r 

(1 + Cf)· z + 'f.z 

(4.29) 

(4.30) 

where the differentials df, d!', dz and dz are replaced by the vectors 

!' !' and by the complex variables z and z. The deformation matrix F 

(3. 5) consists of 4 constants and Cf and "t' are two complex constants. 

The linear form (4.29) is analogous to the transformation 

x' ao a, a~ X 

+ ( 4. 31 ) 
y' bo b, b.z y 

r' !o + A E 

with six parameters: ai ,bL; i=0,1,2 , which is known as the equation 

of a general affine transformation (Wolfrum,1978). The only difference 

is the additional translation vector !oin eqn. (4.31). 

Figure 4.1 depicts a comprehensive geometrical description of the 

general affine transformation. The transformation is decomposed into a 

sequence of rotations and stretches 

r' = !! ( L. ) · ~ ( sx , s.Y ) · !! ( (3 ) · !: (4. 32) 

where: R rotation matrix 

S diagonal matrix with the scale factors s. and s1 

(Note: The translation !ohas been ommitted in eqn. (4.32).) 
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With the substitution 

sx s + cf and SJ s _J 

where: s 1/2 (sx + S_y) average scale factor 

J 1/2 (sx By) differential scale factor 
(see also 4.3.3) ' 

eqn. (4.32) can be decomposed into a conformal and an anti-conformal 

part 

where 

z 

Realizing that 

z R 

yields 

x' 

y' 

R(L)·[ s·J. + cf~]·R(f3 )·r 

s·R(d.-+13)· £ + cfg(J...)· ~-R.(~ )· ~ 

0 

X 

R 
y 

s . .R(d.. +P->) 

reflection matrix expressing 
the reflection at the x-axis. 

X 

-y 

X 

[ _: + cf·R(tJ..-~) 
y 

(4. 33) 

(4.34) 

(4.35) 

This is the description of the general affine transformation (without 

translation) by the four geometrically meaningful parametersl,~,s and 

6. In complex notation, the same transformation is given by 

z' s · ex p i ( Jv + P-> ) · z + d·exp i(c£- P->) · z (4. 36) 

where ~,p.,,s,cS e.R. 

From eqn. (4.30) and (4.36) it follows for the complex strain 

components 

(1 +o/) z + '\fz s· exp i(J..+0) z + d·exp i(cL-0) z 

s · exp i(cl+~) - l 

(4.37) 

(4.38) 
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J ·exp i(cL-~) 

and for the real strain components 

c;- Re( Cf ) s. cos (d. + r..) 

().) Im(<f) s · sin ( cfv + P-> ) 

T Re('t-) J cos(cL- P.>) 

u Im( 1.f ) J sin(cf-.- 13) 

For small relative dispalcements ~~~L~1~1 it is 

s ~ 1 

which yields the approximate relationship 

(J . = s -

w - 0:.+ ~ 

1 . J cos 2f3 
l) - - J sin 20' . 

4.3.2 Non-Homogeneous Strain Fields 

SECTION 4 

(4.39) 

- 1 

(4. 40) 

(4.41) 

(4. 42) 

In the general case of a spatially non-homogeneous strain field, the 

transformation dr -+ d£' is not constant in space. Therefore, it can 

not be interpreted geometrically by a general affine transformation. 

The deformation, and thus the strain matrix m(x,y), varies in space. 

However, for infinitesimal relative positions and displacements, in the 

neighborhood of any point, the linear representation of the distortion 

(incremental strain), and thus the analogy to the affine 
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transformation, is valid. 

4.3.3 Further Expressions for Incremental Strain 

Unfortunately the definitions, conventions and notations for strain 

quantities are not used consistently in the literature of the theory of 

elasticity. For non-specialists, this makes the method of strain 

analysis and the interpretation of its results difficult to understand. 

The gradients of displacement eJ(J( ,exr ,eyJf and e;n defined in eqn. (3.8) 

are intrinsically easily understood. They depend, however, on the 

choice of the coordinate system. The strain components (4.11), as they 

were derived from the decomposed strain matrix, are felt to be the most 

natural choice of geometrically intelligible measures of strain. It is 

their symmetry in the definition (4.11) and the coincidence of the real 

with the complex formulation (4.26-4.28) which is the most appealing 

from the analysis point of view. All interpretations in this study 

will therefore be based on these quantities. 

The four strain components are dimensionless quantities. It is common 

practice in the field of crustal strain analysis to express them in 

units of microstrain(pstrain], which is defined identically to parts 

per million!ppmj. 

In this chapter a series of derived measures of strain which are 

frequently used in the field of strain analysis will be introduced. 
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a) Linear Extension: 

The linear extension of a distance ds between two neighboring points P1 

and P2 ( cf. Figure 3.1) is defined as 

e = ds' -ds 
ds (4.43) 

where: ds ... distance ~ pt before the deformation 

ds' ••• distance P.' P.' , 2 after the deformation . 
The elements exx' eyy (and ezz) of the gradient of 

deformation matrix are called extensional strains. They express the 

linear extension of lines which were parallel to the axes of the 

coordinate system before the deformation. 

b) Scale Factor: 

The scale factor (also called stretch) 

m = ds'/ds = 1 + e (4. 44) 

is obtained from the linear extension. 

c) Dilatation: 

(Note: Dilatation is not to be confused with 'dilation' as defined by 

eqn. (4.11), cf. (4.50)). The dilatation is defined as the relative 

change of an infinitesimal area analogously to the linear extension 

where: 

and 

b.= dA'-dA 
dA 

dA ••• area of undeformed configuration 

dA' ••• area of deformed· configuration 

m,.. dA'/dA 1 + 1:::. 

(4.45) 

(4. 46) 
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is the ratio of the deformed and the original area. 

The scale factors in the principal directions are found from the 

principal strains 

(4.47) 

The infinitesimal dilatation is obtained from the product 

(4.48) 

if products of small quantities are neglected. For the dilatation it 

follows 

The dilation, or average extension, is equal to the dilatation divided 

by two 

v= !J.j2. 

d) Total Shear: 

Total shear is defined as 
I 

'l l .,. rT = C'l + l) ) ~ 

(4. 50) 

( 4. 51 ) 

In contrast to the shear components (4.11), this quantity does not 

depend on the choice of the coordinate system. As will be shown in 

Section 5, total shear is equal to the maximum of the amount of shear 

as a function of the direction. It is interesting to note that total 

shear is equal to the differential scale factor J of the general affine 

transformation (4.32), which follows from eqn. (4.42). 

The shearing measures stated so far are all measures of tensor shear. 

This definition will be used without exception in this study. It 
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should, however, be noted that some authors use the measure of 

engineering shear, which is twice the tensor shear. 

e) Strain-Rate Components 

In analogy to the derivation of the symmetric strain tensor and the 

strain components, a strain-rate tensor and strain-rate components: 
. de;- dw (J =dt w 

dt (4. 52) 

t d'l u dU 
= dt dT . 

can be derived from E. All strain-rate quantities have the physical 

dimension t-kod are measured in micro-strain per year[pstrain/yr]. 
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SECTION 5 

GRAPHICAL REPRESENTATION OF STRAIN-TENSOR FIELDS 

AND THEIR CONFIDENCE REGIONS 

5.1 General Considerations 

In any attempt to interpret the computed numerical values of 

strain-tensor fields, there is a demand for graphical display. Modern 

graphical computer facilities, such as automatic plotters and 

CRT-terminals, provide the possibility of displaying graphical 

representations of computed strain. 

Various graphical representation techniques for str.ain quant.i ties have 

been studied and tested. Those methods which were found to be 

appropriate for crustal strain investigations will be discussed in this 

section. As strain is a tensorial rather than a scalar quantity, its 

visualization by a three-dimensional surface is not possible. Only 

scalar components of strain could be separately displayed in this way. 

If one single component is to be investigated, its lines of equal 

values (iso-lines) can be plotted in the x-y-plane. In general, 

plotting of meaningful strain figures at grid points was found to 

provide a more geometrically intuitive description of the strain field. 

The strain quantities as they are estimated from the least-squares 

approximation are random variables. In any attempt to draw conclusions 

from these results, the interpreter has to consider the statistical 
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confidence of these estimates. For this reason techniques which 

graphically depict the statistical quantities associated with the 

strain values are finally presented. 

5.2 Principal Axes Diagram 
----------------------

The elements £1 ,£2 and fl.,, which result from the diagonalization of the 

symmetric strain tensor (4.3). can be visualized in a very simple way 

by the principal axes diagram of strain (cf. Figure 5.2). This 

diagram depicts the direction and magnitude of maximum and minimum 

extension in a geometrically intuitive way. The size of the axes is a 

measure of the magnitude of the principal strains. Positive values 

(extensions) are plotted by solid lines, negative values (contractions) 

by broken lines. Additional small arrows, pointing towards the centre 

of the diagram for contractions and in the opposite direction for 

extensions, were found to enhance the visual impact of these diagrams. 

The principal axes of strain diagram also expresses shear in an. 

indirect way. The magnitude of shear can be visualized from the 

difference of the principal strains. The directions of maximum shear 

form angles of 45° with the two principal strain axes. 

Similar to the principal axes of strain diagram, maximum shear can be 

shown by an axes of maximum shear diagram (cf. Figure 5.3). The 

length of any of the two equal axes expresses total shear t (4.51). 

As far as numerical computation and plotting of large numbers of 
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diagrams are concerned, the principal axes diagrams turned out to be 

the most economical. 

5·3 Strain Ellipse and Strain Pedal-Curve 

The symmetric strain tensor £ (x,y) ( cf. (4.3)) describes the 

non-translational, non-rotational linear deformation at any point 

P(x,y), relating the vectors of position space dr with those of the 

displacement space ~ by 

d_Q ( 5. 1) 

Defining q as a unit position vector 

coslv 
q (c£) (5.2) 

sinrf... 

where cL denotes the angle, measured anti-clockwise from the x-axis, 

d£( c(, ) = . ~ g,_( c{,) = 
( (J + C'( ) cos c( + V ·sin~] 

+ (G" -'t) sin~ lJ · cosd.-
(5.3) 

represents the mapping of a unit circle in position space into 

displacement space. Eqn. (5.3) is the parametic vector equation of 

the strain ellipse, which is one possible graphical representation of 

the local deformation at P(x,y). 

Replacing the real strain components by its complex expressionsf, ~and 

the unit vector q(~) by its complex equivalent 

exp(il) cost£ + i sinck. , (5.4) 

the complex parametric equation for the strain ellipse can easily be 

found from 

v ( cJ.., ) = ~· exp( ill.) + '!:' exp( -i~) i W exp( ic(.) v(~) ~c (5.5) 
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(<f -iW) exp(i~) + '\fexp(-id..) 

He ( Cf ) • exp( i~) + '\fexp( -i<:L) • 
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The strain conic is an ellipse only when both eigenvalues of the strain 

tensor are positive. If one is positive and the other negative, the 

conic is theoretically a two branch hyperbola. If both are negative, 

it is an imaginary ellipse. A graphical representation of the latter 

two cases may make some intuitive sense. Some authors connect the ends 

of the positive or negative semiaxes by ellipses in all cases 

(Thapa,1980), (cf. Figure 5.4). 

Another interesting quantity to be graphically represented is the 

extension (or contraction) in a certain direction. Extension, as a 

function of the direction (or azimuth), can be derived from the 

expression for the strain conic (5.3). The projection 

of the 

for ( cf. 

b1 (cO CjT ( cJ.) d_Q, (5.6) 

v + 'f cos 20... + U·sin 2cf.- • 

vector d£ onto ~ is exactly the component which we are looking 

Figure 5.1). The expression (5.6) is the parametric equation 

of a pedal-curve which is called the strain pedal-curve (Pope,1966). 

This reads in complex notation 

He ( exp( -ic£.) · v) 

He ( Cfexp(ic£.) · exp(-i~) + 1.fexp(-2i"'-) 

He ( cg + \f exp( -2i<L)) • 

(5-7) 
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5.4 Shear Rosette 

Shear can be described as the change in a 90° angle. Shear at any 

point in a certain direction can be computed similarly as extension in 

a given direction. It is simply the component b2 in Figure 5.1 , 

or in real notation 

Im ( exp( -id.) · v) 

= Im ( 1P-exp( -2i!!-)) 

LJ·cos 2rL- 'l·sin 2~ • 

(5.8) 

(5.9) 

It should be noted that eqn. (5.9) defines a four-petal rosette called 

the shear rosette (Pope,1966). The directions of zero shear correspond 

with the directions of the principal strain axes. The latter form 

angles of 45° with the directions of maximum shear. An optional 

confidence region of shear (cf. Sub-section 5.7) is also plotted in 

the graphical example which depicts shear-rosettes (cf. Figure 5.7). 

The shear b2 in (5.8) does not depend on the conformal complex strain 

component 9 . Thus the shear-rosette is invariant to infinitesimal 

rotations and scale changes. 

Extension and shear in a given direction can both be expressed by the 

complex matrix equation 

c [Re(o/)1 
[ 1 , exp( -2icL)] '\(' (5.10) 

which is equivalent to the real matrix equation 
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[~]=[6: 
Re <f 

0, cos 21J- ,sin 2ct.:l· Im <f 
0,-sin 2~ ,cos 2~ Re '\f (5.11) 

Im "f' 

b A £. 

5.5 Dilation Circle and Rotation Sector 

Dilation v and average differential rotation u> are scalar strain 

quantities. Dilation at discrete points is best described graphically 

by a circle with variable radius (solid circle for extension broken 

circle for contraction). The average differential rotation UJ is 

preferably represented by a small sector with variable central angle 

(plotted with solid lines for positive rotations, broken lines for 

negative rotations, cf. Figure 5. 5) • The values of the average 

differential rotation uu are, in general, so small ('1o-5rad) that 

it would be impossible to plot them to scale as an angle. Therefore UJ 

has to be multiplied by an appropriate scale factor (e.g. 106). 

5.6 Scalar Strain Quantities 

The least-squares approximation of the strain-field provides continuous 

numerical functions in space. Dilation, average differential rotation, 

total shear or shear in a prescribed direction are examples of scalar 

strain functions. The most appropriate way to represent these scalar 

functions graphically is by plotting their lines of equal functional 

value (iso-lines, i.e. by displaying their three-dimensional surfaces 

over the x-y-plane). 
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5.7 Confidence Regions of Strain Quantities 

The covariance matrix g~ is computed together with the solution vector 

for the polynomial coefficients of the approximation function. 

Applying the covariance law to the approximation function (cf. Section 

6), covariance matrices Qgojof the strain components are found at any 
4,4. 

prediction point. Applying the covariance law to eqn. (5.11) yields 

the covariance matrix of the radial distances of the strain pedal-curve 

and the shear-rosette 

(5.12) 

The 68.3 percent confidence interval of the extension and shear in a 

certain direction is found, if covariances are neglected, from 

i i=1, 2 • (5.13) 

The confidence intervals of the radial distances describe two curves 

similar to the strain pedal-curves and the shear-rosettes. They can be 

computed as parametric functions of~ and be plotted together with the 

strain figures in a different color or with a different line type (cf. 

Figures 5.6 and 5.7). 

The confidence intervals of the dilation and the average differential 

rotation are found directly from their variances in The 

confidence interval to any level of confidence of the dilation at a 

certain prediction point are graphically displayed by circles 

concentric to the dilation circles (cf. Figure 5.5). The confidence 

interval of the rotation sector.is depicted by a small arc, concentric 

to the sector arc (cf. Figure 5.5). 



Map scale: 1:400000. 
Extension/contraction: 
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Figure 5.2 

Principal axes of strain 

Relative displacements: arrows 
solid/broken lines (5mm~1pstrain). 
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(1:20). 



73 SECTION 5 

Figure 5.3 

Axes of maximum shear 

Map scale: 1:400000. Relative displacements: arrows (1:20). 
Left/right lateral tensor shear: solid/broken lines (5mm~1rstrain). 
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Figure 5.4 

Strain ellipses and principal axes of strain 

Map scale: 1:400000. 
Extension/contraction: 

Relative displacements: arrows 
solid/broken lines (5mm~1pstrain). 
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(1:20). 
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6 

Figure 5.5 

Dilation circles and rotation sectors 

Map scale: 1:400000. Relative displacements: arrows (1:20). 
Positive/negative dilation: radius of solid/broken circles 
(5mm~1pstrain). Average differential rotation: angle of sectors 
(1gon~10pgon). Std.dev. of dilation: heavy circles. Std.dev. of 
rotation: marks at sector arcs. 
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6 

Figure 5.6 

Strain pedal-curves and principal axes of strain 

Map scale: 1:400000. Relative displacements: 
Extension/contraction as a function of the azimuth: 
the solid/broken curve (5mm~1pstrain). 

arrows ( 1 : 20). 
radial distance to 

Std.dev. of 
Extension/contraction: radial distance to heavy curve. 
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Figure 5.7 

Shear-rosettes, axes of maximum shear and principal axes of strain 

Map scale: 1:400000. Relative displacements: arrows (1:20). 
Left/right lateral tensor shear as a function of the azimuth: radial 
distance to solid/broken curve (5mm~1pstrain). Std.dev. of shear: 
radial distance to heavy curve. 
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SECTION 6 

LEAST-SQUARES APPROXIMATION 

6.1 General Considerations 

The method of repeated observation of kinematic horizontal networks 

provides information on relative displacements associated with a 

limited number of material points (stations) and with a finite number 

of instants of time (observation epochs). Let us assume that the 

deformation of the crust can be represented by an approximation 

function in space and time which is continuous and continuously 

differentiable with respect to the coordinates as well as with respect 

to time. Limited discontinuities in space (along fault lines) and in 

time (at instants of seismic events) will, in some cases, be considered 

by extending the approximation function. The strain tensor field 

varying in space and time is considered the basic representation of the 

sought crustal deformation. 

The problem of least-squares approximation to be solved can be defined 

as follows: 

Given a discrete, time varying vector-field at a number of points and 

at a finite series of time, find another function of prescribed general 

form in space and time which approximates the given function in the 

least-squares sense. Predict the gradient matrix of the approximating 

vector function at a number of prescribed points and instants of time. 
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The choice of the approximation functions will first be discussed in 

this section. Based on the theory of Hilbert space optimization, 

linear forms, or generalized polynomials, are used in the general 

formulation of the approximation problem. No choice of the analytical 

shape of the space and time functions is made at this stage of 

mathematical formulation. Any set of linearly independent base 

functions of continuous or discontinuous kind may be chosen. The 

selection may be arbitrary, or may ideally reflect the physical 

behaviour of the crustal material. 

The main objective of the present method of polynomial modeling is to 

discover the most significant trend (signal) in the time varying, 

relative displacement field. At the same time, local irregularities in 

space and small fluctuations in time (noise), which are likely to be 

caused by random observation errors, have to be filtered out. A 

statistical test procedure is applied to test whether or not a 

determined coefficient is statistically different enough from zero to 

be included in the model. Such a test is best performed in an 

orthogonal or orthonormal solution space. The main advantage of 

orthogonal coefficient spaces is that the normal equations are no 

longer interdependent; they can each be solved separately. The 

resulting coefficients are statistically independent and can thus be 

tested individually. 

In general, the selected system of base functions is not orthogonal. 

Any such system can, however, be transformed into an orthogonal or 

orthonormal system through an orthogonalization process, such as the 
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Gram-Schmidt process (Schwarz et al.,1972). After rejecting the 

non-significant orthonormal coefficients, the remaining set of 

coefficients is transformed back to the original coefficient space. 

The real model of the kinematic network adjustment, as it is discussed 

in Section 3, provides the functional, as well as the statistical 

relationship between the original geodetic observations and the 

discrete, relative displacement field. This model is to be combined 

with the approximation model formulated in complex vector spaces. 

Least-squares adjustment models with complex observation, function and 

parameter spaces can be solved either directly, using the least-squares 

norm (6. 3) defined in complex vector space, or conventionally, . after 

re-defining the model in real vector spaces. If linear constraints. 

among the real or imaginary parts of the parameters have to be 

introduced, as in the present approximation model, the second approach 

is clearly advantageous. The straight-forward combination of the 

network model with the re-defined real approximation model is presented 

in Section 7. 

6.2 Complex Approximation Function 

The model of the least-squares approximation of a time varying vector 

field is best developed in the following two steps: 

1) First an approximation function linear in time is chosen, which 

approximates a discrete vector field linear in time. 
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2) The approximation function in space is then extended, taking 

into account the time variations. 

6.2.1 Approximation Function in Space 

We adopt a complex valued approximation function, piecewise continuous 

within certain regions deliminated by active fault lines 

h z - h(z) £C ( 6. 1 ) 

Let the discrete displacement field be given by the discrete, complex 

function 

k= 1,2, ••• ,np (6.2) 

where: zk EC complex coordinates of point Pk 

w~ eC complex displacement of point Pk . 

The function h(z) is to be found so that it approximates wk(zk) in the 

least-squares sense. 

A function h(z) is said to be the best approximating one, in the 

least-squares sense, if its coefficients are such that the distance 
2 

? ( w, h) (6.3) 

(where ~ E. R+ is least-squares norm) is minimized (Van{~ek and 

Wells, 1972) • 

A comprehensive outline of the theory of least-squares approximation is 

provided in Appendix II. 

The approximation function (6.1) possesses the complex differential 
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(4.20) 

dh 1/2(hx - ihy ) dz + 1/2(hx + ihy ) dz (6.4) 

knowing from eqn. (4.22) that the first term vanishes if h(z) is 

anti-holomorphic and the second term vanishes if h(z) is holomorphic, 

h( z) is chosen as follows: 

h(z) gc (z) + g:(z) (6.5) 

or h(z,z) gc ( z) + ga ( z) (6.6) 

where gc c - g (c) tC 
c 

and ga c - g8 (c) e.C are both holomorphic. 

It is to be noted that if 

g c -+ g(c) is holomorphic, 

g~ c -+ g*(c) = g(c) is anti-holomorphic. 

Function (6.5) is a non-analytic function composed of a holomorphic and 

an anti-holomorphic term. The first term describes the conformal 

mapping: z- gc(z), whereas the second expresses the anti-conformal 

mapping: z _. g: (z) = g3 (z). In eqn. (6.6), the same function is 

re-written by using complex conjugate coordinates (z,z) (Spiegel,1974). 

The complex differential (4.20) of h(z) is 

where: 

db( z) 

dgc ( z) 

dg;(z) 

dg3 (z) 

from which follows 

dh(z,z) 

dgc ( z) + dg; ( z) 

1/ 2 (d90 Czl_ 
ax i 'O~cz.)) dz 

(Jy 
+ 0 · dz 

O·dz + 1 /2 ~.:(z)+ i a~;CZ) . dz 

O·dz + 1 /2 (~g~(f~ i d.g;(~~ . dZ 

dgc (z) ·dE + 

'f (z)·dz + 

dga (~) · d~ 

"f (z). dz 

(6.8) 

(6.9a) 

( 6. 9b) 

(6.9c) 

(6.10) 

The following generalized complex polynomials are chosen instead of 
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g~z) and g~z) for their computational advantages 
n 

g (z) 
c 

L:a.f.(z) io(z)·a (6.11a) 
\.•1 l I. -(n) -

m 

ga (z) .LbJi.(z) t(z)·'£ (6.11b) 
l~l -(m) 

where: .f( c) 
-en) 

{f1 (c),f~(c), ••• ,fn(c)} E.C ••• functional base (6.12) 
n 

a E.C ... coefficient vector n;1 
m 

b cC ... coefficient vector , 
rn7r 

which yields the complex, generalized approximation polynomial in space 

he fz,z) 
n,rn) 

<}> (z). a + 
-(n} -

.f(z)·Q 
-(m) 

with its differential 

The 

dh (z,z) 
(n,rn) 

1 /2(% ~(:tl_ 

di<Z) a 
dz -

i 0 i_cz).a dz + 1/2(~+ 
~y - oX 

dz + dcic-z) b dz 
d.Z: -

i-'(z)·a dz 
-cnJ -

.}'(z). b dz + -, ... ) -

complex strain components are found from: 

q(z) f:n)( z) ~ 

'\.[-'( z) 4' Cz) b 
-cm) 

6.2.2 Modeling the Time Variation 

. dicZJ)b d­l.sy- ._ z 

(6.13) 

(6.14) 

(6.15a) 

(6.15b) 

The temporal variations of the displacement field are accounted for by 

the following approximation polynomial 

h(n,m.lf Z' t) H (z) A + 
-(nl 

~ (z) 
-(m) 

~} ·~T (t) (6.16) 

where: A coefficient matrix aik €.C 
n-;-1 

~ coefficient matrix bik cC 
m,\ 

and ~ is the spatial component as defined in eqn. (6.12) and 

(6.17) 
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is the temporal component of the functional base. 

The choice of the temporal component X(t) of the base functions implies 

the temporal behaviour of the deformation. Certain kinds of time 

functions suitable for the crustal analysis will be discussed in 

Sub-section 6.4 • 

6.3 Functions in Space 

Any set of functions(f, (c),f~(c), ••• , ~(c)} , containing n linearly 

independent analytic functions: c ~ f\ (c) in the complex 

functional space, can be chosen as the spatial component of the 

functional base of the generalized approximation polynomial. 

6.3.1 Continuous Functions 

If the section of the earth's crust under consideration was an ideal 

elastic body, its relative displacement field would be continuous and 

continuously differentiable. Phenomena, such as fractures and fault 

creep, which are known to cause local discontinuities in the 

displacement field occur in seismically active areas. However, a 

continuous approximation function is used as the basic model in this 

study. Discontinuities at prescribed locations are being accounted for 

by additional terms of the generalized polynomial in space (cf. 

6.3.2). 
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The spatial component of the functional base 

f(S {c - c"} 
-en) 

defines the complex algebraic polynomial of degree n 
n . 

= La. c' 
• L 
L•O 

I.a 
~cnr E.C 

which is chosen for its computational advantage. 

6.3.2 Modeling Discontinuities Along Known Faults 

SECTION 6 

( 6. 18a) 

( 6. 18b) 

In a kinematic network which straddles active tectonic faults, the 

discontinuous part of the relative displacement field may be mainly 

responsible for the network distortions. Continuous space functions 

are in this case not adequate to model the relative motion. 

One straight-forward way to approximate such local discontinuities 

along known faults is to decompose the deformation into relative rigid 

block motions (relative translations ru1d rotations). For this purpose, 

the crust under investigation has to be subdivided into a number of 

crustal blocks. Relative rigid block motion parameters are introduced 

for each pair of adjacent blocks. 

In the case of actively moving transcurrent faults, relative rigid 

block translation seems to be by far the most predominant part in the 

relative discontinuous displacement field. There may also be 

discontinuities present in rotation, shear and other strain components. 

Individual, spatially homogeneous or non-homogeneos strain in each 

block can be taken into account in the same way as rigid block 
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translation. In order to keep the approximation model in this study as 

simple as possible, we assume, however, that all non-translational 

discontinuities can be adequately approximated by continuous space 

functions. 

Masking Functions: 

The approximation function in space (6.13) is extended by the following 

discontinuous, complex masking functions 

0 if z f- B· 

~p(i~j) 
J 

f.( z) if z E. lj j=n+1,n+2, ••• ,n+n 8 (6.19) 
l 

exp( i~j) if z E. B· J 

where: i ={f1 ,f2 , ••• , f.., .. ..,&} ••• spatial component of the base function 

B· J 

lj 

O:...j ••• 

n 

set of all z corresponding to points within block Bj 

set of all z corresponding to points on polygon lj 

bearing of fault line lj 

number of continuous coefficients 

number of crustal blocks 

(cf. Figure 6.1). 

The true faults, known from geological maps, have to be generalized by 

straight lines. The real part of the unknown coefficient corresponding 

to fj expresses the component of the fault-slip in the fault direction 

~j 7 whereas the imaginary part describes the relative displacement 

perpendicular to the fault. This model allows the approximation of 

either unrestricted relative block translations, or relative block 

translations constrained to the fault strike. 
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Figure 6.1 

SECTION 6 

Model for block translations using complex masking functions 

(a) Translation of block B, relative to to block B0 ; (b) Translation of 
block Bt, relative to block Bo; (c) Superposition of two translations. 
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6.4 Time Functions 

6.4.1 Linear and Piecewise Linear Time Functions 

There are many cases in which a linear time function 

a,t (6.20) 

(with the temporal component of the base function 

{ t} ) 

is the only reasonable choice for the approximation model. If a 

kinematic network has been re-observed only two or three times, only a 

linear trend of the crustal deformation in time may be detectable. In 

the two-epoch case, this constant velocity model is obviously the sole 

choice. 

The linear time model implies a time invariant velocity field and, 

subsequently, a time invariant strain-rate tensor field. In 

seismically active areas, the temporal behaviour of the deformation is 

too complex to be portrayed by a linear model. The linear time 

approximation provides only a general trend. The accumulation and 

release of strain associated with seismic events, which is one 

interesting phenomenon the seismologist is looking for, is obscured by 

this simple model. 

In the multi-epoch case, a piecewise linear time function could be 

introduced. The piecewise linear temporal component of the base is 

composed of a series of linear functions 
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t t e jtk-t , tk] 
_/ 

T K( t) Tk(t) k=1 '2' ••• '1 ( 6. 21 ) 

-"" 0 t f.. [tk-1 'tk} 

where the domain of each is defined by the interval { tk_1, tkj; k=1,2 ••• ,1 

The piecewise linear time function is treated as a special case of 

the episodic time function discussed in 6. 4. 3 , with tk_fUld tk defining 

the beginning and the end of the 1 episodes. If little is known a 

priori about the temporal behaviour of the deformation, the piecewise 

linear time model may be a helpful tool in detecting episodes of 

spasmodic motions. 

6.4.2 Continuous Time Functions 

The temporal component of the functional base 

~(11 

defines the real algebraic time polynomial 

T a 
-(1)-

where a ~ Rlis a real coefficient vector. 

(6.22) 

( 6. 23) 

The proper degree 1 of the time polynomial is difficult to select. 

There is a theoretical limit for 1 which follows from the theory of 

polynomial interpolation (Henrici and Huber,1969) 

1 (6.24) 

where neis the number of (complete) epochs • In fact, 1 should always 

be much lower than n,- 1 to avoid spurious oscillations. 



90 SECTION 6 

6.4.3 Episodic Time Functions 

In order to model episodic motions which are expected to occur in 

relation to seismic events, the polynomial time function (6.23) is 

extended by the following episodic terms (Van{cek et al.,1979) 

~0 if t "'- bk 

't ( t) if b~f t...:el< ;k-n =1 ,2, ••• ,n5 (6.25) 
k ~K)/(ek-bk) 

1 if t;:. ek 

where: bl< beginning of episode 

el< end of episode (not to confuse with strains e)(l( ) 

n degree of algebraic polynomial 

ns number of episodes. 

The time intervals [bk ,ek]; k-n = 1, 2, ••• ,n5 of the expected episodic 

motions, in which eqn. (6.25) is assumed to be linear, have to be 

defined before the approximation. Eqn. (6.25) expresses the piecewise 

linear function (6.21) for a series of long intervals [bk ,e~J and is 

similar to the Heaviside function (Henrici and Jeltsch,1977) for 

e - b ...:...: 1. 
k k 
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SECTION 7 

SIMULTANEOUS NETWORK ADJUSTMENT AND STRAIN APPROXIMATION 

7.1 General Concept 

The possibilities of simultaneously combining the least-squares 

adjustment of kinematic networks with the complex strain approximation 

have been studied. A mathematical model will be derived in this 

section which directly relates the geodetic observations to the unknown 

coefficients of the strain approximation. 

The observations of each epoch are introduced into separate network 

adjustments. If networks of some epochs suffer from formulation or 

configuration defects, their singular normal equation matrices are 

computed, but no least-squares solution is sought. Taking advantage of 

the redundancy in the networks of each epoch, the observations are 

screened for blunders and outliers. The functional model, as well as 

the statistical model, and all residuals of the adjustment are 

statistically tested. The normal equations of each epoch are stored 

and subsequently used for the multi-epoch strain approximation. 

An attempt is made in this chapter to provide a comprehensive outline 

of the mathematical model of the developed method. Details, such as 

options for the three-dimensional adjustment and for simultaneous 

estimation of additional nuisance parameters, will be omitted for the 

sake of a transparent description. A summary of the complete 
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mathematical formulation, on which the computer program CRUSTRAIN (cf. 

Appendix III) was based, is provided in the external Appendix. 

7.2 Network Adjustment of Individual Epochs 

a) Geodetic Observations of Epoch i: 

Let us consider a set of n geodetic observations 

1. ( t · ) with the covariance matix C <•l 
- L L -!_ 

belonging to the observation epoch i of a ne-epoch kinematic network. 

It is assumed that the observation campaign was carried out almost 

instantaneously at time tiand that all observations have properly been 

reduced to a conformal mapping plane. 

The set of observations 1~defines a configuration which will be called 

'network of epoch • 0 
~ . No difference will be made between an extended 

network: n~~1 or a configuration of only 2 or 3 stations: n = 1. 

b) Parameter Vector: 

The vector d~(ti ) contains the instantaneous corrections to the 

approximate coordinates of all stations of the kinematic network at 

time ti.. 

c) Minimum Constraints: 

By keeping the coordinates of one station (e.g. the 1st station) fixed 

at all times, an arbitrary set of minimum constraints is introduced 

i=1,2, ••• ,ne (7 .1 ) 



93 SECTION 7 

d) Observation Equations: 

The linearized mathematical model is given by the observation equations 

(2 .1) 

v. 
-L 

e) Normal Equations: 

The least-squares principle yields the normal equations 
1\ 

N· J. u. Q -· -1 -l 

A: c(';1 A· T -I 

where N· = and U· A. c''1 1· -l -l -1 -l - L -· - ~ -L • 

f) Least-Squares Estimates of Positions of Epoch i: 

(7.2) 

(7.3) 

If the network of epoch i does not suffer from formulation or 

configuration defects, the following least-squares estimates are found: 

J. -I 

N· _, 
-l U· -l 

(7.4) 

T • -1 
"'l Yi (;,1' 1 Y. (7.5) G';,i. dh i df i. = dim (J;) - dim (sft) 

9t;,"' 
-f 'l 

known) (7.6) N (Va =1 ' 

a.(il 1\2 -1 2 
(7.7) and 

-~ ~;)! (a;; unknown) 

7.3 Model for the Approximation 

Let us consider the horizontal kinematic network with np stations, of 

which the approximate complex coordinates are given by 

(7.8) 

The network has been repeatedly observed at neepochs of observations at 

times 

[ t, 't2 ' ••• ' t"ej. (7-9) 
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Let us further assume that the observations at each epoch have been 

adjusted by using the least-squares model (7.1 to 7.7) and an 

arbitrarily chosen set of minimum constraints (the choice does not 

really matter). The equation 

0 ; i=1 ,2, ••• ,n 8 

could be a typical choice. 

The resulting coordinates of each epoch i are denoted 

T z. 
-L 

which may be regarded as a data series in space and time. 

unknown, initial positions 

= ' • • • 'Zo ] J\p 

(7. 10) 

(7 .11 ) 

With the 

(7. 12) 

(with respect to an arbitrary reference time t 0 ) the set of relative 

complex displacements 

z. ( t·) 
-L \ (7.13) 

follows. 

After selecting a functional base, the approximation function in space 

and time (6.13) is re-arranged as follows: 

- T • f( z, z, t) . J (7.14) 
T 

where f(z,z,t) {.'r,( t)[+cnl (z) ,fcrnF)J '1'1.( t)(fcn{z) 'f(m~z) '• • • 

• • ·, T\ ( t)[ft,1(z), f<~lz)J} "cu (7.15) 

a • •. 
22 

u = (n+m)·l. 

The function h(z,z,t), which is called an approximant, is a scalar 

product in the u-dimensional complex functional space; f(z,z,t) is the 
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functional base and ~· is a complex coefficient vector. 

The linear form 
T 

z + F• 1 • 
-o -L ~ i 1 , 2, ••• , ne (7. 16) 

where: T -
f1 (z,z,t~) 
rtCz,z,tt) i=1 ,2 ••• ,ne ••• Vandermonde's matrix 

(7-17) . 
.f~(z,z,tt) 

• ~ complex residual vector 

is the complex model of the least-squares approximation. 

For reasons discussed in Sub-section 6.1, the linear form (7.16) is 

reformulated in real vector notation 
T 

Jo + F· ·A 
- - L -

; i = 1,2, ••• ,ne (7.18) 

where: Ql ••• real vector of coordinate increments at time ti 

2'o • • • real vector of initial coordinate increments at 

reference time to 

6 ... real coefficient vector 

Ii · · · real Vandermonde matrix 

Yt • • • real vector of coordinate residuals. 

(Note: The dimension of the vectors in eqn. (7.18) is twice the 

dimension of the complex vectors in eqn. (7.16).) 

The relationship between the product of two complex numbers and its 

equivalent expression in matrix form was given in Sub-section 4.2.2, 

(cf. (4.24),(4.25)). The complex element aj of each vector ~ in 

(7.18) is simply replaced by a real subvector (Re(aj),Im(aj )), whereas 
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each element in the Vandermonde matrix ~k E C is replaced by the 

submatrix 

[ 
Re( fjk ) 

Im( fjl< ) 

The Vandermonde matrix !\ 

-Im( fjk ) 

Re( fjk ) 
(7.19) 

can be regarded as a special case of a 

design matrix (Van{~ek and Krakiwsky,1982). Thus eqn. (7.19) 

re-written in the form of the least-squares model explicit in l reads 

Yl ! FT 91 -I. 

y'l. ! FT 

~] ~2. -2 . I . - (7.20) 
I . I . . 

Yne !. I FT ~"e I -~ 

v A X 1 
= = = 

7.4 Combined Model 

The vectors of adjusted coordinates which are obtained from the 

individual network adjustments 

J. -L i=1,2, ••• ,ne 

with their covariance matrices 

represent the data series (and its metrization) of the approximation in 

space and time. 

The least-squares models of the individual adjustments of each epoch 

and the model of the least-squares approximation can be combined to one 

simultaneous adjustment model 

0 • (7. 21 ) 

This model provides the functional relationship between the original 
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geodetic observations .!.i and the unknown coefficients 1 of the 

approximation in space and time. 

The normal equations of the approximation in hypermatrix form are 

obtained if the least-squares principle is applied to the approximation 

model (7.20) 

[ 

-1 f C· -\ 

-I 
i.•l F-·C. 

-\-\ 

0 (7.22) 

" where Q;_ = Q1_ or Qd: .• 
2L -"' 

Considering eqn. (7.3 to 7.7) yields 

T I [ "] Nc!'l Jo 
F-·N-·F; ~ 
-L -L-1. 

ne [ N. ·N~ 1 -u. 
\ -L-l -l 

L _, 
i•\ F- ·N. ·N· . U· 

-L -1.-1. -l 

0 (7.23) 

-1 
The product N.· N. in (7.23) requires careful consideration. The inverse 

-\ -l 

-I 
.!f exists only if the network of the epoch i does not suffer from 

formulation or configuration defects. If ~iis singular, the product is 

a sigular unit matrix (Bjerhammar,1973) which may, however, be replaced 

by the limit 
-I 

lim (N·+ c J)(~i + c J) 
c-+O -L 

I (7.24) 

This limit clearly exists if (N~c I) with0LCL4 1 is regular, which is 
-L -

always the case for normal equation matrices of networks with 

formulation or configuration defects. A proof using generalized 

inverse techniques is given in Appendix IV. 

" After eliminating the parameter subvector 4, there follow the normal 

equations (Krakiwsky,1975) 



98 SECTION 7 

-I ... 
C2) N-• uc•> (7.25) [ Mu - N ~-.. ~.'2] ).. + y ~21 0 

-11 -II -

... 
! }. + u 0 

= 
lie ,Q 

F:'" (I) f where: ~ .. I!h M,2 = .L !fi u U· -L •=I- L l•t La I 

[F. "" T ('Zl [Fi Yi. • !fz, N- !f22 = [F. N· F. !! 
i..•t-"" -l • -L -L -L L•l l"l 

It should be noted that the matrix .!f11 must not be singular: 
,II 

det(~tt) det(2:: !h ) ~ 0 
iat 

(7.26) 

This condition becomes clear if one realizes that _N 11 is the normal 

equation matrix of the time invariant model of the kinematic network. 

This model must not suffer from formulation or configuration defects. 

Before we discuss the solution of the simultaneous least-squares model, 

let us consider the normal equations of the special types of kinematic 

networks with design and statistical model invariant in time. In these 

cases, the individual design matrices, the covariance matrices and 

subsequently the normal equation matrices are all invariant in time: 

!, !.2 A ! -r>e 

Q, Q2 c -ne Q (7.27) 

!f. ~2 M,e 1i 

Under these conditions, the submatrices in eqn. (7.25) are given by: 
..... (I) lie. 

N Ile. !! !f,'Z "' ~IF: !! [u. {7.28) -n i.•l L=l-l 

~'ZI =tr· N !u"' .r!'L · !f ·fF~ ut'Z) = [F· U· • -l - -L -l 
al L.•l L:t~f l=•t 

-I -I 

With !j11= 1/ne:!f11 and eqn. (7. 25), the normal equations can be written as 

Q (7.29) 

In the two-epoch case this yields 

0 (7.30) 
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0 . 

This expression is nothing other than the set of normal equations for 

differences of pairs of corresponding observations ~1 = ! 2 - l,· 

7.5 Ortho-Normalization 

The normal equations (7.25) have to be transformed into ortho-normal 

solution space in order to obtain statistically independent 

coefficients. The Gram-Schmidt ortho-normalization procedure can be 

T 
applied to the normal equation matrix if it is in the form M = A A or N 

T 
= ! ~ !, where W denotes a diagonal weight matrix. In the more general 

case where W is not diagonal, the method of Cholesky decomposition can 

be applied. It will be shown in Appendix II that the Cholesky 

T 
decomposition of a symmetric, positive definite matrix N = A A into the 

quadratic form N RT B, (where li is a upper-triangular matrix) is 

mathematically equivalent to the Gram-Schmidt ortho-normalization of 

the row-vectors of !· 

The orthonormalized normal equations with~ resulting from the Cholesky 

decomposition 

N 
T 

R R (7. 31 ) 

are 
-1 T T -lA -1 T 

(.R ) li B R ~o-Cg ) ~ Q (7-32) 

where li is a upper-triangular matrix. From the above it follows that 
T A -1 T 

S S ·}. - (R ) u 
- - -0 - -

Q (7-33) 

where § is ortho-normal and 

"' -r T 6o = (R ) U (7-34) 
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where ~0 is the vector of orthonormal (Fourier-) coefficients. 

The covariance matrix of these coefficients is 

C"' 
-~o I (cr,'l.known) (7.35) 
.1\ 1\2 '1 

(7.36) and CA Uo! ( GO unknown) 
- ~0 

7.6 Statistical Testing 

The concept adopted for the selection of base functions is discussed in 

Sub-section 6.1. This selection and the choice of the degree of 

polynomials are, in general, rather arbitrary. For this reason, it 

should be borne in mind when the results are being assessed that some 

uncertainty always remains in the adopted model. The question, whether 

or not a certain base function fj should have been considered in the 
/\ 

model, can be answered after the corresponding coefficient Aj has been 

examined statistically. The testing is preferably performed on the 

orthonormal coefficients because of their property of statitical 

independence. 

7.6.1 Confidence Region of the Coefficient Vector 

We postulate the original geodetic observations to be normally 

distributed. The original, as well as the ortho-normal coefficients, 

are simply linear combinations of the observations. It follows 

(Van{~ek and Krakiwsky, 1982) that the ortho-normal coefficients are 

stochastic quantities with a multi-variate normal distribution: 
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(7.37) 
2 

if ~ is assumed to be known. 

2 
Using the X -distributed statistic 

y = (7.38) 

the following probability statement, for a prescribed significance 

level~ and an u-dimensional solution space, can be written 

1 - 0:.. , (7.39) 

where y is determined from the X2 -probability density function (p.d.f). 

The confidence region associated with (7.39) is a hyper-sphere in the 

u-dimensional orthonormal solution space with radius S centered at Q. 

7.6.2 Null Hypothesis 

In order to test statistically whether the signal (trend) of a certain 
A 

model, as estimated by the coefficient vector ~0 , is significant or not 

on a prescribed level of significance, a null hypothesis is to be 

established. If there is no signal present in the data series, the 

expectation of each coefficient would be zero 

0 ; i=1,2, ••• ,u. (7.40) 

" If H0 is true, any strain which can be predicted from A0 is to be 

considered spurious and should be discarded. 
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7.6.3 Statistical Filtering Procedure 

The property of ortho-normality of coefficients enables us to design 

very useful statistical test procedures. No matter how many 

coefficients we decide to discard, the rest remain unchanged. Each 

coefficient can thus be tested individually and in an arbitrary order. 

If those coefficients which are found to be insignificant are simply 

discarded, the remaining coefficients still represent the least-squares 

solution of the reduced functional model. Each individual ortho-normal 

" cefficient A0 can thus be considered to define a different approximation 

model in a one-dimensional solution space. Based on eqn. (7.39), the 

following test of the null hypotheses: 

Ho : 0 i=1,2 ••• ,u (7. 41 ) 

is performed: 

~if 
----else 

H0 accepted 
(7.42) 

H0 rejected 

whereby the probability density function of y is the normal p.d.f. if 

2 . 2 
001.s known and the student p.d .f. if GO is unknown. 

If H0 is accepted, the base function 4 is to be discarded in the model. 

This is achieved by simply setting: 

"' 'l. 

-----if Ho Ao. = 0 G"x = 0 
\ 

Ao. 
ot (7.43) 

-----else Aoi= Gf.= 
L Ao;. ,., 2 

the coefficient vector ~0 and its covariance matrix: diag(G"',j, define 
\ 

the final approximation function in ortho-normal space, in which each 

base function is significant at the level rL. 
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~ T,. 

7.6.4 Test on the Quadratic Form ~o~o 

It should be noted that in the above statistical filtering procedure 

each coefficient is examined on its own, i.e. 'out of context' 

(Van{~ek and Krakiwsky,1982). The existence of the other elements is 

deliberately disregarded. 

The following test is based on the probability statement (7.39) and 

tests simultaneously the entire set of ortho-normal coefficients with 

respect to H (7.40): 

~-if 

---._else 

H0 accepted 
(7.44) 

H0 rejected 

where y is obtained from the X2-distribution if C";,2is known and from the 

F distribution if ~is unknown (Wells and Krakiwski, 1971). 

The statistical test (7.44) is a useful tool for finding out if any 

deformation has occurred within the area and time-span in question. 

7.7 Back-Transformation into Original Solution Space 

The original, real coefficients are found from the transformation 

"" -I 

A. N "!:! (7.45) 
-1 -1 T 

!! (!! ) "!:! 

= -f~l g _o • 

The back-solution of the eliminated 
,. 

parameters !fo is found from (7.23) 
,. 

"' u<n Nu·~o + N·/- - 0 (7.46) 
-I'Z-
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(7-47) 

where ~ are the predicted coordinate increments at the reference time to 

The adjusted coordinate increments of each epoch of observation i 

are found from eqn. (7.20) 

1. 
-l 

T'~ 

F. A. 
-l- ; i = 1,2, •.• ,ne• (7.48) 

Finally, the residuals of the original observations of each epoch can 

be found from eqn. (7.2) 
~ 

~ 

V· !.i. cji. 1· i = 1 , 2, ••• , np (7.49) _\. -l.o 

and the estimate of the variance factor from 

ne T -1 ?.; A CCLI ~ 
V· L V· 
-l -- -~ 

df 
(7.50) 

where: df 

ni number of observations of i-th epoch 

nc number of constrained Fourier coefficients 

Ui number of network nuisance parameters 

of i-th epoch 

u0 number of eliminated coordinates at time t 0 

ua number of real Fourier coefficients. 

The covariance matrix of the original coefficients of the approximation 

is 
-1 -1 T 

B 91.' (B ) 
_o 

= 
-I I T 

R' (R'-) 
2 

( c;;; known) (7.51a) 

or: 
..,2 -1 -1 T 
G': R' (R' ) 
0- -

! 
( ag unknown) • (7.51b) 
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7.8 Additional Nuisance Parameters 

In some cases, the network scale of repeated trilateration networks may 

not be determined with great certainty. This may happen, for example, 

if different EDM-instruments had been used in different observation 

campaigns. Differences between the instrument scales may, in this 

case, bias the results of the strain analysis. A similar kind of 

difficulty may occur with systematic effects in the orientation of 

individual networks. 

These problems can be circumvented by introducing additional constant 

conformal terms associated with each epoch of observation in eqn. 

(7.16). The mathematical formulation including these unknown nuisance 

parameters is outlined in the external Appendix. 

7.9 Prediction in Space and Time 

7.9.1 Relative Displacements and Strain 

The displacement field, relative to the fixed station and to the 

reference time t 0 , can be predicted for any point z and at any instant 

of time t from the approximation function in space and time (7.14) 
T "¥ 

.f(z,z,t)· 6 (7.52) 

and the velocity field from 
/1. 

h(n,m,l)( Z, Z, t) 
• T J\. 
f( z, z' t). :6 (7.53) 

,. .. 
where~ is the complex analog to the coefficient vector and f(z,z,t) is 
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the base according to eqn. (7.15) in whichTk(t) is to be replaced by 
• d'l 

its time derivative Tk= ~ 

The complex strain components are predicted from: 

Cf (z,t) 

"f(z,t) 

cP'(z) ·A ·TT( t) 
-(n) - -

= .f.'(z)·B·TT(t) 
-(m) - -

and the strain-rate components by: . 
<:f(z,t) 

I' •T 
='I' (z)·A·T(t) 

-(1\~ - -

=4'(z)·B·Tlt). 
-(m) - -

. 
'\t(z, t) 

7.9.2 Statistical Estimates 

(7.54) 

(7-55) 

(7.87) 

(7.88) 

The variance of the relative displacements and the velocities, as well 

as the variance of the real strain components, is simply found by 

applying the covariance law to the approximation function in its real 

form (7.18). 
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SECTION 8 

TEST COMPUTATIONS 

8.1 Concept of Numerical Testing and General Experience 

A series of numerical tests, using simulated as well as real data, was 

performed with the developed mathematical models. The main objectives 

of these computations were as follows: 

1) to confirm numerically the correctness of the mathematical model 

developed for the simultaneous network adjustment and least-squares 

approximation, 

2) to test the developed software, 

3) to gain experience with the application of complex, algebraic 

polynomials to the approximation of relative displacement fields, 

4) to investigate the numerical treatment of singular approximation 

models. 

Prior to the development of the program CRUSTRAIN, a computer program 

DACAP (Displacement Approximation by Qomplex Algebraic Eolynomials) was 

written particularly for the approximation of displacement fields in 

space. This program was chiefly designed as a diagnostic tool for the 

trend-analysis of distortions in geodetic networks (Van{~ek et 

al.,1981 ). The continuous approximation functions in space (cf. 
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6.3.1) and the statistical filtering procedures (cf. 7.6.3) are 

incorporated in this program. No further comment shall be made on this 

software and the diagnosis of geodetic networks in this work. A series 

of tests on the approximation in space were performed with this 

program. The experience gained from these tests is outlined as 

follows: 

The fitting of complex, algebraic polynomials of different degrees 

to discrete displacement fields gives numerically reasonable results 

up to degrees 20/20 of the conformal/anti-conformal polynomials, if 

sufficient data is provided. 

The danger of spurious oscillations of the strain in space increases 

towards the periphery of the area covered by data points. 

Small irregularities in displacement, which are encountered in the 

discrete displacement field, are filtered out satisfactorily by the 

least-squares approximation using statistical filtering. 

8.2 Test with Simulated Networks 

A series of tests using artificial data from simulated kinematic 

networks was performed with program CRUSTRAIN (cf. Table 8.1). The 

results of simultaneous network adjustments and strain approximations 

of two-epoch cases with formulation or configuration defects (test No.2 

- 4) confirms the correctness of the mathematical model. 

The developed method allows one to compute the four components of 
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uniform strain, even if the configurations of some epochs suffer from 

formulation or configuration defects (cf. Table 8.1, test No.2 and 3). 

Singularities are encountered in the normal equations of the 

simultaneous adjustment and approximation model if the time invariant 

model (cf. 7.4) suffers from formulation or configuration defects. It 

may also occur that the functions we have selected are not real base 

functions (cf. Table 8.1, test No.4). 

From the experience with multi-epoch analyses, it was learned that it 

is sometimes difficult to avoid singularities caused by the ill-posing 

of the approximation problem. The following numerical procedure was 

thus introduced into the Cholesky square-root algorithm, which 

automatically sets indeterminable coefficients of the approximation 

model (having a defect of one kind or another) to zero. A numerical 

check is carried out on the reduced diagonal elements ntt of the normal 

equation matrix !f before each reduction cycle. If ni.t is inferior to 
-12. _, 

10 , a small weight p = 10 is added to the element. With this 

numerical manipulation, indeterminable coefficients are constrained to 

zero. As they will have a large variance, they will subsequently be 

removed by the statistical filtering procedure (cf. 7.6.3). This is 

the case in test No.4 (cf. table 8.1), where the indeterminable 

differential rotation is set to zero. 

Note: The symbols used in Table 8.1 have the following meaning: 

number of observations and unknowns of each network 

number of eliminated station coordinates 

number of real approximation coefficients. 
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Test configuration individual time invariant adjustment and 
at epoch: network model approximation 

adjustment model 

No. l nt u~ def(!h) rn. LUt def(L!h) n u. u., df def(,N) 

1 

~ 
1 7 6 0 

14 6 0 14 6 4 4 0 

~ 2 7 6 0 

2 

tz 
1 5 6 1 
configuration 
defect 

10 6 0 10 6 4 0 0 

V1 2 5 6 1 
configuration 
defect 

3 

t=J 
1 6 6 0 

10 6 0 10 6 4 0 0 

L1 2 4 6 2 
datum defect 
(translation) 

4 

t=J 
1 6 6 0 

11 6 0 11 6 4 1 1 
determinacy defect 

IZl 
(D. rotation) 

2 5 6 1 
datum defect 
(orientation) 

Table 8.1 

Tests with simulated kinematic networks 

e fixed station; - observed distance; ~ observed azimuth 
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8.3 Practical Test with a Quadrilateral in the Swiss Jura 

8.3.1 Introduction to the Jura Tectonics 

Despite the long tradition of investigations of the Swiss Jura 

tectonics, there are still controversial hypotheses as to the origin of 

the Jura mountain folding. The fundamental question is, whether the 

basement below the Jura was actively moving with the sedimentary cover, 

or if the basement was only playing a passive role in the folding 

caused by remote tectonic forces. 

There is a whole net of fault lines known to exist in the Jura region. 

The hypothesis of folding by wrench faulting (Pavoni,1961) convincingly 

explains the development of the fault structures by relating them to 

relative strike-slip movements in the basement. It also explains the 

occurrence of earthquakes with focal depths of 5 to 6 kilometres in 

this region {Pavoni and Peterschmitt,1974). 

Among the most noticeable faults on the tectonic map of Switzerland 

(cf. Figure 8.1) are the faults crossing the Jura mountain chain. A 

detailed geological study and survey was undertaken by the University 

of Neuchatel (Aubert,1959) in the region of the fault Vallorbe-

Pontarlier. 
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Figure 8.1 

Section of tectonic map of Switzerland 

Map scale 1 : 500 000. The circle indicates the monitoring network 
'LE PONT' which straddles the fault Vallorbe-Pontarlier. 
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The fault line can easily be followed on the topographical map from the 

southern base of the Jura, crossing various synclines and anticlines in 

south-north direction, until it reaches the city of Pontarlier in 

France. It is evident from the geological investigations that a left 

lateral relative fault displacement of about 3.5 km has taken place 

within the geological time span from the epoch of transgression of the 

upper miocene, about 10 million years ago, to the present. If, as an 

approximation,'•it is assumed that the relative movement has occurred 

linearly in time from the miocene to the present, a relative velocity 

of 3.5 em per century can be estimated. 

Repeated surveying of precise kinematic networks in the fault zone was 

initiated ten years ago 

Project' (Fischer,1974). 

as a contribution to the 'Swiss Geodynamic 

From the outcome of these investigations, it 

should be possible to determine if the relative movements evident 

within a geological time span are continuing in the present. 

Monitoring contemporary kinematics of the crust in space and time, 

together with seismo-tectonic research, will hopefully lead to a better 

understanding of the Jura tectonics in the future. 

8.3.2 Precise Geodetic Observations 

In 1973 two small quadrilateral networks straddling the fault 

Vallorbe-Pontarlier at two locations were designed and monumented 

(Jeanrichard,1974). Geological considerations, as well as the 

topography and the criteria of an optimal net design, were responsible 
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for the choice of the location of the stations. The first network is 

located at 'Pre de l'Haut Dessous', on a plateau south-east of the 'Col 

du Mollendruz'. The second quadrilateral is situated near 'Le Mont du 

Lac', one kilometre from the 'Lac de Joux'. The length of the lines of 

sight varies between 210 and 585 m. All stations were monumented with 

small bronze markers cemented into the bedrock. In addition, three 

eccentric markers within a distance of a few metres were established 

with each station. They are used to monitor relative displacements of 

individual markers and to check if the instruments are mounted exactly 

centric over the station. They also serve for reconstruction in case a 

marker gets lost. 

The first observation campaign took place in June 1973. All distances 

were measured using a precise electro-optical EDM instrument (KERN 

Mekometer ME-3000). The Mekometer is one of the most precise geodetic 

short range EDM instruments presently on the market (Elmiger and 

Sigrist,1976). The manufacturer claims an accuracy of 
'2 '1 -6 'l a; = (0.2mm) + (10 ·D) (8. 1 ) 

The directions were measured in four sets with a KERN DKM2-A theodolite 

(Aeschlimann,1972). The precise centering of the instruments and 

targets was obtained using an optical precision plummet. During the 

observations, the centering was periodically checked. The observations 

were subsequently corrected for small excentricities. 

The networks have since been re-measured twice, in 1974 and 1978. As 

the same Mekometer was not available, a different instrument of the 
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same type had to be employed each time. The next repetition of the 

survey is planned for summer 1983· 

8.3.3 Crustal Strain Analysis of the Network 'LE PONT' 

a) Separate Network Adjustments: 

The quadrilateral at 'Pre de l'Haut Dessous' (it will be called 

network 'LE PONT' here) was chosen for practical testing. The 

observations of all epochs were introduced into separate network 

adjustments. The same set of arbitrary minimum constraints (Station 

No. 6, fixed; cf. Figure 8.2) was introduced. The orientation of 

each network was simulated by one artificial azimuth observation. The 

following statistical model of the observations was assumed: 

- directions: 
'l. 'Z 

~ = (0.17 mgon) 

- distances: 
2 ~ -6 'Z 

G;; = (0.2mm) + (10 · D) 

(Note: 
-2 

1 gon is equivalent to 0.785·10 rad) 

(8.2) 

(8.3) 

All observations were screened for blunders and outliers, and the 

residuals of the adjustment .were statistically tested using a 

? 
' X- goodness of fit test' • Based on these tests, the assumption of 

normally distributed observations was accepted. The estimates of the 
h 1 

variance factor Ua resulting from the least-squares adjustments are 

shown in Table 8.2. 
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2 ... '2. 2 
year GO(known) GO deg. of freedom X-test 

1973 1 1.07 15 passes 

1974 1 1 • 15 15 passes 

1978 1 0.67 15 passes 

Table 8.2 

Statistical results of the network adjustments 

b) Strain Analysis: 

Preliminary similarity transformations of the three sets of adjusted 

coordinates revealed scale differences of up to 3.5 ppm among the three 

network results. These scale changes are probably due to biases in the 

measuring frequencies and residual systematic effects in the 

atmospheric compensation of the Mekometers. This is not surprising, 

considering the unfavorable fact that three different Mekometers had to 

be employed in the observation campaigns. The detected scale 

differences are most likely not reflecting any real dilatation of the 

crust. Thus, from the four determinable strain components, only the 

two shear components can be associated with a possible crustal 

deformation. (Shear does not depend on the change in network scale 

except for second order effects.) In the present case of a simple 

quadrilateral surveyed three times, only the straight-foreward 

deformation models of a homogeneous shear accumulation, linear or 

piecewise linear in time are appropriate. More complex models that 
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admit variations of the shear rate in space or time have to be 

disgarded due to the lack of data. 

The results of three two-epoch analyses (73-74,73-78,74-78) and six 

simultaneous multi-epoch analysis are listed in Tables 8.3 and 8.4. 
1 

The variance factor ~was assumed to be known in the computations with 

odd numbers. The variances were subsequently not multiplied by the 

"'2. 
estimated variance factor u;. A second series of computations (with 

even numbers) was performed, in which the variance factor was estimated 

from the separate network adjustments. The estimated shear components 

from the two adjustments with different statistical models ·are almost 

identical, whereas their confidence intervals vary slightly. 

The results are graphically displayed by rosettes of tensor shear-rate 

and the 95 percent confidence regions (outer dotted lines) of total 

shear (cf. Figures 8.2 to 8.6). Total tensor shear rates of 0.88, 

0.28 and 0.15 pstrain/yr were obtained from the two-epoch analyses, 

whereas 0.24 pstrain/yr of total shear were found from the simultaneous 

three-epoch analysis. The azimuth of the axis of positive (left 

lateral) maximum shear varies between -5.7 and -22.4 gon. The 

significance of these results will be discussed in the next section. 

The approximations No.9 and 10 are based on a different deformation 

model in space. The direction of maximum shear is constrained in the 

direction of the expected relative fault movement (azimuth: -17.2 

gon). This was achieved by simply rotating the coordinate system by 

-17.2 gon and constraining the first shear component to zero. The 
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results of these computations do not differ considerably from the 

results obtained from the approximations No.7 and 8 as far as the 

estimated shear-rates are concerned. However, the statistical 

interpretation will differ, as the parameter vector space, in this 

case, is reduced to one dimension. 

The results of two other pairs of approximations with reduced sets of 

observations and one pre-analysis assuming the execution of the next 

survey campaign in April 1982 are presented in Tables 8.3 and 8.4. The 

analyses of only the distance observations (No.11 and No.12) yield 

results similar to the multi-epoch analyses with all observations, with 

the exception of a slightly increased variance of the estimated 

quantities. The strain from only the observed directions (No.13 and 

No.14) is determined very weakly. The results of this analysis are not 

incompatible with the shear estimated from the complete set of. 

observations. 

It should be noted that the interpretation of estimated homogeneous 

shear in a rectangle straddling the fault, with two sides being 

approximately parallel to the fault, is ambiguous as far as the type ·of 

deformation is concerned. It is not possible to distinguish between 

the effect of a relative rigid bloc translation parallel to the fault 

due to fault creep, and the effect of shear accumulation along the 

fault which is locked. A more detailed interpretation is only possible 

if the network contains more than four stations and covers a larger 

area. 
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Approximation No. 17 is an additional multi-epoch analysis in which a 

rigid block translation model (cf. 6.3.2) is adopted. The direction 

of the relative fault movement is constrained in the direction of the 

fault (-17.2 gon). The definition of the crustal blocks and the 

resulting relative translation velocities of 0.13 ± 0.08 

(right-lateral) is shown graphically in Figure 8.7. 

mm/yr 

The shape of the confidence region of shear demonstrates that the 

design of the network is not optimal as far as the determination of 

shear in the direction of the expected fault is concerned. This is not 

surprising, if we consider that shear in this direction· is mainly 

determined from the change in the ratio of the two diagonal distances 

5-7 and 6-8. 

8.3.4 Statistical Testing 

Statements about detected crustal strain are valuable only if their 

statistical significance can be proven. A serious statistical 

assessment of the derived strain quantities was therefore considered to 

be an important objective of this test. 

a) Null hypothesis: 

Ho (cf. eqn.(7.40)) No shearing deformation occurred within the zone 

and time span of investigation. 

b) Statistical Filtering: 



120 SECTION 8 

All Fourier-coefficients estimated from the different approximation 

models were inferior to the values of abscissa~ of the pertinent 

probability distribution function on the level of significance (£= 0.05 

(cf. table 8.3). According to this test, the hypothes Howould have to 

be accepted and all coefficients set to zero. 

"T" 
c) Test on the quadratic form ~~o: 

The test on the quadratic form of the Fourier-coefficient vector (cf. 

eqn.(7.44)) simultaneously tests all coefficients in context. Again, 

the quadratic forms estimated from all test models were inferior to the 

abscissa ~ of the X 2 or the F-distribution on the level rL. 

d) Result: 

The detected shear is not significant on .the 0... = 0.05 . (95 percent 

probability) level. It should, however, be noted that.if t}le direction 

of maximum shear is constrained to the expected fault axis, the 

resulting shear is found to be significant on a 93 percent probability 

level. 

The limits of the 95 percent confidence regions of maximum shear are 

plotted by the outer dotted lines in Figures 8.2 to 8.6. The estimated 

maximum shear is significant on the oC level of significance if the ends 

of the maximum shear axes lie outside the confidence limite. 
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8.3.5 Interpretation 

The rate of shearing strain can be estimated from geological evidence 

if a linear movement in time is assumed. Geological investigations 

yield a relative horizontal left lateral movement (azimuth: -17 gon) 

of 35mm per century (cf. 8.3.1). If, as a simple assumption, a 

relative rigid bloc translation in the expected fault direction is 

assumed, a shear-rate of about 0.6 pstrain/yr for the rectangle 

straddling the fault is obtained. 

The geometrical interpretation of the estimated shear from their 

graphical representation by shear-rosettes is not difficult. However, 

one should consider that a rotation of the shear-rosette by 90° also 

changes the shear in a given direction from left lateral to right 

lateral, or the other way round. To avoid mis-interpretations, the 

definition of the sign of the shear has to be considered very 

carefully. In this analysis positive shear values correspond to left 

lateral shear and are represented by solid lines, whereas negative, 

right lateral shear is depicted by broken lines. This means that 

perpendicular to an active left lateral fault, left lateral shear can 

be expected to accumulate. In other words, the strike of a right 

lateral fault will be in the direction of maximum positive shear (solid 

line) and that of a left lateral in the direction of maximum negative 

shear (broken line). 

In an attempt to interpret the results, let us for the moment assume 

the results to be significant. Looking at Figures 8.2 to 8.5, one is 
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at first impressed by how well the shear axes and the expected fault 

strike agree. However, the estimated shear is exactly expressing the 

opposite of what one would expect. The estimated shear normal to the 

expected fault direction is right lateral, whereas the fault definitely 

moved left laterally within a geological time span. How could the 

crust be deformed in this way, if the relative movement in the fault 

zone is still continuing the same way it did some million years ago? 

There is a case in which such a seemingly opposite deformation would 

occur. If the fault line was not exactly below the quadrilateral and 

accumulated shearing strain was released (e.g. by fault creep), the 

estimated direction of maximum shear from the network analysis would be 

exactly as in our investigation. This interpretation is based on 

Reid's Elastic Rebound Model (Benioff,1964; cf. Figure 1.3). Looking 

at the tectonic map (cf. Figure 8.1) more carefully, one finds a whole 

group of parallel fault traces in this zone. Thus an active 

strike-slip fault movement outside the network might not be all that 

unrealistic. 

8.3.6 Conclusions and Recommendations 

It is very likely that the crust at 'Pre de l'Haut Dessous' in the zone 

of the fault Vallorbe-Pontarlier has been deformed by a left lateral 

tensor shear of 0.24 ± 0.13 pstrain/yr (azimuth: -15 gon) within the 

years 1973 to 1978. Using the geodetic data presently available, it is 

not possible to prove this statement on the usually assumed 95 percent 
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level of probability. However, a different null hypothesis , that no 

shearing deformation (with the axis of maximum shear in the direction 

of the expected relative fault movement) had occurred, would have to be 

rejected on the 93 percent level of significance. 

It was found from the pre-analysis (Experiment No.15) that if the next 

repetition of the geodetic observations was executed according to the 

same observation program already in April 1982, the standard deviation 

of the estimated shear strain rate could be reduced from the present 

0.13 to 0.07 pstrain/yr. It is recommended to re-survey the kinematic 

networks at least every three years. In this way, the time behavior of 

the deformation could be investigated. More detailed information about 

the strain accumulation and release in space would be available if the 

network could be extended at both sides of the fault. 



No. 

1 
2 

3 
4 

5 
6 

7 
8 

9 
10 

11 
12 

13 
14 

15 

17 

k 
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Time Llt tensor shear-rate total tensor shear-rate 
span yr k/u )1Strain/yr )lStrain/yr ~r /' 

" ~ " r6 i- 'fPr ar ~r 
'l ~ v ~ cryT [c:tonJ (qonJ 

73-74 0.95 k 0.16 0.67 -0.86 0.72 0.88 0-73 - 5-7 23.8 
u 0.16 0.74 -0.86 0.80 0.88 0.81 - 5-7 26.4 

73-78 5.02 k o. 11 0.13 -0.26 0.14 0.28 0.14 -12.8 13-9 
u 0. 11 o. 12 -0.26 0.13 0.28 0.14 -12.8 13· 5 

74-78 4.06 k 0.10 0.16 -0.12 o. 17 0.15 0.17 -22.4 31.4 
u 0.10 o. 16 -0.12 0.17 0.15 0.17 -22.4 30.9 

73/74/78 5.02 k o. 11 0.12 -0.22 0.13 0.24 0.13 -14.6 15.2 
u o. 11 o. 11 -0.21 0.12 0.24 0.13 -14.8 14.5 

73/74/78 5-02 k 0 0 -0.24 0.13 0.24 0.13 -17.2 0 
u 0 0 -0.24 0.12 0.24 0.12 -17.2 0 

73/74/78 5.02 k 0.13 0.13 -0.18 0.15 0.23 0.16 -19.3 16.8 
u o. 11 0.12 -0.14 0.14 0.18 0. 14 -21 • 3 19.8 

73/74/78 5.02 k -0.30 o. 40 -0.51 0.32 0.60 o. 42 -17.1 16.2 
u -0.32 0.39 -0.51 o. 31 0.60 o. 41 -17.6 15.3 

73 •••• 82 8.86 k - 0.06 - 0.07 - - - -

73/74/78 5.02 k It rel. transl. vel.: 0.13±0.08 mm/yr) -17.2 0 

2 azimuth of maximum right lateral shear 
~known 

2 
u ... a;; unknown 

Table 8.3 

LE PONT: Predicted uniform tensor shear rates 
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No. Var.factor df Fourier coeff. Statistical Testing: c£.=0.05 
AT A 

p/f ~2 p/f A 2 " 1\ <?!o ~o 
€J1 ~ Ao, /..oz ~:~ole%% 

1 1. 229 32 1. 20 0.09 1-45 1.96 p 5o99 p 
2 1 .106 32 1.14 0.08 1 .18 2o06 p 6o60 p 

3 0-953 32 1.90 Oo64 4-02 1.96 p 5o99 p 
4 1 o096 32 2o03 Oo69 4-19 2.05 p 6o60 p 

5 0-973 32 0.70 0.56 0.80 1. 96 p 5-99 p 
6 1 o069 32 0.73 0.58 0.81 2.03 p 6o60 p 

7 1 .052 51 1.69 0.70 3-35 1 0 96 p 5o99 p 
8 1o087 51 1.84 0.77 3-98 2.04 p 6.36 p 

9 1 .033 52 1 .82 - 3· 31 1.96 p 3-84 p 
10 1 .198 52 1.99 - 3 0 31 2.02 p 4o02 p 

11 1 .198 27 1.26 0.72 2o11 1. 96 p 5·99 p 
12 1 o176 27 1 o1 0 0.76 1.52 2.13 p 6.70 p 

13 0.827 18 1 0 61 0.07 2.60 1.96 p 5o99 p 
14 1 -420 18 1.99 Oo05 2.79 2-34 p 7 o10 p 

15 - pre-analysis -

17 1.043 I 521 1.66 - 2.76 1. 96 p 5-99 p 

,. 
~1 ••• abscissa of pertinent p.d.f. for test on Ao; 
~2 ••• abscissa of pertinent p.d.fo for test on quadratic form 
p test passes 
f ••• test fails 

Table 8.4 

LE PONT: Statistical Testing 
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Legend to the Graphical Representation of Strain: 

(in Figures: 8.2 to 8.7) 

A comprehensive explanation of the 
(shear-rosettes) is given in Section 5. 

Map Scale: 1: 3500 

Scale of Strain Figures: 

displayed 

Figures: 8.2, 8.4, 8.5, 8.6: 1.4 em~ 1 pstrain/yr 
Figure : 8.3: 7 em ~ 1 pstrain/yr 

Rosettes of Tensor Shear-Rate: 

SECTION 8 

strain figures 

The radial distance to the solid/broken curve indicates the 
magnitude of left/right lateral tensor shear in the given direction. 

Standard Deviation of Shear-Rates: 
The radial distance to the inner dotted line indicates one standard 
deviation of the shear-rate in the given direction. 

95 Percent Confidence Region of Maximum Shear: 
The outer dotted line limits the 95 percent confidence regions for 
the ends of the maximum shear axes. 

Principal Strains: Solid lines indicate extension; 
contraction. 

Table 8.5 

Legend to the Figures 8.2 to 8.7 

broken lines, 
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LE PONT: uniform tensor shear-rate 1973-74 (Two-epoch approx. No. 1) 
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LE PONT: uniform tensor shear-rate 1973-78 (Two-epoch approx. No. 3) . 
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Figure 8.4 

LE PONT: uniform tensor shear-rate 1974-78 (Two-epoch approx. No. 5) 
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LE PONT: uniform tensor shear-rate 1973-78 
(multi-epoch approx. No. 7) 

SECTION 8 
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Figure 8.6 

LE PONT: uniform tensor shear-rate 1973-78 

(multi-epoch approx. No. 9, 1973/74/78) 

The orientation of the axis of maximum shear is constrained in the 
direction of the fault. 
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Figure 8.7 

LE PONT: velocity of rigid block translation 1973-78 

(multi-epoch approx. No. 17, 1973/74/78) 

The translation is constrained in the direction of the fault. 
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SECTION 9 

APPLICATION TO THE HOLLISTER NETWORK 

9.1 Tectonics and Seismicity of the Hollister Area 

9.1.1 Junction of Two Active Strike-Slip Faults 

The Californian transcurrent plate boundary between the American and 

the Pacific plates has been an object of intensive geodynamic research 

(Kovach and Nur, 1973). The junction of two active strike-slip faults 

between Gabilan Range and Diablo Range (cf. Figure 9.1) is marked by 

relatively high seismicity and is of particular significance to 

prediction oriented earthquake research. 

The area of the present investigation extends from 36°45' N lat. to 37° 

00' N lat. and from 121°20' W long. to 121° 35' W long •• The San· 

Andreas and Calaveras fault zones divide the region into three blocks 

(cf. Figure 9.1): 

(1) the Gabilan block, located southwest of the San Andreas fault 
zone, 

(2) the Diablo block, located northeast of the Calaveras fault zone 
and 

(3) the Sargent wedge, located between the San Andreas and Calaveras 
fault zones • 

Pavoni (1973) investigated the geological structure of the zone using 

geological and gravity data along a southwest-northeast profile which 
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crosses the surface trace of the San Andreas fault. The San Andreas 

fault separates granitic rocks of the Gabilan block on the southwest 

side from the young sedimentary filling of the Hollister trough on the 

northeast side of the fault zone. The sedimentary filling of the 

trough reaches a depth of several kilometres on both sides of the 

Calaveras fault. 

The location of faults and seismicity in this area are shown in Figure 

9.1 (Brown and Lee,1971 ). Detail Calaveras and San Andreas fault 

traces at the junction near Hollister are presented in Figure 9.2 

according to Pavoni (1982). Appreciable right-lateral fault creep (12 

mm/yr) is known to occur southeast of San Juan Bautista on the San 

Andreas fault and on the Calaveras fault north of Hollister (15 mm/yr). 

No evidence of significant slip has recently been found on the Sargent 

fault, which is believed to be a locked, abandoned segment of ·the San 

Andreas fault (Savage et a1.,1979). 

9.1.2 Local Seismicity 

Four moderate (ML ~4) earthquakes, probably accompanied by appreciable 

co-seismic relative movements, have occurred in the zone within the 

decade 1970-1980. The location, magnitude and time of the largest four 

seismic events were provided by the u.s.G.S. 

Figure 9.3). 

(cf. Table 9.1 and 
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LIST OF SEISMIC EVENTS IN THE HOLLISTER AREA, CALIFORNIA 1970-80 

No. Name Location Magn. Date Time 
Mt (yr) 

1 S.J.Bautista 5 km SE of San Juan 4.9 3.10. 72 1972.759 
Bautista 

2 Gilroy 3 km SE of Gilroy 4.4 10.1.74 1974.027 

3 Hollister 10 km NW of 5.1 28. 11 • 74 1974.910 
Hollister 

4 Coyote Lake 30 km NW of 5·9 6.8.79 1979· 597 
Hollister 

Table 9.1 

The largest seismic events in the Hollister area, 1970-80 
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Figure 9.1 

Fault locations and actual seismicity (1969-70) in the Hollister area 
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Figure 9.2 

Detailed map of the junction of two faults near Hollister 
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Figure 9.3 

Kinematic network Hollister 1970-80 
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9.2 Geodetic Data 

The kinematic network HOLLISTER is a monitoring configuration near 

Hollister, California, which has been partly or completely surveyed 

each year from 1970 to 1980 by the u.s. Geological Survey (U.S.G.S.). 

The 24-station trilateration network straddles the San Andreas and the 

Calaveras faults as well as the Sargent fault zone (cf. Figure g. 3). 

9.2.1 Precise EDM Observations 

The discussion in this sub-section is based on a detailed description 

of the observation procedure by Savage and Prescott (1973). The length 

of the 85 lines in the network are precisely measured with a 

electro-optical Laser-EDM instrument (Geodolite) which has a resolution 

of about mm. The accuracy of the observations is limited by the 

variability of the refractivity of the air along the light path. 

Refractivity corrections, which are based on temperature and humidity 

measurements of the atmosphere from an airplane flying along the line 

of sight and atmospheric pressure measurements at both end points, are 

taken into account. The atmospheric measurements are taken from two 

separate thermistor and hygristor probes mounted on either side of the 

aircraft. The atmospheric refraction correction to the observed 

EDM-distance is found by integrating the measured variation of the 

index of refraction along the light path. 

High-frequency and intermediate-frequency fluctuations in refractivity 

are eliminated by signal averaging and repeated measurement while the 
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aircraft is in flight. In order to insure the stability of the 

modulation frequency of the Geodolite, the frequency is measured with a 

quartz oscillator before and after each line measurement. 

The accuracy of so measured distances has been estimated from pairs of 

distances s,, s1 from a repeated survey of a horizontal geodetic network 

in a tectonically quiet area. The differences ~s = s2 - s,of 30 pairs 

of distances measured within a 3 month interval were found to be 

consistent with a normally distributed sample of zero mean and variance 

2 
~as given by 

2 
Ci;s ( 9.1 ) 

-7 
where a = 3 mm and b = 2·10. The authors assumed uncorrelated pairs 

of observations s,and s1 • Applying the law of variance propagation, 

they concluded that the variance of a single observation should be. 
t 

G;= b2 2 
s • (9.2) 

It should be emphasized that this estimate was derived from pairs of 

observations of the same observable. Line dependent systematic effects 

can cause cross-correlation of such series of observations. In (9.2) 

these correlations are neglected, causing the estimate to be too 

optimistic (Van{~ek and Krakiwsky,1982). It is often experienced by 

geodesists that the a posteriori estimates of the variance of the 

observations from a network adjustment are larger than the estimates 

from differences of pairs of the same observations. 

If the observations s~and s~are assumed to be correlated with 

~s's' .. 
I '1 

(9-3) 



t 
where c;, 

I 

2 2 
().., = V:.s' St 
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then the variance of the difference As' follows from the covariance law 
2 2 c;s = 2%',- 2c;'s' 1 2 

(9.4) 
2 

- fs's') = 2c:;,(1 
I Z 

Or inversely, the variance of a single observation is given by 
2 

2 Ci'ts 2 

GS· = ~ c;. 
2( 1 - ~s:st) 

(9.5) 

For the separate network adjustments by the variation of coordinates, 
2 

U.:5•would be a more realistic assumption if o,, was known. OS applies in 
5S,5t 

the case of strain approximation from differences of observations ~s. 

9.2.2 Station Elevations and Approximate Coordinates 

Geodetic (ellipsoidal) station coordinates (related to the Clarke 1866 

ellipsoid of the North American Datum) are available for all stations 

because most stations of the Hollister network are also part of a 

geodetic, horizontal control network surveyed by the U.S. Coast and 

Geodetic Survey (now U.S.N.G.S.) in 1962. These coordinates were 

provided by the U.S.G.S. and serve as time invariant approximate 

coordinates after their transformation into the coordinate system of 

the UTM map projection (cf. external Appendix ). 

The elevations of the network stations are rather poorly determined. 

They have been compiled from various sources. As most of them are 

related to the geodetic vertical control network of the u.s.N.G.S., 

they may be considered as approximate orthometric heights related to 
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the North American Vertical Datum (Sea Level Datum 1929). Geoidal 

heights could not be provided by the U.S.G.S •• Some of the heights 

were determined by vertical angles; only a few by altimetry. The 

standard deviation of the heights is estimated by the u.s.G.s. to be, 

in general, about 0.3 m (Savage,1982). However, exceptionally large, 

individual height errors have to be expected. 

9.2.3 Reduced Observations 

According to the standard geodetic approach, the observations which 

were collected in physical space have to be transformed into a 

three-dimensional and, subsequently, into a two-dimensional geometrical 

space (ellipsoid or mapping plane). This can only be done if detailed 

information on the gravity field is available (e.g. geoidal heights 

are known). 

The strain field parameters as they are sought in this analysis depend 

on the differences of repeated observations, provided that the 

observations belong to the same observation space. Under the 

assumption that temporal variations of the gravity field are negligibly 

small, effects of the incompletely modeled relationship between 

physical and geometrical spaces cancel out when strain is computed. 

Thus, standard procedures (Bomford,1971) can be used to reduce the 

observations onto the ellipsoid. 

According to the reduction procedure applied by the u.s.G.S., mark to 

mark distances in three-dimensional space are first computed from the 
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distance observations corrected for refractivity variations. 

assuming the given station elevations (cf. 9.2.2) to be equal to 

geodetic heights, the mark to mark distances are subsequently reduced 

to the Clarke 1866 ellipsoid (Savage, 1982). (Note: This reduction is 

not rigorous, as approximate orthometric heights are used rather than 

geodetic heights.) Both values, the mark to mark distances as well as 

the so reduced 'ellipsoidal' distances, were provided by the U.S.G.S. 

(cf. External Appendix ). 

9.2.4 Distribution of the Observations in Time 

of the distance observations collected The temporal distribution 

between 1970.0 and 1981.0 

Figure 9.4. 

is graphically displayed by a histogram in 
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9.3 Preceding Analyses 

Many relative horizontal crustal movement investigations that use 

geodetic data of the Hollister area can be found in the literature. 

The brief outline in this subsection is mainly based on a summary of 

this research provided by Savage et al. (1979). 

The U.S. Coast and Geodetic Survey completed a triangulation arc 

across the San Andreas and Calaveras faults in the vicinity of 

Hollister in 1930. The same configuration was re-observed in 1951 and 

1962. Electro-optical (Geodimeter) distance measurements of the same 

lines were later collected by various institutions. A number of these 

stations are also part of the kinematic Hollister network (1970-80). 

Various researchers have attempted to derive fault slip or strain from 

the data for the periods 1930 to 1951 and 1951 to 1962. (Whitten,1960; 

Scholz and Fitch,1969; Savage and Burford,1970,1971; Nason,1971). 

Interpretations have been made in terms of rigid block motion (with 

blocks bounded by the San Andreas and Calaveras faults) by uniform 

strain across the entire area, or by rigid block motion combined with 

strain accumulation within the blocks. 

Researchers of the U.S.G.S. analyzed and interpreted the 1970-80 

Hollister data. The method applied was that of Frank (cf. Sub-section 

1.4; Prescott,1976) Average rates of line length changes dl/dt were 

estimated from the re-observed·distances of each line. From these 

rates, the spatially uniform strain-rate field constant in time can be 

estimated by a least-squares adjustment using the temporally 
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constrained kinematic model (2.33) and a set of minimal-constraints 

defining the indeterminable rotation of the displacement field. 

An attempt was made by Savage et al. (1976) to detect pre-seismic and 

co-seismic deformations associated with the moderate (ML=5.1) Hollister 

earthquake of November 28, 1974. However, the authors could detect 

none from the analysis of geodetic data from 1969 to 1975. 

EDM observations from 1971 to 1978 were used by Savage et al. (1979) 

for a thorough deformation analysis. A rigid block motion model for 

the three blocks bounded by the San Andreas and Calaveras faults was 

assumed. Relative block velocities (cf. Table 9.6) were found with 

their directions being in agreement with the strike (direction) of the 

faults. In addition, uniform strain-rates (cf. Table 9.5) constant in 

time over the whole area as well as individual strain-rates within each 

block were estimated. 

Scientists of the University of Washington have been operating a 

precise multiwavelength distance-measuring (MWDM) instrument at station 

Hollister, near the Calaveras fault trace, since September 1975 

(Huggett et al.,1977; Slater and Burford,1979). Nine base lines of up 

to 11 km length radiating from Hollister have been measured almost 

daily. The three wavelength instrument (developed by the Applied 

Physics Laboratory of the University of Washington) operates on the 

dispersive measuring principle. The standard deviation of an observed 

distance is claimed to be (Huggett and Slater,1975) 

-1 ot;"' 1·10 ·D. (9.6) 
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The interpretation of the MWDM data was made in terms of Calaveras 

fault slip-rates based on a simple rigid block translation model. An 

average right-lateral slip-rate parallel to the fault of 16.8 mm/yr was 

estimated from the observations between fall 1975 and spring 1979 

(Slater,1981 ). A small, apparently convergent trend of the crustal 

blocks towards the Calaveras fault is reported for the same interval of 

time. A comparison of the MWDM data with fault creepmeter records 

obtained near Hollister was made by Slater and Burford (1979) •. The 

time variation of the length of the fault crossing lines reflects 

creeping on the Calaveras fault associated with heavy rainfall and 

co-seismic slip associated with the Coyote Lake earthquake 

(Slater, 1981 ) • 

9.4 Separate Network Adjustments 

A histogram displaying the number of observations for 1/100 yr (~3.6d) 

time intervals (cf. Figure 9.4) reveals that most re-observations were 

made during short field campaigns of a few days. The whole set of 

observations is therefore divided into 29 epochs, each spanning a time 

interval .6.'l, whereby 

.6.'t ..c. 15 d ; i = 1 , 2 , •• • , ne • (9.7) 

If the limit of the temporal length variation of all network lines is 

(Savage et al.,1979) 

lijl = ldlj/dtl ..c. 0.03 m/yr ; j=1,2, ••• ,n (9.8) 

the bias from the discretization in time would be 

~~lijl ..: ldlj/dti·Lly/2 ; i=1,2, ••• ,ne; j=1,2, ••• ,n (g.g) 

I 6 lijl 4 0.0006 m 
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which is much smaller than the variance of the observations and will be 

neglected. (Note: Episodic changes associated with earthquakes and 

creep events are not considered here.) 

The number of observations in one epoch varies between 1 and 88. Some 

epochs contain the re-observation of the whole network, whereas others 

contain only a single observation. An example of a typical incomplete 

configuration which was observed between 1979.335 and 1979.376 (epoch 

No. 26) is shown in Figure 9.5. The positions of the stations 

HOLLAIR, KNOB, LONE T and SHORE are not determinable geometrically by 

the distance observations. The network of this epoch thus suffers from 

a configuration defect (with respect to positions). 

It is interesting to realize that small height errors can cause 

non-negligible position errors in the horizontal network adjustment. 

However, the same errors cause only second order effects if strain is 

computed from the observation 

adjustment and approximation 

differences. The simultaneous network 

models proposed in this study 

geometrically constrain the observations of each epoch and, therefore, 

need reliable station heights. 
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The 'ellipsoidal' distances (cf. 9.2.3) obtained 

using the weakly determined station heights (cf. 

SECTION 9 

from the reduction 

9.2.2) were found to 

be severely distorted and could, therefore, not be used in the present 

analysis. This was obvious from a statistical assessment of 

two-dimensional position adjustment results (of those networks which do 

not suffer from position configuration defects). 

Fortunately, the distance networks contain redundant information on the 

relative station heights. By applying a three-dimensional network 

adjustment, height corrections can be estimated with the necessary 

accuracy and reliability needed for the reduction of the slope 

distances onto the ellipsoid. The given station heights are used as 

approximate values for the height unknowns, and mark to mark distances 

(cf. 9.2.3) are introduced as observations. 

Even if there is no evidence of considerable vertical movements, 

relative height changes associated with the horizontal movements must 

be expected to have occurred in the Hollister area. Unfortunately, no 

new height determinations of the network stations had been made during 

the time interval in question. As transcurrent fault movement is the 

predominant phenomenon, drastic vertical movements (i.e. larger than 1 

em per year) are not to be expected. By adopting the u.s.G.S. 

argument, we are assuming that the station heights are time invariant, 

within the time interval in question. 

Three fixed heights are generally a sufficient choice of minimal height 

constraints. Additionally, the height of station DUSTY was kept fixed 
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as it is not determinable from the network. The total set of 

constraints selected for the three-dimensional network adjustment is 

listed in Table 9.2. The three-dimensional network configuration 

enables us to estimate 21 corrections of station heights (nuisance 

parameters) simultaneously with the strain approximation. 

Station: fixed: 
coordinates height azimuth 

X y h a 

HOLLAIR * * * 
CHURCH * 
MORSE * 
DUSTY * 

Line: 
from to at time 

HOLLAIR SARGENT 1972.386 * 

Table 9.2 

Constraints for the three-dimensional network adjustments 

As the networks of the epochs No. 3, 5, 12, 20, 28 and 29 did not 

suffer from configuration defects, it was possible to adjust these 

networks separately by the variation of positions and heights. Because 

of the large number of unknown parameters in these adjustments, the 

degrees of freedom were found to be relatively small. From the 479 

observations of all the 6 adjustments, we obtained a total estimate of 
... 2 

the variance factor ~ = 1.23 with the total degrees of freedom df = 

98. 
2 

A X- test performed on the variance factor passes on the level of 

significance rL = 0. 05 ( 95 percent probability). The estimate " 2 • 00 ~s 
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slightly larger than its expectation, which could be due to the fact 
2. 2 

that the variance G$(cf. eqn. 9.2), is used instead of the unknown GS' 

( cf. eqn. 9. 5) • 

A 2 
The use of the estimates GO· J 

j=1,2, ••• ,ne , from the individual 

network adjustments, to scale the covariance matrices of the 

observations for the subsequent least-squares approximation should: no.t 

be considered because of their lack of reliability. Instead, the a 
2 

priori variance factor ~= 1 of the observations was assumed (to be 

taken as known) in all further adjustments. 

9·5 Simultaneous Adjustments and Approximations 

9.5.1 Assumptions 

The rigid block rotation (or the spatially uniform term of average 

differential rotation LU ) is not determinable from the observations of 

the kinematic network. If nuisance scale parameters are introduced for 

each epoch of observation, then the spatially uniform term of dilation 

is also indeterminable. The following, arbitrarily selected 

constraints are introduced to avoid ill-posed approximation models: 

a) For all models: 

Station HOLLAIR (x" ,yH): W (x11 ,y,. , t) 0 t e.. R 

b) For models with unknown scale nuisance parameters: 
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Station HOLLAIR (XII ,yH ) : u( XH ,yH 't) 0 t £ R. 

9.5.2 Concept of Model Evaluation 

The objective of the experiments reported in this Sub-section is to 

select those approximation models which best describe the predominant 

trend in the relative displacement field. An objective measure of the 

goodness of fit of a particular model is found from the residuals (cf. 

eqn. (7.49)) of the original observations as they are estimated from 

the simultaneous adjustment and approximation. Provided that the same 

statistical filtering is applied to the Fourier coefficients in all 
1\ 

approximations, the square root of the variance factor GO(cf. eqn. 

(7.50)) estimated from the approximation is the appropriate measure for. 

such a comparison. (Note: The estimate 
/1 

GO is used rather 
/\ 2 

than GO 

because the former is used to scale the standard deviations.) 

Given the vector of Fourier coefficients estimated from a particular 
A I A 

model, the selection ~ 0 which yields the minimal estimate ~among all 

" possible selections from ~0 is found if those ortho-normal coefficients 

are set to zero, whose magnitude is smaller than their estimated (a 

/1 J\ 

posteriori) standard deviation Ui= Ua; i=1,2, ••• ,u. This statistical 
o;. 

filtering criterion, which approximately corresponds to an 'out of 

context' test based on 68 percent a posteriori confidence .regions of 

the coefficients, is therefore chosen for the model evaluation. 

A 

A list of selected approximation models and their estimates Ugare given 
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in Table 9.4. Approximation No. is a simultaneous time invariant 

" network adjustment of all epochs. The estimate~= 5.308 serves as a 

reference value for all other approximations. 

The effect of possible spurious oscillations (which occur if too high a 

degree of the polynomials is used) was also considered in the selection 

of the final approximation model No.91, which is discussed in 9.5.9. 

The statistical testing of this final model was done on a~= 0.05 (95 

percent probability) level of significance. 

Degrees of the Approximation Polynomials: 

B number of complex rigid bloc translation coefficients 
C power of the complex conformal polynomial 
A power of the complex anti-conformal polynomial 
T power of the time polynomial 
E number of episodic terms in the time polynomial 

Number of Variables: 

Ob number of original geodetic observations 
El number of eliminated parameters 
Re total number of real coefficients 
Co number of constrained coefficients (set to zero) 
DF degrees df freedom of the approximation 

Types of Models: 

a) continuous in space: 
b) pure rigid block translation: 
c) combined model (a and b): 
d) piecewise linear in time: 
e) episodic in time: 
f) final selection: 

Table 9.3 

No. 

1 - 14 
21 - 22 
31 - 91 
81 
71 - 75 
91 

Abbreviations used in the table of approximations (Table 9.4) 
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KINEMATIC NETWORK HOLLISTER (1970-80): TABLE OF APPROXIMATIONS 

Mod. Degr. of Polyn. Num. of Variables Estim. Remarks 

" No. B c A T E Ob El Re Co DF Ua 
1 0 0 0 0 0 979 69 0 0 910 5.308 time-invariant 
2 0 1 1 1 0 979 69 3 0 907 4.118 linear in time 
3 0 2 2 1 0 979 69 7 1 904 3·965 •• 
4 0 3 3 1 0 979 69 11 2 901 3-828 •• 
5 0 4 4 1 0 979 69 15 3 898 3.819 •• 
6 0 6 6 1 0 979 69 23 5 892 3·645 •• 

11 0 1 1 6 0 979 69 18 5 897 4.086 continuous in 
12 0 2 2 6 0 979 69 42 17 885 3.874 space and time 
13 0 4 4 6 0 979 69 90 43 863 3.700 •• 
14 0 6 6 6 0 979 69 138 69 841 3.465 '' 

21 4 0 0 1 0 979 69 4 0 906 2.526 pure block transl. 
22 4 0 0 6 0 979 69 24 12 898 2.479 •• 

31 4 1 1 1 0 979 69 7 1 904 2.461 combined model 
32 4 2 2 1 0 979 69 11 1 900 2.436 (linear in time) 
33 4 4 4 1 0 979 69 15 4 895 2.396 •• 
34 4 6 6 1 0 979 69 27 4 887 2.302 •• 

41 4 1 1 6 0 979 69 42 23 891 2.399 combined model 
42 4 2 2 6 0 979 69 66 37 881 2.339 (continuous in t) 
43 4 3 3 6 0 979 69 90 51 871 2.290 '' 
44 4 4 4 6 0 979 69 114 59 885 2.265 . ' 
45 4 5 5 6 0 979 69 138 70 842 2.143 . ' 
46 4 6 6 6 0 979 69 162 77 825 2.115 •• 

51 4 1 1 1 0 979 97 6 0 876 2.413 with scale unkn. 
52 4 1 1 6 0 979 97 36 18 864 2.355 ' . 
72 4 6 6 1 4 979 69 135 53 828 2.094 combined model 
73 4 5 5 4 3 979 69 161 84 833 2.091 (episodic in t) 
74 4 5 5 4 4 979 97 176 90 796 2.069 •• 
75 4 5 5 5 3 979 97 176 91 797 2.070 •• 

81 4 3 3 1 9 979 69 150 74 834 2.252 piecew. lin. in t 
82 4 3 3 1 9 979 97 140 68 810 2.219 (with scale unkn.) 

91 4 3 3 5 3 979 97 112 56 826 2.217 final model 

Table 9.4 

Table of approximations 
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9.5.3 Strain from Models Continuous in Space 

Savage et al.(1979) discovered that the predominant deformation of the 

network can be modeled well by rigid block motion of the above 

mentioned three blocks. The horizontal relative displacement field (or 

horizontal velocity field) which corresponds to this motion is 

discontinuous in space. The discontinuities located along the block 

margins (faults) simply express the fault slip. 

The approximation using functions continuous in space (to model the 

strain) will only yield a good fit if either the fault slip is small 

compared to the strain, or if high degree polynomials are employed. 

This is exactly what is seen from the results of the approximations 

No.2 to 14 (cf. Table 9.4). The estimate 
A 

GO decreases very slowly 

when the space degrees of the polynomials are increased. The number of 

stations in the network and their distribution in space does not allow 

the use of polynomials much higher than degree 5 in space. 

Low degree polynomials are, however, useful for estimating the over-all 

(average) strain. A spatially uniform strain field varying linearly in 

time is employed in model No.2 (cf. Table 9.5). The spatially uniform 

and time invariant strain-rate field is displayed by axes of maximum 

shear in Figure 9.5. 
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Analysis dilation-rate total tensor azimuth of right-
shear-rate lateral axis 

(u-strain/yr) (u-strain/yr) (gon) 

No. 2 - 0.018 ± 0.001 0.64 ± 0.03 -37.8 ± 1.3 
(1970-80) 

u.s.G.s. - 0.05 ± 0.01 0.62 ± 0.01 -36.7 ±. 1.1 
(1971-78) 

Table 9.5 

Comparison of uniform strain-rates 

Our estimates are in good agreement with the results obtained from the 

observation method (Frank's method) by the U.S.G.S. (Savage et 

al.,1979), except for dilation rates. 

It is surprising that the simple models of linear (over-all) strain 

accumulation in time (Mod. No.2 to No.6) fit the data even so well. 

This indicates that at least the predominant fault slip-rates at both 

faults do not vary much within the time span of observation. Even the 

polynomial of degree 6 in time (Mod. No.11 to 14) does not 

considerably improve the fit. 

The series of experiments with polynomials of higher degrees in space 

(No.3 to 6), or in space and time (No.11 to 14), demonstrate the 

limitation of the functions continuous in space for modeling spatially 

discontinuous displacement fields. 
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9.5.4 Relative Rigid Block Translation 

Rigid block translation seems by far to be the most predominant part in 

the spatially discontinuous displacement field in question. There may 

also be discontinuities present in rotation, shear and other strain 

components. In order to keep the model as simple as possible, the 

assumption is made that all non-translational discontinuities can be 

adequately approximated by the spatially continuous functions. The use 

of alternative spatially discontinuous models which also take into 

account discontinuities in strain along known faults will be discussed 

in Section 10. 

The discontinuous approximation function in space (6.19) is employed 

for the modeling of the rigid block translation. After several 

unsuccessful experiments with various crustal block definitions, the 

rigid block boundaries proposed by Savage et al. (1979) are adopted. 

The area of the network is basically divided into the following blocks: 

Block No. 0 

Block No. 

Block No. 2 

Diablo block , northeast of the Calaveras fault, 

Sargent wedge, or central block, between San Andreas 
and Calaveras fault and 

Gabilan block , southwest of the San Andreas fault. 

Apparently laying on the eastern block (No.O), the stations HOLLIS and 

PEREIRA 2 are located very close to the Calaveras fault (cf. Figure 

9.2). The individual relative ~otion of these stations seems to be 

somewhere between that for the adjacent blocks. Two additional blocks 

(No.3 and No.4) containing only the immediate surroundings of these two 
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stations have thus been defined (cf. Figure 9.7). 

First a series of approximations with only unresticted relative block 

translations were computed. The direction of the relative translation 

velocity vectors agreed well with the fault strike of both faults, 

except for the time interval 1974-1977, for which convergent fault slip 

was obtained for the Calaveras Fault. The relative rigid block 

translation model (6.19) does not take into account any deformation 

inside the blocks. Such non-modeled deformations could alias as 

apparent relative translations perpendicular to the fault strike. The 

non-constrained block translation model was abandoned for this analysis 

as it seemed difficult to interpret convergent fault-slip along typical 

transcurrent faults. (More will be said about the problem of 

convergent fault movement in Section 10.) 

Approximation No.21 models the average rigid block translations with 

constant slip-rates within the time interval in question (cf. Figure 

9.7). The estimated slip-rates are given in Table 9.6. 

Analysis Fault slip-rates (mm/yr) 
San Andreas Fault Calaveras Fault 

No. 21 12.6 ± 0.4 17.9 ± 0.4 
(1970-80) 

u.s.G.s. 13.4 ± 2.2 16.7 :!: 2.5 
(1971-78) 

Table 9.6 

Comparison of fault slip-rates 
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The agreement of the slip-rates obtained by the two different methods 

of computation is very good. No explanation was found for the large 

differences of the standard deviations. 

A 

With this block translation model, the estimate Go decreased by 52 

percent compared to the time invariant model (No.1). It is striking 

how this simple kinematical model (No.21), with only 4 unknown real 

coefficients, fits the data. The comparison of this fit with the fit 

of the approximations using the spatially continuous models (No.2 to 6) 

suggests that the adopted block translation model is realistic. 

Approximation No.22 applies the same rigid block model in space, taking 

into account the time variations; algebraic time functions of 

increasing degrees are used. Under the assumption of the rigid blocks, 

the time variation of the slip rates seems to be relatively small. 

A 
Even for time polynomials of 6 th degree, GQdecreases by less than 2 

percent compared to the same model (No.21) linear in time. 

There is one drawback to this simple block translation model which 

should be noted. If the slip-rate varies along the fault, this model 

can only estimate the average rate. This insufficiency could bias the 

results, especially in the case of the Calaveras Fault, which seems to 

be locked southeast of Hollister (Savage et a1.,1979). 
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9.5.5 Strain and Fault Slip from Combined Models 

It is very likely that the simple motion of the rigid blocks is 

accompanied by deformations inside the blocks.· Elastic energy may be 

stored or released during these deformations. Insight into the 

development of the deformations in space and time, and their 

correlation with the occurance of seismic events, should lead to a 

better understanding of the plate kinematics and driving forces. 

A new combined model was designed by superimposing the rigid block 

translation model (6.19) onto the spatially continuous approximation 

model (6.18). This new approximation describes both the continuous as 

well as the discontinuous part of the deformation of the network in· 

space. The statistical test procedure applied to the ortho-normalized 

coefficients of this model simultaneously selects the most significant 

trends of both the fault slip and the strain accumulation. 

All approximations from No.31 to 34 are based on this combined model in 

space. A linear time model, allowing linear fault slip and linear 

strain accumulation in time, was assumed for the approximations No.31 

to No.34. The results of approximation No.31, which combines block 

translation with uniform strain accumulation, are graphically displayed 

in Figure 9.8. The slip-rates determined through this approximation 

differ only very slightly from the results of the pure block motion 

model (San Andreas Fault: AV -1.25mm/yr, Calaveras Fault: 6v = 

-1.39mm/yr). A significant right lateral shearing strain-rate of 0.13 

± 0.019 ustrain/yr in the direction of the San Andreas Fault (Az=56.5 ± 
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4.0gon) was estimated from this model. 

The approximations No. 41 to 46 use the same combined model, taking 

into account variations with time. The considerable decrease of with 

increasing degree of the time function indicates that the deformation 

may not be developing linearly in time. 

Approximation No.41 combines the time varying, spatially uniform strain 

accumulation with time varying rigid block translation. The very 

small, uniform shear-rate remains almost constant in the time interval 

1972 - 1980. The estimated right lateral tensor shear-rate varies only 

between 0.13 and 0.16 p.strain/yr, with its azimuth varying between -38 

and -69 gon. The estimated slip-rate at the San Andreas Fault 

apparently decreases and reaches a minimum of 7.3 ± 1.3 mm/yr in 1978. 

Both estimated slip-rates increase considerably after 1979. · 

The approximations No.41 to 46 are experiments with combined models in 

space that vary non-linearly in time. In contrast to the small 

temporal variations of the spatially uniform strain-field found from 

the approximation No.41, considerable temporal variations are estimated 

as soon as the homogeneous model 

non-homogeneous model (Mod. No.42 to 

in space is 

46). The 

replaced 

right 

by a 

lateral 

shear-rate of -0.3 pstrain (strain accumulation) found along the San 

Andreas fault in 1975 (Mod. No.43) decreases and changes into a left 

lateral rate of +0.3 pstrain in 1979. This may indicate that shearing 

strain was accumulated and released within the time span of the 

investigation. This development of the deformation is very likely 
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related to the occurrence of the four above-mentioned earthquakes. As 

co-seismic deformations are of episodic nature, the continuous and 

smooth time functions applied up to this point are not a good choice. 

Episodic, co-seismic motions may be smoothed out by the smooth 

functions used. 

9.5.6 Piecewise Linear Time Functions 

In order to further investigate the temporal behaviour of the 

deformation, a piecewise linear and continuous time function (6.21) is 

chosen. The sequence of time intervals which defines the approximation 

function in time is given in Table 9.7. 

Episode Interval 

No. Beginning End 

1 1970.0 1972· 39 
2 1972· 38 1973.33 
3 1973-32 1974.46 
4 1974.45 1975.28 
5 1975.27 1976.43 
6 1976.42 1977.64 
7 1977.63 1978.36 
8 1978.35 1979·36 
9 1979· 35 1979· 70 

10 1979.69 1980.50 

Table 9.7 

Intervals of piecewise linear time function 

Each interval contains at least two 'near-complete' epochs of 
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re-observation (cf. Figure 9.4). The same generalized polynomial as 

in approximation No.43 (with 4 rigid block translation parameters, 3 

conformal and 3 anti-conformal algebraic terms) was chosen for the 

approximation in space. 

The accumulated slip at both active faults, the Calaveras and the San 

Andreas, are displayed in Figures 9.9 and 9.10. In contrast to the 

analysis of the USGS~ our results show significantly larger slip rates 

for some of the intervals in which three of the moderate earthquakes 

occurred (Savage et al., fig. 9 and 10, p.7606-7607, 1979). No 

unusual slip-rate could be associated with the 1974 Gilroy earthquake 

(ML=4.4). 

The shear-rate field for some of those time intervals with large slip 

rates shows considerable left lateral shear, which could be interpreted 

as release of accumulated shearing strain during these slip episodes. 

No seismic event with a magnitude MLlarger than 3.5 in the San Andreas 

Fault area could be associated with the anomalously large slip rate in 

the interval 1976.42,1977.64 exhibited by the San Andreas fault slip 

curve (cf. Figure 9.10). 
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9.5.7 Episodic Time Functions 

From the experiments with the piecewise linear time function, we can 

see that three episodic motions are identifiable within the following 

time intervals: 

No.2 (1972.38-1973.33), possibly associated with the S.J. 

(ML=4.9) earthquake, 

Bautista 

No.4 (1974.45-1975.28), possibly associated with the Hollister 

(ML=5.1) earthquake and 

No.9 (1979.35-1979.70), possibly associated with the Coyote Lake (ML 

=5.9) earthquake. 

After knowing the instant when an episodic motion may have occurred, it 

is possible to model the deformation in the time domain by using the 

episodic time function (6.25). Very short linear episodes (~t 0.01 

yr) were associated with each of the four earthquakes given in Table 

9.1. The episode associated with the 1974 Gilroy earthquake was left 

out as practically no response was 

(approximations No.72 and 74). 

found for this episode 

In model No.75 a time polynomial up to order 5 and with 3 linear 

episodic terms is employed. 

approximation No.45. 

The space functions are the same as in 
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Episode Interval Seismic Event 

No. Beginning End No. Time 

1 1972.754 1972· 764 1 1972-759 

2 1974.905 1974-915 3 1974.910 

3 1979.592 1979· 602 4 1979.597 

Table 9.8 

Co-seismic episodes 

As this episodic model was found to describe very satisfactorily the 

'co-seismic' motions the episodic model approximations yield the 

/1 

minimal estimate GO -- it was selected for the final approximation No. 

91. The final model and its fit to the data will be discussed in 

Sub-section 9.5.9. 

9.5.8 Additional Experiments 

a) Elimination of Variable Network Scale Factors: 

The program CRUSTRAIN allows the estimation of nuisance parameters for 

scale and orientation variations of each individual network. Unknown 

scale factors were introduced in approximations No.51 and 52 for all 

epochs except epoch No. 5 (of which the scale was adopted as a 

reference). The estimated scale factors were found to vary irregularly 

(Mod. No.52). The variations of up to 0.3 ppm relative to the 
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arbitrarily adopted reference scale are likely to reflect accidental as 

well as small systematic scale errors of the EDM-observations, rather 

than crustal dilatation. (Note: The magnitude of these variations is 

in good agreement with the a priori estimate of the scale error; cf. 

eqn. 9.2.) The anti-conformal complex strain element (shear) is the 

interesting strain quantity which is sought in a zone of active 

transcurrent faults. As shear does not depend on the network scales 

(except for second order effects), it was decided to introduce unknown 

scale nuisance parameters and to eliminate them in the approximation 

(final model No. 91). 

b) Accumulation and Release of Shearing Strain Across the Faults: 

The development of shear in the direction normal to the strike of a 

fault is particularly interesting if the accumulation and the release 

of shearing strain across an active strike slip fault is to be 

investigated. As shear in a given direction is a scalar quantity, it 

can be depicted by a three-dimensional surface. Figure 9.11 shows, for 

example, the lines of equal shear (iso-lines) in the direction 

perpendicular to the San Andreas fault (azimuth: 42 gon) as it is 

estimated from the approximation No.45 (at t=1975.0). Note the 

coincidence of the zone of maximum shear-rate (in azimuth: 42 gon) 

with the Sargent fault trace, which indicates that minor fault creep 

may occur within the Sargent zone. 

Since shear varies considerably in space, the display of this shear 

component surface by iso-lines is much easier to interpret than the 
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pattern of shear-rosettes. The area in which shearing strain is 

accumulated can very well be distinguished from the zone in which 

shearing strain is released. However, such plots display only one 

component of the anti-conformal strain, whereas the display of the 

shear-rosettes or the axes of maximum shear represents the full 

information. 

9.5.9 Final Approximation Model 

From the experiments with continuous approximation functions in space 

(approximation No.2 6), it was found that spurious oscillations of 

the spatial approximation to the strain-field can be reliably avoided 

within the network area if the degree of the complex algebraic 

polynomials are not higher than 4. Only small effects towards the 

periphery of the network were observed when polynomials of degree 6 

were used in approximation No.6. 

Considering the distribution of observations in time (cf. Figure 9.4), 

3rd degree polynomials in space and a 5th degree polynomial in time 

were selected for the final model (No.91 ). Spurious oscillations of 

the strain field in time are definitely avoided with this choice, as 

the network was re-observed almost completely at 11 occasions within 

the last decade. The discontinuities in space were modeled by the 

rigid block translation model introduced in and the 

discontinuities in time by the episodic model discussed in 9.5.7. 
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The statistical filtering of the Fourier coefficients is based on the 

(a priori) variance of coefficients ( 
~ 

~ = 1, kown) and a level of 

significance ~= 0.05. A total of 97 unknown parameters (48 position 

coordinates, 21 heights and 28 scale factors) were eliminated from the 

parameter vector of the simultaneous adjustment and approximation (cf. 

Table 9.4). The results of the final approximation are graphically 
A 

presented in Figures No. 9.12 to 9.23. The estimate ~remained larger 
A 

than 2 in all approximations reported in Table 9.4. A value of ~= 

2 
2.217 was obtained for the final model. A X -square test on the 

~ 

variance factor ~fails on the level of significance dl= 0.05. The 

reasons for this incompatibility of the observation data with the 

approximation model are: 

a) incomplete formulation of the approximation model (model errors) 

(Note: The approximation model in space could probably be improved 

if spatial discontinuities along known fault lines were also 

modeled.), 

b) individual, irregular motions of station marks which may be related 

to non-tectonic surface deformations (Savage et al.,1979) (The model 

is too smooth to pick up these irregularities.) and 

c) too optimistic estimates for the variance of the distance 

observations (cf. 9.2.1). 
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t = 1975.0 

N 
Figure 9.11 

Tensor shear-rate component in the direction perpendicular to the 

San Andreas fault (azimuth: 42 gon) 
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Fault slip-rates and tensor shear-rates (Mod. No.91, t=1974.0) 
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Co-seismic fault slip and tensor shear (Mod. No.91, t=1974-91) 



N 

0 

0 
VELOC. 

MAP 

0 0 

0 0 

0 ~ .. . . 

0 

0 

0 

0 

0 

0 

Scm/yrO 1,ustrain/yr 
STRAIN-RATE 

0 

f 

f 

~)l 

' 

0 

182 

0 

.. 0 

Figure 9.18 

SECTION 9 

0 0 0 0 

• 1 . .. ~"- "I 

X se 

X 6l 

'\.-... ., t 

. ..'\.. 

0 

0 0 

0 0 0 

t = 1975.0 

Fault slip-rates and tensor shear-rates (Mod. No.91, t=1975.0) 

0 

0 

0 

0 

0 

0 

0 



N 

0 

0 
VELOC. 

SKM 

0 0 

0 " 

" 

" 

0 

" 

0 

0 

0 

,.............. 
5cm/yr0 I ~stroin/yr 

STRAIN-RATE 

183 

" 0 

\ 
~.3) 

\ 
+ 

\ ., 1 

" 0 

Figure 9-19 

0 

0 

0 

1' 1 G 

1\. fUll'f: 

0 

t = 1977.0 

SECTION 9 

0 0 0 

.... \ )1 
\,~" J J 

/\, " 

0 

0 

I 
i ) 

~··~-·. I ,-.........._ 

' ! 

.I 
I 

,~,, 

4 

0 

0 

0 

0 

0 

0 

0 

Fault slip-rates and tensor shear-rates (Mod. No.91, t=1977.0) 



184 SECTION 9 

0 0 0 0 0 0 0 0 0 

\ . 
Y. 

\ -k ·t~ 0 ' ' tt ~ ' ·t' ' . . . 0 0 

~ 
N 

MAP 0 0 • 0 0 0 0 0 

0 

0 Scrn/yrQ 1JJstroin/yr t = 1979.0 
VELOC. STRAIN-RATE 

Figure g,20 

Fault slip-rates and tensor shear-rates (Mod. No.91, t=1979.0) 
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9.6 Interpretation 

The following kinematical interpretation of the results obtained from 

the final approximation No.91 is based on the graphical displays given 

in Figures 9.12 to 9.23. The development of crustal deformation 

between 1971 and 1980.5 is described in a sequence of seven phases. 

(Note: All measures of accuracy given below are standard deviations 

estimated from the least-squares approximation). 

Phase 1 : ( 1 971 • 0 to 1 972.754) 

Accumulation of right-lateral shear (of approximately 

~strain/yr) along a line normal (in average) to the faults takes 

place. The most dominant shear-rate is found in the northern part 

of the Sargent wedge (cf. Figure 9.14). The Calaveras fault 

slip-rate decreases to 10.3 ± 5.0 mm/yr (right-lateral,t=1972.0), 

whereas the San Andreas fault slip-rate slightly increases and 

reaches 10.3 ± 4.7 mm/yr (right-lateral,t=1972.0). The estimated 

accumulated slip with respect to the reference time t 0 =1975.0 is 

shown in the Figures 9.12 and 9.13. The standard deviation of 

accumulated slip is represented by broken lines plotted on either 

side of the slip-curves. 

Phase 2: (1972.754 to 1972.764) Co-seismic motion associated with the 

S.J. Bautista earthquake (ML= 4.9) 

The epicenter of the earthquake is located close to the San 

Andreas fault trace (cf. Figure 9-3). The episode is 

characterized by left-lateral shear of approximately 0.9 ~strain 
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across the Calaveras fault trace (cf. Figure 9.15). This is 

interpreted as a release of shearing strain associated with a 

larger co-seismic slip of 21.7 ± 7.4 mm at the Calaveras fault and 

a smaller slip of 9.6 ± 8.7 mm at the San Andreas fault (cr. 

Figures 9.12 and 9.13). 

Phase 3: (1972.764 to 1974.905) 

The most noticeable development in this phase is the accumulation 

of spatially almost uniform right-lateral shearing strain of 

approximately 0.4 pstrain perpendicular to the Calaveras fault 

trace (cf. Figure 9.16). The right-lateral Calaveras fault 

slip-rate reaches a minimum (at t=1974.0) of only 5.9 ± 3.8 mm/yr 

(cf. Figure 9.12), whereas the San Andreas right-lateral slip 

(cf. Figure 9.13) continues almost linearly in time with a rate 

of 12.9 ± 3.8 mm/yr. 

Phase 4: (1974.905 to 1974.915) Co-seismic motion associated with the 

Hollister earthquake (ML=5.1) 

The Hollister earthquake occurred 

left-lateral, conjugate fault to the 

al., 1979; cf. Figure 9. 3) • The 

upon the Busch fault, a 

Sargent fault (Savage et 

co-seismic motion is 

characterized by almost pure rigid block translation. A right 

lateral slip of 14.4 ± 6.0 mm at the Calaveras fault and a 

reversed (left-lateral) slip of 9.0 ± 6.2 mm at the San Andreas 

fault (cf. Figures 9.12 and 9.13) are estimated. Apparently 

shearing strain release in the close vicinity of the San Andreas 

fault is represented by left-lateral fault slip instead of local 
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left-lateral shear. This is probably a consequence of the 

selected continuous approximation function (with low degree 

algebraic polynomials) in space, which is too smooth to model 

local variations in space. 

Phase 5: (1974.915 to 1979-592) Figure 9.18 shows the accumulation of 

right-lateral shearing strain similar to phase 3, though more 

pronounced in the Sargent wedge and the Gabilan block in 1975. 

The Calaveras fault slip-rate increases from 6.9 ± 2.8 mm/yr in 

1975 to 22.7 ± 3.0 mm/yr in 1979 (cf. Figure 9.12), whereas the 

shear-rate decreases to approximately 0.1 pstrain in the Calaveras 

fault zone. The San Andreas fault slip-rate, on the other hand, 

remains almost constant in time (11.9 ± 1.7 mm/yr, right-lateral, 

t=1977.0) within the whole time span. The right lateral shear 

(strain accumulation) in the Gabilan block in 1975 slowly 

diminishes and finally changes its sign (strain release) in 1979 

(cf. Figures 9.18, 9.19 and 9.20). 

Phase 6: (1979.592 to 1979.602) Co-seismic motion associated with the 

Coyote Lake earthquake (ML=5.9) 

The Coyote Lake earthquake occurred upon the Calaveras fault, 

approximately 30 km northwest of Hollister. The episode is marked 

by considerable release of shearing strain (approximately 0.7 

pstrain ,left-lateral, across the San Andreas fault) at the 

southern end of the Calaveras fault and in the Diablo block (cf. 

Figure 9.21). A co-seismic right-lateral slip of 7.7 ± 4.8 mm is 

estimated at the Calaveras fault. The reverse slip of 2.5 ± 6.9mm 
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(left-lateral) at the San Andreas Fault may again be interpreted 

as an effect of local release of shearing strain (cf. Phase 4). 

Phase 7: (1979.602 to 1980.5) 

New accumulation of considerable right-lateral shearing strain in 

the Gabilan block (No.2), of approximately 0.9 pstrain/yr along a 

line normal (in average) to the faults, takes place (cf. Figure 

9.22). Relatively high slip-rates are estimated for both the 

Calaveras (25.0 ± 5.4 mm/yr) and San Andreas faults (17.2 ± 6.2 

mm/yr) for the time of prediction t=1980.0. 

It should be noted that the data coverage is not sufficient for 

distinguishing between pre-seismic motions (of a duration of months 

before an earthquake), co-selsmic motions and post-seismic motions (of 

a duration of a few months after the earthquake). All these motions 

are estimated together as 'co-seismic' from the approximation using the 

episodic time function (Mod. No. 91). 

The standard deviation of the estimated shear-rates computed at the 

network stations for t 1980.0 is displayed together with the 

shear-rosettes in Figure 9.23. The displayed confidence regions of the 

shear in a given direction increase towards the periphery of the 

network. They also increase for those prediction times which differ 

most from the mean of the total time interval of observation (1975.5). 

The standard deviations of all predictions of shear-rates for t=1972.0 

to t=1979.0 are considerably smaller than the values displayed for 

t=1980.0 in Figure 9.23. 
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SECTION 10 

CONCLUSIONS AND RECOMMENDATIONS 

In this last section, the main contributions of this research will be 

summarized. The advantages as well as the drawbacks of the proposed 

method of simultaneous network adjustment and strain approximation will 

be critically discussed. Finally, desirable continuations of this kind 

of research in the future will be recommended. 

1) Complex analysis was extensively applied to the mathematical 

formulation of the two-dimensional strain approximation and the 

graphical representation of strain-tensor fields. The elegance of 

this treatment is clearly demonstrated in Section 4, 5 and 6. The 

question, whether the complex treatment is advantageous as far as 

computer programming and practical computation are concerned, is 

somewhat more difficult to answer. Provided that programming 

languages such as FORTRAN are applied, allowing the use of complex 

variables, the complex formulation yields transparent and compact 

program structures. The number of real arithmetic operations which 

have to be carried out by the computer is the same for both the real 

or the complex treatment. There is also no difference between the 

data storage of complex numbers or real two-dimensional vectors. No 

considerable reduction of computing expenses can therefore be 

expected from the complex strain analysis as compared to a real 

approach. 
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2) The approximation model formulated in this study uses the concept of 

generalized polynomials. In this way, all types of functions can be 

prescribed to model the deformation in space and time. The 

functions discontinuous in space and time are of special importance 

to the crustal strain approximation in seismically active areas. In 

this study, the discontinuities in space were only incorporated for 

translational terms associated with prescribed blocks, bounded by 

generalized fault lines. This was done in the case of the Hollister 

network because of the scarcely distributed data in space. The 

continuity of the strain-field across the fault line is, however, 

too stringent an assumption. It would certainly be better to let 

the data tell us what kind of deformation is developing. The 

masking functions defined for the translational terms (cf. 

can easily be extended to model spatially homogeneous or 

non-homogeneous strain individually in each block. The fact that 

the estimated variance factor remains rather high in all Hollister 

approximations suggests that this modeling of discontinuities in the 

strain-field should also have been tried. Experiments with 

discontinuous low order terms of the approximation function in space 

are recommended as a possible continuation of this research. It is 

to be noted that converging and diverging fault movement will occur 

in this case. 

3) The method of simultaneous network adjustment and strain 

approximation proposed in this work is to be compared to other 

analysis techniques presently in use. The following advantages and 

drawbacks of our method should be considered: 
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The complete set of observations available can be utilized, 

whereas only repeated measurements of the same observable can be 

used by the observation method (Frank's method). 

Near-simultaneous observations are first separately adjusted 

by the variation of coordinates. In this way, blunders and 

outliers among the observations can be detected. The statistical 

assumptions and the functional model of the network adjustment 

can be tested. However, the effect of neglected 

cross-correlations between repeated observations of the same 

observables and the low degrees of freedom of some epochs limit 

the value of the statistical assessment of separate position 

adjustment results. 

Incomplete networks of individual epochs suffering from 

formulation or configuration defects with respect to positions 

can be incorporated in the analysis. The conventional coordinate 

approach does not allow the analysis of such data. 

The approximated strain field is not necessarily assumed to be 

spatially uniform and the temporal variation of the deformation 

is not restricted to being linear. 

Strain parameters can simultaneously be estimated with average 

block translation. 

The method allows the evaluation of the best fitting model (in 

the least-squares sense) among a series of different 

approximation models in space and time. 

Nuisance parameters such as corrections to geodetic station 

heights as well as scale factors and orientation unknowns of 

individual epochs can be estimated simultaneously with the 
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deformation parameters. 

4) The statistical filtering procedure applied has the clear advantage 

that it enables one to test uncorrelated variables. The significant 

trend (signal) is so estimated whereas the noise is filtered out 

from the observations on a prescribed level of significance. 

5) The graphical representation of a strain-tensor field varying in 

space and in time turned out to be a difficult task. The full 

information on the pure deformation (symmetric strain tensor) at a 

given point and at a certain instant of time is completely described 

by the strain pedal-curve (or strain ellipse). The variation in 

space is visualized if the strain figures are plotted at equally 

spaced grid points. In addition, the variation in time is displayed 

if the patterns of strain figures or strain-rate figures are 

displayed for a series of equally spaced time intervals. Variations 

in the development of the deformation in time were easier to 

interpret from the representations of strain-rates than from 

accumulated strain. If the strain varies considerably in space, the 

pattern of strain figures becomes very busy and becomes difficult to 

interpret. In this case, surfaces or profiles representing the 

spatial variation of scalar strain quantities such as single strain 

components or shear in a prescribed directibn are preferably 

plotted. However, scalar strain quantities do not provide the 

complete information contained in the strain matrix. 

6) It is common geodetic practice to perform pre-analysis of the 
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network adjustments when geodetic networks are being designed. In 

this way, various variantes of the network design can be compared 

and the a priori variance of the unknown coordinates can be 

determined before the beginning of the actual measurements. Methods 

are available, by which the design of a network can be optimally 

chosen with respect to a certain prescribed design criterion. 

There is no reason why pre-analyses and optimal design studies 

should not be carried out before kinematic networks are established. 

A priori variance estimates of the strain parameters can be computed 

if the network design of the individual epochs of observation and 

the time interval between the re-observations of a planned kinematic 

network are known (cf. Table 8.2, Mod. No.15). The approximation 

model has, in this case, to be known a priorily. The program 

package CRUSTRAIN provides a pre-analysis option, by which the a 

priori confidence regions can be displayed graphically. 

7) Modern space geodesy techniques will provide accurate 

three-dimensional relative positions in the future. The method of 

simultaneous network adjustment and strain approximation should 

therefore be extended into the third dimension. The elegant complex 

formulation of the approximation function proposed in this study can 

not, however, be used in this case. 
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APPENDIX I 

NOTATION USED FOR STRAIN-PARAMETERS 

position vector: 

!. = (x,y) 

strain tensors: 

strain components: 

G" = T (en+ eyyl 

w = -f (eyx- e,...Y) 

'I = T ( e ,..~ - eYY) 

If= y {e.Y~+ e,1 l 

total shear and principal strains: 

f.= {T'2.+LJ2)th 
T 

U ± dT 
\J 

arc tan(-;;:-) 
L 

a= Tl. - e 
t 'l t 

displacement vector: 

d = (u,v,) 

infinitesimal, non-translational 
strain matrix 

non-rotational, symmetric 
strain tensor 

dilation or average extension 

average differential rotation 

first tensor shear component 

second tensor shear component 

total shear 

principal strains 

direction of major principal 
strain 

direction of maximum shear 
(left lateral) 

azimuth of maximum shear 
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APPENDIX II 

OUTLINE OF THE LEAST-SQUARES APPROXIMATION THEORY 

This brief outline gives a summary of a more systematic treatment of 

the theory of least-squares adjustment by Van{cek and Wells (1972). 

The following problem of least-squares approximation will be discussed. 

Given a function F, defined on a finite set M, find another function of 

a prescribed general form that represents the given function in a 

specified way. The approximation function can be expressed as a 

generalized polynomial, 
n 

Pn = L C· <':f. 
L•1 L L 

(A-1 ) 

where c e C are the complex coefficients of the polynomial and 

T = :f. ' ~ • • • • • :fn (A-2) 

is the set of the prescribed functions. The individual functions o/imay 

have certain properties depending on the desired approximation. They 

may be functions of one or n variables. GM is a real vector space 

comprising the set of all possible functions, with pointwise addition 

and scalar multiplications, defined on the same set Mas F. Provided 

that the functions ~t are linearly independent in GM, f is said to be 

the base or the set of base functions. 

For a given f• we must find a set of coefficients {ci}' so that Pn will 

have the smallest distance from the given function F. The space that 

the distance will be measured in, is the complex vector space GM known 

as functional space. 
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Any function 

f (G, H) 

that maps a two-tuple of function G ,H from the functional space GM, 

into the set of real numbers, is called a metric and can be used to 

measure the distance, providing it satisfies the axioms for a metric: 

i) ~(G ,H) ~ 0 (non-negativeness) 

ii) ~ (G , H) ?(H ,G) (symmetry) (A-3) 

iii) ? ( G, ,H) =. }'(G ,E) + ?(E ,G) (triangle-rule) 

where G, H, E E. Gw 

A norm of a vector space V is a function IIGII : G - IIGII £ {v __,. R} that 

maps the elements of G of V to R and satisfies the axioms, 

i) II Gil ~ 0 

ii) II )-·Gil I .AI !I ell ).ER (A-4) 

iii) IIG + Hli ~ II Gil + IIHII G, H v 

A vector space v on which a norm is defined is said to be a normed 

space. The least squares norm is defined as: 

II G II ~ L w (X) G(X) 
+ 

E. R (A-5) 
X41'\ 

where the real non-negative function W on M is known as the weight 

function. 

The scalar product of two functions on the functional space G is 

defined as 

[ G, H) L W(X) G(X) H(X) (A-6) 
'){41'\ 

A functional space on which scalar products are defined is known as the 

Hilbert functional space. If for two functions G, H c GM, the scalar 

product is zero, they are orthogonal. Similar, if for a set of base 
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functions 4 €. Gl'fthe equations 

[~t~l =II o/ill 2 
· Ji) i,j 1,2, ••• ,n (A-7) 

(where 

Jij= < 
0 for i F j 

for i j 
••• Kronecker's delta) 

are valid, the set is known as an orthogonal set of base functions or a 

'base'. 

Furthermore, if the norms of all Cj 's are 

i,j, = 1,2, ••• ,n (A-8) 

then the system~ is said to be orthonormal. An orthogonal set can 

always be ortho-normalized, by dividing the individual base functions 

with their norms. Orthogonality and orthonormality depend on~, M and 

w. Therefore, we may have orthogonal or orthonormal systems on one M 

and not on another set M'. 

The necessary and sufficient condition for [ ~} to 

independent on GM (to present an orthogonal base) is 

Cf (X) 0 for all X E. M, 

be linearly 

(A-9) 

if and only if all the A's are equal to zero. In this case, the so 

called Gram's determinant: 

19', , 1', II g', , % I .. . 

[ r Cfz • ~II 9'2 .'f '1.1 .. . 
det 'f. ro] =det . 

L I J j : . 
( A-1 0) 

I <f" 'f,l I <f.., Cf2l 

is different from zero. For orthogonal sets of functions it is 
n 

TI II 'iJ ( A-11 ) 
i =I 
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and for orthonormal functions we have 
n 

g(~) TC 
i. ~· 

1 • (A-12) 

The polynomial Pn is the best approximating one in the least-squares 

sense, if its coefficients make the distance 

(A-13) 

J L W(X) (F(X) 
X<l:M 

- pn (X)) 
2 

the minimum. The minimization of the Euclidean distance ? yields the 

normal equations 
n 

[1~.~1 c 
l ~ 1 

Let 

N = [ ~·~l 
then g(p) = det(M) 

and the solution vector is 

,. 
c 

i= 1 , 2, ••• , n • 

-I 

(A-14) 

( A-15) 

(A-16) 

(A-17) 

The matrix N has an inverse N only if g(1) f o. In the case of an 

orthogonal base 4 , it follows 

N = diag ([% , 9}]) 
2 

diag(ll c:fi. II) (A-18) 

and the system of normal equations takes the form 
2 

IICJ,II c. = [F,'J!:] 
l L l 

i=1,2, ••• ,n (A-19) 

and the solution is 

; i=1,2, ••• ,n (A-20) 

In the orthonormal case, the solution degenerates to 

c. = ( F, g>.] 
l l 

; i=1,2, ••• ,n (A-21) 

2 

ll':fll= 1 • 
l 

since 

Any system of base functions f defined on GM can be transformed into 
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an orthogonal system of base functions on M with a certain metrization 

W using for instance the Gram-Schmidt orthogonalization process. 

This process is defined as follows: 

1) We chose p1 =~, , and then we define 
i.-t 

2) P· l Cf. + L dv· .. P· 
l j m I lJ J 

; i=1,2, ••• ,n (A-22) 

where 

cL .= _ lCf~, Pj] 
'l [Pi.' Pj ] 

We obtain an orthonormal system by dividing each element pl by its 

norm II Pi.ll. 

The system of normal equations (A-14) can be rewritten as follows: 

(A-23) 

where: 

A Vandermonde's 

matrix 

~ (Xm) , Cf1(X,,.) , • • • cf,(Xm) 

f [F(X 1 ) , F(X~) , ••• F(X,)r 

g coefficient vector 

w diag(W(Xi.)) i=1,2, ••• ,n 

Equation (A-23) can be interpreted as the system of normal equations of 

a parametric least-squares adjustment. This shows the equivalence of 

the formulations of approximation and parametric adjustment. 

In the case of a unit weight matrix ~ = 1, the transformation of (A-23) 

into an orthonormal solution space by the Gram-Schmidt process (A-22) 
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can be expressed by the following relations: 

N (A-24) 

where: matrix with orthonormal column vectors 

g0 " ••• uniquely defined upper triangular matrix 

from which follow the normal equations in orthonormal solution space: 

-1 T T -I -I T T 

" (gON) (gow ) !!ow gON R ~ON - A f --ow (A-25) 

with the solution: 

A 
-I .,. 

T 

~ON (gON) A f (A-26) 

If the 'observed' values fare not statistically independent, W has 

non-zero off-diagonal elements. In order to orthogonalize the normal 

T 

equations ~ = ! ~! in this more general case, N can be transformed into 

the quadratic form 

N (A-27) 

by the process of Cholesky Decomposition of the symmetric and positive 

definite matrix ~ (with dim(~) u) which is defined as follows 

(Schwarz, et al. 1972): 

i,k p+1,p+2, ••• ,u 

(p-1) 
n~k rp.: rpl< p=1,2, ••• ,u-1 (A-28) 

where: rii 
,r;;;tc-1) 

Ll 
n ci.-11 .:k k>1 rik r·· LL 

With ri.l< = 0 for k i, the coefficients ri.k uniquely define the upper 

triangular matrix: 

i,k=1,2, ••• ,u. (A-29) 
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T 
It is interesting to note that the Cholesky decomposition~= ~CK~ is 

mathematically equivalent to the Gram-Schmidt ortho-normalization of 

the row vectors of! in (A-24). This will become clear by comparing 

the two unique processes: 

Cholesky Decomposition: Gram-Schmidt Ortho-normalization: 
T 

N N A A 

from which follows: 

!!.oN = R 
-CH 

R (A-30) 

The transformation (A-25) into orthonormal solution space is therefore 

found from the Cholesky Decomposition (A-28 , A-29). 
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APPENDIX III 

PROGRAM PACKAGE 'CRUSTRAIN' 

1) General Concept 

'CRUSTRAIN' (=CRUstal STRAIN Analysis) is a software package for the 

multi-epoch case of the crustal deformation analysis from repeated 

surveys of horizontal geodetic networks. The software is designed for 

the analysis of most horizontal kinematic networks. Repeated classical 

triangulations, pure trilaterations, and all kinds of combined 

kinematic networks with varying network design can be analyzed. 

The analysis procedure is divided into three steps: 

- Separate network adjustments 

- Complex strain approximation 

- Graphical representation of the strain tensor field 

The package consists of four main programs, which are based on the 

theory and mathematical models presented in the first part of this 

thesis. All programs are written in FORTRAN IV, whereby structured 

programming techniques are applied. Program CRUSTRAIN and program 

STRAINPLOT contain interactive program blocks, which enable the user to 

select the options and parameters of the computation by means of a 

dialog at the computer terminal. Program CRUSTRAIN provides the 

results of the analysis in numerical form. 
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Two plot programs containing standard CALCOMP plotting routines have 

been written for the graphical representation of the resulting 

strain-tensor field. The plot software provides the possibility of 

choosing from a large variety of graphical representations of the 

strainfield. 

The basic concept of the software package and the data flow of the 

analysis procedure is presented in Fig. A.1 • The following chapters 

of this section provide short program descriptions of the four main 

programs. A more comprehensive description can be found in the user's 

short descriptions provided with the programs. 

2) Program GEOPAN-C 

GEOPAN is a computer program for the network adjustment in the mapping 

plane by the variation of coordinates. GEOPAN-C is an adapted three 

dimensional version for the crustal strain analysis. The observation 

equations, the weight matrix, as well as the normal equations are 

stored on a permanent file. This data will subsequently be read by the 

program CRUSTRAIN. 

The original program GEOPAN was developed by R.R. Steeves at the 

University of New Brunswick (Steeves,1978). 
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Program: GEOPAN-C Copyright: none 
Author: R.R. Steeves, 1978 Modification: D. Schneider, 1981 

Options: 
- adjustment I pre-analaysis 
- 2-dim. I 3-dim. adjustment 
- fixed or weighted stations 
- map projection: Transverse Mercator I UTM 
- statistical tests on the variance factor and on the residuals 
- output of various intermediate results 

Limitations: 
- number of stations = 30 
- number of observations = 1000 

Library subroutines: none 

Estimated program size: 
- program: 135 kbyte 
- data: 555 kbyte 

Table A.1 

Specifications of Program GEOPAN-C 

3) Program CRUSTRAIN 

This program performs a least-squares approximation of the relative 

displacement field in space and time. 

A) Approximation: 

The user interactively selects the type and degree of the generalized 

approximation polynomial in space and time. The normal equations of 

the three-dimensional coordinate adjustment of each epoch are read from 

a permanent file. The least squares approximation of the relative 
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displacement field is simultaneously performed with the solution of the 

network normal equations. The three-dimensional coordinate unknowns 

with respect to an arbitrarily selected reference time are eliminated 

from the system of normal equations. Only the normal equations of the 

approximation coefficients remain. These are subsequently or tho-

normalized and solved by the method of Cholesky Decomposition. A 

statistical filtering procedure selects those ortho-normal coefficients 

which differ significantly from zero. All remaining coefficients are 

set to zero. The ortho-normal vector of coefficients is transformed 

back into the original parameter vector space. 

The coordinates at each time of observation are predicted by using the 

derived coefficients. The observation equations of the network 

adjustments of each epoch are read and the residuals of the original 

geodetic observations are computed. 

B) Prediction: 

The analytical description of the relative displacement field in space 

and time enables us to predict relative displacements and the strain 

tensor at any point and at any instant of time. The user choses among 

various prediction options. Prediction in space is possible at all 

network stations, at grid points, or at individually chosen locations. 

In the time domain, regular time intervals or individual instants can 

be prescribed. Either relative displacement rates and accumulated 

strain with respect to a reference time or relative velocities and 

strain rates can be predicted by the program CRUSTRAIN. The predicted 
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strain quantities with their covariance matrices are stored on a 

permanent file to be subsequently graphically displayed. 

C) Pre-analysis: 

The standard deviations of all predicted quantities are computed by the 

program CRUSTRAIN. A pre-analysis of the strain approximation can be 

performed if the design and the approximation model of a kinematic 

network project are known. Only the standard deviations of all strain 

quantities are predicted in this way. The pre-analysis mode is useful 

for optimal design studies of kinematic networks. 

Program: CRUS TRAIN Copyright: none 
Author: D. Schneider, 1981 

Options: 
- adjustment I pre-analysis I prediction 
- estimate strain I relative rigid block translations 
- estimate nuisance parameters for network scale I rotation 
- predict strain at grid points 
- predict relative displacements at block boundaries 
- predict variance of estimated strain quantities 

Limitations: 
- number of stations = 30 
- number of observation epochs = 50 
- number of crustal blocks = 5 
- degree of generalized complex polynomial in space = 2 X 12 
- degree of generalized time polynomial = 10 

Estimated Program Size: 
- program: 64 kbyte 
- data: 3015 kbyte 

Table A.2 

Specifications of Program CRUSTRAIN 



218 APPENDIX 

4) Program STRAINPLOT 

The plot program offers various options of graphically displaying the 

strain field. The user interactively choses among the following strain 

figures: 

- principal strains axes of maximum shear 

- strain ellipses - strain pedal curves 

- dilation circles - rotation sectors 

- shear rosettes 

Additional plotting of confidence regions of selected strain quantities 

can be chosen. 

STRAINPLOT was originally developed by K. Thapa at the University of 

New Brunswick. 
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Program: STRAINPLOT Copyright: none 
Author: K. Thapa Modification: D. Schneider, 1981 

Options: 
- plot relative displacement vectors 
- plot dilation circles 
- plot average differential rotation sectors 
- plot principal axes of strain 
- plot axes of maximum shear 
- plot strain ellipses 
- plot strain pedal curves 
- plot shear rosettes 
- plot generalized fault lines 
- plot relative block translation 
- plot confidence regions 

Limitations: 
- number of points = 500 

Library Subroutines: 
- CALCOMP plotlib 

Estimated Program Size: 
- program and data: 49 kbyte 

Table A.3 

Specifications of Program STRAINPLOT 

5) Program !SOLIN 

The most appropriate way to display scalar strain quantities, for 

example, total shear, dilation, or average differential rotations, is 

to plot iso-lines. Given a discrete scalar function of two variables, 

!SOLIN interpolates a smooth surface and displays it by lines of equal 

functional values (iso-lines). 

!SOLIN was developed by E. Klingele at the Institute of Geophysics of 

ETH Zurich. 
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Program: I SOLIN Copyright: Inst. fUr Geophysik ETHZ 
Author: E. Klingele Modification: D. Schneider, 1981 

Library Subroutines: 
- CALCOMP plotlib 

Estimated Program Size: 
- Program: 35 kbyte 
- Data: 85 kbyte 

Table A.4 

Specifications of Program ISOLIN 
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APPENDIX IV 

A PROOF FOR THE DERIVATION OF THE NORMAL EQUATIONS 

USING GENERALIZED MATRIX INVERSION TECHNIQUES 

Any generalized inverse A of a matrix ! is defined by 

A A A = A (A-31) 

A particular choice among the generalized inverses is the transnormal 

inverse (Bjerhammar, 1973) 

!:1 = (~T !)- !T • (A-32) 

Given the equation 

A X 1 (A-33) 

the solution 

"' X (A-34) 

,. 
minimizes (! ! - J) (f: ! !) . 

(For a proof see Bjerhammar, 1973.) 

On the right-hand side of the normal equations in hypermatrix form 

(7.22) we encountered the product 

-
N N A 1 (A-35) 

(Note: The diagonal matrix C involved in equation (7.22) is here 

assumed to be the unit matrix.) 

From (A-32) it follows 

-
N N u (A-36) 

where A0 = AA is a singular unit matrix for which the following 
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relations are valid (Bjerhammar, 1973): 

Ao (Ao f (symmetry) ( A-37) 

A0 A A 

This yields 

"T T 

(A-38) N N u ~ (~0) ! - - -

(!/ ~/ l 

T 
A l 

which means that N N can be replaced by the unit matrix. 
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