A DIGITAL DATA RECORDER
AND TRANSFER DEVICE FOR
THE MARCONI 722B
SATELLITE NAVIGATION
RECEIVER

MARK STEVEN LORD

April 1982

PREFACE

In order to make our extensive series of technical reports more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.

A DIGITAL DATA RECORDER AND TRANSFER DEVICE

FOR THE MARCONI 722B SATELLITE NAVIGATION

by

Mark Steven Lord

for
CS 44993

Fourth Year Undergraduate Project

School of Computer Science

Fredericton, New Brunswick, 1982

Mark Steven Lord, 1982

Reprinted July 1985

RECEIVER

ABSTRACT

Pr. David Wells of the Department of Surveying Engineering
uses a MARCONT 722B Satellite Navigation Receiver in his
research. At present, data output from this device 1is
racorded using a paper tape punch, The paper tape produced
from the punch is then fed into the IBM 3032 at the U.N.B.
Computing Center for calculations and analysis. ©Needless to
say, this method has proved to be somewhat awkward and cun-
bhersonme.

The aim of this project is to provide a conrvenient alter-
native to the current system, using a micro-computer to col-
lect data directly from the satellite receiver, and then
transfer this data to the IBM 3032 through the VSPC online

terminal systen.

- ii -

ACKNOWLEDGEMENTS

I would like to extend a special "Thank-You" to each of the
following people, without whose patient ansvers to my many
questions, this project would have taken even longer to comn-
plete:
Dr, B. J. Kurz, Computar Science
Dr. David Wells, Surveying Engineering

Murray Linton, Psychology Technician

- iii -

CONTENTS

aBSTRACT . . . ° » . . [. - . - . . . - . .

ACKNOWLEDGEMENTS . ¢ & o s s o o o o 5 o o =

Chapter
1. INTRODUCTION v v ¢ o = o s o o o o s o

The Transit Satellite System .
Transit At U.NeB.e o o o o o o »
Data Format and Tramnsfer
An Alternative to Paper Tape .

¢ o o o

2. SYSTEM PERFORMANCE SPECIFICATIONS . . .

System Hardware Specifications . . .
HardWare Requirements &
The MiCLOPrOCRSSOr =+« o o o o =
Interfacing Capability . . . &
Auxiliary sStorage . « « o« o+ o »
Operating SYStem .« o « o o o o
Future Expansion . . . o
Reliability and Service
System Candidates
The Commodore CBM 403 .
The Apple II Plus ¢« ¢ ¢ o « »
The TRS-80 Model III
System Softwarz Specifications . .
Required Capabilities . « « o »
Data Acquisition and Formattin
Error Detection and Recovery
Data StOorage « « « o s o = o
Operator Review of Data . ., .
Transfer of Data to IBM 3032 .

.
L]
.

L T T Vo BN SR]

L] . ¢ o

¢ o ¢ o v e

.
L3
.
»

Optional Capabilities and/or Provision

Future FXpansSion « « « = o« »
Use of a Real Time Clock . . &
Computer Feedback to Receiver .
Data Compression . . « + « » &
Operator Editing of Pass Files
Computing Receiver Positions .

- jiv -

[] o o

¢ o o ®

~

OOV N NI

3.

4.

5.

The RECEIVER PLOgram « o o o o o o o o

The TALK Progral .« « « « o o

Other Programs . « « + o

SYSTER HABRDWARE DESCRIPTION . . . « o« o o o o o &

The Winning Candidate: Apple II Plus
Physical ConnectionS « « o o o o o o s o o s

Adapter for HP-1000 Connector on Receiver
Cable =« o o o o o s s o s o s o s o &
R5-232 Connector for Modem
Cable Clamp for Diskette Drive Rlbbon Cableq
Modification To PIA Ribbon Cable
Chip Replacemant On Disk Controller
The MRed" Switch on the Language Card . . .
Null Modem for Connecting a Printer
Parallel Echo-Back Connector « « « =« + ¢ »
Computer Feedback to Receiver . . « o« » « &
Batteries For Calendar/Clock Module

SYSTEM SOFTWARE DESCRIPTION « ¢ &+ o o o &

Running the RECEIVER Program « « « « =
RECEIVER Program Logic Explanations

Message Synchronization . « « o o s & « &
End of Pass and Timing Words .+ « « o« & o«
The Screen DisSPlay + « o o o o o » » » o
SATLITE Assembly Language Procedures
INITPIA . * » * - . - - - > * » L d Ld » » \d
IRQHANDL - 3 - Ll - L] - L] . L d L] L] . . L] °

GETWORD L] - * » * * L] L] » L] L] - . - . o L]
REBFTIRQ ® - L] L] L] - > * - - - ® -
Files TNsed by the RECEIVER Program « « « «
The Screen Flle o o o o o 2 » o o » o o
The Parameter File . . .
Format of Pass Files .

[- - » . . .

- » L] . . - .

Dumb Terminal Mode . .
The Escape Key . .
The Left Arrow . . .
The Right Arrow . . .
Hitting Control *C" .

Passfile Transfer Mode .

Text File Transfer Mode .

i

]

. L] . []
e o ® o+
. .
L 2)
. .
. .
. .
. .
¢ ¥

* o o+
® & 9 o 0 o
*« o » 5 v
.
e o & v s o @
.
® ® ® » € @
.
s s 6 » e
®» ® » o s e o

The PEEKPOKE Intrinsic Unit
The READTIME Procedir® + + » «
The STARTUP Program .+ s« « o o o o =
The SETTIME Program .« o o s o o o o

.
L]
.
.
]
.
[}

L L] . .
L]
L]
]

COHCLUSIONS . L] . » . . L] . L3 - * . . » . . » [-

. L] . . .

21
23
24
24
24
25
26
26
26
27

28

28
28
31
31
32
32
36
37
37
38
39
4o
40
40
43
45
45
45
46
4h
4s
47
u7
47
48
u8
49
50

51

Appendix
I. OPERATING INSTROCTIONS ¢« « « =« o o o o o o =

Hardware Connections . . . o e o s =
Connection to the Satelllte Recelver .

Connection of an Acoustic Coupler or Mode

Connection to Other RS-232 Devices ., .
General Considerations . . « « »

System Diskattes o o ¢ o o o s o o o &
The SYSRUN Diskette ¢« o o o o s & o

The SYSTXT Diskette ¢« o+ o o o o o« »

The SYSLIB Diskette . + o o o o o o

The SYSBKP Diskette . o o o o ¢ o«
Booting The SyYStem « o o o o o = o » »
Special PASCAL System Keys o « o o o
Using the RECEIVER Program . « o« s o o =
Functions of RECEIVER .+ o o o « o & &

Running the RECEIVER Progral « « « » =«
Files Required at Initialization .
Files Reguired After Initialization
Creation of Pass Files .+ « o o« o« &

Operator Control of RECEIVER
The QY Command « o« o o o = o = o
The "S" Command s ® ® o ® ®» e » -)
The "X" Command « « ¢ o o o o = o =
The "U" Command . « =

Using the TALK Program .

Functions of TALK . .

Running the TALK Program « s s s e &
Files Required at Initialization .
Files Required After Initialization

Main Menu Options . « « o o o
Dumb Terminal Mode .+ . « ¢« « + o« »

.
3 3 . -] » - .
.

Pass File Transfer Mode .
Text File Transfer Mode .
Quitting the TALK Program . « » «
II. PROGRAM LISTINGS . &« ¢ o o o o o o s o s = =

RECEIVER Program Listing

SATLITE Routines Listing . . « . « « .+ &
TALK Program Listing . « o o s o o o » o
STARTUP Program Listing . « o« o o« o o & »
PEEKPOKE Unit Listing . +« « o o o o o o &
READTIME Routine Listing . o« « o+ o o o

BIBLIOGRAPHY . - . . - - . . - . - E] L] . - . . .

L3

(] L] . * 9

. . L] L] .

e o © o
4 (%)
o]

.
(%)
O

. 66

67
79
84
94
96
. QR

o o o o

100

LIST OF FIGURES

Figure

1. Composition of A Data Line From Nine Input Words .
2, Non-data Sequence Codes and Interpretations . . .
3. Data Storage Requirements .+ « o o s o s s » o » »
4, List of Major Purchases .« o« s s o » s 2 s s a2 o »
5. Pin Connections on HP-1000 Connector . « « « o s« &
6. Connections from Receiver Cable to Apple Computer
7. Operator Escape Commands For The RECEIVER Program
8. Special Input WOLdS & 2 o o o o o o o s o o = o @
9. Significance of STATUS DisSPlay « o = = » o o = o o
10. Contents of The BCV.SCREEN File . o o o o o o o =
11. Construction of Pass File Names .+ o s o « o « s
12. Pass File Produced by RECEIVER Program . « » » « »

- vii -

o
1

[lo]
[¢]

=

20

22

23

30

34

35

41

44

Chapter 1

INTRODUCTION

1.1 THE TRANSIT SATELLITE SYSTERN

TRANSIT is the name of a system of navigation satellites
originally developed for use by the United States Navy to
help guide their POLARIS submarines. Released for non-
military use in 1967, the system is now widely used through-
out the world, for many applications where accurate position
detarmination is necessary. Each of the seven satellites
currently in use maintains a circular polar orbit about the
Earth. At about 1075 kilometers up, each satellite con-
pletes an orbit every 107 minutes. These satellites are
constantly transmitting 150 Mhz and 400 Mhz signals as well
as timing marks, and a navigation message. This navigation
message contains information about the satellite'!s predicted
orbit, known as orbital parameters, which are updated every
twelve hours by a ground station in California.

Whenever a satellite rises above the horizon, a receiver
station has the opportunity to obtain a position fix based
on data collected during the satellite®s "pass". By measur-
ing the doppler frequency shift caused by the satellite's
motion as a function of time, complex forumlae can then be

used to compute the position of the receiver relative to

2
the satellite. Since each satellite follows a known orbit,
one can compute the position of the receiver relative to the
Poles, giving latitude and 1longitude measurements, The
accuracy of these measurements is dependent on how many

passes are observed.

1.2 TRARSIT AT U.N.B.

Here at U.N.B. we have a MARCONI receiver which is used by
the Department of Surveying Fngineering for obtaining accu-
rate position fixes when doing surveying. This receiver
measures the doppler shift on each of the two carrier fre-
quencies, decodes the satellite message, and also receives
the two-minute timing marks. All of this data 1is passed
through an interface section to a paper tape punch, which 1is
used as the primary means of recording data. Optionally, a
teletype can be connected to the receiver, allowing human-
readable output. The receiver also has a computer interface
section, originally designed for an HP-1000 mini-computer.
It is with this interface that the remainder of this report

is concerned,

1.3 DATA FORMAT AND TRANSFER
The output from the computer interface consists of an eigh-
teen wire cable with sixteen data wires, a control wire, and

a ground connection, Data is transmitted in parallel as

16-bit words, where a low voltage indicates a binary one,

3
and a high voltage indicates a zero. A high to low voltage
transient on the control wire indicates that data is ready
to be transfered. The data is unbuffered, and no handshak-
ing operations with the receiver are possible,

Data words are generated by the interface approximately
every half-second whenever a satellite is being monitored.
Each 16-bit word is logically divided into four H4-bit parts.
The most significant #4-bits represent a sequence code used
for synchronization purposes. The three remaining groups of
4-bits represent data digits in Binary Coded Decimal format.
Groups of nine data words make up a "linmne" of data, and a
sequence of twenty-five lines forms a "paragraph". A com-
plete paragraph 1is sent over a period of exactly two
minutes, and up to nine such paragraphs are transmitted for
each satellite pass.

Although nine data words make up a line, not all of the
BCD digits are used to communicate meaningful data. Figure
1 shows the format of the nine words which make up a line of
data.,

All other sequence codes which are transmitted can be

interpreted as shown in Figure 2 ,

Sequence
Code Data In BCD Format Interpretation

0101 D DDD DDDD DDDD First 3 digits
of 400 Mhz count

6110 DDDD DDDD DDDD Next 3 digits
of 400 Mhz count

01 11 X XXX XXXX DDDD Last digit
of 400 Mhz count

*—t———‘——-—‘—ﬂ.‘.mﬂd

wat
(=]
(=]
-
L)
o
[~}
o
L)
]
=)
o
)
o
)
[w)

First 3 digits
of 150 Mhz count

17010 DDDD DDDD DDDD Next 3 digits
of 150 Mhz count

10 11 X XXX XXXX DDDD Last digit
of 150 Mhz count

11701 DDDD DDDD DDDD First 3 digits
of satellite msg

1110 DDDD DDDD DDDD Next 3 digits
of satellite msg

1171717 DDDD DDDD DDDD Last 3 digits
of satellite msg

Note that *'X'" is used to indicate bits whose values ar=s
not used, and *'D' is used to indicate those bits which
represent valid data.

|
|

b o e s o e G e e s s o S - s e it st ot oot bt WS et s s i ooadn it ot Wl s s ooas s bttt s s U aits, s e 0

Figure 1: Composition of A Data Line From Nine Input
Words

p._—-._-—-..qp——_.___—-T—.—_—-—-.—-—__—ﬁ-—-—-“-—-_.——-—

not used.

Figure 2:

Non-data Sequence Codes and Interpretations

)

|

| Sequence

i Code Data In BCD Format Interpretation

1

]

|

| 0000 0000 0000 0000 Receiver 2 minute
{ timing word

|

1 0000 XX XX XXXX XX X X Test mode 2 minute
i timing word

1

i 0 001 XX XX XXX X XX X X 1Invalid code

]

|

1 0 010 XX XX X XXX X XXX 1Invalid code

|

|

| 0011 XXXX XXX X X X XX Invalid code

1

|

| 0100 XX XX X XXX XX X X Invalid code

1

|

] 1000 XX XX X XXX XX X X sSatellite 2 minute
| timing word

|

] 1100 XX XX XXX X XX XX End of pass

! ~
+ -
l

| Note that *X' is used to indicate bits whose values are
[

|

1

1

|

|

1

|

E

b i s oot i D s cots st e o) ot ot s — — —— o —— bkt Ul s sy i o ot s it bk Satett wonns e it D s sttt s 0

1.4 AN ALTERNATIVE TO PAPER TAPE
Having once worked at the Bedford Institute in Halifax,
where an HP-1000 minicomputer performs the data recording
and analysis, Dr. Wells would like to see a computerized
alternative available at U,N.B., as well. Thus, it came to
pass that the task was offered as a possible undergraduate

project for a fourth year computer science student to work

Oon.

Chapter 2

SYSTEM PERFORMANCE SPECIFICATIONS

s iml R mm——

2.1.1 Hardvare Requirements

— s s . o

The following hardware constraints were discussed with
Dr. Kurz and Dr. Wells, and using these, three system candi-
dates were examined, and a decision was made as to which
system would prove most effective, with regard to both cost

and performance,.

2.1. 1.1 The Microprocessor

The microprocessor itself should be sufficiently capable of
handling all of the various I/0 devices discussed below,
The instruction execution rate must be fast enough to keep
up with incoming data so that data words are not lost in the
middle of a pass. An ASCII keyboard and good quality video
monitor are also necessities, Graphical capabilities, alt-
hough not needed for this task, would also be of benefit, as

would a real time clock.

2.71.1.2 Interfacing Capability
The chosen system must be capable of being physically inter-

faced to the satellite receiver, as well as to the standard

8
keyboard, monitor, and diskette drives. An RS-232 compati-
ble port must also be included, for communication with VSPC

and possibly other computer installatioms.

2.1.1.3 Auxiliary Storage

The system should be capable of storing, without operator
intervention, at least a single day's data, and prefesrably
twice that amount, At the North Pole, such a system would
observe about fifty passes each day. Here at U.N.B., oOn=
might observe only about twenty. Based on the North Pole
maximam, the amount of storage required for data would be

approximately 230,000 bytes for each day of observations,

One data line consists of 23 digits

One paragraph consists of 25 lines

A single pass consists of 8 paragraphs
A day of data consists of 50 passes

Total data per day = 50 * 8 * 25 % 23 = 230,000 digits.

If data is stored as ASCII characters, then the total
storage required, less overhead and program storage,
would be about 460,000 bytes for two days of data,.
However, with overhead, this figure will probably come
closer to 500,000 bytes of data storage alone, still
not taking into account program storage requirements,

Figure 3: Data Storage Requirements

[o s St U i e e s el S s et M i et Wy
b e s e e i s — — - — o — — — — — — e o]

9
Data transfers to auxiliary storage must be done fast enough
so that pass data is not lost. In order to allow for easy
access to this data, some type of random access storage dev-
ice should be used, either a small hard disk, or a multiple
drive floppy disk system, either of which could harndle the

above amounts of data.

2.1.1.4 Operating System

The chosen manufacturer nmust also be able to provide a flex-
ible operating system or monitor, capable of recognizing and
commpunicating with the various devices listed above. It
must also support a high 1level programming language, and
should provide interfacing capability to machine 1language
programs written to handle interrupts from the satellite
receiver. A completely interrupt driven I/0 structure would
also be desirable, to help prevent loss of incoming receiver
data during disk transfers. Software support of fast disk
transfers is also desirable, More on software specifica-

tions later.

2.1. 1.5 Future Expansion

The system should also be capable of being applied to other
tasks in the future, such as controlling other devices when
not being used for satellite data acguisition., Capacity for
connecting other peripherals such as a printer and plotter

shounld also be considered.

10
2.1.1.6 Reliability and Service
The unit chosen should have a good reliability reputation.
Servicing, if ever needed, should be locally available, as
opposed to a central depot in Toronto, for exanmple, The
possiblity of a dealer's service contract should also be

examined,

2.1.2 System Candidates

Using the above hardware specification, three popular, com-
mercially available microprocessors were examined, and from
these, the final system was chosen. The only cost const-
raint was that the final system should cost no more than

about seven or eight thousand dollars, since funding wvas

being provided by a sum of grant money inmn that range.

2.1.2.1 The Commodore CBM 4032

The first candidate is the CBM 4032 from Commodore Busingess
Machines. It uses a 6502 microprocessor as its brain, and
supports up to 32K of user RAM. All I/O is interrupt-
driven, and external devices may connect either to the
IEEE-488 bus, or directly to the CBM's internal bus. The
main processor unit also houses an ASCII keyboard, a small
forty-column video display, and a real time clock. The
operating system, resident in ROM, includes an assembly lan-
guage monitor, and a customized version of Dartmouth BASIC

as its primary high level language.

11

The CBM 8050 Floppy Disk Subsystem, which connects to the
IEEE-488 bus, has twin double-sided, double-density five
inch drives, as well as its own internal CPU and memory to
lighten the load on the main computer., With a total storage
capacity of over one megabyte per two drives, this systen
definitely has the best storage capabilities out of all of
the systens examined.

An interface for receiving data from the satellite
receiver would have to be designed and built at U.N.B.. A
serial communications interface, complete with driving soft-
ware, 1s available directly from Commodore. Such a systen
could be puchased and serviced locally, through a 1local
business in downtown Fredericton, for aproximately $4600 for

the computer, diskette drives, and serial interface.

2.1.2.2 The Apple II Plus

The second candidate considered was the Apple II Plus, from
Apple Computer Inc.. This also uses a 6502 processor, and
comes with a built in keyboard. A CRT monitor must be pur-
chased separately, with several black & white or color moni-
tors from which to choose. The Apple?s internal hardware
generates a forty column color display, with no lowercase
capability. The Apple provides hardware and software sup-
port for on-screen color graphics, in either HI-RES or

LO-RES modes, with np to sixteen different colors. All 1/0

12
on the Apple is done without using interrupts, although use
of interrupts 1is allowed for controlling non-standard I/O
under control of user written progranms.

The Apple may be purchased with up to 48K of user RAM,
12K of which is taken up by the DOS 3.3 monitor. Applesoft
floating point basic comes in ROM, and other languages are
available with the addition of a 16K bank-selected Language
Card. The best of these languages is Apple PASCAL, a modi-
fied version of the UCSD PASCAL language and operating sys-
ten, With PASCAL, a powerful editor/assembler/compiler
combination can be used, and a full 48K of RAM is available
for user progranms. The Apple has numerous I/0 facilities,
including a versitile set of game I/O controls, a built-in
speaker, outputs for an external speaker, a cassette inter-
face, and eight slots for direct connection to the Apple'’s
internal bus structure. Unfortunately, once these eight
slots get full, they cannot be easily expanded. Several
interface cards are available for the Apple, including ser-
ial communications interfaces, parallel I/0 interfaces, and
real time clocks.

The Apple DISK-II floppy diskette drives are capable of
storing about 140K bytes of data per diskette, but must also
hold the disk operating system in this space. For every two
drives used, the Apple must have a floppy disk controller

card plugged into one of the eight slots inside the machine.

13

There now exists a local Apple dealer, and a User's Group
which meets regularly, both on and off campus. A complete
system, consisting of the computer, a nine inch black and
white video monitor, a serial RS-232 interface card, a par-
allel interface card, a real time calendar/clock card, four
diskette drives, and two floppy disk controller cards would
cost about $5500 and would, at least in part, have to be

ordered from catalogs.

2.1.2.3 The TRS-80 Model III

The final "candidate", the TRS-80 Model III, uses a more
powerful Z-80 microprocessor, but also uses 1low capacity
diskette drives similar to those for the Apple. This systen
was not given serious consideration because of the lack of
technical information available (none) on the internal hard-
ware configuration. Such information would be necessary to

perform interfacing to the satellite receiver,

2.2 SYSTEM SOFTWARE SPECIFICATIONS

This section describes the software requirements of the pro-

posed system.

2,2.1 Required Capabilities

The following capabilities were deemed to be necessary func-
tions of the final software, and are the minimum require-

ments for a successful systen.

14
2.2.1.1 Data Acquisition and Pormatting
First and foremost, the software must acquire the data out-
put from the satellite receiver and unpack the 16-bit words
into ASCII digits. These digits must be logically grouped
into lines and paragraphs, with one or more paragraphs per
pass. The various two minute timing words must also be
properly handled, although they should not be stored. The
end of a pass will be signalled by either an end of pass
control word, or by a receiver two minute mark in the

absence of the former.

2.2.1.2 Error Detection and Recovery
There are three major types of errors which can occur in the
input data, and each requires different actions to recover.

Data vord sequence errors can be detected simply by
checking the sequence code (the most significant four bits)
of each input word of each line, If a word arrives out of
sequence, then the entire paragraph should be rejected or
ignored by the software. Sequence errors could be caused by
noise, or by restarting the computer program midway through
a pass, or by the receiver unlocking from a given pass in
the middle of a paragraph, or by other exceptional circums-
tances.,

Due to electromagnetic noise and interference, parts of
satellite messages are often garbled and may show up as

invalid BCD <codes (larger than 1001), This is a common

15
occurence, and there is no requirement for this project to
include error correction facilities for this, since the
algorithms tend to be somewhat complex. The software
should, however, be prepared to accept this data without
complaint and to record it normally.

The first fourteen digits of each 1line consist of two
doppler counts provided by the satellite receiver, These
BCD digits should never be garbled as described above,
unless due to equipment faults, Should invalid codes for
these digits be encountered, the software should reject the
entire paragraph in which they occur, in the same manner as

described for sequence errors above,

2.2.1.3 Data Storage

The data should be stored on diskette, preferably between
passes so as not to lose incoming data from the receiver,
The storage format chosen should allow for easy access to

the data by other prograams.

2.2.1.4 Operator Review of Data

The operator of the receiver and computer equipment should
be able to view the data on the computer console, so as to
verify correct functioning of all hardware and software, and
so that error rates can be viewed and decisions made con-

cerning operation of the receiver.

16
2.2.1.5 Transfer of Data to IBM 3032
Software must be written to enable the data to be transfer-
red to the IBM-3032 at the U.N.B. Computing Center for later
analysis and processing.

The software must be capable of performing the logon
procedure to obtain access to VSPC, either under operator
supervision, or from logon commands entered by the operator
and transmitted directly to VSPC. In view of the constantly
changing 1logon procedures at U.N.B., perhaps the latter
might be most practical.

The program should, once signed on, be able to transfer
pass files to VSPC workspaces with minimal operator inter-
vention, since at 300 or 1200 baud this can be time consunm-
ing. The program should either recognize on 1its own, or
allow the operator to recover from, any exceptional situa-

tions which arise, such as unexpected responses from VSPC.

2.2.2 Optional Capabilities and/or Provision for Future

The following components may either, at the programmer's
discretion, be incorporated into this project, or at least

allowed for as future enhancements to the systen.

2.2.2.1 Use of a Real Time Clock
If the hardware includes a real time clock, then time stamps
could be tagged onto each paragraph and saved on diskette

with the pass data.

17
2.2.2.2 Computer Feedback to Receiver
With a special board installed in the receiver, it is possi-
ble for commands to be issued +to the receiver from the conm-
puter. One such command is of interest: requesting that
the receiver unlock from the current pass and resume scan-
ning the horizon for other approaching satellites. This
would be accomplished by sending a 4-bit (parallel) message
from the computer to the receiver. If the computer hardware

allows it, this option may be useful in the future,

22.2.3 Data Coapression

Either in real time, as is preferable, or later under opera-
tor supervision, data could be compressed from about 4600
digits per pass to about 1000 digits. This can be accom-
plished by performing majority voting procedures to correct
errors in the satellite message field of each line. Since
this information is repeated in each paragraph, much space
could be saved by elimination of redundant copies of this

information.

2.2.2.4 Operator Editing of Pass Piles

If possible, the programmer should provide a facility for
non real time operator review and editing of pass files on
diskettes. Depending on how the data is stored, either a
system provided editor, or a custom written program could

allow this to be done,

18
2.2.2.5 Computing Receiver Positions
As a final option, ©vprocedures could be coded to allow the
computer to calculate receiver positions from =ach pass,
preferably in real tinme, To do this would require that the
error processing described for data compression be done as

vell.

Chapter 3

SYSTEM HARDWARE DESCRIPTIOR

3.1 THE WINNING CANDIDATE: APPLE II PLUS

The hardware which was actuoally acquired is a system based
on the Apple II Plus. This computer was chosen because of
its versatile interfacing capabilities which make it capable
of a broad range of services, The problems with limited
diskette storage capacity have not yet been resolved, alt-
hough Dr. Wells is currently examining several alternatives
to the drives supplied by Apple Computer Inc.. Figure 4

below lists all of the hardware purchased to date for this

systen.

Bell & Howell Apple II Plus,
with Rear Power and Accessory Unit.
and 48K RAM installed at the factory.

Eastmoor Sales 16K Memory Expansion Board,
(Similar to Apple Language Card).

Apple Disk II Controller Card,
for two 16-sector drives.

Two Apple Disk II 16-Sector Floppy Diskette Drives.

Apple Dos 3.3 System Master Pack,
with reference manuals.

Apple UCSD PASCAL Language Systenm,
with reference manuals.

Package of 10 Unformatted Diskettes,
{novw in use with PASCAL).

Model 7424 Calendar/Clock Module,
from California Computer Systems.

Model 7720B Parallel Interface Card,
from California Computer Systens.

Apple 110/300 Baud Communications Interface Card,
with Telpong and Datamover software (not used),
and RS-232 connector cable

Electrohome 9" Black and White video Monitor,
with (wrong) connector cable.

RF-Modulator for using color television as monitor.

rﬂn—uﬁﬂ—-uﬂ-—__—-—g——u-_——“&—._—_“—__-‘_“u.————__—_‘.——-n‘..———-u-n—-ﬂ

Figure 4: List of Major Purchases

8]
D

U et o i oo il v, T . W U s s S u— o —— o G S oy e W s mamis W S s aniap > st ot s (ntuis ot sssnvs 54

21

3.2 PHYSICAL CONNECTIONS

The following section describes hardware items modified or
constructed by the author. Most of these are minor itens,

but all were necessary to complete the systemn.

3.2.1 Adapter for HP-1000 Connector on Receiver Cable

The most important item in this section is the construction
of the physical coupling between the Apple and the satellite
receiver., The cable from the receiver terminates in a
female edge card connector intended for direct connection to
an HP-1000 computer. To connect the Apple to this cable
required determining which signals from the receiver were
needed, and then wiring a connector cable to mate with the
edge card connector on one end, and the 25-pin communica-
tions jack supplied with the parallel interface card on the
other end. Examination of the connections on the edge card
connector revealed that the voltage levels and timing were
TTL compatible, using negative logic. Figure 5 shows the
active pins on the edge card connector.

Pin functions for the PIA jack on the back of the Apple
are detailed in the user's manual for that device., Figure 6
below shows the interconnection between these two connec-
tors, accomplished with an adapter cable constructed by the

author.

=== Cable to Receiver (=== Pin Numbers

24 23 22212019 &6 5 4 3 2 1

25 26 27 28 29 30 43 44 45 46 47 us

%]
\]

|
|
-

|
|
> e

Pin Assignments:

1 -> 16 = Data bits in sequence, 1=LS5B, 16=MSB
23 = Strobe from receiver, (data ready)
24 = Signal ground

Optional Pins:

45 -> u8

Computer feedback bits, 45=MSB, 48=LSB

22 = Computer strobe for feedback signals

P-—.—.-—-—qpn—-_-—n—-uﬂp——_-—“—.—ﬂh—-—_ﬂn_—l

Figure 5: Pin Connections on HP-1000 Connector

bt s ot e i - — o — — v D ot o ks it s St s 2ully oot et

[\
w

¥ A
| |
| PIA Pin Number Signal & HP-1000 Connector Pins |
] on DB-25 Jack Direction on Edge Card Connector |
| |
] Pin-16 (PB7) <--data-- Pin-16 (A15) !
i Pin-03 (PB6) <--data-- Pin-15 (A14) |
] Pin-17 (PB5) <--data-- Pin-14 (A13)]
] Pin-04 (PBY4) <--data-- Pin-13 (A12) I
] Pin-18 (PB3) <--data-- Pin-12 (A11) |
| Pin-05 (PB2) <--data-- Pin-11 (A10) |
| Pin-19 (PB1) <--data-- Pin-10 (A9) |
| Pin-06 (PBO) <--data-- Pin-09 (A8) |
] Pin-22 (PA7) <--data-- Pin-08 (A7) |
| Pin-09 (PA6) <--data-- Pin-07 (A#6) |
i Pin-23 (PADS) <{--data-- Pin-06 (A5)]
| Pin-10 (PAY4) <--data-- Pin-05 (A4) |
| Pin-24 (PA3) {--data-- Pin-04 (A3) |
| Pin-11 (PA2) <--data-- Pin-03 (A2) i
i Pin-25 (PA1) {--data-- Pin-02 (A1) {
| Pin-12 (PAQ) {--data-- Pin-01 (AD) {
] Pin-08 (CA1) <-strobe- Pin-23 (transfer)]
| Pin-07 (GND) <-ground- Pin-24 (signal ground) |
4

o |
| |
| |
| Figure 6: Connections from Receiver Cable to Apple |
| Computer |
! !

3.2.2 RS-232 Connector for Modea

Although the communications interface card came with an
"RS-232" cable for connecting the Apple to a modem (or other
device), this cable does not contain sufficient signal wires
to be compatible with many modems, so a modified connector
had to be placed on the modem end of the cable. This con-
nector has pin 4 (RTS) wired to pin 6 (DSR) +to provide the

missing signal.

24

3.2.3 Cable Clamp for Diskette Drive Ribbon Cables

The disk controller card came with a cable clamp fitting for
the back of the Apple, as did the communications interface
card. However, the parallel interface card did not come
with such a clasap. Therefore the two clamps on hand were
used for mounting the DB-25 connectors for the two interface
cards, and a special clamp was made for the diskette drive
cables. Since the calendar/clock module was not an official
Apple accessory, its dimensions were slightly too large to
allow the original cable clamp to fit snugly beside it, so
the new <clamp vas bent to allow the <calendar/clock module
more room,

3.2.4 Bodification To PIA Ribbon Cable

With the parallel interface card in slot 1 and the communi-
cations card in slot 2, there was not quite enough room for
the ribbon cable from the parallel interface to reach up
between the two, so the cable was removed from its connector
and re-inserted pointing upward. This modification does not

affect the pin assignments on the DB-25 connector.

3.2.5 Chip Replacement On Disk Controller

Since the 16K memory expansion board was not purchased fronm
Apple Computer, we also did not receive the new versions of
the disk controller ROM's, Since the controller card was

supposed to already have the new chips on it when we pur-

25
chased it, this should have made no difference, However,
for some reason, our controller card came with the new ver-
sion of one of these chips, and the o0l1d version of the
other., The only problem noticed while using the old chip
was that PASCAL would not boot properly using a single
drive. Murray Linton, who also uses an Apple, stated that
his diskette controllers had come with the proper chips, and
that he had an extra set which had arrived with his Apple
Language Card. Having no other use for them, Murray donated
his spare chips to this project and we now have a properly

upgraded controller card.

3.2.6 The "Red™ Switch om the Langmage Card

Our non-standard language card also came with another fea-
ture, a red svitch intended for use with an older version of
the Apple II. This switch normally would protrude from the
rear of the Apple through one of the cable slots.
Unfortunately, the connector for the communications card now
occupies that space, so the switch toggle had to be cut to a
much shorter length than before, so that it would not be in
the way. This switch should always be set in the "UP" posi-

tion to allow proper booting of PASCAL.,

26
3.2.7 Null Modem for Connecting a Printer
A short null modem cable was constructed to allow use of an
RS-232 compatible printer/terminal with the Apple, connected
through the communications interface. To use, simply plug
the male end of the cable into the DB-25 connector on the

back of the Apple, and then plug the printer (or other

RS-232 device) into the other end of the cable,

3.2.8 Parallel Echo-Back Connector

— .

On page 5-6 of the Owner's Manual for the parallel interface
card 1is described how to construct a Parallel Echo-Back
Connector for use in testing that device. As part of this
project, such a connector has been constructed and used for
testing purposes. To use, simply plug onto the DB-25 jack

on the back of the Apple.

3.2.9 Computer Feedback to Receive

Provisions have been made in the software to allow computer
feedback to the satellite receiver. If this feature is
desired, the physical connection is all that 1is currently
lacking. Five wires must be run from the game control out-
puts on the side of the Apple to the edge card connector on
the previously discussed adapter cable, The computer data
output is available on annunciators zero to three. The
strobe output, also on the game control pins, should be used

to strobe data to the receiver. For more information, look

27
in the small pamphlet entitled ™Owners and Operators Guide®
for the Bell & Howell Microcomputer Systenr.

3.2.10 Batteries For Calendar/Clock Nodule

The calendar/clock board 1is supposed to maintain time-
keeping even when the Apple is powered off. To do this
requires two smpall battery cells, type 675, which can be
purchased from most camera shops. Two such cells have
already been installed, and these should last for about a
year. Be careful to note the corrections made by the author
to the schematic for the calendar/clock module when insert-

ing the batteries,

Chapter 4

SYSTEM SOFTWARE DESCRIPTION

RECEIVER Program

The RECEIVER program performs all data acquisition and sto-
rage activities. To run the receiver program, simply select
the "X)ecute" option from the PASCAL system's main command
menu., PASCAL will then prompt for a file name, which in
this case 1is "SYSRUN:RCV,CODE", and the receiver program
will be executed. This same procedure applies to all user-
Wwritten PASCAL programs.

When the program begins execation, it first reads the
screen format from the file "#4:RCV.SCREEN.TEXT" and copies
it to the Apple screen, The wuser is then greeted with a
formatted activity display and a message informing him how
much free core 1is remaining for program expansion, #hile
the user is reading this message, the RECEIVER program is
busy reading its parameter file, "$#4:RCV.PARAM.TEXT", to
find out how to name pass files, so there was no need to
code a delay loop to allow the user time to read this mes-
sage. If either of these two files can not be opened on the
diskette in drive #4, the boot drive, a message is displayed
informing the user of this, and the program gracefully ter-
minates itself,

- 28 -

29

Next, the RECEIVER program continues with its initializa-
tion process, interrupts are enabled, and the program waits
for input from the satellite receiver. When a complete pass
has been <collected, the program disables interrupts,
attempts to save the pass file on diskette, overwrites the
parameter file with the updated value for the next pass num-
ber, and then re-enables interrupts and repeats the process
of waiting for data again.

This cycle continues until the operator intervenes, The
RECEIVER program itself supports four commands which may be
entered by pressing the escape key followed by the key cor-
responding to the desired command. These commands are
described in Figure 7, and are also detailed in the appendix
entitled "Operating Instructions".

The source code for RECEIVER can be found on either of

the "SYSTXT:"™ or "SYSBKP:" diskettes,

w
(e

Command Full-Name

Punction

Q

Quit -

Stay -

Unlock -

Kill -

Sets a flag in the RECEIVER progran
which causes the program to
terminate upon completion of the
current pass., The pass will be
saved as usual before the

program exits,

Negates the effect of a previously
issued "Quit command®., This
command was provided to allow the
operator to change his mind.

This command causes the RECEIVER
program to unlock itself fron
collection of data for the current
pass. Completed paragraphs for
this pass are saved as usual on
diskette, and the program then
waits for new pass data from the
receiver., If the computer feedback
board in the satellite receiver is
operational and connected to the
Apple computer, then a command will
be issued to the receiver requesting
that it unlock reception of the
current pass and resuming scanning
for other satellites.

This command terminates RECEIVER
immediately and returns control
to the PASCAL operating systen.
For a less forceful shutdown,

the operator should enter the
*Quit" command followed by the
"Unlock" command, which will
allow saving of the current pass.

o e et e S M o et — - ——— — t— o (s ot e N s U s o s oy Al btk b e, Wi d® s W et e

Figure 7:

Operator Escape Commands For The RECEIVER

Progranm

b ot it o e I o s e e — — —— —— —— — — " " — — — o S — — i S — . e S s oot S i o 2

31
4.1.2 RECEIVER Program Logic Explanations
The following subsections are intended to supplement the
comments present in the RECEIVER.TEXT source file. Due to
the size of that file, annotations within the program had to
be kept to a minimum to allow the program to be edited and

compiled as a single source file.

4.1.2.1 Message Synchronization

When the RECEIVER program begins waiting for a new pass, it
simply waits until it receives a data word from the satel-
lite receiver which has a sequence code of '0101', which is
the code for the start of a new line. It then begins col-
lecting data words to form lines, checking sequence codes as
it goes. Should a timing word be encountered, or a sequence
or data error occur, then the lines collected are discarded
and the program begins searching for the *'0101' code again.
If twenty-five 1lines are collected without any intervening
sequence errors, data errors, or timing words (see below),
then these are stored in memory as a complete paragraph.
The program repeats this collection process until either a
receiver two minute timing word is received, an end of pass
indicator word is received, or until it has collected eight
full paragraphs of data, In the case of the latter, the
"Unlock® command (previously discussed) 1is automatically
performed by the progranm, These data paragraphs are then

saved on diskette, and the whole process starts over again.

32
4.1.2.2 End of Pass and Timing Words

When a receiver two minute mark or an end of pass indicator

is encountered, the program simply exits the routine for
reading a pass, saves all completed paragraphs of data on
diskette, resets its paragraph count to zero, and begins

collecting paragraphs all over again. The routine which
reads paragraphs adds one to the paragraph count every time
it successfully collects tvwenty-five data lines without
interruptions.

Satellite and test two minute timing words simply cause
the program to exit the routine which reads paragraphs, thus
preventing the paragraph count from being incremented.
Therefore, the next invocation of that procedure will cause

it to begin a new paragraph in place of the incomplete one.

4.,1.2.3 The Screen Display
Most of the above logic can be viewed easily by watching the
display created by the program on the Apple monitor while
either a satellite pass is being received, or while TEST
mode of the satellite receiver is being used to simulate a
satellite pass,

The display is broken up into five active sections, plus
a section which simply displays program identification.

1. Program Nesting: This section can be found in the

lower left of the display. Each time a major proce-

dure or function call is made, the routine called

33
displays its name here in the next empty line on the
screen, When that roatine completes processing, it
erases its name from the screen prior to returning to
the calling procedure, whose name 1is shown on the
line above. This display is very useful for debug-
ging purposes (should future program modifications be
made), but has other uses as wvell. If the operator
is ever in doubt as to whether the computer has "hung
up" in an endless loop, or perhaps just died, he may
quickly reassure himself that it is simply waiting
for data by watching this display as he presses the
spacebar. A quick flicker of ®"SCANKB"™ should immedi-
ately flash as that routine 1is called to process the
operator's input, which in this case will be ignored.
Other uses would be to test the program®s response to
exceptional conditions in the data: simply watch the
program's activity upon receiving the data.

Input Words: This section is visible as a 1long
column down the righthand side of the display. As
data words are received from the receiver (via
GETWORD routine) they are displayed in this column in
the form of a rolling list. Special codes, such as
satellite two minute timing words are not displayed
"as is", Instead, the operator will see one of the
codes listed in Figure B8 displayed, one extra column

to the left to make it more noticeable, Note that

34
whenever an invalid sequence code is displayed, a
"beep" is sounded to alert the operator as the pro-

gram continues.

FPigure 8: Special Input Words

LI 1
| I
| Code Which |
| Is Displayed Interpretation 1
F]
T 1
l R2MIN Receiver two minute timing word |
l |
| S2MIN Satellite two minute timing word |
| |
1 T2MIN TEST mode two minute timing word |
| |
| ENDPS End of pass indicator |
F 4
| |
| |
| |
! |
L ¥ |

Input Lines: This section occupies the lower npiddle
portion of the screen, and 1is used for displaying
lines of input data as they are formatted by the pro-
gram. Lines are displayed as a rolling list, and the
entire area is «cleared at the beginning of each new
paragraph.

Program Status and Paragraph/Line Counts: This area
is located in the upper left corner of the display,
and is used for two purposes. The first is to show
what the program is currently doing. This is called
the "STATUS", and will always show one of the values

listed in Figqure 9 below.

5.

w
%]

Status Meaning

SETUP The program is busy setting up the
screen display and initializing
variables. This setting is visible
only for a brief second after the
program begins execution.

DISKIO Interrupts have been disabled while
the program 1is performing diskette
operations such as saving a pass file,
or reading or updating the parameter
file,

ACTIVE This is the "normal"™ mode of operation,
meaning that the program is busy
processing input data from the receiver.,

WAIT This status value indicates that the
program has processed all data in
the input queue and is currently
waiting for more input words from
the receiver. This is almost always
displayed when no satellite pass is
being monitored, except when two
minute timing marks are sent from
the receiver,

B e e o e GBI G o — — — - — — s - — o Tttt doo S i e st s S s i 0]

Figure 9: Significance of STATUS Display

(o —e G e M e S e S e o — — ol o e st O St s St s st YD i 2}

Also visible, wunderneath the STATUS, are running
counts showing which paragraph, and which line within
the paragraph, is currently being formatted by the
RECEIVER programn.

Hessage Area: The fifth active display area is the
message area, located in the middle of the screen.

There is room for three lines to be displayed is this

36
area, which is used to communicate messages to the
operator. When the program first begins execution, a
brief message is shown informing the user as to how
much free storage remains on the PASCAL system data
heap. Then this message is erased and replaced by a
list of available user commands. Whenever a new
paragraph is started, a timestamp, identical to that
written to the pass files, is placed on the third
line of this area, Also, the name of the last pass
file written to diskette is displayed on the top line
of this area. This message will not he displayed if
no pass files have been saved during the current exe-
cution of the program. When a file handling error
occurs, the program will either display an error mes-
sage in this area, or use the area to prompt the user
for a further course of action, Thus, this area is

very important to the operator.

4.1.3 SATLITE Asseably Language Procedures

A group of four assembly 1language routines handle all input
from the satellite receiver using a circular queue structure
as an input buffer, This queue can hold up to 256 16-bit
data words at once before overflow will occur. This allows
the PASCAL RECEIVER program to fall up to two minutes behind

in retrieving input data before problems occur. The main

reason for this particular queue size is to take advantage

37
of the automatic ®wrap-around" which occurs when an 8-bit
index register is incremented past "FF", thus allowing the
circular queue to be programmed as if it were simply a
sequential area of storage. For more details on the opera-
tion of this queue, see the program descriptions in the fol-
lowing subsections,

The source code for these programs can be located in the
file "SATLITE.TEXT" on either of the "SYSTXT:"™ or "SYSBKP:"

diskettes.

4,1.3.1 INITPIA

This routine 1initializes the parallel interface adapter
(PIA) to cause a maskable interrupt whenever a 16-bit data
word is received. The IRQ/BRK vector at memory locations
FFFE-FFFF is set to the address of the 1interrupt handling
routine, IRQHANDL, and the previous contents of this vector
are saved for later restoration. The queue pointers are
initialized to indicate an empty gqueue, and interrupts are
enabled just before this routine returns to the PASCAL call-

ing program.

§.1.3.2 IRQHAANDL

This routine is actually part of the GETWORD procedure for
assemnbly and linkage purposes, but the two routines are
logically separate. This was done to avoid problems with
the linkage editor since IRQHANDL is never invoked directly

by any other routines,

38

IRQHANDL is the routine which handles interrupts from the
PIA. Upon an interrupt occuring, this routine first checks
to see if it was caused by a "BRK" instruction, If so, then
control is passed to the routine at the address specified by
the original IRQ/BRK vector., Otherwise, the routine checks
to see if the interrupt was caused by the PIA. If not, then
control is again passed to the originally specified inter-
rupt handler routine (PASCAL sets this to cause a system
reboot by default)., Finally, if the interrupt was caused by
the PIA, then the 16-bit input is saved in a queue for later
retrieval by GETWORD, the queue pointer is incremented, and
the routine issues an "RTI"™ (ReTurn from Interrupt) instruc-
tion. All registers modified by this routine are saved on
entry, and restored again before the "RTIY,

If the queue is full and IRQHANDL has been invoked to add
more data to the queue, it will instead replace the last
word on the queue with the hexadecimal value "1111%, When
the RECEIVER program later obtains this value from the
queue, it will respond to the invalid first digit by treat-
ing it as if a data sequence error had occured, thus effec-
tively causing the current paragraph of input data to be

ignored.

4.1.3.3 GETWORD
This routine is called by the RECEIVER program whenever

another word of input data is needed. It expects as its

39
only parameter the address of a PASCAL "STRING" variable
(special "Type" in Apple PASCAL) with a declared length of
at least four characters. STRING variables are stored with
a "length" byte preceeding the data bytes, which is used to
store the current length of the STRING, If the input gqueue
is empty, the GETWORD routine will simply set the length of
the STRING to zero and return, Otherwise, the length will
be set to four, and the next 16-bit word from the input
queue will be unpacked into ASCII characters and assigned to
the data portion of the STRING.

Unpacking of the 16-bit words is done as follows: The
most significant four bits of the word are converted to an
ASCII hexadecimal digit in the range 0..9 or A..F. The next
three groups of 4-bits are each "OR-ed"™ with the hexadecimal
value "30" to convert them into am ASCII digit in the range
0..9. Should invalid data be present in these fields, they
will thus be converted to various punctuation symbols which
will look like "garbage",

Interrupts remain enabled throughout execution of
GETWORD, and the gueue pointer is not updated until the data
for that gqueue entry has been saved elsevhere beforehand.

This is done to avoid conflicts with IRQHANDL.

4.1.3.4 RESETIRQ
This routine disables maskable interrupts and resets the PIA

to prevent it from causing further interrupts. The original

40

value for the TIRQ/BRK vector 1is retrieved from its save
location and is restored to addresses FFFE-FFFF. The rout-
ine then returns to the PASCAL calling progran, leaving

interrupts disabled.

4.1.4 Files Used by the RECEIVER Program

4.1.4.1 The Screen File

When the RECEIVER program begins execution, it attempts to
copy a file from drive #4 named "#U:RCV.SCREEN.TEXT" to the
display screen, This file is knovwn as the screen file, and
is used to hold the initial data to be displayed on the
screen when the program begins execution, The contents of
this file may be changed at any time by the user, but moving
around display areas will also require modifications to the
RECEIVER program to avoid a messy display. If for any rea-
son this file cannot be opened, the receiver program will
display a message informing the operator of this, and then

gracefully terminate execution,

4.1.4.2 The Parameter File

After initializing the screen, the RECEIVER program attempts
to open and read a file from drive #4 named
"#4:RCV. PARAM.TEXT", If for any reason this file cannot be
opened, a message 1is displayed and the program terminates

gracefully.

=
b

STATUS: SETUP | SATELLITE PASS |INPUT
PARA/LINE= 00,/00] MONITOR PROGRAM |WORDS

| PROGRAM| DOPPLER-COUNT |SATELLITE]
| NESTING]400-MHZ: 150-MHZ| MESSAGE |
tmm—————— ettt b mm————— +

e M e ot ot St s o tmte ——" — —
A D B o S— S—— S W s N S W v —

3

(* THIS FILE HOLDS THE INITIAL SCREEN
DISPLAY FOR THE RECEIVER PROGRAHN,
ALL CHARACTERS UP TO THE *'$' ARE
COPIED TO THE CONSOLE SCREEN UPON
STARTUP WHEN THE PROGRAM EXECUTES ¥)

Figure 10: Contents of The RCV.SCREEN File

(oo et —) — — — — s — s St s s ol i St D bt D st s B it Ul s S St Bt it S
B s e e et il e e o um - S — — —— — — — — o — —— — -~ — > — o bt o sos e Sones ee nm 54

This file expected to contain three lines of information,
which are to be used by the RECEIVER program in forming dis-
tinct, sequentially numbered names for its pass files. The
first line should specify the characters to be used in form-
ing the first (root) part of the file nanmes. This should

not contain a device specification. The second line should

42
specify two integer values, separated by one or more spaces,
to be used for numbering pass files. The first value repre-
sents the next number to be used in creating a pass file
name, and the second value is an increment which is added to
the first value after each new pass file is created. This
file is rewritten to drive #4 each time the pass number is
incremented,

The third line of the file should contain characters to
be used as the trailing part of the pass file names,
Usually this is set to ",TEXT", but if the ability to edit
pass files 1s not required, considerable storage can be
saved by specifying a different file type such as ".DATA".
The PASCAL overhead for each pass file using ".TEXT" varies
depending on file size, but usually about 1500 bytes are
wasted in overhead.

Note that since a PASCAL "REWRITEY statement 1is used to
open the file on output, this file need only be present when
the program starts execution, since it is "READ" only once
by the RECEIVER progran. This allows the operator to
replace the boot diskette in drive #4 with an empty data
diskette after program startup, thus allowing more space for
pass files.

Figure 11 shows typical contents of the parameter file,
along with some sample pass file names created using these
parameters. Note that all three lines should be left justi-
fied when entered into the actual file using the PASCAL edi-

tor.

&=
w

Contents of the RCV.PARANM File:

PASS
100 10
+TEXT

Consective Pass File Names Generated:

PASS100.TEXT
PASS110.TEXT
PASS120.TEXT

Figure 11: Construction of Pass File Nanmes

p-_*-—ﬂp—*_-—-——._ﬂp—-“h_——-—-q
e e s o s whD o e - — s ol - ——— - —]

4.1.4.3 Format of Pass Piles

Pass files are written as a sequence of one or more para-
graphs, where a paragraph record consists of a time stamp
line followed by twenty-five lines of data. The time stamp
is written exactly as generated by the READTIME procedure,
in the form YY/MM/DD-d HH:MM:SS, where "YY/MH/DD" 1is the
current date in metric format, "-d® is the day of the week
{0=Sunday, 1=Monday, ...), and "HH:MM:5S" 1is the time in
hours, minutes, and seconds. Each of the twenty-five data
lines is in the format "1234567 1234567 123456789", where
the first group of seven digits is the 400 Mhz doppler
count, the second set is the 150 Mhz doppler count, and the
third set is the satellite message. Each line has a car-

riage return character appended to it, to allow editing

by
using the PASCAL system editor. Editing can only be done if
the files are named as ",TEXT" files. Figure 12 shovws a
partial listing of a pass file generated using the RFECEIVER

program.

82/04/17-6 18:48:43

9999999 9999999 060922274
0122455 0122468 071071955
0245187 0245215 081181578
0368201 0368241 091241156
0491503 0491558 401240702
0615100 0615171 411190276
0738999 £739084 521100144
0863205 0863306 530960506
0987726 0987840 087688720
1112569 1112699 841433630
1237739 1237882 816071120
1363245 1363403 800204640
1489093 1489265 800170230
1615290 1615477 807393060
1741843 1742042 814548120
1868760 1868975 800000330
1996047 1996274 900007900
2123712 2123951 806461800
2251762 2252013 800302000
2380205 2380467 843201070
2509048 2509319 809999990
2638298 2638581 800590000
2767962 2768254 000000000
2898048 2898350 000000000
3028564 3028875 000000000
82/04/17-6 18:50:43

3301600 3301928 071071955
0131883 0131891 081181578

(Remainder of file not shown)

Figure 12: Pass File Produced by RECEIVER Program

[s i D et gy it i ke . it — — o oo Wt b St s Uil s s Ul A it s s sttt e WS
b e s S e i s s e - —— o — — — — — o —— o — o— — — — — - —— n— — — — ot @t}

45
4.2 THE TALK PROGRAN
Comments in the TALK.TEXT source file are reasonably
detailed, so only a basic description is given here. The
TALK program was written to handle communications with VSPC
(or other systenms). To run TALK, simply execute the
"SYSRUN: TALK.CODE" file.

Upon startup, the TALK program displays a "menu" of conm-
mand options from which the operator can specify what type
of TALKing is to be done, These options are described in
mora detail below. Note that the file transfer options both
require that VSPC TAPE mode be entered beforehand by the
user, using dumb terminal mode. Both of these routines will
of course attempt to issue the command on their own, but if
problems arise, the user will have to hit control "C" to
terminate the module and then enter TAPE mode himself. TAPE
mode causes the last line of output sent by VSPC to be ter-
minated with a special "DCI" control character, which is
used by this program to determine when VSPC is ready for
more input. The dumb terminal option does not depend on
this feature, but the transfer options do.

4.2.1 Dumb Terminal HNode

Selection of this mode of operation effectively turns the
Apple keyboard and display into a "dumb" ASCII terminal,
operating in half-duplex at 300 baud. This allows the user

to communicate with a 1large variety of remote devices,

46
including other computer systenms. Four keys on the Apple

keyboard supply helpful functions to the operator.

4.2.1.1 The Escape Key
When pressed, this key generates a "beep" and transmits a

Y"BREAK"™ or "ATTN" signal to the remote device,

4.,2.1.2 The Left Arrow

This key functions as a VSPC character delete key. When
pressed, it causes a backspace-linefeed combination to be
transmitted to the remote device, thus acting as a RUBOUT
key. The ASCII "DEL" character was originally transmitted
here, but VSPC does not seem to recognize 1t, so ‘the

backspace-linefeed combination was used instead.

4.2.1.3 The Right Arrow
This key causes an ASCII horizontal tab character to be
transmitted. On the Apple screen, it appears as a space

character.

4.2.1.4 Hitting Control *c®

If a "“C%" is typed while holding down the "CTRL"™ key, the
resulting character code is not transmitted. Instead, the
TALK program will return the wuser to its original command

menu.

47
4.2.2 Passfile Tramsfer Mode
This option allows the user to specify a range of pass files
to be transferred to VSPC workspaces for later use. Once
the program has completed prompting the user for *the pass
file range, it proceeds to transfer the pass files without
need for further intervention. Note that if any keys are
pressed on the Apple keyboard during the transfer, the char-
acters typed will also be sent to VSPC. All of the special

keys described for the dumb terminal mode can also be used

here. Therefore, to stop data transfer, hit coatrol "“C*",

4.2.3 Text File Tramsfer Mode

This option allows the user to specify a single file of type
", TEXT"” to be transferred to a VSPC workspace. Once again,
any characters entered at the keyboard during the transfer

will also be transmitted to VSPC, except for control "C",

which will cause a return to the main TALK program menu,

This section contains brief descriptions of programs which
were written as an indirect part of this project, Some of
these are general subroutines which are used by the RECEIVER
and TALK programs, while others, such as SETTIME, are util-

ity progranms,

48

4.3.1 The PEEKPOKE Intrimsic Unit

The PASCAL language, on its own, does not support absolute
addressing of memory locations, so two routines, PEFK and
PDKE, have been written to allow this capability. The PEEK
function and the POKE procedure work the same as their BASIC
counterparts, These routines are grouped into an INTRINSIC
UNIT, <called PEEKPOKE, which has been 1installed in the
SYSTEM.LIBRARY file for general use. The TALK program uses
these routines to communicate directly with the 6850 ACIA on
the communications interface card.

These procedures are modified versions of routines pub-

lished as part of an aricle in BYTE Magazine (see bibliogra-

phy) .

4.3.2 The BREADTINE Procedare

This program is an assembly 1language procedure which can be
called from PASCAL. It expects as a parameter, the address
of a nineteen byte area of storage 1in which to place a
packed character string representing the current date and
time. READTIME reads this information directly from the
calendar/clock module, and formats the time stamp into ASCII
characters with punctuation included. The returned result
will be in the form YY/MM/DD-d HH:MM:SS, where "YY/MM/DD" is
the current date in metric format, ®-d" is the day of the
week (0=Sunday, 1=Monday, ...), and "HH:MM:SS" is the cur-

rent time of day in standard format. This program has been

49

assembled and placed into the SYSTEM.LIBRARY file for gen-

eral use.

4.3.3 The STARTUP Program

Apple PASCAL allows for <creation of a "turn-key" systen,
where a program is automatically run when the system is pow-
ered on. To do this, the programmer merely has to nams his
program code file as "SYSTEN.STARTUP"™ and copy it onto the
boot diskette, Such a program has been written for this
system, although it does not run either of the RECEIVER or
TALK programs. Instead, it is used to sound a greeting tune
and display the current date and time for the operator.
There are two sources for a "date™ under PASCAL: the boot
diskette, and the calendar/clock module., Normally, the user
is expected to wupdate the date stored on the boot diskette
every day, using the D(ate command of the system F (iler pro-
gram. This is the date which is recorded in diskette direc-
tories whenever files are created, Unfortunately, PASCAL
relies totally upon the user to update this daily.

The SYSTEM.STARTUP program written for this project is
automatically run whenever the system is initialized. The
first function it performs upon executing is to compare the
date from the boot diskette with the date from the
calendar/clock module. If they match, then the greeting
tune is played and the date and time displayed. If they do

not match, then the date on the boot disk is updated by this

50
program, and the user is requested to issue an I (nitialize
command to PASCAL so that the operating system will read the
new date from the disk by doing a warm start, During this
re-initialization, the SYSTEM.STARTUP program is again exe-
cuted, causing the greeting tune to be played and the new

date displayed.

h.3.4 The SETTINME Program

This program is written in Apple BASIC, and was copied
directly from the Owner's Manual for the calendar/clock
module, It is intended to be used to set the date and time
on the calendar/clock module from scratch. This program can
be found on the work diskette in the DOS 3.3 System Master

Pack.

Chapter S

CONCLUSIONS

The system proposed and implemented in this report satisfies
all of the minimal requirements for a reasonable alternative
to the present paper tape system for recording and transfer-
ing data from the satellite receiver. In addition, many of
the optional requirements, such as use of a real time clock,
and editing of pass files, have also been implemented. The
Apple computer with PASCAL is a very powerful programming
tool, and is well suited to such applications; the lack of a
good mass storage diskette system being its only drawback.

Many options for future expansion still remain, such as
data compression and more complex error correcting routines,
perhaps enough for another CS 4993 project?

As can be seen in the final progress and status report,
many more manhours than previously estimated have gone into
the preparation of this systen. Hopefully, it will soon bhe

put to the test and prove itself worthwhile,

Appendix I

OPERATING INSTRUCTIONS

This appendix is intended as a User's Guide for people who
are familiar with TRANSIT and who have had previous experi-

ence with modern micro-computers.

- 52 -

53

I.1 HARDWARE CONNECTIONS

I.1.1 Connection to the Satellite Receiver

To prepare the Apple for use with the satellite receiver,
simply connect the power cables to 120VAC and plug the
receiver adaptor cable into the PIA connector on the back of
the Apple. Connect the other end of this «cable to the
HP-1000 connector on the receiver cable, The system should
now be ready for booting.

I.1.2 cConnection of an Acoastic Coupler or HModem

To prepare the Apple for use with a coupler or modem, simply
connect the power cables to 120VAC and plug the end of the
black RS-232 <cable labelled ™APPLE"™ into the RS-232 jack
(also labelled) at the back of the Apple computer, The
other end of this cable, labelled "MODEM"™ should be con-
nected to the jack on the coupler or noden. For VSPC, the
coupler or modem should be set to FULL-DUPLEX, even though
the Apple TALK program behaves as a half-duplex terminal

with local-echo.

I.1.3 Connection to Other RS-232 Devices

To use the Apple with other RS-232 compatible DTE equipment,
the Apple’s power cables should be connected to 120VAC, and
the "NULL MODEM" cable should be plugged into the RS-232
jack at the rear of the Apple computer. The external davice

should then be connected to the female jack on this cable,

54
using the cable supplied with the external device. If the
device is equipped with a jack 1instead of a cable, the
Apple's black modem cable can be used to connect the device,
with the end which is labelled "APPLE"™ connected to the null
modem, and the other end connected to the jack on the exter-

nal device,

I.2 GENERAL CONSIDERATIONS

I.2.1 System Diskettes

Apple PASCAL wuses four diskettes to hold its distributed
operating system components. These are labelled APPLE1,
APPLE2, APPLE3, and APPLEOD. For a two drive system, APPLE1
is normally placed in drive #4, and APPLE2 in drive #5.
More information on these diskettes can be obtained by con-
sulting the PASCAL reference manuals.

The system described in this report also uses four disk-
ettes, although the entire system could easily fit on a sin-
gle diskette, Two of these diskettes are merely copies of
APPLE1 and APPLE2, with a few extra program files present,

The other two are used primarily for backup purposes.

I.2.1.1 The SYSRUN Diskette

This diskette is a copy of the APPLE1 diskette, along with
the extra files required to run the RECEIVER and TALK pro-
grams, as well as a copy of the SYSTEM.STARUOP program for

setting and displaying the system date, This diskette is

55
referred to as the "boot" diskette, and is normally placed

in drive #4,.

To2.1.2 The SYSTXT Diskette

This diskette is actually a copy of APPLE2, with the source
files for the RECEIVER and TALK programs present, This
diskette contains all PASCAL system files required for com-
piling and assembling these two programs and their subrout-

ines., This diskette is normally placed in drive #5.

T.2.1.3 The SYSLIB Diskette
This diskette contains the source files for the READTINME,
PEEKPOKE, and STARTUP programs, as well as an up to date

backup copy of the SYSTEM.LIBRARY file from SYSRUN.

I.2.1.4 The SYSBKP Diskette

This diskette 1is used for backup purposes, and contains
copies of the source files for the RECEIVER, SATLITE, TALK,
PEERKPOKE, READTIME, and STARTUP prograns, This disk should
only be used when making or retreiving backups of these pro-

grams with the PASCAL F (iler command.

I.2.2 Booting The Systenm

To boot the PASCAL operating system for use with the pro-
grams described in this project, place the SYSRUN diskette

in drive #4, place the SYSTXT or a formatted SCRATCH disk-

56

ette {for data files) in drive #5, and then power on the

Apple.

1.

I.2.3

One of two events should normally occur:

You #ill eventually be greeted with a musical tune
and a message display, showing the current date and
time according to the Apple, or

You will be greeted with a short "beep beep beep" and
be requested to type "I" to re-initialize the systen
date for the day. After typing this command, you
should then b2 greeted as described for event 1,

above,

Special PASCAL System Keys

The PASCAL reference manuals describe several special keys

which may be pressed to allow limited control over the exe-

cution of most progranms. The keys which may be of interest

with respect to this program are listed below.

1.

Control "S" - Pauses execution of a program the next
time it attempts I/0. The program remains halted
until this key combination is pressed again. This is
useful for halting the display of the RECEIVER pro-
gram while monitoring pass data. No incoming data
will be 1lost as long as the program is allowed to
continue within two minutes from whemn it was paused,

Control ®@® - Abnormally terminates execution of a
program the next time it attempts I/0. The program

is halted, an obscure system error message 1is

57
printed, and the system waits for the user to press
reset.

3. Control "RESET® - Causes a hardware reset cycle, If
press=2d once, the PASCAL system will reboot itself
from the diskette in drive #4. I1f pressed twice
quickly in succession, the computer will be placed
under control of the Applesoft Floating Point BASIC
monitor. NEVER NEVER NEVER press RESET while either
of the red lights on the front of the diskette drives
are "on", Doing so will probably cause destruction
of data on the diskette in that drive, although no
physical damage to the computer will occur.

4. Control ®A" - Allows the user to toggle the "80
column® display from showing the left-most 40 colunmns
to showing the rightmost 40 columns, or vica-versa.

5. Control "2% - Causes the display to scroll 1left or
right with cursor movements when 1inputing text or
other data.

6. Control "FP" - This command should never be used with
the RECEIVER and TALK programs.

For more information, consult the appropriate PASCAL refer-

ence manuals.

58

I.3 OSING THE RECEIVER PROGRAHN

I.3.1 Functions of RECEIVER

This program is intended for performing data acquisition
from the satellite receiver, Each "pass" of satellite data
received is stored 1in a pass file as the program executes,
Monitoring of output from the receiver is possible with the
dynamic screen display maintained by this progranm.

I.3.2 BRunning the RECEIVER Progran

To run this program, the SYSRUN diskette should be present
in drive #4, and the user should be in PASCAL command mode,
After entering the "X" command to execute a user progranm,
the system will prompt for a file nanme, To execute the

RECEIVER program, the user should reply with "#u4:RCV", and

the program will begin execution.

I.3.2.1 Files Required at Imitialization

Running the RECEIVER program requires that the
SYSTEM. LIBRARY, RCV,CODE, RCV.SCREEN.TEXT, and
RCV.PARAM.TEXT files all be present on the boot diskette in

drive #4, These files are supplied on the SYSRUN diskette.

I.3.2.2 Files Required After Inmitialization
Once the file has completed initialization, none of the
above files need be present. This allows the boot diskette

to be removed from drive #4, and a data diskette to be

59
inserted in 1its place to allow more room for output pass
files from the RECEIVER program. Be careful never to remove
a diskette from a diskette drive while the red light is on,
or 2lse you may destroy the contents of one or more files on

that diskette, or maybe all of then.

I.3.2.3 Creation of Pass Files

Data from the satellite receiver is formatted into pass
files, which are saved on diskette for later editing and
transfer. These files are named according to information in
the RCV.PARAM.TEXT file, which 1is described elsewhere in
this report. Normally, these pass files are saved on the
diskette in drive #5. If there is no room on drive #5, or
if there is no diskette in that drive, or if there is indeed
no drive #5, then the program will search for another drive
on which to save its pass files, The drives searched, 1in
order of priority, are drives 5,11,12,9,10, and lastly,
drive 4. Once a drive has been found which has room for
more data, all subsequent pass data will be saved on that
diskette until one of the previously mentioned problems
0OCCuUrS., The exception to this rule is drive #4, The
receiver will always search for another drive before saving

files on the diskette in this drive.

60

I.3.3 Operator Control of RECEIVER

The RECEIVFER program allows the user to enter a limited set
of four commands. To use one of these commands, the
"ESCape" key must first be pressed, followed by the key

designated for a particular command.

I.3.3.1 The "Q" Command

This command requests that the program terminate itself at
the end of the current pass, after first saving the pass
data, 1if any. Should this command be entered when no pass
is being monitored, the program will wait until the next

receiver two minute timing word is received before it quits.

T.3.3.2 The ®"S® Command
This command, which stands for "Stay", requests that the

program ignore a previously issued Q" (Quit) command.

I.3.3.3 The "K" Comamand

This command requests that the program terminate immedi-
ately, without saving data for the carrent pass, 1if any.
This is intended as a quick way to exit the progranm. If a
fast exit is desired without loss of data, the "Q" command
should be issued followed by the "U® command instead of

using this command.

61
T.3.3.4 The *U" Command
This command requests the program to "unlock" itself from
collecting data for the current pass, If any complete para-
graphs have been collected prior to the issuing this com-
mand, they will be saved as a normal pass file on diskette,
The program will then return to collecting data again,
unless a "Q" command was also issued prior to the "U" com-

mand, in which case the program will terminate itself.

I.4 USING THE TALK PROGRAN

I.4.1 Functions of TALK

The TALK program 1is intended to be used for communications
with VSPC for the purpose of transferring pass data to the
IBM 3032 at the U.N.B. Computing Center. The program has

three modes of operation, which are discussed later in this

section.

I.4.2 Ronning the TALK Program
To run this program, the SYSRUN diskette should be present
in drive #4, and the user should be in PASCAL command mode.
After entering the "X" command to execute a user progran,
the system will prompt for a file name. To execute the TALK

program, the user should reply with "#4:TALK", and the pro-

gram will begin execution.

62
I.%.2.1 Files Required at Initialization
BRunning the TALK program requires that the SYSTEM.LIBRARY,
and TALK.CODE files both be present on the boot diskette in

drive #4., These files are supplied on the SYSRUN diskette.

I.4.2.2 Files Required After Initialization

There only files which are required after starting execution
of this program are those files, if any, which are to bhe
transferred to VSPC using the transfer options of this pro-

gram.

I.4.3 Hain Menu Options

Upon starting execution, the TALK program will greet the
user with a short command menu and a "beep™ prompting the
user to select an option from the menu. The options cur-
rently supported are described later, and all of these
options allow the following keys to be used for non-standard
purposes:

1. Escape Key - This key serves as a "BREAK"™ or "ATTN"
key.

2. Left Arrow - This key gsnerates a VSPC "“RUBOUT™
sequence of a backspace followed by a linefeed. This
effectively will "delete" the last character typed on
the current line.

3. Right Arrow - This key generates tab characters, the

same as a "TAB" key on most standard terminals would.

63

The tabs will show up as a single space on the Apple
display screen.

4, Control "C® - This code is obtained by typing a "C¥

while holding down the "CTRL" key. It causes an

immediate return to the TALK program's main menu, and

can be used to terminate file transfers prematurely.

I.4.3.1 Dumb Terminal HMode

This option allows the Apple keyboard and screen to be used
as a half-duplex asynchronous ASCII terminal. This allows
the user full control, desired or not, over the VSPC logon
procedure, since it is up to the user to enter the commands
to achieve signon. To exit from this mode, type a Control

wcH character as described above,

I.4.3.2 Pass File Transfer Mode
This mode allows the user to transfer pass files created by
the RECEIVER program to VSPC vorkspaces. Before this com-
mand is entered, the user should first sign on to VSPC using
dumb terminal mode, and then issue the VSPC command "TAPE",
To transfer pass data to VSPC, the user must first spe-
cify which files are to be sent. The program prompts for a
rootname, which is the full name of the diskette and file(s)
to be transfered, 1less the file number embedded within the
name, The program next prompts for the startiang value for

a range of these numbers, and then prompts for an ending

U
valuae. Finally, it requests that the user enter an incre-
ment to be added to the first value each time through the
transfer process, to generate the next pass file name in
sequence, If a given pass file cannot be opened for any
reason, a message is displayed and the program proceeds on
to the next file in sequence, until all have been attempted,
or until the user hits Control *C" to return to the main
menu. The following is an example of a rootname for the
file PASS123,.TEXT on the diskette in drive #5:

#5:PASS.TEXT

I.4.3.3 Text File Transfer MNode
This mode is similar to that described above for the trans-
fer of pass files, except that it will work for files which

may contain any type of text information. This mode must be

used for transferring files which have been edited using the

PASCAL system editor, including pass files.

The program first prompts the user for a file name, which
should be entered in full, including diskette name, and then
asks for a VSPC workspace name under which to save the text,
Once the user has entered these two items, the program pro-
ceeds on its merry way, transferring text until all has been
sent and saved, or until the user hits Control YC" to return
to the main menu. The following 1is an example of a text
file name: ' SYSTXT:SATLITE.TEXT °'. The ,TEXT may be omit-

ted if desired.

I.4.3.4 Quitting the TALK Prograna

This option allows the user to exit from the TALK program.

65

Appendix IIX

PROGRAM LISTINGS

This appendix contains listings of programs written as part
of this project, The only program discussed in the text
which is not included is the SETTIME program, which was not
written by the author. A listing of that program can be
found in the Owner's manual for the calendar/clock module,

from where it vas originally obtained.

_66-

67

{*35+%) (* TURN LEVEL-1 COMPILER SWAPPING ON FOR LARGE PROGRAMN ¥)
(********************#******************
* DUE TO THE PHYSICAL SIZE OF THIS *
PROGRAM, COMMENTS MAY SEEM TO BE A %
BIT SCARCE IN SOME SECTIONS. THIS *
WAS DELIBERATELY DONE TO ALLOW THE *
PASCAL EDITOR TO RETAIN ITS LIMITED *
CAPACITY TO EDIT THIS PROGRAHNM. *
OTHERWISE, THIS PROGRAM WOULD BE TOO*
LARGE FOR THE EDITOR TO HANDLE IN A *
SINGLE TEXT FILE. PLEASE CONSULT *
THE WRITTEN DOCUMENTATION TO CLARIFY*
* ANY MAJOR UNCLEAR DETAILS. *
33 ok % ok ok o ok ok ok ok ok 3k ok koK koK ok kkkkkkkkkkkkkkkx)
PROGRAM RECEIVER;
USES APPLESTUFF, PEEKPOKF;

#* % K O 3 I K ¥

CONST MAXPARA = 8; (% THIS LINE SPECIFIES # OF PARAGRAPHS/PASS ¥*)
MAXLINE = 25; (¥ THIS LINE SPECIFIES # OF LINES/PARAGRAPH ¥*)

(* THE FOLLOWING CONSTANTS ARE USED FOR *)
(* POSITIONING ITEMS ON THE SCREEN, AND %)
(* MOST CAN BE SAFELY ALTERED TO MODIFY *)
(* THE SCREEN FORMAT, *)
XMODE=7; YMODE=0;

XPNUM=11; YPNUM=1;

XLNUM=14; YLNUM=1;

XMSG =1; YNSG =3;

XLINE=9 ; YLINEMIN=10;YLINEMAX=23;
XPROC=0; YPROCMIN=10;YPROCMAX=23;
XWORD=35; YWORDMIN=3; YWORDMAX=23;

TYPE FTNTYPE (SHOW, ERASE,CLEAR) ;

DATAWORD = STRING[5];

DATALINE = PACKED ARRAY[1..26] OF CHAR;
TIMESTAMP = PACKED ARRAY[1..20] OF CHAR;
PARARECORD = RECORD

PASSTIME:TIMESTAMP;
PASSLINE:zARRAY[1..MAXLINE] OF DATALINE
END;

VAR PROCNAMES:ARRAY[YPROCMIN..YPROCMAX] OF STRING[8];
PASSPARA :ARRAY[1..MAXPARA] OF PARARECORD;
SEQCODES :PACKED ARRAY[1..9] OF CHAR;

BUFFER :PACKED ARRAY[0..511] OF CHAR;
INPUTWORD :DATAWORD;
INPUTLINE :DATALINE;
PARACOMPLETED : BOOLEAN;

6583

MEMUNUSED :STRING[5];
SCRPROC, SCRLINE,SCRWORD, PARACNT :INTEGER;
CLEARLINES, QUITREQUESTED, ESCPRESSED :BOOLEAN;
PARAMFILE :TEXT;
PASSFILE :FILE OF PARARECORD;
PFNUMBER,PFINCREMENT :INTEGER;
PFDEVICE :STRING[7];
PFROOTNAME,PFEXTENSION :STRING[14];
PFNAME tSTRING[26];
PROCEDURE INITPIA; EXTERNAL;
PROCEDURE GETWORD (VAR STRINGY); EXTERNAL;
PROCEDURE RESETIRQ; EXTERNAL;

PROCEDURE READTIME (VAR PKCHAR19); EXTERNAL;

PROCEDURE SHOWMODE (MODE:STRING) 3
(* DISPLAYS STATUS: 'ACTIVE','WAIT',*'DISKIO* *)
BEGIN (* SHOWMODE *)

GOTOXY (XMODE, Y MODE) ;

WRITE (MODEz7)
END; (* SHOWMODE)

PROCEDURE SHOWMSG (MSGNUM: INTEGER;MESSAGE: STRING) ;
(* USED TO DISPLAY MOST MESSAGES IN 3-LINE MESSAGE AREA %)
(* MESSAGES ARE CENTERED IN THE 33-CHAR DISPLAY AREAS. %)
VAR PILLER:INTEGER;
BEGIN (* SHOWMSG ¥)

GOTOXY (XMSG, YMSG+MSGNUM) ;

FILLER:= (33-LENGTH (MESSAGE)) DIV 2;

IF FILLER<O THEN FILLER:=0;

WRITE (MESSAGE: (33-FILLER),**:FILLER);
END; (* SHOWMSG *)

PROCEDURE SHOWLINE(VALUE:DATALINE;FTN:FTNTYPE) ;
(* USED TO DISPLAY FORMATTED SATELLITE DATA LINES ON SCREEN ¥*)
BEGIN (* SHOWLINE *)
IF FTN=SHOW THEN
BEGIN
GOTOXY (XLINE,SCRLINE) ;
WRITE{VALUE: 25) ;
IF SCRLINE=YLINEMAX THEN
SCRLINE:=YLINEMIN
ELSE
BEGIN
SCRLINE:=SCRLINE+1;
GOTOXY (XLINE,SCRLINE) ;
WRITE (' *:25)
END;

CLEARLINES:=FALSE

END
ELSE IF (FTN=CLEAR) AND (NOT CLEARLINES) THEN
BEGIN
FOR SCRLINE:=YLINEMAX DOWNTO YLINEMIN DO

BEGIN
GOTOXY (XLINE,SCRLINE) ;
WRITE(' ':25)
END;
SCRLINE:=YLINEMIN;
CLEARLINES:=TRUE
END
END; (* SHOWLINE x)

PROCEDURE SHOWWORD (VALUE: DATAWORD) ;
(* USED TO DISPLAY INCOMING DATA FROM RECEIVER AS-IS *)
BEGIN (* SHOWWORD ¥)
GOTOXY (XWORD, SCRWORD) ;
WRITE (VALUE:S) ;
IF SCRHORD=YWORDMAX THEN
SCRWORD:=YWORDMIN
ELSE
BEGIN
SCRWORD :=SCRWORD+1;
GOTOXY (XWORD, SCR¥ORD) ;
WRITE(* ':5)
END
END; (* SHOWWORD *)

PROCEDURE SHOWPROC (NAME:STRING;FTN:FTNTYPE) ;

{* USED TO DISPLAY CURRENTLY EXECUTING PROCEDURES FOR DEBUGGING

(* IF THIS ROUTINE IS CALLED WITH FTN=SHOW, THEN THE PROCNAME
(* IS DISPLAYED ON THE SCREEN, UNDERNEATH ALL PREVIOUS NAMES.

(* A SUBSEQUENT CALL WITH FTN=ERASE WILL CAUSE ALL PROCNAMES UP
(* TO THE NAME SPECIFIED TO BE DELETED FROM THE SCREEN. IN THIS
(* WAY, A SUBROUTINE CAN ¥EXIT" FROM ITS CALLER AND REMOVE BOTH

(* NAMBES FROM THE SCREEN AT ONCE.
VAR FOUND:BOOLEAN;
BEGIN (* SHOWPROC ¥)
IF FTN=SHOW THEN
BEGIN
GOTOXY (XPROC,SCRPROC) ;
PROCNAMES[SCRPROC]:=NAMNE;
WRITE (NAME:8) ;
SCRPROC:=SCRPROC+1
END
ELSE IF FTN=ERASE THEYN
BEGIN
FOUND: =FALSE;
REPEAT
GOTOXY (XPROC, SCRPROC) ;
WRITE(* ':8);

70

FOUND:=PROCNAMES[SCRPROC]=NAME;
PROCNAME[SCRPROC]:="";
SCRPROC:=SCRPROC-1
UNTIL FOUND;
SCRPROC:=SCRPROC+1;
END;
END; (* SHOWPROC ¥*)

PROCEDURE FORMATSCREEN;
(* ROUTINE TO READ SCREEN FPILE AND INITITALIZE SCREEN DISPLAY ¥)
CONST ENDOFSCREEN='*$%'; (* CHAR IN FILE TO INDICATE END OF DISPLAY %)
VAR SCRNFILE:FILE;
BYTECNT,BLOCKCNT: INTEGER;
BEGIN (* FORMATSCREEN *)
PAGE (OUTPUT) ;
(*$I-*) RESET (SCRNFILE,*#U4:RCV,.SCREEN.TEXT?) ; (*$I+%*)
IF IORESULT<>0 THEN
BEGIN
GOTOXY (0,7);
WRITELN('UNABLE TO OPEN #4:RCV.SCREEN,TEXTY) ;
NOTE (35,50) ;
EXIT (PROGRAN)
END;
BYTECNT:=512;
BLOCKCNT:=BLOCKREAD (SCRNFILE,BUFFER,1,1);
WHILE (IORESULT=0) AND (BYTECNT=512) DO
BEGIN
BYTECNT:=SCAN (512,=ENDOFSCREEN, BUFFER) ;
UNITWRITE(1,BUFFER,BYTECNT,0,2);
BLOCKCNT :=BLOCKREAD (SCRNFILE,BUFFER, 1)
END;
CLOSE (SCRNFILE) ;
SCRPROC :=YPROCMIN;
SCRNORD :=YWORDMIN;
SCRLINE s=YLINEMIN;
CLEARLINES:=FALSE;
END; {(* FORMATSCREEN *)

PROCEDURE UNLOCKPASS;
(* ROUTINE TO SET ANNUNCIATOR OUTPUTS AND STROBE TO COMMAND)
(* RECEIVER TO UNLOCK FROM THE CURRENT PASS. THESE OUTPUTS #)
(* ARE PART OF THE APPLE GAME I/O CONTROLLERS. %)
VAR STROBE: INTEGER;
BEGIN (* UNLOCKPASS *)

TTLOUT (0, TRUE) ;

TTLOUT (1,FALSE) ;

TTLOUT (2,FALSE) ;

TTLOUT (3,TRUE) ;

STROBE: =PEEK (- 16320) ;
END; (* UNLOCKPASS *)

71

PROCEDURE READPARA; FORWARD;
PROCEDURE READPASS; FORWARD;

PROCEDURE READWORD;

(* PROCEDURE TO GET NEXT 4-DIGIT INPUT WORD FROM RECEIVER %)
{* USING ASSEMBLER INPUT QUEUE HANDLER, "GETWORDY. ¥)
VAR ENDOFPARA, ENDOFPASS:BOOLEAN;

PROCEDURE SCANKB;
{(* SUB-PROCEDURE TO SCAN KEYBOARD POR USER INPUT. TO ISSUE *)
(* A COMMAND, USER MUST FIRST HIT <ESC> KEY, AND THEN THE *)

(* APPROPRIATE KEY FOR HIS COMMAND. *)
CONST QUIT = 'Q'; {* EXIT PROGRAM AFTER END OF PASS *)
STAY = 'S5, (* CANCELS EFFECT OF QUIT COMMAND *)
UONLOCK = *U'; (* ISSUE UNLOCCK~PASS COMMAND *)
KILL = 1K', (* TERMINATE PROGRAM IMMEDIATELY] *)
VAR KBCHR:CHAR;
BEGIN

SHOWPROC (* SCANKB?',SHOW) ;
READ(KEYBOARD,KBCHR) ;
IF NOT ESCPRESSED THEN
ESCPRESSED:= KBCHR=CHR (27)
ELSE
BEGIN
ESCPRESSED:=FALSE;
UNITCLEAR (2) ;
IF KBCHR IN [QUIT,STAY,UNLOCK,KILL] THEN
CASE KBCHR OF
QUIT:QUITREQUESTED:=TRUE;
STAY:QUITREQUESTED:=FALSE;
UNLOCK:BEGIN
UNLOCKPASS;
ENDOFPASS:=TRUE
END;
KILL:BEGIN
PARACNT:=0;
QUITREQUESTED:=TRUE;
ENDOFPASS:=TRUE
ZND;
END (* CASE ¥%)
END;
SHOWPROC('SCANKB',ERASE) ;
END; (* SCANKB *)

BEGIN (* READWORD ¥*)
SHOWPROC (* READWORD ', SHO¥) ;
ENDOFPARA:=FALSE;
ENDOFPASS:=FALSE;

IF KEYPRESS THEN SCANKB;
GETWORD (INPUTWORD) ;

IF LENGTH(INPUTWORD)=0 THEN

72

BEGIN
SHOWMODE ("WAIT?) ;
REPEAT
IF KEYPRESS THEN SCANKB;
GETWORD (INPUTWORD)
UNTIL (LENGTH (INPUTWORD)<>0) OR ENDOFPARA OR ENDOPPASS;
SHOWHMODE (* ACTIVE?)
END;

IF LENGTH (INPUTWORD)=4 THEN
CASE INPUTWORD[1] OF
'0': IF INPUTWORDK>*0000* THENW

BEGIN
ENDOFPARA:=TRUE;
SHOWWORD (*T2MIN?')

END

ELSE

BEGIN
ENDOFPASS:=TRUE;
SHOWWORD (YR2MIN')

END;

T 120 139 _ T4V BREGIN
ENDOFPARA:=TRUE;
SHOWWORD (INPUTWORD) ;
WRITE (CHR (7))

END;

8:BEGIN
ENDOFPARA:=TRUE;
SHOWWORD (* S2MIN?)

END;

*C':BEGIN
ENDOFPASS:=TRUE;
SHOW4WORD (* ENDPS?)

END;

159 160 948 190 _wpv _ape apv IEY epV;

SHOWWORD (INPUTRORD) ;
END; (¥ CASE ¥%)

IF¥ ENDOFPASS THEN
BEGIN
SHOWPROC (*READPASS* ,ERASE) ;
EXIT (READPASS)
END
ELSE IF ENDOFPARA THEN
BEGIN
SHOWPROC (* READPARA', ERASE) ;
EXIT (READPARA)
END;

SHOWPROC ("READWORD?, ERASE) ;
END; (* READWORD *)

PROCEDURE READLINE;

73

(* ROUTINE TO FORMAT NEXT LINE OF RECEIVER INPUT (9 WORDS) ¥*)
(* INTO VARIABLE "INPUTLINE™, SEQUENCE CODES OF THE INPUT %)
(* WORDS ARE CHECKED FOR PROPER SEQUENCE, AND THE DOPPLER *)
{(* COUNTS ARE TESTED TO ENSURE THAT THEY CONTAIN ONLY BCD %)
{* DIGITS. THIS TESTING IS NOT DESIRED FOR THE SATELLITE %)
(* MESSAGE (LAST 3 WORDS). *)
VAR WORDNUM,DIGIT: INTEGER;
DATAERROR : BOOLEAN;
BEGIN (* READLINE %)
SHOWPROC ('READLINE',SHOW) ;
DATAERROR:=FALSE;
DIGIT:=1;
FOR WORDNUM:=1 TO 9 DO
BEGIN
READWORD;
IF INPUTWORD[1]<>SEQCODES[WORDNUM] THEN
DATAERROR:=TRUE
ELSE
CASE WORDNUM OF
1,2,4,5:
IF NOT ((INPUTWORD[2] IN ['0'..'9%]) AND
(INPUTWORD[3] IN ['0'..'9']) AND
(INPUTWORD[4] IN [*0'..?9'])) THEN
DATAERBOR:=TRUE
ELSE
BEGIN
INPUTLINE[DIGIT] :=INPUTWORD[2];
INPUTLINE[DIGIT+1]:=INPUTHORD[{ 3];
INPUTLINE[DIGIT+2]J:=INPUTWORD[4];
DIGIT:=DIGIT+3
END;
3,6:
IF NOT (INPUTWORD[4] IN [*0'..'9']) THEN
DATAERROR:=TRUE
ELSE
BEGIN
INPUTLINE[DIGIT J:=INPUTWHORD[4 1;
DIGIT:=DIGIT+2
END;
7.8,9:
BEGIN
INPUTLINE[DIGIT] :=INPUTWORD[2];
INPUTLINE[DIGIT+1]:=INPUTWORD{3];
INPUTLINE[DIGIT#2]:=INPUTWORD[4];
DIGIT:=DIGIT+3
END;
END; (* CASE ¥)
IF DATAERROR THEN
BEGIN
WRITE(CHR (7)) ;
SHOWPROC (*READPARA' ,ERASE) ;
EXIT (READPARA)
END;

END;

SHOWPROC ("READLINE', ERASE) ;
END; (* READLINE %)

PROCEDURE READPARA;
(* ROUTINE TO SET TIMESTAMP FOR NEXT PARAGRAPH OF INPUT *)
(* AND THEN TO CALL READLINE ENOUGH TIMES TO OBTAIN A %)
(* COMPLETE PARAGRAPH, IF ANY ERRORS OCCUR IN READLINE,*)
(* OR IF READWORD ENCOUNTERS 2-MINUTE MARKS, THEN THIS *)
(* ROUTINE WILL NEVER COMPLETE AND THUS THE PARACNT %)
(* POINTER WILL NOT BE ADVANCED, THUS CAUSING THE INPUT %)
(* PARAGRAPH TO BE IGNORED. NOTE THAT 2-MINUTE MARKS %)
(* BETWEEN PARAGRAPHS WILL CAUSE THE TIMESTAMP TO BE *)
(* UPDATED, BUT WILL HAVE NO ILL EFFECTS OTHERWISE, %)
VAR PARANUM, LINECNT:INTEGER;
CURRENTTIME: TIMESTAMP;
DISPLAYSTRING:STRING;
BEGIN (* READPARA *)
SHOWPROC (*READPARA',SHOW) ;
PARANUM:=PARACNT+1;

GOTOXY (XPNUM,YPNUM) ; WRITE(PARANUM:2);

READTIME (CURRENTTIME) ;
CURRENTTIME[STZEOF (CURRENTTIME) J:=CHR (13) ;
DISPLAYSTRING:="! '; (* 19 SPACES *)
MOVELEFT (CURRENTTIME[1],DISPLAYSTRING[1],19) ;

SHOWMSG (2,CONCAT (*TIMESTAMP = *,DISPLAYSTRING)) ;

SHOWLINE (INPUTLINE,CLEAR) ;
WITH PASSPARA[PARANUM] DO
BEGIN
PASSTIME:=CURRENTTIME;
FOR LINFCNT:=1 TO MAXLINE DO
BEGIN
GOTOXY (XLNUM,YLNUM) ; WRITE(LINECNT:2) ;
READLINE;
PASSLINE[LINECNT]J:=INPUTLINE;
SHOWLINE (INPUTLINE, SHOW) ;
END
END;
PARACNT:=PARANUN;
SHOWPROC (* READPARA', ERASE) ;
END; (* READPARA %)

PROCEDURE READPASS;
{* THIS PROCEDURE COLLECTS PASS DATA UNTIL EITHER THE %)
(* END OF PASS IS REACHED (READWORD WILL CAUSE EXIT), *)
(* OR UNTIL IT HAS COLLECTED THE MAXIMUM ALLOWABLE *x)
(* NOMBER OF DATA PARAGRAPHS - WHICHEVER OCCURS FIRST.¥*)
BEGIN (* READPASS ¥)

SHOWPROC (*READPASS', SHOW) ;

PARACNT:=0;

75

REPEAT
READPARA
UNTIL (PARACNT=MAXPARA);
UNLOCKPASS;
SHOWPROC (* READPASS', ERASE) 3
END; {* READPASS x)

PROCEDURE WRITEPASS; FORWARD; (* REFERENCE NEEDED IN OPENPASSFILE ¥*)

PROCEDURE OPENPASSFILE;

(*THIS PROCEDURE ATTEMPTS TO OPEN A NEW PASS FILE FOR SAVING CURRENT
PASS DATA IN., FILE SIZE IS COMPUTED, AND RCV.PARAM IS USED TO MAKE
A NEW FILE NAME UP. ATTEMPTS ARE THEN MADE TO PRE-EXTEND THIS
FILE TO ITS FULL SIZE ON AN OUTPUT DISK, GIVING LAST PREFERENCE TO
THE (USUALLY) BOOT DISKETTE IN DRIVE #4,., TIF ALL ATTEMPTS FAIL, THE
USER IS PROMPTED BY A HIGH-PITCHED BEEP-BEEP NOISE TO SPECIFY A
FORTHER COURSE OF ACTION FOR THE PROGRAM: EITHER TERMINATE, OR TRY
AGAIN TO FIND SPACE (IE. IF THE USER FIRST INSERTS A NEW DISKETTE).*

VAR PFBLOCKCNT,PREFERENCE,DUMMY: INTEGER;

REPLY:CHAR;
PFSIZE,PFDIGITS:STRING[5];
PFPARTIALNAME :STRING[19];

BEGIN (* OPENPASSFILE *)

SHOWPROC (YOPENFILE', SHOW) ;
STR (PFNOMBER, PFDIGITS) ;

(* THE FOLLOWING LINES DETERMINE THE REQUIRED FILE SIZE %)
(* IN BLOCKS OF THE OUTPUT PASS FILE., ", TEXT" FILES ARE¥)
(* A SPECIAL CASE BECAUSE THEY REQUIRE A 2-BLOCK HEADER ¥)
(* RECORD (WRITTEN BY OPERATING SYSTEM) AND THEY MUST *)
(* BE WRITTEN (CREATED) IN EVEN INCREMENTS OF 2-BLOCKS. ¥)

IF PPEXTENSION='.TEXT! THEN

PFBLOCKCNT :=2% (1+ (PARACNT*SIZEOF (PARARECORD) DIV 1024)) +2
ELSE

PFBLOCKCNT :=1+ (PARACNT*S IZEOF (PARARECORD) DIV 512) ;
STR(PFBLOCKCNT,PFSIZE) ;
PFPARTIALNAME:=CONCAT (PFROOTNAME,PFDIGITS, PFEXTENSION,

*[',PFSIZE,']');

SHOWMSG (1,'") ;

(* KE CAN USE THE SAME DISK AS LAST TIME ONLY IF IT WAS *)
(* NOT THE BOOT DRIVE (#4:). OTHERWISE, WE HAVE TO GO *)
(* SEARCHING FOR SPACE ELSEWHERE FIRST. *)

IF PFDEVICE<>'#4:" THEN
BEGIN
PFNAME:=CONCAT (PFDEVICE,PFPARTIALNAME)
SHOWMSG (0, CONCAT (*NEW PILE= *',PFNAME))
SHOWMSG (2,'%) ;
(*$I-*) REWRITE(PASSFILE,PFNAME); (*$I+%)
IF TORESULT=0 THEN

.
»
03
’

T6

BEGIN
SHOWPROC ('OPENFILE®, ERASE) ;
EXIT (OPENPASSFILE)
END;
END;

(* THE FOLLOWING LOGIC SEARCHES FOR AN OUTPUT DISK, IN *¥)
(* THE ORDER OF PRIORITY SPECIFIED WITHIN THE CASE BELOWX)

REPEAT
SHOWMSG (2,'[SEARCHING FOR NEW OUTPUT DISK]') ;
FOR PREFERENCE:=1 TO 6 DO
BEGIN
CASE PREFERENCE OF (* THESE ARE PASCAL DISKETTE UNITS *)
1: PFDEVICE:='#5:%; (* FIRST CHOICE *%)
2: PFDEVICE:='#11:'; (¥ SECOND CHOICE%¥)
3: PFDEVICE:='#12:%; (* THIRD CHOICE *)
4: PFDEVICE:='#9:'; (* FOURTH CHOICE%)
5: PFDEVICE:='#10:'; (* FIFTH CHOICE ¥)
6: PFDEVICE:=%#4:' (* LAST RESORT ONLY| *)
END; (* CASE ¥*)
PFNAME:=CONCAT (PFDEVICE,PFPARTIALNAME) ;
SHOWMSG (0, CONCAT (*NEW FILE= ',PFNAME));
(#*$I-%) REWRITE (PASSFILE,PFNAME) ; (*$I+%)
IF IORESULT=0 THEN
BEGIN
SHOWPROC ('OPENFILE', ERASE) ;
EXIT (OPENPASSFILE)
END
END;
SHOWMSG (1,"NO SPACE FOR OUTPUT FILEY) ;
SHOWNMSG (2, *<ESC>=KILL; <RETURN>=RETRY?) ;
UNITCLEAR(2) ;
WHILE NOT KEYPRESS DO

BEGIN
NOTE (45,25); (* BEEP AND ¥)
FOR DUMMY:z=1 TO 2000 DO (* DELAY| *¥)
END;

READ (KEYBOARD,REPLY) ;
SHOWMSG (1,'4) ;
UNTIL REPLY=CHR (27); (* ESCAPE CHARACTER ¥)
QUITREQUESTED:=TRUE;
SHOWPROC (*WRITEPAS',ERASE) ;
EXIT (WRITEPASS)
END; (* OPENPASSFILE ¥)

PROCEDURE CLOSEPASSFILE;
(* THIS ROUTINE CLOSES THE CURRENT PASSFILE AND UPDATES #)
(* RCV.PARAM.TEXT TO REFLECT THE NEXT PASS NUMBER TO BE %)
(* USED IN CREATING PASS FILES. %)
BEGIN (¥ CLOSEPASSFILE *)

SHOWPROC ("CLOSEFIL', SHO¥) ;

CLOSE (PASSFILE,LOCK) ;

77

SHOWMSG (1,'PASS FILE SUCCESSPULLY WRITTEN') ;
SHOWMSG (2, '[UPDATING RCV.PARAM.TEXT]'):
PPNUMBER:=PFNUMBER+PFINCREMENT;
REWRITE (PARAMFILE, ' #4:RCV.PARAN.TEXT[4]") ;
WRITELN (PARAMFILE, PFROOTNAME) ;
WRITELN (PARAMFILE, PFNUMBER,' *,PFINCREMENT) ;
WRITELN (PARAMFILE, PFEXTENSION) ;
CLOSE (PARAMFILE, LOCK) ;
SHOWMSG (0, CONCAT (*LAST PASS= ',PFNANE));
SHOWMSG (1,%7) ;
SHOWMSG (2,'")

END; (* CLOSEPASSFILE ¥)

PROCEDURE WRITEPASS;

(* THIS ROUTINE HANDLES THE (VERY) FAST TRANSFER OF A GROUP %)

(* OF DATA PARAGRAPHS (IE. THE CURRENT PASS) TO A PASS FILE ¥%)

{* ON DISKETTE. THE TWO PROCEDURES ABOVE AID IN THIS QUEST.*)

VAR PARANUM: INTEGER;

BEGIN (* WRITEPASS ¥%)
SHOWPROC (*WRITEPAS',SHOW) ;
RESETIRQ; (* DISABLE INTERRUPTS WHILE USING DISKETTE DRIVES *))
SHOWMODE (*DISKIO?) ;

OPENPASSFILE;
FOR PARANUM:=1 TO PARACNT DO
BEGIN
PASSFILE~:=PASSPARA[PARANOR];
PUT (PASSFILE)
END;
CLOSEPASSFILE;

INITPIA; (* ENABLE INTERRUPTS AGAIN %)
SHOWMODE ('ACTIVE?) ;
SHOWPROC (*WRITEPAS',ERASE);

END; (* WRITEPASS *)

PROCEDURE SETPARAMETERS;
(* THIS ROUTINE ATTEMPTS TO READ THE PASS FILE NAMING %)

(* PARAMETERS FROM #4:RCV.PARAM.TEXT. IF THE FILE *)
(* CANNOT BE OPENED, AN ERROR MESSAGE IS DISPLAYED *)
(* AND THE PROGRAM TERMINATES. %)
(* THE PARAMETERS EXPECTED ARE: (ON SEPARATE LINES) %)
(* 1. DEVICENAME: ROOTSUFFIX *)
(* 2. NEXTPASSNUMBER PASSNUMBERINCREMENT %)
(* 3. .EXTENSION %)
(* TYPICAL VALUES FOR THESE WOULD BE: %)
(* #5: PASS *)
(* 100 10 *)
(* .TEXT *)
BEGIN

SHOWPROC (*SETPARAM?',SHOW) ;
SHOWMODE (*DISKIO') ;

78

PFDEVICE:='#5:1*;
(*¥*$I-%*) RESET(PARAMFILE,*#4:RCV.PARAM.TEXT'); (*$I+%)
IF IORESULT<>0 THEN
BEGIN
SHOWMSG(1,"UNABLE TO OPEN #4:RCV,PARAM.TEXT?') ;
NOTE (35,50);
EXIT (PROGRANM)
END;
READLN(PARAMFILE,PFROOTNAME) ;
READLN (PARAMFILE,PFNUMBER,PFINCREMENT) ;
READLN (PARAMFILE,PFEXTENSION) ;
CLOSE (PRRANMNFILE,NORMAL) ;
SHOWPROC (*SETPARAM', ERASE) ;
END;

BEGIN (* RECEIVER ¥%)
FORMATSCREEN;
SHOWPROC (*RECEIVER',SHONW) ;

STR((2*MEMAVAIL) ,NEMUNUSED) ;
SHOWMSG (1,CONCAT (*MEMAVAIL AT STARTUP = ! ,MEMUNUSED,' BYTES'));

SETPARAMETERS;

INITPIA; (* ENABLE INTERRBRUPTS ¥*)
SHOWMODE (YACTIVE?Y) ;

INPUTLINE[8] =" ¥;
INPUTLINE[16]:=* ';
INPUTLINE[26]: =CHR (13) ;
SEQCODES :=1'5679ABDEF"';
ESCPRESSED :=FALSE;
QUITREQUESTED: =FALSE;

UNITCLEAR(2) ; (* CLEAR KEYBOARD TYPE-AHEAD BUFFER *)

REPEAT
SHOWMSG (1,'USER <ESC> COMMANDS: Q,S,U,K'):
READPASS;
IF PARACNT>0 THEN
WRITEPASS
UNTIL QUITREQUESTED;

SHOWMODE ('QUIT') ;
RESETIRQ;
SHOWPROC (*RECEIVER',ERASE) ;
PAGE (OUTPUT)
END. (* RECEIVER ¥)

79

II.2 SATLITE ROUTINES LISTING

+TITLE "SATLITE - SATELLITE INTERFACE ROUTINES®™
+ NOMACROLIST
+« NOPATCHLIST

MACRO TO POP 16-BIT RETURN ADDRESS:

ws

« MACRO POP
PLA

STA %1
PLA

STA %1+1
«ENDM

MACRO TO POUSH 16-BIT RETURN ADDRESS:

.

«MACRO PUSH

LDA 141
PHA

LDA %1
PHA

- ENDM

s MEMORY MAP FOR 6821 PERIPHERAL INTERFACE ADAPTER:

PIASLOT LEQU 1 sAPPLE SLOT NUMBER OF PARALLEL INTERFACE
PIABASE .EQU <PIASLOT*10>+0C080

PIADRA .EQU PIABASE+40 ;SIDE "A" DATA DIRECTION REGISTER

PIAPRA «EQU PIABASE+D ;SIDE "A"™ PERIPHERAL INTERFACE REGISTER
PIASRA «EQU PIABASE+1 ;SIDE "A"™ STATUS REGISTER

PIACRA « EQU PTIABASE+1 ;SIDE "A" COMMAND REGISTER

PIADRB «EQU PIABASE+#2 ;SIDE "B" DATA DIRECTION REGISTER

PIAPRB - EQU PIABASE+2 ;;SIDE "B" PERIPHERAL INTERFACE REGISTER
PIASRB «EQU PIABASE#+3 ;SIDE "B" STATUS REGISTER

PIACRB .EQU PIABASE+3 ;SIDE "B" COMMAND REGISTER

s SPECTIAL SYSTEM MONTITOR LOCATIONS:

IRQVECTR .EQU OFFFE ;s BASE ADDRESS OF IRQ/BRK INTERRUPT VECTOR
LANGCARD .EQU 0C080 ;BASE ADDRESS FOR SLOT#0 = LANGUAGE-CARD

7 PASCAL-SUPPLIED ZERO-PAGE TEMPORARY WORK AREAS:

RTADDR +EQU 00 ;SAVE AREA FOR PASCAL RETURN ADDRESS
STRING «EQU 02 ;USED FOR INDIRECT PARAM ADDRESS IN READPIA

; ROUTINE TO INITIALIZE PIA ABD BUFFER QUEUE:

« PROC INITPIA ;ROUTINE TO INITIALIZE PIA HANDLING

START

OLDIRQ
TRQADR

«DEF
« REF

SEI
POP

LDA
STA
STA
STA
STA
LDA
STA
LDA
STA

LDA
STA
LDA
STA

LDA
LDA

LDA
STA
LDA
STA

LDA
STA
LD2
STA

LDA

CLI

PUSH
RTS

« WORD
« WORD

80

OLDIRQ
QFWDPTR, OBKWPTR,QBYTE1,QBYTE2, IRQHANDL

;DISABLE INTERRUPTS UNTIL DONE

RTADDR ;POP RETURN ADDRESS FROM STACK

#00 sCLEAR ACCUMULATOR

PTACRA sREQUEST ACCESS TO DDRA

PIADRA +SET ALL BITS FOR INPUT

PIACEB sREQUEST ACCESS TO DDRB

PIADRB ;SET ALL BITS FOR INPUT

#05 ;LOAD IN COMMAND BITS

PIACRA sSET UP COMMARD REGISTER A

#04 ;LOAD IN COMMAND BITS

PIACRERB 3sSET UP COMMAND REGISTER B

#00 ; LOAD INITIAL VALUE FOR BACKWARD POINTER
OBKWPTR sSAVE BACKWARD POINTER

£#01 3;SET QFWDPRT TO ONE GREATER THAN QBKWPTR

QFWDPTR ;SAVE FORWARD POINTER

LANGCARD+0B ;REMOVE LANGUAGE-CARD WRITE-PROTECTION
LANGCARD+0B ;THIS INSTRUCTION HAS TO BE DONE TRICE

IBRQVECTR ;GET LSB OF CURRENT IRQ VECTOR
OLDIRQ sSAVE FOR INTERRUPT HANDLER
IRQVECTR+1;GET MSB OF CURENT IRQ VECTOR
OLDIRQ+1 ;SAVE FOR INTERRUPT HANDLER

IRQADR ;GET MSB OF IRQ ROUTINE ADDRESS
IRQVECTR ;STORE IN MSB OF IRQ VECTOR

IRQADR+1 ;GET LSB OF IRQ ROUTINE ADDRESS
IRQVECTR+1;STORE IN LSB OF IRQ VECTOR
LANGCARD+8;WRITE PROTECT THE LANGUAGE-CARD AGAIN

sENABLE INTERRUPTS AGAIN

RTADDR ;PUSH RETURN ADDRESS BACK ONTO STACK
s RETURN TO CALLING PROGRAM
0000 ;SAVE AREA FOR ORIGINAL MONITOR TIRQ VECTOR

TRQHANDL ;ADDRESS OF INTERRUPT ROUTINE, 16-BITS

:+ PROC TO DISABLE INTERRUPTS AND RESTORE ORIGINAL IRQ/BRK VECTOR

START

« PROC
«REF

SETI
LDA

STA
STA

RESETIRQ ;CLEANUP ROUTINE FOR END-OF-PROCESSING
OLDIRQ

;DISABLE INTERRUPTS
$00 ;CMD WORD FOR PIA = NO INTERRUPTS ALLOWED

PIACRA ;STORE IN A-SIDE COMMAND REGISTER
PTIACRB ;STORE IN B-SIDE COMMAND REGISTER

81

LDA LANGCARD+0B ;REMOVE LANGUAGE-CARD WRITE-PROTECTION
LDA LANGCARD+0B ;THIS INSTRUCTION HAS TO BE DONE TWICE

LDA OLDIRQ sGET LSB OF ORIGINAL IRQ ADDRESS
STA IRQVECTR s STORE IN IRQ VECTOR
LDA OLDIRQ+1 ;GET MSB OF ORIGINAL IRQ ADDRESS

STA IRQVECTR+1 ;STORE IN IRQ VECTOR
LDA LANGCARD#+8 ;;WRITE PROTECT THE LANGUAGE-CARD AGAIN

RTS s RETURN TO CALLING PROGRAN
s PROCEDURE TO RETURN THE NEXT "WORD™ FROM THE QUEUE:
. PROC GETWORD,1 ;PROCEDURE TO RETRIEVE INPUT WORDS

+DEF IRQHANDL,QBYTE1,Q0BYTE2,Q0BKWPTR,QFWDPTR
+«REF OLDIRQ

EMPTYCHR .EQU 20 ; EMPTY QUEUE INDICATOR CHARACTER = SPACE
START POP RTADDR +SAVE PASCAL RETURN ADDRESS
PoOP STRING ;SAVE ADDRESS OF STRING PARAMETER
LDY #00 ;USE Y AS STRING INDEX - SET TO "LENGTH" BYT
LDX QBEWPTR sGET BACKWARD POINTER FOR BUFFER QUEUE
INX sPOINT TO NEXT WORD IN BUFFER

cpX QFWDPTR sCHECK FOR EMPTY QUEUE
BNE GETBYTE1 ;BBANCH IF NOT EMPTY

UNDFFLOW LDA #00 sSET LENGTH OF STRING TO ZERO
STA @STRING,Y ;STORE A SPACE CHARACTER
BEQ EXITGET sALWAYS BRANCH (TO EXIT)

GETBYTE1 LDA #04 sSET LENGTH OF STRING TO 4 BYTES
STA @STRING,Y ;SAVE IN "LENGTH" BYTE
LDA QBYTE1,X ;GET FIRST HALF OF 16-BIT INPUT WORD

LSR | sSHIFT UPPER NIBBLE TO LEFT SIDE OF ACCUHM
LSR A
LSR A
LSR E:\
ORA #30 ;CONVERT TO ASCII
cup £32 s CHECK FOR NON-NUMERIC DIGIT
BMT ST1 s BRANCH IF DIGIT IN RANGE 0->9
CLC sCLEAR CARRY FOR ADD
ADC #07 ;s CONVERT DIGIT TO HEX CHAR A->F
ST1 INY s POINT AT FIRST BYTE OF STRING

STA @#STRING,Y ;SAVE AS FIRST CHARACTER IN STRING
LDA QBYTE1,X ;GET ORIGINAL VALUE AGAIN

AND $0F ;ISOLATE LOWER NIBBLE
ORA #30 sCORVERT TO ASCII
INY s POINT AT SECOND BYTE OF STRING

STA @STRING,Y ;SAVE AS SECOND CHARACTER IN STRING

GETBYTE2 LDA QBYTE2,X ;GET SECOND HALF OF 16-BIT INPUT WORD
LSR A sSHIFPT UPPER NIBBLE TO LEFT SIDE OF ACCUNM
LSR A

LSR
LSR
ORA
INY
STA
LDA
STX
AND
ORA
INY
STA

EXITGET POSH
RTS

A
A
$#30

DSTRING, Y
QBYTE2,X
QBKHPTR
$OF

£30

dSTRING, Y

RTADDR

QBYTE1 . BLOCK 256
QBYTE2 «BLOCK 256

QFWDPTR .BYTE
QBKWPTR .BYTE

s Wt we w0 o0

OVFLCHAR .EQU

IRQHANDL STA
PLA
PHA
AND
BEQ

NOTPIA LDA
JMP

NOTBRK LDA
BPL

TXA
PHA

LDX
cpPX
BNE

OVERRON 1LDA
DEX
STA
STA
BNE

SAVEDATA LDA

00
00

82

;sCONVERT TO ASCII

s POINT AT THIRD BYTE OF STRING

sSAVE AS THIRD CHARACTER IN STRING

s GET ORIGINAL VALUE AGAIN

;SAVE NEW QUEUE POINTER NOW THAT DATA IS SAF
s ISOLATE LOWER NIBBLE

;CONVERT TO ASCII

;s POINT AT FOURTH BYTE OF STRING

sSAVE AS FOURTH CHARACTER IN STRING

;PUSH PASCAL RETURN ADDRESS ON STACK
sRETURN TO CALLING PROGRAM

;QUEUE AREA FOR FIRST 8 BITS (15-8) OF INPUT
sQUEUE AREA FOR SECOND 8 BITS (7-0) OF INPUT
;POINTER TO FRONT OF QUEUE

; POINTER TO REAR OF QUEUE

INTERRUPT-DRIVEN ROUTINE TO BUFFER DATA FROM THE PIA.
TO MINIMIZE THE TIME REQUIRED TO SERVICE INTERRUPTS,
THTS ROUTINE HAS NOT BEEN CODED FOR RE-ENTRANCY.

AS A RESULT,

INTERRUPTS REMAIN DISABLED WHILE THIS

ROUTINE EXECUTES, AND

1
SAVEACC
#10
NOTBRK

SAVEACC
®O0LDIRQ

PIASRA
NOTPIA

QFWDPTR
QBKWPTR
SAVEDATA

$OVFLCHAR
OBYTE1,X
OBYTE2,X
EXITIRQ

PIAPRB

ARF RE-ENABLED BY THE RTI INSTRUCTION.,
s"UNUSED" SEQ CODE - USE AS OVERFLOW FLAG

;SAVE ACCUMULATOR

:GET STATUS REG FROM STACK

:RESTORE ONTO STACK

;TEST "B" BIT

:SKIP NEXT SECTION IP TRUF INTERRUPT

sRESTORE ACCUMULATOR CONTENTS
; BRANCH TO MONITOR'S IRQ/BRK ROUTINE

;WAS IRQ CAUSED BY PIA?
sIF NOT, BRANCH TO ORIGNIAL IRQ ROUTINE

sSAVE INDEX-X ON STACK

;SET UP QUEUE POINTER IN INDEX-X
;CHECK FOR FULL QUEUE
;s BRANCH IF QUEUE IS OK

;LOAD QUEUE OVERFLOW CHARACTER

;POINT AT PREVIOUS QUEUE ELEMENTS

;SAVE IN PLACE OF LAST 16-BITS IN QUEUE
; ALWAYS BRANCH

;GET BITS 15-8 OF INPUT FROM PIA-B

EXITIRQ

SAVEACC

83

EOR ¥0FF s INVERT ALL BITS

STA QBYTE1,X ;SAVE THEM AS QBYTE1

LDA PIAPRA sGET BITS 7-0 OF INPUT FROM PIA-A

EOR #0FF s INVERT ALL BITS

STA QBYTE2,X ;SAVE THEM AS QBYTE2

INX sADVANCE QUEUE POINTER TO NEXT POSITION
STX QFWDPTR ;SAVE NEW FORWARD POINTER FOR QUEUE
PLA ; RESTORE INDEX-X FROM STACK

TAX

Lpa SAVEACC s RESTORE ACCUMULATOR

RTI RETURN TO INTERRUPTED ROUTINE

.BYTE 0O ;s ACCUM SAVE AREA FOR INTERRUPT ROUTINE

« END

(***#*****************************#***#*

L R R R SR B B R R AR R A EE R R BE R EE EE CBE EE O NE AR R BE EE B CEE EE R R R CRE R R B OB EE IR 2R N NE N BN

PROGRAM: TALK

WRITTEN: 19-APR-82 BY MARK S LORD
THIS PROGRAM ALLOWS COMMUNICATIONS
BETWEEN THE APPLE COMPUTER AND AN
OUTSIDE SOURCE, VIA THE SERIAL I/O
INTERFACE CARD IN APPLE SLOT #2.

- - ———— - - — - - D - . - -

THREE DIFFERENT MODES OF OPERATION
CAN BE USED AS SELECTED FRONM THE
PROGRAM'S MAIN NENU:

D)UMB TERMINAL MODE:

THIS OPTION CAUSES THE APPLE
TO BEHAVE AS IF IT WERE A "DUMBY™
ASCII TERMINAL, OPERATING IN
HALF-DUPLEX MODE. CHARACTERS
TYPED AT THE KEYBOARD ARE ECHOED
LOCALLY AND ALSO SENT OUT VIA
THE SERTIAL INTERFACE; CHARACTERS
RECEIVED FBOM THE INPUT SIDE OF
THE ACIA ARE DISPLAYED ON THE
APPLE MONITOR AS THEY ARE
RECEIVED. SINCE LOCAL I/0 IS
DONE USING THE PASCAL READ/WRITE
PROCEDURES, NOT ALL CHARACTERS
TYPED AT THE KEYBOARD WILL BE
PROCESSED BY THIS PROGRAM. FOR
EXAMPLE, THE CTRL-~A, CTRL-S... &
IN ADDITION, THIS PROGRAM ALSO
USES ITS OWN SPECIALLY DEFINED
KEYS: <CTRL-~C> RETURNS USER TO
MAIN PROGRAM MENU,
<ESC> FUNCTIONS THE SAME
AS A "BREAK" KEY.
<RIGHTARROW> ACTS AS A
VSPC CHARACTER
KEY.
<LEFTARROW> SENDS A TAB
CHARACTER TO VSPC,

T)RANSFER TEXT MODE:

THIS OPTION IS SPECIFICALLY FOR
USE WITH VSPC, AND THUS ASSUMES
THAT THE USER HAS PREVIOUSLY
SIGNED ONTO VSPC, AND THAT THE
VSPC "TAPE"™ COMMAND HAS BEEN

O H % e 3t N I 3 e 3 b S 3 % e 3 3 3 I b 3 g6 6 B 3 H O O I N H % N B

84

PREVIOUSLY ISSUED (EVEN THOUGH IT*
IS ALSO SENT AGAIN BY THIS
PROGRAM SECTION). THE NAME OF AN
APPLE ".TEXT" FILE IS REQUESTED
AND THEN THE NAME FOR A CORRES-
PONDING VSPC WORKSPACE TO WHICH
THE CONTENTS OF THAT FILE ARE TO
BE COPIED., THE PROGRAHM THEN
PROCEEDS WITH THE VSPC COMMANDS
NECESSARY TO TRANSFER THE FILE
LINE-BY-LINE TO THE VSPC WS.
NOTE THAT "DUMB TERMINAL™ MODE
ARD ALL OF ITS OPTIONS ARE ALSO 0%
IN EFFECT THROUGHO+T THE TRANSFER*
SO THAT THE <ESC> AND <CTRL-C> *
KEYS MAY BE USED TO PREMATURELY
TERMINATE THE TRANSFER.

LR B B R N B B AR A AN

*
*
*

P) ASSFILE TRANSFERING: *

THIS OPTION IS VERY SIMILAR TO *
THE OPTION ABOVE IN ALL RESPECTS *
EXCEPT THAT IT IS INTENDED TO *
STREAMLINE THE TRANSFER OF THE *
SPECTALLY FORMATTED "PASS FILES" *
PRODUCED BY THE RECEIVER PROGRAM.*
THE USER IS PROMPTED FOR A *
ROOTNAME, WHICH CONSISTS OF THE *
NON-NUMERIC PORTIONS OF THE PULL *
PASSPILE NAME. FOR EXAMPLE, IF *
THE PASSFILES WERE NAMED USING *
THE STANDARD CHARACTER SEQUENCE: *

#5:PASS340.TEXT *

$5:PASS350. TRXT *

#5:PASS370.TEXT *
THEN THE APPROPRIATE ROOTNAME *
WOULD BE: #5:PASS.TEXT *
THE USER IS THEN PROMPTED FOR *
THE SEQUENCE NUMBER RANGE FOR *
THESE FILES, THUS ALLOWING *
SEVERAL PASSES TO BE TRANSFERED, ¥
AND FINALLY, THE USER IS ASKED *
FOR A PASS NUMBER INCREMENT. IF *
THE FILES WERE NAMED AS ABOVE, *
THEN THESE VALUES WOULD BE *

340, 370, 10 *
NOTE THAT ALTHOUGH PASS380.TEXT *
DOES NOT EXIST, THIS WILL CAUSE *
NO PROBLEMS SINCE THE PROGRAM *
WILL SIMPLY PRINT A MESSAGE TO %
THIS EPFECT AND THEN CONTINUE *
ONWARD. *

Tk kkkkokkkkkkhkhkkkkkkkkkkkhkkkkikkkkkkkkk

PROGRAM TALK;

USES APPLESTUFF,PEEKPOKE;

% % I W I RO R e N I N e B W 3t 3 e e K M S JE W e W W H O H OH o H oN ¥

)

85

86

CONST ACIASTATUS =-16210; (* ADDRESS OF ACIA STATUS REG. ¥*)

ACIADATA =-16209; (* ADDRESS OF ACIA DATA REG. *)
ACIABREAK 96; (* ACIA COMMAND FOR "BREAK™® *)
ACTIARESET 3; (¥ ACIA COMMAND FOR CHIP RESET x)

ACIASPEED = 17; (* ACIA SPEED SELECT = 300 BAUD¥)
ESCAPE = 27; (* ASCII CODE FOR <ESC> CHAR., *)
LINEFEED = 10; (* ASCII CODE FOR <LF> CHAR. *)
LEFTARROW = 8; (* CODE POR SPECIAL APPLE KEY ¥)
RIGHTARROW = 21; (* CODE POR SPECIAL APPLE KEY ¥)
CTRLC = 3; (* ASCII CODE FOR CONTROL~C *)
DC1 = 17; (* ASCII CODE FOR DC1 CHAR., *)

TYPE LONGSTRING
TYPE DATALINE

STRING[255];
PACKED ARRAY[1..26] OF CHAR;
TIMESTAMP PACKED ARRAY[1..20] OF CHAR;
PARARECORD = RECORD

PASSTIME:TIMESTAMP;

PASSLINE:ARRAY[1..25] OF DATALINE

END;

[T 1

VAR KBCHR :CHAR;
KBVAL, REPLYVAL :INTEGER;
QUITREQUESTED :BOOLEAN;

ROOTNAME,PASSNAME, NUMSTRING,VSPCNAME,OUTSTRING:STRING

PASSPARA :PARARECORD;

PASSFILE :FILE OF PARARECORD;

PROCEDURE SCANACIA;
(**#************************************
* THIS ROUTINE SCANS THE ACIA FOR *
INCOMING DATA. IF DATA IS PRESENT, *
IT IS DISPLAYED ON THE APPLE MONITOR%*
AND THE ASCII NUMERIC VALUE IS *
PLACED IN "REPLYCHR"™. OTHERWISE, *
"REPLYCHR" IS SET TO ZERO. *
***************************************)
BEGIN (* SCANACIA ¥)
IF ODD (PEEK (ACIASTATUS)) THREN
BEGIN
REPLYVAL:=PEEK (ACTADATA) ;
WRITE (CHR (REPLYVAL))
END
ELSE
REPLYVAL:=0;
END; (* SCANACIA *)

* % O R

PROCEDURE SENDACIA (OUTVALUE: INTEGER);
(% R Aok oKk K Rk e e ook ok ok ok ok dokok ok ook koK Kok kK

* THIS ROUTINE WILL TRANSMIT A BYTE *x
* OUT THROUGH THE ACIA. IT WAITS *

v

87

* UNTIL THE "READY" FLAG OF THE ACIA *
* IS SET, AND THEN TRANSFERS THE DATA *
* BYTE SPECIFIED BY ITS ASCII NUMERIC *
* YALUE IN "OUTVALUE". *
¥k 3 3 3 %k 3 ok ok ok k3 K kK ook ok kK R ok R ok ok R ok ok ok kokok ok ok X

VAR STATUS:INTEGER;

BEGIN (* SENDACIA *)

REPEAT
STATUS:=PEEK (ACIASTATUS) DIV 2
UNTIL ODD(STATUS);
POKE (ACIADATA,OUTVALUE)
END; (* SENDACIA *)

)

PROCEDURE PROCESSCOMMAND; FORWARD;

PROCEDURE SCANKEYBOARD;
(Fxkkkrirkk kR Rk kR kR Rk kR Rk Rk kR kR RRERER KRR

* THIS ROUTINE CHECKS TO SEE IF ANY *
* MORE KEYBOARD INPUT HAS BEEN ENTERED*
* BY THE USER., 1IF S0, IT IS PROCESSED*
* AS DESCRIBED AT THE TOP OF THIS *
* PROGRAM IN THE D)DUMB TERMINAL CMD. *
EREoRERR R kR Rk kR kR kR kR Rk Rk kKRR KRR KK K)
BEGIN (* SCANKEYBOARD ¥*)
IF KEYPRESS THEN
BEGIN
READ (KEYBOARD, KBCHR) ;
IF EOLN(KEYBOARD) THEN
KBCHR:=CHR {13) ;
KBVAL:=0ORD (KBCHR) ;
IF KBVAL IN ([ESCAPE,CTRLC,LEFTARROW,RIGHTARROW] THEN
CASE KBVAL OF
ESCAPE:
BEGIN
POKE (ACIASTATUS, ACIABREAK) ;
NOTE (40,25) ;
POKE (ACIASTATUS,ACIASPEED)
END;
CTRLC:
BEGIN
WRITELN (CHR(7) , *<CTRL-C>") ;
EXIT (PROCESSCOMMAND)
END;
LEFTARROW:
BEGIN
WRITE(KBCHR,' *',KBCHR) ;
SENDACTA (KBVAL) ;
SENDACTIA (LINEFEED)
END;
RIGHTARROW:
BEGIN
KBCHR:=CHR(9) ;

WRITE (KBCHR) ;
SENDACIA (9)

END;
END (* CASE ¥)
ELSE
BEGIN
WRITE (KBCHR) ;
SENDACIA (KBVAL)
END
END;

END; (* SCANKEYBOARD ¥)

PROCEDURE DUMBTERMINAL;
(R ook Ok R Ak R R Rk KoK Rk KOO R ROk R KR KRR R X
* THIS ROUTINE ALLOWS DIRECT USER *
¥ COMMUNICATIONS WITH A REMOTE DEVICE *
* BY CAUSING THE APPLE TO BEHAVE AS A *
* NON-INTELLIGENT ASYNC ASCII TERMINAL*
AR R Aok ok ok dOROR K OK R KoK R Ok dOR KK R R Rk Rk k)
BEGIN {* DUMBTERMINAL ¥)
WRITELN (*== DUMB TERMINAL MODE ==');
WRITELN;
WRITELN{(*== HIT <CTRL-C> TO QUIT ==1);
WRITELN (CHR (7)) ;
KBVAL:=0;
REPEAT
SCANACIA;
SCANKEYBOARD
UNTIL KBVAL=CTRLC;
END; (* DUMBTERMINAL ¥)

PROCEDURE XMITVSPC (MESSAGE: LONGSTRING) ;
(AR HOR R ROR RO K R K OOk ok Kk ok K ok
* THIS ROUTINE USES “SENDACIA®™ TO
TRANSMIT A LINE OF CHARACTERS TO
VSPC. A CARRIAGE-RETURN IS SENT AT
THE END OF THE LINE, AND ALL CHARS
SENT ARE ALSO ECHOED ON THE APPLE?®S
MONITOR AS THEY ARE TRANSMITTED. *
ok AR KOOk R R OOk R ROk R R R R Rk R R Rk X)
VAR REPLY:CHAR;
I:INTEGER;
BEGIN (* XMITVSPC *)
MESSAGE:=CONCAT (MESSAGE,*' *);
MESSAGE[LENGTH (MESSAGE)]2=CHR (13);
I:=0;
REPEAT
I:=1I+1;
SCANKEYBOARD;
SCANACIA;
WRITE (MESSAGE[I]);
SENDACIA (ORD(MESSAGE[I]))

#* * O H *
* % O H

88

89

UNTIL MESSAGE[I]=CHR (13);
REPEAT
SCANKEYBOARD;
SCANACIA
UNTIL REPLYVAL=DC1;
END; (* XMITYSPC *)

PROCEDURE SENDPASS;
(#************************#*************
* THIS ROUTINE HANDLES THE ACTUAL *
TRANSFER OF A PRE-OPENED PASS FILE ¥
TO VsSPpPC. A VSPC WORKSPACE IS NAMED %
AND SAVED FOR THE PASS, THE NAME *
USED BEING THE SAME AS THAT OF THE =
*
*
*

#* 3 * # #

PASS FILE, LESS DEVICE NAME AND
* EXTENSION OF COURSE.
e ok ol de ok ok ke sl e ik ok ok ok ok ko kok ok ko ok ko k ok ok kkkkk)
VAR DOTPOS,LINENUM:INTEGER;
BEGIN (* SENDPASS)
XMITVSPC (*CLEAR");
VSPCNAME:=PASSNAME;
DELETE (VSPCNAME, 1,P0S (*:',VSPCNAME)) ;
DOTPOS:=POS('.",VSPCNAME) ;
DELETE (VSPCNAME, DOTPOS, (1+LENGTH (VSPCNAME) -DOTPOS)) ;
XMITVSPC (CONCAT (*NAME ', VSPCNAME)) ;
XMITVSPC (*INPUT 1 1) ;
REPEAT
WITH PASSPARA DO
BEGIN
PASSPARA:=PASSFILE~;
OUTSTRING:=* '
MOVELEFT (PASSTIME[1],0UTSTRING[1], 19);
XMITVSPC (OUTSTRING) ;
OUTSTRING:=" '
FOR LINENUM:=1 TO 25 DO
BEGIN
MOVELEFT (PASSLINE[LINENUM], OUTSTRING[1],25) ;
XMITVSPC (OUTSTRING)
END;
GET (PASSFILE)
END
UNTIL EOF (PASSFILE);
XMITVYSPC('") ;
XMITVSPC (CONCAT (*SAVE ',VSPCNANE)) ;
CLOSE (PASSFILE) ;
END; (* SENDPASS *)

PROCEDURE PASSTRANSFER;
(*************************#*****#***t**#
* THIS ROUTINE SERVES AS THE DRIVER *
* FOR THE SENDPASS ROUTINE. IT PROMPTS*
* THE USER FOR THE PASS FILE RANGES *

90

AND THEN LOOPS, CALLING SENDPASS TO *
TRANSFER INDIVIDUAL PASS FILES. OPEN*
ERRORS ARE LOGGED ON THE SCREEN FOR *
THE USER TO OBSERVE AS THE PROGRAM *
* CONTINUES WITH THE NEXT FILE IN SEQ.*
ook ROk A R K KR R KoK K ROk Rk R oK K R K ROk)
VAR DOTPOS,IOERR,PASSNUM,LASTNUM,INCREMENT:INTEGER;
BEGIN (* PASSTRANRSFER ¥)
WRITELN('== PASS FILE TRANSFER PROCEDURE ==1);
WRITELN;
WRITELN(*== ENTER ROOT-NAME (DEV:SUFFIX,EXT) ==9);
(*3I-%)
REPEAT
REPEAT
WRITE ('== ENTER ==> '),
READLN (ROOTNAME) ;
IP LENGTH(ROOTNAME)=0 THEN
EXIT (PASSTRANSFER) ;
DOTBOS:=POS(?."',RO0TNANME)
UNTIL NOT(DOTPOS IN [O,1,LENGTH (ROOTNAME)]);
RESET (PASSFILE, ROOTNAME) ;
IOERR:=TORESULT;
CLOSE (PASSFILE)
UNTIL (IOERRK>7); (* WAIT FOR VALID FILE SPEC %)
WRITELN;
WRITFLN('== ENTER PASS NUMBER RANGE ==%);
PASSNUM:=0;
REPEAT
WRITE('== ENTER FIRST NUMBER ==> ') ;
READLN (PASSNUM)
UNTIL (IORESULT=0) AND (PASSNUN>=0);
LASTNUNM:=0;

* % #

REPEAT
WRITE (*== ENTER LAST NUMBER ===> ¢);
READLN (LASTNUM)

UNTIL (IORESULT=0) AND (LASTNUM>=0);
INCREMENT:=0;
REPEAT
WRITE('== ENTER INCREMENT =====> %) ;
READLN (INCREMENT)
UNTIL (IORESULT=0) AND (INCREMENT>O);
(*$T+%)
XMITVSPC{'TAPE') ;
XMITVSPC('?);
REPEAT
SCANACIA;
SCANKEYBOARD;
PASSNAME:=ROOTNAME;
STR (PASSNUM, NUNSTRING) ;
INSERT (NUMSTRING, PASSNAME, DOTPOS) ;
{(¥*$T-*) RESET (PASSFILE,PASSNAME); (*$T+%)
TIOERR:=IORESULT;
HRITE ('== ',PASSNAME,' - *);
IF IOERR=0 THEN

BEGIN
WRITELN (* NOW BEING SENT ==');
SENDPASS;
CLOSE (PASSFILE)
END
ELSE
IF IOERR=10 THEN
WRITELN (' NOT FOUND ==1)
ELSE
WRITELN (CHR(7),'OPEN ERR#',IOERR,' ==1);
PASSNUM:=PASSNUM+INCREMENT
UNTIL PASSNUMDLASTNUM;
END; (* PASSTRANSFER ¥)

PROCEDURE TEXTTRANSFER;
{ ok ok okok ok ook OOk ok ok R ok Rkl kR ok ROk Kok ok
* THIS ROUTINE HANDLES TRANSFERING OF x*
NORMAL TEXT FILES TO VSPC., THE USER *
IS PROMPTED FOR A FILE SPECIFICATION*
IN WHICH THE ",.TEXT" IS OPTIONAL, *
AND THEN PROCEEDS TO TRANSFER THE *
* FILE TO A USER-SPECIFIED VSPC W#sS. *
K AR R AOK KRR OIOR KR R OR KRR R R R R R R R KR)
VAR TEXTNAME,VSPCNAME:STRING;
TEXTLINE: LONGSTRING;
ICERR:INTEGER;
TEXTFILE:TEXT;
BEGIN (* TEXTTRANSFFR ¥*)
WRITELN{'== PROCEDURE TO TRANSFER TEXT FILES ==1%);
WRITELN;
WRITELN('== ENTER NAME OF FILE ==%);
REPEAT
WRITE('== FILE NAME ==> %);
READLN {TEXTNAHME) ;
IF LENGTH(TEXTNAME)=0 THEN
EXIT{TEXTTRANSFER) ;
(*3I-%)
RESPET (TEXTFILE, TEXTNAME) ;
IOERR:=TORESULT;
IF IORRR=10 THEN
BEGIN
INSERT(* . TEXT? ,TEXTNAME, (1+LENGTH (TEXTNAME))) ;
RESET (TEXTFILE, TEXTNAME) ;
IOERR:=IORESULT
END;
(¥$T+%)
IF IOERR<>0 THEN
BEGIN
IF IOERR=10 THEN
WRITELN{'FILE NOT FOUND - RE-ENTER?)
ELSE
WRITELN('OPEN ERROR #*',IOERR,* - RE-ENTER?')

* O B R

END

91

UNTIL IOERR=0;
WRITELN;

HRITELN('== ENTER NAME FOR VSPC WORKSPACE ==');

WRITE (== WORKSPACE NAME ==> ¥);
READLN {VSPCNAME) ;
IF O=LENGTH (VSPCNAME) THEN
BEGIN
CLOSE (TEXTFILE) ;
EXIT (TEXTTRANSFER)
END;
XMITYSPC ("TAPE?) ;
XMITVSPC('");
XMITVSPC (*CLEAR?);
XMITVSPC (CONCAT(*NAME ',VSPCNAME)) ;
XMITVSPC (* INPUT 1 1) ;
IF NOT EOF (TEXTFILE) THEN
REPEAT
READLN (TEXTFILE, TEXTLINE) ;
IF LENGTH(TEXTLINE)=0 THEN
TEXTLINE:z=! *;
XMITVSPC (TEXTLINE)
UNTIL EOF (TEXTFILE);
XMITVSPC('*);
XMITVSPC (CONCAT(*SAVE *,VSPCNAME)) ;
CLOSE (TEXTFILE) ;
END; (* TEXTTRANSFER ¥)

PROCEDURE PROCESSCOMMAND;
(*#***************#***#***#*************
THIS ROUTINE SERVES AS A COMMON *
INTERFACE BETWEEN THE MAIN PROGRAN *
AND THE COMMAND-PROCESSING PROC'S, *
IT'S PRESENCE IS REQUIRED IN ORDER *
*
E
*
*

#*

TO ALLOW SCANKEYBOARD TO HAVE A
COMMON EXIT POINT FOR HANDLING A
USER <CTRL-C> COMMAND.
RO R K KKK RO R RO KOO R KRR R R ROk KK k)
BEGIN (* PROCESSCOMMAND *)
CASE KBCHR OF
'Q':QUITREQUESTED:=TRUE;
*DY: DUMBTERMINAL;
'P?:PASSTRANSFER;
'TY:TEXTTRANSFER;
END; (* CASE %)
END; (* PROCESSCOMMAND *)

LR BE BE B

R e L L
* THE MAIN ROUTINE (BELOW) HANDLES *
¥ GENERAL INTIALIZATION AND THE %
* PROMPTING FOR, AND INPUT OF, USER *

* COMMAND OPTIONS FROM ITS MAIN MENU. *
ook ok kok R kok fok ook ook KOOk R Rk R KRk Rk R Kok ok Kk k)

92

BEGIN

(* TALK *)

QUITREQUESTED: =FALSE;
PAGE(OUTPUT) ;

POKE (ACIASTATUS,ACIARESET) ;
POKE (ACIASTATUS,ACTIASPEED) ;
REPEAT

WRITELN (*== SERIAL COMMUNICATIONS PROGRAM ==1);

WRITELN;

WRITELN ('== COMMAND MODE ==1);
WRITELN:

WRITELN (*OPTIONS ARE:");

WRITELN(' D = DUMB TERMINAL MODE');

WRITELN(* P = TRANSFER SATELLITE PASS FILES');
WRITELN(' T = TRANSPER ANY TEXT FILE '
WRITELN(* Q = QUIT');

WRITELN;

WRITE ('== ENTER COMMAND ==>)
REPEAT
WRITE (CHR(7)) ;
READ (KEYBOARD, KBCHR)
UNTIL KBCHR IN ['D*,'P?,'T4,9Q%];
PAGE (OUTPUT) ;
PROCESSCOMMAND;
WRITELN;
WRITELN;

UNTIL QUITREQUESTED;
PAGE (OUTPUT) ;

END.

(* TALK *)

93

94y

PROGRAM STARTUP;
USES APPLESTUFF;
TYPE SYSTEMDATE = PACKED RECORD
MONTH: 1..12; (¥* 4 BITS %)
DAY: 1..31; (* 5 BITS *)
YEAR: 0..99 (* 7 BITS ¥%)
END; (* =16 BITS TOTAL ¥)
VAR BLOCK:ARRAY[0..255] OF SYSTEMDATE;
OLDBLOCK: SYSTEMDATE;
DATEANDTIME: PACKED ARRAY[1..19] OF CHAR;
PROCEDURE READTIME (VAR PC19) ; EXTERNAL;
BEGIN

(* NOW UPDATE THE "SYSTEM DATEY" - STORED IN BLOCK 2 OF BOOT DISK

(*3R-*)
UNITREAD (4,BLOCK,512,2) ;
OLDBLOCKz=BLOCK[10 };
WITH BLOCK[10] DO
BEGIN
READTIME (DATEANDTIME) ;

YEAR :=(ORD(DATEANDTIME[1])-48) *10+ORD (DATEANDTIME[2]) -48;
MONTH:= (ORD (DATEANDTIME[4])-48) *10+ORD (DATEANDTINE[5]) -48;
DAY := (ORD (DATEANDTIME[7])-48)*10+0RD (DATEANDTIME[8]) -48;

END;
IF BLOCK[10]J<>OLDBLOCK THEN
BEGIN
UNITWRITE (4, BLOCK,512,2) ;
GOTOXY (0,10) ;
WRITELN (*PLEASE TYPE I (NITIALIZE TO RESET DATE');
WRITE (CHR(7) ,CHR(7),CHR(7));
END
(*$R§*)
ELSE
BEGIN
GOTOXY (0,8) ;
WRITE(' * THE CURRENT *);
NOTE (24,90) ;
WRITE (*DATE, ') ;
NOTE (26,90) ;
WRITE(*DAY *);
NOTE (22,90) ;
WRITELN('AND TIME IS: *v);
NOTE (10,90) ;
WRITELN;
WRITELN;
WRITELN (? * % % YY/MM/DD-D HH:MM:SS * % %)
WRITELN;
WRITELN;
READTIME (DATEANDTINME) ;

*

END.

WRITELN ('
NOTE (17, 150) ;
END;

*

x

', DATEANDTIME,"

* %03

95

(*¥$S+%)
UNIT PEEKPOKE; INTRINSIC CODE 23;

INTERFACE
FUNCTION PEEK (ADDR:INTEGER):INTEGER;
PROCEDURE POKE (ADDR, DATA:INTEGER);

(FFRE IR R KRR KRR Ok R Rk Rk
NOTE THAT PARAMETERS Y"ADDER"™ AND *
"DATA™ SHOULD BE INTEGER VALUES.*
IN THE FOLLOWING RANGES: *

*

-32767 <= ADDR <= #32767
0 <= DATA <= +255

CONVERT "DATA"™ TO MOD 256

BEFORE IT IS POKED.

*
*
*
*
*
*
*
*
*
ko kkkkkk kxR gk ke kkkkkkkkEkkkEk %k)

*
*
*x
*
THE POKE FUNCTION WILL ALWAYS *
*
*
x

iMplementation

type byte
dirty

tecord
case boolean of
true : (int:integer);
false: (ptr:-~BYTE) ;
END;

FUNCTION PEEK;
VAR TRICK:DIRTY;
BEGIN
TRICK, INT:=ADDR;
PEEK:=TRICK.PTR-~[0]
END;

PROCEDURE POKE;

VAR TRICK:DIRTY;

BEGIN
DATA:=ABS (DATA MOD 256) ;
TRICK.INT:=ADDR;
TRICK.PTR-~[0]:=DATA

END;

packed array [0..1] of 0..255;

96

BEGIN
(¥ DUMMY STARTUP INITIALIZATION FOR UNIT *)
END.

97

38

II.6 READTIME ROUTINE LISTING

-.TITLE "READTIMNE -
« NOMACROLIST

- NOPATCHLIST

PROCEDURE TO RETURN DATE & TIME"®

MACRO TO POP 16-BIT RETURN ADDRESS:

LX)

« MACRO POP
PLA

STA %1
PLA

STA %1+ 1
.ENDHM

; MACRO TO PUSH 16-BIT RETURN ADDRESS:

-MACRO PUSH

LDA %141

PHA

LDAa %1

PHA

« ENDHM
SLOTNUM . EQU &4 ;SLOT NUMBER FOR CLOCK BOARD
CLOCK .EQD <10*SLOTNUM>+0C080 ;BASE ADDRESS FOR CLOCK CARD
BUFFER .EQU 00 ;PAGE ZERO WORD FOR PARAMETER ADDRESS
RTADDR .EQU 02 sTEMPORARY STORAGE FOR RETURN ADDRESS

PROCEDURE TO READ DATE AND TIME FROM CLOCK IN SLOT #SLOTNUM:

PARAMETER MUST BE ADDRESS OF 19-BYTE AREA TO RECEIVE THE DATE AND
TIME. OUTPUT IS FORMATTED AS FOLLOWS: YY/MM/DD-W¥ HH: MM:SS
YY=YEAR,MM=MONTH,DD=DAY, W=WEEKDAY,HH=HOUR, MM=MINUTE,SS=SECOND

. PROC READTIME,1 ;PROC TO BETURN DATE § TIME

POP RTADDR ;SAVE PASCAL RETURN ADDRESS

POP BUFFER +STORE PARAMETER ADDRESS IN PAGE ZERO

LDA $#30 sAPPLY TIMER-HOLD AND CHIP SELECT

STA CLOCK+1

LDX #40 ;SET UP, THEN EXECUTE A 200 MSEC DELAY
DELAY DEX

BPL DELAY

LDX $0C sSET INDEX TO POINT AT YEAR

LDY #00 sSET BUFFER INDEX TO FIRST CHAR
NEXTDIGT LDA FILLCHAR,X ;GET NEXT INSERTION CHARACTER

BEQ GETDIGIT sCHECK FOR NULL CHARACTER

99

STA ®BUFFER,Y ;SAVE IN OUTPUT BUFFER

INY ; INCREMENT BUFFER POINTER
GETDIGIT TXA sCOPY DIGIT INDEX INTO ACCUMULATOR

DRA #30 ;INSERT A "3" IN UPPER 4 BITS

STA CLOCK+1 yREQUEST DIGIT

LDA CLOCK ;GET THE DIGIT

LDA CLOCK s {INSURE PROPER TIMING BY

LDA CLOCK ; DOING THREE CHIP READS)

AND BCDMASK, X ;GET RID OF EXCESS BITS

ORA #30 sCONVERT TO ASCII BCD DIGIT

STA DdBUFFER,Y ;SAVE IN BUFFER

INY sINCREMENT BUFFER POINTER

DEX sDECREMENT DIGIT INDEX

BPL NEXTDIGT ;LOOP BACK FOR NEXT DIGIT

LDA #2F sGET CODE TO RELEASE HOLD

STA CLOCK+1 ;ISSUE NOHOLD REQUEST

PUSH RTADDR ;GET PASCAL RETURN ADDRESS

RTS s RETURN TO CALLING PROGRAM

; THE FOLLOWING BIT PATTERNS ARE "ANDED" WITH EACH BCD DIGIT
BCDMASK .BYTE OF,0F,0F,07,0F,03,07,0F,03,0F,01,0F,0F
; THE FOLLOWING (NON-ZERO ONLY) BYTES ARE INSERTED BEFORE DIGITS
FILLCHAR .BYTE 00,32,00,3a,00,20,2D,00,2F,00,2F,00,00

« END

BIBLIOGRAPHY

R6500 Microcomputer System Programming Manual. Anahein,
California: Rockwell International, 1979.

Apple II Communications Interface Card: 1Installation and
Operating Manual., Cupertino, California: Apple Computer
Inc., 1978,

Owner's Manual for Model 7720 Parallel Interface.
Sunnyvale, California: California Computer Systenms,
1980.

Sunnyvale, California: California Computer Systenms,
1980.

and Operators Guide Chicago, IL: Bell & Hovell
o Visual Products Division, 1981,

Apple Pascal Lanquage Reference Manual. Cupertino,
California: Apple Computer Inc., 1980.

Apple Pascal Operating System Reference Manual. Cupertino,

_—— e - ——

California: Apple Computer Inc., 1980.

Apple II Reference Manual. Cupertino, California: Apple
Computer Inc., 1981.

Stansell, Thomas A. The TRANSIT Navigation Satellite

System. Torrance, California: Magnavox Advanced
Products Division, 1978,

Welsh, Jim, & Elder, John; Hoare, C. A. R. (Editor).
Introduction to PASCAL. London: Prentice-Hall
International Inc., 1979,

Tonkins, Ross M, A Guided Tou

ur
Libraries. California: BYTE

— i s . e o e e

Feb/1982.

of Apple PASCAL
Publ ions I

- 100 -

