
A DIGITAL DATA RECORDER
AND TRANSFER DEVICE FOR

THE MARCONI 722B
SATELLITE NAVIGATION

RECEIVER

MARK STEVEN LORD

April 1982

TECHNICAL REPORT
NO. 88

PREFACE

In order to make our extensive series of technical reports more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.

A DIGITAL DATA RECORDER AND TRANSFER DEVICE

FOB THE MARCONI 7228 SATELLITE NAVIGATION RECEIVER

by

~ark St~ven Lord

for

Fourth Year Undergraduate Project

School of Computer Science

Frcd~ricton, New Brunswick, 1982

Mark Steven Lord, 1982

Reprinted July 1985

ABSTRACT

Dr. David Wells of the Department of surveying EnginPering

uses a MARCONI 7228 Satellite Navigation Receiver in his

research. At present, data output from this device is

recorded using a paper tape punch. The paper tape produced

from the punch is then fed into the IBM 3032 at the U.N.B.

Computing Center for calculations and analysis. Needless to

say, this method has proved to be somewhat awkward and cum­

bersome.

The aim of this project is to provide a convenient alter­

native to the current system, using a micro-computer to col­

lect data directly from the satellite receiver, and then

transfer this data to the IBM 3032 through the VSPC online

terminal system.

- ii -

ACKNOWLEDGEMENTS

I would like to extend a special "Thank-You« to each of the

following people, without whose patient answers to my many

questions, this project would have taken even longer to com­

plete:

Dr. B. J. Kurz, ComputeL Science

Dr. David Wells, surveying Engineering

Murray Linton, Psychology Technician

- iii -

COBTEBTS

ABSTRACT •

lCKBOiLEDGEftENTS • • • •

1.

2.

INTRODUCTION • • •

The Transit Satellite System
Transit At U.N.B.
Data Format and Transfer
An Alternative to Paper Tape • •

SYSTEft PERPORftlNCE SPECIFICATIONS

System Hardware Specifications
Hardware Requirements

The Microprocessor
Interfacing capability
Auxiliary Storage •
Operating System

•

Future Expansion •••
Reliability and service •

System Candidates
The Commodore CBM 4032
The Apple II Plus ••
The TRS-80 Model III

System Software Specifications
Required capabilities

•

•
•

•

•

•

•
•

• •

•

• •

•

Data Acquisition and Formatting •
Error Detection and Recovery
Data Storage •
Operator Review of Data •
Transfer of Data to IBM 3032 •

•

•

•

•

•

Optional Capabilities and/or Provision for
Future Expansion •

Use of a Real Time Clock •
Computer Feedback to Receiver •
Data Compression • •
Operator Editing of Pass Files
Computing Receiver Positions

- iv

ii

iii

~~~~ , 
, 

• 2 
2 
6 

7 

7 
7 
7 
7 
8 
q 

• q 
10 
10 
10 
11 

• 13 
1 3 
13 
14 
14 
15 
15 
16 

16 
16 
17 
17 
17 
1B 



l. SYSTEII HlRDI.lRE DESCRIP'l'IOR 19 

The Winning Candidate: Apple II Plus . 19 
Physical Connections • • 21 

Adapter for HP-1000 Connector on Receiver 
Cable • 21 

RS-232 Connector for Modem . • • • 23 
Cable Clamp for Diskette Drive Ribbon Cables • 24 
l'!odification To PIA Ribbon Cable . 24 
Chip Replacement On Disk Controller 24 
The "Red" Switch on the Language Card 25 
Null Modem for Connecting a Printer 26 
Parallel Echo-Back Connector • • 26 
Computer Feedback to Receiver • • 26 
Batter:ies For: Calendar/Clock Module 27 

4. SYSTEM SOFTWARE DESCRIPTIOR • • 28 

The RECEIVER Program • • • 28 
Running the RECEIVER Program • • 28 
RECEIVER Program Logic Explanations • 31 

Message Synchronization • • • 31 
End of Pass and Timing Words • • • 32 
The Screen Display • • • • • • 32 

SATLITE Assembly Language Procedures . • 36 
INITPIA . • • • • • • 37 
IRQHANDL • . • • • • • 37 
GET WORD . • • • • • • • 38 
RESP.TIRQ • • 39 

Files TJsed by the RECEIVER Program . • • • 40 
The Screen File . • • • • • • 40 
The Parameter File • 40 
Format of Pass Files • • 43 

The TALK Program • • • • 45 
numb T~rminal Mode • • • • • !J5 

The Rscape Key • • 46 
The Left Arrow • • • • • • • • 46 
·rhe Right Arrow . • . . 46 
Hitting Control "C" . 46 

Passfile Transfer Mode . • i~ 7 
Text File Tl"ansfer Mode • • • 47 

Other Programs • • • • 47 
·rhe PEEKPOKE Intrinsic Unit • 48 
The RE ADTIME Pl:'ocedure • • • t~ 8 
The STARTUP Program • • • • • 49 
The SETTIME Program • • • 50 

s. COIICLUSIOBS • • • • • 51 

- v -



I. 

II. 

OPERATING INSTROCTIONS • 

Hardware Connections • • 
Connection to the Satellite Receive~ • 
Connection of an Acoustic Coupler or Modem • 
Connection to Other RS-232 Devices • • 

General Considerations 
System Diskettes • 

The SYSRUN Diskette • 
The SYSTXT Diskette • 
The SYSLIB Diskette • 
The SYSBKP Diskette • 

Booting The System • • 

• 
• . . 

Special PASCAL System Keys • • • 
Using the RECEIVER Program • 

• 

• 
• 

Functions of RECEIVER • • • • • 
Running the RECEIVER Program • 

• 

• 

Files Required at Initialization 
Files Required After Initialization • 
Creation of Pass Files • • 

Operator Control of RECEIVER •• 
The "Q" Command • 
The "S" Command • 
The "K" Command • 
The "U" Command • • 

Using the TALK Program • 
Functions of TALK • 
Running the TALK Program • 

• 
• • 
• • 

Files Required at Initialization 

• 

Files Required After Initialization • 
Main Menu Options • 

Dumb Terminal Mode • 
Pass Fil~ Transfer Mode • 
Text File Transfer Mode • 
Quitting the TALK P~og~am • 

PROGRAM LISTINGS • • 

RECEIVER Program Listing 
SATLITE Routines Listing 
TALK Program Listing 
STARTUP Program Listing • 
PEEKPOKE Unit Listing • 
READTIME Routine Listing 

• • 

• 

. . 

• 

• • 
• 

• 

• 

• 
• 

• 
• 

• 

• 
• 

• • 

BIBLIOGRAPHY • 

- vi 

• 
• 
• 
• 

• 

• 

52 

53 
53 
53 
53 
54 
54 
54 
5.5 
55 
55 
55 
S6 
58 
58 
58 
58 
58 
59 
60 

• 60 
• 60 

60 
61 
61 
61 
61 
62 
62 
62 
n3 
63 

• 64 
65 

66 

• 67 
7q 
84 
94 

• 96 
9R 

100 



LIST OF FIGURES 

Piq~£~ f~g~ 

1. Composition of A Data Line Prom Nine Input Words • • 4 

2. Non-data Sequence Codes and Interpretations • • • • 5 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Data Storage Requirements 

List of Major Purchases 

. . . . . . . . . 
. . . . . . . . 

Pin Connections on HP-1000 Connector • • . . 
Connections from Receiver Cable to Apple Computer 

Operator Escape Commands For The RECEIVER Program 

Special Input Words • • • • • • • • • • • 

Significance of STATUS Display 

Contents of The RCV.SCREEN Pile 

Construction of Pass File Names 

. . . . . 
. . . . 
• • . . . . 

12. Pass File Produced by RECEIVER Program •• 

- vii -

8 

• • 20 

22 

• 23 

• 30 

3lJ 

35 

• • 41 

• • 4 3 

• • 44 



Chapter 1 

IITRODOCTION 

1.1 tH~ tl!!~!t ~!~~~~ITB ~~~TEl 

TRANSIT is the name of a system of navigation satellites 

originally developed for use by the United States Navy to 

help guide their POLARIS submarines. Released foe non­

military use in 1967, the system is now widely used through­

out the world, for many applications where accurate position 

determination is necessary. Each of the seven satellites 

currently in use maintains a circular polar orbit about the 

Earth. At about 1075 kilometers up, each satellite com­

pletes an orbit every 107 minutes. These satellites are 

constantly transmitting 150 Mhz and 400 Mhz signals as well 

as timing marks, and a navigation message. This navigation 

message contains information about the satellite's predicted 

orbit, known as orbital parameters, which are updated every 

twelve hours by a ground station in California. 

Whenever a satellite rises above the horizon, a receiver 

station has the opportunity to obtain a position fix based 

on data collected during the satellite's "pass". Ry measur­

ing the doppler frequency shift caused by the satellite's 

motion as a function of time, complex forumlae can then be 

used to compute the position of the receiver relative to 

- 1 -



the satellite. 

2 

Since each satellite follows a known orbit, 

one can compute the position of the receiver relative to the 

Poles, giving latitude and longitude measurements. The 

accuracy of these measurements is dependent on how many 

passes are observed. 

1.2 !RAN~IT !! ~·!·~· 

Here at U.N.B. we have a MARCONI receiver which is used by 

the Department of Surveying F.ngineering for obtaining accu­

rate position fixes when doing surveying. This receiver 

measures the doppler shift on each of the two carrier fre­

quencies, decodes the satellite message, and also receives 

the two-minute timing marks. All of this data is passed 

through an interface section to a paper tape punch, which is 

used as the primary means of recording data. Optionally, a 

teletype can be connected to the receiver, allowing human­

readable output. The receiver also has a computer interface 

section, originally designed for an HP-1000 mini-computer. 

It is with this interface that the remainder of this report 

is concerned. 

1.3 ~!!! f~!MA! ~ TBARSFEB 

The output from the computer interface consists of an eigh­

teen wire cable with sixteen data vires, a control wire, and 

a ground connection. Data is transmitted in parallel as 

16-bit words, where a low voltage indicates a binary one, 



and a high voltage indicates a zero. 

3 

A high to low voltage 

transient on the control wire indicates that data is ready 

to be transfered. The data is unbuffered, and no handshak­

ing operations with the receiver are possible. 

Data words are generated by the interface approximately 

every half-second whenever a satellite is being monitored. 

Each 16-bit word is logically divided into four 4-bit parts. 

The most significant 4-bits represent a sequence code used 

for synchronization purposes. The three remaining groups of 

4-bits represent data digits in Binary Coded Decimal format. 

Groups of nine data words make up a "line" of data, and a 

sequence of twenty-five lines forms a "paragraph". A com­

plete paragraph is sent over a period of exactly two 

minutes, and up to nine such paragraphs are transmitted for 

each satellite pass. 

Although nine data words make up a line, not all of the 

BCD digits are used to communicate meaningful data. Figure 

1 shows the format of the nine words which make up a line of 

data. 

All other sequence codes which are transmitted can be 

interpreted as shown in Figure 2 • 



4 

r----------------------------------------------------------, 
I I 
1 Sequence 1 
1 Code Data In BCD Format Interpretation I 
f------------------------------------1 
J 0 1 0 1 D D D D D D D D D D D D First 3 digits I 
1 of 400 Mhz count 1 
I I 
I 0 1 1 0 D D D D D D D D D D D D Next 3 digits I 
1 of 400 Mhz count 1 
I J 
l 0 1 1 1 X X X X X X X X D D D D Last digit I 
1 of 400 Mh z count 1 
,.. -1 
I 1 0 0 1 D D D D D D D D D D D D First 3 digits I 
1 of 150 Mhz count 1 
I I 
I 1 0 1 0 D D D D D D D D D D D D Next 3 digits I 
1 of 150 Mhz count 1 
I I 
I 1 0 1 1 X X X X X X X X D D D D Last digit I 
I of 150 Mhz count 1 
1----------------- -1 
J 1 1 0 1 D D D D D D D D D D D D First 3 digits I 
I of satellite msg t 
1 I 
I 1 1 1 0 D D D D D D D D D D D D Next 3 digits I 
I of satellite msg 1 
I I 
I 1 1 1 1 D D D D D D D D D D D D Last 3 digits J 
1 of satellite msg 1 
f--- -------------~ 
I 1 
1 Note that 'X' is used to indicate bits whose values are J 
1 not used, and 'D' is used to indicate those bits which J 
1 represent valid data. 1 
I I 
.. ------------------------------------------------1 
I I 
t I 
1 Figure 1: Composition of A Data Line From Nine Input 1 
1 Words J 
J I 
... .J 



5 

r , 
I I 
1 Sequence I 
1 Code Data In BCD Format Interpretation 1 
1-------------------------------------f 
I t 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Receiver 2 minute 1 
t timing word 1 
I I 
I 0 0 0 0 X X X X X X X X X X I X Test mode 2 minute 1 
1 timing word 1 
1 I 
1 0 0 0 1 X X X X X X X X X X X X Invalid code I 
J I 
I I 
) 0 0 1 0 X X X X X X X X X X X X Invalid code J 
I 1 
I I 
I 0 0 1 1 X X X X X X X X X X X X Invalid code I 
1 I 
I I 
I 0 1 0 0 X X X X X X X X X X X X Invalid code I 
I I 
I I 
I 1 0 0 0 X X X X X X X X X X X X Satellite 2 minute I 
1 timing word 1 
I I 
I 1 1 0 0 X X X X X X X X X X X X End of pass I 
I I 
1-------------------------------------------f 
I I 
1 Note that • x• is used to indicate bits whose values are 1 
1 not used. 1 
I I 
1-- ------------------· 
I I 
I I 
1 Figure 2: Non-data Sequence Codes and Interpretations 1 
I I 
L ~ 



6 

1.11 !! !~!~!H!!!I!~ :rq ~APE!! I!f~ 
Having once worked at the Bedford Institute in Halifax, 

where an HP-1000 minicomputer performs the data recording 

and analysis, Dr. Wells would like to see a computerized 

alternative available at U.N.B. as well. Thus, it came to 

pass that the task was offered as a possible undergraduate 

project for a fourth year computer science student to work 

on. 



Chapter 2 

SYSTEM PERFORMANCE SPECIFICATIONS 

2.1 ~!~!~~ I!J~WlRE SPBCIFI~!I!Q!~ 

2.1.1 ~~~!!~~~ ~~ggi~!!~!!~ 

The following hardware constraints were discussed with 

Dr. Kurz and Dr. Wells, and using these, three system candi­

dates were examined, and a decision was made as to which 

system would prove most effective, with regard to both cost 

and performance. 

The Microprocessor 

The microprocessor itself should be sufficiently capable of 

handling all of the various I/O devices discussed below. 

The instruction execution rate must be fast enough to keep 

up with incoming data so that data words are not lost in the 

middle of a pass. An ASCII keyboard and good quality video 

monitor are also necessities. Graphical capabilities, alt-

hough not needed for this task, would also be of benefit, as 

would a real time clock. 

2.1.1.2 Interfacing capability 

The chosen system must be capable of being physically inter­

faced to the satellite receiver, as well as to the standard 

- 7 -



8 

keyboard, monitor, and diskette drives. An RS- 232 compa ti-

ble port must also be included, for communication with VSPC 

and possibly other computer installations. 

2.1.1.3 Auxiliary Storage 

The system should be capable of storing, without operator:-

intervention, at least a single day's data, and preferably 

twice that amount. At the North Pole, such a system would 

observe about fifty passes each day. Here at U.N.B., one 

might observe only about twenty. Based on the North Pole 

maximum, the amount of storage required for data would be 

approximately 230,000 bytes for each day of observations. 

r , 
I I 
J One data line consists of 23 digits 1 
1 One paragraph consists of 25 lines 1 
1 A single pass consists of 8 paragraphs 1 
1 A day of data consists of 50 passes 1 
I I 
1 Total data per day = 50 * 8 * 25 * 23 = 230,000 digits. 1 
I I 
1 If data is stored as ASCII characters, then the total J 
1 storage required, less overhead and program storage, 1 
1 would be about 460,000 bytes for two days of data. 1 
I However, with overhead, this figure will probably come 1 
1 closer to 500,000 bytes of data storage alone, still 1 
1 not taking into account program storage requirements. 1 
I I 
f-------------------------------------------------1 
1 I 
I I 
J Figure 3: Data Storage Requirements 1 
I I 
L---------------------------------------------------J 



q 

Data transfers to auxiliary storage must be done fast enough 

so that pass data is not lost. In order to allow for easy 

access to this data, some type of random access storage dev­

ice should be used, either a small hard disk, or a multiple 

drive floppy disk system, either of which could handle the 

above amounts of data. 

2.1.1.4 Operating Systea 

The chosen manufacturer must also be able to provide a flex­

ible operating system or monitor, capable of recognizing and 

communicating with the various devices listed above. It 

must also support a high level programming language, and 

should provide interfacing capability to machine language 

programs written to handle interrupts from the satellite 

receiver. A completely interrupt driven I/O structure would 

also be desirable, to help prevent loss of incoming receiver 

data during disk transfers. Software support of fast disk 

transfers is also desirable. 

tions later. 

2.1.1.5 Future Expansion 

More on software specifica-

The system should also be capable of being applied to other 

tasks in the future, such as controlling other devices when 

not being used for satellite data acquisition. capacity for 

connecting other peripherals such as a printer and plotter 

should also be considered. 



10 

2.1.1.6 Reliability and Service 

The unit chosen should have a good reliability reputation. 

Servicing, if ever needed, should be locally available, as 

opposed to a central depot in Toronto, for example. The 

possiblity of a dealer•s service contract should also be 

examined .. 

2.1. 2 

Using the above hardware specification, three popular, com­

mercially available microprocessors were examined, and from 

these, the final system was chosen. The only cost const­

raint was that the final system should cost no more than 

about seven or eight thousand dollars, since funding was 

being provided by a sum of grant money in that range. 

2.1.2.1 The Coaaodore CBft 4032 

The first candidate is the CBM 4032 from Commodore Business 

Machines. It uses a 6502 microprocessor as its brain, and 

supports up to 32K of user RAM. All I/O is interrupt­

driven, and external devices may connect either to the 

IEEE-488 bus, or directly to the CBM's internal bus. The 

main processor unit also houses an ASCII keyboard, a small 

forty-column video display, and a real time clock. The 

operating system, resident in ROM, includes an assembly lan­

guage monitor, and a customized version of Dartmouth BASIC 

as its primary high level language. 



11 

The CBM 8050 Floppy Disk Subsystem, which connects to the 

IEEE-488 bus, has twin double-sided, double-density five 

inch drivesr as well as its own internal CPU and memory to 

lighten the load on the main computer. With a total storage 

capacity of over one megabyte per two drives, 

definitely has the best storage capabilities out 

the systems examined. 

this system 

of all of 

An interface for receiving 

receiver would have to be designed 

data from the satellite 

and built at U.N.B.. A 

serial communications interface, complete with driving soft­

ware, is available directly from Commodore. such a system 

could be puchased and serviced locally, through a local 

business in downtown Frederictonr for aproximately $4600 for 

the computer, diskette drives, and serial interface. 

The Apple II Plus 

The second candidate considered was the Apple II Plusr from 

Apple Computer Inc.. This also uses a 6502 processorr and 

comes with a built in keyboard. A CRT monitor must be pur-

chased separately, with several black & white or color moni-

tors from which to choose. The Apple's internal hardware 

generates a forty column color display, with no lowercase 

capability. The Apple provides hardware and software sup­

port for on-screen color graphics, in either HI-RES or 

LO-RES modes, with up to sixteen different colors. All I/O 



12 

on the Apple is done without using interrupts, although use 

of interrupts is allowed for controlling non-standard I/O 

under control of user written programs. 

The Apple may be purchased with up to 48K of user RAM, 

12K of which is taken up by the DOS 3.3 monitor. Applesoft 

floating point basic comes in 

available with the addition of 

ROM, and other languages are 

a 16K bank-selected Language 

Card. The best of these languages is Apple PASCAL, a modi-

fied version of the UCSD PASCAL language and operating sys­

tem. With PASCALr a powerful editor;assembler;compiler 

combination can be used, and a full 48K of RAM is available 

for user programs. The Apple bas numerous I/O facilities, 

including a versitile set of game I/O controlsr a built-in 

speaker, outputs for an external speaker, a cassette inter­

face, and eight slots for direct connection to the Apple's 

internal bus structure. Unfortunately, once these eight 

slots get full, they cannot be easily expanded. Several 

interface cards are available for the Apple, including ser­

ial communications interfaces, parallel I/O interfaces, and 

real time clocks. 

The Apple DISK-II floppy diskette drives are capable of 

storing about 140K bytes of data per diskette, but must also 

hold the disk operating system in this space. For every two 

drives used, the Apple must have a floppy disk controller 

card plugged into one of the eight slots inside the machine. 



1 3 

There now exists a local Apple dealer, and a User's Group 

which meets regularly, both on and off campus. A complete 

system, consisting of the computer, a nine inch black and 

white video monitor, a serial RS-232 interface card, a par­

allel interface card, a real time calendar/clock card, four 

diskette drives, and two floppy disk controller cards would 

cost about $5500 and would, at least in part, 

ordered from catalogs. 

2.1.2.3 The TRS-80 ftodel III 

have to be 

The final "candidaten, the TRS-80 ~odel III, uses a more 

powerful Z-80 microprocessor, but also uses low capacity 

diskette drives similar to those for the Apple. This system 

was not given serious consideration because of the lack of 

technical information available (none) on the internal hard-

ware configuration. Such information would be necessary to 

perform interfacing to the satellite receiver. 

2.2 ~!ST!~ ~ql!WA!! ~~ICil!~!I!Q!~ 

This section describes the software requirements of the pro­

posed system. 

2.2.1 

The following capabilities were deemed to be necessary func­

tions of the final software, and are the minimum require­

ments for a successful system. 



14 

2.2.1.1 Data Acquisition and Foraatting 

First and foremost, the software must acquire the data out­

put from the satellite receiver and unpack the 16-bit words 

into ASCII digits. These digits must be logically grouped 

into lines and paragraphs, with one or more paragraphs per 

pass. The various two minute timing words must also be 

properly handled, although they should not be stored. The 

end of a pass will be signalled by either an end of pass 

control word, or by a receiver two minute mark in the 

absence of the former. 

2.2.1.2 Error Detection and RecoYery 

There are three major types of errors which can occur in the 

input data, and each requires different actions to recover. 

Data word sequence errors can be detected simply by 

checking the sequence code (the most significant four bits) 

o.f each input word of each line. If a word arrives out of 

sequence, then the entire paragraph should be rejected or 

ignored by the software. Sequence errors could be caused by 

noise, or by restarting the computer program midway through 

a pass, or by the receiver unlocking from a given pass in 

the middle of a paragraph, or by other exceptional circums­

tances. 

Due to electromagnetic noise and interference, parts of 

satellite messages are often garbled and may show up as 

invalid BCD codes (larger than 1001). This is a common 



15 

occurence, and there is no requirement for this project to 

include error correction facilities for this, since the 

algorithms tend to be somewhat complex. The software 

should, however, be prepared to accept this data without 

complaint and to record it normally. 

The first fourteen digits of each line consist of two 

doppler counts provided by the satellite receiver. These 

BCD digits should never be garbled as described above, 

unless due to equipment faults. Should invalid codes for 

these digits be encountered, the software should reject the 

entire paragraph in which they occur, in the same manner as 

described for sequence errors above. 

2.2.1.3 Data Storaqe 

The data should be stored on diskette, preferably between 

passes so as not to lose incoming data from the receiver. 

The storaqe format chosen should allow for easy access to 

the data by other programs. 

2.~.1.4 Operator ReYiew of Data 

The operator of the receiver and computer equipment should 

be able to view the data on the computer console, so as to 

verify correct functioning of all hardware and software, and 

so that error rates can be viewed and decisions made con­

cerning operation of the receiver. 



16 

2.2.1.5 Transfer of Data to IBB 3032 

Software must be written to enable the data to be transfer-

red to the IBM-3032 at the U.N.B. computing Center for later 

analysis and processing. 

The software must be capable of performing the logon 

procedure to obtain access to VSPC, either under operator 

supervision, or from logon commands entered by the operator 

and transmitted directly to VSPC. In view of the constantly 

changing logon procedures at U.H.B., perhaps the latter 

might be most practical. 

The program should, once signed on, be able to transfer 

pass files to VSPC workspaces with minimal operator inter-

vention, since at 300 or 1200 baud this can be time consum-

ing. The program should either recognize on its own, or 

allow the operator to recover from, any exceptional situa-

tions which arise, such as unexpected responses from VSPC. 

2.2.2 QR~io~al ca~~ilitie§ ~~~~ f{2!i~i2a for I~1~£~ 
EZJ!!!!~i2!! 

The following components may either, at the programmer's 

discretion, be incorporated into this project, or at least 

allowed for as future enhancements to the system. 

2.2.2.1 Use of a Real Time Clock 

If the hardware includes a real time clock, then time stamps 

could be tagged onto each paragraph and saved on diskette 

with the pass data. 



17 

Coapnter Feedback to Receiver 

With a special board installed in the receiver, it is possi­

ble for commands to be issued to the receiver from the com­

puter. One such command is of interest: requesting that 

the receiver unlock from the current pass and resume scan­

ning the horizon for other approaching satellites. This 

would be accomplished by sending a 4-bit (parallel) message 

from the computer to the receiver. If the computer hardware 

allows it, this option may be useful in the future. 

2.2.2.3 Data Coapression 

Either in real time, as is preferable, or later under opera­

tor supervision, data could be compressed from about 4600 

digits per pass to about 1000 digits. This can be accom-

plished by performing majority 

errors in the satellite message 

this information is repeated in 

could be saved by elimination 

information. 

voting procedures to correct 

field of each line. Since 

each paragraph, much space 

of redundant copies of this 

Operator Editing of Pass Files 

If possible, the programmer should provide a facility for 

non real time operator review and editing of pass files on 

diskettes. Depending on hov the data is stored, either a 

system provided editor, or a custom written program could 

allow this to be done. 



18 

2.2.2.5 Coaputing Receiver Positions 

As a final option, procedures could be coded to allow the 

computer to calculate receiver positions from each pass, 

preferably in real time. To do this would require that the 

error processing described for data compression be done as 

well. 



Chapter 3 

SYSTEM HARDWARE DESCRIPTIOI 

3.1 !~~ !IB!IIg ~!~R!Q!I~: !~~~~ !! ~~~~ 

The hardware which was actually acquired is a system based 

on the Apple II Plus. This computer was chosen because of 

its versatile interfacing capabilities which make it capable 

of a broad range of services. The problems with limited 

diskette storage capacity have not yet been resolved, alt­

hough Dr. Wells is currently examining several alternatives 

to the drives supplied by Apple Computer Inc.. Figure 4 

below lists all of the hardware purchased to date for this 

system. 

- 19 -



r 
J 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
1 
I 
I 
J 
I 
I 
I 
J 
I 
J 
J 
I 
I 
I 
I 
I 
I 
I 
I 
I 
t-
1 
I 
1 
I 
l. 

Bell & Howell Apple II Plus, 
with Rear Power and Accessory Unit. 
and 48K RAM installed at the factory. 

Eastmoor Sales 16K ftemory Expansion Board, 
(Similar to Apple Language card). 

Apple Disk II Controller Card, 
for two 16-sector drives. 

Two Apple Disk II 16-Sector Floppy Diskette Drives. 

Apple Dos 3.3 System Master Pack, 
with reference manuals. 

Apple UCSD PASCAL Language System, 
with reference manuals. 

Package of 10 Unformatted Diskettes, 
{now in use with PASCAL). 

Model 7424 Calendar/Clock Module, 
from California Computer Systems. 

Model 7720B Parallel Interface Card, 
from California Computer Systems. 

Apple 110/300 Baud Communications Interface Card, 
with Telpong and Datamover software (not used}, 
and RS-232 connector cable 

Electrohome 9" Black and White Video Monitor, 
with (wrong) connector cable. 

RF-Modulator for using color television as monitor. 

Figure 4: List of Major Purchases 

20 

'1 

I 
I 
I 
I 
I 
I 
I 

' I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
) 

t 
t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
~ 
I 
I 
I 
J 
J 



21 

3.2 fH!~!£AL CONIEC!!QNS 

The following section describes hardware items modified or 

constructed by the author. ~ost of these are minor items, 

but all were necessary to complete the system. 

3.2.1 

The most important item in this section is the construction 

of the physical coupling between the Apple and the satellite 

receiver. The cable from the receiver terminates in a 

female edge card connector intended for direct connection to 

an HP-1000 computer. To connect the Apple to this cable 

required determining which signals from the receiver vere 

needed, and then wiring a connector cable to mate with the 

edge card connector on one end, and the 25-pin communica­

tions jack supplied with the parallel interface card on the 

other end. Examination of the connections on the edge card 

connector revealed that the voltage levels and timing were 

TTL compatible, using negative logic. Figure 5 shows the 

active pins on the edge card connector. 

Pin functions for the PIA jack on the back of the Apple 

are detailed in the user's manual for that device. Figure 6 

below shows the interconnection between these two connec­

tors, accomplished with an adapter cable constructed by the 

author. 



22 

.---------------------------------------------------, 
I I 
1 <=== Cable to Receiver <=== Pin Numbers 1 
!-------------------------------------------------~ 
1 24 23 22 21 2 o 19 • • • 6 5 4 3 2 1 1 
I I 
1 25 26 27 28 29 30 • • • • • 43 44 45 46 47 48 t 
t- ----------------------------~ 
1 Pin Assignments: I 
I I 
t 1 -> 16 = Data bits in sequence, l=LSB, 16=MSB 1 
I 1 
1 23 - Strobe from receiver, (data ready) 1 
I I 
1 24 = Signal ground J 
t----------------------------------------------4 
J Optional Pins: J 
I I 
1 45 -> 48 = Computer feedback bits, 45=MSB, 48=LSB 1 
I I 
1 22 = Computer strobe for feedback signals 1 
I I 
t----------------------------------------------------f 
I I 
I I 
1 Figure 5: Pin Connections on HP-1000 Connector J 
J I 
L J 



23 

r --------------------------, 
I I 
1 PIA Pin Number Signal & HP-1000 Connector Pins I 
J on DB-2S Jack Direction on Edge Card Connector 1 
I I 
1 Pin-16 {PB7) <--data-- Pin-16 (A15) I 
I Pin-03 (PB6) <--data-- Pin-1S (A 14) I 
J Pin-17 (PBS) <--data-- Pin-14 (A 13) I 
I Pin-04 (PB4) <--data-- Pin-13 (A 12) I 
J Pin-18 {PB3) <--data-- Pin-12 (A11) I 
I Pin-OS (PB2) <--data-- Pin-11 (A10) I 
I Pin-19 (PB1) <--data-- Pin-10 (A9) I 
I Pin-06 {PBO) <--data-- Pin-09 (A8) I 
I Pin-22 (PA7) <--data-- Pin-08 (A7) I 
I Pin-09 (PA6} <--data-- Pin-07 (A6) I 
I Pin-23 (PAS) <--data-- Pin-06 (AS) I 
I Pin-10 (PA4} <--data-- Pin-05 (A4) I 
I Pin-24 (PA3) <--data-- Pin-04 (AJ) I 
I Pin-1 1 (PA2) <--data-- Pin-03 (A2) I 
I Pin-25 (PA1) <--data-- Pin-02 (A1) I 
J Pin-12 (PAO) <--data-- Pin-01 (AO) I 
1 Pin-08 (CA 1) <-strobe- Pin-23 (transfer) 1 
1 Pin-07 (GND) <-ground- Pin-24 (signal ground) 1 
~- 1 
I I 
I I 
1 Figure 6: Connections from Receiver Cable to Apple 1 
1 Computer I 
I I 
L ~ 

3.2.~ 

Although the communications interface card came with an 

"RS-232" cable for connecting the Apple to a modem (or other 

device), this cable does not contain sufficient signal wi~es 

to be compatible with many modems, so a modified connecto~ 

had to be placed on the modem end of the cable. This con-

nector has pin 4 (RTS) wired to pin 6 (DSR) to provide the 

missing signal. 



24 

3.2.3 

The disk controller card came with a cable clamp fitting for 

the back of the Apple, as did the communications interface 

card. However, the parallel interface card did not come 

with such a clamp. Therefore the two clamps on hand were 

used for mounting the DB-25 connectors for the two interface 

cards, and a special clamp vas made for the diskette drive 

cables. Since the calendar/clock module was not an official 

Apple accessory, its dimensions were slightly too large to 

allow the original cable clamp to fit snugly beside it, so 

the new clamp was bent to allow the calendar/clock module 

more room. 

3o.2.4 

With the parallel interface card in slot 1 and the communi-

cations card in slot 2, 

the ribbon cable from 

there was not quite enough room for 

the parallel interface to reach up 

between the two, so the cable was removed from its connector 

and re-inserted pointing upward. This modification does not 

affect the pin assignments on the DB-25 connector. 

3. 2. 5 

Since the 16K memory expansion board vas not purchased from 

Apple Computer, we also did not receive the new versions of 

the disk controller ROM's. Since the controller card was 

supposed to already have the new chips on it when we pur-



2'l 

chased it, this should have made no difference. However, 

for some reason, our controller card came with the new ver­

sion of one of these chips, and the old version of the 

other. The only problem noticed while using the old chip 

was that PASCAL would not boot properly using a single 

drive. Murray Linton, who also uses an Apple, stated that 

his diskette controllers had come with the proper chips, and 

that he had an extra set which had arrived with his Apple 

Language Card. Having no other use for them, Murray donated 

his spare chips to this project and we now have a properly 

upgraded controller card. 

3.2. 6 

Our non-standard language card also came with another fea­

ture, a red switch intended for use with an older version of 

the Apple II. This switch normally would protrude from the 

rear of the Apple through one of the cable slots. 

Unfortunately, the connector for the communications card now 

occupies that space, so the switch toggle had to be cut to a 

much shorter length than before, so that it would not be in 

the way. This switch should always be set in the "UP" posi­

tion to allow proper booting of PASCAL. 



26 

3.2.7 !!!! A2~!I !~r £QAB!cti~ ~ ~rin!!t 
A short null modem cable was constructed to allow use of an 

RS-232 compatible printer/terminal with the Apple, connected 

through the communications interface. To use, simply plug 

the male end of the cable into the DB-25 connector on the 

back of the Apple, and then plug the printer (or other 

RS-232 device) into the other end of the cable. 

3.2.8 

on page 5-6 of the Owner•s Manual for the parallel interface 

card is described how to construct a Parallel Echo-Back 

Connector for use in testing that device. As part of this 

project, such a connector has been constructed and used for 

testing purposes. To use, simply plug onto the 08-25 jack 

on the back of the Apple. 

ProYisions haye been made in the software to allow computer 

feedback to the satellite receiver. If this feature is 

desired, the physical connection is all that is currently 

lacking. Five vires must be run from the game control out­

puts on the side of the Apple to the edge card connector on 

the previously discussed adapter cable. The computer data 

output is ayailable on annunciators zero to three. The 

strobe output, also on the game control pins, should be used 

to strobe data to the receiver. For more information, look 



27 

in the small paaphlet entitled "Owners and Operators Guide" 

for the Bell & Howell Microcomputer System. 

3.2.10 

The calendar/clock board is supposed to maintain time­

keeping even when the Apple is powered off. To do this 

requires two small battery cells. type 675. which can be 

purchased from most camera shops. Two such cells have 

already been installed, and these should last for about a 

year. Be careful to note the corrections made by the author 

to the schematic for the calendar/clock module when insert­

ing the batteries. 



Chapter ~ 

SISTER SOF!VlRE DESCRIPTIOK 

~.1 IRE !1£1!!!! fiR§!!! 

4.1.1 !Y!!i~ ~k~ RECIIYBR ~rogt~! 

The RECEIVER program performs all data acquisition and sto­

rage activities. To run the receiver program, simply select 

the "X)ecute" option from the PASCAL system•s main command 

menu. PASCAL will then prompt for a file name, which in 

this case is "SYSRUN:RCV.CODE", and the receiver program 

will be executed. This same procedure applies to all user­

written PASCAL programs. 

When the program begins execution, it first reads the 

screen format from the file "f4:RCV.SCREEN.TEXT" and copies 

it to the Apple screen. The user is then greeted with a 

formatted activity display and a message informing him how 

much free core is remaining for program 

the user is reading this message, the 

expansion. While 

RECEIVER program is 

busy reading its parameter file, 

find out how to name pass files, 

"t4:RCV.PARAM.TEXT", to 

so there was no need to 

code a delay loop to allow the user time to read this mes­

sage. If either of these two files can not be opened on the 

diskette in drive #4, the boot drive, a message is displayed 

informing the user of this, and the program gracefully ter­

minates itself. 

- 28 -



29 

Next, the RECEIVER program continues with its initializa-

tion process, interrupts are enabled, 

for input from the satellite receiver. 

has been collected, the program 

and the program waits 

When a complete pass 

disables interrupts, 

attempts to save the pass file on diskette, overwrites the 

parameter file with the updated value for the next pass num­

ber, and then re-enables interrupts and repeats the process 

of waiting for data again. 

This cycle continues until the operator intervenes. The 

RECEIVER program itself supports four commands which may be 

entered by pressing the escape key followed by the key cor-

responding to the desired command. These commands are 

described in Figure 7, and are also detailed in the appendix 

entitled "Operating Instructions". 

The source code for RECEIVER can be found on either of 

the "SYSTXT:" or "SYSBKP:" diskettes. 



30 

r------------- -------------------, 
1 
1 Command Full-Name Function 
J----------------------
1 Q Quit Sets a flag in the RECEIVER program 
1 which causes the program to 
1 terminate upon completion of the 
1 current pass. The pass will be 
J saved as usual before the 
I program exits. 
I 
1 S Stay - Negates the effect of a previously 
1 issued "Quit command". This 
1 command was provided to allow the 
1 operator to change his mind. 
I 
1 u Unlock - This command causes the RECEIVER 
1 program to unlock itself from 
I collection of data for the current 
I pass. completed paragraphs for 
J this pass are saved as usual on 
J diskette, and the program then 

I 
I .. 

J waits for new pass data from the 
receiver. If the computer feedback 
board in the satellite receiver is 
operational and connected to the 
Apple computer, then a command will 1 
be issued to the receiver requesting! 
that it unlock reception of the 1 
current pass and resuming scanning 1 
for other satellites. J 

I 
K Kill - This command terminates RECEIVER t 

immediately and returns control 1 
to the PASCAL operating system. 1 
For a less forceful shutdown, 1 
the operator should enter the 1 
"Quit" command followed by the 1 
"Unlock" command, which will t 
allow saving of the current pass. 1 

t------------------------------------f 
I I 
I I 
1 Figure 7: Operator Escape Commands For The RECEIVER 1 
I Program 1 
I I 
... .J 



31 

The following subsections are intended to supplement the 

comments present in the RECEIVEB.TEXT source file. Due to 

the size of that file, annotations within the program had to 

be kept to a minimum to allow the program to be edited and 

compiled as a single source file. 

4.1.2.1 ftessage Synchronization 

When the RECEIVER program begins waiting for a new pass, it 

simply waits until it receives a data word from the satel­

lite receiver which has a sequence code of '0101 1 , which is 

the code for the start of a nev line. It then begins col­

lecting data words to form lines, checking sequence codes as 

it goes. Should a timing word be encountered, or a sequence 

or data error occur, then the lines collected are discarded 

and the program begins searching for the '0101 1 code again. 

If twenty-five lines are collected without any intervening 

sequence errors, data errors, or timing words (see below) , 

then these are stored in memory as a complete paragraph. 

The program repeats this collection process until either a 

receiver two minute timing word is received, an end of pass 

indicator word is received, or until it has collected eight 

full paragraphs of data. In the case of the latter, the 

"Unlock" command (previously discussed) is automatically 

performed by the program. These data paragraphs are then 

saved on diskette, and the whole process starts over again. 



32 

4.1.2.2 End of Pass and Tiaing Words 

When a receiver two minute mark or an end of pass indicator 

is encountered, the program simply exits the routine for 

reading a pass, saves all £Q~~~1~~ paragraphs of data on 

diskette, resets its paragraph count to z~ro, and begins 

collecting paragraphs all over again. The routine which 

reads paragraphs adds one to the paragraph count every time 

it successfully collects twenty-five data lines without 

interruptions. 

Satellite and test two minute timing words simply cause 

the program to exit the routine which reads paragraphs, thus 

preventing the paragraph count from being incremented. 

Therefore, the next invocation of that procedure will cause 

it to begin a new paragraph in place of the incomplete one. 

The screen Display 

"ost of the above logic can be viewed easily by watching the 

display created by the program on the Apple monitor while 

either a satellite pass is being received, or while TEST 

mode of the satellite receiver is being used to simulate a 

satellite pass. 

The display is broken up into five active sections, plus 

a section which simply displays program identification. 

1. Program Besting: This section can be found in the 

lower left of the display. Each time a major proce­

dure or function call is made, the routine called 



33 

displays its name here in the next empty line on the 

screen. When that routine completes processing, it 

erases its name from the screen prior to returning to 

the calling procedure, whose name is shown on the 

line above. This display is very useful for debug­

ging purposes (should future program modifications be 

made) , but has other uses as well. If the operator 

is ever in doubt as to whether the computer has "hung 

up" in an endless loop, or perhaps just died, he may 

quickly reassure himself that it is simply waiting 

for data by watching this display as he presses the 

spacebar. A quick flicker of "SCANKB" should immedi­

ately flash as that routine is called to process the 

operator's input, which in this case will be ignored. 

Other uses would be to test the program's response to 

exceptional conditions in the data: simply watch the 

program's activity upon receiving the data. 

2. Input Words: This section is visible as a long 

column down the righthand side of the display. As 

data words are received from the receiver (via 

GETiORD routine) they are displayed in this column in 

the fora of a rolling list. Special codes, such as 

satellite two minute timing words are not displayed 

"as is". Instead, the operator will see one of the 

codes listed in Figure 8 displayed, one extra column 

to the left to make it more noticeable. Note that 



34 

whenever an invalid sequence code is displayed, a 

"beep" is sounded to alert the operator as the pro-

gram continues. 

r , 

I I 
I Code Which I 
1 Is Displayed Interpretation 1 
1-- ~ 
1 R2MIN Receiver two minute timing word 1 
I I 
1 S2MIN satellite two minute timing word 1 
I I 
1 T28IN TEST mode two minute timing word 1 
1 I 
1 ENDPS End of pass indicator 1 
1------------------------------------i 
I I 
I I 
1 Figure 8: Special Input Words 1 
t I 
L ~ 

3. Input Lines: This section occupies the lower middle 

portion of the screen, and is used for displaying 

lines of input data as they are formatted by the pro-

gram. Lines are displayed as a rolling list, and the 

entire area is cleared at the beginning of each new 

paragraph. 

4. Program status and Paragraph/Liae Counts: This area 

is located in the upper left corner of the display, 

and is used for tvo purposes. The first is to show 

what the program is currently doing. This is called 

the "STATUS", and will always show one of the values 

listed in Figure q below. 



35 

r- -------------------------, 
1 I 
I Status Meaning I 
t- .. 
1 SETUP The program is busy setting up the 

screen display and initializing 
variables. This setting is visible 
only for a brief second after the 
program begins execution. 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I DISKIO Interrupts have been disabled while 

the program is performing diskette 
operations such as saving a pass file, 
or reading or updating the pa~ameter 
file. 

I 
I 
I 
I 
I 

ACTIVE This is the "normal" mode of ope~ation, 
meaning that the program is busy 
p~ocessing input data from the receiver. 

WAIT This status value indicates that the 
prog~am has processed all data in 
the input queue and is currently 
waiting for more input words from 1 
the receiver. This is almost always 1 
displayed when no satellite pass is 1 
being monitored, except when two 1 
minute timing marks are sent from 1 
the receiver. I 

~ ------------------------------1 
I I 
J I 
1 Figure 9: Significance of STATUS Display 1 
I I 
L J 

Also visible, underneath the STATUS, are running 

counts showing which paragraph, and which line within 

the paragraph, is currently being formatted by the 

RECEIVER program. 

5. ftessage lrea: The fifth active display area is the 

message area, located in the middle of the screen. 

There is room fo~ three lines to be displayed is this 



36 

area, which is used to communicate messages to the 

operator. When the program first begins execution, a 

brief message is shown informing the user as to how 

much free storage remains on the PASCAL system data 

heap. Then this message is erased and replaced by a 

list of available user commands. Whenever a new 

paragraph is started, a timestamp, identical to that 

written to the pass files, is placed on the third 

line of this area. Also, the name of the last pass 

file written to diskette is displayed on the top line 

of this area. This message will not be displayed if 

no pass files bave been saved during the current exe­

cution of the program. When a file handling error 

occurs, the program will either display an error mes­

sage in this area, or use the area to prompt the user 

for a further course of action. 

very important to the operator. 

Thus, this area is 

A group of four assembly language routines handle all input 

from the satellite receiver using a circular queue structure 

as an input buffer. This queue can hold up to 256 16-bit 

data words at once before overflow will occur. This allows 

the PASCAL RECEIVER program to fall up to two minutes behind 

in retrieving input data before problems occur. The main 

reason for this particular queue size is to take advantage 



37 

of the automatic "wrap-around" which occurs when an 8-bit 

index register is incremented past "FF", thus allowing the 

circular queue to be programmed as if it were simply a 

sequential area of storage. For more details on the opera­

tion of this queue, see the program descriptions in the fol­

lowing subsections. 

The source code for these programs can be located in the 

file "SATLITE.TEXT" on either of the "SYSTXT:" or "SYSBKP:" 

diskettes. 

4.1.3.1 IMITPIA 

This routine initializes the parallel interface adapter 

(PIA) to cause a maskable interrupt whenever a 16-bit data 

word is received. The IRQ/BRK vector at memory locations 

FFFE-FFFF is set to the address of the interrupt handling 

routine, IRQHANDL, and the previous contents of this vector 

are saved for later restoration. The queue pointers are 

initialized to indicate an empty queue, and interrupts are 

enabled just before this routine returns to the PASCAL call­

ing program. 

IRQHlMDL 

This routine is actually part of the GETWORD procedure for 

assembly and linkage purposes, but the two routines are 

logically separate. This was done to avoid problems with 

the linkage editor since IRQHANDL is never invoked directly 

by any other routines. 



38 

IRQHANDL is the routine which handles interrupts from the 

PIA. Upon an interrupt occuring, this routine first checks 

to see if it was caused by a "BRK" instruction. If so, then 

control is passed to the routine at the address specified by 

the original IRQ/BRK vector. Otherwise, the routine checks 

to see if the interrupt was caused by the PIA. If not, then 

control is again passed to the originally specified inter­

rupt handler routine (PASCAL sets this to cause a system 

reboot by default). Finally, if the interrupt was caused by 

the PIA, then the 16-bit input is saved in a queue for later 

retrieval by GETWORD, the queue pointer is incremented, and 

the routine issues an "RTI" (ReTurn from Interrupt) instruc­

tion. All registers modified by this routine are saved on 

entry, and restored again before the "RTI". 

If the queue is full and IRQHANDL has been invoked to add 

more data to the queue, it will instead replace the last 

word on the queue with the hexadecimal value "1111". When 

the RECEIVER program later obtains this value from the 

queue, it will respond to the invalid first digit by treat­

ing it as if a data sequence error had occured, thus effec­

tively causing the current paragraph of input data to be 

ignored. 

GBTIIORD 

This routine is called by the RECEIVER program whenever 

another word of input data is needed. It expects as its 



39 

only parameter the address of a PASCAL "STRING" variable 

(special "Type" in Apple PASCAL) with a declared length of 

at least four characters. STRING variables are stored with 

a "length" byte preceeding the data bytes, which is used to 

store the current length of the STRING. If the input queue 

is empty, the GETWORD routine will simply set the length of 

the STRING to zero and return. Otherwise, the length will 

be set to four, and the next 16-bit word from the input 

queue will be unpacked into ASCII characters and assigned to 

the data portion of the STRING. 

Unpacking of the 16-bit words is done as follows: The 

most significant four bits of the word are converted to an 

ASCII hexadecimal digit in the range 0 •• 9 or A •• F. The next 

three groups of 4-bits are each "OR-ed" with the hexadecimal 

value "30" to convert them into an ASCII digit in the range 

O •• q. Should invalid data be present in these fields, they 

will thus be converted to various punctuation symbols which 

will look like "garbage". 

Interrupts remain enabled throughout execution of 

GETiORD, and the queue pointer is not updated until the data 

for that queue entry has been saved elsewhere beforehand. 

This is done to avoid conflicts with IRQHANDL. 

4.1.3.4 RESETIRQ 

This routine disables maskable interrupts and resets the PIA 

to prevent it from causing further interrupts. The original 



40 

value for the IRQ/BRK vector is retrieved from its save 

location and is restored to addresses FFFE-FFFF. 

ine then returns to the PASCAL calling program. 

interrupts disabled. 

4.1.4 Pi!es Y~~ hi~!! !~~~!!~I f~~9~! 

4.1.4.1 The Screen File 

The rout-

leaving 

When the RECEIVER program begins execution, it attempts to 

copy a file from drive i4 named "#4:RCV.SCREEN.TEXT" to the 

display screen. This file is known as the screen file, and 

is used to hold the initial data to be displayed on the 

screen when the program begins execution. The contents of 

this file may be changed at any time by the user, but moving 

around display areas will also require modifications to the 

RECEIVER program to avoid a messy display. If for any rea­

son this file cannot be opened, the receiver program will 

display a message informing the operator of this, and then 

gracefully terminate execution. 

The Paraaeter Pile 

After initializing the screen, the RECEIVER program attempts 

to open and read a file from drive #4 named 

"#4:RCV.PARA~.TEXT". If for any reason this file cannot be 

opened, a message is displayed and the program terminates 

gracefully. 



41 

r------- -----------------------~ 
1 
I 
I 
I 
I 
I 
I 
I 
J 
I 
I 
I 
I 

' I 
I 
I 
I 
I 
I 
I 
I 
I 
J 
I 
I 

STATUS: SETUP I SATELLITE PASS !INPUT 
PARA/LINE= 00/001 MONITOR PROGRAM JWORDS 
+---------------+-----------------+-----

' I 
I 

+-------+---------------+---------+ 
JPROGRAftl DOPPLER-COUNT ISATELLITEI 
INRSTINGf400-MHZ:150-ftHZJ MESSAGE I 
+-------+---------------+---------+ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
J 
I 

I 
I 
I 
I 
I 
l 
I 
1 
1 
I 
I 
I 
I 
J$ 

I (* THIS FILE HOLDS THE IIITIAL SCREEN 
I DISPLAY FOR THE RECEIVER PROGRAM. 
I ALL CHARACTERS UP TO THE '$' ARE 
I COPIED TO THE CONSOLE SCREEN UPON 
I STARTUP WHEN THE PROGRAM EXECUTES *} 

~------------
1 
I 
J 
I 
L 

Figure 10: Contents of The BCV.SCREEN File 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
~ 
I 
I 
I 
I 
~ 

This file expected to contain three lines of information, 

which are to be used by the RECEIVER program in forming dis-

tinct, sequentially numbered names for its pass files. The 

first line should specify the characters to be used in form-

ing the first (root) part of the file names. This should 

~Q~ contain a device specification. The second line should 



42 

specify two integer values, separated by one or more spaces, 

to be used for numbering pass files. The first value repre­

sents the next number to be used in creating a pass file 

name, and the second value is an increment which is added to 

the first value after each new pass file is created. This 

file is rewritten to drive f4 each time the pass number is 

incremented. 

The third line of the file should contain characters to 

be used as the trailing part of the pass file names. 

but if the ability to edit Usually this is set to ".TEXT", 

pass files is not required, considerable storage can be 

saved by specifying a different file type such as ".DATA". 

The PASCAL overhead for each pass file using ".TEXT" varies 

depending on file size, but usually about 1500 bytes are 

wasted in overhead. 

Note that since a PASCAL "REWRITE" statement is used to 

open the file on output, this file need only be present when 

since it is "READ" only once 

This allows the operator to 

in drive 14 with an empty data 

the program starts execution, 

by the RECEIVER program. 

replace the boot diskette 

diskette after program startup, thus allowing more space for 

pass files. 

Figure 11 shows typical contents of the parameter file, 

along with some sample pass file names created using these 

parameters. Note that all three lines should be left justi­

fied when entered into the actual file using the PASCAL edi-

tor. 



43 

r----------------------------------------------------------, 
I I 
I Contents of the RCV. P.ARAPI Pile: I 
I I 
J PASS I 
J 100 1 o I 
I • TEXT I 
I I 
f-----------------------------------------------f 
I l 
1 Consective Pass File Names Generated: I 
I I 
I PASS100.TEXT I 
I PASS110.TEXT I 
I PASS 120. TEXT I 
I I t----------- ----f 
I I 
I I 
J Figure 11: Construction of Pass Pile Names 1 
I I 
L------- ------..1 

4.1.4.3 Format of Pass Files 

Pass files are written as a sequence of one or more para-

graphs, where a paragraph record consists of a time stamp 

line followed by twenty-five lines of data. The time stamp 

is written exactly as generated by the READTIME procedure, 

in the form YY/MM/DD-d HH:~M:SS, where "YY/MM/DD" is the 

current date in metric format, "-d" is the day of the week 

(O=Sunday, 1=Monday, ••• ), and "HH:KK:SS" is the time in 

hours, minutes, and seconds. Each of the twenty-five data 

lines is in the format "1234567 1234567 123456789", where 

the first group of seven digits is the 400 Khz doppler 

count, the second set is the 150 Mhz doppler count, and the 

third set is the satellite message. Each line has a car-

riage return character appended to it, to allow editing 



lJ4 

using the PASCAL system editor. Editing can only be done if 

the files are named as ".TEXT" files. Figure 12 shows a 

partial listing of a pass file generated using the RF.CEIVER 

program. 

r " 
I I 
1 82/04/17-6 18:48:43 I 
1 9999999 9999999 060922274 I 
1 0122lJ55 0122468 071071955 I 
1 0245187 0245215 081181578 I 
1 0368201 0368241 091241156 I 
I OlJ91503 0491558 401240702 I 
1 0615100 0615171 411190276 J 
1 0738999 0739084 521100144 I 
1 0863205 0863306 530960506 1 
1 0987726 0987840 087688720 1 
J 1112569 1112699 841433630 1 
1 1217739 1237882 816071120 1 
1 13632LJ5 1363403 800204640 1 
1 1489093 1489265 800170230 I 
1 1615290 1615477 807393060 t 
1 1741843 1742042 814548120 1 
1 1868760 1868975 800000330 1 
1 1996047 1996274 900007900 t 
1 2123712 2123951 806461800 1 
1 2251762 2252013 800302000 1 
J 2380205 2380467 843201070 J 
1 2509048 2509319 809999990 1 
J 2638298 2638581 800590000 1 
1 2767962 2768254 ooooooooo I 
1 2898048 2898350 000000000 1 
1 3028564 3028875 ooooooooo 1 
1 82/04/17-6 18:50:43 1 
1 3301600 3301928 071071955 1 
1 0131883 0131891 081181578 1 
1 (Remainder of file not shown) f 
I J 
t-----------------------------------------1 
I I 
I I 
1 Figure 12: Pass Pile Produced by RECEIVER Program 1 
I I 
L .J 



q.2 tB~ t!LK fBO~Rl~ 

Comments in the TALK.TEXT 

detailed, so only a basic 

TALK program was written to 

(or other systems). To 

"SYSRUN:TALK.CODE" file. 

45 

source file are reasonably 

description is given here. The 

handle communications with VSPC 

run TALK, simply execute the 

Upon startup, the TALK program displays a "menu" of com­

mand options from which the operator can specify what type 

of TALKing is to be done. These options are described in 

more detail below. Note that the file transfer options both 

require that YSPC TAPE mode be entered beforehand by the 

user, using dumb terminal mode. Both of these routines will 

of course attempt to issue the command on their own, but if 

problems arise, the user will have to hit control "C" to 

terminate the module and then enter TAPE mode himself. TAPE 

mode causes the last line of output sent by VSPC to be ter­

minated with a special "DC1" control character, which is 

used by this program to determine when YSPC is ready for 

more input. The dumb terminal option does not depend on 

this feature, but the transfer options do. 

4.2.1 

Selection of this mode of operation effectively turns the 

Apple keyboard and display into a "dumb" ASCII terminal, 

operating in half-duplex at 300 baud. This allows the user 

to communicate with a large variety of remote devices, 



46 

including other computer systems. Pour keys on the Apple 

keyboard supply helpful functions to the operator. 

4.2.1.1 The Escape Key 

When pressed, this key generates a "beep" and transmits a 

"BREAK" or "ATTN" signal to the remote device. 

4. 2.1.2 The Left Arrow 

This key functions as a VSPC character delete key. When 

pressed, it causes a backspace-linefeed combination to be 

transmitted to the remote device, thus acting as a RUBOUT 

key. The ASCII "DEL" character was originally transmitted 

here, but VSPC does not seem to recognize it, so the 

backspace-linefeed combination was used instead. 

4.2.1.3 The Riqht Arrow 

This key causes an ASCII horizontal tab character to be 

transmitted. 

character. 

On the Apple screen, it appears as a space 

4.2.1.4 Hitting control •c• 

If a "C" is typed while holding down the "CTRL" key, the 

the resulting character code is not transmitted. 

TALK program will return the user to its 

menu. 

Instead, 

original command 



47 

4.2.2 

This option allows the user to specify a range of pass files 

to be transferred to VSPC workspaces for later use. Once 

the program has completed prompting the user for the pass 

file range, it proceeds to transfer the pass files without 

need for further intervention. Note that if any keys are 

pressed on the Apple keyboard during the transfer, the char­

acters typed will also be sent to VSPC. All of the special 

keys described for the dumb terminal mode can also be used 

here. Therefore, to stop data transfer, hit control "C". 

4.2.3 I~!i li!~ !I!~~t~ ~od~ 

This option allows the user to specify a single file of type 

".TEXT" to be transferred to a VSPC workspace. Once again, 

any characters entered at the keyboard during the transfer 

will also be transmitted to VSPC, except for control "C", 

which will cause a return to the main TALK program menu. 

4.3 QIHI! ~BOGRAft~ 

This section contains brief descriptions of programs which 

were written as an indirect part of this project. Some of 

these are general subroutines which are used by the RECEIVER 

and TALK programs, while others. such as SETTI~E, are util­

ity programs. 



4A 

4.3.1 

The PASCAL language, on its own, does not support absolute 

addressing of memory locations, so two routines, PEEK and 

POKE, have been written to allow this capability. The PEEK 

function and the POKE procedure work the same as their BASIC 

counterparts. These routines are grouped into an INTRINSIC 

UNIT, called PEEKPOKE, which has been installed in the 

SYSTEM.LIBRARY file for general use. The TALK program uses 

these routines to communicate directly with the 6850 ACIA on 

the communications interface card. 

These procedures are modified versions of routines pub­

lished as part of an aricle in BYTE Magazine (see bibliogra­

phy}. 

4.3.2 

This program is an assembly language procedure which can be 

called from PASCAL. It expects as a parameter, the address 

of a nineteen byte area of storage in which to place a 

packed character string representing the current date and 

time. READTIME reads this information directly from the 

calendar/clock module, and formats the time stamp into ASCII 

characters with punctuation included. The returned result 

will be in the form YY/MM/DD-d HH:MK:SS, where "YY/MM/DD" is 

the current date in metric format, "-d" is the day of the 

week (O=Sunday, 1=Monday, ••• ), and "HH:MM:SS" is the cur-

rent time of day in standard format. This program has been 



49 

assembled and placed into the SYSTEM.LIBRARY file for gen­

eral use. 

Apple PASCAL allows for creation of a "turn-key" system, 

where a program is automatically run when the system is pow­

ered on. To do this, the programmer merely has to name his 

program code file as "SYSTE~.STARTOP" and copy it onto the 

boot diskette. Such a program has been written for this 

system, although it does not run either of the RECEIVER or 

TALK programs. Instead, it is used to sound a greeting tune 

and display the current date and time for the operator. 

There are two sources for a "date" under PASCAL: the boot 

diskette, and the calendar/clock module. Normally, the user 

is expected to update the date stored on the boot diskette 

every day, using the D(ate command of the system F(iler pro­

gram. This is the date which is recorded in diskette direc­

tories whenever files are created. Unfortunately, PASCAL 

relies totally upon the user to update this daily. 

The SYSTEM.STARTUP program written for this project is 

automatically run whenever the system is initialized. The 

first function it performs upon executing is to compare the 

date from the boot diskette with the date from the 

calendar/clock module. If they match, then the greeting 

tune is played and the date and time displayed. If they do 

not match, then the date on the boot disk is updated by this 



50 

program, and the user is requested to issue an I(nitialize 

command to PASCAL so that the operating system will read tha 

new date from the disk by doing a warm start. During this 

re-initialization, the SYSTEM.STlRTUP program is again exe­

cuted, causing the greeting tune to be played and the new 

date displayed. 

This program is written in Apple BASIC, and was copied 

directly from the Owner's Manual for the calendar/clock 

module. It is intended to be used to set the date and time 

on the calendar/clock module from scratch. This program can 

be found on the work diskette in the DOS 3.3 System Master 

Pack. 



Chapter 5 

CONCLOSIOIS 

The system p~oposed and implementei in this report satisfies 

all of the minimal requi~ements fo~ a reasonable alte~native 

to the p~esent paper tape system fo~ recording and transfe~­

ing data f~om the satellite ~eceiver. In addition, many of 

the optional ~equirements, such as use of a real time clock, 

and editing of pass files, have also been implemented. The 

Apple computer with PASCAL is a very pove~ful programming 

tool, and is well suited to such applications; the lack of a 

good mass storage diskette system being its only d~avback. 

Many options for future expansion still remain, such as 

data comp~ession and more complex error correcting ~outines, 

perhaps enough fo~ another cs 4993 p~oject? 

As can be seen in the final p~ogress and status ~epo~t, 

many more manhours than previously estimated have gone into 

the preparation of this system. Hopefully, it will soon he 

put to the test and prove itself worthwhile. 

- 51 -



Appendix I 

OPERATIIG INSTROCTIOIS 

This appendix is intended as a User's Guide for people who 

are familiar with TRANSIT and who have had previous experi­

ence with modern micro-computers. 

- 52 -



53 

I.1 U!!~!!ll £2!!EC!!2!~ 

1.1.1 ~2nn~£!!2n !Q ~k~ ~~te!!i~~ B~~!~~~ 

To prepare the Apple for use with the satellite receiver, 

simply connect the power cables to 120VAC and plug the 

receiver adaptor cable into the PIA connector on the back of 

the Apple. Connect the other end of this cable to the 

HP-1000 connector on the receiver cable. 

nov be ready for booting. 

I.1.2 

The system should 

To prepare the Apple for use with a coupler or modem, simply 

connect the power cables to 120VAC and plug the end of the 

black RS-232 cable labelled "APPLE" into the RS-232 jack 

(also labelled) at the back of the Apple computer. The 

other end of this cable, labelled "MODEM" should be con-

nected to the jack on the coupler or modem. For VSPC, the 

coupler or modem should be set to FULL-DUPLEX, even though 

the Apple TALK program behaves as a half-duplex terminal 

with local-echo. 

I.1.3 

To use the Apple with other RS-232 compatible DTE equipment, 

the Apple's power cables should be connected to 120VAC, and 

the "NULL MODE~" .cable should be plugged into the RS-232 

jack at the rear of the Apple computer. The external device 

should then be connected to the female jack on this cable, 



using the cable supplied with the external device. 

54 

If the 

device is equipped with a jack instead of a cable, the 

Apple's black modem cable can be used to connect the device, 

with the end which is lab~led "APPLE" connected to the null 

modem, and the other end connected to the jack on the exter­

nal device. 

1.2 GE!IRAL ~Q!~!QI!!I!Q!~ 

1.2.1 ~y§tea Disk~!!~§ 

Apple PASCAL uses four diskettes to hold its distributed 

operating system components. These are labelled APPLE1, 

APPLE2, APPLE3, and APPLEO. For a two drive system, APPLE1 

is normally placed in drive 14, and APPLE2 in drive t5. 

More information on these diskettes can be obtained by con­

sulting the PASCAL reference manuals. 

The system described in this report also uses four disk­

ettes, although the entire system could easily fit on a sin­

gle diskette. Two of these diskettes are merely copies of 

APPLE1 and APPLE2, with a few extra program files present. 

The other two are used primarily for backup purposes. 

1.2.1.1 The SYSRUI Diskette 

This diskette is a copy of the APPLE1 diskette, along with 

the extra files required to run the RECEIVER and TALK pro­

grams, as well as a copy of the SYSTEM.STAROP program for 

setting and displaying the system date. This diskette is 



55 

referred to as the "boot" diskette, and is normally placed 

in drive t4. 

1.2.1.2 The SYSTXT Diskette 

This diskette is actually a copy of APPLE2, with the source 

files for the RECEIVER and TALK programs present. This 

diskette contains all PASCAL system files required for com­

piling and assembling these two programs and their subrout­

ines. This diskette is normally placed in drive IS. 

!.2.1.3 The SYSLIB Diskette 

This diskette contains the source files for the READTI~E, 

PEEKPOKE, and STARTUP programs, as well as an up to date 

backup copy of the SYSTE~.LIBRARY file from SYSRUN. 

The SYSBKP Diskette 

This diskette is used for backup purposes, and contains 

copies of the source files for the RECEIVER, SATLITE, TALK, 

PEEKPOKE, READTIME, and STARTUP programs. This disk should 

only be used when making or retreiving backups of these pro­

grams with the PASCAL F[iler command. 

1.2.2 

To boot the PASCAL operating system for use with the pro­

grams described in this project, place the SYSRUN diskette 

in drive #4, place the SYSTXT or a formatted SCRATCH disk-



56 

ette (for data files) in drive 15, and then power on the 

Apple. One of two events should normally occur: 

1. You will eventually be greeted with a musical tune 

and a message display, showing the current date and 

time according to the Apple, or 

2. You will be greeted with a short "beep beep beep" and 

be requested to type "I" to re-initialize the system 

date for the day. After typing this command, you 

should then be greeted as described for event 1. 

above. 

1.2.3 ~E!~!~! flSC!L ~~§1~ !!~§ 

The PASCAL reference manuals describe several special keys 

which may be pressed to allow limited control over the exe­

cution of most programs. The keys which may be of interest 

with respect to this program are listed below. 

1. Control "S"- Pauses execution of a program the next 

time it attempts I/O. The program remains halted 

until this key combination is pressed again. This is 

useful for halting the display of the RECEIVER pro-

gram while monitoring pass data. No 

will be lost as long as the program 

incoming data 

is allowed to 

continue within two minutes from when it was paused. 

2. Control ·~· - Abnormally terminates execution of a 

p.rogram the next time it at tempts I/O. The program 

is halted, an obscure system error message is 



57 

printed, and the system waits for the user to press 

reset. 

3. con~rol •aESET• - causes a hardware reset cycle. If 

pressed once, the PASCAL system will reboot itself 

from the diskette in drive t4. If pressed twice 

quickly in succession, the computer will be placed 

under control of the Applesoft Floating Point BASIC 

monitor. NEVER NEVER NEVER press RESET while either 

of the red lights on the front of the diskette drives 

are "on". Doing so will probably cause destruction 

of data on the diskette in that drive, although no 

physical damage to the computer will occur. 

4. Control "A" - Allows the user to toggle the "RO 

column" display from showing the left-most 40 columns 

to showing the rightmost 40 columns, or vica-versa. 

5. Con~rol •z• - Causes the display to scroll left or 

right with cursor movements when inputing text or 

other data. 

6. Control "F" - This command should never be used with 

the RECEIVER an1 TALK programs. 

For more information, consult the appropriate PASC~L refer­

ence manuals. 



I.3 Y2!!2 tHE !!£1!!!! ~§!!~ 

1.3.1 l~a£~i~ of !EC!!YE! 

58 

This program is intended for performing data acquisition 

from the satellite receiver. Each "pass" of satellite data 

received is stored in a pass file as the program executes. 

Monitoring of output from the receiver is possible with the 

dynamic screen display maintained by this program. 

1.3.2 

To run this program, the SYSRUN diskette should be present 

in drive #4, and the user should be in PASCAL command mode. 

After entering the "X" command to execute a user program, 

the system will prompt for a file name. To execute the 

RECEIVER program, the user should reply with 0 #4:RCY", and 

the program will begin execution. 

I.l.2.1 Files Required at Initialization 

Running the RECEIVER program requires that the 

SYSTEM.LIBRARY, RCV.CODE, RCV.SCREEN.TEXT, and 

RCV.PARAM.TEXT files all be present on the boot diskette in 

drive #4. These files are supplied on the SYSRUN diskette. 

I.l.2.2 Files Required After Initialization 

Once the file has completed initialization, none of the 

above files need be present. This allows the boot diskette 

to be removed from drive #4, and a data diskette to be 



59 

inserted in its place to allow more room for output pass 

files from the RECEIVER program. Be careful never to remove 

a diskette from a diskette drive while the red light is on, 

or else you may destroy the contents of one or more files on 

that diskette, or maybe all of them. 

1.3.2.3 Creation of Pass Files 

Data from the satellite receiver is formatted into pass 

files, which are saved on diskette for later editing and 

transfer. These files are named according to information in 

the RCV.PARA".TEXT file, which is described elsewhere in 

this report. Normally, these pass files are saved on the 

diskette in drive #5. If there is no room on drive #5, or 

if there is no diskette in that drive, or if there is indeed 

no drive #5, then the program will search for another drive 

on which to save its pass files. The drives searched, in 

order of priority, are drives 5,11,12,9,10, and lastly, 

drive 4. Once a drive has been found which has room for 

more data, all subsequent pass data will be saved on that 

diskette until one of the previously mentioned problems 

occurs. The exception to this rule is drive #4. The 

receiver will always search for another drive before saving 

files on the diskette in this drive. 



I.3.3 

The RECEIVF.R program allows the user 

of four commands. To use one of 

"ESCape" key must first be pressed, 

designated for a particular command. 

I.3.3.1 The •a• command 

60 

to enter a limited set 

these commands, the 

followed by the key 

This command requests that the program terminate itself at 

the end of the current pass, after first saving the pass 

data, if any. Should this command be entered when no pass 

is being monitored, the program will wait until the next 

receiver two minute timing word is received before it quits. 

I.3.~.2 The •s• Command 

This command, which stands for "Stay", requests that the 

program ignore a previously issued "Q" (Quit) command. 

I.3.3.3 

This command requests 

ately, without saving 

that the program terminate 

data for the current pass, 

This is intended as a quick way to exit the program. 

immedi­

if any. 

If a 

fast exit is desired without loss of data, the "Q" command 

should be issued followed by the "U" command instead of 

using this command. 



61 

1.3.3.4 The •u• coaaand 

This command requests the program to "unlock" itself from 

collecting data for the current pass. If any complete para­

graphs have been collected prior to the issuing this com­

mand, they will be saved as a normal pass file on diskette. 

The program will then return to collecting data again, 

unless a "Q" command was also issued prior to the "U" com­

mand, in which case the program will terminate itself. 

1.4 ~~!!i lll TAL! r!Qii!A 

I.4.1 I!!£~!2!~ Q{ !!LK 

The TALK program is intended to be used for communications 

with VSPC for the purpose of transferring pass data to the 

IBft 3032 at the U.N.B. Computing Center. The program has 

three modes of operation, which are discussed later in this 

section. 

1.11.2 

To run this program, the SYSRUN diskette should be present 

in drive t4, and the user should be in PASCAL command mode. 

After entering the "X" command to execute a user program, 

the system will prompt for a file name. To execute the TALK 

program, the user should reply with "f4:TALK", and the pro­

gram will begin execution. 



62 

I.-.2.1 Files Required at Initialization 

Running the TALK program requires that the SYSTEM.LIBRARY, 

and TALK.CODE files both be present on the boot diskette in 

drive #4. These files are supplied on the SYSRDN diskette. 

1.~.2.2 Files Required After Iaitialization 

There only files which are required after starting execution 

of this program are those files, if any, which are to be 

transferred to VSPC using the transfer options of this pro­

gram. 

1.~.3 

Upon starting execution, the TALK program will greet the 

user with a short command menu and a Bbeep" prompting the 

user to select an option from the menu. The options cur­

rently supported are described later, and all of these 

options allow the following keys to be used for non-standard 

purposes: 

1. Escape Key - This key serves as a "BREAK" or "ATTN" 

key. 

2. Left Arrow - This key generates a VSPC "RUBOUT" 

sequence of a backspace followed by a linefeed. This 

effectively will "delete" the last character typed on 

the current line. 

3. Bight Arrow - This key generates tab characters, the 

same as a "TAB" key on most standard terminals would. 



63 

The tabs will show up as a single space on the Apple 

display screen. 

4. Control •c• - This code is obtained by typing a "C" 

while holding down the "CTRL" key. It causes an 

immediate return to the TALK program's main menu, and 

can be used to terminate file transfers prematurely. 

1.4.3.1 Duab Terainal Rode 

This option allows the Apple keyboard and screen to be used 

as a half-duplex asynchronous ASCII terminal. This allows 

the user full control, desired or not, over the VSPC logon 

proceduce, since it is up to the user to enter the commands 

to achieve signon. To exit from this mode, type a Control 

"C" character as described above. 

I.4.3.2 Pass Pile Transfer ftode 

This mode allows the user to 

the RECEIVER program to VSPC 

transfer pass files created by 

workspaces. Before this com-

mand is entered, the user should first sign on to VSPC using 

dumb terminal mode, and then issue the VSPC command "TAPE". 

To transfer pass data to VSPC, the user must first spe­

cify which files are to be sent. The program prompts for a 

rootname, which is the full name of the diskette and file(s) 

to be transfered, less the file number embedded within the 

name. The program next prompts for the starting value for 

a range of these numbers, and then prompts for an ending 



64 

value. Finally, it requests that the user enter an incre­

ment to be added to the first value each time through the 

transfer process, to generate the next pass file name in 

sequence. If a given pass file cannot be opened for any 

reason, a message is displayed and the program proceeds on 

to the next file in sequence, until all have been attempted, 

or until the user hits Control "C" to return to the main 

menu. The following is an example of a rootname for the 

file PASS123.TEXT on the diskette in drive #5: 

tS:PASS.TEIT 

Text Pile Transfer Bode 

This mode is similar to that described above for the trans­

fer of pass files, except that it will work for files which 

may contain any type of text information. !b.-!.2. J!Q.!l!'l !!!!§.i h~ 

.!!2~1 fQI ii!!.nsf~I:ring files vhicb. !.!!.!~ h~n ~!li1~d !!2i!!.9. t.h.~ 

f!~£!~ §.Y§!gJ! ~!li12!:, in~l!!!ling Ei!.22 fil!'12· 

The program first prompts the user for a file name, which 

should be entered in full, including diskette name, and then 

asks for a VSPC workspace name under which to save the text. 

Once the user has entered these two items, the program pro­

ceeds on its merry way, transferring text until all has been 

sent and saved, or until the user hits Contro.l "C" to return 

to the main menu. The following is an example of a text 

file name: ' SYSTXT:SATLITE.TEXT '• The .TEXT may be omit­

ted if desired. 



65 

Quitting the TALK Prograa 

This option allows the user to exit from the TALK program. 



Appendix II 

PBOGRAft LISTINGS 

This appendix contains listings of programs written as part 

of this project. The only program discussed in the text 

which is not included is the SETTIME program, which was not 

written by the author. A listing of that program can be 

found in the owner's manual for the calendar/clock module, 

from where it was originally obtained. 

- 66 -



67 

(*$S+*) (* TURN LEVEL-1 COMPILER SWAPPING ON FOR LARGE PROGRAM *) 
(*************************************** 
* DUE TO THE PHYSICAL SIZE OF THIS * 
* PROGB~M, COMMENTS MAY SEEM TO BE A * 
* BIT SCARCE IN SOME SECTIONS. THIS * 
* WAS DELIBERATELY DONE TO ALLOW THE * 
* PASCAL EDITOR TO RETAIN ITS LIMITED * 
* CAPACITY TO EDIT THIS PROGRAM. * 
* OTHERWISE, THIS PROGRAM WOULD BE TOO* 
* LARGE FOR THE EDITOR TO HANDLE IN A * 
* SINGLE TEXT FILE. PLEASE CONSULT * 
* THE WRITTEN DOCUMENTATION TO CLARIFY* 
* ANY MAJOR UNCLEAR DETAILS. * 
***************************************) 

PROGRAM RECEIVER; 
USES APPLESTUFF, PEEKPOKR; 

CONST MAXPARA = 8; (* THIS LINE SPECIFIES I OF PARAGRAPHS/PASS *) 
MAXLINE = 25; (* THIS LINE SPECIFIES # OF LINES/PARAGRAPH *) 

(* THE FOLLOWING CONSTANTS ARE USED FOR *) 
(* POSITIONING ITEMS ON THE SCREEN, AND *) 
(* MOST CAN BE SAFELY ALTERED TO MODIFY *) 
(* THE SCREEN FORMAT. *) 

XMODE=7; YMODE=O; 
XPNUM=11; YPNUM=1; 
XLNUM=14; YLNUM=1; 
XMSG =1; YMSG =3; 
XLINE=9 ; YLINEMIN=10;YLINEMAX=23; 
XPROC=O; YPROCMIN=10;YPROCMAX=23; 
XWORD=35; YWORDMIN=3; YWORDMAX=23; 

TYPE FTNTYPE = (SHOW,ERASE,CLEAR); 
DATAWORD = STRING(S); 
DATALINE = PACKED ARRAY[1 •• 26] OF CHAR; 
TIMESTAMP =PACKED ARRAY[1 •• 20] OF CHAR; 
PARARECORD = RECORD 

PASSTIME:TIMESTAMP; 
PASSLINE:ARRAY(1 •• MAXLINE] OF DATALINE 
END; 

VAR PROCNAMES:ARRAY[YPROCMIN •• YPROCMAX] OF STRING[8]; 
PASS PARA :ARRAY[ 1 •• ftAXPARA] OF PARARECORD; 
SEQCODES :PACKED ARRAY(1 •• 9] OF CHAR; 
BUFFER :PACKED ARRAY[0 •• 511] OF CHAR; 
INPUTWORD :DATAWORD; 
INPUTLINE :DATALINE; 
PARACOMPLETED :BOOLEAN; 



MEMUNUSED :STRING(S]; 
SCRPROC,SCRLINE,SCRWORD,PARACNT :INTEGER; 
CLEARLINES,QUITREQUESTED,ESCPRESSED :BOOLEAN; 

PARAMFILE 
PASS FILE 

PFNUMBER,PFINCREMENT 
PFDEVICE 
PFROOTNAME,PFEXTENSION 
PFNAME 

PROCEDURE INITPIA; 

:TEXT; 
:FILE OF PARARECORD; 

:INTEGER; 
:STRING( 7]; 
:STRING( 14 ]; 
:STRING( 26); 

PROCEDURE GETWORD (VAR STRING4); 
PROCEDURE RESETIRQ; 

EXTERNAL; 
EXTERNAL; 
EXTERNAL; 
EXTERNAL; PROCEDURE READTIME(VAR PKCHAR19); 

PROCEDURE SHOWMODE(MODE:STRING); 
(* DISPLAYS STATUS: 1 ACTIVE 1 , 1 WAIT 1 , 1 DISKIO' *) 
BEGIN ~ SHOWMODE *) 

GOTOXY{XMODE,YMODE); 
WRITE (MODE: 7) 

END; (* SHOWMODE *) 

PROCEDURE SHOWMSG(MSGNUM:INTEGER;MESSAGE:STRING); 
(* USED TO DISPLAY MOST MESSAGES IN 3-LINE MESSAGE AREA *) 
(* MESSAGES ARE CENTERED IN THE 33-CHAR DISPLAY AREAS. *) 

VAR FILLER:INTEGER; 
BEGIN (* SHOWMSG *) 

GOTOXY(XMSG,YMSG+MSGNUM); 
FILLER:=(33-LENGTH(~ESSAG~} DIV 2; 
IF FILLER<O THEN FILLER:=O; 
WRITE(MESSAGE: (33-FILLER) ,••:FILLER); 

END; (* SHOWMSG *) 

PROCEDURE SHOWLINE(VALUE:DATALINE;FTN:FTNTYPE); 

68 

(* USED TO DISPLAY FORI'!IATTED SATELL.ITE DATA LINES ON SCREEN *) 
BEGIN (* SHOWLINE *) 

IF FTN=SHOW THEN 
BEGIN 

GOTOXY(XLINE,SCRLIN~; 

WRITE(VALUE: 25); 
IF SCRLINE=YLINEMAX THEN 

SCRLINE:=YLINEMIN 
ELSE 

BEGIN 
SCRLINE:=SCRLINE+1; 
GOTOXY(XLINE,SCRLINE); 
WRITE(' ':25) 

END; 



CLEARLINES:=FALSE 
END 

ELSE IF (FTN=CLEAR) AND (NOT CLEARLINES) THEN 
BEGIN 

END 

FOR SCRLINE:=YLINEMAX DOWNTO YLINEMIN DO 
BEGIN 

GOTOXY(XLINE,SCRLINE); 
WRITE (' 1 : 25) 

END; 
SCRLINE:=YLINEMIN; 
CLEARLINES:=TRUE 

END; (* SHOWLINE *) 

PROCEDURE SHOWWORD(VALUE:DATAWORD); 
(* USED TO DISPLAY INCOMING DATA FROM RECEIVER AS-IS *) 

BEGIN (* SHOWWOBD *) 
GOTOXY(XWOBD,SCRWORD); 
WRITE (VALUE: 5) ; 
IF SCRWORD=YWORDMAX THEN 

SCRWORD:=YWORDMIN 
ELSE 

BEGIN 

END 

SCRWORD:=SCRWORD+1; 
GOTOXY(XWORD,SCRWORD); 
WRITE ( 1 1 : 5) 

END; (* SHOWWORD *) 

PROCEDURE SHOWPROC(NAME:STRING;FTN:FTNTYPE); 

69 

{* USED TO DISPLAY CURRENTLY EXECUTING PROCEDURES FOR DEBUGGING ~) 

{* IF THIS ROUTINE IS CALLED WITH FTN=SHOW, THEN THE PROCNAME *~) 
(* IS DISPLAYED ON THE SCREEN, UNDERNEATH ALL PREVIOUS NAMES. ~) 
(* A SUBSEQUENT CALL WITH FTN=ERASE WILL CAUSE ALL PROCNAMES UP :) 
(* TO THE NAME SPECIFIED TO BE DELETED FROM THE SCREEN. IN THIS :) 
(* WAY, A SUBROUTINE CAN "EXIT" FROM ITS CALLER AND REMOVE BOTH *~} 
(* NAMES FROM THE SCREEN AT ONCE. ') 
VAR FOUND:BOOLEAN; 
BEGIN (* SHOWPROC *) 

IF FTN=SHOW THEN 
BEGIN 

END 

GOTOXY(XPROC,SCRPROC); 
PROCNAMES[SCRPROC]:=NAME; 
WRITE(NAME:8); 
SCRPROC:=SCRPROC+1 

ELSE IF FTN=ERASE THEN 
BEGIN 

FOUND:=FALSE; 
REPEAT 

GOTOXY(XPROC,SCRPROC); 
WRITE ( 1 1 : 8) ; 



FOOND:=PROCNAHES(SCRPROC)=NAME; 
PROCNAHE(SCRPROC]:= 11 ; 

SCRPROC:=SCRPROC-1 
UNTIL FOUND; 
SCRPROC:=SCRPROC+1; 

END; 
END; (* SHOWPROC *) 

PROCEDURE FORMATSCREEN; 

70 

(* ROUTINE TO READ SCREEN PILE AND INITIALIZE SCREEN DISPLAY *) 
CONST ENDOFSCREEN= 1 $ 1 ; (*CHAR IN FILE TO INDICATE END OF DISPLAY*) 
VAR SCRNFILE:FILE; 

BYTECNT,BLOCKCNT:INTEGER; 
BEGIN (* FORMATSCREEN *) 

PT\GE(OUTPUT); 
(*$I-*) RESET (SCRNFILE, 1 #4:BCV.SCREEN.TEXT 1 ); (*$I+*) 
IF IORESULT<>O THEN 

BEGIN 
GOTOXY(0,7); 
WRITELN( 1 UNABLE TO OPEN t4:RCV.SCREEN.TEXT 1 ); 

NOTE(35,50); 
EXIT (PROGRAM) 

END; 
BYTECNT:=512; 
BLOCKCNT:=BLOCKREAD(SCRNFILE,BUFFER,1,1); 
WHILE (IORESULT=O) AND (BYTECNT=512) DO 

BEGIN 
BYTECNT:=SCAN(512,=ENDOFSCREEN,BUFFER); 
UNITWRITE(1,BUFFER,BYTECNT,0,2); 
BLOCKCNT :=BLOCKHEAD (SCRNFILE, BUFFER, 1) 

END; 
CLOSE(SCRNFILE); 
SCRPROC :=YPROCHIN; 
SCRWORD :=YWORDM IN; 
SCRLINE :=YLINEMIN; 
CLEARLINES:=FALSE; 

END; (* FORlHTSCREEN *) 

PROCEDURE UNLOCKPASS; 
(* ROUTINE TO SET ANNUNCIATOR OUTPUTS AND STROBE TO 
(* RECEIVER TO UNLOCK FROM THE CURRENT PASS. TRESE 
(* ARE PART OF THE APPLE GAME I/0 CONTROLLERS. 

VAR STROBE:INTEGER; 
BEGIN (* UNLOCKPASS *) 

TTLOUT (0, TRUE) ; 
TTLOUT(1,FALSE); 
TTLOUT(2,FALSE); 
TTLOUT (3,TRUE); 
STROBE:=PEEK(-16320); 

END; (* UNLOCKPASS *) 

COMMAND *) 
OUTPUTS *) 

*) 



PROCEDURE READPARA; FORWARD; 
PROCEDURE READPASS; FORWARD; 

PROCEDURE READWORD; 

71 

(* PROCEDURE TO GET NEXT 4-DIGIT INPUT WORD FROf!l RECEIVER *) 
(* USING ASSEMBLER INPUT QUEUE HANDLER, "GETWORD". *) 
VAR ENDOFPARA,ENDOFPASS:BOOLEAN; 

PROCEDURE SCANKB; 
{* SUB-PROCEDURE TO SCAN KEYBOARD FOR USER INPUT. TO ISSUE *) 
(* A COMMAND, USER MUST FIRST HIT <ESC> KEY, AND THEN THE *) 
(* APPROPRI.AT E KEY FOR HIS COMMAND. *) 

CONST QUIT = 'Q'; {* EXIT PROGRAM AFTER END OF PASS *) 
STAY = 1 S'; (* CANCELS EFFECT OF QUIT COMJIIIAND *) 
UNLOCK = 1 U'; (* ISSUE UNLOCK-PASS CO.JIIIMAND *) 
KILL = 1 K1 ; (* TERMINATE PROGRAM IMMEDIATELY! *) 

VAR KBCHR:CHAR; 
BEGIN 

SHOWPROC( 1 SCANKB 1 ,SHOW); 
READ(KEYBOARD,KBCHR); 
IF NOT ESCPRESSED THEN 

ESCPRESSED:= KBCHR=CHR(27) 
ELSE 

BEGIN 
ESCPRESSED:=FALSE; 
UNITCL.EAR (2) ; 
IF KBCHR IN (QUIT,STAY,UNLOCK,KILL] THEN 

CASE KBCHR OF 
QUIT:QUITREQUESTED:=TRUE; 
STAY:QUITREQUESTED:=FALSE; 
UNLOCK: BEGIN 

UNLOCKPASS; 
ENDOFPA.SS:=TRUE 

END; 
KILL: BEGIN 

PARACNT:=O; 
QUITREQUESTED:=TRUE; 
ENDOFPASS:=TRUE 

END; 
END (* CASE *) 

END; 
SHOWPROC('SCANKB',ERASE); 

END; (* SCANKB *) 

BEGIN (* HEADWORD *) 
SHOWPROC ( 1 HEADWORD', SHOW) ; 
ENDOFPARA:=FALSE; 
ENDOFPASS:=FALSE; 

IF KEYPRESS THEN SCANKB; 
GETWORD (INPUTWORD) ; 

IF LENGTH(INPUTWORD)=O THEN 



BEGIN 
SHOWMODE( 1 WAIT 1 ); 

REPEAT 
IF KEYPRESS THEN SCANKB; 
GETWORD{INPUTWORD) 

12 

UNTIL (LENGTH(INPUTWORD)<>O) OR ENDOPPARA OR ENDOPPASS; 
SHOWHODE( 1 ACTIVE 1 ) 

END; 

IF LENGTH(INPUTWORD)=4 THEN 
CASE INPUTWORD[1] OF 

1 0 1 : IF INPUTWORD<> 1 0000 1 THEN 
BEGIN 

ENDOFPARA: =TRUE; 
SHOWWORD( 1 T2MIN 1 ) 

END 
ELSE 

BEGIN 
ENDOFPASS:=TRUE; 
SHOWWORD('R2HIN 1 ) 

END; 
'1', 1 2 1 , 1 3 1 , 1 4 1 :BEGIN 

ENDOPPARA:=TRUE; 
SHOWWORD(INPUTWORD); 
WRITE {CRR (7)) 

END; 
1 8 1 :BEGIN 

ENDOFPARA:=TRUE; 
SHOWWORD( 1 S2MIN') 

END; 
1 C1 :BEGIN 

ENDOFPASS:=TRUE; 
SHOWWORD( 1 ENDPS 1 ) 

END; 
1 5 1 , 1 6 1 , 1 7 1 , 1 9 1 , 1 A1 , 1 B1 , 1 D1 , 1 E','F 1 : 

SHOWWORD(INPUTWORD); 
END; (* CASE *) 

IF ENDOFPASS THEN 
BEGIN 

END 

SHOWPROC ( 1 READPASS 1 , ERASE) ; 
EXIT (READPASS) 

ELSE IF ENDOFPARA THEN 
BEGIN 

SHOWPROC( 1 READPARA 1 ,ERAS~; 

EXIT (READPARA) 
END; 

SHOWPROC( 1 READWORD 1 ,ERASE); 
END; (* HEADWORD *) 

PROCEDURE HEADLINE; 



73 

{* ROUTINE TO FORMAT NEXT LINE OF RECEIVER INPUT (9 WORDS) *) 
(* INTO VARIABLE "INPUTLINE". SEQUENCE CODES OF THE INPUT *) 
(* WORDS ARE CHECKED FOR PROPER SEQUENCE, AND THE DOPPLER *) 
(* COUNTS ARE TESTED TO ENSURE THAT THEY CONTAIN ONLY BCD *) 
(* DIGITS. THIS TESTING IS NOT DESIRED FOR THE SATELLITE *) 
(* MESSAGE (LAST 3 WORDS). *) 
VAR WORDNUM,DIGIT:INTEGER; 

DATAERROR :BOOLEAN; 
BEGIN {* HEADLINE *) 

SHOWPROC('READLINE',SHOW); 
DATAERROR:=FALSE; 
DIGIT:=1; 
FOR WORDNUM:=1 TO 9 DO 

BEGIN 
HEADWORD; 
IF INPUTWORD(1]<>SEQCODES(WORDNUM] THEN 

DATAERROR:=TRUE 
ELSE 

CASE WORDNUM OF 
1,2,4,5: 

IF NOT ( (INPUTWORD( 2] IN ( 1 0 1 •• ' 9 1 J) AND 
(INPUTWORD( 3] IN ( 1 0 1 •• 1 9 1 ]) AND 
( I N P UTWOR D[ 4 ] I N ( ' 0 1 • • 1 9 ' ] ) ) T HE N 

DATAERROR:=TRUE 
ELSE 

3,6: 

BEGIN 
INPUTLINE(DIGIT] :=INPUTWORD(2]; 
INPUTLINE(DIGIT+1]:=INPUTWORD(3]; 
INPUTLINE(DIGIT+2]:=INPUTWORD(4]; 
DIGIT:=DIGIT+3 

END; 

IF NOT {INPUTWORD(4] IN ( 1 0 1 •• 1 9 1 ]) THEN 
DATAERROR:=TRUE 

ELSE 

7, 8, 9: 

BEGIN 
INPUTLINE(DIGIT]:=INPUTWORD(4]; 
DIGIT:=DIGIT+2 

END; 

BEGIN 
INPUTLINE( DIGIT] :=INPUTWORDl2]; 
INPUTLINE(DIGIT+1]:=INPUTWORD[3]; 
INPUTLINE(DIGIT+2]:=INPUTWORD[4]; 
DIGIT:=DIGIT+3 

END; 
END; (* CASE *) 

IF DATAERROR THEN 

END; 

BEGIN 
WRITE (CHR (7)) ; 
SHOWPROC( 1 READPARA 1 ,ERASE); 
EXIT (READPARA) 

END; 



SHOWPROC('READLINE',ERASE); 
END; (* HEADLINE *) 

PROCEDURE READPARA; 
(* ROUTINE TO SET TI!'!ESTA!'tP FOR NEXT PARAGRAPH OF INPUT *) 
(* AND THEN TO CALL HEADLINE ENOUGH TII'!ES TO OBTAIN A *} 
(* COMPLETE PARAGRAPH. IF ANY ERRORS OCCUR IN READLINE,*) 
(* OR IF HEADWORD ENCOUNTERS 2-I'!INUTE !'!ARKS, THEN THIS *) 
(* ROUTINE WILL NEVER COI'!PLETE AND THUS THE PARACNT *) 
(* POINTER WILL NOT BE ADVANCED, THUS CAUSING THE INPUT *) 
(* PARAGRAPH TO BE IGNORED. NOTE THAT 2-I'!INUTE MARKS *) 
(* BETWEEN PARAGRAPHS WILL CAUSE THE TII'!ESTAMP TO BE *) 
(* UPDATED, BUT WILL HAVE NO ILL EFFECTS OTHER~ISE. *) 
VAR PARANU",LINECNT:INTEGER; 

CURRENTTIME:TIMESTAMP; 
DISPLAYSTRING:STRING; 

BEGIN (* READPARA *) 
SHOWPROC('READPARA 1 ,SHOW); 
PARANUM:=PARACNT+1; 

GOTOXY(XPNUI'!,YPNUM); WRITE(PARANUM:2); 

READTIME(CURRENTTIME); 
CURRENTTIHE[ SIZEOF (CURRENTTII'!E) ]:=CHR (13) ; 
DISPLAYSTRING:=• 1 ; (* 19 SPACES *) 
MOVELEFT(CURRENTTIME( 1],DISPLAYSTRING(1],19); 
SHOWMSG(2,CONCAT( 1 TIHESTAI'!P = ',DISPLAYSTRING)); 

SHOWLINE(INPUTLINE,CLEAR); 
WITH PASSPARA(PARANUM] DO 

BEGIN 
PASSTIME:=CURRENTTIME; 
FOR LINFCNT:=1 TO MAXLINE DO 

END; 

BEGIN 

END 

GOTOXY (XLNUM, YLNUM) ; WRITE (LINECNT: 2) ; 
READLINE; 
PASSLINE[LINECNT]:=INPUTLINE; 
SHOWLINE(INPUTLINE,SHOW); 

PARACNT:=PARANUM; 
SHOWPROC('READPARA',ERAS£); 

END; (* READPARA *) 

PROCEDURE READPASS; 
(* THIS PROCEDURE COLLECTS PASS DATA UNTIL EITHER THE *) 
(*END OF PASS IS REACHED (HEADWORD ~ILL CAUSE EXIT), *) 
(* OR UNTIL IT HAS COLLECTED THE I'!AXIftUM ALLOWABLE *) 
(* NUMBER OP DATA PARAGRAPHS - WHICHEVER OCCURS FIRST.*) 
BEGIN (* READPASS *) 

SHOWPROC( 1 READPASS',SHOW); 
PARACNT:=O; 

74 



REPEAT 
READPARA 

UNTIL (PARACNT=MAXPARA} ; 
UNLOCKPASS; 
SHOWPROC('READPASS',ERASE): 

END; (* READPASS *) 

75 

PROCEDURE WRITEPASS; FORWARD; (* REFERENCE NEEDED IN OPENPASSFILE *) 

PROCEDURE OPENPASSFILE; 
(*THIS PROCEDURE ATTEMPTS TO OPEN A NEW PASS FILE FOR SAVING CURRENT 

PASS DATA IN. FILE SIZE IS COMPUTED• AND RCV.PARAM IS USED TO MAKE 
A NEW FILE NAME UP. ATTEMPTS ARE THEN MADE TO PRE-EXTEND THIS 
FILE TO ITS FULL SIZE ON AN OUTPUT DISK• GIVING LAST PREFERENCE TO 
THE (USUALLY) BOOT DISKETTE IN DRIVE t4. IF ALL ATTEMPTS FAIL, THE 
USER IS PROMPTED BY A HIGH-PITCHED BEEP-BEEP NOISE TO SPECIFY A 
FURTHER COURSE OF ACTION FOR THE PROGRAM: EITHER TERMINATE, OR TRY 
AGAIN TO FIND SPACE (IE. IF THE USER FIRST INSERTS A NEW DISKETTE).* 

VAR PFBLOCKCNT,PREFERENCE,DOMMI:INTEGER; 
REPLY:CHAR; 
PFSIZE,PFDIGITS:STRING(5]; 
PFPARTIALNAME :STRING(19]; 

BEGIN (* OPENPASSFILE *) 
SHOWPROC( 1 0PENFILE 1 ,SHOW); 
STR(PFNUMBER,PPOIGITS); 

(* THE FOLLOWING LINES DETERMINE THE REQUIRED FILE SIZE *) 
(* IN BLOCKS OF THE OUTPUT PASS FILE. ".TEXT" FILES ARE*) 
(* A SPECIAL CASE BECAUSE THEY REQUIRE A 2-BLOCK HEADER *) 
(* RECORD (WRITTEN BY OPERATING SYSTEM) AND THEY MUST *) 
(* BE WRITTEN (CREATED) IN EVEN INCREMENTS OF 2-BLOCKS. *) 

IF PFEXTENSION='.TEXT' THEN 
PFBLOCKCNT:=2*(1+(PARACNT*SIZEOF(PARARECORD) DIY 1024))+2 

ELSE 
PFBLOCKCNT:=1+(PARACNT*SIZEOF(PARARECORD) DIV 512); 

STR(PFBLOCKCNT,PPSIZE); 
PFPARTIALNAME:=CONCAT(PFROOTNAKE,PPDIGITS,PFEXTENSION, 

1 [ ' , PFS IZE, ' ] t ) ; 
SHOWMSG{1,"); 

{* WE CAN USE THE SAME DISK AS LAST TI~E ONLY IF IT WAS *) 
(* NOT THE BOOT DRIVE (#4:) • OTHERWISE, WE HAVE TO GO *} 
(* SEARCHING FOR SPACE ELSEWHERE FIRST. *) 

IF PFDEVICE<> 1 t4: 1 THEN 
BEGIN 

PFNAl'.IE:=CONCAT (PFDEVICE,PFPARTIALNAME) ; 
SHOWKSG{O,CONCAT('NEW FILE= ',PFNAM~); 
SHOWMSG {2,' 1 ); 

(*$!-*) REWRITE (PASSFILE, PFNAftE) ; {*$I+*) 
IF IORESULT=O THEN 



END; 

BEGIN 
SHOWPROC('OPENFILE•,ERASE); 
EXIT(OPENPASSFILE) 

END; 

16 

(* THE FOLLOWING LOGIC SEARCHES FOR AN OUTPUT DISK, IN *} 
(* THE ORDER OF PRIORITY SPECIFIED WITHIN THE CASE BELOW*) 

REPEAT 
SHOWKSG(2, 1 (SEARCHING FOR NEW OUTPUT DISK]'); 
FOR PREFERENCE:=1 TO 6 DO 

BEGIN 
CASE PREFERENCE OF (* THESE ARE PASCAL DISKETTE UNITS *) 

1: PFDEVICE:= 1 t5:'; (* FIRST CHOICE *) 
2: PFDEVICE:= 1 #11: 1 ; (*SECOND CHOICE*) 
3: PPOEVICE:= 1 t12: 1 ; (*THIRD CHOICE*) 
4: PFDEVICE:= 1 t9: 1 ; {* FOURTH CHOICE*) 
5: PFDEVICE:= 1 110:•; (*FIFTH CHOICE*) 
6: PFDEVICE:='#4: 1 (* LAST RESORT ONLY! *) 

END; (* CASE *) 
PPNAME:=CONCAT(PFDEVICE,PFPARTIALNAKE); 
SHOW8SG(O,CONCAT( 1 NEW FILE= 1 ,PFNAME)); 
(*$I-*) REWRITE (PASSFILE, PFNAKE) ; (*$I+*) 
IF IORESULT=O THEN 

END; 

BEGIN 
SHOWPROC('OPENFILE 1 ,ERASE); 
EXIT(OPENPASSFILE) 

END 

SHOW!!SG(1, 1 NO SPACE .FOR OUTPUT FILE'); 
SHOW8SG(2, 1 <ESC>=KILL; <RETURN>=RETRY'); 
UNITCLEAR (2) ; 
WHILE NOT KEYPRESS DO 

BEGIN 
NOTE(45,25); (*BEEP AND*) 
FOR DUMMY:=1 TO 2000 DO (* DELAYI *} 

END; 
READ(KEYBOARD,REPLY); 
SHOWMSG (1, 1 ') ; 

UNTIL REPLY=CHR (27) ; (* ESCAPE CHARACTER *) 
QUITREQUESTED:=TRUE; 
SHOWPROC('WRITEPAS',ERASE); 
EXIT(WRITEPASS) 

END; (* OPENPASSFILE *) 

PROCEDURE CLOSEPASSFILE; 
(* THIS ROUTINE CLOSES THE CURRENT PASSFILE AND UPDATES *) 
(* RCV.PARA~.TEXT TO REFLECT THE NEXT PASS NUr.BER TO BE *) 
(* USED IN CREATING PASS FILES. *) 
BEGIN (* CLOSEPASSFILE *) 

SHOWPROC( 1 CLOSEFIL 1 .SHOW); 
CLOSE(PASSFILE,LOCK); 



SHOWMSG(1, 1 PASS FILE SUCCESSFULLY WRITTEN'); 
SHOWMSG(2, 1 [UPDATING RCV.PARAM.TEXT]'); 
PFNUMBER:= PFNUM BER+PFINCREMENT; 
REWRITE (PARAMFILE, 1 #4: RCV. PARAM. TEXT[ 4 ] 1 ) ; 

WRITELN(PARAMFILE,PFROOTNAME); 
WRITELN{PARAMFILE,PFNUMBER,• 1 ,PFINCREMENT); 
WRITELN(PARAMFILE,PFEXTENSION}; 
CLOSE(PARAMFILE,LOCK); 
SHOWMSG(O,CONCAT('LAST PASS= ',PFNAME)); 
SHOWMSG(1, 11 ); 

SHOWMSG(2, 11 ) 

END; (* CLOSEPASSPILE *) 

PROCEDURE WRITEPASS; 

77 

(* THIS ROUTINE HANDLES THE (VERI) FAST TRANSFER OF A GROUP *) 
(* OF DATA PARAGRAPHS (IE. THE CURRENT PASS) TO A PASS PILE *} 
(* ON DISKETTE. THE TWO PROCEDURES ABOVE AID IN THIS QUEST.*) 
VAR PARANUM:INTEGER; 
BEGIN {* WRITEPASS *) 

SHOWPROC{ 1 WRITEPAS 1 ,SHOW); 
RESETIRQ; (* DISABLE INTERRUPTS WHILE USING DISKETTE DRIVES *l I 
SHOWMODE('DISKI0 1 ); 

OPENPASSFILE; 
FOR PARANUM:=1 TO PARACNT DO 

BEGIN 
PASSFILE,:=PASSPARA[PARANUM]; 
PUT(PASSFILE) 

END; 
CLOSEPASSFILE; 

INITPI A; (* ENABLE INTERRUPTS AGAIN *) 
SHOWMODE( 1 ACTIVE 1 ); 

SHOVPROC( 1 WRITEPAS 1 ,ERASE); 
END; {* WRITEPASS *) 

PROCEDURE SETPARAMETERS; 
(* THIS ROUTINE ATTEMPTS TO READ THE PASS FILE NAMING *) 
(* PARAMETERS FROM t4:RCV.PARAM.TEXT. IF THE FILE *) 
(* CANNOT BE OPENED, AN ERROR MESSAGE IS DISPLAYED *) 
(* AND THE PROGRAM TERMINATES. *) 
{* THE PARAMETERS EXPECTED ARE: (ON SEPARATE LINES) *) 
(* 1. DEVICENAME:ROOTSUFFIX *) 
(* 2. NEXTPASSNUMBER PASSNUMBERINCREMENT *) 
{* 3. • EXTENSION' *) 
(* TYPICAL VALUES FOR THESE WOULD BE: *) 
{* #5: PASS *) 
(* 100 10 *) 
{* • TEXT *) 
BEGIN 

SHOWPROC('SETPARAM',SHOW); 
SHOWMODE( 1 DISKI0 1 ); 



I?FDEVICE:='t5: 1 ; 

(*$!-*} RESET(PARAMFILE,'t4:RCV.PARAPI.TEXT 1 ); (*$!+*) 
IF IORESULT<>O THEN 

BEGIN 
SHOWMSG(1, 1 UNABLE TO OPEN t4:RCV.PARAM.TEXT'); 
NOTE (35, 50); 
EXIT (PROGRAM) 

END; 
READLN {PARAKFILE,P FROOTNU1E) ; 
READLN(PARAMFILE,PFNUPIBER,PFIHCREMENT); 
READLN(PARAMFILE,PFEXTENSION); 
CLOSE(PARAMFILE,NORMAL); 
SHOVPROC( 1 SETPARAM 1 ,ERASE); 

END; 

BEGIN (* RECEIVER *) 
PORMATSCREEN; 
SHOWPROC( 1 RECEIVER 1 ,SHOW); 

STR((2*MEKAVAIL),MEMUHUSED); 

78 

SHOWMSG(1,CONCAT( 1 MEMAVAIL AT STARTUP= 1 ,MEMUNUSED, 1 BYTES')) i 

SETPARAMETERS; 

INITPIA; (* ENABLE INTERRUPTS *) 
SHOWI'10DE ( 1 ACTIVE'); 

INPUTLINE[8] := 1 1 ; 

INPUTLINE[ 16 ]:=1 '; 

INPUTLINE[ 26 ]: =CHR (13); 

SEQCODES := 1 5679ABDEF 1 ; 

ESCPRESSED :=FALSE; 
QUITREQUESTED:=FALSE; 

UNITCLEAR (2) ; (* CLEAR KEYBOARD TYPE-AHEAD BUFFER *) 

REPEAT 
SHOWMSG(1, 1 USER <ESC> COMMANDS: Q,S,U,K 1 ); 

READPASS; 
IF PARACNT>O THEN 

WRITEPASS 
UNTIL QUITREQUESTED; 

SHOWMODE( 1 QUIT 1 ); 

RESETIRQ; 
SHOWPROC( 1 RECEIVER 1 ,ERASE); 
PAGE (OUTPUT) 

END. (* RECEIVER *) 



liACRO 

• TITLE "SAT LITE - SATELLITE INTERFACE ROUTINES" 
• NO!!IACROLIST 
.NOPATCHLIST 

TO POP 16-BIT 

• MACRO POP 
PLA 
STA %1 
PLA 
STA 11+1 
• END!~! 

RETURN ADDRESS: 

79 

MACRO TO PUSH 16-BIT RETURN ADDRESS: 

.MACRO PUSH 
LDA 11+1 
PHA 
LDA 11 
PHA 
• ENDM 

; ~EMORY MAP FOR 6R21 PERIPHERAL INTERFACE ADAPTER: 

PI AS LOT • EQU 1 ;APPLE SLOT NUMBER OF PARALLEL INTERF.ACE 
PI ABASE • EQU <PIASLOT*10>+0C080 
PIADRA • EQU PIABASE+O ;SIDE "A" DATA DIRECTION REGISTER 
PIAPRA • EQU PIABASE•O ;SIDE "A" PERIPHERAL INTERFACE REGISTER 
PIASRA • EQU PIA BASE+ 1 ;SIDE "A" STATUS REGISTER 
PIACRA • EQU PIABASE+1 ;SIDE "A" COMMAND REGISTER 
PIADRB • EQU PIABASE+2 ;SIDE "B" DATA DIRECTION REGISTER 
PIAPRB • EQU PIABASE+2 ;SIDE "B" PERIPHERAL INTERFACE REGISTER 
PIASRB • EQU PIA BAS E+3 ;SIDE "B" STATUS REGISTER 
PIACRB • EQU PIABASE+J ;SIDE "B" COMMAND REGISTER 

SPECIAL SYSTEM MONITOR LOCATIONS: 

IRQVECTR .EQU OFFFE 
LANGCARD .EQU OC080 

;BASE ADDRESS OF IRQ/BRK INTERRUPT VECTOR 
;BASE ADDRESS FOB SLOT#O = LANGUAGE-CARD 

PASCAL-SUPPLIED ZERO-PAGE TEMPORARY WORK AREAS: 

RTADDR 
STRING 

• EQU 00 
• EQU 02 

;SAVE AREA POR PASCAL RETURN ADDRESS 
;USED FOR INDIRECT PARAM ADDRESS IN READPIA 

. , ROUTINE TO INITIALIZE PIA AHD BUFFER QUEUE: 

• PBOC INITPI A ;ROUTINE TO INITIALIZE PIA HANDLING 



START 

OLDIRQ 
IRQ ADR 

.DEF OLDIRQ 

.REF QPWDPTR,QBKWPTR,QBYTE1,QBYTE2,IRQHANDL 

SEI 
POP 

LOA 
STA 
STA 
STA 
STA 
LOA 
STA 
LDA 
STI\ 

RTADDR 

100 
PIACRA 
PIADRA 
PIACRB 
PIADRB 
105 
PIACRA 
#04 
PIACRB 

;DISABLE INTERRUPTS UNTIL DONE 
;POP RETURN ADDRESS FROM STACK 

;CLEAR ACCUKULATOR 
;REQUEST ACCESS TO DORA 
;SET ALL BITS FOR INPUT 
;REQUEST ACCESS TO DDRB 
;SET ALL BITS FOB INPUT 
;LOAD IN COKKAND BITS 
;SET UP COMKAND REGISTER A 
;LOAD IN COMMAND BITS 
;SET UP COMMAND REGISTER B 

80 

LOA 
STA 
LOA 
STA 

#00 
QBKWPTR 
t01 
QFWDPTR 

;LOAD INITIAL VALUE FOR BACKWARD POINTER 
;SAVE BACKWARD POINTER 
;SET QFiDPRT TO ONE GREATER THAN QBKWPTR 
;SAVE FORWARD POINTER 

LDA LANGCARD+OB ;REMOVE LANGUAGE-CARD WRITE-PROTECTION 
LDA LANGCARD+OB ;THIS INSTRUCTION HAS TO BE DONE TWICE 

LDA IRQVECTR ;GET LSB OP CURRENT IRQ VECTOR 
STA OLDIRQ ;SAVE FOR INTERRUPT HANDLER 
LDA IRQVECTR+1;GET MSB OP CURENT IRQ VECTOR 
STI OLDIRQ+1 ;SAVE FOR INTERRUPT HANDLER 

LDA IRQADR ;GET MSB OF IRQ ROUTINE ADDRESS 
STA IRQVECTR ;STORE IN MSB OF IRQ VECTOR 
LOA IRQADR+1 ;GET LSB OF IRQ ROUTINE ADDRESS 
STA IRQVECTR+1;STORE IN LSB OF IRQ VECTOR 

LDA LANGCARD+8;WRITE PROTECT THE LANGUAGE-CARD AGAIN 

CLI ;ENABLE INTERRUPTS AGAIN 

PUSH RTADDR 
RTS 
• WO.RD 0000 
.WORD IRQHANDL 

;PUSH RETURN ADDRESS BACK ONTO STACK 
;RETURN TO CALLING PROGRAM 
;SAVE AREA FOR ORIGINAL MONITOR IRQ VECTOR 
;ADDRESS OF INTERRUPT ROUTINE, 16-BITS 

. • PROC TO DISABLE INTERRUPTS AND RESTORE ORIGIN~L IRQ/BRK VECTOR 

• PROC RESETIRQ ;CLEANUP ROUTINE FOR END-OF-PROCESSING 
.REF OLDIRQ 

START SEI ;DISABLE INTERRUPTS 

LDA tOO ;CMD WORD FOR PIA = NO INTERRUPTS ALLOW ED 
STA PIACRA ;STORE IN A-SIDE COMMAND REGISTER 
STA PIACRB ;STORE IN B-SIDE COMMAND REGISTER 



LDA 
LDA 
LDA 
STA 
LDA 
STA 
LDA 

RTS 

LANGCARD+O B 
LANGCARD+OB 
OLDIRQ 
IRQVECTR 
OLDIRQ+1 
IRQVECTR+1 
LANGCARD+8 

91 

;REMOVE LANGUAGE-CARD WRITE-PROTECTION 
;THIS INSTRUCTION HAS TO BE DONE TWICE 
;GET LSB OF ORIGINAL IRQ ADDRESS 
;STORE IN IRQ VECTOR 
;GET MSB OF ORIGINAL IRQ ADDRESS 
;STORE IN IRQ VECTOR 
;iRITE PROTECT THE LANGUAGE-CARD AGAIN 

;RETURN TO CALLING PROGRAM 

PROCEDURE TO RETURN THE NEXT "WORD" FROM THE QUEUE: 

.PROC GETWORD,1 ;PROCEDURE TO RETRIEVE INPUT WORDS 

.DEF IRQHANDL,QBYTE1,QBYTE2,QBKWPTR,QFWDPTR 

.REF OLDIRQ 

EMPTYCHR • EQU 

START POP 
POP 

LDY 
LDX 
INX 
CPX 
BNE 

UNDFFLOW LDA 
STA 
BEQ 

GETBYTE1 

ST1 

LDA 
STA 
LDA 
LSR 
LSR 
LSR 
LSR 
ORA 
CMP 
BMI 
CLC 
ADC 
INY 
STA 
LDA 
AND 
ORA 
INY 
STA 

GETBYTE2 LDA 
LSR 
LSR 

20 ;EMPTY QUEUE INDICATOR CHARACTER = SPACE 

RTADDR ;SAVE PASCAL RETURN ADDRESS 
STRING ;SAVE ADDRESS OF STRING PARAMETER 

#00 ;USE Y AS STRING INDEX - SET TO "LENGTH" 
QBKWPTR ;GET BACKWARD POINTER FOR BUFFER QUEUE 

;POINT TO NEXT WORD IN BUFFER 
QFWDPTR ;CHECK FOR EMPTY QUEUE 
GETBYTE1 ;BRANCH IF NOT EMPTY 

#00 ;SET LENGTH OF STRING TO ZERO 
~STRING,Y ;STORE A SPACE CHARACTER 
EXITGET ;ALWAYS BRANCH (TO EXIT) 

i04 
~STRING,Y 

QBYTE1,X 
A 
A 
A 
A 
#30 
#3 A 
ST1 

#07 

~STRING,Y 
QBYTE1, X 
JOF 
t30 

iilST RING, Y 

;SET LENGTH OF STRING TO 4 BYTES 
;SAVE IN "LENGTH" BYTE 
;GET FIRST HALF OF 16-BIT INPUT WORD 
;SHIFT UPPER NIBBLE TO LEFT SIDE OF ACCUM 

CONVERT TO ASCII 
CHECK FOR NON-NUMERIC DIGIT 
BRANCH IF DIGIT IN RANGE 0->9 
CLEAR CARRY FOR ADD 
CONVERT DIGIT TO HEX CHAR A->F 
POINT AT FIRST BYTE OF STRING 

,SAVE AS FIRST CHARACTER IN STRING 
;GET ORIGINAL VALUE AGAIN 
;ISOLATE LOWER NIBBLE 
;CONVERT TO ASCII 
;POINT AT SECOND BYT~ OF STRING 
;SAVE AS SECOND CHARACTER IN STRING 

QBYTE2,X ;GET SECOND HALF OF 16-BIT INPUT WORD 
A ;SHIFT UPPER NIBBLE TO LEFT SIDE OF ACCUM 
A 

BYT 



82 

LSR A 
LSR A 
ORA #30 ;CONVERT TO !SCII 
INY POINT !T THIRD BYTE OF STRING 
STA mSTRING,Y SAVE AS THIRD CHARACTER IN STRING 
LDA QBYTE2 ,X GET ORIGINAL VALUE AGAIN 
STX QBKWPTR SAVE NEW QUEUE POINTER NOW THAT DATA IS su· 
AND tOF ISOLATE LOWER NIBBLE 
ORA #30 CONVERT TO ASCII 
INY POINT AT FOURTH BYTE OF STRING 
STA Q)STRING,I SAVE AS FOURTH CHARACTER IN STRING 

EXIT' GET POSH RTADDR ;PUSH PASCAL RETURN ADDRESS ON STACK 
RTS ;RETURN TO CALLING PROGRAM 

QBYTE1 .BLOCK 256 ; QUEUE AREA FOR FIRST 8 BITS (15-8) 
QBYTE2 .BLOCK 256 ;QUEUE AREA FOR SECOND 8 BITS {7-0) 
QFWDPTR • BYTE 00 ;POINTER TO FRONT OF QUEUE 
QBKWPTR .BYTE 00 ;POINTER TO REAR OF QUEUE 

. 
• INTERRUPT-DRIVEN ROUTINE TO BUFFER DATA FROM THE PIA • 

TO MINIMIZE THE TIME REQUIRED TO SERVICE INTERRUPTS, 
THIS ROUTINE HAS NOT BEEN CODED FOR RE-ENTRANCY. . • AS A RESULT, INTERRUPTS REftAIN DISABLED WHILE THIS 

OF 
OF 

ROUTINE EXECUTES, AND ARB BE-ENABLED BY THE RTI INSTRUCTION. 

INPUT 
INPUT 

OVFLCHAR .EQU 11 ;"UNUSED" SEQ CODE - USE AS OVERFLOW FLAG 

IRQHANDL ST~ 

PLA 
PHA 
AND 
BEQ 

NOTPIA 

NOTBRK 

LDA 
JMP 

LDA 
Bl'L 

TXA 
PHA 

LDX 
CPX 
BNE 

OVERRUN LDA 
DEX 
STA 
STA 
BNE 

SAVEDATA LDA 

SAVEACC 

#10 
NOTBRK 

SAVEACC 
QIOLDIRQ 

PIASRA 
NOT PIA 

QFWDPTR 
QBKWPTR 
SAVEDATA 

;SAVE ACCUMULATOR 
;GET STATUS REG FROM STACK 
;RESTORE ONTO STACK 
;TEST "B" BIT 
;SKIP NEXT SECTION IF TRUE INTERRUPT 

;RESTORE ACCUMULATOR CONTENTS 
;BRANCH TO MONITOR'S IRQ/BRK ROUTINE 

;WAS IRQ CAUSED BY PIA? 
;IF NOT, BRANCH TO ORIGNIAL IRQ ROUTINE 

;SAVE INDEX-X ON STACK 

;SET UP QUEUE POINTER IN INDEX-X 
;CHECK FOR FULL QUEUE 
;BRANCH IF QUEUE IS OK 

#OVFLCRAR ;LOAD QUEUE OVERFLOW CHARACTER 

QBYTE1 ,X 
QBYTE2,X 
EXIT IRQ 

PIAPRB 

;POINT AT PREVIOUS QUEUE ELEMENTS 
;SAVE IN PLACE OF LAST 16-BITS IN QUEUE 

;ALWAYS BRANCH 

;GET BITS 15-8 OF INPUT FROM PIA-B 



EOR 
STA 
LDA 
EOR 
STA 
INX 
STX 

EXITIRQ PLA 
TAX 

tOFF 
QBYTE1 ,X 
PIAPRA 
#OFF 
QBYTE2,X 

QFWDPTR 

LDA SAVEACC 
RTI 

SAVEACC .BYTE 00 

• END 

;INVERT ALL BITS 
;SAVE THEM AS QBYTE1 
;GET BITS 7-0 OF INPUT FROM PIA-A 
;INVERT ALL BITS 
;SAVE THEM AS QBYTE2 

83 

;ADVANCE QUEUE POINTER TO NEXT POSITION 
;SAVE NEW FORWARD POINTER FOR QUEUE 

;RESTORE INDEX-X FROM STACK 

;RESTORE ACCUMULATOR 
;RETURN TO INTERRUPTED ROUTINE 
;ACCUM SAVE AREA FOR INTERRUPT ROUTINE 



{*************************************** 
* PROGRAM: TALK * 
* WRITTEN: 19-APR-82 BY MARK S LORD * 
·-------------------------------------* 
* THIS PROGRAM ALLOWS COMMUNICATIONS * 
* BETWEEN THE APPLE COMPUTER AND AN * 
* OUTSIDE SOURCE, VIA THE SERIAL I/0 * 
* INTERFACE CARD IN APPLE SLOT 12. * 
* * THREE DIFFERENT MODES OF OPERATION 
* CAN BE USED AS SELECTED FROM THE 

* 
* 
* 
* * PROGRAM'S MAIN MENU: 

* * * D)UMB TERMINAL MODE: * 
* THIS OPTION CAUSES THE APPLE * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

TO BEHAVE AS IF IT WERE A "DUMB" * 
ASCII TERMINAL, OPERATING IN * 
HALF-DUPLEX MODE. CHARACTERS * 
TYPED AT THE KEYBOARD ARE ECHOED * 
LOCALLY AND ALSO SENT OUT VIA * 
THE SERIAL INTERFACE; CHARACTERS * 
RECEIVED FROM THE INPUT SIDE OF * 
THE ACIA ARE DISPLAYED ON THE * 
APPLE MONITOR AS THEY ARE * 
RECEIVED. SINCE LOCAL I/0 IS * 
DONE USING THE PASCAL READ/WRITE * 
PROCEDURES, NOT ALL CHARACTERS * 
TYPED AT THE KEYBOARD WILL BE * 
PROCESSED BY THIS PROGRAM. FOR * 
EXAMPLE, THE CTRL,A, CTRL,s •••• * 
IN ADDITION, THIS PROGRAM ALSO * 
USES ITS OWN SPECIALLY DEFINED * 
KEYS: <CTRL,c> RETURNS USER TO * 

MAIN PROGRAM MENU. * 
<ESC> FUNCTIONS THE SAME * 

AS A "BREAK" KEY. * 
<RIGHTARROW> ACTS AS A * 

VSPC CHARACTER <DEL>* 
KEY. * 

<LEFTARROW> SENDS A TAB * 
CHARACTER TO VSPC. * 

* * * T)RANSFER TEXT MODE: * 
* THIS OPTION IS SPECIFICALLY FOR * 
* USE WITH VSPC, AND THUS ASSUMES * 
* THAT THE USER HAS PREVIOUSLY * 
* SIGNED ONTO VSPC, AND THAT THE * 
* VSPC "TAPE" COM~AND HAS BEEN * 

84 



85 

* PREVIOUSLY ISSUED (EVEN THOUGH IT* 
* IS ALSO SENT AGAIN BY THIS * 
* PROGRAM SECTION). THE NAME OF AN* 
* APPLE ".TEXT" FILE IS REQUESTED * 
* AND THEN THE NAME FOR A CORRES- * 
* PONDIMG VSPC WORKSPACE TO WHICH * 
* THE CONTENTS OF THAT FILE ARE TO * 
* BE COPIED. THE PROGRAM THEN * 
* PROCEEDS WITH THE VSPC COMMANDS * 
* NECESSARY TO TRANSFER THE FILE * 
* LINE-BY-LINE TO THE VSPC WS. * 
* NOTE THAT "DUMB TERMINAL" MODE * 
* AND ALL OF ITS OPTIONS ARE ALSO 0* 
* IN EFFECT THROUGHO+T THE TRANSFER* 
* SO THAT THE <ESC> AND <CTRL,C> * 
* KEYS MAT BE USED TO PREMATURELY * 
* TERMINATE THE TRANSFER. * 

* * * P)AS3FILE TRANSFERING: * 
* THIS OPTION IS VERY SIMILAR TO * 
* THE OPTION ABOVE IN ALL RESPECTS * 
* EXCEPT THAT IT IS INTENDED TO * 
* STREAMLINE THE TRANSFER OF THE * 
* SPECIALLY FORMATTED "PASS FILES" * 
* PRODUCED BY THE RECEIVER PROGRAM.* 
* THE USER IS PROMPTED FOR A * 
* ROOTNAME, WHICH CONSISTS OF THE * 
* NON-NUMERIC PORTIONS OF THE FULL * 
* PASSFILE NAME. FOR EXAMPLE, IF * 
* THE PASSFILES WERE NAMED USING * 
* THE STANDARD CHARACTER SEQUENCE: * 
* #5:PASS340.TEXT * 
* t5:PASS350.TEXT * 
* #5:PASS370.TEXT * 
* THEN THE APPROPRIATE ROOTNAME * 
* WOULD BE: t5:PASS.TEXT * 
* THE USER IS THEN PROMPTED FOR * 
* THE SEQUENCE NUMBER RANGE FOR * 
* THESE PILES, THUS ALLOWING * 
* SEVERAL PASSES TO BE TRANSFERED. * 
* AND FINALLY. THE USER IS ASKED * 
* FOR A PASS NUMBER INCREMENT. IF * 
* THE FILES WERE NAMED AS ABOVE, * 
* THEN THESE VALUES WOULD BE * 
* 340, 170, 10 * 
* NOTE THAT ALTHOUGH PASS380.TEXT * 
* DOES NOT EXIST, THIS WILL CAUSE * 
* NO PROBLEMS SINCE THE PROGRAM * 
* WILL SIMPLY PRINT A MESSAGE TO * 
* THIS EFFECT AND THEN CONTINUE * 
* ONWARD. * 
***************************************) 

PROGRAM TALK; 
USES APPLESTUFF,PEEKPOKE; 



86 

CONST ACIASTATUS =-16210; (* ADDRESS OF ACIA STATUS REG. *) 
ACIADATA =-16209; (* ADDRESS OF ACIA DATA REG. *) 
ACIABREAK = 96; (* ACIA CO"MAND FOR "BREAK" *) 
ACIARESET = 3· (* ACIA COMMAND FOR CHIP RESET *} I 

ACIASPEED = 17; (* ACIA SPEED SELECT = 300 BAUD*) 
ESCAPE = 27; (* ASCII CODE FOR <ESC> CHAR. 
LINEFEED = 10; (* ASCII CODE FOR <LF> CHAR. 
LEFTARROW = 8· • (* CODE FOR SPECIAL APPLE KEY 
RIGHT ARROW = 21; (* CODE FOR SPECIAL APPLE KEY 
CTRLC = 3· (* ASCII CODE FOR CONTROL,C I 

DC1 = 17; (* ASCII CODE FOR DC1 CHAR. 

TYPE LONGSTRING = STRING(255]; 
TYPE DATALINE =PACKED ARRAY[1 •• 26] OF CHAR; 

TIMESTAMP =PACKED ARRAY[1 •• 20] OF CHAR; 
PARARECORD = RECORD 

PASSTIME:TIMESTAMP; 
PASSLINE:ARRAY(1 •• 25] OF DATALINE 
END; 

VAR KBCHR :CHAR; 
KBVAL*REPLYVAL :INTEGER; 

*) 
*) 
*) 
*} 
*) 
*) 

QUITREQUESTED :BOOLEAN; 
ROOTNAME,PASSNAME,NUMSTRING,VSPCNAME,OUTSTRING:STRING; 
PASSPARA :PARARECORD; 

PASS FILE :FILE OF PARARECORD; 

PROCEDURE SCANACIA; 
(*************************************** 
* THIS ROUTINE SCANS THE ACIA FOR * 
* INCOMING DATA. IF DATA IS PRESENT* * 
* IT IS DISPLAYED ON THE APPLE MONITOR* 
* AND THE ASCII NUMERIC VALUE IS * 
* PLACED IN "REPLYCHR". OTHERWISE, * 
* "REPLYCHR" IS SET TO ZERO. * 
***************************************) 

BEGIN (* SCANACIA *} 
IF ODD(PEEK(ACIASTATUS)) THEN 

BEGIN 
REPLYVAL:=PEEK(ACIADATA); 
WRITE(CHR(REPLYVAL)) 

END 
ELSE 

REPLYVAL:=O; 
END; (* SCANACIA *) 

PROCEDURE SENDACIA(OOTVALUE:INTEGER); 
(*************************************** 
* THIS ROUTINE WILL TRANS~IT A BYTE * 
* OUT THROUGH THE ACIA. IT WAITS * 



* UNTIL THE "READY" FLAG OF THE ACIA * 
* IS SET, AND THEN TRANSFERS THE DATA * 
* BYTE SPECIFIED BY ITS ASCII NU~ERIC * 
* VALUE IN "OUTVALUE". * 
***************************************) 

VAR STATUS:INTEGER; 
BEGIN (* SENDACIA *) 

REPEAT 
STATUS:=PEEK(ACIASTATUS) DIV 2 

UNTIL ODD(STATUS); 
POKE(ACIADATA,OUTVALUE) 

END; (* SENDACIA *) 

PROCEDURE PROCESSCOMMAND; FORWARD; 

PROCEDURE SCANKEYBOARD; 
(*************************************** 
* THIS ROUTINE CHECKS TO SEE IF ANY * 
* MORE KEYBOARD INPUT HAS BEEN ENTERED* 
* BY THE USER. IF SO, IT IS PROCESSED* 
* AS DESCRIBED AT THE TOP OF THIS * 
*PROGRAM IN THE D)DUMB TERMINAL CMD. * 
***************************************) 

BEGIN (* SCANKEYHOARD *) 
IF KEYPRESS THEN 

BEGIN 
READ(KEYBOARD,KBCHR); 
IF EOLN{KEYBOARD) THEN 

KBCHR: =CHR ( 13) ; 
KBVAL:=ORD(KBCHR); 

97 

IF KBVAL IN [ESCAPE,CTRLC,LEFTARROW,RIGHTARROW] THEN 
CASE KBVAL O.F 

ESCAPE: 
BEGIN 

POKE(ACIASTATUS,ACIABREAK); 
NOTE (40, 25) ; 
POKE(ACIASTATUS,ACIASPEED) 

END; 
CTBLC: 

BEGIN 
WRITELN(CHR(7) , 1 <CTRL~C> 1 ); 

EXIT(PROCESSCOMMAND) 
END; 

LEFT ARROW: 
BEGIN 

WRITE (KBCHR, 1 ', KBCHR) ; 
SENDACIA(KBVAL}; 
SENDACIA(LINEFEED) 

END; 
RIGHTARROW: 

BEGIN 
KBCHR: =CHR (9) ; 



WRITE (KBCHR); 
SENDACIA (9) 

END; 
END {* CASE *) 

ELSE 

END; 

BEGIN 
WRITE {KBCHR) ; 
SENDACIA (KBVAL) 

END 

END; (* SCANKEYBOARD *) 

PROCEDURE DUMBTER~INAL; 
(*************************************** * THIS ROUTINE ALLOWS DIRECT USER * 
* COMMUNICATIONS WITH A REMOTE DEVICE * 
* BY CAUSING THE APPLE TO BEHAVE AS A * 
* NON-INTELLIGENT ASYNC ASCII TERftiNAL* 
***************************************) 

BEGIN (* DU~BTERMINAL *) 
WRITELN( 1 == DUMB TERMINAL MODE == 1 ); 

WRITELN; 
WRITELN( 1 == HIT <CTRL,C> TO QUIT == 1 ); 

WRITELN (CHR (7)) ; 
KBVAL:=O; 
REPEAT 

SCANACIA; 
SCANKEYBOARD 

UNTIL KBVAL=CTRLC; 
END; {* DUMBTERMINAL *) 

PROCEDURE XMITVSPC(MESSAGE:LONGSTRING); 
(*************************************** * THIS ROUTINE USES "SENDACIA" TO * 
* TRANSMIT A LINE OF CHARACTERS TO * 
* VSPC. A CARRIAGE-RETURN IS SENT AT * 
* THE END OF THE LINE, AND ALL CHARS * 
* SENT ARE ALSO ECHOED ON THE APPLE'S * 
* MONITOR AS THEY ARE TRANS~ITTED. * 
***************************************) 

VAR REPLY:CHAR; 
I: INTEGER; 

BEGIN (* XMITVSPC *) 
MESSAGE:=CONCAT(MESSAGE,' 1 ); 

MESSAGE[ LENGTH (MESSAGE) ]:=CHR (13); 
I:=O; 
"REPEAT 

I:=I+1; 
SCANKEYBOARD; 
SCANACIA; 
WRITE(MESSAGE(I]); 
SENDACIA(ORD(MESSAGE(I])) 

88 



UNTIL ~ESSAGE(I)=CHR(13); 
REPEAT 

SCANKEYBOABD; 
SCANACIA 

UNTIL REPLYVAL=DC1; 
END; (* XI'HTVSPC *) 

PROCEDURE SENDPASS; 
(*************************************** 
* THIS ROUTINE HANDLES THE ACTUAL * 
* TRANSFER OF A PRE-OPENED PASS FILE * 
* TO VSPC. A VSPC WORKSPACE IS NAMED * 
* AND SAVED FOR THE PASS, THE NAME * 
* USED BEING THE SAME AS THAT OF THE * 
* PASS FILE, LESS DEVICE NAME AND * 
* EXTENSION OF COURSE. * 
***************************************) 

VAR DOTPOS,LINENUM:INTEGER; 
BEGIN {* SENDPASS *) 

XMITVSPC( 1 CLEAB 1 ); 

VSPCNAME:=PASSNAME; 
DELETE(VSPCNAME,1,POS( 1 : 1 ,VSPCNAME)); 
DOTPOS:=POS( 1 • 1 ,VSPCNAME); 
DELETE(VSPCNAME,DOTPOS, (1+LENGTH(VSPCNAM~-DOTPOS)); 
XMITVSPC(CONCAT('NAME 1 ,VSPCNAME)); 
XMITVSPC ('INPUT 1 1') ; 
REPEAT 

WITH PASSPARA DO 
BEGIN 

PASSPARA:=PASSFILE,; 
OUTSTRING::t •; 
KOVELEFT (PASSTIME( 1 ],OUTSTRING( 1 ], 19); 
XMITVSPC{OUTSTRING); 
OUTSTRING:=• 
FOR LINENUM:=1 TO 25 DO 

' . , 

89 

BEGIN 
MOVELEFT(PASSLINE(LINENUM],OUTSTRING(1],25) 
XMITVSPC(OUTSTRING) 

END; 
GET (PASSFILE) 

END 
UNTIL EOP(PASSPILE); 
X M ITV S PC ( 1 1 ) ; 

XMITVSPC(CONCAT('SAVE 1 ,VSPCNAME)); 
CLOSE{PASSFILE); 

END; (* SENDPASS *) 

PROCEDURE PASSTRANSPER; 
{*************************************** 
* THIS ROUTINE SERVES AS THE DRIVER * 
* FOR THE SENDPASS ROUTINE. IT PROMPTS* 
* THE USER FOR THE PASS FILE RANGES * 



* AND THEN LOOPS~ CALLING SENDPASS TO * 
* TRANSFER INDIVIDUAL PASS PILES. OPEN* 
* ERRORS ARE LOGGED ON THE SCREEN FOR * 
* THE USER TO OBSERVE AS THE PROGRAM * 
* CONTINUES WITH THE NEXT FILE IN SEQ.* 
***************************************) 

VAR DOTPOS~IOERR~PASSNUM~LASTNUM~INCREMENT:INTEGER; 
BEGIN (* PASSTRANSFER *) 

WRITELN( 1 == PASS FILE TRANSFER PROCEDURE == 1 ); 

WRITELN; 
WRITELN('== ENTER ROOT-NAME (DEV:SUFFIX.EXT) =='); 
(*$I-*) 
REPEAT 

REPEAT 
WRITE ('== ENTER ==> '); 
READLN(ROOTN!ME); 
IF LENGTH(ROOTNAME,=O THEN 

EXIT(PASSTRANSPER); 
DOTPOS:=POS('·'~ROOTNAME) 

UNTIL NOT (DOTPOS IN [ 0,1 ~LENGTH (ROOTN AME) ]) ; 
RESET(PASSPILE~ROOTNAME); 

IOERR:=IORESULT; 
CLOSE (PASSPILE) 

UNTIL (IOERR<>7) ; (* i AIT FOR VALID FILE SPEC *) 
iRITELN; 
VRITFLN( 1 == ENTER PASS NUMBER RANGE == 1 ); 

PASSNUM:=O; 
REPEAT 

WRITE('== ENTER FIRST NUMBER ==> 1 ); 

READLN {PASSNUM) 
UNTIL (IORESULT=O) AND (PASSNUM>=O) ; 
LASTNUM:=O; 
REPEAT 

WRITE('== ENTER LAST NUMBER===> 1 ); 

READLN (LASTNUM) 
UNTIL (IORESULT=O) AND (LASTNUM>=O); 
INCREMENT:=O; 
REPEAT 

WRITE('== ENTER INCREMENT =====> 1 ); 

READLN (INCREMENT) 
UNTIL (IORESULT=O) AND (INCREMENT>O) ; 
( *$!+*) 
XMITVSPC('TAPE'); 
XI.'HTVSPC ('' •) ; 
REPEAT 

SCANACIA; 
SCANKEYBOARD; 
PASSNAME:=ROOTNAME; 
STR(PASSNUM,NUMSTRING); 
INSERT(NUMSTRING~PASSNAME,DOTPOS); 

(*$!-*) RESET (PASSFILE,PASSNAME); (*$!+*) 
IOERR:=IORESULT; 
WRITE('== 1 ,PASSNAME~'- '); 
IF IOERR=O THEN 

90 



BEGIN 
WRITELN('NOW BEING SENT == 1 ); 

SENDPASS~ 

CLOSE (PASS FILE) 
END 

ELSE 
IF IOERR=10 THEN 

WRITELN('NOT FOUND == 1 ) 

ELSE 
WRIT ELN (CHR (7) , 1 OPEN ERR I', IOERR,' ==•) ; 

PASSNU~:=PASSNUM+INCREMENT 

UNTIL PASSNUM>LASTNUM; 
END; (* PASSTRANSFER *) 

PROCEDURE TEXTTRANSFER; 
(*************************************** 

* THIS ROUTINE HANDLES TRANSFERING OF * 
* NORMAL TEXT FILES TO fSPC. THE USER * 
* IS PROMPTED FOR A FILE SPECIFICATION* 
* IN WHICH THE n.TEXT" IS OPTIONAL, * 
* AND THEN PROCEEDS TO TRANSFER THE * 
* FILE TO A USER-SPECIFIED fSPC WS. * 
***************************************) 

VAR TEXTNAME,VSPCNAHE:STRING; 
TEXTLINE:LONGSTRING; 
IOERR:INTEGER; 
TEXTFILE:TEXT; 

BEGIN (* TEXTTRANSFER *) 
WRITELN( 1 == PROCEDURE TO TRANSFER TEXT FILES=='); 
WRITELN; 
WRITELN('== ENTER NAME OF FILE == 1 ); 

REPEAT 
WRITE('== FILE NAME ==> '); 
READLN{TEXTNAME,; 
IF LENGTH(TEXTNAME)=O THEN 

EXIT(TEXTTRANSFER); 
(*$!-*) 
RESET(TEXTFILE,TEXTNAME); 
IOERR:=IORESULT; 
IF IOERR=10 THEN 

BEGIN 
INSERT{'. TEXT', TEXTNAl!E, ( l+LENGTH (TEXTNAftE))) ; 
RESET(TEXTFILE,TEXTNAME); 
IOERR:=IORESULT 

END; 
(*$!+*) 
IF IOERR<>O THEN 

BEGIN 

END 

IF IOERR=10 THEN 
WRITELN('FILE NOT FOUND- RE-ENTER') 

ELSE 
WRITELN('OPEN ERROR t',IOERR,' - RE-ENTER') 

91 



UNTIL IOERR=O; 
WRITELN; 
iRITELN('== ENTER NAME FOR VSPC WORKSPACE=='); 
WRITE('== WORKSPACE NAME==>'); 
READLN{VSPCNAME); 
IF O=LENGTH(VSPCNAME) THEN 

BEGIN 
CLOSE(TEXTFILE); 
EXIT(TEXTTRANSFBR) 

END; 
XKITVSPC( 1 TAPE 1 ); 

Xl'HTVSPC ( 1 '); 

XMITVSPC('CLEAR'); 
XMITVSPC(CONCAT{'NAftE •,VSPCNAME)); 
XMITVSPC('INPUT 1 1'); 
IF NOT EOF(TEXTFILE) THEN 

REPEAT 
READLN(TEXTFILE,TEXTLINE); 
IF LENGTH(TEXTLINE)=O THEN 

TEXTLINE:=' '; 
XMITVSPC(TEXTLIN~ 

UNTIL EOF(TEXTFILE); 
XMITVSPC( 11 ); 

XMITVSPC(CONCAT('SAVE ',VSPCNAME)); 
CLOSE(TEXTFILE); 

END; (* TEXTTRANSFER *) 

PROCEDURE PROCESSCOMMAND; 
<*************************************** * THIS ROUTINE SERVES AS A COMMON * 
* INTERFACE BETWEEN THE fUIN PROGRAM * 
* AND THE COMMAND-PROCESSING PROC'S. * 
* IT'S PRESENCE IS REQUIRED IN ORDER * 
* TO ALLOW SCANKBYBOARD TO HAVE A * 
* COMMON EXIT POINT FOR HANDLING A * 
* USER <CTRL~C> COMMAND. * 
***************************************) 

BEGIN (* PROCESSCOMMAND *, 
CASE KBCHR OF 

1 Q1 :QUITREQUESTED:=TRUB; 
1 D1 :DUMBTERMINAL; 
1 P 1 :PASSTRANSFER; 
1 T 1 :TEXTTRANSFER; 

END; (* CASE *) 
END; {* PROCESSCOMMAND *) 

(*************************************** * THE MAIN ROUTINE (BELOW) HANDLES * 
* GENERAL INTIALIZATION AND THE * 
* PROMPTING FOR, AND INPUT OF, USER * 
* COMMAND OPTIONS FROM ITS MAIN MENU. * 
***************************************) 

92 



BEGIN (* TALK *) 
QUITREQUESTED:=FALSE; 
PAGE(OUTPUT) ; 
POKE(ACIASTATUS,ACIARESET); 
POKE(ACIASTATUS~ACIASPEED); 

REPEAT 
WRITELN('== SERIAL COMMUNICATIONS PROGRAM=='); 
WRITELN: 
WRITELN{ 1 == COMMAND MODE == 1 ); 

WRITELN; 
WRITELN( 1 0PTIONS ARE:'); 
WRITELN (' D = DUMB TERMINAL MODE'); 
WRITELN(' P =TRANSFER SATELLITE PASS FILES'); 
WRITELN(' T =TRANSFER ANY TEXT FILE 1 ); 

WRITELN (' Q = QUIT'); 
VRITELN; 
WRITE ('== ENTER COMMAND==> '); 
REPEAT 

WRITE (CHR (7)) ; 
READ(KEYBOARD~KBCHR) 

UNTIL KBCHR IN ( 1 D' , 1 P1 , 1 T','Q' ]; 
PAGE(OIJTPUT); 
PROCESSCOMMAND; 
WR ITELN; 
WRITELN; 

UNTIL QUITREQUESTED; 
PAGE (OUTPUT) ; 

END. (* TALK *) 

93 



PROGRAM STARTUP; 
USES APPLESTOFF; 
TYPE SYSTEI!DATE = PACKED RECORD 

MONTH: 1 •• 12; (* 4 BITS*) 
DAY: 1 •• 31; (* 5 BITS *} 
YEAR: 0 •• 99 (* 1 BITS *) 

END; (* =16 BITS TOTAL *) 
VAR BLOCK:ARRAY[0 •• 255] OF SYSTEMDATE; 

OLDBLOCK:SYSTEMDATE; 
DATEANDTIME:PACKED ARRAY(1 •• 19] OF CHAR; 

PROCEDURE READTIME(VAR PC19); EXTERNAL; 
BEGIN 

94 

(* NOW UPDATE THE "SYSTEM DATE" - STORED IN BLOCK 2 OF BOOT DISK * 
(*$R-*) 
ONITREAD(4,BLOCK,512,2); 
OLDBLOCK:=BLOCK(10]; 
WITH BLOCK(10] DO 

BEGIN 
READTIME(DATEANDTIME); 
YEAR :=(ORD(DATEANDTIME[1])-48)*10+0RD(DATEANDTIME(2])-48; 
MONTH:={ORD(DATEANDTIME[4])-48)*10+0RD(DATEANDTIME(5])-48; 
DAY :=(ORD(DATEANDTIME[7])-48)*10+0RD(DATEANDTIME[8])-48; 

END; 
IF BLOCK(10]<>0LDBLOCK THEN 

BEGIN 
UNITWRITE (4, BLOCK,512,2); 
GOTOXY (0, 10) ; 
WRITELN('PLEASE TYPE I(NITIALIZE TO RESET DATE'); 
WRITE(CHR(7),CHR(7),CHR(7)); 

END 
(*$R+*) 

ELSE 
BEGIN 

GOTOXY(0,8); 
WRITE(' *THE CURRENT'); 
NOTE(24,90); 
WRITE( 1 DATE, 1 ); 

NOTE(26,90); 
WRITE ( ' DAY ' ) ; 
NOTE(22,90); 
WRITELN{'AND TIME IS: *'); 
NOTE (10, 90) ; 
WRITELN; 
WRITELN; 
WRITELN(' * * * YY/MM/DD-D HH:l!M:SS * * *'); 
WRITELN; 
WRITELN; 
READTIME(DATEANDTIME); 



95 

WRITELN(' * * ',DATEANDTIME, 1 * *•); 
NOTE {17, 150); 

END; 
END. 



(*$S+*) 

UNIT PEEKPOKE; INTRINSIC CODE 23; 

INTERFACE 
FUNCTION PEEK(ADDR:INTEGER):INTEGER; 
PROCEDURE POKE(ADDR,DATA:INTEGER); 

(*********************************** 
* NOTE THAT PARA"ETERS "ADDR" AND * 
* "DATA" SHOULD BE INTEGER VALUES.* 
* IN THE FOLLOWING RANGES: * 
* * * -32767 <= ADDR <= +32767 * 
* 0 <= DATA <= +255 * 

* * * THE POKE FUNCTION WILL ALWAYS * 
* CONVERT "DATA" TO MOD 256 * 
* BEFORE IT IS POKED. * 
***********************************) 

iMplementation 

type byte =packed array [0 •• 1] of 0 •• 255; 
dirty = record 

case boolean of 
true : (int: integer) ; 
false: {ptr:..,BYTE); 

END; 

FUNCTION PEEK; 
VAR TRICK:DIRTI; 
BEGIN 

TRICK.INT:=ADDR; 
PEEK:=TRICK.PTR~[O] 

END; 

PROCEDURE POKEi 
V AR T lUCK: DIRTY; 
BEGIN 

DATA:=ABS(DATA MOD 256); 
TRICK.INT:=ADDR; 
TRICK.PTR~(O]:=DATA 

END; 

96 



BEGIN 
(* DUMMY STARTUP INITIALIZATION FOR UNIT *) 

END. 

97 



98 

.TITLE "READTIME - PROCEDURE TO RETURN DATE & TIME" 

.NOPIACROLIST 

.NOPATCBLIST 

; ~ACRO TO POP 16-BIT RETURN ADDRESS: 

.lUCRO POP 
PLA 
STA %1 
PLA 
STA %1+1 
.ENDM 

; ~ACRO TO PUSH 16-BIT RETURN ADDRESS: 

SLOTNUM 
CLOCK 
BUFFER 
RTADDR 

.MACRO PUSH 
LOA %1+1 
PHA 
LOA %1 
PHA 
• ENDM 

• EQU 
• EQU 
• EQU 
.EQU 

4 ;SLOT NUMBER FOR CLOCK BOARD 
<10*SLOTNUM>+OCOBO ;BASE ADDRESS FOR CLOCK CARD 
00 ;PAGE ZERO WORD FOR PARAMETER ADDRESS 
02 ;TEMPORARY STORAGE FOR RETURN ADDRES3 

PROCEDURE TO READ DATE AND TIME FROM CLOCK IN SLOT ISLOTNU": 
; PARAMETER MUST BE ADDRESS OF 19-B!TE AREA TO RECEIVE THE DATE AND 

TIME. OUTPUT IS FORMATTED AS FOLLOWS: YY/PIM/DD-W HH:MPI:SS 
YY=YEAR,MM=MONTH,DD=DAY,W:WEEKDAI,HH=HOUR,MM=MINUTE,SS=SECOND 

• PROC 

POP 
POP 

LOA 
STA 
LOX 

DELAY DEX 
BPL 

LDX 
LDY 

NEXTDIGT LDA 
BEQ 

'READT IM E, 1 

RTADDR 
BUFFER 

130 
CLOCK+1 
140 

DELAY 

#OC 
#00 
FILLCHAR,X 
GETDIGIT 

;PROC TO RETURN DATE & TIME 

;SAVE PASCAL RETURN ADDRESS 
;STORE PARAMETER ADDRESS IN PAGE ZERO 

;APPLY TIMER-HOLD AND CHIP SELECT 

;SET UP, THEN EXECUTE A 200 MSEC DELAY 

;SET INDEX TO POINT AT YEAR 
;SET BUFFER INDEX TO FIRST CHAR 
;GET NEXT INSERTION CHARACTER 
;CHECK FOB NULL CHARACTER 



99 

STA Q)BOFFER,Y ;SAVE IN OUTPUT BUFFER 
INY ;INCREMENT BUFFER POINTER 

GETDIGIT TXA ;COPY DIGIT INDEX INTO ACCUMULATOR 
ORA tJO ;INSERT A "3" IN UPPER 4 BITS 
STA CLOCK+1 ;REQUEST DIGIT 
LDA CLOCK ;GET THE DIGIT 
LDA CLOCK ;(INSURE PROPER TIMING BY 
LDA CLOCK . DOING THREE CHIP READS) • 
AND BCDMASK,X ;GET RID OF EXCESS BITS 
ORA tJO ;CONVERT TO ASCII BCD DIGIT 
STA (])BUFFER, Y ;SAVE IN BUFFER 
!NY ;INCREMENT BUFFER POINTER 
DEI ;DECREMENT DIGIT INDEX 
BPL NEXTDIGT ;LOOP BACK FOR NEXT DIGIT 

LDA t2F ;GET CODE TO RELEASE HOLD 
STA CLOCK+1 ;ISSUE NOHOLD REQUEST 

PUSH RTADDR ;GET PASCAL RETURN ADDRESS 
RTS ;RETURN TO CALLING PROGRAM 

; THE FOLLJWING BIT PATTERNS ARE "ANDED" VITH EACH BCD DIGIT 
BCDMASK .BYTE ~F,OF,OF,07.0F,03,07,0F,OJ,OF,01,0F,OF 
; THE FOLLOWING (NON-ZERO ONLY) BYTES ARE INSERTED BEFORE DIGITS 
FILLCHAR .BYTE 00,3A,00,3A,00,20,2D,00,2F,00,2F,OO,OO 

.END 



BIBLIOGBlPBY 

R~2Q.Q. ttic;,gcom:euter ~:!§l::!'ll! Prograt~minq 1'-!!.ru!st!· Anaheim, 
California: Rockwell International, 1979. 

!EE!~ !! £Q.!!.!!Y.!!!£at!QJ!§ !.!!l;;erf~£~ £~£g,: !!H!1~!.lal;;i2n. ~J!!! 
QE~~l;;!ng Man~!· Cupertino, California: Apple Computer 
Inc., 1978. 

owner's ftanual for Model 7720 Parallel Interface. 
---suniiyvaie;-caiitoriiia:--calif"oriiii-computer-systems, 

1980. 

Q!!!~!~§ !taJ!ua! {2! ~2g,~l 1!~! ~!~n.~~rL£loc! ~Q~~l~· 
Sunnyvale, California: California Computer Systems, 
1980. 

Q!ll.~£~2 st!!g_ Q:Q~to£§. 2.~:!.4~ Chicago, IL: Bell & Howell 
Audio Visual Products Division, 1981. 

!EEl~ Pa2£st! :L.aagy!!,g~ !!.~{~~!!£~ ~!!.!!..!!!!.!• cupertino, 
California: Apple Computer Inc., 1980. 

!EE!~ ~!!.2£st! Ql!~!!,ti!!,g: ~ystea Re{~!:~!!£~ !t~Y~!.· Cupertino, 
California: Apple Computer Inc., 1980. 

!EE!.~ II [~fe~!!£~ na!!.!!stl• Cupertino, California: Apple 
Computer Inc., 1981. 

Stansell, Thoaas A. I!!~ I!!!!~!! !~!.igatirul ~!!.!§!!!!!~ 
~Y21~~· Torrance, California: !agnavox Advanced 
Products Division, 1978. 

Welsh, Jim, & Elder, John; Hoare, c. A. R. (Editor). 
Introduction to PASCAL. London: Prentice-Hall 
!iiternational-rn~;-1979. 

Tonkins, Ross !. A Guided !2~!:. Q.f !1!.2J.g ll~~!:L. !!!!!!.!..2 !!.!!.1 
~ibt:~£!~2· california! BYTE Publications Inc., 
Feb/1982. 

- 100 -




