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ABSTRACT 

The detection and removal of all gross errors or local 

systematic effects from geodetic data is of paramount importance 

when the quality of a Least Squares Estimation is concerned. In 

recent years, the above need, as well as the decrease of the compu

tational cost compared to the cost of observational procedures, has 

led to the development of a number of sophisticated techniques for 

the systematic tackling of the problem, based on statistical tests. 

Several approaches are reviewed in this study, but the main 

weight is given to the most systematic and effective up to now -

the post-adjustment techniques. The use of these techniques, and 

the analysis and comparison of their philosophies and sensitivities, 

are illustrated by siJilple numerical examples. A systematic 

strategy for error detection and elimination is proposed, \\i th 

special emphasis on survey networks. 

The finite sensitivity of the employed techniques may leave 

undetectable outliers in the model. Their magnitude as well as their 

undesirable effect on the final solution are assessed by the concepts 

of internal and external reliabilities. 

Problems encountered with the detection of small gross errors 

and the resistance of networks to distortions caused by the presence 

of inconsistent observations, are also illustrated by analysing 

the strength of a real geodetic network. Certain limitations in the 

classical approaches have led to the study of alternatives which are 

more robust to outliers than is the Least Squares Method, an overview 

of which is also given. 
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Finally, recommendations and guidelines are given to 

practicing surveyors, concerning the application of the above 

ideas in the design and analysis of surveying projects. 
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INTRODUCTION 

In the classical adjustment theory most of the research which 

has been done has concerned only the treatment of random and systematic 

errors in the observations. In most of the geodetic text books only one 

or two pages are devoted to the existence of gross errors and the possible 

solutions to the problem. Most often it is implied that all gross and 

systematic errors which have not been considered in the functional model, 

should be eliminated prior to the adjustment. This is required due to 

the high sensitivity of the Least Squares method to outliers which can 

dangerously lower the quality of the results. At this stage the quality 

of the results is vaguely associated with the concepts of precision and 

accuracy (Mikhail, 1979). 

The techniques for detection and elimination of gross errors 

consisted of all sorts of empirical checks, based on simple conditions 

1~hich the observations should ful fi 11, governed by the experience and the 
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intuition of the investigator. These simple checks were neither very 

systematic nor very sensitive but their ability to locate large errors 

was and still is remarkable. A look at the residuals after the adjustment 

would not reveal rucf\ and if something seemed to be wrong, additional checks 

on the original observations were performed. This rather frugal 

analysis was also dictated by the absence of large computers or by the 

high computational cost. 

However, in recent years the situation has changed profoundly. 

The above, requiring the investigator to have both experience and 

intuition as well as a good knowledge concerning the data acquisition 

procedures, is a "luxury" which unfortunately is not always available. 

On the other hand, the cost of employing experts to analyze the data 

is getting continuously higher than the computational cost of 

processing them. In addition to that, a non-systematic investigation 

founded only on intuition and simple checks on the observations, has 

its limitations and proves to be inadequate when the amount of data and 

consequently the number of combinations and checks on the observations 

one can perform, increases remarkably. 

Hence, the apparent need for a very systematic procedure, 

which would not only detect very small gross or systematic errors 

(highly seasitive), but also provide us with a measure of the efficiency 

of the method, led to the development of a number of quite sophisticated 

techniques based on statistical tests. These techniques also made 

possible an estimation of how reliable the results of the adjustment 

are, that is, if small changes in the observations cause relatively 

small changes in the results of the adjustment (Blais, 7.976). 
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The initiator of this philosophy was Baarda (1965~ 196?~ 

1968~ 1976~ 1979), and through his theory the concepts of quality, 

accuracy, precision and reliability obtained a more distinct definition. 

First of all, one should know approximately how the obser

vations are affected by the different kinds of error. The question 

"how important is it to detect errors of small magnitude in the data?" has 

to be answered, considering both nature of the project and economy. 

After that, it is known what is to be expected from an error detection 

procedure, and criteria for the minimum expected precision of the 

observations and the maximum effect on the final results that can be 

tolerated, have to be established. 

Since statistical tests are normally employed for error 

detection, it is essential to decide (depending again on the cost of a 

wrong decision), which of the two types of error is more serious to commit: 

To reject something that should not be rejected, or to accept something 

that should be rejected? 

Related to the Least Squares method, techniques can be generally 

distinguished as pre- and post- adjustment techniques. Up to now, post

adjustment techniques have proven to be more systematic and powerful 

(Stefanovic~ 19?8) 3 as parametric adjustment is more often used than the 

conditional adjustment (ch. 4). This thesis is mainly concerned with the 

analysis of post-adjustment techniques for the detection of gross errors. 

It is true that statistical literature abounds of different 

approaches for the detection of outliers in the data. Geodesists and 

photogrammetrists, being interested in this field, have started adopting 

and adapting these statistical methods to serve the analysis of geodetic

type problems. However, it is also true that statistical references 
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are written in a difficult language for surveyors. 

On the other hand statistical methods are only tools, and 

logical and thoughtful interpretation of their results is always needed. 

If the proposed method is not sufficiently understood one has to 

choose between t\~O evils: Either the method will not be applied at 

all (with all the consequences of this non-application) or the method 

will be applied blindly, leading to misinterpretations and \~rong 

decisions. 

In reality however, although there is an urgent need of a 

systematic analysis for the detection of gross errors in the data, 

there is not equal interest in a profound understanding of the entire 

theory behind the proposed technique, expecially by practicing surveyors. 

What they need are simple examples and a good understanding of the 

physical meaning of the testing procedure. Due to absence of such 

examples and useful guidelines for surveyors, all the methods given 

below have been presented in the simplest possible way regardless of 

the degree of their sophistication. 

Moreover, looking at the available literature, one can notice 

a lack of consistent and commonly accepted notation and terminology, 

so that a great amount of time is spent in trying to find the relation 

among different symbols and terms. This is on~ of the main reasons 

that, although most of the presented methods have been under develop

ment for more than 17 years, they are sti 11 not very popular but mainly 

comprehensible to the large majority of the surveying profession. 

To sidestep this problem, the notation and terminology adopted in this 

thesis are thos{' most often encountered in the geodetic literature, 

and a list of them is given. 
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It should be also mentioned that a meaningful comparison or 

link between the different approaches is not that easy. The main 

cause of the difficulty is not only the conceptual or structural 

difference of the statistical tests themselves, but also the differing 

philosophies behind them, concerning the choice of the probability 

levels, which can very easily lead to different decisions. Compara

bility was achieved not only by appropriately choosing the significance 

levels but also by always considering the philosophy of the methods 

whose sensitivities were being compared. 

The localization of gross errors, especially if there is 

more than one, is still very problematic, since most of the existing 

methods were designed for detection purposes only. Thus it \\'as one 

of the main tasks of this thesis to examine the localization problems 

and develop a systematic strategy for a successful treatment of gross 

errors. This strategy \vas designed to circumvent most of the problems 

caused by the weakness of the model and not by any inefficiency of 

the statistical methods. 

Finally, due to certain limitations in the classical approaches, 

some new and more robust alternatives were examined, but the further 

development of such techniques that is still required was out of the 

scope of this study. 

is: 

All the above needs, defined the purpose of this thesis, which 

To review and relate the different approaches for detection of gross 

or systematic errors, into conunon notation and "language" under

standable by practicing surveyors, giving also simple practical 

examples. 
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To compare the different philosophies which govern each technique 

and perform a critical evaluation of the methods. 

To develop a step-by-step procedure for detection, localization and 

elimination of gross errors in the observations, especially in small 

survey networks (low redundancy). This procedure has particular 

value in cases where outliers of small magnitude must be detected 

and the high accuracy of the survey is more important than the 

cost of processing the data. 

To explain the c-oncepts of quality and reliability of the results 

of the adjustment, and illustrate their importance with an example 

in a real geodetic network. 

First, a review of the nature of the errors in survey 

projects is given, and their role in the Least Squares method is 

studied, together with the statistical properties of the quantities 

involved (second and third chapters). 

In the analysis of different techniques, where the largest 

weight is given to the post adjustment ones (fifth chapter), a 

detailed analysis with examples and a proposed strategy are presented. 

l11e sensi ti vi ty of the above approaches as well as the 

influence of undetectable errors on the results of the adjustment are the 

major concern of the sixth chapter. 

In the complete example of a real and quite precisely 

measured geodetic network that follows (seventh chapter), problems 

encountered with the choice of the right hypothesis are illustrated, 

and the geometrical strength of the network is analyzed employing 

all the previous concepts. 
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In the eighth chapter, a few new methods for the treatment 

of gross errors in the data are introduced, which however require 

further development. 

The modern definition of the quality of networks (as it was 

introduced by Baarda (1976)), and a few economical aspects are concern 

of the ninth chapter. Finally, some guidelines, recommendations and 

warnings are given for use by the land surveyor. 



REVIHI AND ANALYSIS OF ERRORS IN SURVEYING PROJECTS 

The basic assumption on which the theory of the Least 

Squares Estimation has been founded is that all the gross and systematic 

errors have been eliminated before the adjustment is performed, and 

only random errors affect the data. 

The local and large disturbances are considered as gross 

errors, blunders or outliers, whereas smaller and global deviations 

are considered as systematic errors. Although these concepts look 

quite familiar, there are cases where clear distinction between local 

systematic errors and outliers of small magnitude cannot be made. 

Both kinds of errors have the same effect on the observations. 

Generally, errors can be assigned to the functional or to 

the stochastical model according to their origin which, however, 

usually is unknown. It is true that the functional model can be 

extended in many cases, to include additional parameters in order to 

8 
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take into account some of the systematic effects. This refinement has 

been a major research direction in recent years, mainly in the Photo

grammetric field (e.g.~ Moniwa~ 1977; El-Hakim~ 1979). 

Nevertheless, systematic effects or gross errors depict 

the inability of the functional model to describe the real situation. 

Both biases are considered here as errors in the deterministic model 

which means that they are treated jointly. In point of fact, there are 

cases where these errors may be assigned to the stochastical instead 

of the functional model, and therefore the former has to be refined. 

This has been attempted by diminishing the weights of the erroneous 

observations instead of eliminating them (sect. 8.4), or by other 

methods. 

The magnitude and the frequency of errors is also a problem 

to be considered when an error detection strategy is followed (Fors"';r:e::', 

1981.a). It is not a problem to recognize outliers of large magnitude 

when they occur, since they depict local variations only. They may 

however become a problem if their magnitude is such as to destroy the 

linearization of the observation equations, so that the solution does 

not converge or the statistical tests cannot be used. These large 

gross errors have to be detected and eliminated through pre-adjustment 

(ch. 4), or other techniques. 

The main goal here is the detection and elimination of errors 

of small magnitude. It should be realized that there is no clear 

boundary line bet\veen large random errors and very small outliers. 

First, an observation may be outlying compared to some a priori set 

criteria on its own precision. Secondly, an observation may be 

inconsistent in context of the rest of the observations (how well they 
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fit into the model). Most of the post-adjustment techniques base their 

philosophy on these two criteria; therefore, an observation may be 

considered as an outlier or not, depending on the sensitivity of the 

selected technique and the probability levels chosen. Due to the above 

criteria the sensitivity of the techniques is finite and thus no 

arbitrarily small gross errors can be detected. 

There are not objective criteria about the smallest magnitude 

of gross errors, and they cannot be established easily. However, 

one could bound the smallest size of an outlier from the degree of its 

influence on the final results of the adjustment. The maximum effect 

of an observational error on the solution which can be tolerated should 

be established using a priori geodetic criteria only. The idea is 

directly connected to the concept of the reliability of the results 

(ch. 6) . 

The most systematic way to detect the presence of large 

errors is to perform a proper statistical test. It is also of major 

importance to have a measure of its sensitivity. 

As it is known, a statistical test involves a null hypothesis 

H , which is a statement concerning the values ,,hich the population 
0 

parameters are hypothesized to have. For every null hypothesis there 

is an infinite number of alternative hypotheses which assume different 

values for the population parameters. The null hypothesis is the 

reference level from which any deviation of the different alternative 

hypotheses has to be detected by statistical tests. In fact the null 

hypothesis often expresses what one hopes to reject, i.e. the opposite 

of what one would really wish to be the case. 

The inquirer cannot confirm or refute the null hypothesis 
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since he does not have complete information about the entire population. 

The only thing he can do, is to report the probability of an observed 

outcome assuming that the null hypothesis is true. This can be done 

using test statistics, calculated by the experimental data under the 

null hypothesis. 

The smaller the probability the lower the credibility of the 

null hypothesis. If this probability becomes sufficiently small, 

the null hypothesis may be rejected but not confuted. On the other 

hand, if the probability of the specific observed outcome is not 

enough to sufficiently reduce the credibility of the null hypothesis, 

it is said that "H is accepted". This does not imply that H is 
0 0 

true but only that the available data cannot convince us that H 
0 

is false. Therefore it would be more precise to say: "H is not 
0 

rejected" (Hogg and Craig, 1978). 

Some definitions are given now: 

Type I Error: 

Type II Erl'or: 

the rejection of the null hypothesis H , when H 
0 0 

is actually true. The probability of committing 

this type of error is called "significance level" 

a. The probability of making the correct decision 

is the"confidence level"(l-a). 

the acceptance of the null hypothesis when in fact 

is false (H is true). The probability of committing 
a 

this type of error is (1-B). The probability of 

making the correct decision is the "power of the 

test" B, i.e. the power of detecting a difference 
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o between H and H when the test is carried out 
o a 

at a significance level ~. with a given sample size. 

If the detection of smaller differences 8 between the two 

hypotheses is desirable, the price that one has to pay is the increase 

of the sample size. If, however, the observations have been already 

obtained, which is the usual case in Geodesy and Photogrammetry, 

the power of the test B indicates the smallest difference 8 that can 

be detected if the test has been executed at a significance level ~ 

(ch. 6). 

It is obvious (fig. 2.1), that fixing the smallest difference 

between the two hypotheses, type I and type II errors cannot both be 

decreased. 
H 

0 
H 

a 

~: 1- 8 

Figure 2.1: Variation of Type I and Type II Errors 

A very small signigicance level expresses a reluctance to 

reject the null hypothesis unjustly (Blais> 19?6). On the other hand 

if the null hypothesis is false the type II error that is committed 

is quite large. In decreasing the probability of ~ommi tting both types 

of error 8 increases; hence the difference between H and H should 
o a 
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be sufficiently large to be detected. 

It can be said that the selection of the significance level 

has been a matter of personal taste since it reflects only a degree 

of reluctance, descretion or conservatism. Objective criteria are 

generally unavailable. However, in our field the probability levels 

can be chosen, if tolerances are established a priori concerning the 

maximum effect of errors on the results if the observations have been 

executed with care (Stefanovic, 1980). 

Anyway, the selection of the probability levels "e1" and "1-S" 

should be based on the cost of committing either type I or type II 

error. Thus depending on the purpose of testing (detection of gross 

errors, analysis of deformations, etc.) and on the cost of making a 

111rong decision of either type, a compromise bet111een the confidence 

level and the power of the test can be reached. 

In small geodetic networks where the redundancy is quite 

limited choosing a lower significance level is suggested, otherwise 

too many rejections will take place, with all the consequences of such 

a course. Moreover it is recommended that automatic rejection should 

never be executed without any justification. 

On the other hand there are cases where the expense of 

recollecting data in a project proves to be not only uneconomical, 

but also impossible to repeat. In this situation, while the first 

tests are applied in the field, attention should be paid to the t)~e II 

error and additional observations can be performed if needed. Thus 

sufficient redundancy ensures the detection of fairly small differences 

(due to gross or systematic errors) between H and H , without at the o a 
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same time decreasing the significance level. 

The problem of choosing the right alternative hypothesis 

H at the time, is quite difficult to solve since it may appear that a 

more than one H satisfy the tests when H is rejected. The design 
a o 

of H requires a good knowledge of the collection of the data (e.g. a 

survey procedure), experience, and sometimes intuition which unfortunately 

are not al\~ays available. This is the reason \~hy more systematic and 

automatic techniques are employed, which however introduce much simpler 

alternative hypotheses. This inevitably may bring a vagueness into the 

decision making. 

The consideration of both types of error is mentioned further 

below when the different techniqu-es are present-ed (ch. 5); in addition, 

relevant examples are given. 

It should be mentioned here that gross errors in the data 

can be successfully treated only if the stochastic properties of the 

observations are sufficiently known, and if an adequate number of them 

is statistically consistant, also forming a well conditioned algebraic 

system. Moreover it is assumed that the number of gross errors does 

not exceed the redundancy of the system (Stefanovic~ 1978). 

A full algorithm for a systematic blunder detection \vould 

inevitably require the use of a large computer. The additional 

computations needed for this purpose prove to be less expensive than 

repeating the observations. The latter is not desirable for h'O more 

reasons. First, no-one can guarantee that other gross errors will not 

occur, and secondly. in many cases observations cannot be repeated 

due to their mvn nature and the peculiarity of the project. Re-obser-

vation is inevitable only in the case of erroneous but indispensable 
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observations. 

The designed blunder detection technique should take care of 

the elimination of large gross errors at an early stage, so that 

problems with the linearization or the statistical assumptions wi 11 

be avoided. Moreover it is desired to enable not only the detection 

but also the localization of gross errors, which has been up to now 

the Achilles' heel of all the post adjustment techniques. 

Finally, it should be mentioned that a large number of errors 

which owe their existence in incorrect transferring, copying, or 

punching of the data, as well as in programming errors, etc., not 

being of a statistical nature, should be also detected by a blunder 

detection technique (Pope, 1976). 

Before these techniques will be presented it is necessary 

to analyze the influence of gross errors on the Least Squares 

Estimation. 



LEAST SQUARES AND OUTLIERS 

3.1 Least Squares and Statistics 

The Least Squares method is only one of the estimation 

techniques. It has been widely used in most practical situations 

because of its simplicity and also because complete statistical 

information is generally unavailable. Whereas the other estimation 

techniques may require a more complete statistical model, the Least 

Squares Estimation requires only means, variances and covariances. 

The assumption that all the systematic errors and biases 

have been removed and only random errors are left 1vhich have a 

Gaussian distribution, is not necessary for the L.S. Estimation 

itself but is is required by virtue of the statistical hypothesis 

testing. 

16 



17 

The L.S. estimates for the unknown parameters x are the 

minimum variance estimatesof x regardless of the distribution of the 

observational or other errors (Blais~ 1976). The fact that the 

statistical information about the estimated parameters is inadequate 

(their probability distribution is not known), does not allow any 

parametric testing on them. 

The questionable assumption is that the observational errors 

are considered as unbiased. Any presence of bias is transferred to 

the estimation of the unknown parameters and cannot be generally 

detected through their examination. 

The estimated variance factor is also unbiased and the 

distribution of the observational errors is assumed to be normal for 

the purpose of hypothesis testing only. 

As far as the actual distribution of the geodetic observation 

of errors is concerned, the opinions conflict. It is true from 

experience that observations in geodesy are most often normally 

distributed or deviate only slightly (Baarda~ 1976). It is also true 

from experiments that the shape of the distribution differs somewhat 

from the normal one since it lacks the tail areas (they are cut off). 

The deviation between the actual and the theoretical shape is not very 

large (Stefanovic~ 1980) but it should be tested whenever possible. 

This difference should be kept in mind because it shows that observa-

tional errors cannot exceed some certain values defined by the reality 

of the specific geodetic experiment. If an error larger than this 

boundary value takes place, it should be detected regardless of the 

chosen significance level. 

The covariance matrix of the residuals C 1s singular 
v 
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therefore it cannot be inverted (eq. I.lO) to give solution for the 

true errors. The covariance matrix of the adjusted observations 

C~ = (AQxAT)·a~ , used only infrequently, indicates the difference 

between the covariance matrix of the observations Ct and of the 

residuals C 
v 

c 
v 

(eq. I. 7) 

It is important to realize that although the Ct matrix is diagonal, 

i.e., the observations are considered as uncorrelated, the residuals 

in general are always correlated. The latter comes from the model 

itself which produces the spurious correlation. 

To have a diagonal covariance matrix for the unknown 

parameters C , it is required that the column vectors of A are 
X 

orthogonal. This happens, for example, if each observation is used 

for the determination of only one unknown parameter, that is, each 

row of the design matrix A has only one non-zero element. To have 

a diagonal covariance matrix for the residuals C , it is additionally 
v 

required to have a unique solution of the problem; namely the design 

matrix should be diagonal. 

The higher the correlation among the residuals the more 

intricate the linear dependance of the residuals on the observations. 

Correlation equal to zero means that a variation of one observation 

would affect only one unknown parameter and the corresponding residual, 

whereas full C matrix simply implies that a change in one observation 
v 

would influence more than one unknown parameter and residual. 

The spurious correlation among the residuals, introduced by 

the model but usually neglected by the statistical tests, creates prob-

lems. When a single observational vector is to be tested, it c..1..11 be easily 



19 

shown (Morrison~ 19?6) for P==I that the correlation among the residuals 

is quite small: 

1 
P··==,...--

lJ n-1 

where n is the size of the vector. 

However, when several observations are simultaneously 

examin~d using multivariate analysis, the correlation among the 

residuals in some cases may be quite significant. This statistical 

dependence causes problems since most of the usual techniques which 

examine standardized residuals (ch. 5), base their efficiency on the 

diagonal dominance of the elements of the Qv matrix. 

The problem is twofold. First, significance levels bet111een 

uni- and multi-dimensional tests have to be established so that the 

decisions from both tests will be consistant. If, however, the 

quantities are considered as uncorrelated regardless of the actual 

situation, the problem can be somewhat circumvented through Bonferroni' s 

inequality (sect. 5.3). Secondly, the existing dependence among the 

tested quantities (residuals), prevents us from pinpointing the 

erroneous observation since its gross error has been spread among all 

the residuals. The first problem is connected with the detection 

of outliers (at which probability level the testing is performed) and 

the second problem is connected with their localization. Both Kill 

be examined again below. 

One could of course perform a diagonalization on the covariance 

matrix of the residuals and come out with a diagonal matrix, 

c I == DT c D 
v v 

where D is an orthogonal matrix. In the case of an eigenvalue diagon-

alization, the D matrix consists of the columns of the normalized 
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eigenvectors of C . The residuals are also transformed using the same 
v 

orthogonal matrix D, 

T 
v 1 = 0 v 

However this solution would bring some other problems. Since the rank of 

C is n-u = r, a diagonalization would create n-r = u zero elements 
v 

along the diagonal of the new transformed matrix C The rest of the 
v 

eigenvalues would be equal to 1 because C is an idempotent matrix. 
v 

The new residuals v: which correspond to the zero diagonal elements 
1 

I 

of C will also be zero. 
v 

I 

The new quantities (residuals v.), are indeed uncorrelated 
l. 

but we are not interested in them since their relation with the initial 

observations is very intricate. The physical meaning of the ne\.; space 
I 

is quite unclear as each new residual v. is a linear combination of 
l. 

all the previous ones. Under these circumstances, direct correspondence 

between actual observations and transformed residuals does not exist 

and the localization of errors through the examination of the standard-

ized residuals becomes impossible. Therefore such a transformation of 

the residuals and their covariance matrix is not recommended. 

3. 2 Relation between Residuals and Gross Errors - Sparse Redundanc;.· 

The relation between residuals v and true errors E proves to 

be (I . 8) , (I . 1 0) : 

v = Q PE = M . E 
- v-

( 3. 1) 

If we assume that each observational true error E. consists of one 
l 

random part c and one gross error part 'V'l-. (using Baarda's notation), 
~r. l. 

l 

E = E + IJQ_ 
-r 
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then, equation (3.1) can be written as: 

where: 

v = Q P£ + Q PV~ 
v -r v-

v + <Jv 
-r 

v = Q p . £ is the influence 
-T v -r 

residuals, and 

Vv = Q p . n is the influence 
v 

residuals. 

(3.2) 

of random errors on the 

of gross errors on the 

Equation (3.2) shows that residuals are affected by random and gross 

errors. Since the Least Squares method does not distinguish between 

the two kinds of error, the minimization concerns the joint effect 

and not only the random part. Therefore, after the adjustment it 

is quite difficult to detect the gross errors, through the examination 

of the residuals. 

From the properties of the idempotent matrix M = 

it is known that: 

where: 

trace [Q P] 
v 

rank [Q P] v n-u = r 

r : is the total redundancy. 

Q P (app. I v 

(3. 3) 

If r. are the diagonal elements of M = Q P, from equation (3.3) 
l v 

we obtain: 

11 

i=l 
r. = r 

l 
and 

Moreover from equation (I .18), 

0 < r. < 1 
l -

Considering also equation (3.2): 

r. 
l 

(0 P) .. 
'v ll 

(3.4) 

'Jv = Q P<Jt, the individual 'ilv. can 
v -- l 
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he defined as: 

'ilv. r. • 'ilL 
1 1 1 

(3.5) 

The elements ri are called by definition redundancy 

numbers (Forstner, 1979), and simply express the contribution of each 

single observation ~- to the total redundancy r. The r. 's serve as 
1 1 

a measure of the local controlability, that is going to be explained 

further below. 

Consequently a relative redundancy can be defined as the 

average of the diagonal elements of M, that is, 

n n 

From the definition of M, (1.8), 

in which 

u = QAP = AQAATP 
~ X 

since U is also idempotent, 

trace [U] = rank [U] = rank [Qx] = u 

By definition now, similar to equation (3.4), 

u. ~ (Q~P) .. 
1 "' 11 

and from equation (3.7) 

u. = 1 - r. 
1 1 

and 0 < u. < 1 
1 

(3.6) 

(3. 7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Analogously to the previous definition the elements u. can be called 
1 

"absorption numbers". From equation (3.11) now, 

l::u. = n - l::r. 
1 1 

or u = n - r (3.12) 

which was expected. 

If a gross error 'il£. exists now 1n one of the observations X.., 
1 1 

after multiplying by 'il!i, equation (3.11) becomes: 
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u. • 'J9.,. = rn. - r. • rn. 
l l l 1 l 

(3.13) 

Considering equation (3.5), equation (3.13) becomes 

'J£. = u.'J9.,. + 'Jv. 
l l 1 l 

(3.14) 

The last equation shows that if a gross error 'JR,. occurs in one 
1 

observation only, £., it will be reflected in the corresponding 
1 

residual vi' as much as 'Jv. = r.'JR,. and the rest of it will be 1 1 1 

absorbed in the determination of the unknown parameters. 

It is clear now that a gross error 'J9.,., in an observation 
l 

which has large redundancy number r., will affect more the corresponding 
l 

v. (as much as r.'JR,.), thus it will be easily detected through the 
l l 1 

examination of the residuals. The larger the r. the better the 
l 

h .th b . control on t e 1 o servat1on. 

So r. = 1 means first, that 100% of any gross error 
l 

'J£. will be revealed in the residual v. (full control), and secondly, 
l l 

it will not have any effect at all on the determination of the unknown 

parameters; e.g. a measured distance between t\olo fixed points would 

have r. 1. 
1 

f . h h . 1 h . th I now r. = 0, 1t means t at t ere 1s no contro on t e 1 
l 

observation, since 'J£. does not affect at all the residuals, therefore 
l 

it cannot be detected. Moreover this undetectable error 'Jl., affects 
l 

100% the final solution, in other words it is directly transferred 

into the estimated unknown parameters; ~in measuring a single 

angle and a distance to determine uniquely the position of a point, 

the local redundancy, r., for both observations, is equal to zero. 
1 

Hence, it is desirable to have a network with relatively 

large and if possible uniform r. 's. Unfortunately the relative 
l 
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redundancy (global measure of controlability) remains constant in most 

of the geodetic nets, r = r/n ; 0.5 (Pope, 1976), and cannot easily 

be increased. Besides this, the local redundancy r varies significantly 
i 

and dOeS not remain ClOSe tO r for all the Q.. IS, Which meanS that 
1 

the controlability is not the same for all the observations. Thus, 

by revealing how high or low the controlability is in the different 

parts of the network, the redundancy numbers reflect its geometrical 

strength (Forstner, 1981). 

It is characteristic that the r.'s depend on the geometry 
1 

of the network and have nothing to do with the actual measurements. 

Therefore they can be considered during the design of the network 

(van Mierlo, 1981). 

As for the unknown parameters u, it can be said that 

usually not all of them are of interest. If the model has the form: 

- k'. + ~ = ~- = Ak · ~ + At • .!_ (3.15) 

where: 

k the desired parameters such as point coordinates, etc., and 

t the nu1sance parameters such as orientation, scale, etc., 

it can be derived (eq. II .5) that: 

(3.16) 

Similarly the diagonal elements consist of two parts: 

1 - ri = ui = uk. + ut. (3.17) 
1 1 

Multiplying by n. as it was done 111 (3.13), 
l 

v£i = uk. v£i + ut. v~i + vvi (3.18) 
l l . th 

as long as only one gross error exists in the 1 observation, 

where: 
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1 

V£. 
1 
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is the part of the gross error V£., which is 
1 

absorbed in the determination of the desired 

parameters only. 

Since r. 's and ~ 's describe the variation of the residuals 
1 K. 

1 

Vv., and of the estimates Vx., as functions of the observational errors 
1 1 

V£., in other words the sensitivity of the L.S. estimators to gross 
1 

errors, they are used for the definition of the reliability of a 

network (ch. 6). 



PRE-ADJUSTMENT GROSS ERROR DETECTION TECHNIQUES 

Before the large computers were introduced, most of the 

gross-error detection techniques were confined to simple checks 

during or just after the data acquisition. These techniques were not 

very systematic, relying for their efficiency on the experience and 

intuition of the investigator who most of the time was the project 

surveyor. These techniques prove to be very useful even today when 

large errors are to be detected and eliminated. On the other hand, 

the whole idea of eliminating most of the gross or systematic errors 

as early as possible, is very elegant. In this way remedies (in 

form of re-observations) may be still possible, as far as the indis

pensable observations are concerned; (large redundancy can afford 

the automatic rejection of erroneous data). 

26 
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A single check of the closure of a triangle for example 

does not give, as is very often but erroneously believed, any measure 

of how accurately the observations were made. It gives however, 

information about the presence of blunders provided that good 

estimates of the accuracy of the observations have been chosen as 

criteria (UotiZa~ 1973). 

The most systematic way to detect the presence of large 

errors in the raw data prior to the adjustment, is to use all the 

condition equations and instead of testing residuals to test mis-

closures which are also functions of the observational errors. The 

test on a misclosure outlier is similar to the one-dimensional test 

on a residual outlier (ch. 5). Depending now on the a priori 

variance factor (known or unknown) the following tests can be per-

formed (Vanicek and Kr>akiwsky~ 1982): 

1. If a2 is assumed to he known then the statistic, which is 
0 

a standardized misclosure, 

f. 
I. 

J. 

J. has the N(O,l) distribution. 

Therefore if 

> IF 
1-a.; 1, 00 

( 4.1) 

it is concluded that the ith misclosure has been affected by the 

presence of gross errors. 
2 A2 

2. If a is unknown, a is employed and the statistic 
0 0 

I. 
1 

a 

f. 
l 

f. 
1 

has the t distribution, 
r 

A 2 
where a 0 is to be determined from an independent source and r is the 
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redundancy used for its estimation. If ~ 2 is determined from the 
0 

same sample then the T -distribution (sect. 5. 3), instead of t has 
r r 

to be used. Similarly to (4.1), if 
f. 

If. I j-...,...2.1 > c 
1 af t 

i r; (1-a/2) 
( 4. 2) 

it seems that the ith misclosure has been affected by the presence of 

large errors in the observations related to it. An investigation for 

the localization of the detected outliers starts after the testing 

procedure. 

The main disadvantages of a preadjustment gross error 

technique are: 

1. It is not always easy to set up the exact and correct number of the 

condition equations, as the figure of the network becomes 

more complicated; whereas parametric equations are very 

simple to construct (Bamford, 19?7, pp. 164-167). This is 

the reason why for the last years, after the high speed 

computers became more available, the parametric adjustment 

has been used almost exclusively. 

2. Since each misclosure relates to more than one observation, a single 

condition equation with large misclosure does not give any 

information as to which observation was the erroneous one, 

if it is assumed that only one blunder exists. In other 

words, there is not any hint of blunder location. The 

fewer the observations involved in each of the condition 

equations, the easier the localization of possible gross 

errors. The efficiency of localization decreases as the 

number of outliers increases. 
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All the above plus the increase of the computational cost, 

have prevented a wide utilization of preadjustment gross error 

techniques. In spite of this, whenever the detection and elimination 

of large errors is of major importance, both simple quick checks and 

asystematic procedure using all the condition equations should be 

employed. The quick checks have a questionable sensitivity but their 

efficien~y in localizing the errors is high most of the time, since 

they involve only few of the observations. 

To sidestep the above problems, attempts have been made to 

develop a more systematic use of the conditional least squares model. 

This has also some other advantages concerning the cost of processing 

the data. For this purpose an automatic data screening process of 

two dimensional geodetic networks, using the conditional Least Squares 

model has been proposed by Peter Steeves (in prep.). In this method a 

graph theoretical algorithm is used to generate a fundamental set of 

circuits for the network, which serves as a basis for constructing 

the condition equations. 

In conclusion, it can be said that the preadjustment error 

detection techniques should be considered in addition to the post

adjustment ones (ch. 5), because of their advantages, if they do not 

require overly expensive computations. 



POST-ADJUSTMENT GROSS ERROR DETECTION TECHNIQUES 

Since the statistical model used in the Least Squares 

Estimation is quite simple, only information about the variances of 

the estimated quantities can be obtained. Their probability 

distribution is not known; therefore, a statistical test for the 

estimated parameters is not available (Forstner3 1980). 

From equation (I.lO) the original observational errors 

could be directly computed if matrix M could be inverted. Unfortunately, 

M is singular, hence the most rational way to detect the presence 

of gross errors is to test derived quantities which are functions of 

them. Thus, all the statistical tests after the adjustment focus 

on the analysis of the errors in the functional model, i.e. the resi

duals. 

It is important to realize at this stage that tests on the 

30 
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residuals after the adjustment belong to the multivariate tests and 

examine how the observations fit into the mathematical model. Since 

the residuals do not reflect only the quality of the observations, 

they are not always very good indicators of gross errors. This has 

already been made clear from the relationship between residuals and 

gross errors (sect. 3.2). 

In the following sections the most popular post-adjustment 

blunder detection techniques are reviewed, their problems are analysed 

and finally a strategy for the detection, location and elimination of 

gross errors is proposed. 

5.1 Global Test on the Variance Factor 

The first test which is applied after the adjustment is the 

"2 
well known global test on the a posteriori variance factor o . This 

0 

test obviously can be applied only when there is a priori knowledge 

about the precisionof the observations, i.e. when the a priori variance 

factor o2 is assumed to be known. Otherwise the test has no meaning. 
0 

the F r,oo 

Under the null hypothesis H the statistic ~2 ;i follows 
0 0 0 

- distribution. It is to be remembered that F r,oo 
2 

= X /r. 
r 

The 

decision for the guise of this global test (one-tailed or two-tailed) 

depends on the purpose of the test which is defined by the null hypo-

thesis H If, for example, the null hypothesis: 
0 

H 
2 2 is tested, under H 

2 
"f 2 

0 = 0 0 0 
0 0 a 0 

where, 2 the variance factor and 
"2 

is its estimated value; \.1 represc1ts 0 
0 

then the two-tailed test is recommended, ~;:hich gives the following 

2 
(1-a) confidence interval for the variance factor o 

0 "2 
ro 

0 

2 
xr,l-a/2 

2 
< a 

0 
< 

"2 
ro 

0 
( 5. 1) 



32 

However, when the global test is used for the detection of outliers 

A2 2 
it is normally expected that cr > o . Therefore,the null hypothesis 

0 0 

to be tested is: 

H 
0 

2 2 
: a = cr 

0 
under H : 

a 
2 2 cr > cr 

0 

and the one-tailed test is recommended: 

Since 

A2 
cr 

0 

2 cr 
0 

A2 2 
o /o = 

0 0 

< F 
r,oo;l-a 

T 2 v Pv/ro , equation (5.2) can be written as: 
- - 0 

T -1 2 v C v < rF - X 
- i- r,oo;l-a - r;l-a 

(5. 2) 

(5. 3) 

If there are any blunders in the data then the above quadratic form 

will increase and the test may fail or not, depending on the magnitude 

of the blunders and on how they are reflected in the residuals. If 

this test (5.3) fails, then H is rejected. Unfortunately, there may be 
0 

more than one reason for rejection (Uotila3 1976} for example: 

a) incorrect estimate of weights; 

b) incorrect mathematical model; 

c) blunders in the observations. 

We may not know \vhich one of the above reasons caused the failure of the 

test, and the test does not give any additional information. Whatever 

the reason is, it should be investigated and not ignored. Confining 

ourselves to the third possible cause for rejection, i.e. blunders in 

the observations, an alternative hypothesis H has no"' to be introduced. 
a 

The simplest H considers a possible shift n of the probability 
a, 

distribution of the observations ~; therefore it can be defined as 

(van Mier>lo 3 1977}, 

E[l!H ] = E[tiH ] + Yl (5.4) - a - o 

Under the null hypothesis the expectation of the residuals is zero: 
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E[v!H ] = 0 
- 0 

but under the alternative hypothesis, E[v!H ] n. The relationship 
- a 

between~£ and ~vis already known (eq. 3.2): 

~v = QPV£ v-
(5. 5) 

Also under the alternative hypothesis, the expectation of 

A2 2 
is not equal but o fa to one anymore, 

0 0 
A2 A2 A2 
(J (J (J 

E( 
0 H ] E[ --T- I H0 ] 

0 
-2- a + ~c -2-) 

(J (J (J 

(5.6) 

0 0 0 

where A2 A2 T 
(J ~(J 1 ~v P~v A 

~c-o-) 0 
--2- -2- = 2 

(5. 7) 
(J (J (J r r 

0 0 0 

Therefore, equation (5.6) can be expressed as 

E(~2/o2 H ] = 1 + A/r 
0 0 a 

(5. 8) 

where, 
1 T 1 

A - 2- ~v P~v -2- V£PQVPV£ (5.9) 
(J (J 

0 0 
A2 2 

Under the alternative hypothesis the statistic o /o has a non-central 
0 0 

F distribution with the above non~centrali ty parameter A. r,oo,A 

This depicts the shift of the probability distribution due to a gross 

errorV£ (fig. 5.1). 

Although the residuals are known, the observational errors 

~£ and consequently A are not. Thus no conclusions can be drawn as to 

~•hich observations are the erroneous ones. Only a boundary value A 
0 

can be determined which gives the deviation from the null hypothesis 

which can be detected at certain probability levels a and s : 
0 

A = A(a,S ,r,co) 
0 0 

(5.10) 

However, this value does not give any information about the individual 
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elements of the V~ vector since it is referred to the entire model. 

What is needed is a simpler and more specific H which will constrain 
a 

the relationship between residuals and gross errors v~. so that 

boundary values can be estimated for the vector V~ when a test is 

performed at a given probability level S 
0 

uni-dimensional tests on the residuals. 

f(x) 

- F [~2/02 H ) 
H 

0 0 0 r oo , 
0 

This H introduces the 
a 

mm 
[~2/i H ) - F r,oo, >. ~ 0 0 a 

Figure 5.1: 

F 
1-a.;r,oo 

5.2 Data Snooping - Boundary Values 

H a 

ex 

l-8 

Under the new H it is assumed that only certain observations 
a 

have been affected by an error V~. 

H v~ cv~ (5.11) 
a 

c 
where, the units in the vector c = (0 ... 1 0 1 0 ... 0) indicate 

the erroneous observations, and v~ is a scalar denoting the gross error. 

Considering the boundary value of>.. (eq. 5.10), equation (5.9) can 
0 

X 



be written as 

A 
0 
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which under equation (5.11) becomes 

A 
0 

I/ Q,2 
o T 

-2- £ PQ/£ 

(5.12) 

(5.13) 

from which the 
0 

0 boundary value I/ Q, of a gross error in the observations 
0 

specified by the vector _c:_, can be obtained: 

Ill JLI 
0 

0 
0 

I >.. 0 

T c PQ Pc - v-

(5. 14) 

It would be easy now to derive a statistic which tests the alternative 

hypothesis H , but a further simplified alternative hypothesis is used 
a c 

in practice, for it is not easy to know which observations are the 

erroneous ones. The new H assumes that only one observation at the time 
a 

. Th f h . 1 h h . th 1s erroneous. ere ore, t e vector c. w1 1 ave t e 1 element 
-1 

equal to one and the rest of them equal to zero. Baarda (1968), 

calls all these H , the "conventional alternative hypotheses": 
a 

H I/ JL. c. 1/ JL. 
a 0 1 1 0 1 c 

Equation (5.14) can be written now as 

I >.. 

Ill Jl,. I 
0 

a 
0 1 0 (PQ P) .. v 11 

(5.15) 

(5.16) 

This expression is very important and it is used for the definition of 

the internal reliability (sect. 5.1). 

Now the one-dimensional test statistic can be derived to 

test the alternative hypotheses, (AtbeJtda., 1980), 

w. = 
1 

T c.Pv 
-1-

o /c.PQ Pc. 
0 -1 v -1 

(Pv) .. 
- 11 

0 I(PQ P) .. 
0 v 11 

( 5 . 1 7) 



36 

which ln the case of a diagonal p matrix is simplified to: 

V. v. 
1 1 w. = = 1 

a ;q-a v. 0 v. l l 

(5. 18) 

In other words wi is a standardized residual which has the normal 

distribution N(O,l) (fig. 5.2). 

0. 
0 

2 

f(x) 
0.<45 

w=O 
I 

w=l}w 

:..-- n---_, 
0 

4 

Figure 5.2: w-test (Data Snooping) 

IT: 
0 

8 X 

From this figure it can be easily seen that fixing the 

significance level a and the pO\ver of the test (3 , the non-centrality 
0 0 

parameter can be estimated from: 

~ 
0 , Fs . 1 co 

o' ' 
(5.19) 

The variation of ~due to this dependence is also shown in figure (5.3). 

The term "Data Snooping" refers to the above one-dimensional 

test, examining only one standardized residual ( e q . 5 . 18) , at t h e t i me . 
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A 
0 

15 

40 
a A .70 

A .80 A.90 0 

. 35 0.0001 19.5 22.3 26.8 
0.0003 17.2 19.8 2'1 
o.ooos 16 18.6 22.7 

30 0. 0 01 14.6 t7 20.9 
0.003 12.2 14.5 18. 1 
o.oos 11. 1 13.3 16.7 
0. 01 9.6 11.7 14.8 

25 o.o2 8.1 10.1 13 
0.03 7.3 9.1 11.6 
0.04 6.65 6.'1 11.2 
Q.OS 6.16 7.85 10.5 
0.06 5.16 6.7 9.2 
0.1 4.7 6.18 a.s5 

.90 

.8 

B s = .70 
0 

1 2 3 "' 5 6 7 6 9 100 

Figure 5.3: Variation of the non-centrality parameter >. • 
0 

If, v. 
lw-1 = 

1 
1 I > IF 

l-et •1 (X) 

(5.20) 

crv. o' ' 
1 

the null hypothesis (H : there is not any gross error in the ith 
0 

observation), is not accepted and the ith residual is flagged for 

rejection. For et 
0 

.001 which is usually suggested (Baarda, 1968), 

the critical value is IF = 3.29. Therefore the null hypothesis 
l-et ;1, 00 

0 

is rejected if 

1 v. 1 > 3. z9 a 
1 v. 

1 

The procedure can be subsequently repeated in the case of there being 

a: 

more than one gross error. Problems encountered with their localization 

0 
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are examined below (sect. 5.8). 

It should be mentioned that tests on standardized residuals 

are more robust than tests on the residuals themselves. 

It is also notable that since 0 < q < l (Q is an - v. - v 
1 

idempotent matrix), in the case of P =I, it can be seen easily that 

\11'. > v. 
1- 1 

The expansion factor K = 1/;q- varies from 1 to +oo. The larger the v. 
1 

K factor the larger the statistic wi, and consequently the easier the 

failure of the one-dimensional test (5.20). The variation of the K 

factor can be also seen in figure (5. 4). 

? 

6 

5 

3 

2 

0.1 0.2 0.3 0.-4 0. 5 0.6 0.7 o .e 0.9 

Figure 5.4: Variation of the Expansion Factor K. 
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Sometimes in the unavailability of a 's, which require v. 
l. 

considerable computational effort (sect. 5.6), partially standardized 

residuals are used (v./at) (Pope~ 1976l, where the standard deviation 
l. . • 

l. 

of the observations is employed. 

It should be kept in mind however, that since a < a v. 9,. 
l. l. 

the above approximation would decrease the value of the statistic 

(5.18), that is: 

v. v. 
l. l. -- < 

a£. a 
v. 

l. l. 

and thus less failures of the test (5.20) would occur. 

Baarda (1968) proposed the use of the global test (5.2) 

for the detection of gross errors and the "Data Snooping" test (5.20) 

for their localization. The decisions from both tests should be 

consistent, i.e., the same boundary values should be found whether the 

global or the single test is performed. 

The normal procedure would be to find the probability S, 

(power of the test), with which a certain alternative hypothesis can be 

asserted by the test. But for the reason given above, Baarda's phil-

osophy was to find the minimum deviation of the alternative hypothesis 

H from H , which can just be detected with a given probability B • 
a o o 

So his B-method of testing has been founded on the following: "The 

power of the tests remains constant but the level of significance is 

variable". For the global test it is "a" but for the uni-dimensional 

test (Data-Snooping), it is "ex ". If B = S (constant), these le\·els 
0 0 

of significance are interconnected through the non-centrality parameter A . 
0 

The normal procedure is (Baarda~ 1968, 1976): 



choose a and S (e.g. a 
0 0 0 

40 

0.001 and 8 
0 

compute .\ 
0 

from.\ = .\(a ,8 ,l,oo) 
0 0 0 

compute a from .\ .\(a,8 ,r,oo) 
0 0 

The values which are usually recommended are: 

a = 0.001 
0 

0.80) 

The selection of S is not as critical as the selection of a for the 
0 0 

outcome of· the tests. The dependence between a: and a can be found 
0 

from nomograms (Baarda~ 1968~ 1976). An example is given in Appendix III. 

Here only some values are given (table 5.1) for 10 degrees of freedom 

(r = 10): 

t ::; 10 

a: s ,\0 a IF F 0 0 1-CI . l 00 1-a;r,oo o' .. , 

.OS .80 7.85 .30 l. 96 1.17 

.05 .90 10.50 . 35 l. 96 1.12 

.001 .80 17.00 .04 3.29 l. 90 

.001 .90 20.90 .05 3.29 l. 83 

Table 5.1: Example values for the B-Method of testing. 

5.3 Tau-Test 

In the null hypothesis of the previous tests the variance factor 

a 2 is assumed to be known, which means that all the variances are properly 0 

') 

scaled. If, however, a~ is not adequately known or one does not want 
0 
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to rely on a priori estimates, then the a posteriori estimate ;z is 
0 

always available. In this case the global test on the variance is not 

performed and "Data Snooping" has to be modified. 

The new test statistic, proposed by Pope (1976), is similar 

to (5.18): 

v. v. w. 
1 1 1 (5.21) = = T. A 

~;q 
A 

1 
a ao v. o vi 1 

and follows the T-distribution (tau-distribution), since the residuals 
A 

are used for the estimation of the a v. 
1 

The multi-dimensional test is defined 

A2 
's through the a . 

0 

as a test on the max T: 

a = P{max T > c} = P{one or more of T· > c} 
1-

= 1 p {all T. 1 S < C} 
1 

1 P{(T1 ~c) and (T 2 ~c) and ... and (Tn ~c)} 

and if the above n events are considered as uncorrelated, 

n 
a = 1 - IT P{T. ~ c} = 1 

. 1 

n 
[P{T. < c}] 

1 -
1 

= 1 - (1 - a )n 
0 

which means that the multi-dimensional test at a significance level a, 

is a function of n independent one-dimensional tests executed at a 

significance level a 0 \vhere, 

a 1 - (1 - o: )n 
0 

Similarly to (5.20), if 

V. 

lr.l = 1~1 > c 
l t 

0 
V. 

l 

or a = a/n 
0 

(5.22) 
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the ith residual is flagged for rejection. The test is applied success-

ively to all standardized residuals. 

In fact the above assumption concerning the independence 

among the tested quantities, is not so indispensable. 

In multivariate analysis, whenever there is a finite and a 

priori known number of comparisons to be made, Bonferroni's method is 

most often used, based on an inequality that is usually given his name. 

When the problem of simultaneous inferences about each individual of 

a group of hypotheses is faced, then the tests are constructed in such 

a way that the confidence level for the entire group is at least (1 -a), 

(Morrison, 1976). 

Since the calculation of the exact joint probability is difficult 

most of the times, the lower bound for statistically dependant quantities 

is very often used which is described by the above mentioned inequality: 

c ) } 
T . 

(o./nj 

o. n 
> (1 - -) ~ 1 - a 

n 
(5.23) 

This says that if all the individual tests of quantities, whether dependent 

or not, are executed at (o. = a/n) significance level, the confidence 
0 

level for the entire group (simultaneous probability), will be at 

least (1 - a). 

Let us assume no1<~ that each of the hypotheses is tested at 

(a a/n) significance level. Bonferroni's inequality says that: 
0 

l. If the quantities are uncorrelated the significance level for the 

entire group is a. 

2. If the quantities are correlated the significance level for the 

entire group is less than a. 
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In other words, (a.0 _:: a./n),: SO· in selecting (a.0 = a./n), Bonferroni 's 

inequality is more conservative, that is, it chooses the smallest a 
0 

and thus it is more reluctant to reject the tested hypothesis. 

Consequently and inevitably it protects us from commiting the type I 

error but not the type II. 

The "tau"-distribution is rarely mentioned in the statistical 

textbooks and it is not universally known under this name. It can be 

derived from the tr-distribution {Pope, 7976): 

T 
r 

;r. t 
r-1 

/r - 1 + t2 
r-1 

(5.24) 

Since tau-distribution is not very common, not very easy to calculate, 

the tables or subroutines are not always available. Very often it is 

wrongly assumed that (T. = v./o ) has the t -distribution of which 
1 1 v. r 

1 

critical values are always available. 

It should be noticed here that the two distributions give 

closer critical values, cT and ct, as r increases. For r + ~ 

they approach the normal distribution (fig. 5.5). 

However for small r, which is the usual case in small geodetic 

networks, one should be cautious, since the difference (ct - cT) may 

be significant as it is shown in figure (5.6) and in table (5.2), 

for a= 0.05. The tau-distribution is closer to the normal N(O,l) 
0 

than to the t-distribution, as far as the critical values are concerned. 

The difference between c and c , also increases as 
t T 

a0 decreases. 

Use of ct instead of cT, causes generally fewer rejections since ct > c . 
r 

Thus, attention should be paid, especially in cases where a and r are 
0 
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Table 5.2: Critical values fur the t , T and N(O,l) distributions. r r 

0'. = o.os 
0 

tl-a. ;r T 1-a. ; r N t-T r 
1-a. 

0 0 0 

2 4.303 1.41 1.96 2.893 
3 3.182 1.645 1.96 1. 537 
4 2. 776 1. 757 1.96 1.019 
5 2.571 1. 814 1.96 0.757 
6 2.447 1. 848 1.96 0.599 
7 2. 365 1. 87 1.96 0.496 
8 2.306 1.885 1.96 0.421 
9 2.262 1. 896 1.96 0.366 

10 2.228 1.904 1.96 0.324 
11 2.201 1. 91 1.96 0. 291 
12 2.179 1.915 1.96 0.264 
13 2.16 1.92 1.96 0.24 
14 2.145 1.923 1.96 0.222 
15 2.131 1. 926 1.96 0.205 
16 2.12 1.929 1.96 0.191 
17 2.11 1.931 1.96 0.179 
18 2. 101 1.933 1.96 0.168 
19 2.093 1. 934 1. 96 0.159 
20 2.086 1.936 1.96 0.15 
21 2.08 1. 937 1.96 0.143 
22 2.074 1.938 1.96 0.136 
23 2.069 1.939 1.96 0.13 
24 2.064 1.94 1.96 0.124 
25 2.06 1. 941 1. 96 0.119 
26 2.056 1.942 1. 96 0.114 
27 2.052 1.943 1. 96 0.109 
30 2. 042 1.945 1.96 0. 097 
35 2.03 1.947 1.96 0.083 
40 2.021 1. 949 1.96 0.072 
so 2.009 l. 951 l. 96 0.058 
60 2 1. 953 1. 96 0.047 
80 1. 99 1.955 1.96 0.035 

100 1. 984 1.956 1.96 0.028 
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Generally for (a = 0.05), t-distribution can sub
a 

stitute tau-distribution for r > 30 (ct - ct < 0.1), and normal-distribution 

substitutes "tau" for r > 10 (eN - ct ~ 0.06) · 

critical value 

<4.5 

3.5 

t 

a = 0.05 
0 

N 1-a ;r 
2 ~~1-~a~~=o:=:::::::===============~================================~ 
1.5 

o.s 

10 20 30 10 so GO 70 BO 90 r 

Figure 5.5: Critical values for one-dimensional tests 

From the characteristic formula (5.24), which gives the 

critical values of tau-distribution for r degrees of freedom as a 

function oft, it can be easily derived that 

;;. t r-1 
t r-1 lim lim ~lim 

,--
(5.25) T = = •lr r 

lr t2 lr t2 t4<X> t4<X> - l + t--><>o - 1 + 
r-1 r-1 

which simply says that the probability distribution function of tau 

is bounded by -lr and lr. 
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1.6 

1 • 

1 

10 20 

c 
T 

t l-ex ·r 
o' 

l-ex · r o' 

r 

Figure 5.6: Difference between "t" and "tau" critical values 

To better illustrate this, the probability density function 

of the tau-distribution can be derived. From equation (5.24), t 1 r-

can be expressed as a function of T (for the sake of simplicit:· sub
r 

scripts are omitted): 

t 

which again implies that IT I .::_ IT. 

Differentiation of (5.26) with respect to -r yields: 

dt 
r /r - 1 

7 3/7 • d-r 
(r - ,~) t-

(3.26) 

(:.;. 2 7) 



Moreover, it is known that; 

+oo 

J f(t)dt 
-co 

rr 
f f(T)dT 

-IT 

where (Hogg and C~aig, 1978), 

1 
f(t)dt = -;::====== 

/cr - lh 

for (r - 1) degrees of freedom. 

is the "Gamma" function. 
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1 

r(r/2) 

[(r - 1)/2] 

It is also 

(5. 28) 

2 r 
t 2 (1 + -) • dt (5.29) 
r-1 

reminded that r(a) = (a-1)! 

Substitution of the expressions fort (eq. 5.26), and dt 

(eq. 5.27), in equation (5.29), after some manipulations yields: 
r-3 

2 2 1 r (r/2) (r - T ) 
f(t)dt = 

r-2 dT 

2 rrr r [ (r - 1)/2] r 

(5.30) 

From equations (5.28) and (5.29), the density function for the tau-

distribution can be derived, 
r-3 

1 r(r/2) (r - T2) 
-2-

f(T ) = (5.31) r r-2 

rrr r [ (r - 1)/2] 
-2-

r 

for r degrees of freedom,. (for a s:i:m:Har·analysis see He.c.k., 1981). 

In figure (5.7) the probability distribution function of tau 

for r = 6 degrees of freedom has been plotted, with upper and lower 

bounds of (lr= 2.5) and (-lr= -2.5) respectively. For comparison, the 

t-distribution for r = 6 also, and the normal N(O,l) have been plotted. 

This bounded distribution is explained by the fact that the 

residuals v. have been used for the estimation of a 
l v. 

Hence, the value 
l 

of the statistic (v./o ), 
1 v. 

(eq. 5.21) cannot exceed a certain value (/r), 
1 

no matter how large the v. 
1 

might be. 

The convergence of the tau-distribution to the normal N.(O,l), 
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as r increases, can be viewed in figure (5.8) where the tau distribution 

for 4, 6, 9 and 16 degrees of freedom has been plotted, to be compared to 

the normal distribution. 

Fi~ally, the cummulative functions for the tau and also 

for the normal N(O,l) distributions are shown in figure (5.9). 

1 

-16 

f(x) 

0.45 

0.2 

0.15 

0. 1 

o.as 

N (0, 1) 

T6 

Figure 5. 7: P.O. F. of N(O,l), "t" and "tau" for r 6 

5.4 Tests on Quadratic Forms of the Residuals 

This method \vas introduced by Stefanovic (1978), and it 

X 

is used when groups of residuals are to be tested. A simple function 

of the residuals is the total quadratic form: 

2 
q 

T v Pv ( 5. 32) 

This statistic has been already used for the global test on the 

variance (eq. 5.3). If now the vector of observations is partitioned to: 
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is the "test group" which under the H contains the a 

suspected outlying observations, 

and ~l is the group of the observations free from gross errors. 

The residual vector v and its cofactor matrix Q are similarly parti
v 

tioned to: 

v = 

4 3 

~1 
------

~2 

N(O,l)_---.. 
r=l6 

r=9 
r=6----~ 

r=4--------..... 

and Qv 

f(x) 

0.45 

0.25 

0.2 

0.15 

0. 1 

o.os 

Qv Q 
1 v12 

----···--------
I 

Q I Qv 
v21 I 

I 2 

1 3 4 

Figure 5.8: P.O.F. of N(O,l) and "tau" for r 4, 6, 9, 16 

X 



so 

P(x) r-=-

o.J 

0.2 

0.1 

X 
3 1 1 2 J 

Figure 5.9: C.D.F. of N(O,l) and "tau" for r = 4 

Now two new test values can be introduced. The contribution of the test 

2 group to the total quadratic form q (eq. 5.32), is given by the 

following partial quadratic form: 

T -1 
d = 'i__2 ~ 'i..? (5. 33) 

2 -

which is estimable only if Q is non-singular. If only the ~l group 
v2 

is used in a new adjustment, the quadratic form of the new residuals 

~l, free from the influence of the test group !:._2 is given by: 

• 2 
q 

It can also be easily derived (Stefanovic, 1978) that, 

·2 
q 

(5. 34) 

(5.35) 
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which saves much computation compared to the equation (5.34). 

From equation (5.35), it can be shown that under the null 

hypothesis (H : no errors in the observations), 
0 

which results into 

[r - p] = [r] - [p] 

where r the degrees of freedom 

and p the size of the test group ~2 . 

The test on the total quadratic form q 2 

2 2 2 
q < a • xa;r 0 

is identical to the global test ( eq · 5. 3). If 

the reasons may be: "gross errors in the data" 

The next test on the partial quadratic form is: 

d < 
2 2 

a . 
xa;p 0 

where p is the size of the group~· 

(5. 36) 

(5.37) 

the test fails one of 

(sect. 5.1). 

(5. 38) 

This test will reveal if the hypothesis, that the test group 

contains most of the gross errors, is valid or not. If the test group 

consists of one observation only, the above test on d, (5.38), becomes 

identical to the Data Snooping test, provided that the significance 

level has been also properly chosen . 

• 2 
The test on the third quadratic form q , (eq. 5.34), 

• 2 
q 

2 
< a 

0 

2 
• Xa; (r-p) ( 5. 39) 

will tell us if there are any gross errors left in group E:_1 and not 
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included in group ~2 . 

From the inequalities (5.37), (5.38) and (5.39), it is obvious 

that a proper detection of a group of outlying observations requires 

2 
a good knowledge of the variance factor a and the selection of a 

0 

significance level. 

If the hypothesis: "only the observations belongirig to the 

group !_2 are affected by gross errors" is true, then: 

the first test (5.37) should fail, 

the second test (5.38) should also fail, but 

the third test (5.39) should pass. 

This does not necessarily mean that in the test group ~2 only erroneous 

observations· have been included. Here is the difficult point in choosing 

each time the right alternative hypothesis among more than one which 

would probably satisfy the tests. The problem is not easy to solve 

(sect. 5.8; ch. 7), and ~lot of research has been done along that 

direction (Stefanovia, 1978, 1980; Forstner, 1980, 1981). 

5.5 Example 

TI1e following example illustrates the application of different 

criteria for the detection of gross errors. Let us consider the case 

of direct observations with the following 10 measurements: 

Q.T (14, 19, 20, 20, 20.5, 20, 19.5, 19, 17.5, 21] 

with a.Q,. 1. 27 
1 

p = 0.621·1 

2 
1 a 

0 

n 10, r n-1 9 
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The Least Squares solution gives: 

X = 19.05 

T 
v = [5.05, 0.05, -0.95, -0.95, -1.45, -0.95, -0.45, 0.05, 1.55,-1.95] 
~2 

cr 2.53 
0 

2 
cr 

X 

1 
= --- 0.161 

2 n-1 2 
cr = -- cr = 1. 45 v. L 

1 n 1 

The null hypothesis: H : there are not any gross errors in i, 
0 -

can be tested by using the global test on the variance factor 

a. Global Test (sect. 5.1) 

From test (5.2): 

~2 

cr 
0 

2 
cr 

0 

< F 1-a;r,oo 

for a = 0.05 and r = 9, the critical value can be determined: 

FD.95;9,"' = 1. 9 

Therefore, one tests if 

2.53 

1 
' 1.9 

which fails (H is rejected). The rejection of H is an indication 
0 0 

of large errors in the observations. 

b. Data Sn~oping (sect. 5.2) 

The null hypothesis is more specific here: 

H : there is not any gross error in the first observation. 
0 

The critical value can be determined from nomograms (app. III): 
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for a 0.05, s 
0 

0. 80 and r 

/pl-a ·1 oo = 3 · 1 • 
0' ' 

From (5.20), one tests if 

v. 
1 

(j 
v. 

1 

5.05 

11.45 

< v'F 
l-0. ;l,oo 

0 

4.19 < 3.1 

= 9 a = 0.002, therefore 
' 0 

which fails for the first standardized residual. 

c. Tau-Test (sect. 5.3) 

With a = 0.002 and n = 10, the significance level for the max T 
0 

is a= na = (10)(0.002) = 0.02, (sect. 5.3). The critical value 
0 

is given from tables or from a subroutine (Pope, 19?6), which in 

this case is: 

c = T = 2.25 (in context). 
T 1-a;n;r 

From (5.22), test if 

v. 
)_ 

0 
v. 

l 

that is, if 

5.05 

/(2.53)(1.45) 

= 2.63 < 2.25 

The test fails again for the first residual. 
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d. Tests on the Quadratic Forms (sect. 5.4) 

Here the tests (5.37), (5.38) and (5.39) are used. The critical 

values have been determined using: a = 0.05, r = 9 and p = 1, 

i.e.' 

d.l) 

d. 2) 

d. 3) 

the test group consists of one observation only. 

2 T 2 2 
q = v Pv < cr0 Xl-a;r' that is, test if 22.71 < 16.92 

d 

5.05 2 
-- = 1 7. 59 < 3. 84 
1.45 

test if 

2 2 
d) < a0 xl-a;(r-p) , that is 

test if 5.22 < 15.5 

it fails. 

it fails. 

it passes. 

According to the comments of section (5.4), the null hypothesis 

is not accepted and the first observation is flagged for rejection. 

5.6 Computation of the Covariance Matrix of the Residuals 

Up to now nothing has been mentioned about the computation 

of the covariance matrix of the residuals 

(5 .40) 

It is indeed true that a rigorous complete calculation of the above 

matrix involves a large computational effort; i.e., assuming that Q 
X 

is known the computation of the second part of (5.40): 

Q~ = AQ AT 
9_ X 
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requires (n x u2) + (n2 x u) multiplications. Instead of this rigorous 

calculation, an average value of the elements of Q is often used. 
v 

This value can be derived using the properties of the idempotent 

matrix Q P (sect. 3.2; app. I), in the case of a diagonal weight 
v 

matrix P: 

From equation (5.40), 

c p 
v 

-2-
(J 

0 

= 

but from equation (3.3) it is known already that 

c p 

trace [-_v_] = 
(J2 

therefore, 

n 
E 

i=l 

2 
a v. 

0 

(__2:.) = r 
(J2 

t. 
1. 

n - u = r 

2 2 Taking the average of the (av_!a£_) elements now 
l. 1. 

r 

n 

from which the \vell known (Pope~ 19?6) and simple formula for an 

approximate value of cr can be derived: 
v. 

cr 
v. 

l. n 

l. 

(5.41) 

Howeve~ it is also true that nowadays the computational cost is not 

the major problem in a project and additionally, more accurate values 
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for a 's are needed when more sophisticated techniques are used for v. 
1 

testing the residuals. When a network is quite small (e.g., if it 

consists of 5-6 points), there is not even a question of computing 

the Q rigorously, if computer facilities are available, but in larger 
v 

adjustment problems where the number of observations is quite high, 

attractive techniques have been developed for minimizing the number 

of computations (Kok~ 1982) by computing the Q matrix rigorously 
v 

but not completely, for example: 

a) computing only the diagonal of Q from 
v 

diag [Q ] = diag [Q- 1] - diag [AN- 1AJ 
v R, 

and moreover using Choleski factors N = UT U to avoid the 

inversion of the whole N matrix; 

b) computing the "sparse inverse" of N and use this for the 

computation of the diag [Q ] . 
v 

Also Gr>Un (19?9~ 1980)~ has proposed a rigorous calculation 

of only a few diagonal elements. Since from all the standardized 

residuals only a small portion exceeds the critical value there is no 

point in rigorously calculating all the a 's. Griln suggested v. 
1 

computing . 0 approx1mate values a v. 
1 

for all the residuals first, 

with a tolerance of + f% against the exact values. Then all the 

observations which give: 

a) lv /oo I > c (l + 
f are rejected 100) i v. 

1 

b) jv./oo I <c(l f 
- 100) are accepted 

1 v. 
1 

and for the rest of the observations which are close to the critical 

region: 
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exact values a should be computed. The smaller the f the less 
v. 

1 

the number of computations but the larger the risk of making a wrong 

decision. 

The algorithm is very easy to compute as long as the unknown 

parameters have been estimated. The exact elements of the Q matrix, 
v 

2 2 2 
q = a /a 

vki vki o 

are given by: 

t - Cl.kXi 
q = 
vki p. 

1 

(5.42)* 

with 

c if k = i 
t = 

if k ., i 

where o.k is the th k row of the A matrix. 

5.7 Sensitivity of the Global Test on the Variance 

It was mentioned before that one of the reasons which cause 

failure of the global test on the variance (5.3), may be the presence 

of gross errors in the data. 

·2 
However, the expectation of q , 

? 
(eq. 5.36), which is (r- p)a

c 

may differ significantly from its actual value, still satisfying the 

test (5.39), but affecting the maximum value of d, (eq. 

2 \vhich can stay undetectable by the test (5. 37) : . q 

* 

< 

For the derivation of (5.42) see Griin (1979~ 1980). 

., 
-a 
0 

5. 33)' 

2 
xo.·r .. 
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This means that failure of the global test does not necessarily depend 

only on the presence and number of outliers, but also on how good the 

model is (proper choice of weights, etc.). 

However, even when the test (5.3) detects the gross errors, 

it is entirely unable to locate them. For this purpose the "Data 

Snooping" technique is used, and to assure that the same decision 

would come out from both tests, their power is kept constant. 

Keeping the power of the test constant however, does not provide both 

tests with the same sensitivity. Sensitivity depends mainly on the 

nature of the test. Therefore, "Data Snooping" and "tau-test" are 

the most sensitive ones since they compare each residual against its 

own standard deviation. 

It is quite possible that a significant error, detectable 

by Data Snooping, may stay hidden in the total sum of the squares of 

the residuals when the global test is performed, if the other errors 

turn out to be very small. This probability increases as the redundancy 

2 T 
increases, that is, as the tolerance for the quadratic form (q = ~ P~) 

becomes larger. Therefore it is always recommended (sect. 5.9), to 

2 
perform the one-dimensional test even if the test on the q has 

not failed. Only if the tolerance (critical value), is considerably 

larger than the test statistic, and moreover the redundancy is 

relatively lo\v, can it be claimed that the system is blunderless. 

The insensitivity of the global test has been conceded 

especially by many Photogrammetists (AakeY'171ann, Forstner> 3 Grun, 

Mikhail, Stefanovic) who have to deal with a great amount of data. 

Hmvever .• the global test retains its importance, since it 

requires negligibly small computational effort and moreover it gives 
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a general information about other sources of mode 1 errors. If the 

global test fails, there is defjni tely something \~rong with our basic 

assumptions (null hypothesis) and the error has be be discovered. 

For a better understanding of the insensitivity of the global 

test, an example is given below. 

Example: 

The global test (eq. 5.3) can be expressed as: 

T -1 
v C v < rF = 
- £ - 1-a;r,oo 

2 
Xl-a;r 

Assuming that £ is a vector of direction observations 

= (18'.'5, 19'.'5, 20", 20", 20'.'5, 21'.'5] 

where there is only one unknown parameter (case of direct 

observations). Obviously: 

n = 6 u = 1 ' r = n - u = 5 

(5. 43) 

2 Taking for instance, a = 1, as well as P = I, (observations uncor
o 

related and equally weighted), the L.S. solution gives: 

X 

c 
X 

20" 

1/6 = 0.167 

T 
v = [1.5, 0.5, 0, 0, 0,-0.5,-1.5] 

~2 

1 0 
0 

T -1 ~2 

5 v c v = r a 
0 

The critical value for the global test (5.43) is: 

rF 1-a;r,oo 
2 

x0.9S;5 11.05 (5.44) 
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Applying the global test (5.43), it is tested if: 

5 < ll. OS 

which is true and the test passes. 

But let us see here what happens if the redundancy increases, 

namely if there are more observations in the vector ~. 

Obviously' Nhen increasing r' the value of r 1 . decreases 
-a;r,"" 

but not at the same rate (fig. 5.10). More specifically 

2 x - r F1 increases as r increases (fig. 5.11). 
1-a;r -a;r,oo 

7 

a 0.05 -----=================================~================== 
10 20 30 40 sa 60 70 BO 90 

r 

Figure 5.10: Critical values of the F -distribution 
r,oo 

How does this affect the sensitivity of the test? Let us first 

see the example: 
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In the previous vector~. five new observations ~i' 

(i = 6' ... , 11), are added such as: 

~6 = = ~11 = xl-6 

In this way: 

r = n - 1 = 10 

xl-11 = 20" 

~2 

0.5 (J 
0 

T -1 
(0.5)(10) ! c~! = 

and the critical value 

2 
xl-a ·r 

180 o' 

160 

140 

120 

100 

BO 

60 

10 

2 
xo.95;lo= 18 · 3 

20 30 

a = 

-40 

= 

5 

20" 

increases 

remains the 

decreases 

remains the 

increases. 

F 
1-CX;r,oo 

so 60 

same 

same! 

0.05 

70 

Figure 5. 11: Critical values of the x2-distribution 
r 

BO 90 r 
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From a first sight it would be expected that a decreasing 
~2 

cr would produce shorter confidence intervals, namely an extreme 
0 

value i. should have greater probability to be considered as an 
]. 

outlier. However applying the global test: 

T -1 2 
'!.. ci '!.. < xl-a;r (5. 45) 

5 < 18.3 

T -1 
it is shown that the tolerance for the quadratic form'!.. ci '!.. 

depends on the redundancy r. Comparing (5.44) to (5.45) it becomes 

obvious that "the larger the redundancy (r) the larger the tolerance". 

Hence, the global test becomes less sensitive as r increases and a 

large individual gross error may easily stay hidden in the total sum 

T -1 
of'!.. ci '!..· 

NOTE: As far as the two-tailed test (eq. 5.2) is concerned: 

For 

2 
Xr;l-a/2 

a = 0.05 

(10)(0.5) 

2 
< cr 

0 

and 

< 
2 

Xr;a/2 

r = 10, 

(10) (0. 5) 
----- < 1 < --'-----

20.5 3.25 

0.24 < 1 < 1.53 

which is true and the test passe.s; (this t\vo-tailed test would fail 
A2 

only for a < 0.325 
0 

or > 2.05). Even with a= 0.10, which 

shortens the interval from both sides, the above test passes. 
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To better illustrate the above idea, let us consider 

the existence of an outlier in the place of the first observation ii, 

for example: 11 = 16'.'5. 

1. With r = 5 

X = 19.67 
A2 

2.87 a = 

T (2. 87) (5) 14.33 v Pv = = 

v1 = 3.17 

a = If= 0.91 v. 
1 

According to Baarda (1968), for a= 0.05, S = 0.80 and r = 5, 
0 

the significance level for the one-D test (Data Snooping), is: 

a = 0.008, 1-a = 0.992 (app. III). 
0 0 

Therefore, 

2 
xo.95;5 = 11.05 critical value for the global test. 

IF = 2.65 :critical value for the one-D test. 0, 992; l,co 

Global test; (test 5.3) 

T 2 
Test if ~ c1~ < Xl-a;r 

14.33 < 11.05 

which fails; namely there is an indication of large gross errors. 

One-D test (Data Snooping; test 5.20) 

v. 
Test if 1 

/Fl --- < 
(J -a . 1 00 

v. o' , 
1 

3.17 
2.65 --< 

0.91 
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which fails; namely the first observation ~l is considered as 

an outlier. The rest of the standardized residuals pass the test. 

2. With r = 10 

(by introducing five new observations equal to: 19.67), 

X 19.67 

~z 

0 = 1. 43 
0 

T v Pv 14.33 

vl = 3.17 

0 /JI= 0.95 v. 11 
l 

Moreover for a. = 0.05 and 

2 
xo.95;lo 

IF = 
0.998;1, 00 

18.3 

3.14 

Global test; (test 5.3) 

Test if 14.33 < 18.3 

r = 10, a. 0. 0017' (app. III). 
0 

which is true. Hence, ~~ = 16~5 is not considered as an outlier. 

One-D test; (Data Snooping; 5.20) 

Test if 
v. 

l 

ov. 
l 

~:!~ = 3.33 < 3.14 

which fails. Therefore £ 1 16~5 is still considered as an 

outlier. 

Thus, it can be concluded that increasing the redundancy the 

global test on the variance factor becomes less sharp and sensitive than 

before. 
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5.8 Discussion 

In studying all aforementioned techniques, it can be said 

that: 

The analysis of the residuals is always required as the 

final safety measure before the results of the adjustment are given 

to the user. 

The main problems which all these techniques face, are the 

number of gross errors, their magnitude and their localization, 

all of \llhich are interconnected. 

When a priori knowledge of the accuracy of the observations 

is available, i.e., a 2 is considered as known, the most sensitive 
0 

test if the Data Snooping test. Otherwise a posteriori estimates 

may be used and the tau-test can be employed, which is equally sensitive. 

The one-dimensional Data Snooping and tau tests are quite similar 

A2 2 
giving the same test-statistics w and Tin the case of a0 = a0 , so 

their level of significance a can be matched. However, the multi
o 

dimensional tests are different so no comparison or link between their 

levels of significance acan be made. 

In the B-method of testing the multi-dimensional test, 

which according to Baarda ( 1968) procedes the Data Snooping, is the 

known global test on the total quadratic form of the residuals 

(sect. 5.1). This is referred as to the total computing model which 

is affected by the geometric model, the stochastic model (Q£), 

and by errors in the data (blunders, outliers, systematic errors). 

In the T-statistic proposed by Pope (1976), the multi-

dimensional test is a test on max T which is a function of the 
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number of the one-dimensional T-tests, or of the number of the 

observations (sect. 5. 3). If the knowledge of the a priori variance 

2 
factor needs to be tested, a separate x -test on the variance factor 

is usually performed at an independently chosen significance level, 

e.g., a= 0.05 (Kok~ 1982). 

When the Data Snooping technique is applied, a test similar 

to the max T multi-dimensional test would be a max w-test which, 

however, is not performed at this time. After that, uni- and multi-

dimensional tests in w and ' statistics would be parallel and 

comparable. 

Tau-test does not account for the type II error, therefore 

no reliability statements concerning the sensitivity of the detection 

(similar to eq. 5.16), can take place. The use of the a posteriori 
~z 

cr has a serious disadvantage (Stefanovic~ 1980): the estimated 
0 

~z 

cr is affected by the presence of gross errors, so that in the case 
0 

~z 

of a large error among the data cr increases, the statistic'· 
0 1 

decreases and the test becomes too insensitive. 

The major problem of all the post-adjustment techniques 

is the localization of the errors. Both Data Snooping and tau-test 

were designated for detection purposes onl r. Forstner has shown 

(Stefanovic~ 1980) that when only one outlier exists in the data and 

the diagonal elements of the covariance matrix of the residuals are 

dominant, the maximum standardized residual likely indicates the error. 

But if there is more than one outlier and the residuals are significantly 

correlated, it is very difficliitand sometimes impossible to locate 

precisely the erroneous observations. The usc of the quadratic forms 

(sect. 5.4), solves the problem somewhat by giving the flexibility 
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of examining groups of residuals simultaneously, but again the effective

ness of the method is reduced if the residuals are highly correlated. 

Only a systematic iterative testing procedure would give 

the best results without the guarantee of complete success in every 

possible case. A look at the correlation matrix of the residuals 

R, and at the redundancy numbers (sect. 3.2), would give a good picture 

of the effectiveness of the testing procedure that would follow. 

It is inevitable to have problems with any of the techniques mentioned 

since all of them work with residuals which are not the true observational 

errors but functions of them. The efficiency of any of these techniques 

depends on the behaviour of the model under the presence of gross 

errors. 

Neglecting the very special cases where problems are unavoid

able, a strategy is proposed below for the treatment of gross errors 

in the data. 

5.9 Proposed Strategy 

In the following proposed strategy a few assumptions have 

been made: 

The large gross errors have been detected and eliminated 

at an early stage with other means, e.g., pre-adjustment techniques, 

etc. Here only the treatment of errors of small magnitude is considered. 

Experience shows that in a complete survey project the 

number of gross errors is quite limited (Stefanovic, 1978}. It is 

assumed that not only does it not exceed the redundanc:· of the system, 

but also that the maximum allowable number of gross errors can be 

pre-established. 
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In usual survey networks the redundancy is also quite 

bounded, so there is a reluctance to.reject observations which not 

only have a high cost but also are difficult to repeat. In this case 

it is recommended that observations should never be rejected blindly 

without first checking to find a good reason for the failure of the 

test. 

The domination of the Q matrix along the diagonal can be 
v 

tested by means of the correlation matrix R: 

where 

R 

D = diag (Q ). 
v 

If there is strong correlation among the residuals, automatic 

(5.46) 

rejection cannot be applied. For this reason programs should only 

flag observations and never reject them automatically, although 

the statistical design of the test makes it possible. 

It has been also assumed that there is an a priori knowledge 

of the accuracy of the observations. If not, the global test cannot 

be used and the Data Snooping is substituted by the tau-test. 

The procedure which can be viewed in figure (5.12), is now 

described below: 

To check the consistancy of the field observations it is 

logical to run first an adjustment with minimum fixed information. 

Therefore, only minimum constraints should be used in the adjustment, 

which would give q2 = ~Tp~ equal to q2 obtained when no constraints 

are used (Uotila, 1976). 

2 T 
The first global test on q = ~ P~ , depending on the 

redundancy of the system, gives information mainly about the proper 
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selection of the weights and the presence of at least large errors 

in the .data. If the test fails, there is definitely something wrong 

with the basic assumptions (H ) . If the alternative hypothesis 
0 

assumes the presence of large errors, these can be confined and examined 

·2 
by testing the quadratic forms d ( eq. 5. 33) , and q ( eq. 5. 34) , without 

performing a new adjustment, as it is shown in the flow-chart below. 

If q" 2 < a 2 x2 ( )all of at least the la_rge errors have been confined 
o a; n-p 

in d and can therefore be withdrawn. 

For detecting outliers of small magnitude, albeit the global 

test passes, it is necessary to resort to the Data Snooping again. 

Each time only the observation £. which corresponds to the largest 
1 

standardized residual w. = v./a that exceeds the critical value 
1 1 v. 

1 

IF1_a . 1 oo , may be excluded from the following adjustment, provided 
o' ' 

that it had been checked very carefully before it was rejected. The 

scheme is very effective as long as the residuals are not highly 

correlated. Otherwise the case of reintroducing a previously withdrawn 

observation and rejecting a new one should be examined. 

The decis.ian :depends ,on . the size of the redundancy r 

and on the influence of an error on the final solution. In small 

survey networks where r is not very large, we try not to reject 

observations \"henever possible, not only because of their cost, but 

also because with every new rejection, r decreases and the method 

becomes less effective. Anyway, reintroducing previously wi thdra\m 

observations, inevitably brings a complexity into the procedure. 

If the above procedure is followed and the redundancy has 

·2 not been dangerously decreased, after the test on q passes,the global 

test on the following adjustments \vill all"ays pass. 
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- No Model Errors 

- No Large Gross Errors 
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r is Low 
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Figure 5.12: Proposed Strategy 
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The second time the Data Snooping is applied, all the 

standardized residuals and not only the ones that failed at the first 

time should be tested. This is proposed first because the model 

changes, and secondly because the qv. elements decrease as the 
l 

redundancy decreases. 

The procedure ends when the global test and the one-

dimensional test for all the w. 's pass. After that the system is 
l 

considered as being blunderless. 

5.10 Undetectable Errors 

No matter how sensitive a technique is, it cannot detect 

gross errors of arbitrarily small magnitude. Therefore, even "Data 

Snooping" has a finite capability of detecting small gross errors, 

and after the detection and elimination there are still blunders 

remaining in the data. This sensitivity and its influence on the 

estimated parameters will be treated extensively in the next chapter 

introducing the concept of the "reliability" of an estimation. 



RELIABILITY OF NETWORKS 

The detection and elimination of gross errors in a model 

is very important, but having a measure of the sensitivity of the 

specific technique is also indispensable. 

This sensitivity is expressed by the "internal reliability" 

which refers to the maximum undetectable error resulting from using 

this technique. 

On the other hand these possible errors remaining in the data 

may have a significant effect on the final estimation. The concept 

of the 'l;;xternal reliability" relates to this maximum influence of 

hidden errors on the final solution. 

Both internal and external reliability are described by 

boundary values which will be derived in the follmving sections. 

73 
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6.1 Internal Reliability 

As was mentioned befor~ the internal reliability is assessed 

by the lower values 9 ~ .• of gross errors 9~., which can just be 
0 1 1 

detected by the test (Data-Snooping), with a given probability 80 , 

if the test has confidence level 1 - a . 
0 

The lower bound 9 ~. is related to the lower bound of the 
0 1 

non-centrality parameter>.. ,(eq. 5.9) which depends only on the chosen 
0 

a and e . 
0 0 

The expressions for the evaluation of these lower bounds 

have already been derived and are given by the equations (5.14) and 

(5.16). With a diagonal weight matrix P, equation (5.16) is simplified 

to: 

I >. /l 19 L I 0 
(6 .1) = cro = cr 

0 1 0 

p. (Q P) .. 
. 1 v 11 

p. r. 
1 1 

where r. (Q P) .. is the redundancy number of the .th observation = 1 
1 

(eq. 3. 4) . 

v 11 

From equation (6.1) it follows that: 

=~ r. 
1 

crL 
1 

(6.2) 

From this expression it appears that a just detectable gross error 

in an observation~., relies on 
1 

The coefficients h 
~. 

1 

its precision o . 
t. 

1 

= ~ show the sensitivity 
0 1 

of the 

test. It is desirable to have small values of h in a network. 
,Q,i 

The smaller the h , the larger the r .. Large 
~. l 

1 

r. values imply that 
l 

a gross error Q , in an observation 1., will be more clearly reflected 
1. 1 

l 

in the corresponding residual v., and consequently easily revealed 
1 

through the testing procedure. 
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Hence, large redundancy numbers produce lower bounds V ~o 1 

for the internal reliability. In other words the tests become more 

sensitive and the number of undetectable gross errors is reduced to 

the minimum. 

If the redundancy is uniformly distributed in the network, 

then all r. 's and therefore all V ~- 's, are practically the same, 
1 0 1 

as long as P = I. However in general, this does not happen since 

large differences between r. 's may be noticed in the different parts 
1 

of networks, especially in the case of different kinds of observables. 

For this reason instead of calculating all the v g_. values for the 
0 1 

different r. 's, a global reliability measure is more often desirable, 
1 

using the average redundancy of the network: 

tr[~P] r 
r. = = 

1 
n n 

Thus equation (6.2) becomes: 

(6. 3) 

ExperiP-nce has shown that for ordinary networks r/n =0.50 (Pope, 1976). 

Using equation (6.3) for a =0.001 and B =0.80 (therefore A = 17), 
0 0 0 

1~1 0 1 
E 

0.50 
= 5.8 a£~ 

1 

Thus in most of the networks a gross error 'Vi., (in one observation £. 
1 . 1 

with ri ;0.50), smaller than 5.8 a£. will not be detected examining 
1 

the residuals using the "Data Snooping" method (at the above probability 

levels s ) . 
0 
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6.2 External Reliability 

External reliability relates to the maximum effect of possible 

undiscovered observational gross errors Vi., on the results of the 
1 

adjustment (e.g., coordinates). This influence V x. is given by: 
0 1 

(6. 4) 

If there are any nuisance parameters ut in the· model, while we are 

interested only in the desired parameters, ~· the influence is given 

no1v by equation (I I . 2) 

v .k 
~ 

(6.5) 

Assuming again only 

. h .th b . h b 1 d one gross error 1n t e 1 o servat1on, t e c. vector can e emp oye 

again and equation (6.5) becomes, 

v . k 
~ 

-1 

where IV t I is a scalar, coming from equation (6. 3) 
0 

(6.6) 

The above expressions are very revealing but they are not 

general estimates of the usual size of external reliability Vx. They 

require a large number of computations since for each estimated 

parameter there are n different components Vx, when testing tmder 

conventional hypotheses, one for each h)~othesis (eq. 5.1~). 

Usually these Vx vary significantly in size. Moreover they are dependent 

on the coordinate definition. Hence, Baarda and De Haus (3aarda, 

1976, 1979) proposed the new standardized general variate: 
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1,0 
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1 
A T -1 "' 

2 (V. x) Q (V. x) 
..2:.!.E_ X ~ 

ao 
(6.7)* 

which is invariant with respect to the coordinate definition and can 

be considered as a measure of the reliability of the results. It is 

desirable to have I. approximately constant for all i' s so that 
1,0 

the ability of detecting gross errors is the same in every part of 

the network. One is interested mainly in the maximum value of 

this variate which is related to the minimum deviation from the 

null hypothesis that can be detected with a certain probability 

8. So the following variate (Baanda, 7976): 
0 

I 
0 

max (I. ) 
1,0 

(6.8) 

can be considered as a measure of the external reliability. 

Substituting o2 from equation (5.13) and using also the vector c 
0 

(eq. 6.6), equation (6.7) becomes: 

I . = 
0,1 

V ~cTPAQTQ-lQ ATPcV ~ 
0 - X X X - 0 

Vo~2£TP~P£ 

(6.9) 

Assuming that P is diagonal and that only one gross error affects 

the observations, equation (6.9) yields: 

T 
p. (AQ A P) .. u. 

A 
]. X l.l 

A A 
l 

(6.10) = = o,i 
(Q p) .. 0 0 r. p. l 

]. v ll. 

* V k can he used in the place of V x as well. 
0 0 
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If there are nuisance parameters in the model, they are not considered 

in this general variate. So equation (6.5) is used in (6.6) and Q 
X 

becomes Qk, which is referred only to the desired parameters k (e.g., 

coordinates). Under the same assumptions, we end up with: 

X . 
0,1 

A 
0 r. 

1 

(6. 11) 

instead of equation (6.9). It is to be remembered (eq. 3.17), that: 

u = 1 - r. - u 
k. 1 t. 

1 1 

where ut. is referred to the nuisance parameters and can be estimated 
1 

from equation (II.8). 

However, this value (eq. 6.11), is rather abstract to the 

practical geodesist who would prefer to have something more palpable 

than the above variate. What would be more useful is the maximum 

effect of this variate on the unknown parameters. Equation (6.6), 

using the c. vector gives (Fo~tne4, 1981.b) 
-1 

where 

v . k = Qka. P. I v R-. I 
~ -1101 

T 
c. = [0 ... 0 1 0 ... 0] 
-1 

p. I v t I 
1 0 

a. 
-1 

is a scalar 

a. 1 
1U 

(6.12) 

If one is interested only in the effect of the gross error on one 

specific unknown parameter k , 
p 

direction k using a vector (u 
p 

equation (6.12) is projected onto 

T x 1) , e = [ 0 . . . 0 1 0 . . . 0] where 
p 
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the "1" corresponds to the pth element. Therefore eq. (6.12) yields: 

~ T -
V . k = e Qka. p . I V £ . I 0,1 p -p ~1 1 0 1 

T -T . . 
where the form e Qka. can be wr1tten as: -p -1 

where: 

T -T 
e Qka. -p ~1 

= TSTS-aT e .. -p .-.]. 

e = Se 
-p -p 

. 
~T -T a. = Sa. -1 -1 

• T.:_T 
= e a. -p-1 

The scalar product of the two vectors 

Forstner~ 1981.b), 

•T-T 
11~11 II a. II (e ' a.) e a. = cos -p-1 -1 -p -1 

a and 

cos 

(6.13) 

(6.14) 

e is given by (s.ee 
-p 

ce , a-.) II~ II 11~11 < 
-p -1 

(6.15) 

which obviously has its largest value when a. and e are parallel. 
-1 -p 

Considering the lengths of the above vectors: 

11~11 ;;:r:- /eTsTse e e 
-p-p -p -p 

0 /- T -T 11~11 = a a a .S Sa. -1 -1 

equation (6 .15) becomes: 

·T-T 
e a. -p-1 

ak ~ 
< ----E. v' ___:i, __ 1 

a p. 
0 1 

= feTQke 
-p -p 

1- -T a.Qka. -1 -1 

ak /a 0 
p 

/~_/pi 
1 

(6 .16) 
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and equation (6.13) can be written as: 

'V .k 
o,~ p 

< p .j'V L I 
~ 0 ~ 

(6 .17) 

Considering also the expression for the internal reliability (6.2), 

equation (6.1J) results in: 

'V • k < 
o,~ p 

< a tiS k r. 
p ~ 

n:
a V~ 

o r.p. 
~ 1 

(6.18) 

where the quantity lA 
0 

general variate ~ 
o,~ 

~-/ri has been already defined (6.11) as the 
~ 

for the external reliability. Therefore 

equation (6.18) can be written as: 

where 

'V .k 
o,~ p 

< ~ 
o,~ 

~ . =(A~ /r.). 
o,~ o i ~ 

(6.19) 

An average value of c~_/ri) leads to the global figure for the external 
1 

reliability, similar to the expression (6.3), 

'V • k 
o,~ p 

< (6.20) 
r 

where 

~ number of desired unknown parameters, and 

r total redundancy. 

Namely, the effect of a non-detectable gross error 'V ~- on the results 
0 ~ 
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of the adjustment can be as much as IA0 ~/r times the computed pre

cision crk of the desired parameters k, but of course it can be much 

less (Mikhail~ 1979). 

Using the standardized measure for external reliability 

(eq. 6.7), one can make statements about the size of error influence 

on the estimated parameters. Since the scalars h~o>i (eq. 6.11), 

depend only on the shape of the network and not on the actual measure-

ments, they can be utilized during the design of the network as a 

bound of the external reliability (van Mierlo, 1981). A criterion 

based on practical experience is often used (Kok, 1982), which gives: 

~ < 10 for each observation ~-. If this has been successful, the 
O,l. - l. 

maximum interval for the coordinates after the adjustment, with a 

certainty of S0 = 80%, will be: 

X 
p 

< X 
p 

< X 
p (6.21) 

Therefore it is desirable to have small values of u/r which would 

produce lower bounds for V x, thus better reliability for the network. 
0 
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EXAMPLE ON A REAL GEODETIC NETWORK 

This example is referred to a network of 6 points (fig. 7.1), 

established to detect deformations of the Lohmuhle dam in Luxemburg. 

The observations considered below are part of several epochs of 

observations which have been used for studies by the Working Groups 

of the FIG "ad hoc" committee on deformation analysis, (Ch!r.zanow~IU, 

19 81) • 

As it is shown in the following analysis, the network was 

very accurately surveyed; 27 directions were observed and points 5 

and 6 were fixed as minimum constraints in the adjustment. The 

chosen network was very consistent to ensure that any a posteriori 

inconsistency would be only due to the simulated inserted outliers. 

7.1 Gross Error Detection- Alternative Hypotheses 

Assuming that there was a gross error in centering the 

instrument on point #3, of 1 mm (unacceptable for forced centering), 

observations were generated (table 7.1), and substituted for the four 

directions which had been observed in reality from this point. 

82 
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s c a I e 

so m 

Figure 7.1: Geometrical strength of the test network 

After the adjustment the standardized residuals were sorted 

according to their magnitude (table 7.1). The redundancy was r = 13. 

Therefore the critical value for the one-dimensional test (Data Snooping), 

for a significance level a = 0.001 (a = 0.06) gives: 
0 

IF 1 to• a 
, ' 0 

3.29 . 

For this case the largest residuals are indicated also below: 
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Direction Residual v. Standard Deviation Standardized 
From To 1 From c From Approximation Residual v 

3 1 1. 91 r.i62 (J =ffcr 4.75 v. n Q. 
1 

1 3 -2.06 1.229 4.30 

/JJ -------------
3 5 -1.27 r.I73 

= 27 (.71)=.49 
3.05 

4 5 1.18 r.23l 2.46 

. . (not used here) . 

Compared to the critical value, the first two residuals are flagged 

for rejection. 

It may happen that the largest standardized residual does 

nDt correspond to the observation which in fact was erroneous, (an 

example is given later). In this example the largest standardized 

residual corresponds to the direction 3-1 which was affected by 5'.' 38 

(due to the eccentricity). The fact that the direction 1-3 has also a 

large residual is due to the model and this can be explained by the large 

correlation between the v1_3 and v3_1 residuals: 

a 

p 
vl-3 v3-l 

a a 
vl-3 v3-l 

-0.162 -0.84 

I co .162) co. 229) 

Now if we had the slightest idea about the reason for the rejection of 

(no existence of any systematic errors or blunders), e.g., 
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suspecting errors due to eccentricity, this alternative hypothesis 

H could be tested by examining the quadratic forms of groups of residuals 
a 

(_sect. 5,4). For example, testing the H : "all the observations from . a 

station #3 were affected by a systematic error". Therefore the tests 

($.35) ($.36) and (5.37) can be performed, where the size of the test 

group ~2 is p = 4 (all the observations from station #3). Moreover, 

the selected significance level is a = 0.06 and the redundancy 

r = 27 - 14 = 13. Now it is tested if: 

2 T 2 2 
q = v Pv < a • X - - o a;r a. 

that is 36.8 < 22 it fails. 

b. d T -1 2 2 
~2Qv ~2 < a . 

Xa;p 
2 0 

that is 25.3 < 9.4 .. it fails. 

"2 ·T • c. q ~/1~1 

2 - d2 < a 2 2 
q . Xa; (r-p) 0 

that is 11.5 < 18.31 .. it passes. 

It should be noticed that in the last test the redundancy for 

the critical value was not equal to (r-p) = 13 - 4 = 9 but (r-p+l) = 10, 

since taking out all the directions from station #3 the nuisance orient-

ation unkn01vn parameter is also eliminated. 
2 

Therefore X. 06 ; 10 18.31. 

According to the results of the tests the alternative hypothesis 

H is accepted. Summarizing, it can be said that the method gave satis
a 

factory results and the outlying observations were removed so that the 

last test passed. 

Hm~ever, there is not only one alternative hypothesis H , to a 

be tested when H is rejected. The problem that arises is now: 
0 
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Which H to accept, considering that any of H 's which happen a · a 

to reject the observations, which were mostly affected by gross errors, 

will probably pass the test? In other words, how to ensure that in 

accepting the specific H , all the erroneous observations but only these a --

were rejected. 

In the previous example, someone who applied the testing 

procedure with that H , would never be fully convinced that all the four 
a 

rejected observations were in fact outliers and no other gross errors, 

among the rest of the observations, have remained undetectable but still 

affect the final solution. For example, if the H 
a 

"the directions 3-+1 

and 1-+3 were affected by refraction (thus the large residuals)", was tested, 

this test would have passed,too, because the gross errors in the rest of 

the observations were absorbed during the adjustment and did not produce 

large enough v.'s. In this case, acceptance of this specific H would 
1 a 

mean that: 

a. We committed error in rejecting the direction 1-3 although it 

was not an outlier. 

b. We committed error in not rejecting the directions 3-5, 3-4 

and 3-2 although they were erroneous. 

If now "Data-Snooping" is employed, examining one H at the a 

time for each single observation, the first observation which will be 

rejected is the direction 3-l. After performing the adjustment for a 

second time, the new standardized residuals are under the critical value 

and nothing can be rejected (see table 7.1). But although everything 

with the observations seems to be acceptable, the adjusted coordinates 

differ from the initial ones up to 0.5 mm. 

If the eccentricity now increases (dx_ 
.) 

+1.5 mm) observations 
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SIMULATED ECCENTRICITY 
ON OF ST. 3 

-~-direction 

Generated 3-5 
directions from 3-4 
station 3 due to 3-2 
the eccentricity 3-1 

Initial coordi- STATION 

nates and l 
displacements 2 
due to the new 3 
observations 4 

Sorted and 3-l 
rejected stand. 1-3 
residuals by the 3-5 
Data-Snooping 5-3 
test 1-5 

New adjustment STATION 

after removing l only the first 2 direction 3-1 
(if rej ccted) 3 

4 

Data Snooping on the 
ne\~ standardized 
residuals w. 's 

l 

I I 

INITIAL (dx3 = 0) : dx3 = +1 mm I dx3 = +1.5 nun I dx3 = +2.0 mm 
I 

I 

I I 

I I 

00 0' 0'.'00 00 0' 0'.'00 : 00 0' 0'.'00 I 00 0 I 01.'00 I 

83 26 10.42 83 26 12.97 : 83 26 14.07 I 83 26 15.22 
97 22 4.91 97 22 6,87 I 97 22 7.97 : 97 22 10.00 

I 

192 35 16.52 192 35 21.90 1192 35 25.14 1 192 35 28.38 
I I 

I I 

4 4 . 4 4 I 4 4 
x(m) y(m) ilx·lO t.y·10 I t.x · 10 t.y · 10 1 t.x·lO t:.y·lO I I 

I I I 

10.0071 10.0005 : +1 +6 I +2 +8 I +2 +10 
I 

170.7584 10.0097 : -3 +4 -3 +5 I -3 +4 I I 

26.8448 52.4324 I +5 +2 I +8 +2 I +11 +3 I I 
146.5610 47.2207: -1 +l I -1 +l I -1 +2 

I I I 
I I I 

I I I 

:c 1. 91 I I. 16 2) : re j . : C - 2 . 71 I r ) : re j . 
I 

none of the 1(-3.41 r): rej. 
standardized :c-2.0611.229): rej. 1 ( 2.94lr): rej. :c 3.76lr): rej. 

residuals t----------------- :c 1.87/r): rej. :c 2.59/r): rej. 
j 5 1( -1. 721r.l13): ace.~--------------- 1 (-1.89lr): rej. 

I I :c 1.67lr): rej. rejected I I . : ace. 
I I 
I . I 

I 
I 

I 4 4 4 4 : llx ·104 4 
x(m) y(m) I t.x-10 ily·lO t.x ·10 fly ·10 lly·lO 

I_ I . 
10.071 10.0005 : +2 +2 +3 +3 I +4 +4 I 

170.7584 10.0097: -4 +2 -5 +2 I -5 0 
I 

26.8448 52.4324; +3 +5 +4 +7 I +6 +9 
0 I -3 0 146.5610 47.2207 I -2 0 -3 I 

I I 

I I 
I 

none of the ,for direction 3-5 none of the I none of the I 1- 1.46 w. 1 s is rejected : w. 1 s is rejected : w. 1 s is rejected: w.= ----: 
1 I 1 I 1 1 1 r.i73 I I I 

I I : is rejected 
~-

I i 

Table 7.1: Testing of the simulated eccentricities. 

00 
"'-I 



88 

are generated again (see table 7.1). After the rejection of the direction 

3-1, the remaining gross errors in the data affect the final solution 

up to 0.7 mm. This value shows the effect of an undetectable gross 

error in the final solution (external reliability) of which a more 

extreme case will be given below. 

7.2 Geometrical Strength of the Network 

The analysis of the present network has up to now been confined 

to the study of the efficiency of different approaches to the identifi-

cation of gross errors in the data (based on ch. 5). However, although 

it gives an idea of the sensitivity of the methods, a more systematic 

analysis of the strength of the network is required. By "strength" of 

the network is implied its ability to resist distortions caused by the 

presence of inconsistant observations. The strength of the network 

can be revealed by looking at the redundancy and absorption numbers r. 
1 

and u. respectively (sect. 3.2). 
1 

In the present network there are 6 orientation parameters, 

one for each station, therefore ui consists of a uk. and aut. part. 
1 1 

The computed values for the redundancy and the absorption numbers for 

each observation are given in table (7.2). If it is assumed that only 

one observation~- has been affected by a gross error V~., then (see 
~ ~ 

eq. 3. 5): 

Vv. = r. V£. 
~ ~ ~ 

and moreover (eq. 3.18): 

V£. uk. V£. + u V£. + r. V£. 
~ 1 t. ~ . ~ ~ 

~ 1 

where of course + u + r. 
t. ~ 

1 
~ 



and 

Vv. = r. Vt. 
. 1 1 1 

89 

is the part of V~. shown in the corresponding 
1 

residual v .. 
1 

is the part of Vt. absorbed during the deter-
1 

mination of the unknown desired parameters k. 

is the part of Vt. absorbed during the deter-
1 

mination of the unknown nuisance parameters t. 

There is one ri, ui, uk. and ut. for each of the 27 directions. These 
1 1 

values were computed from 

r. (Q P) .. (eq. 3.4) 
1 v 11 

u. (A(ATPA)-lATP) .. (eq. 3.10) 
1 11 

T -1 T 
(eq .IL 7) ut. (At (AlA2) AtP) ii 

1 

and uk. = u. u 
1 t. 

1 1 

It is obvious that if r. is large the error Vt. is revealed better in 
1 1 

v .. If r. is small (hence u. is large), the Vt. is well absorbed in the 
1 1 1 1 

determination of the unknown parameters and will not be easily detected. 

In the example there are different values r. for each obser-
1 

vation ti, from r 19 = 0.28 up to r 27 = 0.67. Therefore, a gross error 

in direction #27 has a greater probability of detection than in direction 

#19, simply because in the first case r 27 = 0.67 of a gross error Vti 

is reflected in v27 , where in the second case only r 19 = 0.28 of a gross 

error V~i is revealed in v19 . 

For the observations from point #3, r 10 _13 = 0.40 is obtained 

which 1varns us not to expect a very easy detection of probable gross 
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Direction r. u. uk. u 117 ,~~.. I in ["] 1 1 ti 0 1 # From-To ·1 

1 1,..5 0.546 0.454 0,254 0.2 3,96 
2 1-3 0.454 0.546 0.346 0.2 4.34 
3 1-6 0.63 0.37 0.17 0.2 3.69 
4 1-4 0.548 0.452 0.252 0.2 3.95 
5 1-2 0.43 0.47 0.37 0.2 4.46 ---------------------------------------------------------------------6 2-5 0.555 0.445 0.195 0.25 3.93 
7 2-4 0.373 0.627 0.377 0.25 4.8 
8 2-1 0.458 0.542 0.292 0.25 4.33 
9 2-3 0.525 0.475 0.225 0.25 4.04 

---------------------------------------------------------------------10 3-5 0.343 0.657 0.407 0.25 4. 99 
11 3-4 0.459 0.541 0.291 0.25 4.32 
12 3-2 0.471 0.529 .Q. 2 79 0.25 4.26 
13 3-1 0.431 0.679 0.429 0.25 5.17 ------------------------------------------------------------------14 4-5 0.459 0.541 0.341 0.2 4.32 
15 5-6 0.29 0. 71 0.51 0.2 5.43 
16 4-2 0.314 0.686 0.486 0.2 5.22 
17 4-1 0.489 0.511 0.311 0.2 4.19 
18 4-3 0.494 0.506 0.306 0.2 4.16 ------------------------------------------------------------------19 * 5-6 0.284 0. 716 0.516 0.2 5.49 
20 5-4 0.564 0.436 0.236 0.2 3.9 
21 5-2 0.646 0.354 0.154 0.2 3.64 
22 5-3 0.565 0.435 0.235 0.2 3.9 
23 5-l 0.606 0.394 0.194 0.2 ~.76 ---------------------------------------------------------------
24 6-5 0.418 0.582 0.332 0.25 4.53 
25 6-4 0.429 0.571 0.321 0.25 4.47 
26 6-1 0.658 0.342 0.0918 0.25 3.61 
27 * 6-3 0.669 0.331 0.0815 0.25 3.58 

L:r.=l3 L:u.=14 L:u =8 L:u =6 
1 1 k. k. 

1 1 

Table 7.2: Controlability and internal reliability of the network. 
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errors in the observations from poini #3. This is only due to the 

model, and has nothing to do with the actual measurements. That explains 

why examination of the individual standardized residuals corresponding 

to the inserted outliers was not able to detect them properly. 

Besides the r. 's, a global reliability measure can be obtained, 
1 

that is the average diagonal term of Q P and it is called relative 
v 

redundancy (eq. 3.6), 

tr[Q P] 
v 

r 13 
= = 0.48 

n n 27 

From table (7.2) it can easily be seen that since there are 14 unknown 

parameters in the network and 8 of them are the desired ones, 

l:r. = r 13 
1 

l:u. = u = 14 
1 

l:uk. = uk 8 
1 

l:ut. ut = 6 
1 

From all these, only r and uk are used for the evaluation of the 

reliability of the network belm.,r. 

7.3 Reliability of the Network 

Internal reliability (sect. 6.1), refers to the size of gross 

errors which can just be detected. To determine the probability with 

which this happens, an alternative hypothesis_; H is introduced, which 
a 

simply assumes that the observation(s) ~- have been affected by a 
1 

certain gross error IJ ~. (sect. 5 .1). 
0 1 
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The value of V L depends on both a and S . By choosing 
0 1 0 0 

= 0.001 
0'.0 

l3 = 0.80 
0 

and considering also that r = 13, the non-centrality parameter A 
0 

can be determined through nomograms (app.II~: 

' = 17 1\0 
and also 0'. = 0.06 

With known A and r. (redundancy numbers), the V ~. values can be 
0 1 0 1 

computed using equation (6.2): 

IV Q,.! =;:;. 
0 1 r. 

1 

aQ, 
i 

These values are given in table (7.2), where the maximum undetectable 

gross error can be up to 5'!5 in the direction S-6, and the smallest 

down to 3'.'6 in the direction 6-3. The redundancy number and the 

maximum undetectable error for each observed direction are also shown 

in figure .(7 .1). 

The global figure for the internal reliability is also 

often used (eq. 6.3): 

& lfi.l = 
0 1 

r 

jon C27) 

l3 
5. 9 a JL. 

1 

which shows that the internal reliability is 5.9 times larger than a . 
JL. 

1 

In the present network a = 0'.'71 was assumed, therefore: 
Q,. 

1 

(5 .9) (0'.~71) = 4'!19 

In other words, the smallest detectable error by the "Data Snooping" 

" test with a probability of 80%, is ~ 4.2. That is, with probability 
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130 = .80 this model can detect outliers only if they are larger than 

4'!2. Keeping a. fixed, the larger the 13 the larger the 'iJ 51.. must be 
0 0 0 1 

to be detected. Increasing a. (13 fixed), 'iJ 51.. decreases. Therefore, 
0 0 0 1 

the size of the just detectable error is small, but at the same time 

more good observations are rejected when H is true. 
0 

The above-mentioned undetectable error IV 51.. I has an effect 
0 l. 

on the estimated parameters from the adjustment, x. This influence, 

'iJ x., is the external reliability, and is given by (eq. 6.4): 
0 l. 

In our example an error of 4'.'46 on the direction 3-5 affects all the 

directions from station #3. So the 'iJ x. 's were calculated and their 
0 1 

effect on x1 and y3 was ~ 1 mm. 

However, the effect of the 1.5 mm eccentricity on the obser-

vations from point #3, was slightly larger. Hence the rejection of the 

direction 3-1 was inevitable and the remaining undetectable gross errors 

in the directions 3-5, 3-4 and 3-2 had as a consequence an effe·ct on 

the estimated unknown parameters of up to 0.7 mm. 

Similarly to the internal reliability (eq. 6.3) a global 

figure for the external reliability can be obtained (eq. 6.20); worrying 

only about the desired parameters, namely using only uk' 

< /(17)(8) 
• ak 

13 
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This says that the effect of a non-detected gross error '1/'l. can be as 
1 

much as 3.2 times the calculated precision crk of the desired parameters, 

but of course can be much less. Hence, the smaller the uk/r the smaller 
~ 

the \I k., and the reliability of the network is better. 
0 1 

If a gross error IV'l. I < IV 'l. I exists in the ith observation, 
1 0 1 

it sometimes affects the solution considerably but does not significantly 

increase the residuals since the most part of it has been absorbed by 

the model. As a 
v. 

1 

remains the same the standardized residual v./cr is 
1 v. 

1 

not detectable. 

Consider the case of the 19th observation (table 7.2), 

\vhich has the minimum redundancy 

19 direction 5-6 0.284 = 0. 716 5'.'5 

We assume that during the measurements, a gross error of 4'.'5 affected 

· the direction 5-6, due to ~ +4 mm error in centering the target on point 

#6. The value r 19 = 0.284 warns a priori that any value of 

'119.. < \I 'l. "' 5'.'5 cannot be detected through the examination of the 
1 0 1 

residuals. Consequently the same warning is valid for the error of 

4'.'5. This is indeed true. Performing the adjustment the largest 

standardized residuals are: 

direction 

6-5 

5-6 

4-5 

standardized residual 

1 1.4711~ = 3.2o 

l-1.161/1143 = 3.07 

l-1. 291 I /231 = 2. 68 

decision 

none of them 

exceeds the 

critical value: 

/F0.999;l,oo = 3 •29 
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In this case, it is also shown that the largest standard residual 

does not necessarily correspond to the erroneous observation. If we 

compare the adjusted coordinates with the "correct" ones we can see 

the differences dx., dy.: 
1 1 

dx1 = + 1.6 nun 

dx2 = + 2.9 nun 

dx3 = + 1.2 nun 

dx4 = + 2.2 nun 

'"' 
dyl = - 1.13 nun 

dy2 = + 0.7 mm 

" 
dy3 = - 0.9 mm 

A 

dy4 = + 0.6 nun 

which are significantly large compared to the ok. from Ck. These 
1 

values, dx., dy., express clearly the external reliability of the net-
1 1 

work since they owe their existence to the undetectable error of 4'.'5 

in the direction S-6. 

If one looks at the global expression of the external relia

bility for the x2 coordinate (eq. 6.20) (using the o2 = .731 mm2 
x2 

from the adjustment), 

'Vx2 ~ 3. 2 a = 3. 2 r.73'l = 2 . 7 mm 
x2 

which is approximately equal to dx2. 

The probable large differences bet\veen 'Vki 's and ok. 's prove 
1 

that Ck cannot describe only by itself the accuracy of the estimated 

parameters. 

Concluding, it can be said that the relationships (6.3), (6.20) 

are very important for the evaluation of the reliability of net\wrks. In 

the present network, even after the gross-detection procedure, outliers 
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as large as 5.9 a~. may remain in the data. These can affect the final re-
1 

suits (k) bY as much as 3.2 crk. Therefore, the reliability of the network 

cannot be described by the covariance matrix Ck of the unknown parameters 

which is a measure of the precision and relates mainly to random errors. 

The latter happens because Ck is based only on the geometry of the net

work (design matrix A), and on the assumed precision of the observations 

C~, presuming no bias and absence of any systematic errors. This model 

will never show V~. < V ~- errors hidden in the data, because of its 
l 0 1 

finite capability of controlling the observations. 



NEW METHODS 

The pre- and post- adjustment techniques as they are presented 

here, are only some of the several possibilities for detecting and elim

inating gross errors in the data. They have advantages and disadvantages, 

but they have been used almost exclusively, whenever such techniques were 

needed, mainly because they can be easily attached to a Least Squares 

software package and alsq because their efficiency has been repeatedly 

tested. 

Research, however, should not be confined only to a further 

refinement of these techniques. One should try different philosophies 

and have several alternatives. Some of these studies are presented here. 

97 
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8.1 A Premium-Protectiort Method 

The concept of premium-protection has often appeared in the 

statistical references, but it was introduced in the geodetic field only 

recently (Clerici and HarrisJ 1980) . 

Premium is assessed by the percentage increase in the value of the trace 

of the covariance matrix of the estimated parameters due to a rejection 

that should not have taken place. 

Premium = (Tr[C ] - Tr[C ])/Tr[C ] 
XA X X 

(8 .1) 

where: 

C covariance matrix without rejections 
X 

covariance matrix after a rejection (in this case 

wrong rejection) .. 

Protection is assessed by the percentage decrease in the value of 

the trace of the covariance matrix, due to a correct rejection of 

an erroneous observation. 

Protect ion = (Tr [C ] - Tr ( C ]) /fr {C ] 
X XA X 

(_8. 2) 

where: 

c 
X 

= covariance matrix being affected by a gross error in 

an observation. \Vhen there is not any gross error: 

c c . 
X X 

The method is similar to the B-method of testing (sect. 5.2), and the 

correspondence between premium-protection and the type I and type II 

errors is apparent. Likewise, for a chosen premium and protectio~ 

critical values c for the standardized residuals can be determined and 

moreover values similar to the values for the internal reliability 
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(sect. 6.1), can be also estimated. Examples using both methods have 

shown a very good agreement (Cleriai and Hai'ris, 1980). 

The main advantage of the method is that instead of using the 

abstract concepts of the significance level and the power of the test, 

more palpable geodetic criteria are used by expressing the desired 

gain (protection), and the tolerable loss (premium), in the trace 

of the covariance matrix of the unknown parameters. 

8.2 Use of Strain Analysis 

Strain has been used to analyze crustal movements for many 

years. In that respect, strain is caused by a real movement. This real 

movement is detected examining differences between geodetic observations 

of two epochs. 

However, differences between geodetic observations are caused 

not only by real displacements but also by large errors or more generally 

by inconsistent observations. Discrepancies and inconsistencies among 

various kinds of observations and also constraints, act like forces 

in a network, extending or contracting its different parts, therefore 

the corresponding strain can be computed. 

ln the research being done (Vaniaek et al., 1981) the effect 

of different inconsistencies and constraints has been studied and the 

results are represented by strain ellipses at each point. The size of 

these ellipses reveals the magnitude of the existing strain in the 

network. This use of strain proves to be useful in the analysis of 

the geometrical strength of networks and research is still being 

continued along this direction. 
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8.3 Adjustment by Minimizing the Sum of the Absolute Residuals 

As it is known, the method of Least Squares minimizes the 

2-norm, which is the sum of the squares of the residuals. 

N 

!lvib = E 
i=l 

2 v. 
1 

Min 

It has been perhaps the most extensively used approximation technique 

because of its mathematical and computational simplicity. 

However, when the errors in the system are not normally 

distributed, the parameters estimated by the minimization are not the 

most likely. The Least Squares method is very sensitive to the presence 

of large errors, distorting the solution significantly. Moreover it is 

quite efficient in spreading the effect of one gross error over all 

adjusted observations and residuals making the detection and the 

localization of the error quite difficult, through examination of the 

residuals. 

The use of standardized residuals as tested quantities solves 

somewhat the problem, since it is more robust than examining the residuals 

themselves. But generally the Least Squares method is non robust. To 

overcome this problem other attempts have been made and other methods 

have been proposed concerning more robust estimations. 

One alternative is the minimization of the 1-norm, which is 

the sum of the absolute values of the residuals. 

= 
N 
z: 

i=l 
I v.! r= Min 

1 

This method is relatively insensitive to the presence o£ gross errors 

among the measurements since it can tolerate larger residuals. In this 
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way the errors are confined to a few residuals only (not spread 

as before), and they can be easily detected and eliminated. Moreover 

they do not affect the solution so much; e.g., in a simple case of 

direct observations the adjusted value leads to the median (Fuahs, 

1981) which definitely is much more robust than the mean. 

Problems encountered with numerical computations have been 

solved and the technique is claimed to be very efficient (Meisst, 1980; 

Fuahs, 1981). 

In another study based on a similar philosophy, the advantages 

of minimizing the length of the vector of the residuals, in constructing 

more reliable statistical tests, are stressed and examples are also 

given (Caspary, W. and Chen, Y.Q., 1981). 

8.4 Iteratively Reweighted Least Squares 

If the weights are also considered, the Least Squares algorithm 

minimizes the sum of the weighted squares of the residuals: 

where: 

n 
I = .E 

i=l 

2 p. • v. = Min 
1 1 

p. the selected weight factors. 
1 

(8.3) 

Under the philosophy, that the larger the residual the more probable 

the corresponding observation to be erroneous, one, instead of elim-

inating the observation itself, can diminish its weight (Sahlossmaahel', 

1973). 

If in an iterative procedure, the reciprocal of the residuals 

of the kth iteration, are used as weights in the (k + 1) st iteration: 
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1 
p(k + 1). = ---

1 lvCk).l 
1 

equation (8.3) becomes: 

n 
I(k + 1) ::: E 

i=l 

1 

lv(k). I 
1 

(8. 4) 

2 v (k + 1). 
1 

(8 .5) 

If lvCk). - v(k +1). I "'0 fori = l, 2, ... , n equation (8.5) 
1 1 

results into: 

n 
I(k + 1) = E 

i=l 
1 v Ck + 1). 1 

1 
(8.6) 

which approximates the 1-norm, i.e., the sum of the absolute values of 

the residuals (mentioned in 8.3). 

If any of the residuals have values 

The procedure starts with p. = 1. 
1 

0 the weights (eq. 8.4) hecome 

very large causing numerical instabilities which moderate the conver-

gence rate. Therefore, since a very small residual does not contribute 

significantly to the total sum (eq. 8.3), it is acceptable to "eliminate" 

this observation by setting p. = 0. If in the following iterations the 
1 

residuals become significantly large again the weights can change 

accordingly (Sc.hloMma.c.heJL, 19 7 3). 

In this way the outlying observations have very small 

weight and thus, they do not affect the solution considerably. The 

main advantage of the method is that it can be used with any standard 

Least Squares computer program. Moreover in a non-linear case, 

both iterations can take place simultaneously. 

8.5 Other Robust Estimators 

Statistical literature abounds in estimators which are 

relatively insensitive to limited deviations of the distribution function 



of the measurements. These deviations imply presence of both gross 

and systematic errors. 

However, in the Geodetic and Photogrammetric field only 

isolated studies for the adaptation of such techniques have been made, 

as far as the knowledge of the author is concerned. One of these 

studies concerns the "Danish Method" (Krarup_, 1980), where an iteratively 

reweighted Least Squares adjustment is proposed. The weights are based 

on the weight function: 

p 
{ :roportional 

for lvl < 2•a 

2 
to exp (-C.v ) for !vi > 2•a 

where: 

C a constant 

a standard deviation of the observations. 

More specific values are given for the application of this weight 

function in photogrammetric problems. After the procedure converges, 

the erroneous observations have weights of zero and their residuals 

indicate the magnitude of the errors. 



CONCLUSIONS AND RECOMMENDATIONS 

Post-adjustment gross error ~etection techniques, as they were 

presented above (ch. 5), have proven to be very sensitive and efficient 

in detecting errors of small magnitude. Their application in the analysis 

of networks and also in many Photograrnrnetric problems, can considerably 

improve the quality of the results, but the main advantage appears when 

their reliability is considered. 

It has been a matter of principle in every geodetic problem 

that not only the solution but also a measure of its quality are provided. 

Since absolute measures of the deviation from the physical value cannot 

be obtained, one can be content when the maximum extension from the 

desired value can be bounded at a certain probability level. 

The quality of the results depends first on the quality of the 

observations, and secondly on how these observations are utilized by the 
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model. By the latte~ two things are implied. One is how the precision 

of the observations affects the results through the geometry of the model 

(error propogation), and the other is how sensitive the model itself is 

to small changes in the observations~ While the first matter refers 

either to the a priori assumed precision of the data, or to their fit into 

the model (precision of the results), the second matter refers to the 

robustness of the model, namely, how the model reacts to small 

inconsistencies of the observations (r~liability of the results). 

If a priori estimates. for the precision of the observations 

are used, then precision relates·entirely to random errors. Reliability, 

however, as it was analyzed here (ch.:·6), accounts for the true errors 

(sect. 2.2), that is for both random ·and gross or systematic errors. 

This more distinct definition of the concept of quality of an 

estimation, was obtained after Baarda's theory (1976, 1979) was introduced 

(fig. 9.1). 

Accuracy is a measure of quality. 

Quality consists of precision and reliability. 

Measure of precision is the covariance matrix of the unknown parameters. 

Measures of reliability are.the maximum inconsistency in the observations 

that can remain undetectable (internal reliability), and its effect on 

the desired unknown parameters (external reliability). 

In an actual situation where the data acquisition has taken 

place, usually a gross error detection and elimination technique is 

employed, and then reliability statements can be made. This, however, 

is not always the case. Since reliability analysis does not require 

actual data, it can precede the gross error detection or even the data 

acquisition; i.e., it can be utilized during the design of the network. 
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Quality 

Accuracy 

I 
I I 

Precision I Reliability l 
I I 

I I 
assessed by the Internal External 

covariance matrix 

A~ of the desired crD 'V .Q,. = ~ik .::_ crk ~ 
parameters ck 

0 1 .Q.. r. 
1 1 1 

Figure 9.1: Quality of networks (Forstrier 3 1981.b) 

The surveyor who wishes to perform a detailed and meaningful 

analysis of a network should know first what kinds of gross errors might 

have affected the results. Also withrnrt a good knowledge of the expected 

accuracy of the observations, no serious investigation can be initiated. 

Knowing how observations are approximately affected by gross errors, it 

helps to select the right alternative hypotheses and therefore to make 

the right decision. 

After the surveyor detects most of the gross errors he should 

keep in mind that small outliers may still remain in the data and affect 

the solution. One cannot detect these errors using standard techniques 

(e.g., Data Snooping), but measures of the sensitivity of the detection 

are possible. For this analysis the surveyor has to consider the cost 

of making a wrong decision, of either type of error. He should not rely 

only on the covariance matrix of the unknown parameters but also on the 
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above measures of reliability .. These measures are of major importance 

especially when the redimdancy is quite.low (e. g., small survey nets). 

In the latter case reliability.measures give a warning which reveals 

how defenceless the model is in·front of lurking outliers. 

The surveyor should also consider this analysis during the design 

of the network, so that the redundancyri.umbers (sect. 3.2) are not only 

large enough but also homogeneous thro.ughout the entire net, increasing 

its strength. When high accuracy is required r. < 0.35 are not recommended 
1 

for design purposes. For the external·reliability values of~ (sect.6.2) . 0 

smaller than 10 are considered as·sat~sfactory (Kok~ 1982). 

Despite the efficiency of .all the presented strategies 

(ch. 5), research has not yet.reacl\ed .. the ultimate goal for reasons 

mentioned above (sect. 5. 8) .. 'There. are still problems encountered 

with the localization of errors and further development is needed. 

The present trend is to connect the statistical nature of the significance 

level with more geodetic quantities, so that subjectiveness and personal 

criteria will be quite limited (Stefanovia, 1980; Cleriai et at. 1980). 

More information is also required about the numbe~ magnitude, 

frequency, clustering and spread of errors (Forstner, 1981.a). 

Further development is also required for the tau-test (Pope, 

19?6), where up to now only the type I error is considered. 

There is also an.objection.concerning the usefulness of the 

concept of the reliability from the practical point of view (Stefanovia, 

1980), to be clarified. 

On the other hand, research should not be restricted in the 

conventional techniques, but other possibilities should be examined, 
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some of which are definitely more robust than the Least Squares Method 

(ch. 8). This is worth trying since a very detailed analysis using 

standard techniques may also lead to uneconomical computations. 

The problem of economy itself differs from application to 

application, depending on the importance and specifications of the project. 

This has to be considered before the procedure to be followed has been 

designed. If, for example, a photogrammetric problem is concerned, 

recollection of some data (e.g., remeasurement of a model or of a photo), 

is quite justifiable and not very costly. Moreover no detailed and 

complicated strategies are required for the localization of gross errors 

as long as the model or the picture, where the error occured, have 

been found. However, in a surveying project, remeasuring may be either 

impossible or more costly than performing a scrutiny on the data, if 

of course a systematic procedure is available. This analysis is 

indispensable since every single observation is valuable and contributes 

significantly to the strength of the network. The gain is much higher 

than the computational cost, which definitely in small surveying nets 

is not the dominant factor, compared to the other expenses, and is going 

to be further reduced. 

To increase the effectiveness of the procedure, very often 

a decomposition of the large adjustment takes place, or a combination of 

pre- and post- adjustment techniques can be implemented (Kok~ 1982). 

Regardless of which techniques are employed to detect, localize and 

eliminate gross or systematic errors, the final tests of highest 

sensitivity on the entire model will reveal any inconsistency that may 
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be still present. If all the tests are passed, the system is considered 

to be free from significant gross errors and the sensi ti vi ty of the 

detection (reliability) is also estimated. After that, the results can 

be given to the user. 

Briefly, in a serious survey project one should follow the 

following: 

Design of Network 

Purpose and specifications - economical aspects. 

Configuration. 

Preanalysis - precision and reliability criteria. 

Design of the observations. 

Observations 

Simple checks during the measurements to ensure at least against 

large gross errors. 

Special care to indispensable observations. 

Analysis of Network 

Pre-adjustment techniques. 

Other robust estimators (if available) . 

Post-adjustment techniques. 

Detection and elimination of gross errors. 

Final adjustment. 

Quality (precision and reliability) of the network. 

Results and Their Quality to the User 
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In closing, a warning is necessary concerning the application 

of the proposed statistical techniques. 

It should be realized that to obtain the right answers one 

has to ask the right questions. Statistical tests are useful as long 

as one knows what is needed and how to use them properly. The investi

gator should have a good understanding of the survey procedure and the 

philosophy of the error detection technique. The outcome of the tests 

should be interpreted with care, and decisions have to be governed by 

the logic and the nature of the particular problem. Blind acceptance 

of the test-results is never recommended. Statistical tests are not 

"panacea" but only a very useful tool; therefore they do not have the 

ability to protect us against nescience or wrong reasoning. A blunder 

in the data is always less destructive than a "blunder" in our way of 

thinking. 
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APPENDIX I: LEAST SQUARES AND TRUE ERRORS 

Considering the case of the second standard problem A~ + ! = Q, 

(parametric L.S.A.), the observation equations are of the form, 

Ax + £ = v with 

The solution follows from, 

p 2 
a 

0 

-1 
C£ 

and if C 1s the covariance matrix of the unknown parameters, 
X 

The residual vector is given by 

v = Ax + Q, 

where 

M 

and if C 1s the covariance matrix of the residuals 
v 

(I.l) 

(I. 2) 

(I. 3) 

(I.4) 

(I. 5) 

Not very often used, the covariance matrix of the adjusted parameters 

can be derived by, 

(I. 6) 

From (I.S) and (I.6} it comes that 

c = c - c v Q, Q, 
(I. 7} 

and from (I. 4) 



M = 
1 

2 
a 

0 

c p 
v 

llS 

(I. 8) 

Expressing now the true observational errors as e: = ~- E(~, and 

considering that E(!) + A~RUE = Q, it follows that: 

~ = ~- A~RUE 

It is easy now to prove that 

v = M E 

Indeed, 

v = ~ + Ax 

= ~ + Ax - A~RUE + A~RUE 

T -1 T 
= v - A~RUE + A(A PA) A PA~RUE 

= v - MA~RUE 

= M(!- A~TRUE) which due to (I.9) results in (I.lO) 

v = M E 

At this stage a transformation can be performed A = SA, ~ = s~. 

~ = s~. e: = se: 

where 

since P is always positive definite. 

(I. 9) 

(I.lO) 

(I.ll) 

This transformation has as purpose to simplify the expressionsand helps 

in the case where a geometrical interpretation of L.S. adjustment and 

statistical testing is desired (Pope~ 19?6; van MiePlo, 1981). Through 
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this transformation the correlated stochastic elements £ are transformed 

to uncorrelated £. Thus their covariance matrix becomes, 

Also 

T 
C- = SC S 

£ £ 

from (I.ll) 

v = Sv = S [I 

and since 

- A(ATPA)-lATP) £ -

S£ - SA(ATSTSA)-lATSTS~ -

v = (I - A(ATA) -lAT) 

= M"E" 

where 

Similarly 

2 -c- = cr M 
v 0 

on the contrary to (I.l2) 

£ -

c = c = cr 2 p 
£ .II. 0 

Some properties of the idempotent matrix M = Q P 
----~~~----------------~--------------~v-

(!.12) 

(!.13) 

(1.14) 

(I. IS) 

(I.l6) 

The matrix M =I- A(ATPA)-lATP = Q P (eq. 1.4) is an idempotent 
v 

matrix since MM = M. It has the following important characteristics 

(Pope, 19?6; Stefanovic, 19?8) which also hold for the Q matrix if 
v 

p = I. 

1. The M matrix is square and symmetric. 

2. rank [M] = trace [M) (1.17) 
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Since rank [M] = n- u = r , i.e., trace [M] = (total redundancy r) 

3. Since M "I I or rank [M] < order [M] = n, M is singular. 

4. If r. are the diagonal elements of M, 0 < r. < 1 
1 - 1-

5. trace [M] r (average diagonal term) : r = --~~ 

6. r. = r .. = 
1 11 

n 
E 

i=l 

7. 0 < r .. < r. r. 
- 1J 1 J 

r .. 
1J 

n n 

8. Th d t f M 1·.e., U = A(ATPA)-lATP e se·con par o , 

idempotent matrix. 

is also an 

9. In the case of P = I, ri = qv. and it has been shown (Amer, 
1 

1981) that 0 < q < 0.5 
- v -ij 

10. The vector of eigenvalues of M consists of u zeros and r 

ones (Morrison, 1976). 

(!.18) 

(!.19) 

(I. 20) 

(I. 21) 

(!.22) 
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APPENDIX II ELIMINATION OF NUISANCE PARAMETERS 

If there are nuisance parameters in the model denoted by t, 

whereas the desired parameters are denoted by k, (Forstner, 1980), 

the Least Squares model is of the form: 

-t + v = A x = ~ ~ + At t (II.l) 

where 

and 

The solution for the desired parameters is given by (Wells and 

Krakiwsky, 1971), 

(II.2) 

where 

A= (I- A (ATPA )-1A P)_A. 
k t t t t· ~l< 

(I I. 3) 

and 

From the definition of the U matrix (eq. 3.8), 

(II.4) 

If there are nuisance parameters, after the partitioning of A (eq. II.l) 

the U matrix becomes (Mikhail, 1979): 

u 
[- -~ • p 

which after a few manipulations becomes (see Forstner, .1981. b), 



= u + u 
k t 
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(II. 5) 

Therefore if ~- and ut. are the diagonal elements of the Uk and Ut 
1 1 

matrices correspondingly, 

and 

u = (A (AT P A ) -l AT P) .. 
t. t t t t 11 

l. 

Moreover from equation (II.S), 

u. = u. + ut 
1 K. . 

1 1 

where u.'s are the diagonal elements of the U matrix. 
1 

(II.6) 

(II. 7) 

(II. 8) 
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APPENDIX III: NOMOGRAMS FOR THE B-METHOD OF TESTING 

The required values for the B-method of testing are given through 

a set of nomograms (Baarda~ 19.68; pp. 21-23). An extract of the most 

frequently used case of ~0 = 0.80, is given below so that the reader 

can follow the examples. 

I.Po=O.BOI:-, . 111.-= 
VF,_"•"·- 100a0 A0 •• /./ I 

.t.- A { a •. p.- 0.80. 1 .co}- .t { a.p .... 0.80. b.oo} 

b = r = redundancy 
Ao 100a0 

so / 

0.1100 0.1100001 

5.5 •o 
QDOOOI 

5.0 0.11001 

lO 
6.5 0.001 

0.01 

0.05 
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0.5 

2.5 
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25 

10 JO •o so 100 ISO 

b 

Figure III.l: Nomograms for the B-Method of Testing 
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Following the normal procedure (sect. 5. 2), by choosing 

a = 0.001 
0 

ao = 0.80 

for e.g., 10 degrees of freedom (r 

be easily determined, 

A. = 17 
0 

a = 0.04 

I Fl-a . 1 ~ 3.29 
o' , 

IF = 1.90 
1-a;r,~ 

10), the rest of the values can 

A few more example values are given in section 5.2. 




