COMPUTER PROGRAM LIBRARY

USER'S GUIDE

TERRY ARSENAULT

May 1984

PREFACE

In order to make our extensive series of technical reports more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text.

COMPUTER PROGRAM LIBRARY USER'S GUIDE

T. Arsenault

Department of Surveying Engineering
University of New Brunswick
P.O. Box 4400

Fredericton, N.B.
Canada
E3B 5A3

May 1984
Revised May 1986
Latest Reprinting May 1993

CONTENTS

Page
PREFACE iv
USING THE LIBRARY 1
PROGRAMS
ALERT 7
APPROX 8
CHISQ 9
DEPS 10
DINVINC 11
DMSRAD 12
EIGEN 13
EIGEN3 14
ELLDIR 15
ELLINV 16
ELTSP 17
ERRTM 18
ERR3D 19
EVALUE 20
FPLAT 21
GEODOP 22
GEOID 23
GEOID2 24
GEOPAN 25
GEOPOC 26
LEGDRE 27
LSA 28
LSSA 30
MATMPY 31
MERARC 32
MERGE 33
MPDIR 34
NALERT 35
NETPLOT 36
NWLFIT 37
ORTHO 38
PLHXYZ 40
PLTSP 41
POT1 42
PREDOP 44
RADMS 45
ROTREF 46
SPIN 47
SPTEL 49
SPTPL 50
STGINL 51
STRAIN 52

CONTENTS (Continued)

Page
SVY078 53
TAURE 54
TMPLXY 55
TMSFMC 56
TMXYPL 57
TRANS 58
TTLS 59
UPDATE 60
VINDI 61
VININ 62
XNORM 63
XYZPLH 64
XYZPLH2 65
NGS SOFTWARE PACKAGES 66

This manual provides instruction in the use of the department's computer program library as well a descriptive directory of the programs in the library.

If you have any questions, consult the department's Programmer/ Analyst in E-19.

USING THE LIBRARY

The computer program library is a set of algorithms that perform functions frequently required by surveying engineers. It is highly recommended that the user read each routine's function in the following directory so that, in future work, he/she might recall a routine to perform a desired task, thus avoiding having to "re-invent the wheel".

Additions to the library are always welcome.
The first example below shows how to produce a program listing: following the "//SYSIN..." line, the user enters the name of the program to be listed - in the example given, we want a listing of the ALERT program. The most common instance when one might want to generate a program listing is in the case of a program where the instructions on how to use it consist of comments embedded in the code.

Example 2 shows how to use library subprograms in your program; the "//LKED.USERLIB" line following your program informs the computer to go looking into the program library to resolve references to subprograms not included in your program.

In example 3, the user is running one of the library's main programs: the desired program is specified in the "GOPGM=" parameter (ALERT in this case). In the following directory, the "How to Use" section for main programs will always refer you to a user's manual or a listing of the program.

Finally, example 4 shows how to access the library from a WATFIV job. WATFIV programmers, however, should familiarize themselves with the differences between WATFIV and FORTRAN, and start programming in FORTRAN (see the Computing Center's User's Guide Volume 3, FORTRAN compilers).

WATFIV was designed primarily as a pedagogical tool, while FORTRAN is used to solve problems in the 'real world'. Moreover, the library programs are written in FORTRAN and a given routine may or may not run under WATFIV.

If your JCL (the lines in the examples that start with '/') is a bit shaky, the Computing Center's User's Guide Volume 2, JCL concepts, is highly recommended reading.
// JOB ,SE1234
/*JOBPARM $\mathrm{S}=5, \mathrm{~L}=99, \mathrm{R}=512$
//*
/ / EXEC PGM=PDSLISTR
//SYSUT1 DD DSN=A.M12129.SELIBSRC,DISP=OLD
//SYSIN DD *
ALERT
//
//SYSPRINT DD SYSOUT=*
研
Example 1. Producing a program listing.

```
// JOB ,SE1234
/*JOBPARM S=5,L=99,R=1024
/*SERVICE -4
//*
//
EXEC FORTVCLG
//FORT.SYSIN DD *
User written main program
//LKED.USERLIB DD DSN=A.M12129.SELIBOBJ,DISP=OLD
//GO.SYSIN DD *
Data for the program
//
```

Example 2. Accessing library subprograms.

```
// JOB ,SE1234
/*JOBPARM S=5,L=99,R=512
/*SERVICE -4
//*
//
//STEPLIB DD DSN=A.M12129.SELIBOBJ,DISP=SHR
//SYSIN DD *
```

Data for the program
//

Example 3. Using a main program from the library.

```
//
JOB ,SE1234
/*JOBPARM
    S=5,L=99,R=512
/*SERVICE
    -4
//*
//
EXEC WATFIV
//USERLIB
DD DSN=A.M12129.SELIBSRC,DISP=SHR
//SYSIN
DD DATA
```

Your WATFIV Program
/*
//

Example 4. Using the library in a WATFIV job.

APPROX

PURPOSE: Perform a least-squares approximation.

HOW TO USE: Produce a listing of the program and read the instructional comments.

PURPOSE: Computes the percentiles of the chi-square distribution $X(N)$

HOW TO USE:
varname $=$ CHISQ (A,N)

ARGUMENTS: $\quad A=$ probability integral from zero to CHISQ $\mathrm{N}=$ number of degrees of freedom CHISQ $=$ computed abscissa value of $X(N)$ corresponding to probability A. Accuracy better than 0.04 for $\mathrm{N}>1$.

PURPOSE:	Set functional value DEPS and argument DARG both equal
to the smallest double precision number so that	
	l.+DEPS.GT.1.

HOW TO USE: $\quad X=\operatorname{DEPS}$ (DARG)

INPUT ARGUMENTS: none

OUTPUT ARGUMENTS: DARG $=$ the smallest double precision number such that 1.+DEPS.Gt.L. (REAL*8)

DINVINC

PURPOSE:	Computes the direct and inverse problems of geodesy
	using Vincenty's formulas from Survey Review, April
HOW TO USE:	
	Produce a listing of the program and read the
	instructional comments.

DMSRAD

```
PURPOSE: Converts an angle from degrees, minutes, and seconds to
    radians.
HOW TO USE: CALL DMSRAD (IDEG, IMIN, SEC, RAD)
INPUT ARGUMENTS: IDEG = degrees (INTEGER *4)
IMIN = minutes (INTEGER *4)
    SEC = seconds (REAL *8)
OUTPUT ARGUMENTS: RAD = the angle in radians (REAL *8)
```

```
PURPOSE: Computes the eigen values and eigen vectors for a 3-D
    case. Calls 'EIGENZ' which computes the eigen values
    and vectors and then prints the final result.
HOW TO USE: CALL EIGEN (A,S)
INPUT ARGUMENTS: A = The variance-covariance matrix (REAL *8)
OUTPUT ARGUMENTS: A = An array containing the eigen vectors (REAL *8)
    S = the semi-major axis (REAL *8)
NOTE: The variance-covariance matrix is destroyed. A is a 3x3
    array, S is a vector of length 3.
```

```
PURPOSE: Computes the eigen values and eigen vectors for a 3-D
case.
HOW TO USE: CALL EIGEN3(A, PROB, U, DF, S)
INPUT ARGUMENTS: A = the variance-covariance matrix (REAL*8)
        PROB = the probability requested in the exclusive range
        (0,1)
        U, DF = first and second degrees of freedom,
        respectively (REAL*8)
```

OUTPUT ARGUMENTS: $\mathrm{A}=$ an array containing the eigen vectors
NOTE: The variance-covariance matrix is destroyed.
$S=$ the semi-major axes
IFLAG $=$ Though not an input/output parameter of EIGEN3
it is used as an input/output error parameter in MDFI
(called by EIGEN3) terminal error $=128+N$; warning
error $=32-N$
$\mathrm{N}=1$ means an error occured in MDBETI
$\mathrm{N}=2$ means PROB was not in range $(0,1)$
$N=3$ means computed value of TVAL would produce an
overflow. TVAL is set to machine infinity.

Solves the direct problem on the ellipsoid using Puissant's formulas.

HOW TO USE:

ARGUMENTS:

INPUT:

OUTPUT:
(a11 REAL*8)

```
PHI: Geodetic latitude of point 1 (radians).
AMB: Geodetic longitude of point 1 (radians).
ALP: Given geodetic azimuth from point 1 to point 2
    (radians).
DIS: Given ellipsoid distance (metres).
A: Semi-major axis of reference ellipsoid (metres).
B: Semi-minor axis of reference ellipsoid (metres).
```

ALP2: Computed geodetic azimuth from point 2 to point 1 (radians)

PHI2: Geodetic latitude of point 2 (radians)
AMB2: Geodetic longitude of point 2 (radians).

```
PURPOSE: Solves the inverse problem on the ellipsoid using
Puissant's formulas.
```

HOW TO USE:

ARGUMENTS:

INPUT:

OUTPUT:

PHI1: Geodetic latitude of point 1 (radians)
AMB1: Geodetic longitude of point 1 (radians)
PHI2: Geodetic latitude of point 2 (radians)
AMB2: Geodetic longitude of point 2 (radians)
A: Semi-major axis of reference ellipsoid (metres)
B: Semi-minor axis of reference ellipsoid (metres)

ALP: Geodetic azimuth from point 1 to point 2 (radians)
DIS: Ellipsoid distance (metres)

ALP2: Computed geodetic azimuth from point 2 to point 1 (radians)

PURPOSE: Transforms ellipsoidal coordinates PHI, ELAM to spherical (conformal sphere) coordinates CHI, SLAM and computes the corresponding point scale factor ESK (ellipsoid to sphere). The point scale factor at the origin of this conformal projection is unity.

HOW TO USE:
CALL ELTSP (PHI, ELAM, E, A, C1, C2, R, CHI, SLAM)

INPUT ARGUMENTS: (all arguments are REAL*8 values) PHI = Ellipsoidal latitude of the point, in radians ELAM $=$ Ellipsoidal longitude of the point, in radians (positive east of Greenwich)

E = First eccentricity of the ellipsoid (computed in STGINL)
$A \quad=$ Semi-major axes of the ellipsoid
C1 = Constant computed in SIGINL
C2 = Constant computed in SIGINL
$\mathrm{R} \quad=$ Radius of the conformal sphere (computed in SIGINL)

OUTPUT ARGUMENTS: CHI = Spherical latitude of the point, in radians

SLAM $=$ Spherical longitude of the point, in radians.

```
PURPOSE: Computes the covariance matrix CM of the transverse
mercator coordinates x,y given the covariance matrix DM
of the ellipsoidal coords PHI, LAMDA (ICODE=1). If
ICODE=-1, compute DM from CM.
HOW TO USE: CALL ERRTM (A,B,PHI,DLAM,KNOT,ICODE,CM,DM)
INPUT ARGUMENTS: PHI = Ellipsoidal latitude in radians.
DLAM = Longitude of the point minus the longitude of
        the central meridian (radians) (Longitude
        positive east)
    KNOT = Scale factor at the central meridian
ICODE = 1 PHI, LAMDA to x, y
            -1 x, y to PHI, LAMDA
CM = covariance matrix of the transverse mercator
        coordinates (in metres }\mp@subsup{}{}{2}\mathrm{ ), or
DM = covariance matrix of the ellipsoidal coordinates
        (in radians }\mp@subsup{}{}{2}\mathrm{ )
```

OUTPUT ARGUMENTS: CM or DM

EVALUE

PURPOSE:	Computes eigenvalues and eigenvectors from the symmetric
strain tensor.	
HOW TO USE: \quad See "Strain as a Diagnostic Tool to Identify	
Inconsistant Observations and Constraints in Horizontal	
	Geodetic Networks" by K. Thapa (M.Sc.E. thesis, 1980).

FPLAT

```
PURPOSE: Computes the foot-point latitude required in
    transforming transverse mercator plane coordinates X,Y
    to ellipsoidal coordinates.
HOW TO USE:
INPUT ARGUMENTS: (all arguments are REAL*8 values)
A = Semi-major axes of the reference ellipsoid.
B = Semi-minor axes of the reference ellipsoid.
Y = Northing of the point for which the foot-point
    latitude is to be computed.
```

OUTPUT PARAMETERS: PHI1 = Foot-point latitude in radians.

GEODOP

PURPOSE:
Given satellite receiver data in the form of Doppler
counts and associated satellite positions, compute
geocentric observing station positions.

HOW TO USE:
See "Program GEODOP" by J. Kouba and T.D. Boal.

GEOID

PURPOSE:
Generates a geoid for a small area on the surface of the earth.

HOW TO USE: Produce a listing of the program and read the instructional comments.

GEOID2

PURPOSE: Computes geoidal heights, meridian and prime vertical components and free-air anomalies from spherical harmonic coefficients.

HOW TO USE: Produce a listing of the program and read the instructional comments.

GEOPAN

PURPOSE: \quad Perform least-squares adjustment and analysis of small
\quad plane horizontal geodetic networks.

HOW TO USE: See T.R. 54.
N.B.: GEOPAN can handle up to 60 stations; to handle up to 200, specify GEOPAN2 instead of GEOPAN as the GOPGM.

Computes the associated Legendre functions up to and including degree and order N. The dimension of $P N$ is ($N+1, N+1$). The associated Legendre polynomial of degree A and order B is stored in $P N(A+1, B+1)$ if $A \neq B$ (zonal and tesseral) and in $P N(A+1, A+1)$ if $A=B$ (sectorial).

HOW TO USE:
CALL LEGDRE (INORM, PHI, PN,NROW,NP1)

INPUT ARGUMENTS: \quad INORM $=$ Flag normalization: $1=$ YES; $0=$ NO
PHI = Latitude in degrees
NROW = Low dimension of PN in the calling program
NP1 $=N+1=$ The dimension of $P N$ in the subroutine.
See N below.
$\mathrm{N} \quad=$ Degree of Legendre polynomial.

OUTPUT ARGUMENTS: PN = Matrix of associated Legendre polynomials.

```
PURPOSE:
Solves \(X=\left(P_{X}+A^{T} P_{F} A\right)^{-1} A^{T} P_{F} F\) via least-squares
approximation.
```

HOW TO USE: CALL LSA (LU,F,PF,A,PX,NF,IRPF,ICPF,NX,IRPX,ICPX,IRA, IRAPA, X, APA, R, RNORN, APB, DET, IERR)

INPUT ARGUMENTS: LU = Listing LU
F(NF) $\quad=$ Function to be approximated (observations)
$\mathrm{PF}(\mathrm{NF}, \mathrm{NF})=$ Weight matrix of F
A(NF,NX) = Design matrix
$P X(N X, N X)=$ Apriori weight matrix of X
NF $\quad=$ Number of observations
IRPF $\quad=P_{F}$ row dimension in calling program
ICPF $\quad=P_{F}$ row dimension in calling program
NX $\quad=$ Number of unknowns
IRPX $\quad=\mathrm{P}_{\mathrm{X}}$ row dimension in calling programs
ICPX $\quad=P_{X}$ row dimension in calling programs
IRA $\quad=\mathrm{A}$ row dimension in calling routine
IRAPA $\quad=\mathrm{AP}_{\mathrm{A}}$ row dimension in calling routine.

OUTPUT: $\quad \mathrm{X}(\mathrm{NX}) \quad=$ Approximating coefficients (unknowns)
$A P A(N X, N X)=\left(P_{X}+A^{T} P_{F} A^{T}\right)^{-1}=$ Relative covariance of X
$R(N F)=P(N F)-F(N F)=$ Residuals
RNORN $\quad=$ Quadratic norm of R
$\operatorname{APB}(N X)=A^{T} P_{F} F=$ Normal equation vector

DET \quad	Determinant of $\mathrm{AP}_{\mathrm{A}}^{-1}$
IERR \quad	0 Successful return
	$1\left(\mathrm{P}_{\mathrm{X}}+\mathrm{A}^{\mathrm{T}} \mathrm{P}_{\mathrm{F}} \mathrm{A}\right)$ is singular
	2 NX is zero
	$3 \mathrm{NF}<\mathrm{NX}$ and P_{X} is nul1
	4 IRPF must be 1 or $\geq \mathrm{NF}$
	5 ICPF must be 1 or NF
	6 IRPX must be 1 or $\geq \mathrm{NX}$
	7 ICPX must be 1 or NX
	8 IRA must be $\geq \mathrm{NF}$
	9 IRAPA must be $\geq \mathrm{NX}$

PURPOSE:	Performs a least-squares spectral analysis for a given
	time series.
HOW TO USE: \quad	Produce a listing of the program and read the
	instructional comments.

MATMPY


```
PURPOSE: Computes the meridian arc length from the equator to
latitude PHI on an ellipsoid of revolution defined by
its semi-major axis A and its semi-minor axis B. The
computed arc length is accurate to approximately 10
micrometres over the entire range (equator to pole).
HOW TO USE: CALL MERARC (PHI, A, B, S)
INPUT ARGUMENTS: (all arguments are REAL*8)
PHI = Ellipsoidal latitude in radians (may be positive
        (north) or negative (south) of equator).
A,B = Semi-major and semi-minor axes of the ellipsoid
    (the computed arc length will be in the same units
        as A and B).
OUTPUT ARGUMENTS: S = meridian arc length.
```


MERGE

PURPOSE: \quad Merge GEODOP input files into a multistation file, or \quad with Naval Weapons Laboratory (fitted) Precise Ephemeris

HOW TO USE: See "GEODOP Utilities Programs" by P.G. Lawnikanis.

MPDIR

```
PURPOSE: Solves the direct problem of geodetic positioning on the
    mapping plane.
HOW TO USE: CALL MPDIR (X1, Y1, GDIST, GAZ, MC, LSK, TT, MPDIST,
    MPAZ, X2, Y2)
INPUT ARGUMENTS: (all arguments are REAL*8 values)
    X1,Y1 = X,Y coordinates of the initial point
    GDIST = Geodetic distance
    GAZ = Geodetic azimuth (in radians)
    MC = Meridian convergence (in radians)
    LSK = Line scale factor
    TT = T - T correction (in radians)
OUTPUT ARGUMENTS: MPDIST = Distance from point 1 to point 2 on the mapping
    plane.
    MPAZ = Azimuth on the mapping plane (in radians)
    X2,Y2 = X,Y coordinates of the observed point
```

PURPOSE:	Computes transit satellite alerts for up to 10
	satellites.
HOW TO USE: \quad	Produce a listing of the program and read the
	instructional comments.

NETPLOT
PURPOSE: \quad Plots the strait ellipses as well as the values of
average differential rotation.

HOW TO USE: See "Strain as a Diagnostic Tool to Identify Inconsistent Observations and Constraints in Horizontal Geodetic Network" by K. Thapa (M.Sc.E. thesis, 1980).

NWLF IT

PURPOSE:
Given Naval Weapons Laboratory precise satellite XY2 orbit coordinates, curve fit them to a Chebyshev time polynomial by least squares.

HOW TO USE: See "GEODOP Utilities Programs" by P.G. Lawnikanis.

ORTHO

PURPOSE:
To orthogonalize a matrix PHI using the Gram-Schmidt Orthogonalization procedure.

HOW TO USE:
CALL ORTHO (N,M,SIGMA, PHI,IRMAX,SIGMAF,VFC,NPC,INDEX,V, SUMD , ICMAX , F, W, D, ALPHA, C , SUMC, SC2 , STDP)

INPUT ARGUMENTS: (Arguments beginning with letters I-N are INTEGER*4, all others are REAL*8)

PHI - an N by M matrix containing the base functions evaluated at each observation point (optional can be a function subprogram instead)

N - number ob observation points
M - number of base functions
IRMAX - declared row dimension of PHI at calling program
F - vector of functional values

W - vector of weights
INDEX - test option for statistically significant
fourier coefficients
0 - no test performed
1 - coef. tested against its standard deviation
2 - coef. tested against two times its std. dev.
3 - coef. tested against three times its std. dev.
SIGMA - a priori variance factor

OUTPUT ARGUMENTS: C - Fourier coefficients of the orthogonalized matrix
D - original coefficients of phi
SUMC - associated covariance matrix of C
SUMD - associated covariance matrix of D
V - vector of residuals
NPC - number of coefficients of the original polynomial recovered from the statistically tested fourier coefficients

VFC - a posteriori variance factor of the original polynomial

SIGMAF - variance factor for the fourier coefficients
PURPOSE: \quad Computes the cartesian coordinates X, Y, Z given the

HOW TO USE: CALL PLHXYZ (PHI,RLAM, H,XO,YO,ZO,A,B,X,Y,Z)

INPUT ARGUMENTS: (all arguments are REAL*8 values)
PHI - Ellipsoidal latitude in radians
RLAM - E1lipsoidal longitude in radians (positive east of Greenwich)

H - Ellipsoidal height in metres
XO,YO,ZO - Translation components from the origin of the cartesian coordinate system ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) to the center of the reference ellipsoid (metres)

A,B - Semi-major and semi-minor axes of the reference ellipsoid in metres.

OUTPUT ARGUMENTS: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ - Cartesian coordinates of the point in metres

```
PURPOSE: Transforms stereographic grid coordinates X, Y to
    spherical coordinates CHI, SLAM.
HOW TO USE: CALL PLTSP (X,Y,XO,YO,KO,R,CHIO,SLAMO,CHI,SLAM)
INPUT ARGUMENTS: (all arguments are REAL*8 values)
    X = Stereographic grid easting
    Y = Stereographic grid northing
    XO = False easting
    YO = False northing
    KO = Point scale factor at the origin (from
        sphere to plane)
    R = Radium of the sphere
    CHIO = Spherical latitude of the origin (in radians)
    SLAMO = Spherical longitude of the origin (in radians)
        (positive east of Greenwich)
OUTPUT ARGUMENTS: CHI = Spherical latitude of the point (in radians)
    SLAM = Spherical longitude of the point (in radians)
```

POT1

PURPOSE:

HOW TO USE:

INPUT ARGUMENTS: (a11 are REAL*8)
PHI - latitude (geodetic) in degrees
DLON - longitide (positive east) in degrees
HT - height in metres

OUTPUT ARGUMENTS: (a11 are REAL*8)
UN - height anomaly in metres
XI $-N$-S deflection in seconds of arc
ETA - E-W deflection in seconds of arc (west positive)
DIST - gravity disturbance in mgals

Your main program must include the following code:

LOGICAL FIRST
REAL*4 C, CO
REAL*8 G1,G,CM3,CM2,CM1
DIMENSION G1 (3), $\mathrm{G}(3,3), \mathrm{C}(32760)$
COMMON /CM/ G1,G,CM3,CM2,CM1,CO,C
COMMON /ENTRY/ FIRST,NMAX
C
FIRST = .FALSE.
NMAX = Maximum degree of expansion in the potential coefficient field

In addition, you must specify the file containing the potential coefficients, this requires you to supply the following card (immediately following the JOB card is a good place to put it):
/*SETUP SLOT=5172 VOLUME=SE001
as well as one of the following, depending on the set of coefficients you wish to use:
//GO.FT12F001 DD DSN=RAPP180.UNFMD,UNIT=3480,VOL=SER=SE0001, // LABEL=166,DISP=(OLD,DELETE)
or
//GO.FT12F001 DD DSN=GEM10C.UNFMD, UNIT=3480,VOL=SER=SE0001, // LABEL=69,DISP=(OLD,DELETE)

PURPOSE:	Reads and decodes formatted majority-voted (MJV) input
data which is a series of satellite passes. The orbit	
for each pass is computed and the receiver Doppler	
counts are checked before writing the data out	
unformatted for subsequent processing by GEODOP.	
HOW TO USE:	See "Program PREDOP" by P. Lawnikanis.

```
PURPOSE: Converts an angle from radians to degrees, minutes and
seconds.
HOW TO USE: CALL RADMS (RAD,IDEG,IMIN,SEC)
INPUT ARGUMENTS: RAD - The angle in radians (REAL*8)
OUTPUT ARGUMENTS: IDEG - Degrees (INTEGER*4)
    IMIN - Minutes (INTEGER*4)
    SEC - Seconds (REAL*8)
```

ROTREF

PURPOSE: \quad To compute the product matrix resulting from a sequence of rotations and reflections

HOW TO USE: CALL ROTREF (NUM,NAXIS, ANGLE,ROT)

INPUT ARGUMENTS: NUM - Number of rotations and reflections in sequence (no limit)(INTEGER*4)

NAXIS - Vector of rotation and reflection axes (for rotations use 1,2 or 3) (for reflections use $-1,-2$, or -3) (INTEGER *4)

ANGLE - Vector of rotation angles in radians (for reflections this angle is ignored, i.e., assumed zero) (REAL*8)

OUTPUT ARGUMENTS: ROT - 3 x 3 product matrix (REAL*8) (initially ROT is the identity matrix)

SPIN

PURPOSE: Inverts a symmetric positive definite matrix. The matrix inverted is the upper left $N \mathrm{x} N$ portion of the input matrix Q which is dimensioned $M M X M$ in the calling routine.

HOW TO USE: CALL SPIN (Q,N,MN,DET,IDEXP)

INPUT ARGUMENTS: Q - the matrix dimensioned $M M \mathrm{x}$ MM which contains the matrix to be inverted (REAL*8)
N - the dimension of the actual part (upper left) of Q which is to inverted $\mathrm{N} \leq$ MM (INTEGER*4)
$M M$ - the dimensioned size of Q in the calling routine (INTEGER*4)

OUTPUT ARGUMENTS: Q - the upper left $N \mathrm{x}$ N portion contains the inverse of the input $\mathrm{N} \times \mathrm{N}$ portion (REAL*8)

DET - the non-exponent portion of the determinant of the input $N \mathrm{x}$ N upper left portion of Q (REAL*8)

IDEXP - the exponent (of 10) part of the determinant described above

Thus the determinant is returned in two parts corresponding to

Determinant $=$ DET*10**IDEXP
This is done to avoid under or overflow in thecomputation of the determinant. The user should printboth numbers as follows (for example)
PRINT 10, DET, IDEXP
10 FORMAT (','DETERMINANT = ',F17.4,'D', I4)

SPTEL
PURPOSE: \quad Transforms spherical (conformal sphere) coordinates CHI,

HOW TO USE:

INPUT ARGUMENTS: (all arguments are REAL*8 values)
CHI - spherical latitude of the point, in radians
SLAM - spherical longitude of the point, in radians
E - first eccentricity of the ellipsoid (computed in subroutine STGINL)

C1 - constant computed in STGINL
C2 - constant computed in STGINL

OUTPUT ARGUMENTS: PHI - ellipsoidal latitude of the point, in radians ELAM - ellipsoidal longitude of the point, in radians

SPTPL

```
PURPOSE: Transforms spherical coordinates CHI,SLAM to
    stereographic grid coordinates X,Y
HOW TO USE: CALL SPTPL (CHI,SLAM,XO,YO,KO,CHIO,SLAMO,R,X,Y,K,C)
INPUT ARGUMENTS: (all arguments are REAL*8 values)
    CHI - spherical latitude of the point, in radians
    SLAM - spherical longitude of the point, in radians
        (positive east of Greenwich)
        XO - false easting of the origin of the projection
        YO - false northing of the origin of the projection
        K0 - point scale factor at the origin of the
        projection (from sphere to plane)
        CHIO - spherical longitude of the origin, in radians
        SLAMO- spherical longitude of the origin, in radians
        R - Radius of the sphere
OUTPUT ARGUMENTS: X - stereographic grid easting
    Y - stereographic grid northing
    K - point scale factor at the point, going from the
        sphere to the plane
    C - meridian convergence at the point, in radians
```


STGINL

PURPOSE: \quad Computes the initial values to be used in the
stereographic double projection subroutines

HOW TO USE:

INPUT ARGUMENTS: (all arguments are REAL*8 values)
PHIO - ellipsoidal latitude of the origin of the projection, in radians

ELAMO - ellipsoidal longitude of the origin of the projection in radians (positive east of Greenwich)

A,B - semi-major and semi-minor axes of the reference ellipsoid, in metres.

OUTPUT ARGUMENTS: R - radius of the conformal sphere, in metres
C1 - constant used in transformations between the ellipsoid and the conformal sphee

C2 - constant for the same use as C1
E - first eccentricity of the ellipsoid
CHIO - spherical latitude of the origin of the projection, in metres

SLAMO - spherical longitude of the origin of the projection, in metres

PURPOSE: Computes displacement gradients and various other components of strain.

HOW TO USE:
See "Strain as a Diagnostic Tool to Identify
Inconsistent Observations and Constraints in Horizontal
Geodetic Networks" by K. Thapa (M.Sc.E. thesis, 1980)

SVY078

PURPOSE:

> Calculates azimuth and distance for long lines by Robbins' formulae between up to 10 stations

HOW TO USE:
See "Azimuth and Distance on the Spheroid Using Robbins' Formulae" by M.M. Nassar

TAURE

```
PURPOSE: Computes the rejection level for normalized residuals
    for a given number of observations, degrees of freedom
    and desired level of type I error parameters
HOW TO USE: CALL TAURE (NT,NU,ALPH,CRTAU)
INPUT ARGUMENTS: NT - number of observations (INTEGER非)
    NU - degrees of freedom (INTEGER*4)
    ALPH- desired probability of type I error (REAL*8)
OUTPUT ARGUMENTS: CRTAU - Critical value produced by the subroutine
    (REAL*8)
```

PURPOSE:

HOW TO USE:
CALL TMPLXY (PHI, DLAM, A, B, SF , XO, CMRAD, X, Y)

INPUT ARGUMENTS: (all arguments are REAL*8 values)
PHI - latitude in radians
DLAM - longitude of point minus longitude of central
meridian (in radians) for longitude positive east of
Greenwich

A - semi-major axes of the reference ellipsoid
B - semi-minor axes of the reference ellipsoid
XO - false easting of the central meridian
SF - scale of the central meridian
CMRAD- the central meridian, in radians

OUTPUT ARGUMENTS: X - easting coordinate of the Transverse Mercator projection

Y - northing coordinate of the transverse mercator projection

TMSFMC

PURPOSE: Computes the point scale factor and meridian convergence (for a point defined by PHI, DLAM) for a transverse mercator projection defined by the scale factor SFO at the central meridian.

HOW TO USE:
CALL TMSFMC (PHI, DLAM, SFO, A, B, SF, C)

INPUT ARGUMENTS:
(all arguments are REAL*8 values)
PHI - ellipsoidal latitude of the point, in radians
DLAM - ellipsoidal longitude of the point minus the ellipsoidal longitude of the central meridian of the projection (longitude positive east), in radians

SFO - scale at the central meridian
A,B - semi-major and semi-minor axes of the reference ellipsoid respectively, in metres

OUTPUT ARGUMENTS: SF - Point scale factor at the point C - Meridian convergence at the point, in radians.

TMXYPL

```
PURPOSE: Computes the geographic coordinates (latitude and
    longitude) given the X,Y coordinates of the transverse
    mercator projection. The equations used to compute the
    latitude and longitude are from Thomas (1952).
    Subroutine FPLAT is used to compute the foot-point
    latitude.
HOW TO USE: CALL TMXYPL (X,Y,A,B,SF,XO,CMRAD,PHI,OLAM)
INPUT ARGUMENTS: (all arguments are REAL*8 values)
    X - easting coordinate of the transverse mercator
    projection
    Y - northing coordinate of the transverse mercator
    projection
    A - semi-major axes of the reference ellipsoid
    B - semi-minor axes of the reference ellipsoid
    SF - scale of the central meridian
    XO - false easting of the central meridian
    CMRAD - the central meridian, in radians
OUTPUT ARGUMENTS: PHI - latitude of the point, in radians
    OLAM - longitude of the point, in radians
```


TRANS

PURPOSE: \quad Computes station translation components from geoidal

HOW TO USE: Produce a listing of the program and read the instructional comments

TTLS

PURPOSE: Compute the $T-T$ and line scale corrections in a transverse mercator projection.

HOW TO USE:
CALL TTLS (A, B, PHI1, DIST,X1,Y1,X2,Y2,XO,SF,TT,LS)

INPUT ARGUMENT: (all arguments are REAL*8 values)
A,B - semi-major and semi-minor axes of the reference ellipsoid

PHI1 - geodetic latitude of point 1
DIST - geodetic distance from point 1 to point 2
$\mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2, \mathrm{Y} 2-\mathrm{X}, \mathrm{Y}$ coordinates of points 1 and 2
XO - false easting at the central meridian
SF - scale factor at the central meridian

OUTPUT ARGUMENTS: TT - T-T correction from point 1 to point 2
LS - line scale for the distance from point 1 to point 2

UPDATE

PURPOSE: Computes the apparent place of a star at any given epoch

HOW TO USE: See "Computer Programs for First-Order Astronomic Position Determination" by A. Umoru (M.Sc.E. thesis, 1972)

VINDI

PURPOSE: \quad Solves the direct geodetic problem using the algorithm
of T. Vincenty

HOW TO USE:
CALL VINDI (AE,F,XLAT1,XLONG1,FAZ,LINE,LAT2,LONG2,BA)

INPUT ARGUMENTS: (all are REAL*8)
AE - semi-major axis of the ellipsoid (metres)
F - inverse of ellipsoid flattening
XLAT1- latitude of western point (deg)
XLONG1-1ongitude of western point (deg)
FAZ - forward azimuth (deg)
LINE - geodetic distance (metres)

OUTPUT ARGUMENTS: (all are REAL*8)
LAT2 - latitude of eastern point (deg)
LON2 - longitude of eastern point (deg)
BA - backward azimuth (deg)

VININ

PURPOSE:

HOW TO USE:
CALL VININ (AE,F,XLAT1,XLONG1,SLAT2,XLONG2,DIST,AZ1)

INPUT ARGUMENTS: (a11 are REAL*8)
AE - semi-major axis of the ellipsoid (metres)
F - inverse of ellipsoid flattening
XLAT1-1atitude of western point (deg)
XLONG1-1ongitude of western point (deg)
XLAT2-latitude of eastern point (deg)
XLONG2-1ongitude of eastern point (deg)

OUTPUT ARGUMENTS: DIST - geodetic distance (metres) REAL*8
AZ1 - forward azimuth (deg) REAL*8

XNORM

```
PURPOSE:
    Computes the percentiles of the normal distribution
N(XMEAN,SIG)
HOW TO USE: varname = XNORM (ALF,XMEAN,SIG)
ARGUMENTS: (N is INTEGER*4; all others are REAL*8)
ALF - probability integral from negative infinity to XNORM
XMEAN- population mean
SIG - population standard deviation
XNORM- computed abscissa value of N (XMEAN,SIG)
    corresponding to probability ALF
Accuracy better than 0.01045
```


XYZPLH

PURPOSE: Computes the ellipsoidal coordinates PHI, RLAM, H given the cartesian $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$

HOW TO USE:
CALL XYZPLH (X,Y,Z,XO,YO,ZO,A,B,PHI,RLAM,H)

INPUT ARGUMENTS: (all arguments are REAL*8 values)
X, Y, Z - cartesian coordinates of the point in metres XO,YO, ZO- translation components from the origin of the cartesian coordinate system ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) to the center of the reference ellipsoid (in metres)

A,B - semi-major and semi-minor axes of the reference ellipsoid in metres

OUTPUT ARGUMENTS: PHI - ellipsoidal latitude in radians RLAM - ellipsoidal longitude in radians (positive east of Greenwich)

H - ellipsoidal height in metres

XYZPLH2

PURPOSE: Convert (X, Y, Z) to/from (PHI,LAMBDA, H)
HOW TO USE: \quad Produce a listing of the program and read the
instructional comments

The Department has recently acquired three software packages from the U.S. National Geodetic Survey (NGS). These programs are now ready for use on the computer here at UNB. This circular will explain how to access these programs.

The three software packages are:

1) TRAV10 Horizontal Network Adjustment Program. (See NOAA Technical Memorandum NOS NGS-12). This package is the most sophisticated of the three. Its purpose is to adjust horizontal survey networks on the ellipsoid. This package has been used extensively by NGS to adjust the North American networks. The only limitation to the size of the network it can handle is the size of the computer it is running on. The JCL to access TRAV10 is given on below.
2) HAVAGO Three Dimensional Adjustment Program (see NOAA Technical Memorandom NOS NGS-17). This package is useful for adjusting numerous kinds of geodetic observations in three dimensions. It is not intended for handling very large networks, but is well suited for special surveys of highest precision and often with unusual configurations, as well as for ordinary survey projects. The JCL to access HAVAGO is given below.
3) A COMPUTER PROGRAM TO ADJUST A STATE PLANE COORDINATE TRAVERSE BY THE METHOD LEAST SQUARES (see NGS preprint with the same name). This program computes a plane-coordinate traverse adjustment using the method of least squares. Either the Lambert or Transverse Mercator projections may be used. Corrections are applied for the reduction of observed data to grid data. The JCL for accessing this program is given below.
```
    10 //TEST JOB ,SE1234
    20 //*
    30 //* USE TRAV10 PREPROCESSOR TO CHECK INPUT DATA
    40 /*SERVICE -4
    60 /*JOBPARM S=3,L=99,R=1024
    70 //PROCLIB DD DSN=A.M12129.NGS.PROCLIB,DISP=SHR
    80 //ST1 EXEC CCTRAVED,REGION=1024K
    90 //CARDIN DD *
100
110 ...DATA
120
130 //
    10 //TEST JOB ,SE1234
    20 //*
    30 //* USE PREPROCESSOR AND TRAV10
    40 /*SERVICE -4
    60 /*JOBPARM S=9,L=99,R=1024
    70 //PROCLIB DD DSN=A.M12129.NGS.PROCLIB,DISP=SHR
    80 //ST1 EXEC CCTRAV10,REGION=1024K
    90 //CARDIN DD *
100
110 ...DATA
120
130 //
```

For an example run of either of these programs replace lines 90 thru 120 with //CARDIN DD DSN=A.M12129.DATA.TRAV10,DISP=SHR

```
    10 //TEST JOB ,SE1234
    20 //*
    30 //* USE HAVAGO
    40 /*SERVICE -4
    60 /*JOBPARM S=9,L=99,R=1024
    70//PROCLIB DD DSN=A.M12129.NGS.PROCLIB,DISP=SHR
    80 //ST1 EXEC CCHAVAGO,REGION=1024K
    90 //CARDIN DD *
100
110 ...DATA
120
130 //
For an example run, replace lines }90\mathrm{ thru 120 with
//CARDIN DD DSN=A.M12129.DATA.HAVAGO,DISP=SHR
    10//TEST JOB ,SE1234
    20 //*
    30 //* USE TRAVERSE
40 //*
50 /*SERVICE -4
60 /*JOBPARM S=9,L=99,R=1024
70 //PROCLIB DD DSN=A.M12129.NGS.PROCLIB,DISP=SHR
80 //ST1 EXEC CCTRAVRS,REGION=1024K
90 //CARDIN DD *
100
110 ...DATA
120
130 //
For an example run, replace lines 90 thru 120 with
//CARDIN DD DSN=A.M12129.DATA.TRAVERSE,DISP=SHR
```

