LEAST-SQUARES SPECTRAL ANALYSIS REVISITED

D. WELLS
P. VANICEK
S. PAGIATAKIS

November 1985

TECHNICAL REPORT

PREFACE

In order to make our extensive series of technical reports more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text.

LEAST SQUARES SPECTRAL ANALYSIS REVISITED

David E. Wells

Petr Vanĩcek
Spiros Pagiatakis

Department of Geodesy and Geomatics Engineering University of New Brunswick
P.O. Box 4400

Fredericton, N.B.
Canada
E3B 5A3

November 1985
Latest Reprinting August 1994

PREFACE

The original version of this report appeared in 1978 under the Report Series (Report BI-R-78-8) of the Bedford Institute of Oceanography, Dartmouth, Nova Scotia, when the first author was working there. It was authored by the first two authors of the present version. The third author has been mainly responsible for the changes and improvements in the present version of the software.

This revised version is being issued for three reasons:
(i) The original report is out of print.
(ii) Students not exposed to functional analysis have had some difficulty in reading the report, so that the original report has been extended to include a more elementary description of least-squares spectral analysis.
(iii) Since 1978 the software has been modified, both to eliminate some
"bugs" and to be more versatile.
The changes, program listings of the new version, and a user's guide are in PART B.

The authors are grateful to the Bedford Institute of Oceanography for permission to reprint herewith parts of the original Report $B I-R-78-8$.
Page
Preface ii
Table of Contents iii
PART A: LEAST-SQUARES SPECTRAL ANALYSIS 1
Abstract 2
Introduction 3
Spectrum Computation 5
Requisite Elements of Functional Analysis 8
The Projection Theorem 11
Least-Squares Spectral Analysis with Known Constituents 16
Relationship to Other Spectral Functions 20
Types of Known Constituents 21
Input and Output Parameters 23
General Scalar Product Algorithm for Equally Spaced Data 26
Specific Scalar Product Expressions 27
Examples 29
References 34
PART B: USER'S GUIDE AND PROGRAM LISTINGS 37
Introduction 38
Structure of the Software 39
Modification of the Software 42
TSPEC 44
AMPL 45
BASE 46
CHOLS 47 47
COVAR 49
DRIVER 50
EPS 52
ERROR 53
FPLOT 54
RESID 55
SPLOT 56
TIMSER 57
SPECEQ 59
SPECUN 65

PART A

ABSTRACT

An algorithm is described to compute the optimum least-squares spectrum of an unequally or equally spaced generally non-stationary and coloured time series for which some of the shapes of the constituents (systematic noise) are known. Known constituents of four kinds are provided for: datum biases, linear trend, periodic constituents with known periods, and arbitrary user-specified constituents. An alternative, more efficient algorithm is described for piecewise equally-spaced time series with possible gaps.

INTRODUCTION

Observed time series are often composed of constituents that are of interest (which we will call the signal), and constituents that obscure the signal (which we will call the noise). Often we know the general form of a noise constituent, but not its magnitude (we will call such constituents systematic noise).

One class of such time series is that dominated by a few periodic constituents (the systematic noise) and smaller amplitude periodic constituents (the signal) whose presence is obscured by the noise--coloured series. Extracting the signal from this series has been called the hidden periodicity problem. In general, the systematic noise may contaminate but not totally obscure the signal.

If all the constituents of a time series are periodic, then we can say that it is a colour time series; that the noise is coloured noise; that the signal is a coloured signal; and that the extent to which the noise obscures the signal is the extent to which the noise discolours the signal.

A property of a time series is the degree to which it is stationary. Strict sense (or strong) stationarity requires that all statistical properties of the time series (mean value, autocorrelation function, and all higher order moments) be independent of the choice of the time origin. Wide sense (or weak) stationarity requires that only the mean value and autocorrelation function be independent of the choice of the time origin [Bendat and Piersol, 1971]. One common violation of stationarity is the presence of datum shifts in the time series: that is, the mean value is shifted from time to time. Another common violation is the presence of a trend (perhaps linear) in the time series: the "mean" value changes linearly with time.

Both these kinds of non-stationarity-inducing constituents (datum shifts and trends) can also be considered as systematic noise, as long as we know their general form, that is, the time at which datum shifts occurred, and the kind of trend (linear, quadratic, exponential, etc.).

Another property of a time series is its spacing. Are all the data values equally spaced in time? Are there data gaps between otherwise equally-spaced segments of the series? Or are all the values in the time
series unequally spaced in time? Ideally we would like to have only equally spaced time series, but this is rarely the case in practice.

A specific example of this situation is a time series of ocean tide gauge records, from which we are interested in the long period (> 1 year) constituents. Three kinds of systematic noise may contaminate this time series from our point of view. Firstly, there may be step functions due to sudden changes in the tide gauge datum (caused by alterations to the tide gauge or to its supporting structure, or possibly caused by vertical co-seismic displacements). The dates of such step functions are usually well documented, but it can be difficult to document their magnitudes. Secondly, there may be a gradual change in the tide gauge datum (due, for example, to changes in the mean sea level, or to land subsidence including the gauge), which is most simply modelled as a linear trend. Thirdly, the tide gauge time series are dominated by short (in our context) periodic constituents (i.e., tidal constituents) for which the periods are precisely known, but the magnitudes are not. In addition to these problems, there is almost certain to be data gaps due to equipment failures. It is this kind of series that we will analyse at the end of PART A as an example.

To obtain an undistorted spectral image of the signal, we must somehow remove the influence of the systematic noise, both the "colours" and the non-stationarity. The usual way of dealing with this problem is to first find the magnitudes of the components of the noise, subtract the noise from the time series, and perform a spectral analysis on the "corrected" time series. It is known, however, that such a treatment affects the location of spectral peaks arising from the rest of the time series [Taylor and Hamilton, 1972]. We must somehow deal with the data gaps as well. When the data is piecewise equally spaced, as in the example given at the end of PART A, the two usual options are to treat each piece separately, or to somehow manufacture data to fill in the gaps. Neither is satisfactory. The problem is even more difficult when the time series is completely unequally spaced, rather than merely gappy.

An alternative is the least-squares spectral analysis [Vanícek, 1971]. This alternative provides two advantages: systematic noise, including both colours and non-stationarity, can be rigorously accounted for (suppressed) without producing any shift of the existing spectral peaks [Taylor and Hamilton, 1972]; and time series with unequally spaced data can
be analysed [Maul and Yanaway, 1978].
The purpose of this report is to present a brief exposition of the method, for unequally spaced time series, and to describe how the spectrum computation can be made much faster if the time series is equally, or at least piecewise equally, spaced.

Capitalized parameter names longer than one letter refer to identifiers used in FORTRAN subroutines SPECUN and SPECEQ which respectively compute the least-squares spectrum for unequally spaced and equally spaced time series (see PART B for program listings).

SPECTRUM COMPUTATION

There are many definitions of a spectrum, and many ways of computing a spectrum from a time series. Here we simply state the problem in a general way: Given
(a) $t=\left\{t_{i}\right\}, i=1,2, \ldots, n$, a vector of observation times,
(b) $\underline{f}(t)=\left\{f_{i}\right\}=\left\{f\left(t_{i}\right)\right\}$, a vector of observed values,
(c) $\underline{\omega}=\left\{\omega_{j}\right\}, j=1,2, \ldots, m, a$ vector of frequencies for which spectral values are desired,
then find

$$
\underline{s}(\underline{\omega})=\left\{s_{j}\right\}=\left\{s\left(\omega_{j}\right)\right\}, \text { a vector of spectral values. }
$$

Note that
(a) $\underline{f}(t)$ or $\left\{f_{i}, t_{i}\right\}$ together define a time series.
(b) $s\left(\omega_{j}\right)$ must be some measure of the fractional content of $\underline{f}(\underline{t})$ which is represented by the frequency ω_{j}.
Here we consider only one specific technique for computing $s\left(\omega_{j}\right)$, which is the Least-Squares Spectral Analysis (LSSA). This technique is an application of Least-Squares Approximation (LSA) [Vaníček and Wells, 1972], which is closely related to the Linear Least-Squares Parametric Adjustment (LLSPA) [We11s and Krakiwsky, 1971; Vaníček and Krakiwsky, 1982].

LSA and LLSPA use the same algorithm, but they have different purposes, and different interpretations of the quantities involved. Those parts of the algorithm which we are interested in are, in our notation,

$$
\begin{align*}
& \hat{c}=\left(\Phi^{\mathrm{T}} \underline{\mathrm{~W}} \underline{\Phi}\right)^{-1} \underline{\Phi}^{\mathrm{T}} \underline{\mathrm{~W}} \underline{\mathrm{f}} \tag{1}\\
& \hat{\hat{v}}=\underline{\mathrm{f}}-\Phi \hat{\mathrm{c}} . \tag{2}
\end{align*}
$$

For LLSPA, we are given
$\underline{f}=a$ vector of observations
$\Phi=$ the design matrix which models the physical relationship between the observations \underline{f} and the vector of unknown parameters \underline{c} via the observation equation $\underline{f}=\Phi \underline{c}$
$\underline{W}=\underline{C}_{f}^{-1}$ where \underline{C}_{f} is the covariance matrix of \underline{f}, a statistical quantity,
and the problem solved in part by (1) and (2) is to obtain an estimate for some physical parameters c, based on the observations \underline{f}. What we want here is $\underline{\hat{c}}$ (plus its covariance matrix).

For LSA we are given

$$
\begin{aligned}
\underline{f}= & \text { a known vector to be approximated, not necessarily based on } \\
& \text { observations, } \\
\underline{\Phi}= & \text { a matrix considered to consist of several column vectors } \\
& \underline{\Phi}=\left[\underline{\phi}_{1}, \Phi_{2}, \ldots, \Phi_{\mathrm{m}}\right] \text { called base functions, each of which is a } \\
& \text { known function of the same dimension as } \underline{f} . \text { Note that } \underline{\Phi} \text { does not } \\
& \text { necessarily model any physical dependence of } \underline{f} . \\
\underline{W}= & \text { a weight function with no statistical meaning. Here we assume } \\
& \underline{W}=\underline{I} \text { (often the case in LSA). }
\end{aligned}
$$

For LSA it is usual to rewrite $\underline{f}=\underline{\Phi} \underline{c}$ in the form

$$
\begin{equation*}
\underline{f}=\sum_{i=1}^{m} c_{i} \Phi_{i} \tag{3}
\end{equation*}
$$

and to state the LSA problem as finding the best fitting approximant \underline{p} to \underline{f}, that is

$$
\begin{equation*}
\underline{p}=\sum_{i=1}^{m} \hat{c}_{i} \Phi_{i} \tag{4}
\end{equation*}
$$

such that the residuals $\hat{\underline{v}}=\underline{f}-\underline{p}$ are minimized in the least-squares sense. Note that for LSA we are more interested in \underline{p} than in the coefficients $\hat{\hat{c}}$, although \widehat{c} is still given by (1).

Specifically for LSSA we know $\underline{f}(t)$ and we use

$$
\begin{align*}
& \phi_{1}=\cos \omega_{j} \mathrm{t} \tag{5}\\
& \phi_{2}=\sin \omega_{j} \mathrm{t}
\end{align*}
$$

For each ω_{j} for which we want $s\left(\omega_{j}\right)$ we compute

$$
\begin{equation*}
\underline{p}\left(\omega_{j}\right)=\hat{c}_{1} \cos \omega_{j} t+\hat{c}_{2} \sin \omega_{j} t \tag{6}
\end{equation*}
$$

where $\underline{\hat{c}}=\left|\begin{array}{l}\hat{c}_{1} \\ \hat{c}_{2}\end{array}\right|$ is determined from (1), that is

$$
\begin{equation*}
\hat{\hat{c}}=\left(\underline{\Phi}^{\mathrm{T}} \underline{\Phi}^{-1} \underline{\Phi}^{\mathrm{T}} \underline{\mathrm{f}} .\right. \tag{7}
\end{equation*}
$$

Now when $\underline{p}\left(\omega_{j}\right)$ fits \underline{f} perfectly $(\underline{\hat{v}}=0)$, then the fractional content of \underline{f} represented by \underline{p} is 1 (all of \underline{f} is represented by \underline{p}). On the other hand, it is possible that $\underline{\hat{c}}=0$ (that is \underline{f} is orthogonal to $\underline{\Phi}$) and $\underline{p}=0$. In this case, the fractional content of \underline{f} represented by \underline{p} is 0 . In general we will see below that the fractional content of \underline{f} represented by \underline{p} can be measured by the ratio

$$
\begin{equation*}
s=\frac{\text { length of the orthogonal projection of } \underline{p} \text { onto } \underline{f}}{\text { length of } \underline{f}} \tag{8}
\end{equation*}
$$

and that this can be computed from

$$
\begin{equation*}
s=\frac{\underline{f}^{T} \underline{p}}{\underline{f}^{T} \underline{f}} . \tag{9}
\end{equation*}
$$

Note that since from (6) $\underline{p}=\underline{p}\left(\omega_{j}\right)$, so also

$$
\begin{equation*}
s\left(\omega_{j}\right)=\frac{\underline{f}^{T} \underline{p}\left(\omega_{j}\right)}{\underline{f}^{T} \underline{f}} \tag{10}
\end{equation*}
$$

that is, for each spectral value $s\left(\omega_{j}\right)$ we must separately compute the least-squares approximant $\underline{p}\left(\omega_{j}\right)$. Therefore to compute the least-squares spectrum $\underline{s}(\omega)=\left\{\mathbf{s}_{\mathbf{j}}, \omega_{\mathbf{j}}\right\}$ we must compute m spectral values $\mathbf{s}\left(\omega_{j}\right) \mathbf{j}=1,2, \ldots, m$ which involves performing the least-squares approximation m times, each time to get $\underline{p}\left(\omega_{j}\right)$ for a different frequency ω_{j}.

So far we have dealt only with the problem of computing the spectrum of a complete time series. This is one major application of LSSA. A second major application is to first remove some constituents from the time series, and then to compute the spectrum of the residual time series. This is more complicated, and is more easily described (and hopefully understood) using the language of functional analysis.

REQUISITE ELEMENTS OF FUNCTIONAL ANALYSIS

Functional analysis is the analysis of functionals [Luenberger, 1969; Kreyszig, 1978; Oden, 1979]. A functional is a scalar function of vector quantities. We are interested in three functionals called the scalar product, the norm, and the metric. First we define some spaces.

In this report we will speak solely of spaces of finite dimensions. A vector space L of dimension $n=\operatorname{dim} L$ is a space of all possible n-tuples $\left\{\ell 1, \ell_{2}, \ldots, \ell_{n}\right\}$ of real numbers $\ell_{1}, \ell_{2}, \ldots, \ell_{3}$. It is required that a linear combination of any elements is also an element, that is if $\forall i=a_{i} \varepsilon L$ and $\alpha_{i} \varepsilon R$ (scalars), then

$$
\begin{equation*}
\underline{b}=\sum_{i} \alpha_{i} a_{i} \tag{11}
\end{equation*}
$$

is also from L. A Hilbert (finite) space H is a vector space on which the scalar product is defined. If $\underline{a}, \underline{b} \varepsilon H$ then we denote their scalar product by <a, \underline{b} 〉 and define the norm (or length or magnitude) of $\underline{a} \varepsilon H$ as

$$
\begin{equation*}
\|\underline{\mathrm{a}}\|=(\langle\underline{\mathrm{a}}, \underline{\mathrm{a}}\rangle)^{1 / 2} \tag{12}
\end{equation*}
$$

and the metric (or distance) between $\underline{a}, \underline{b} \varepsilon H$ as

$$
\begin{equation*}
d(\underline{a}, \underline{b})=||\underline{a}-\underline{b}||=[\langle(\underline{a}-\underline{b}),(\underline{a}-\underline{b})\rangle]^{1 / 2} \tag{13}
\end{equation*}
$$

There are many ways of specifying a particular expression for the scalar product, some involving weight functions, some involving integrals. Here we use the most familiar and simplest expression

$$
\begin{equation*}
\langle\underline{a}, \underline{b}\rangle=\underline{a}^{T} \underline{b}=\underset{i}{\sum} a_{i} b_{i} \tag{14}
\end{equation*}
$$

We will use concepts of linear independence, basis, and manifold. An n-tuple of vectors $a_{i} \varepsilon L$ is linearly independent when the equation

$$
\sum_{i=1}^{n} \alpha_{i} \underline{a}_{i}=0 \quad, \forall i: \alpha_{i} \varepsilon R
$$

is satisfied if and only if $\forall i: \alpha_{i}=0$. That is none of the a_{i} can be expressed as a linear combination of the others. Given a linearly independent n-tuple $\left\{\underline{a}_{i}, \forall i\right\} \subset L$ then the set of all vectors

$$
\begin{equation*}
\underline{b}_{j}=\underset{i}{\Sigma} \alpha_{i} \underline{a}_{i} \tag{16}
\end{equation*}
$$

(where all possible combinations of scalar values α_{i} are used to generate different \underline{b}_{j}) form a manifold S of L, and $\left\{\underline{a}_{i}, \forall i\right\}$ is said to generate S, or to be a basis of S. The number n of vectors in $\left\{\underline{a}_{i}, \forall i\right\}$ is the dimension of S.

We will also use concepts of orthogonality, and orthogonal projection. Let us explore how these concepts are intimately related to the scalar product. For illustration we will consider two vectors \mathfrak{a} and \underline{b} in the real plane. If these two vectors intersect at a right angle then their scalar product is zero, 〈a, $\underline{b}\rangle=0$. In this case we say that \underline{a} and \underline{b} are orthogonal (denoted $\underline{a} \perp \underline{b}$). In more general Hilbert spaces, the following statements also all mean the same thing, although "intersection at a right angle" can no longer be visualized:

〈a, $\underline{b}\rangle=0$ means the same as
a $\perp \underline{b}$, which means the same as
\underline{a} and \underline{b} are orthogonal.

So much for the special case of orthogonality. In general \underline{a} and \underline{b} will not intersect at a right angle. What then is the geometrical meaning of the scalar product? Let us say they intersect at some angle θ (see Figure 1). We recall

$$
\begin{equation*}
\langle\underline{a}, \underline{b}\rangle=||\underline{a}||| | \underline{b}| | \cos \theta \tag{17}
\end{equation*}
$$

Definition of angle

Orthogonal Projection of \underline{a} onto \underline{b}

FIGURE 1.

Orthogonality is such a useful concept that even in this case we want somehow to construct a right angle. There are two possibilities. Either we can drop a perpendicular from a onto \underline{b} or we can drop a perpendicular from \underline{b} onto \mathfrak{a}. In Figure 1, the vector \underline{x} is called the orthogonal projection of a onto \underline{b}, and \underline{y} is the orthogonal projection of \underline{b} onto \underline{a}. From (17) we see that the lengths of these vectors are

$$
\begin{align*}
& \|\underline{x}\|=\|\underline{a}\| \cos \theta=\frac{\langle\underline{a}, \underline{b}\rangle}{\|\underline{b}\|}, \tag{18}\\
& \|\underline{y}\|=\|\underline{b}\| \cos \theta=\frac{\langle\underline{a}, \underline{b}\rangle}{\|\underline{a}\|} \quad .
\end{align*}
$$

To obtain expressions for the vectors themselves, we note that unit vectors in the direction of \underline{a} (and \underline{y}) and in the direction of \underline{b} (and \underline{x}) are given by $\prod_{\underline{a} \mid}^{\underline{a}}$ and $\frac{\underline{b}}{\prod \underline{b} \|}$ respectively. Hence, using (12), we have

$$
\begin{align*}
& \underline{x}=\| \underline{x}| | \frac{\underline{b}}{\|\underline{b}\|}=\frac{\langle\underline{a}, \underline{b}\rangle}{\langle\underline{b}, \underline{b}\rangle} \underline{b}, \tag{19}\\
& \underline{y}=\|\underline{y}\| \frac{\underline{a}}{\|\underline{a}\|}=\frac{\langle\underline{a}, \underline{b}\rangle}{\langle\underline{a}, \underline{a}\rangle},
\end{align*}
$$

from which we see that the ratio of the length of \underline{x} to the length of \underline{b} (and similarly of \underline{y} to a) is given by the ratio of two scalar products. Finally we note that (18) and (19) are not restricted to the simple example here, but are valid in any Hilbert space.

THE PROJECTION THEOREM

The shortest distance between a point and a plane is the perpendicular from the point to the plane. This is the projection theorem.

```
We can rephrase this theorem, substituting the terms
```

"minimum norm" for
"(vector) element of Hilbert space" for
"manifold of Hilbert space" for
"orthogonal" for
"shortest distance";
"point";
"plane"; and
"perpendicular".

Given $\underline{f} \varepsilon H$ (point) and $S \subset H$ (plane), then of all the elements $\underline{s} \varepsilon S$, there is one element $\underline{p} \varepsilon S$ such that $d(\underline{f}, \underline{p}) \leq d(\underline{f}, \underline{s})$ (shortest distance). This element \underline{p} is given by the orthogonal projection of f onto S, that is ($\underline{f}-\underline{p}$) $\perp S$ (perpendicular) (see Figure 2).

In order to invoke this theorem, we need first to specify \underline{f} and S. We can specify \underline{f} in several ways, for example, as an ordered sequence of real numbers, or using an analytic functional expression. We can also specify S in many ways. Let us choose to specify S by specifying a basis $\left\{\Phi_{i}, \forall i\right\}$ which generates S. Figure 2 illustrates the geometrical relationships between $\underline{f}, S, \underline{p}$, and $\left\{\underline{\phi}_{i}, \forall i\right\}$ for the simple case of a three-dimensional \underline{f} and a two-dimensional S. Then any $\underline{s} \varepsilon S$ can be expressed as

$$
\begin{equation*}
\underline{s}=\sum_{i} c_{i} \underline{\phi}_{i} \tag{20}
\end{equation*}
$$

That is, there is some relationship between each n-tuple $\left\{c_{i}, \forall i\right\}$ and the corresponding s. Let the particular n-tuple of scalars $\left\{c_{i}, \forall i\right\}$ corresponding to \underline{p} be denoted $\left\{\hat{c}_{i}, \forall i\right\}$. Then

$$
\begin{equation*}
\underline{p}=\sum_{i} \hat{\mathrm{c}}_{i} \phi_{i} \tag{21}
\end{equation*}
$$

Now we can write the condition we must satisfy, ($\underline{f}-\underline{p}$) $\perp S \equiv(\underline{f}-\underline{p})$ $\perp \Phi_{j} ; \forall j$, in terms of $\left\{\hat{c}_{i}, \forall i\right\}$ corresponding to \underline{p}, that is

$$
\begin{equation*}
\forall j:\left\langle\left(\underline{f}-\sum_{i} \hat{c}_{i} \Phi_{i}\right), \Phi_{j}\right\rangle=0 \tag{22}
\end{equation*}
$$

This can be rewritten

$$
\begin{align*}
& \Sigma \hat{c}_{i}\left\langle\phi_{i}, \phi_{j}\right\rangle=\left\langle\underline{f}, \phi_{j}\right\rangle \quad j=1,2, \ldots, n \quad . \tag{23}\\
& i
\end{align*}
$$

If we define

$$
\begin{aligned}
& \underline{\mathrm{u}}=\left[\begin{array}{c}
\langle\underline{\mathrm{f}}, \\
\left.\underline{\phi_{1}}\right\rangle \\
\langle\underline{\mathrm{f}}, \\
\left.\underline{\phi_{2}}\right\rangle \\
\cdot \\
\langle\underline{\mathrm{f}}, \\
\left.\underline{\Phi}_{\mathrm{n}}\right\rangle
\end{array}\right] \\
& \underline{\hat{\mathrm{c}}}=\left[\begin{array}{c}
\hat{c}_{1} \\
\hat{c}_{2} \\
\cdot \\
\hat{\mathrm{c}}_{\mathrm{n}}
\end{array}\right]
\end{aligned}
$$

then (23) becomes

$$
\begin{equation*}
\underline{N} \underline{\hat{c}}=\underline{u} \tag{24}
\end{equation*}
$$

the normal equations ($\underline{f}-\underline{p}$ is normal or orthogonal to S). In fact if we define

$$
\begin{equation*}
\Phi=\left[\Phi_{1}, \Phi_{2}, \cdots, \Phi_{n}\right] \tag{25}
\end{equation*}
$$

then $\underline{N}=\underline{\Phi}^{\mathrm{T}} \underline{\Phi}$ and $\underline{u}=\underline{\Phi}^{\mathrm{T}} \underline{f}$ so that

$$
\begin{equation*}
\underline{\hat{c}}=\underline{N}^{-1} \underline{u}=\left(\underline{\Phi}^{T} \underline{\Phi}\right)^{-1} \underline{\Phi}^{\mathrm{T}} \underline{f} \tag{26}
\end{equation*}
$$

which was equation (7). The approximant \underline{p} is then

$$
\begin{equation*}
\underline{p}=\underline{\Phi} \underline{\hat{c}}=\underset{i}{\sum} \hat{c}_{i} \phi_{i} \tag{27}
\end{equation*}
$$

and the residual vector is

$$
\begin{equation*}
\underline{\hat{\mathrm{v}}}=\underline{f}-\underline{p}=\underline{f}-\underline{\Phi} \underline{\hat{c}}=\underline{f}-\underline{\Phi}\left(\underline{\Phi}^{\mathrm{T}} \underline{\Phi}^{-1} \underline{\Phi}^{\mathrm{T}} \underline{f} .\right. \tag{28}
\end{equation*}
$$

Note that $\hat{\hat{v}} \perp \underline{p}$. This follows from the projection theorem, where $\hat{\hat{v}}=(\underline{f}-\underline{p}) \perp S$, that is $\hat{\hat{v}}$ is orthogonal to all vectors in S, in particular the column vectors of Φ (which generate S). Thus $\hat{\hat{v}}$ is orthogonal to \underline{p} which is a linear combination of Φ, and hence also lies in S. Thus the projection theorem (or LSA or LLSPA) decomposes \underline{f} into two orthogonal components \underline{p} (the orthogonal projection of \underline{f} onto S) and $\hat{\hat{v}}$ (the perpendicular from \underline{f} to S).

To compute something akin to the spectral value, we must perform a second orthogonal projection. However, this one is simpler. So far we have projected \underline{f} onto the manifold S, in which case many projections are possible, and we used the minimum norm, or perpendicularity condition to select the one we want. For the second projection, we simply project \underline{p} back
 Figure 2.

The length of this orthogonal projection is, from (18)

$$
\frac{\langle\mathrm{f}, \underline{p}\rangle}{\|\underline{f}\|}
$$

The ratio of the length of this orthogonal projection to the length of \underline{f} is, from (19)

$$
\begin{equation*}
\frac{\langle\underline{f}, \underline{p}\rangle}{\langle\underline{f}, \underline{f}\rangle}=\frac{\underline{f}^{T} \underline{p}}{\underline{f}^{T} \underline{f}} \tag{29}
\end{equation*}
$$

This then is a measure of the fractional part of \underline{f} which is represented by p.

Since \underline{p} is a special element of S (the orthogonal projection of \underline{f} onto S), this ratio also tells us something about how much of f is "contained" in S. The "closer" to S that \underline{f} lies, the closer to 1 will the ratio (29) become. If f lies in S, the ratio is 1 . If f is orthogonal to S, the ratio is 0 .

Now let us apply this to spectral analysis. For each spectral frequency $\omega_{j}, j=1, m$, we have a different manifold S spanned by

$$
\begin{equation*}
\Phi=\left[\cos \omega_{j} t, \quad \sin \omega_{j} t\right] \tag{30}
\end{equation*}
$$

Consequently, the orthogonal projection $\underline{p}\left(\omega_{j}\right)$ of \underline{f} onto S will be different for each ω_{j}. Due to the properties of the ratio (29) described above, we choose that ratio to be the least-squares spectral value of \underline{f} for frequency ${ }^{\omega}{ }_{j}$

FIGURE 2.

FIGURE 3.

$$
\begin{equation*}
s\left(\omega_{j}\right)=\frac{\frac{f}{}_{T}^{p}\left(\omega_{j}\right)}{\underline{f}^{T} \underline{f}} \tag{31}
\end{equation*}
$$

The least-squares spectrum of \underline{f} is the collection of spectral values for all (desired) frequencies ω_{j},

$$
\begin{equation*}
\underline{s}(\omega)=\left\{s\left(\omega_{j}\right) ; j=1, m\right\} \tag{32}
\end{equation*}
$$

LEAST-SQUARES SPECTRAL ANALYSIS WITH KNOWN CONSTITUENTS

For some applications we can consider a time series as consisting of two kinds of constituents: those which we are interested in studying (and having represented in the spectrum), i.e., the signal, and those which we are not interested in, or which obscure the constituents we want to study, i.e., the noise. The noise can be either periodic, rendering the series "coloured" or other, rendering the series non-stationary, or both.

In both cases, we must know something about the constituent in order to deal with it. Here we restrict ourselves to the case where we know the noise base functions $\Phi_{i}(t)$, but do not know what the magnitude of the contribution is to the time series; that is if we represent

$$
\underline{f}(t)=\sum_{i}^{N K} c_{i} \underline{\Phi}_{i}(t)
$$

we know $\underset{f}{f}(t)$ and all the $\Phi_{i}(t)$, and do not know the coefficients c_{i}. So far this is similar to the previous case.

Now, however, we partition Φ into the known constituents $\underline{\underline{\Phi}}$, and the spectral functions, $\cos \omega_{j} t, \sin \omega_{j} t$, we used before, so that

$$
\begin{equation*}
\underline{\Phi}=\left[\underline{\phi}_{1}, \hat{\phi}_{2}, \cdots, \hat{\phi}_{N K}, \cos \omega_{j} t, \sin \omega_{j} t\right] \tag{34}
\end{equation*}
$$

It was shown by Vaníček [1971] that the known constituents do not have to be removed from f before evaluating the spectrum. It speeds the computations up, however, if the least-squares estimate $\underline{\hat{p}}=\hat{\hat{c} \hat{\Phi}}$ is removed before the
spectrum is evaluated. This simply means we decompose $\underline{f}(t)$ into its orthogonal projection $\underline{\hat{p}} \varepsilon\{\underline{c} \underline{\underline{\phi}}\}$ and the residual $\underline{f}-\underline{\hat{p}}$ (which is orthogonal to $\underline{\hat{p}}$). We then have the residual time series

$$
\begin{equation*}
\underline{g}(t)=\underline{f}(t)-\hat{\underline{p}}(t) \tag{35}
\end{equation*}
$$

and it is this that we compute the spectrum for. We then orthogonally project \underline{g} onto the manifold $M(\Phi)$ spanned by $\Phi=[\underline{\underline{\phi}}, \cos \omega t, \sin \omega t$] and obtain the projection $\underline{r}=\underline{p}-\underline{\hat{p}}$ and residual $\hat{\hat{v}}=\underline{g}-\underline{r}=\underline{f}-\underline{p}$. Note that whether we project \underline{f} onto $M(\underline{\Phi})$ directly, or \underline{f} onto $M(\underline{\hat{\Phi}})$ and then \underline{f} - $\hat{\underline{p}}$ onto $M(\Phi)$, we obtain the same final residual. Finally, we orthogonally project \underline{r} onto g and compute the ratio of the length of the projection to the length of \underline{g} as our spectral value.

In summary:
(a) LSA and LLSPA involve one orthogonal projection: \underline{f} onto $M(\underline{\Phi})$.
(b) LLSA with no known constituents involves two orthogonal projections
(i) \underline{f} onto $M(\underline{\Phi})$ to obtain \underline{p}
(ii) \underline{p} onto \underline{f} to obtain the spectral value.
(c) LSSA with known constituents involves three orthogonal projections
(i) \underline{f} onto $M(\underline{\hat{\phi}})$ to eliminate the known constituents and obtain \underline{g}
(ii) g onto $M(\underline{\Phi})$ to obtain \underline{r}
(iii) $\underline{\mathrm{r}}$ onto $\underline{\mathrm{g}}$ to obtain the spectral value.

In order to geometrically illustrate the concept of these three orthogonal projections as in Figure 4, we have to unrealistically restrict Φ to two dimensions. If we let $\hat{\Phi}=\Phi_{1}$ be one dimensional, that leaves only one dimension, Φ_{2}, to represent the spectral functions (of which we have in actuality two). If we can live with this limitation in order to look at the three projections conceptually, then the top part of Figure 4 shows the first and second projections (\underline{f} onto $M(\underline{\hat{\phi}})$, and \underline{g} onto $M(\underline{\Phi})$), and the bottom part of the figure shows the second and third projections (g onto $\mathrm{M}(\underline{\Phi})$, and \underline{r} onto \underline{g}).

By analogy with (29) the spectral value is

1. \underline{f} onto $\hat{\Phi}$ to obtain g
2. g onto Φ to obtain r

3. r onto g to obtain spectral value

FIGURE 4.

$$
\begin{equation*}
s\left(\omega_{j}\right)=\frac{\underline{g}^{T} \underline{r}\left(\omega_{j}\right)}{\underline{g}^{T} \underline{g}} \tag{36}
\end{equation*}
$$

where $\underline{g}=\underline{f}-\underline{\hat{p}}$ and $\underline{r}=\underline{p}-\underline{\hat{p}}$. We must compute $\underline{r}\left(\omega_{j}\right)$ for each spectral frequency ω_{j}, however we need compute only once the quantities (from (28))

$$
\begin{equation*}
\underline{g}=\underline{f}-\underline{\hat{\Phi}}\left(\hat{\Phi}^{T} \underline{\hat{\Phi}}\right)^{-1} \hat{\Phi}^{T} \underline{f} \tag{37}
\end{equation*}
$$

and $\underline{g}^{T} g$. Then the projection of \underline{g} onto $M(\underline{\Phi})$ has the form

$$
\begin{equation*}
\underline{\mathrm{r}}=\Phi\left(\underline{\Phi}^{\mathrm{T}} \Phi\right)^{-1} \Phi^{\mathrm{T}} \underline{\mathrm{~g}} \tag{38}
\end{equation*}
$$

so that

$$
\begin{equation*}
\underline{\mathrm{g}}^{\mathrm{T}} \underline{\mathrm{r}}=\underline{\mathrm{g}}^{\mathrm{T}} \Phi\left(\underline{\Phi}^{\mathrm{T}} \underline{\Phi}^{-1} \underline{\Phi}^{\mathrm{T}} \underline{\mathrm{~g}}\right. \tag{39}
\end{equation*}
$$

Now $\underline{g}^{\mathrm{T}} \Phi$ can be written

$$
\begin{equation*}
\underline{g}^{\mathrm{T}} \underline{\Phi}=\underline{g}^{\mathrm{T}}\left[\underline{\underline{\phi}}, \cos \omega_{j} \mathrm{t}, \sin \omega_{j} \mathrm{t}\right] \tag{40}
\end{equation*}
$$

But $\underline{g}^{T} \underline{\hat{\Phi}}=0$ (g is orthogonal to $\mathrm{M}(\underline{\hat{\Phi}})$), so that

$$
\begin{equation*}
\underline{\mathrm{g}}^{\mathrm{T}} \Phi=\left[0,0, \ldots, 0, \underline{g}^{\mathrm{T}} \cos \omega_{j} \mathrm{t}, \underline{g}^{\mathrm{T}} \sin \omega_{j} \mathrm{t}\right] \tag{41}
\end{equation*}
$$

Hence in (39) only the south-east 2 by 2 submatrix of $\left(\Phi^{T} \Phi^{-1}\right.$ need be computed.

More specifically, denoting $\Phi^{T} \Phi$ by \underline{A}, we have

$$
\underline{\mathrm{A}}=\left\lvert\, \begin{array}{llll}
\mid \underline{\mathrm{A}} & \underline{\mathrm{u}} & \underline{\mathrm{v}} & \mid \\
\mid \underline{\mathrm{u}} & \mathrm{CC} & \mathrm{CS} & \mid \\
\mid \underline{\mathrm{v}}^{\mathrm{T}} & \mathrm{CS} & \mathrm{SS} & \mid
\end{array}\right.
$$

where the NK by NK matrix $\underline{\mathbb{A}}=\underline{\underline{\Phi}}^{T} \underline{\underline{\Phi}}$, the $N K$-vectors \underline{u} and \underline{v} are given by $\underline{u}_{j}=$ $\Phi_{j}^{T} \phi_{N K+1}, j=1,2, \ldots, N K$ and $\underline{v}_{j}=\Phi_{j}^{T} \phi_{N K+2}, j=1,2, \ldots, N K$, and the elements
$C C=\Phi_{N K+1}^{T} \phi_{N K+1}, \quad C S=\Phi_{N K+1}^{T} \underline{N}_{N K+2}, \quad$ and $\quad S S=\Phi_{N K+2}^{T} \underline{N K}+2^{T}$. (Note that alternatives to the normal equations such as the Householder transformation could be used; however, they would probably involve penalties in computation times over the algorithm we have chosen.) Since the matrix $\hat{\mathbb{A}}$ is positive definite symmetric, it is most conveniently inverted by the Choleski method. The residual time series then is $\underline{g}=\underline{f}-\underline{\underline{\phi}}\left(\underline{\hat{\Phi}}^{T} \underline{\hat{\Phi}}^{-1} \underline{\underline{\phi}}^{T} \underline{f}\right.$ and its quadratic norm is F NORM $=\underline{g}^{T} \underline{g}=\underline{f}^{T}\left(\underline{I}-\underline{\hat{\Phi}}\left(\underline{\underline{\Phi}}^{\mathrm{T}} \underline{\hat{\Phi}}\right)^{-1} \underline{\hat{\Phi}}^{\mathrm{T}}\right) \underline{f}$.

The orthogonal projection \underline{r} of \underline{g} onto Φ is $\underline{r}=\Phi \mathbb{C}$, where the coefficient vector \underline{c} satisfies the normal equations $\underline{A c}=\underline{b}$, where $\underline{A}=\underline{\Phi} \underline{\Phi} \underline{\Phi}$ and $\mathrm{b}=\underline{\Phi}^{\mathrm{T}} \underline{g}$ are known. Then $\underline{g}^{T} \underline{r}=\underline{g}^{T} \underline{\Phi c}=\underline{\mathrm{b}}^{\mathrm{T}} \underline{c}=\underline{b}^{\mathrm{T}} \underline{\mathrm{A}}^{-1} \underline{\mathrm{~b}}$, and $\underline{s}(\underline{\omega})=$ $\underline{b}^{T} \underline{A}^{-1} \underline{b} / F N O R M$. From (2) the first $N K$ components of the (NK+2)-vector \underline{b} are zero, the last two being $\operatorname{FCOS}=\underline{\mathrm{g}}^{\mathrm{T}} \underline{\phi}_{\mathrm{NK}+1}$ and FSIN $=\underline{\mathrm{g}}^{\mathrm{T}} \underline{\phi}_{\mathrm{NK}+2}$. Hence we really need only determine the lower right-hand 2 by 2 submatrix of \underline{A}^{-1}.

It is easily shown that the lower right-hand 2 by 2 submatrix of \underline{A}^{-1} is:

$$
\frac{1}{\operatorname{DET}}\left[\begin{array}{cc}
(\mathrm{SS}-\mathrm{VAV}), & -(\mathrm{CS}-\mathrm{UAV}) \\
-(\mathrm{CS}-\mathrm{UAV}), & (\mathrm{CC}-\mathrm{UAU})
\end{array}\right]
$$

where $U A U=\underline{u}^{T} \underline{A}^{-1} \underline{u}, V A V=\underline{v}^{T} \underline{A}^{-1} \underline{v}, U A V=\underline{u}^{T} \underline{A}^{-1} \underline{v}$, and DET $=(C C-U A U)(S S-V A V)-$ (CS-UAV) ${ }^{2}$. Hence the algorithm for computing the spectrum of \underline{f} is:

$$
\begin{equation*}
s(\omega)=\left[(S S-V A V) \mathrm{FCOS}^{2}-2(C S-U A V) F C O S \cdot F S I N+(C C-U A U) \operatorname{FSIN}^{2}\right] /(D E T \cdot F N O R M) \tag{42}
\end{equation*}
$$

RELATIONSHIP TO OTHER SPECTRAL FUNCTIONS

To relate this spectrum to the Fourier spectrum, a basis for other kinds of spectra, note that in the absence of known constituents UAU $=V A V=$
$\mathrm{UAV}=0$ and $\underline{g}=\underline{f}$. If the time series is equally spaced and symmetrical about the time origin, then $C S=0$ and $s(\omega)=(1 /$ FNORM $)\left[\left(\operatorname{FCOS}^{2} / C C\right)+\right.$ (FSIN $\left.{ }^{2} / \mathrm{SS}\right)$]. Letting the time series length increase beyond all limits as the time series spacing decreases to zero, and introducing the compact definition of the scalar product,

$$
\underline{x}^{T} \underline{y}=\int_{-\infty}^{\infty} \underline{x}(t) \underline{y}(t) d t
$$

then in our notation the square of the absolute value of the Fourier transform of $\underline{f},|C(\omega)|^{2}=(1 / 2 \pi)\left(\operatorname{FCOS}^{2}+\right.$ FSIN $\left.^{2}\right)$, can be compared with the above expression for the least-squares spectrum.

There are other possibilities to define a least-squares spectrum, namely, $s(\omega)=\left(\alpha^{2}+\beta^{2}\right) /\|\underline{f}\|^{2}$, where α, β are evaluated (a) from the orthogonal projection $\underline{\underline{\Phi} C}+\alpha \cos (\omega t)+\beta \sin (\omega t)$ of \underline{f} onto $M(\Phi)$, or (b) from the orthogonal projection $\alpha \cos (\omega t)+\beta \sin (\omega t)$ of $\underline{g}=\underline{f}-\underline{\hat{p}}$ onto the two-dimensional manifold spanned by $\{\cos (\omega t), \sin (\omega t)\}$. In the first case, the spectrum is not defined for values of ω which are present in the known constituents. The second case (equivalent to the standard Fourier analysis approach) distorts the spectrum by forcing it to go to zero for the frequencies present in the known constituents. Both cases are discussed by Taylor and Hamilton [1972] and neither is found to be advantageous from the spectral accuracy point of view.

TYPES OF KNOWN CONSTITUENTS

We now turn to the specific software implementation of LSSA documented in this report. In this software, the known constituent base functions $\underline{\underline{\Phi}}$ can be of several types.
(a) $\phi(t)=1$ for datum bias. For example, say a tide gauge was moved twice in 10 years and the times of the move were known, but the vertical relationship of the different locations was not known. The time series would look like that shown in the top part of Figure 5. The three datum bias known constituent base functions in Figure 5 would be used.

Time Series Containing Datum Biases

Base Functions to Remove Datum Biases

Time Series Containing Linear Trend

Base Function to Remove Linear Trend

 FIGURE 5.(b) $\phi(t)=t$, for linear trend. For example, say a tide gauge was situated on a dock which was slowly (or uniformly) sinking into the seabed. Then the time series would look like that in the bottom part of Figure 5. The linear trend constituent base function in Figure 5 would be used to remove this linear trend.

```
(c) \(\phi_{1}(t)=\cos \mu_{i} t \mid\)
                                    for forced periodic constituents, with
                                    frequencies \(\mu_{i}\).
\(\phi_{2}(t)=\sin \mu_{i} t \mid\)
```

For example, we know that a given time series contains the tidal frequencies M_{2} and K_{1} (perhaps from a previous spectral analysis), so we want to remove these peaks from the spectrum and see what is left.
(d) $\phi(t)=$ "anything else" for user defined constituents. For example, instead of a linear trend we may believe that some nonlinear trend (say exponential) exists.

INPUT AND OUTPUT PARAMETERS

The input parameters for computing the spectrum (5) must specify the time series, the limits and density of the spectral band to be produced, and the known constituents $\underline{\underline{\phi}}$.

The time series is defined by the vectors (F_{i}, T_{i}) $i=1,2, \ldots, N F$ where the values T_{i} are in units of time, and for SPECUN (the version used for unequidistant series) are unrestricted as to spacing. For SPECEQ (the version used for equidistant series) the time series is assumed to consist of a specific number (NIVL) of subintervals, each of which consists of equally spaced data points separated by a time increment STEP common to all subintervals. The subintervals need not be separated by integral multiples of STEP. Separation of subintervals is specified as detected by the software when two consecutive elements are not separated by STEP. The value for STEP is defined by the difference between the first and second elements in the time series.

The spectrum is defined by the vectors $\left(S_{i}, P_{i}\right) i=1,2, \ldots, N W$, where the values P_{i} are specified spectral periods in the same units as T_{i}, and the values S_{i} are the computed spectral values.

The known constituents. Rather than requiring the user to specify the form of $\underline{\underline{\Phi}}$, it is useful to build some common types of known constituents into the algorithm leaving the user free to ignore them and specify his own functions if he so desires. This algorithm, therefore, provides four optional types of known constituents:
(a) Datum Bias. Let the time series consist of NDAT segments, each referred to a different datum. Then for NDAT ≥ 1

$$
\Phi_{i}(\underline{t})=\left\{\begin{array}{ll}
1 & \text { if } t \text { is in the ith datum segment } \\
0 & \text { otherwise }
\end{array} \quad i=1,2, \ldots,\right. \text { NDAT }
$$

In the program in this case
NDAT $=3$ (number of segments of total time series separated by datum shifts)
$\operatorname{DAT}(1)=t_{0}$ (start time of first datum $=$ start time of time series)
$\operatorname{DAT}(2)=t_{1}$ (start time of second datum)
$\operatorname{DAT}(3)=t_{2}$ (start time of third datum).
If there are no datum biases we set NDAT $=0$, and the contents of DAT are not used. On input to routines SPECUN and SPECEQ, if NDAT is negative, a warning message is produced, NDAT is set to zero, and the program continues. If NDAT is positive and $\operatorname{DAT}(1) \neq t_{o}$, a fatal message is produced and the program aborts.
(b) Linear Trend. If used, this known constituent is of the form
$\Phi_{i}(\underline{t})=\underline{t}, \quad i=\operatorname{NDAT}+1 \quad(L T=1$ if used, LT = 0 otherwise $) \cdot$
On input to routines SPECUN and SPECEQ, if LT is not either 0 or 1 , a warning message is produced, LT is set to 0 , and the program continues.
(c) Forced Periods. For NPER ≥ 1 known periods PER ${ }_{j}$ (and frequencies $\mu_{j}=$ $2 \pi /$ PER $_{j}$), the known constituents are the periodic functions $\underline{\phi}_{i}(\underline{t})=\cos \left(\mu_{j} t\right)$

$$
\mathbf{i}=\text { NDAT }+L T+2 j-1, \quad j=1,2, \ldots, \text { NPER }
$$

$$
\underline{\phi}_{i+1}(\underline{t})=\sin \left(\mu_{j} t\right)
$$

In the program in this case we set
NPER $=2$ (number of frequencies to be removed)
$\operatorname{PER}(1)=12.42$ hours (for M_{2}) (period of first frequency)
$\operatorname{PER}(2)=23.93$ hours (for K_{1}) (period of second frequency).
If we do not want to remove any periodic constituents before computing the spectrum we set $N P E R=0$, and the contents of PER are not used. On input to routines $S P E C U N$ and $S P E C E Q$, if $N P E R$ is negative, a warning message is produced, NPER is set to zero, and the program continues. On input to routine SPECEQ only, if NPER is greater than the dimension of the arrays required (NPERDM), a fatal message is produced and the program aborts.
(d) User-specified. These known constituents are of arbitrary form (for example, quadratic trend or exponential trend, a numerical function) chosen by each user

$$
\Phi_{i}(\underline{t})=?, \quad i=\text { NDAT }+L T+2 * \text { NPER }+j, \quad j=1,2, \ldots, \text { NBASE }
$$

In the example at the end of PART A we set
NBASE $=1$ (number of user defined constituents to be removed)
and add the appropriate code in subroutine BASE to implement the user-defined function. This particular user defined function is an exponential trend and the code reads:

BASE $=\operatorname{EXP}(-T / 25$.$) .$
If there are no user defined constituents to be removed, set NBASE $=0$. On input to routines SPECUN and SPECEQ, if NBASE is negative, a warning message is produced, NBASE is set to zero, and the program continues.

The total number of known constituents then is:

$$
\begin{equation*}
\mathrm{NK}=\mathrm{NDAT}+\mathrm{LT}+2 * \mathrm{NPER}+\mathrm{NBASE}, \tag{43}
\end{equation*}
$$

which may also equal to 0 (for $\operatorname{NDAT}=$ LT $=$ NPER $=$ NBASE $=0$).

On input to routines SPECUN and SPECEQ, if (43) is not satisfied, a warning message is produced, $N K$ is set equal to the right hand side of (43), and the computation continues. If $N K$ is greater than the dimensions of the arrays required (NKDIM), a fatal message is produced, and the program aborts.

The next two input parameters, MODE and EQORUN, specify whether a sequential or batch solution is desired (MODE) and if SPECEQ or SPECUN should be used. Standard deviations of and correlations between a priori estimates \hat{c} are also evaluated from the usual statistical formulae. Their values are printed if they are considered significant. The significance level for standard deviations (in percents) is another input parameter, PCENT; for correlation, the level is called CLEVEL.

Two more statistical parameters are produced by the software: the mean spectral value for white noise (see Vanícek [1971]):

$$
\begin{equation*}
R S=2 /(N F-N K) * 100 \% \tag{44}
\end{equation*}
$$

and the critical percentage variance on 95% for detecting statistically significant peaks in the spectrum [Steeves, 1981]:

$$
\begin{equation*}
\operatorname{RS} 95=\left(1-\alpha^{2 /(N F-N K-2)}\right) * 100 \%, \tag{45}
\end{equation*}
$$

where $\alpha=0.95$. These are printed together with the spectrum.

GENERAL SCALAR PRODUCT ALGORITHM FOR EQUALLY SPACED DATA

The spectrum (5) requires evaluation of the scalar products FNORM, FCOS, FSIN, CC, CS, SS, and $U_{i}, V_{i}(i=1,2, \ldots, N K)$. For an unequally spaced time series treated by SPECUN, all these scalar products must be evaluated directly from:

$$
\begin{equation*}
\underline{x}^{T} \underline{y}=\langle\underline{x}, \underline{y}\rangle=\sum_{t_{i}} x\left(t_{i}\right) y\left(t_{i}\right) \tag{46}
\end{equation*}
$$

where, for convenience, we now introduce the bracket notation $\langle\underline{x}, \underline{y}>$. Provided that the time series is at least piecewise equally spaced (as described in the previous section for input to $S P E C E Q$), we can use much more efficient formulae to evaluate $C C, C S, S S$ and those elements of the vectors \underline{U} and \underline{V} corresponding to datum bias, linear trend, and forced period known constituents. However, FNORM, FCOS, FSIN and those elements of \underline{U} and \underline{V} corresponding to user-defined known constituents must still be evaluated directly from (44).

For convenience we define the function $\operatorname{trig}(x)$ as being either cos(x) or $\sin (x)$. We seek, to begin with, an algorithm for the scalar products

$$
\begin{equation*}
\langle 1, \operatorname{trig}(\omega t)\rangle=\Sigma_{T_{i}} \operatorname{trig}\left(\omega T_{i}\right) i=1,2, \ldots, N F \tag{47}
\end{equation*}
$$

Direct evaluation requires computing NF trigonometric functional values. We can reduce this number considerably by applying the identities [Korn and Korn, 1968, p. 981]:

$$
\sum_{\mathrm{k}=0}^{\mathrm{n}} \operatorname{trig}(2 a k+b)=[1 / \sin (a)] * \sin (a n+a) * \operatorname{trig}(a n+b)
$$

Let the jth subinterval of the time series F consist of equally spaced data points, separated by the time increment STEP, the first data point occurring at time TA_{j} and the last at time TB_{j}. Then setting
$\mathrm{k}=\left(\mathrm{T}_{\mathrm{i}}-\mathrm{TA}_{\mathrm{j}}\right) / \mathrm{STEP}=0,1, \ldots, \mathrm{n}$;
$\mathrm{n}=\left(\mathrm{TB} \mathrm{j}-\mathrm{TA} \mathrm{j}_{\mathrm{j}}\right) / \operatorname{STEP} ;$
$a=(\omega / 2) * S T E P ;$ and
$\mathrm{b}=\omega * \mathrm{TA}_{j} ;$
we have

$$
\begin{equation*}
\sum_{T_{i}=T A}^{T B} \operatorname{trig}\left(\omega T_{i}\right)=[1 / \sin (Q)] * \sin \left(N_{j} Q\right) * \operatorname{trig}\left(L_{j} Q\right) \tag{49}
\end{equation*}
$$

Summing over the NIVL subintervals in F gives us the scalar product:

$$
\begin{equation*}
<1, \operatorname{trig}(\omega T)\rangle=\frac{1}{\sin (Q)} \sum_{j=1}^{\text {NIVL }} \sin \left(N_{j} Q\right) * \operatorname{trig}\left(L_{j} Q\right) \tag{50}
\end{equation*}
$$

which requires computing only ($2 * N I V L+1$) trigonometric functional values, where NIVL is the number of subintervals.

SPECIFIC SCALAR PRODUCT EXPRESSIONS

It now simply remains to reduce the scalar products $C C, C S, S S, \underline{U}$, and V to the form of (50). Using (46) it is easy to see that $C C=(N F / 2)+$
$(1 / 2)^{*}<1, \cos 2 \omega \mathrm{~T}>; \mathrm{CS}=(1 / 2)^{*}<1, \sin 2 \omega \mathrm{~T}>$; and $\mathrm{SS}=(\mathrm{NF} / 2)-(1 / 2)^{*}<1$, $\cos 2 \omega \mathrm{~T}>$ where from (50) we can see that:

$$
\begin{equation*}
<1, \operatorname{trig}(2 \omega T)\rangle=\frac{1}{\sin (2 Q)} \sum_{j=1}^{\text {NIVL }} \sin \left(2 N_{j} Q\right) * \operatorname{trig}\left(2 L_{j} Q\right) \tag{51}
\end{equation*}
$$

The first NDAT elements of vectors \underline{U} and \underline{V} involve constituents of type (a) (datum biases). Let $I N T A_{i}$ and $I N T B_{i}$ be the first and last subintervals referred to the ith datum. Then

$$
\begin{align*}
& U_{i}=\frac{1}{\sin Q} \underset{j=I N T A_{i}}{I N T B_{i}} \operatorname{sinN}_{j} Q \operatorname{cosL}_{j} Q \\
& v_{i}=\frac{1}{\sin Q} \underset{j=I N T A}{i} \sum_{i}^{I N T B} \operatorname{sinN}_{j} Q \operatorname{sinL}_{j} Q \tag{52}
\end{align*}
$$

If LT $\neq 0$, the next element of \underline{U} and \underline{V} involves the known constituent of type (b) (linear trend). Then

$$
\begin{gather*}
\left.U_{N D A T+1}=\frac{\partial}{\partial \omega}<1, \sin \omega T\right\rangle=\frac{\partial Q}{\partial \omega} \frac{\partial}{\partial Q}\left(\frac{1}{\sin Q} \sum_{j=1}^{N I V L} \operatorname{sinN}_{j} Q \sin L_{j} Q\right)(\tag{53}\\
V_{\text {NDAT }+1}=-\frac{\partial}{\partial \omega}\langle 1, \cos \omega T\rangle=-\frac{\partial Q}{\partial \omega} \frac{\partial}{\partial Q}\left(\frac{1}{\sin Q} \sum_{j=1}^{N I V L} \operatorname{sinN}_{j} Q \operatorname{cosL}_{j} Q\right)
\end{gather*}
$$

After some development, we get
$U_{\text {NDAT }+1}=\frac{S T E P}{2} \frac{1}{\sin Q} \sum_{j=1}^{N I V L}-\cot Q \operatorname{sinN}{ }_{j} Q \operatorname{sinL}{ }_{j} Q+N_{j} \operatorname{cosN}_{j} Q \operatorname{sinL} L_{j} Q+L_{j} \operatorname{sinN}{ }_{j} Q \operatorname{cosL}{ }_{j} Q$
$V_{\text {NDAT }+1}=\frac{S T E P}{2} \frac{1}{\sin Q} \sum_{J=1}^{N L V L}+\cot Q \sin N_{j} Q \operatorname{cosL}{ }_{j} Q-N_{j} \operatorname{cosN}{ }_{j} Q \operatorname{cosL}{ }_{j} Q+L_{j} \operatorname{sinN}{ }_{j} Q \operatorname{sinL}{ }_{j} Q$.

The next ($2 *$ NPER) elements of \underline{U} and \underline{V} involve constituents of type (c) (forced periods). Using (46), it is easy to see that:

$$
\begin{align*}
& U_{i}=\frac{1}{2}\left\langle 1, \cos \left(\mu_{k}+\omega\right) T\right\rangle+\frac{1}{2}\left\langle 1, \cos \left(\mu_{k}-\omega\right) T\right\rangle \tag{57}\\
& U_{i+1}=\frac{1}{2}\left\langle 1, \sin \left(\mu_{k}+\omega\right) T\right\rangle+\frac{1}{2}\left\langle 1, \sin \left(\mu_{k}-\omega\right) T\right\rangle \tag{58}\\
& \left.V_{i}=\frac{1}{2}\left\langle 1, \sin \left(\mu_{k}+\omega\right) T\right\rangle-\frac{1}{2}<1, \sin \left(\mu_{k}-\omega\right) T\right\rangle \tag{59}\\
& V_{i+1}=-\frac{1}{2}\left\langle 1, \cos \left(\mu_{k}+\omega\right) T\right\rangle+\frac{1}{2}\left\langle 1, \cos \left(\mu_{k}-\omega\right) T\right\rangle \tag{60}\\
& \mathrm{i}=\mathrm{NDAT}+\mathrm{LT}+2 \text { * }_{\mathrm{k}}-1 \\
& \mathrm{k}=1,2, \ldots, \text { NPER. }
\end{align*}
$$

Letting $P_{k}=\left(\mu_{k} / 2\right) *$ STEP, we see from (50) that

$$
\begin{equation*}
<1, \operatorname{trig}\left(\mu_{k} \pm \omega\right) T>=\frac{1}{\sin \left(P_{k} \pm Q\right)} \sum_{j=1}^{\operatorname{NIVL}} \operatorname{sinN}_{j}\left(P_{k} \pm Q\right) \operatorname{trigL}{ }_{j}\left(P_{k} \pm Q\right) \tag{61}
\end{equation*}
$$

We note that the functions of sums of angles in (51) and (61) can be expressed in terms of functions of angles only. Hence the scalar products CC, CS, SS and those elements of \underline{U}, \underline{V} which refer to known constituents of types (a), (b), and (c) can be computed from the ($2 *$ NPER $+4 *$ NPER*NIVL) functions $\operatorname{trig}\left(P_{k}\right), \operatorname{trig}\left(N_{j} P_{k}\right), \operatorname{trig}\left(L_{j} P_{k}\right)$ (which need only be computed once for a given $\underline{\underline{\Phi}})$ and from the $(2+4 * N I V L)$ functions trigQ, $\operatorname{trig}\left(N_{j} Q\right)$, $\operatorname{trig}\left(L_{j} Q\right.$) (which must be computed for each desired spectral frequency ω).

EXAMPLES

As a model of many time series encountered in practice, we have generated the following time series:

$$
\begin{equation*}
f(t)=c_{i}+0.01 t+3^{*} \exp (-t / 25)+\sum_{j=1}^{5}\left(a_{j} \cos \mu_{j} t+b_{j} \sin \mu_{j} t\right) \tag{62}
\end{equation*}
$$

(where t is in years) that may represent a typical, say geophysical, (coloured) time series. Three hundred values of f were generated spanning 50 years and grouped into four subintervals consisting of equally spaced data, that is $t \varepsilon D_{k}, k=1,2,3,4$, where

$$
\begin{aligned}
& \mathrm{D}_{1} \equiv\left[\begin{array}{lll}
0.1, & 0.2, \ldots, 10.0] \text { years } & (100 \text { values }) \\
\mathrm{D}_{2} \equiv[20.1,20.2, \ldots, 25.0] \text { years } & (50 \text { values }) \\
\mathrm{D}_{3} \equiv[28.1,28.2, \ldots, 40.0] \text { years } & (120 \text { values }) \\
\mathrm{D}_{4} \equiv[47.1,47.2, \ldots, 50.0] \text { years } & (30 \text { values }) .
\end{array} . . \begin{array}{lll}
& \ldots .2
\end{array}\right) .
\end{aligned}
$$

The datum biases were $c_{1}=1$, $t \varepsilon D_{1} ; c_{2}=-1, t \varepsilon D_{2} ;$ and $c_{3}=3$, $t \varepsilon D_{3}$, D4. The amplitudes and periods of the trigonometric terms were $a_{j}=1 / 2,1$, $0,1.2,-1.4 ; b_{j}=1,1 / 2,1,-1,0 ;$ and $p_{j}=2 \pi / \mu_{j}=(2.759,3.636,5.714$, 40,16) years. The graph of this time series is shown in Figure 6.

The time series (62) was analysed using both SPECEQ and SPECUN. In addition, a second unequally spaced time series was generated from (62) by adding to the linearly increasing t a sinusoidal variation of period 50 years and amplitude 0.5 years. The second time series was analysed using SPECUN only.

Nine runs were made for each of these three analyses, increasing the number of known constituents from zero to 15. The SPECEQ results are shown in Figure 7. The top four spectra illustrate the influence the datum biases and the linear and exponential trends, and their removal, have on the spectra. The next four spectra illustrate how the technique can be used in searching for hidden periodicities. By suppressing the effect of the periodic constituent which was the most prominent in the previous run, we enhance the remaining peaks, revealing the existence of "weaker" periodic constituents. The ninth run suppressed the effect of all constituents of (62), in which case the residual time series consisted of round-off error only, no spectrum was computed, and, as expected, the computed amplitudes of the known constituents agreed within round-off with those used in (62). The SPECUN generated results were identical to the SPECEQ generated results. As expected for the unequally spaced SPECUN results, the computed amplitudes of the known constituents and the height of the spectral peaks differed slightly from the equally spaced analyses. However, there was no shift in the position of the spectral peaks.

The execution times of Table 1 were obtained using the FORTRAN 77 compiler on an IBM 3081 computer. The equally spaced SPECEQ and unequally spaced SPECUN execution times were essentially equal for small numbers of

Figure 6. Graph of test time series of 300 values generated by Equation (62).

Figure 7. Results from nine runs of program SPECEQ, analyzing the time series of Figure 6. The number of known constituents suppressed in each run are specified by NK, NDAT, LT, NBASE, and NPER, respectively, giving the total number of constituents, the number of datum biases, the linear trend, the number of userdefined constituents, and the number of forced periods.

TABLE 1

IBM 3081 CPU Times for Test Time Series Containing 300 Values.

Number of Known Constituents NK	CPU Times (sec)	
SPECEQ	SPECUN	
0	5.77	5.83
3	5.82	6.95
4	6.04	7.32
5	6.72	8.19
7	6.90	10.23
9	7.04	12.19
11	7.28	14.22

constituents. However, for longer time series and larger numbers of constituents the difference in execution times increases considerably in favour of equally spaced execution time.

REFERENCES
Bendat, J.S. and A.G. Piersol (1971). Random Data: Analysis and Measurement Procedures. Wiley, New York.

Korn, G.A., and T.M. Korn (1968). Mathematical Handbook for Scientists and Engineers. 2nd ed., McGraw-Hill, Toronto.

Kreyszig (1978). Introductory Functional Analysis with Applications. Wiley.

Luenberger (1969). Optimization by Vector Space Methods. Wiley.

Maul, G.A. and A. Yanaway (1978). "Deep sea tides determination from GEOS-3." NASA Contractor Report 141435, NOAA Atlantic Oceanographic and Meteorological Laboratories, Miami, FL.

Oden, J.T. (1979). Applied Functional Analysis. Prentice-Hall.

Steeves, R.R. (1981). "A statistical test for significance of peaks in the least squares spectrum." Collected Papers, Geodetic Survey, Department of Energy, Mines and Resources. Surveys and Mapping Branch, Ottawa, pp. 149-166.

Taylor, J. and S. Hamilton (1972). "Some tests of the Vanicek method of spectral analysis." Astrophysics and Space Science, 17, pp. 357-367.

Vanicek, P. (1971). "Further development and properties of the spectral analysis by least squares." Astrophysics and Space Science, 12, pp. 10-73.

Vanicek, P. and E.J. Krakiwsky (1982). Geodesy: The Concepts. North Holland, Amsterdam.
Vanicek, P. and D.E. Wells (1972). "The least-squares approximation andrelated topics." Department of Surveying Engineering Lecture Notes
22, University of New Brunswick, Fredericton, N.B., Canada.
Wells, D.E. and E.J. Krakiwsky (1971). "The method of least-squares."Department of Surveying Engineering Lecture Notes 18, University ofNew Brunswick, Fredericton.

PART B

Abstract

This version of the Least-Squares Spectral Analysis software has been modified from the version published with the original version of this report. Some modifications were made to correct errors in the original version. Other modifications were made to expand the information provided on output.

STRUCTURE OF THE SOFTWARE

The software has been modularized into 16 routines, shown in Figure 1. Three of these specify the input:

TSPEC Main program. Calls TIMSER, DRIVER and FPLOT.
TIMSER Reads input time series.
DRIVER Calls SPECUN or SPECEQ.
Five of these compute the known constituents, the spectrum, and the residual time series

SPECUN Computes least squares spectrum of unequally-spaced time series.

SPECEQ Computes least squares spectrum of equally-spaced time series.

BASE Computes known constituent functional values.
RESID Computes residual time series after removing known constituents.

CHOLS Inverts matrix in place using Cholesky decomposition.
EPS Determines smallest ε such that $1+\varepsilon$ is distinguishable from 1.

Four of these report the results on the lineprinter:
FPLOT Plots input time series.
AMPL Lists sine and cosine least-squares estimated coefficients of known constituents.

AMPHAS Lists least-squares estimated amplitude and phase (and their standard deviations) of known constituents.

COVAR Lists covariance matrix of unknown constituents.
SPLOT Plots output spectrum.
ERROR Prints error message. Stops if fatal error.
The central routine is either SPECUN or SPECEQ. Both have the following parameter list:

```
\(T \quad=\) input vector of time series times \(\left\{t_{i}\right\}\)
\(F \quad=\) input vector of time series values \(\left\{f_{i}\right\}\)
        output vector of residual time series values \(\left\{g_{i}\right\}\)
    \(\mathrm{NF} \quad=\) input length of T and F
FNORM \(=\) output \(\underline{g}^{T} \underline{g}\)
\(\mathrm{NK} \quad=\) input total number of known constituents to be removed from F
```



```
DAT = input vector of time new datum bias begins
NDAT = input number of datum biases (length of DAT)
LT = input linear trend switch
PER = input forced periods
NPER = input number of forced periods (length of PER)
NBASE = input number of user defined constituents
C = output vector of amplitudes (coefficients) of removed known
        constituents \underline{c}. NK values.
P = input vector of periods for which spectral values will be
        computed
S = output vector of spectral values
NW = input length of P, S.
IB = input spectral band label. If only one spectral band is to
        be computed, set IB = 1. If more than one spectral band is
        to be computed from same time series, set IB = 1 for first
        band, during which g
        bands set IB > 1, and the previous values of g
        used, rather than recomputing.
```

Thus SPECUN and SPECEQ accept inputs specifying
(a) the time series $\left\{t_{i}, f_{i}\right\}, i=1,2, \ldots, N F$
(b) the known constituents $\hat{\Phi}_{i}(t), i=1,2, \ldots, N K$ to be removed from
f
(c) the periods $P_{i}, i=1,2, \ldots, N W$ for which spectral values are
wanted
and provides outputs specifying
(a) the residual time series $\left\{g_{i}\right\} \quad i=1,2, \ldots, N F$ and its norm $\underline{g}^{T} \underline{g}$
(b) the amplitudes of the known constituents $\left\{\hat{c}_{i}\right\} \quad i=1,2, \ldots, N K$
(c) the spectral values $\left\{\mathrm{s}_{\mathrm{i}}\right\}, \mathrm{i}=1,2, \ldots, \mathrm{NW}$.
SPECEQ has four main blocks of code:
(a) error checking
(b) identification of equally spaced subintervals, and precomputation of trigonometric functions
(c) computation of \underline{g} and $\underline{g}^{\mathrm{T}} \underline{g}$ (done by subroutine RESID)
(d) computation of $s\left(\omega_{j}\right)=\underline{g}^{T} \underline{r}\left(\omega_{j}\right) / \underline{g}^{T} \underline{g}$ for each ω_{j}.

SPECUN omits the second of these four blocks of code.

MODIFYING THE SOFTWARE
The only routines that need be changed to accommodate new time series, known constituents, or spectral periods are

TSPEC (main)
TIMSER
DRIVER
SPECUN
BASE
(a) The only change to BASE is to add more user defined base functions, if required.
(b) The only change to SPECUN is to redimension the following arrays if there are more than 15 known constituents (NK > 15):

A(NK,NK)
B (NK)
U(NK)
V (NK)
reset NKDIM = NK
(c) The only changes to TSPEC (Main) are as follows:

Redimension $\mathrm{FF}(\mathrm{NF})$, $\mathrm{T}(\mathrm{NF})$ if $\mathrm{NF}>500$
Redimension PER(NPER) if NPER > 5
Redimension DAT(NAT) if NDAT > 3
(d) DRIVER generates the input specification of the periods for which spectral values are wanted, and passes the parameters P, NW, IB to SPECUN. If these are to be changed then the parameters $P L, P S$, $N W$, and $I B$ in the DATA statement must be changed.

In addition, DRIVER must be changed under the following circumstances:

Redimension $F(N F)$ for $N F>500$
Redimension $\mathrm{P}(\mathrm{NW}), \mathrm{S}(\mathrm{NW})$ for $\mathrm{NW}>500$
Redimension C(NK) for NK > 15
(e) TIMSER generates the inputs specifications for
(i) the time series, passing $T, F, N F$ to SPECUN
(ii) the known constituents to be removed, passing DAT, NDAT, LT, PER, NPER, NBASE, to SPECUN.

If the time series is to be read in as data, replace the DO 10 loop in TIMSER by a READ statement. If a different artificial time series is to
be generated by TIMSER, change the vectors $A, B, C, P, N B, N E, I V L$ and the scalars NIVL and STEP to appropriate values, taking care to redimension as required.

If different known constituents are to be removed (including none to be removed) change DAT, NDAT, LT, PER, NPER, and NBASE as required. Take care to redimension DAT(NDAT) and PER(NPER) in TSPEC as required.

General redimensioning rules are, for TIMSER, to redimension
$C(N K)$ if $N K>5$
A(NPER), $B(N P E R), P(N P E R)$ if NPER >5
IVL(NDAT+1), NB(NDAT+1), NE (NDAT+1) if NDAT > 3.


```
            SUBROUTINE AMPL(A, NF, NK, FNORM, DAT, NDAT, LT, PER, NPER,
        $
            IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    DIMENSION A(100,100),C(1), DAT(1), PER(1)
    DATA PI/3.141592653589793DO/
C
C FUNCTION: AMPL LISTS PRELIMINARY COSINE AND SINE
                        COEFFICIENTS.
    CALLED FROM: DRIVER
C
C EXTERNALS: DSQRT, DATA2, DMOD
    WRITE(IPR, 1001) NDAT,LT,NPER,NPER,NPER,NBASE
    IF(NDAT.GE. 1) WRITE(IPR,1002) (K,C(K),K=1,NDAT)
    K = NDAT + 1
    IF(LT .EQ. 1) WRITE(IPR,1003) K,C(K)
    IF(NPER .EQ. O) GO TO 10
    DO 5 I = 1, NPER
            K=NDAT + LT + 2*I - 1
            K1 = K + 1
            AMP = DSQRT (C (K)*C(K) +C(K1)*C(K1))
            GPL = DATAN2 (C (K1),C(K)) * 180.DO/PI
            GPL = DMOD(GPL + 360.DO, 360.DO)
            ESTSD = DSQRT (FNORM)/(NF - NK))
            SIGAMP = DSQRT (C (K) * C(K) * A K,K ) + C(K1) * C(K1) *
                A(K1,K1) +2.DO * C(K) *C(K1) *A(K,K1))**
                ESTSD / AMP
            SIGPL = DSQRT (C (K1) * C(K1) * A (K,K) +
                        C(K) * C(K) * A KK1,K1)
                    2.DO * C(K) * C(K1) * A(K,K1)) *
                        (ESTSD/(AMP * AMP)) * (180.DO / PI)
            WRITE(IPR, 1004) K,K1,PER(I),C(K),C(K1),AMP,SIGAMP,GPL,SIGAPL
    5 CONTINUE
    10 IF(NBASE .EQ. O) RETURN
    DO 15 I = 1,NBASE
        K = NDAT + LT + 2 * NPER + I
            WRITE(IPR,1005) K, C(K)
        RETURN
1001 FORMAT(1H1,2X,31HSOLUTION FOR KNOWN CONSTITUENTS,///,
    $ 14X,5HDATUM,4X,6HLINEAR,4X,GHFORCED,4X,GHCOSINE,6X,
        4HSINE, 8X, 4HUSER,/, 15X, 4HBIAS, 5X,5HTREND,
        4X,6HPERIOD, 4X,4HTERM,8X,4HTERM,5X,7HDEFINEC, 2X,
        9HAMPLITUDE, 3X,7H (SIGMA), 4X,5HPHASE, 2X,7H (SIGMA),//.
    $ 2X,6HNUMBER,5X,I5,5(7X,I3),//)
1002 FORMAT (7X,I3,E11.3)
1003 FORMAT (7X,I3,10X,E11.3)
1004 FORMAT (3X,I3,1H-,I3,18X,F11.3,2E11.3,10X,E1O.3,1X,1H(,E1O.3.
    $ 1H),1X,F6.2,1X,1H(,F6.2,1H))
1005 FORMAT(7X,I3,51X,E11.3)
    END
```

AMPL
AMPL
AMPL 003
AMPL 004
AMPL 005
AMPL 006
AMPL 007
AMPL 008
AMPL 009
AMPL 010
AMPL 011
AMPL 012
AMPL 013
AMPL 014
AMPL 015
AMPL 016
AMPL 017
AMPL 018
AMPL 019
AMPL 020
AMPL 021
AMPL 022
AMPL 023
AMPL 024
AMPL 025
AMPL 026
AMPL 027
AMPL 028
AMPL 029
AMPL 030
AMPL 031
AMPL 032
AMPL 033
AMPL 034
AMPL 035
AMPL 036
AMPL 037
AMPL 038
AMPL 039
AMPL 040
AMPL 041
AMPL 042
AMPL 043
AMPL 044
AMPL 045
AMPL 046
AMPL 047
AMPL 048
AMPL 049
AMPL 050
AMPL 051
AMPL 052
AMPL 053
AMPL 054
AMPL 055
AMPL 056
AMPL 057
AMPL 058
AMPL 059
AMPL 060


```
        DO 45 J = 2. NA
        DO 45 I = J,NA
                SUM = O.ODO
        DO 40 k = J, I
    40 SuM S S SUM + A(I,K-1) * * A(K-1,J-1)
C
C CONSTRUCTION OF INVERSE OF INPUT MATRIX
        DO 65 J = 1, NA
        IF(J.EQ. 1) GO TO 55
        DO 50 I = 2, J
        A(I-1,J) 2, = A (J,I-1)
    55 DO 65II,J) = = A NA,I-1)
                SUM = O.ODO
    60 DO 60 K = IN, NA 
    60 DO 60 K = IN, NA 
    RETURN
        RETU
        5 0
    5
```

 CHOL 062
 CHOL 063
CHOL 064
CHOL 065
CHOL 066
CHOL 067
CHOL 068
CHOL 069
CHOL 070
CHOL 071
CHOL 072
CHOL 073
CHOL 074
CHOL 075
CHOL 076
CHOL 077
CHOL 077
CHOL 078
CHOL 079
CHOL 080

SUBROUTINE DRIVER(T, FF, NF, DAT, NDAT, LT, PER, NPER, NBASE, IPR,DRIV 001 \$ EQORUN, PCENT, CLEVEL) DRIV 002 IMPLICIT DOUBLE PRECISION ($A-H, \dot{O}-Z$) CHARACTER *2 EqORUN $A(100,100), C(100), \operatorname{DAT}(1), F(2000), F F(1)$,
 PL/ 200.DO/. PS/ 2.DO/. NW/125/. IB/ $1 /$


```
FUNCTION: DRIVER CALLS SPECEQ OR SPECUN TO COMPUTE A
                LEAST SQUARES SPECTRUM (P,S) FOR THE INPUT
                TIME SERIES (T,F).
CALLED FROM: TSPEC
ARGUMENTS: T(NF) = INPUT TIME SERIES TIMES
EXTERNALS: AMPL, DFLOAT, SPECEQ, SPECUN, SPLOT, ERROR(108)
SUMMARY:
    COMPUTE SPECTRAL PERIODS, P
        PL = LONGEST PERIOD IN P
            PS = SHORTEST PERIOD IN P
            NW = NUMBER OF PERIODS IN P
    COPY VECTOR F (MODIFIED BY SPECEQ AND SPECUN)
    COMPUTE NK = TOTAL NUMBER OF KNOWN CONSTITUENTS
    CALL SPECEQ OR SPECUN TO COMPUTE SPECTRUM
    CALL AMPL TO LIST KNOWN CONSTITUENT AMPLITUDES
    CALL COVAR TO LIST ALL OUTSTANDING STANDARD DEVIATIONS
            AND CORRELATIONS
        LIST RESIDUAL TIME SERIES AND ITS QUADRATIC NORM
    COMPUTE RS = MEAN SPECTRAL VALUE FOR WHITE NOISE
    COMPUTE RS95 = CRITICAL PERCENTAGE VARIANCE AT 95%
                        CONFIDENCE LEVEL FOR DETECTING STATISTICALLY
                        SIGNIFICANT PEAKS IN THE SPECTRUM
    PLOT SPECTRUM
        DO 5 I = 1,NW
    5
        DO 10 I = 1,NF
        NK = NDAT + LT + NBASE + 2 * NPER
        IF (EQORUN. EQ. 'EQ')
        $CALL SPECEQ(T, F, NF, FNORM,
    $ NK, DAT, NDAT, LT, PER, NPER, NBASE, A, C,
        $ P, S, NW, IB, ICRIT)
            IF(EQORUN .EQ.' 'UN')
        $CALL SPECUN(T, F, NF, FNORM,
        $ NK, DAT, NDAT, LT, PER, NPER, NBASE, A, C,
```

```
            FF(NF) = INPUT TIME SERIES VALUES
```

 FF(NF) = INPUT TIME SERIES VALUES
 DAT (NDAT) = INPUT TIMES NEW DATUM BEGINS
 DAT (NDAT) = INPUT TIMES NEW DATUM BEGINS
 LT NAAT)}=\mathrm{ INPUT LINEAR TREND SWITCH (1 = INCLUDED)
 LT NAAT)}=\mathrm{ INPUT LINEAR TREND SWITCH (1 = INCLUDED)
 PER(NPER) = INPUT FORCED PERIODS
 PER(NPER) = INPUT FORCED PERIODS
 NBASE = NUMBER OF USER-DEFINED CONSTITUENTS
 NBASE = NUMBER OF USER-DEFINED CONSTITUENTS
 IPR = UNIT NUMBER FOR OUTPUT
 IPR = UNIT NUMBER FOR OUTPUT
 EQORUN = FLAG FOR EQUALLY OR UNEQUALLY SPACED SERIES
 EQORUN = FLAG FOR EQUALLY OR UNEQUALLY SPACED SERIES
 PCENT = PERCENTAGE LEVEL FOR DETECTING OUTSTANDING
 PCENT = PERCENTAGE LEVEL FOR DETECTING OUTSTANDING
 STANDARD DEVIATIONS OF UNKNOWNS
 STANDARD DEVIATIONS OF UNKNOWNS
 CLEVEL = CRITICAL LEVEL FOR DETECTING OUTSTANDING
 CLEVEL = CRITICAL LEVEL FOR DETECTING OUTSTANDING
 CORRELATIONS IN THE SOLUTICN
    ```
                CORRELATIONS IN THE SOLUTICN
```

 DRIV 003
 \$
 \(\begin{array}{ll}\text { DATA } & \mathrm{PL} / 200 . \mathrm{DO} \\ & \mathrm{PS} / 2 . \mathrm{DO} / .\end{array}\)
 \(\begin{array}{ll}\$ & P S / 2 . D O \\ \$ & N W / 125 / \\ \$ & I B / 1 /\end{array}\)

DRIV 004
DRIV 005
DRIV 006
DATA
DRIV 006
DRIV 007
DRIV 008
DRIV 009
DRIV 010
$\begin{array}{ll}\text { DRIV } & 010 \\ \text { DRIV } 011\end{array}$
DRIV 012
DRIV 013
DRIV 014
DRIV 015
DRIV 016
DRIV 017
DRIV 018
DRIV 019
DRIV 020
DRIV 021
DRIV 021
DRIV 022
DRIV 023
DRIV 024
DRIV 025
DRIV 026
DRIV 027
DRIV 027
DRIV 028
DRIV 029
DRIV 029
DRIV 030
DRIV 030
DRIV 031
DRIV 031
DRIV 032
DRIV 033
DRIV 034
DRIV 035
DRIV 035
DRIV 036
DRIV 036
DRIV 037
DRIV 037
DRIV 038
DRIV 039
DRIV 040
DRIV 040
DRIV 041
DRIV 042
DRIV 043
DRIV 044
DRIV 045
DRIV 046
DRIV 047
DRIV 048
DRIV 049
DRIV 050
DRIV 051
DRIV 052
DRIV 053
DRIV 054
DRIV 055
DRIV 056
DRIV 057
DRIV 058
$\begin{array}{ll}\text { DRIV } & 058 \\ \text { DRIV } 059\end{array}$
DRIV 059
DRIV 060
DRIV 061

```
    $ CALL AMPL(A, NF, NK, FNORM, DAT, NDAT, LT, PER, NPER,
    $ CALL AMPL(A, NF, NK, FNORM, DAT, NDAT, LT, PER, NPER,
    $ NBASE, C, IPR)
    CALL COVAR(FNORM, NF, NK, A, C, PCENT, CLEVEL, IPR)
    RS = 200.ODO / (NF - NK)
    RS95 = 100.ODO/(1.ODO/(0.05DO**(-2.ODO/(NF-NK-2))-1)+1)
    WRITE(IPR,1001) (F(I),I=1,NF)
    WRITE(IPR,1002) FNORM
    IF(ICRIT.EQ. 0) CALL ERROR(108)
    CALL SPLOT(P, S, NW, RS, RS95, IB, IPR)
    RETURN
1001 FORMAT (1H1,9X, 2OHRESIDUAL TIME SERIES//110(11E10.2/))
1002 FORMAT (9X,35HRESIDUAL TIME SERIES QUADRATIC NCRM,E15.5)
    END
```

DRIV 062
DRIV 063
DRIV 064
DRIV 065
DRIV 066
DRIV 067
DRIV 068
DRIV 069
DRIV 070
DRIV 071
$\begin{array}{ll}\text { DRIV } & 072 \\ \text { DRIV } & 073\end{array}$
DRIV 073
DRIV 074
DRIV 075

```
    DOUBLE PRECISION FUNCTION EPS(ARG)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
C FUNCTION: EPS SETS FUNCTIONAL VALUE EPS AND ARGUMENT ARG
        1. + EPS .GT. 1.
CALLED FROM: CHOLS, SPECUN, SPECEQ
        EPS = 1.ODO
    10 EPS = EPS / 2.ODO
        IF ((1.ODO + EPS) - 1.ODO .EQ. EPS) GO TO 10
        EPS = EPS * 2.ODO
        ARG = EPS
        RETURN
        END
```

 EPS 001


```
        $ SUBROUTINE RESID(T, F, NF, NDAT, LT, PER, NPER, NBASE,
        $ SUBROUTINE RESID(T, F, NF, NDAT, LT, PER, NPER, NBASE,
        A, B, C, NKDIM)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        $
    PER(1), T(1)
C
        $ A, B, C,NKDIM)
            RESID COMPUTES THE RESIDUAL TIME SERIES
                        AFTER REMOVING THE KNOWN CONSTITUENTS
```

RESI 001
RESI 002
RESI 003
RESI 004
RESI 005
RESI 006
RESI 007
RESI 008
RESI 009
RESI 010
RESI 011
RESI 012
RESI 013
RESI 014
RESI 015
RESI 016
RESI 017
RESI 018
RESI 019
RESI 020
RESI 021
RESI 022
RESI 023
RESI 024
RESI 025
RESI 026
RESI 027
RESI 028
RESI 029
RESI 030
RESI 031
RESI 032
RESI 033
RESI 034
RESI 035
RESI 036
RESI 037
RESI 038
RESI 039
RESI 040
RESI 041
RESI 042
RESI 043
RESI 044
RESI 045
RESI 046
RESI 047
RESI 048
RESI 049
RESI 050
RESI 051
RESI 052
RESI 053
RESI 054
RESI 055
RESI 056

C
FUNCTION: TIMSER GENERATES A TEST TIME SERIES WITH
$\begin{aligned} & \text { FUNCTION: TIMSER GENERATES A TEST TIME SERIES WITH } \\ & 3 \text { DATUM BIASES, A LINEAR TREND. } \\ & \text { SIN/COSINE TERMS FOR } 5 \text { FREQUENCIES, }\end{aligned}$
$\begin{aligned} & \text { FUNCTION: TIMSER GENERATES A TEST TIME SERIES WITH } \\ & 3 \text { DATUM BIASES, A LINEAR TREND. } \\ & \text { SIN/COSINE TERMS FOR } 5 \text { FREQUENCIES, }\end{aligned}$
AND AN EXPONENTIAL TREND
CALLED FROM: TSPEC
TIMS
001
SUBROUTINE TIMSER (T, F, NF, DAT, NDAT, LT, PER, NPER, NBASE,
TIMS
TIMS
TIMS
TIMS
TIMS
006
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
$\begin{array}{ll}\text { CHARACTER *2 EQORUN, EQ, UN } \\ \text { CHARACTER } & +5 \\ \text { MODE, SQNTL, BATCH }\end{array}$
$\begin{array}{ll}\text { CHARACTER *2 } & \text { EQORUN, EQ, UN } \\ \text { CHARACTER } & +5 \\ \text { MODE, SQNTL, BATCH }\end{array}$
DIMENSION $X(5), Y(5), Z(5)$, DAT (3), $F(500)$, IVL(4),
TIMS 007

TIMS 008
TIMS
TIMS 009
TIMS 010
TIMS
TIMS 012
002
\$ MODE, EQORUN, PCENT, CLEVEL)
003
P / 2.759DO, 3.636DO, 5.714DO, 40.000DO, 16.000D0/,
471/.
500\%
$\begin{array}{llr}\text { IVL/ } 1, & 2, & 30, \\ 3 & 3\end{array}$
NIVL/ 4/.
STEP/ 0.1DO/.
PI / 3.141592653589793DO/
DATA EQ / 'EQ' / /,
$\begin{array}{ll}\$ & \text { SQNTL / SQNTL: /, } \\ \$ & \text { BATCH / BATCH: }\end{array}$

```
                F(NF) = TEST TIME SERIES VALUES
                DAT (NDAT) = TIMES NEW DATUM BEGINS
                LT (NOT
                LT (NPER) = LINEAR TREND SWITCH (1 = IN INCLUDED)
                NBASE = NUMBER OF USER-DEFINED CONSTITUENTS
                EQORUN = EQUAL OR UNEQUAL SPACED TIME SERIES
                    EQORUN = EQ: EQUAL SPACED TIME SERIES
                        (SUBROUTINE SPECEQ IS USED)
                                EQORUN = UN: UNEQUAL SPACED TIME SERIES
                                    (SUBROUTINE SFECUN IS USED)
MODE = BATCH OR SEQUENTIAL FORCING OF UNKNOWNS TIMS 041
                        MODE = SQNTL: SEQUENTIAL SOLUTION
                                MODE = BATCH: BATCH SOLUTION
PCENT = PERCENTAGE LEVEL FOR DETECTING 
PCENT = PERCENTAGE LEVEL FOR DETECTING 
CLEVEL = CRITICAL LEVEL FOR DETECTING OUTSTANDING TIMS 046
                                CORRELATIONS IN THE SOLUTION
EXTERNALS: DCOS,DEXP,DFLOAT,DSIN
```

TIMS 013
TIMS 014
TIMS
TIMS
TIMS
015
016
$\begin{array}{ll}\text { TIMS } 017 \\ \text { TIMS } & 018\end{array}$
TIMS 018
TIMS 019
TIMS 020
TIMS
TIMS
TIMS
021
TIMS
022
TIMS 023
TIMS 024
TIMS 025
TIMS 026
TIMS 026
TIMS 027
TIMS 028
TIMS 028
TIMS 029
TIMS 030
TIMS 030
TIMS 031
TIMS 031
$\begin{array}{ll}\text { TIMS } 032 \\ \text { TIMS } & 033\end{array}$
TIMS 034
$\begin{array}{ll}\text { TIMS } & 035 \\ \text { TIMS } & 036\end{array}$
$\begin{array}{ll}\text { TIMS } & 036 \\ \text { TIMS } 037\end{array}$
$\begin{array}{ll}\text { TIMS } & 038 \\ \text { TIMS } & 039\end{array}$
TIMS 039
TIMS 040
TIMS 041
TIMS 042
$\begin{array}{ll}\text { TIMS } & 043 \\ \text { TIMS } & 044\end{array}$
TIMS 044
TIMS 045
TIMS 046
TIMS 047
TIMS 048
TIMS 049
TIMS 048
TIMS 049
NDAT $=3$
NDAT $=3$
LT $=1$
$L T=1$
NPER $=5$
NPER $=5$
NBASE $=1$
EQORUN = EQ
TIMS 050
TIMS 050
TIMS 051
TIMS 052
$\begin{array}{ll}\text { TIMS } & 053 \\ \text { TIMS } & 054\end{array}$
MODE = SQNTL
TIMS 054
MODE $=$ SQNTL
PCENT $=25.0 \mathrm{DO}$
CLEVEL $=0.50 \mathrm{DO}$
TIMS 055
TIMS 056
TIMS 057
DO $5 \mathrm{I}=1$,NPER
5 PER(I) $=P(I)$
TIMS 057
TIMS 058
TIMS 059
TIMS 059
TIMS 060
C
TIMS 061

```
C EQUAL SPACING RUN 
```

SUBROUTINE SPECEQ(T, F, NF, FNORM, NK, DAT, NDAT, LT, PER, NPER, NBASE, A, C, $P, S, N W, I B$, ICRIT)
$\$$
IMPLICIT DOUBLE PRECISION $(A-H, O-Z)$
DIMENSION
$A(100,100), B(100), C(1), C L F(60,50)$, $\mathrm{A}(100,100), \mathrm{B}(100), \mathrm{C}(1), \mathrm{CLF}(60,50)$,
$\mathrm{CNP}(60,50), \mathrm{CP}(50), \operatorname{DAT}(1), F(1), \operatorname{IVL}(60), \mathrm{P}(1)$. PER(1), $S(1)$. $\operatorname{SLP}(60,50)$, SNF $(60,50)$, SP(50). PER (1), S (1), SLP (60,50), SNF (60,50), SP (50), SPMQ (50), SPPQ(50), T(1), U(100), V(100). XL (60). XN(60) PI/3.141592653589793DO/. ROUND /100000./. NKDIM /100/. NPERDM $/ 50 \%$. IVLDIM /60/

```
FUNCTION: SPECEQ COMPUTES THE LEAST SQUARES SPECTRUM OF
                    A PIECEWISE EQUALLY SPACED TIME SERIES
                        AFTER SUPPRESSING KNOWN CONSTITUENTS
CALLED FROM: DRIVER
CALLED FRO
        SPECIFYING THE INPUT TIME SERIES
    SPECIFYING THE KNOWN CONSTITUENTS
NKK
```



```
    SPECIFYING THE DUTPUT SPECTRUM
P(NW)}={\mathrm{ INPUT SPECTRAL PERIODS
P(NW) = INPUT SPECTRAL PERIODS
        IB = INPUT SPECTRAL BAND LABEL
        ICRIT = ROUNDOFF FLAG
    (1 = OK. CONTINUE ANALYSIS)
            0 = RESIDUAL TIME SERIES CONSISTS ONLY OF ROUNDOFF)
EXTERNALS: DABS, DMAX1, BASE, DCOS, EPS, ERROR, DFLOAT, RESID, DSIGN,
        DSIN, DSQRT
ERROR CONDITIONS:
    1 = WARNING. ARGUMENT NDAT .LT.O. (SET TO O.{
    2 = WARNING. ARGUMENT LT NOT O OR 1.{SET TO C.{
    3 = WARNING. ARGUMENT NPER.LT. O. }SET TO C.{
    4=WARNING. ARGUMENT NBASE.LT. O. (SET TO O.)
5 = WARNING. ARGUMENT NK . NE. NDAT+LT+2&NPER+NBASE.)
104 = FATAL. LESS THAN 3 TIME SERIES VALUES INPUT.
105 = FATAL. T ELEMENT VALUES NOT MONOTONIC INCREASING
```



```
        T(NF)}={\mathrm{ INPUT TIME SERIES TIMES 
```

```
```

 T(NF)}={\mathrm{ INPUT TIME SERIES TIMES
    ```
```



```
```

 = OUTPUT RESIDUAL TIME SERIES VALUES
    ```
```

 = OUTPUT RESIDUAL TIME SERIES VALUES
 FNORM = OUTPUT QUADRATIC NORM OF RESIDUAL F
    ```
            FNORM = OUTPUT QUADRATIC NORM OF RESIDUAL F
```

```
C
            SQUA
1 = WARNING ARGUMENT NDAT LT 0 (SET TO 0.))
106=FATAL. NK TOO LARGE FOR DIMENSIONS OF A,B,U,V
```

 SPCQ 002
 SPCQ 002
 SPCQ 003
DIMENSION $\operatorname{CNP}(60,50), \operatorname{CP}(50), \operatorname{DAT}(1), F(1), \operatorname{IVL}(60), P(1)$.
SPCQ 004
$\begin{array}{ll}\$ & \operatorname{CNP}(60,50), C P(50), \text { DAT } 1), F(1), \text { IVL (60), P(1) } \\ \$ & \operatorname{PER}(1), S(1), S L P(60,50), S N F(60,50), S P(50), \\ \$ & S P M Q(50), S P P Q(50), T(1), U(100), V(100),\end{array}$
SPCQ 005
SPCQ 006
SPCQ 007
SPCQ 008
$\begin{array}{ll}\$ 1 & X L(60) . X N(60) \\ \text { DATA } & \text { PI/3.141592653589793DO/. }\end{array}$
$\begin{array}{ll}\$ & \text { ROUND } / 10000 \\ \$ & \text { NKDIM } / 100 /, \\ \$ & \text { NPERDM } / 50 \% \\ \$ & \text { IVIDIM } / 60 /\end{array}$
SPCQ 009
SPCQ 010
SPCQ 011
$\begin{array}{ll}\text { SPCQ } & 012 \\ \text { SPCQ } & 013\end{array}$
SPCQ 013
SPCQ 014
SPCQ 015
SPCQ 016
SPCQ 017
SPCQ 017
SPCQ 018
$\begin{array}{ll}\text { SPCQ } & 018 \\ \text { SPCQ } & 019\end{array}$
SPCQ 019
SPCQ 020
SPCQ 020
SPCQ 021
SPCQ 021
$\begin{array}{ll}\text { SPCQ } 022 \\ \text { SPCQ } & 023\end{array}$
SPCQ 022
SPCQ 023
SPCQ 024
SPCQ 025
SPCQ 025
SPCQ 026
SPCQ 027
SPCQ 028
SPCQ 029
$\begin{array}{ll}\text { SPCQ } & 029 \\ \text { SPCQ } 030\end{array}$
SPCQ 030
SPCQ 031
SPCQ 031
SPCQ 032
$\begin{array}{ll}\text { SPCQ } & 032 \\ \text { SPCQ } & 033 \\ \text { SPCQ } & 034\end{array}$
SPCQ 034
SPCQ 035
SPCQ 036
SPCQ 037
$\begin{array}{ll}\text { SPCQ } & 037 \\ \text { SPCQ } & 038 \\ \text { SPCQ } & 039\end{array}$
SPCQ 039
$\begin{array}{ll}\text { SPCQ } & 040 \\ \text { SPCQ } & 041\end{array}$
SPCQ 041
SPCQ 042
SPCQ 042
SPCQ 043
$\begin{array}{ll}\text { SPCQ } & 043 \\ \text { SPCQ } 044\end{array}$
SPCQ 045
SPCQ 046
SPCQ 047
SPCQ 046
SPCQ 047
SPCQ 047
SPCQ 048
049
SUBROUTINE SPECEQ(T, F, NF, FNORM,
SPCQ 001
$\$$ NK, DAT, NDAT, LT, PER, NPER, NBASE, A, C,
$\$ \quad X L(60), X N(60) \quad$,
$\begin{array}{ll}\text { SPCQ } 049 \\ \text { SPCQ } & 050 \\ \end{array}$
SPCQ 050
SPCQ 051
SPCQ 051
SPCQ 052
$\begin{array}{ll}\text { SPCQ } & 053 \\ \text { SPCQ } & 054\end{array}$
SPCQ 054
SPCQ 055
SPCQ 056
SPCQ 057
SPCQ 058
SPCQ 059
SPCQ 059
SPCQ 060
SPCQ 060

SPCQ 062
SPCQ 063
SPCQ 064
SPCQ 065
SPCQ 066
SPCQ 067
SPCQ 068
SPCQ 069
SPCQ 070
SPCQ 071
SPCQ 072
SPCQ 073
SPCQ 074
SPCQ 075
SPCQ 076
SPCQ 077
SPCQ 078
SPCQ 079
SPCQ 080
SPCQ 081
SPCQ 082
SPCQ 083
SPCQ 084
SPCQ 085
SPCQ 086
SPCQ 087
SPCQ 088
SPCQ 089
SPCQ 090
SPCQ 091
SPCQ 092
SPCQ 093
SPCQ 094
SPCQ 095
SPCQ 096
SPCQ 097
SPCQ 098
SPCQ 099
SPCQ 100
SPCQ 101
SPCQ 102
SPCQ 103
SPCQ 104
SPCQ 105
SPCQ 106
SPCQ 107
SPCQ 108
SPCQ 109
SPCQ 110
SPCQ 111
SPCQ 112
SPCQ 113
SPCQ 114
SPCQ 115
SPCQ 116
SPCQ 117
SPCQ 118
SPCQ 119
SPCQ 120
SPCQ 121
SPCQ 122

```
C CHECK T INCREASES MONOTONICALLY
C COMPUTE FMAX = MAXIMUM ABSOLUTE VALUE IN F
C CHECK VALUES OF NDAT,LT,NPER,NBASE, AND NK
    CHECK DAT(1) .EQ. T(i)
    IF (NF .LT. 3)
        CALL ERROR(104)
    DO 5 I = 2,NF
            IF(T (I) .LE. T(I-1)) CALL ERROR(105)
        5
    FMAX = DABS (F (1))
    DO 10 I = 2,NF
        FMAX = DMAX1 (FMAX,DABS (F (I)))
    IF(NDAT .GE. O) GO TO 15
    CALL ERROR(1)
    NDAT = O
15 IF(LT .EQ. O .OR. LT .EQ. 1 ) GO TO 20
    CALL ERROR (2)
    LT=O
20 IF(NPER .GE. 0) GO TO 25
    CALL ERROR(3)
    NPER=0
25 IF(NBASE .GE. O) GO TO 30
    CALL ERROR(4)
    NBASE = O
30 IF(NK .EQ. NDAT + LT + 2 * NPER + NBASE) GO TO 35
    CALL ERROR (5)
    NK = NDAT + LT + + 2 * NPER + NBASE
35 IF (NK.GT. NKDIM)
    IF
    IF(NPER .GT. NPERDM)
    EPSARG = EPS (ARG)
C
C COMPUTE STEPSIZE IN T
    STEP = T(2) - T(1)
C
C COMPUTE CRITICAL VALUE OF STEP FOR DETECTING GAPS IN T
    STEPI = 1.5DO * STEP
C
C INITIALIZE ARGUMENTS IDAT, NIVL, NGAP, TA
    IDAT = 1
    NIVL=0
    NGAP = 0
    TA=T(1)
C
C FIND SUBINTERVAL BOUNDARIES (GAPS OR NEW DATUM SHIFTS) IN T
    DO 45 N = 2,NF
        NEWIVL = 0
        IF(N .NE. NF) GO TO 39
        NEWIVL = NGAP
        IF(NEWIVL .EQ. O) GO TO 45
        GO TO }4
C
C CHECK IF THERE IS GAP AND DATUM SHIFT IN T
    39 IF((T(N) - T(N-1)).GT. STEP1.AND.
$ DABS(DAT(IDAT+1)-T(N)).LT. EPSARG*ROUND) GO TO 40
C
C CHECK IF THERE IS ONLY GAP IN T
    IF((T(N) - T(N-1)) .GT. STEP1) GO TO 41
C
C CHECK IF THERE IS ONLY DATUM SHIFT IN T
    IF (DABS(DAT(IDAT+1)-T(N)).LT. EPSARG*ROUND) GO TO 40
```

```
    GO TO 42
C
C COMPUTE NEWIVL, IDAT AND NGAP WHEN THERE IS DATUM SHIFT REGARDLESS
C OF PRESENCE OF GAP IN T
    40 NEWIVL = NGAP + 1
    DAT (IDAT+1)=T(N)
    IDAT = IDAT + 1
    GO TO 42
C
C COMPUTE NEWIVL, IDAT AND NGAP WHEN THERE IS ONLY GAP IN T
    41 NEWIVL = NGAP + 1
    NGAP = NGAP + 1
    IF(NEWIVL .EQ. O) GD TO 45
C
C COMPUTE XL, XN, IVL FOR EACH SUBINTERVAL IN T
    42 TB = T(N-1)
    IF (N .EQ.NF) TB = T(NF)
    NIVL = NIVL + 1
    IF(NIVL.GT. IVLDIM)
    XN(NIVL) = 1.ODO + (TB - TA) STEP CALL ERROR(110)
    XL(NIVL) = (TB + TA) / STEP
    IVL(NIVL) = IDAT - NEWIVL + NGAP
    TA = T(N)
    45 CONTINUE
        IF (NPER.LE.O) GO TO }5
C COMPUTE TRIG(PK), TRIG(XN*PK). TRIG(XL*PK) FOR EACH SUBINTERVAL IN T
        DO 50 I = 1.NPER
            IF(PER(I) .LT. 2.ODO * STEP) CALL ERROR(111)
            PK = PI * STEP / PER(I)
            SP(I)= DSIN(PK)
            CP(I) = DCOS(PK)
            DO 50 J = 1,NIVL
                    XNPK = XN (J) * PK
                    XLPK = XL(J) * PK
                    SNP (J,I) = DSIN (XNPK)
                        CNP{J,I} = DCOS{XNPK
                        SLP{J,I{= DCOS = XNPKK
                CLP(J,I) = DCOS (XLPK)
        50 CONTINUE
C
C CHECK VALUES IF P .GE. 2*STEP
    5 2 ~ D O ~ 5 5 ~ I ~ = ~ 1 , N W
            IF(P(I) .LT. 2.ODO * STEP)
    5 5 ~ C O N T I N U E ~
C
C SUPPRESS KNOWN CONSTITUENTS
    REPLACE F WITH RESIDUAL TIME SERIES
    COMPUTE QUADRATIC NORM OF F
    CHECK IF RMS VALUE OF RESIDUAL F IS LESS
            THAN EPS * FMAX * ROUND, WHERE
            EPS = EPSARG = SMALLEST NUMBER SO 1 + EPS .GT. 1
            FMAX = MAXIMUM ABSOLUTE VALUE OF ORIGINAL F
            ROUND ACCOUNTS FOR ACCUMULATED ROUNDOFF IN
            COMPUTING RESIDUAL F
        IF(NK.GT. O) CALL RESID(T, F,NF
        $ NK, DAT, NDAT, LT, PER, NPER, NBASE,
            FNORM = 0.ODO
            DO 6O I = 1,NF
            FNORM = FNORM +F(I) ** 2
```

SPCQ 184
SPCQ 185
SPCQ 186 SPCQ 187 SPCQ 188 SPCQ 189 SPCQ 190 SPCQ 191 SPCQ 192 SPCQ 193 SPCQ 194 SPCQ 195 SPCQ 196 SPCQ 197 SPCQ 198 SPCQ 199
SPCQ 200
SPCQ 201
SPCQ 202
SPCQ 203
SPCQ 204
SPCQ 205
SPCQ 206
SPCQ 207
SPCQ 208
SPCQ 209
SPCQ 210
SPCQ 211
SPCQ 212
SPCQ 213
SPCQ 214
SPCQ 215
SPCQ 216
SPCQ 217
SPCQ 218
SPCQ 219
SPCQ 220
SPCQ 221
SPCQ 222
SPCQ 223
SPCQ 224
SPCQ 225
SPCQ 226
SPCQ 227
SPCQ 228
SPCQ 229
SPCQ 230
SPCQ 231
SPCQ 232
SPCQ 233
SPCQ 234
SPCQ 235
SPCQ 236
SPCQ 237
SPCQ 238
SPCQ 239
SPCQ 240
SPCQ 241
SPCQ 242
SPCQ 243
SPCQ 244

```
    60 CONTINUE
C
C CHECK IF RESIDUAL F CONSISTS OF ROUNDOFF
        ICRIT = 1
        IF (DSQRT (FNORM/DFLOAT (NF)) .LT.
        $ EPSARG*FMAX*ROUND) ICRIT = 0
C
C FOR EACH SPECTRAL PERIOD P(I), COMPUTE SPECTRAL VALUE S (I)
        COMPUTE SCALAR PRODUCTS FCOS,FSIN,CC,CS,SS,U,V
        COMPUTE BILINEAR FORMS UAU, UAV,VAV
        COMPUTE PERCENTAGE VARIANCE S
    65 DO 130 I = 1,NW
            OMEGA = 2.ODO * PI /P(I)
            FCOS = 0.0DO
            FSIN = O.ODO
            CC=0.000
            CS = 0.ODO
            SS = O.ODO
            IF(NK.EQ. O) GO TO }7
            DO 7O J = 1,NK
            U(J)=O.ODO
            v(J)=0.0DO
    70 CONTINUE
    75 DO 85 J = 1,NF
            WT = OMEGA * T(J)
            COSWT = DCOS (WT)
            SINWT = DSIN (WT)
            FCOS = FCOS + F(J) * COSWT
            FSIN = FSIN + F(J) * SINWT
            IF(NBASE .EQ. O) GO TO }8
            DO 8O L = 1, NBASE
                K = NDAT + LT + 2 * NPER + L
                    FUNC = BASE(K, T(J), DAT, NDAT, LT, PER, NPER)
                    U(K)=U(K) + FUNC * COSWT
                    V(K)=V(K) + FUNC * SINWT
            CONTINUE
    80
    CONTINUE
        Q = 0.5DO * OMEGA * STEP
        SQ = DSIN (Q)
        CQ = DCOS(Q)
        IF(NPER .EQ. O) GO TO }9
        DO 90 J = 1,NPER
            SPMQ (J) = SP (J) * CQ - CP(J) *SQ
            IF(DABS (SPMQ (J))*.LT. EPSARG)*SPMQ (J) = DSIGN(EPSARG,SPMQ (J))
            SPPQ(J)=SP
            IF(DABS (SPPQ(J)).LT.EPSARG) SPPQ(J) = DSIGN(EPSARG,SPPQ (J))
        CONTINUE
        DO 115 」=1,NIVL
            XNQ = XN (J) *Q 
            XLQ = XL(J) *QQ
            SNQ = DSIN (XNQ)
            CNQ = DCOS (XNQ)
            SLQ = DSIN (XLQ)
            CLQ = DCOS (XLQ)
            CC = CC + SNQ * CNQ * CLQ *CLQ - SNQ * CNQ * SLQ * SLQ SN SPCQ 298
            CS = CS + SNQ * CNQ * SLQ * CLQ SPC 299
            IF (NK EQ SNQ * CNQ * SLQ * CLQ
            .EQ. O) GO TO 115
            IF(NDAT,.EQ. O) GO TO 100
            K = IVL(J)
            U(\overline{K})=U(K)+SNQ * CLQ/SQ
            SPCQ 301
            SPCQ 303
SPCQ }30
SPCQ 305
```

```
100 IF(LT .EQ. O) GO TO 105
    105
    10
115
```



```
        CONTINUE
    SQCQ = SQ * CQ
    CCSQCQ = CC / SQCQ
    SS = 0.5DO * (DFLOAT(NF) - CCSQCQ)
        CC = O.5DO + (DFLOAT(NF) + CCSQCQ)
    CS = CS / SQCQ
    UAU = O.ODO
        UAV = O.ODO
    VAV = O.ODO
        IF(NK.EQ. O) GO TO 125
    DO 120 J = 1,NK
            DO 120 K = 1,NK
                UAU =UAU +U(J) * A (J,K) * U (K)
                UAU=UAU +U(J) * A (J,K) * U(K)
120}\mp@code{CONTINUE
120
    DET = (CC-UAU) * (SS-VAV) - (CS-UAV) * (CS-LAV)
    IF(DABS (DET) .LT. EPSARG) GO TO 130
        S(I) = 100.ODO * ((SS - VAV) * FCOS * FCOS -
    $
130 CONTINUE
    RETURN
    END
            100 IF(LT.EE. O) GO TO 105
        K=NDAT + 1
        SSCS = - SNQ * SLQ * CQ / SQ
        SCCS = SNQ * CLQ * CQ / SQ
        XNCS = XN(J) * CNQ * SLQQ
        XNCC = - XN(J) + CNQ * CLQ
        XLSC = XL (J) * SNQ * CLQ
        XLSS = XL(J) * SNQ * SLQ
        STSQ = O.5DO * STEP/ SQ 
        U(K)=U(K)+STSQ * (SSCSS + XNCSS + XLSSC)
        IF (NPER.EQ. O) GO TO 115
        DO 110L= 1,NPER
```



```
    $
```

SPCQ 306
SPCQ 307
SPCQ 308
SPCQ 309
SPCQ 310
$\begin{array}{ll}\text { SPCQ } & 310 \\ \text { SPCQ } 311\end{array}$
SPCQ 311
SPCQ 312
SPCQ 313
SPCQ 314
SPCQ 315
SPCQ 316
SPCQ 317
SPCQ 318
SPCQ 318
SPCQ 319
$\begin{array}{ll}\text { SPCQ } & 319 \\ \text { SPCQ } 320\end{array}$
SPCQ 320
SPCQ 321
SPCQ 321
SPCQ 322
SPCQ 322
SPCQ 323
SPCQ 323
SPCQ 324
SPCQ 324
SPCQ 325
SPCQ 326
SPCQ 327
SPCQ 328
SPCQ 328
SPCQ 329
SPCQ 329
SPCQ 330
SPCQ 330
SPCQ 331
SPCQ 331
SPCQ 332
SPCQ 333
SPCQ 334
SPCQ 335
SPCQ 336
SPCQ 337
SPCQ 338
SPCQ 339
SPCQ 340
SPCQ 341
SPCQ 342
SPCQ 342
SPCQ 343
SPCQ 343
SPCQ 344
SPCQ 344
SPCQ 345
SPCQ 346
SPCQ 347
SPCQ 348
SPCQ 349
SPCQ 350
SPCQ 351
SPCQ 351
SPCQ 352
SPCQ 352
SPCQ 353
$\begin{array}{ll}\text { SPCQ } & 353 \\ \text { SPCQ } & 354\end{array}$
SPCQ 354
SPCQ 355
SPCQ 355
SPCQ 356


```
C CALLING ROUTINE REQUIREMENTS:
    1. WHEN NO KNOWN CONSTITUENTS ARE TO BE SUPPRESSED, THE CALLING ROUTINE MUST PASS ZERO VALUES FOR NK,NDAT. LT,NPER AND NBASE.
2. WHEN NDAT .GT. O. THE CALLING ROUTINE MUST SET \(\operatorname{DAT}(1)=T(1)\)
3. THE CALLING ROUTINE MUST SET NK \(=\) NDAT + LT + \(2 *\) NPER + NBASE.
4. WHEN NBASE .GT. O, THE USER MUST SUPPLY CODING IN FUNCTION BASE TO COMPUTE EACH USER-DEFINED CONSTITUENT.
5. ON INITIAL CALL, CALLING ROUTINE MUST SET IB \(=1\) TO COMPUTE RESIDUAL TIME SERIES. MANY SPECTRAL BANDS FOR THE SAME SPECTRUM CAN THEN BE COMPUTED BY SETTING IB. NE. 1 , AND CALLING REPEATEDLY, CHANGING ONLY P(NW).
6. CALLING ROUTINE MUST DIMENSION ARGUMENT ARRAYS .GE. T (NF), F (NF), DAT (NDAT), PER (NPER), C (NK), P (NW), S (NW).
7. T ELEMENT VALUES ARE UNRESTRICTED AS TO SPACING, BUT MUST MONOTONICALLY INCREASE. P, DAT AND PER ELEMENT VALUES MUST BE IN THE SAME UNITS AS T.
LIMITATIONS:
1. WHEN CALLED WITH IB \(=1\), AND NK. GT. O, THE CONTENTS OF THE TIME SERIES F IS REPLACED BY THE RESIDUAL TIME SERIES VALUES.
2. WHEN NK .GT. NKDIM, A,B,U AND V MUST BE REDIMENSIONED .GE. NK, AND NKDIM CHANGED TO THE NEW DIMENSION.
IF (IB .NE. 1) GO TO 65
```


PROCESS INPUT ARGUMENTS

```
CHECK NF .GE. 3
CHECK T INCREASES MONOTONICALLY
COMPUTE FMAX = MAXIMUM ABSOLUTE VALUE IN F
CHECK VALUES OF NDAT,LT,NPER,NBASE,AND NK
CHECK DAT (1) .EQ. T(i)
IF (NF .LT. 3)
CALL ERROR (104)
DO \(5 I=2\), NF
IF (T(I) CLE. T(I-1)) CALL ERROR(105)
5
FMAX \(=\operatorname{DABS}(F(1))\)
DO \(10 \mathrm{I}=2\), NF
10
FMAX \(=\) DMAX1 (FMAX, DABS (F (I)))
IF (NDAT .GE. O) GO TO 15
CALL ERROR(1)
NDAT \(=0\)
15 IF (LT .EQ. O .OR. LT .EQ. 1) GO TO 20
CALL ERROR (2)
\(L T=0\)
20 IF(NPER GE. O) GO TO 25
CALL ERROR (3)
NPER \(=0\)
25 IF (NBASE .GE. O) GO TO 30
CALL ERROR (4)
NBASE \(=0\)
30 IF (NK.EQ. NDAT + LT + 2 * NPER + NBASE) GO TO 35
CALL ERROR (5)
NK \(=\) NDAT + LT +2 * NPER + NBASE
35 IF (NK .GT. NKDIM)
IF (NDAT .GE. 1 .AND. DAT (1) .NE. T(1)) CALL ERROR (106) ERROR \((107)\)
```

SPUN 062
SPUN 063
SPUN 064
SPUN 065
SPUN 066
SPUN 067
SPUN 068
SPUN 069
SPUN 070
SPUN 071
SPUN 072
SPUN 073
SPUN 074
SPUN 075
SPUN 076
SPUN 077
SPUN 078
SPUN 079
SPUN 080
SPUN 081
SPUN 082
SPUN 083
SPUN 084
SPUN 085
SPUN 086
SPUN 087
SPUN 088
SPUN 089
SPUN 090
SPUN 091
SPUN 092
SPUN 093
SPUN 094
SPUN 095
SPUN 096
SPUN 097
SPUN 098
SPUN 099
SPUN 100
SPUN 101
SPUN 102
SPUN 103
SPUN 104
SPUN 105
SPUN 106
SPUN 107
SPUN 108
SPUN 109
SPUN 110
SPUN 111
SPUN 112
SPUN 113
SPUN 114
SPUN 115
SPUN 116
SPUN 117
SPUN 118
SPUN 119
SPUN 120
SPUN 121
SPUN 122

```
C SUPPRESS KNOWN CONSTITUENTS (ME SERIES 
```

```
120 VAV = VAV +V(J) * A J,K) *V(K) SPUN 184
125 S(I) = O.ODO (CC-UAU) * (SS-VAV) - (CS-UAV) * (CS-UAV)
125 S(I) = O.ODO (CC-UAU) * (SS-VAV) - (CS-UAV) * (CS-UAV)
        IF (DABS (DET) .LT. EPSARG) GO TO 130
        $ S(I) = 100.0DO * (()SS - VAV) # FCOS * FCOS -
```



```
        (CC - UAUUORM)
130 CONTINUE SPUN 192
        RETURN
        RETU
        SPUN 185
    SPUN 186
    SPUN 187
    SPUN 188
    SPUN 188
    SPUN 190
    SPUN 191
    END SPUN
193
SPUN 194
```

