
LEAST-SQUARES
SPECTRAL ANALYSIS

REVISITED

D. WELLS
P. VANICEK

S. PAGIATAKIS

November 1985

TECHNICAL REPORT
NO. 217

TECHNICAL REPORT
NO. 84

PREFACE

In order to make our extensive series of technical reports more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.

LEAST SQUARES SPECTRAL
ANALYSIS REVISITED

David E. Wells
PetrVamcek

Spiros Pagiatakis

Department of Geodesy and Geomatics Engineering
University of New Brunswick

P.O. Box 4400
Fredericton, N .B.

Canada
E3B 5A3

November 1985
Latest Reprinting August 1994

PREFACE

The original version of this report appeared in 1978 under the

Report Series (Report BI-R-78-8) of the Bedford Institute of Oceanography,

Dartmouth, Nova Scotia, when the first author was working there. It was

authored by the first two authors of the present version. The third author

has been mainly responsible for the changes and improvements in the present

version of the software.

This revised version is being issued for three reasons:

(i) The original report is out of print.

(ii) Students not exposed to functional analysis have had some

difficulty in reading the report, so that the original report has

been extended to include a more elementary description of

least-squares spectral analysis.

(iii) Since 1978 the software has been modified, both to eliminate some

"bugs" and to be more versatile.

The changes, program listings of the new version, and a user's guide are in

PART B.

The authors are grateful to the Bedford Institute of Oceanography

for permission to reprint herewith parts of the original Report BI-R-78-8.

ii

TABLE OF CONTENTS

Preface
Table of Contents •

PART A: LEAST-SQUARES SPECTRAL ANALYSIS

Abstract
Introduction
Spectrum Computation
Requisite Elements of Functional Analysis •
The Projection Theorem
Least-Squares Spectral Analysis with Known Constituents
Relationship to Other Spectral Functions
Types of Known Constituents
Input and Output Parameters
General Scalar Product Algorithm for Equally Spaced Data
Specific Scalar Product Expressions
Examples
References

PART B: USER'S GUIDE AND PROGRAM LISTINGS

Introduction
Structure of the Software •
Modification of the Software

TSPEC
AMPL
BASE
CHOLS
COVAR
DRIVER
EPS
ERROR
FPLOT
RESID
SPLOT
TIMSER
SPECEQ
SPEC UN

iii

ii
iii

1

2
3
5
8

11
16
20
21
23
26
27
29
34

37

38
39
42

44
45
46
47
49
50
52
53
54
55
56
57
59
65

1

PART A

LEAST-SQUARES SPECTRAL ANALYSIS

2

ABSTRACT

An algorithm is described to compute the optimum least-squares

spectrum of an unequally or equally spaced generally non-stationary and

coloured time series for which some of the shapes of the constituents

(systematic noise) are known. Known constituents of four kinds are provided

for: datum biases, linear trend, periodic constituents with known periods,

and arbitrary user-specified constituents. An alternative, more efficient

algorithm is described for piecewise equally-spaced time series with

possible gaps.

3

INTRODUCTION

Observed time series are often composed of constituents that are of

interest (which we will call the signal), and constituents that obscure the

signal (which we will call the noise). Often we know the general form of a

noise constituent, but not its magnitude (we will call such constituents

systematic noise).

One class of such time series is that dominated by a few periodic

constituents (the systematic noise) and smaller amplitude periodic

constituents (the signal) whose presence is obscured by the noise--coloured

series. Extracting the signal from this series has been called the hidden

periodicity problem. In general, the systematic noise may contaminate but

not totally obscure the signal.

If all the constituents of a time series are periodic, then we can

say that it is a colour time series; that the noise is coloured noise; that

the signal is a coloured signal; and that the extent to which the noise

obscures the signal is the extent to which the noise discolours the signal.

A property of a time series is the degree to which it is stationary.

Strict sense (or strong) stationarity requires that all statistical

properties of the time series (mean value, autocorrelation function, and all

higher order moments) be independent of the choice of the time origin. Wide

sense (or weak) stationarity requires that only the mean value and

autocorrelation function be independent of the choice of the time origin

[Benda t and Piersol, 1971]. One common violation of stationarity is the

presence of datum shifts in the time series: that is, the mean value is

shifted from time to time. Another common violation is the presence of a

trend (perhaps linear) in the time series: the "mean" value changes linearly

with time.

Both these kinds of non-stationarity-inducing constituents (datum

shifts and trends) can also be considered as systematic noise, as long as we

know their general form, that is, the time at which datum shifts occurred,

and the kind of trend (linear, quadratic, exponential, etc.).

Another property of a time series is its spacing. Are all the data

values equally spaced in time? Are there data gaps between otherwise

equally-spaced segments of the series? Or are all the values in the time

4

series unequally spaced in time? Ideally we would like to have only equally

spaced time series, but this is rarely the case in practice.

A specific example of this situation is a time series of ocean tide

gauge records, from which we are interested in the long period (> 1 year)

constituents. Three kinds of systematic noise may contaminate this time

series from our point of view. Firstly, there may be step functions due to

sudden changes in the tide gauge datum (caused by alterations to the tide

gauge or to its supporting structure, or possibly caused by vertical

co-seismic displacements). The dates of such step functions are usually

well documented, but it can be difficult to document their magnitudes.

Secondly, there may be a gradual change in the tide gauge datum (due, for

example, to changes in the mean sea level, or to land subsidence including

the gauge), which is most simply modelled as a linear trend. Thirdly, the

tide gauge time series are dominated by short (in our context) periodic

constituents (i.e., tidal constituents) for which the periods are precisely

known, but the magnitudes are not. In addition to these problems, there is

almost certain to be data gaps due to equipment failures. It is this kind

of series that we will analyse at the end of PART A as an example.

To obtain an undistorted spectral image of the signal, we must

somehow remove the influence of the systematic noise, both the "colours" and

the non-stationarity. The usual way of dealing with this problem is to

first find the magnitudes of the components of the noise, subtract the noise

from the time series, and perform a spectral analysis on the "corrected"

time series. It is known, however, that such a treatment affects the

location of spectral peaks arising from the rest of the time series [Taylor

and Hamilton, 1972]. We must somehow deal with the data gaps as well. When

the data is piecewise equally spaced, as in the example given at the end of

PART A, the two usual options are to treat each piece separately, or to

somehow manufacture data to fill in the gaps. Neither is satisfactory. The

problem is even more difficult when the time series is completely unequally

spaced, rather than merely gappy.

An alternative is the least-squares spectral analysis [Van!~ek,

1971]. This alternative provides two advantages: systematic noise,

including both colours and non-stationarity, can be rigorously accounted for

(suppressed) without producing any shift of the existing spectral peaks

[Taylor and Hamilton, 1972]; and time series with unequally spaced data can

5

be analysed [Maul and Yanaway, 1978].

The purpose of this report is to present a brief expos! tion of the

method, for unequally spaced time series, and to describe how the spectrum

computation can be made much faster if the time series is equally, or at

least piecewise equally, spaced.

Capitalized parameter names longer than one letter refer to

identifiers used in FORTRAN subroutines SPECUN and SPECEQ which respectively

compute the least-squares spectrum for unequally spaced and equally spaced

time series (see PART B for program listings).

SPECTRUM COMPUTATION

There are many definitions of a spectrum, and many ways of computing

a spectrum from a time series.

general way: Given

Here we simply state the problem in a

(a) t = {ti}' i=l,2, ••• ,n, a vector of observation times,

(b) !(~) = {fi} = {f(ti)}, a vector of observed values,

(c)

then find

_!(~)

w {wj}' j=l,2, ••• ,m, a

spectral values are desired,

vector of frequencies

{s{w.)}, a vector of spectral values.
J

Note that

(a) _f(_t) or {f., t.} together define a time series.
~ ~ -----

for which

(b) s(wj) must be some measure of the fractional content of !(~)

which is represented by the frequency wj.

Here we consider only one specific technique for computing s(w .) , which is
J

the Least-Squares Spectral Analysis (LSSA). This technique is an

application of Least-Squares Approximation (LSA) [Van!~ek and Wells, 1972],

which is closely related to the Linear Least-Squares Parametric Adjustment

(LLSPA) [Wells and Krakiwsky, 1971; Vanf~ek and Krakiwsky, 1982].

LSA and LLSPA use the same algorithm, but they have different

purposes, and different interpretations of the quantities involved. Those

parts of the algorithm which we are interested in are, in our notation,

6

(1)

~ = f - t c (2)

For LLSPA, we are given

f = a vector of observations

t = the design matrix which models the physical relationship between

the observations f and the vector of unknown parameters c via

the observation equation!=!~
-1

.S.f where .S.f is the covariance matrix of f, a statistical w =
quantity,

and the problem solved in part by (1) and (2) is to obtain an estimate for

some physical parameters~· based on the observations f. What we want here

is c (plus its covariance matrix).

For LSA we are given

f a known vector to be approximated, not necessarily based on

observations,

t a matrix considered to consist of several column vectors

! = [~1 • ~2 , ••• , iro1 called base functions, each of which is a

known function of the same dimension as f. Note that t does not

necessarily model any physical dependence of !·

W a weight function with no statistical meaning. Here we assume

~=I (often the case in LSA).

For LSA it is usual to rewrite f = t c in the form

f
m

l: ci ~i
i=1

(3)

and to state the LSA problem as finding the best fitting approximant 2 to f,
that is

m
2 = l: 2i ~i

i=1
(4)

such that the residuals "' v

Note that for LSA we are

= ! - 2 are minimized in the least-squares sense.

more interested in ~ than in the coefficients c,
although! is still given by (1).

Specifically for LSSA we know i(t) and we use

7

(5)

For each w. for which we want s(w.) we compute
J J

(6)

where c = is determined from (1), that is

(7)

Now when p(w.) fits f perfectly (_v = 0), then the fractional content of!
- J -

represented by~ is 1 (all of i is represented by~)· On the other hand, it

is possible that c = 0 (that is ! is orthogonal to !) and ~ = 0. In this

case, the fractional content of! represented by~ is 0. In general we will

see below that the fractional content of f represented by ~ can be measured

by the ratio

length of the orthogonal projection of ~ onto !
s

and that this can be computed from

!_T ~
s

length of f

Note that since from (6) ~ = ~(wj), so also

fT p{w.)
- - J = --=-=--

fT f

(8)

(9)

(10)

that is, for each spectral value s(w .) we must separately compute the
J

least-squares approximant p(w .) • Therefore to compute the least-squares
- J

spectrum ~(w) = {sj, w.} we must compute m spectral values s(w.) j=1,2, ••• ,m
J J

which involves performing the least-squares approximation m times, each time

to get p(w.) for a different frequency w3 .•
- J

8

So far we have dealt only with the problem of computing the spectrum

of a complete time series. This is one major application of LSSA. A second

major application is to first remove some constituents from the time series,

and then to compute the spectrum of the residual time series. This is more

complicated, and is more easily described (and hopefully understood) using

the language of functional analysis.

REQUISITE ELEMENTS OF FUNCTIONAL ANALYSIS

Functional analysis is the analysis of functionals [Luenberger, 1969;

Kreyszig, 1978; Oden, 1979]. A functional is a scalar function of vector

quantities. We are interested in three functionals called the scalar

product, the norm, and the metric. First we define some spaces.

In this report we will speak solely of spaces of finite dimensions. A

vector space L of dimension n = dim L is a space of all possible n-tuples

{R.l, 1 2 , ••• , in} of real numbers 11' 1 2 , ••• , 1 3 • It is required that a

linear combination of any elements is also an element, that is if Vi:~i E L

and ai E R (scalars), then

b = 1: ai a.
. -1
1

(11)

is also from 1. A Hilbert (finite) space H is a vector space on which the

scalar product is defined. If ~· b E H then we denote their scalar product

by <a, ~ and define the norm (or length or magnitude) of a E H as

and the metric (or distance) between ~· b E H as

d(~. E_) II~- E.ll 1/2 [< (~ - E_) , (a - E_) >]

(12)

(13)

There are many ways of specifying a particular expression for the scalar

product, some involving weight functions, some involving integrals. Here we

use the most familiar and simplest expression

9

(14)

We will use concepts of linear independence, basis, and manifold. An

n-tuple of vectors a. E L is linearly independent when the equation
-1

n
r a. a1 = 0

i=1 1 -

, Vi: a. E R
1

(15)

is satisfied if and only if Vi:ai = 0. That is none of the a. can be
-1

expressed as a linear combination of the others. Given

independent n-tuple {a., Vi} C: L then the set of all vectors
-1

b. = r ai ai -J -
i

a linearly

(16)

(where all possible combinations of scalar values a. are used to generate
1

different b.) form a manifoldS of L, and{~, Vi} is said to generateS, or
-J -.~.

to be a basis of s. The number n of vectors in {a., Vi} is the dimension of
-1

s.

We will also use concepts of orthogonal! ty, and orthogonal

projection. Let us explore how these concepts are intimately related to the

scalar product. For illustration we will consider two vectors a and b in

the real plane. If these two vectors intersect at a right angle then their

scalar product is zero, <a, ~ = 0. In this case we say that _! and .£ are

orthogonal (denoted _! 1 _£). In more general Hilbert spaces, the following

statements also all mean the same thing, although "intersection at a right

angle" can no longer be visualized:

<a, b) = 0 means the same as

.!1~, which means the same as

a and b are orthogonal.

So much for the special case of orthogonality. In general .! and _£

will not intersect at a right angle. What then is the geometrical meaning

of the scalar product?

Figure 1). We recall

Let us say they intersect at some angle e (see

~, b) 11_!11 11.£11 cos e (17)

cos 9 = <~.b>
lallbl

10

ORTHOGONAL
PROJECTIONS

~--~-----------+b

Definition of angle

lxl - lal 9 - <~.b> - - - cos - lbl

lXI _ <~.b> x = <~.b> b
lbl (b,b> , (b,b> -

__ ___.._ ____ ,.. b
t----- X ---tl

Orthogonal Projection of a onto b

(a,b>
ll!l = lbl cos e = ~~

hll = <~.b> , Y. = <~.b> a
lal <a,a> <a,a>

__ ___.. ______ ..,. b

Orthogonal Projection of b onto a

FIGURE 1.

11

Orthogonality is such a useful concept that even in this case we want

somehow to construct a right angle. There are two possibilities. Either we

can drop a perpendicular from ~ onto ~ or we can drop a perpendicular from ~

onto a. In Figure 1, the vector x is called the orthogonal projection of ~

onto ~' and y is the orthogonal projection of b onto a. From (17) we see

that the lengths of these vectors are

11.!11 11~11 cos a =
~' ~>
11~11

~' b)

llyll = 11~11 cos a = ll~ll

(18)

To obtain expressions for the vectors themselves, we note that unit vectors

in the direction of a (and z) and in the direction of ~ (and .!) are given by

a and b ti 1 respec ve y. m m Hence, using (12), we have

b ~' b)
X = 11.!11 II ~II = ~' ~> ~

(19)
a ~' b)

y = llyll 11~11 = ~' a>~

from which we see that the ratio of the length of .! to the length of ~ (and

similarly of y to~) is given by the ratio of two scalar products. Finally

we note that (18) and (19) are not restricted to the simple example here,

but are valid in any Hilbert space.

THE PROJECTION THEOREM

The shortest distance between a point and a plane is the

perpendicular from the point to the plane. This is the projection theorem.

We can rephrase this theorem, substituting the terms

"minimum norm" for

"(vector) element of Hilbert space" for

"manifold of Hilbert space" for

"orthogonal" for

"shortest distance";

"point";

"plane"; and

"perpendicular".

12

Given f e: H (point) and S C H (plane), then of all the elements

s e: s, there is one element .E. e: s such that d(_!_, .E.) 5. d(!_, _!) (shortest -
distance). This element .2. is given by the orthogonal projection of f onto

s, that is <.!. - .£) 1 s (perpendicular) (see Figure 2).

In order to invoke this theorem, we need first to specify .!. and S.

We can specify !_ in several ways, for example, as an ordered sequence of

real numbers, or using an analytic functional expression. We can also

specify S in many ways. Let us choose to specify S by specifying a basis

{4>., :Yi} which generates S. Figure 2 illustrates the geometrical
-I.

relationships between _!., s' .E_, and {$., :Yi}
-I.

three-dimensional f and a two-dimensional S.

expressed as

for the simple case of a

Then any s e: S can be

s =I c. 4>.
- • l. -l.

l.

(20)

That is, there is some relationship between each n-tuple {ci, :Yi} and the

corresponding s. Let the particular n-tuple of scalars { ci, :Yi}

corresponding to .2. be denoted {ci, :Yi}. Then

.E.= I c. 4>. (21)
i l. -I.

Now we can write the condition we must satisfy, (_!.- .E_) 1 S _ (_!.- .E_)

I 4>.; :Yj, in terms of {ci, :Yi} corresponding to _p, that is
--J

vj:<<.!.- I ci 4>.), cp.> = o (22)
i -l. -J

This can be rewritten

If we define

N =
<!1' .11>
<!1' .12>

<!1' .iu>

<f, 4>.>
-J

<_12' .11>
<iz' .1z>

j=1,2, ••• ,n

<.1n' .11 >
<.iu' .1z>

<4>,4>> -n -n

(23)

<f' !1>
u = <!_, !2>

" c =

then (23) becomes

<f' 4> > - -n

c1
" c2

" c
n

13

N c = u (24)

the normal equations (!- ~ is normal or orthogonal to S). In fact if we

define

then N = ~T ~ and u = ~T f so that

" N-1 c = u =

which was equation (7). The approximant~ is then

and the residual vector is

T -1 T v = ! - ~ = ! - ! .§. = ! - ! (_! _!) ! i

(25)

(26)

(27)

(28)

Note that v 1 ~· This follows from the projection theorem, where

v = (!- ~) 1 S, that is~ is orthogonal to all vectors in S, in particular

the column vectors of ~ (which generate S). Thus v is orthogonal to~ which

is a linear combination of _!, and hence also lies in S. Thus the projection

theorem (or LSA or LLSPA) decomposes f into two orthogonal components £ (the

orthogonal projection of f onto S) and v (the perpendicular from! to S).

14

To compute something akin to the spectral value, we must perform a

second orthogonal projection. However, this one is simpler. So far we have

projected f onto the manifold S, in which case many projections are

possible, and we used the minimum norm, or perpendicularity condition to

select the one we want. For the second projection, we simply project~ back

onto f.

Figure 2.

Figure 3 illustrates this for the simple case corresponding to

The length of this orthogonal projection is, from (18)

<!_, .£.>

11!11
The ratio of the length of this orthogonal projection to the length of f is,

from (19)

---=--
<:!_, f) fT f

(29)

This then is a measure of the fractional part of f which is represented by

Since ..E. is a special element of S (the orthogonal projection of !

onto S), this ratio also tells us something about how much of f is

"contained" in s. The "closer" to S that! lies, the closer to 1 will the

ratio (29) become. If f lies in S, the ratio is 1. If f is orthogonal to

S, the ratio is 0.

Now let us apply this to spectral analysis. For each spectral

frequency w., j=1,m, we have a different manifoldS spanned by
J

[cos w.t, sin w.t]
J J

(30)

Consequently, the orthogonal projection p{w.) of f onto S will be different
-:- J - •

for each wj" Due to the properties of the ratio (29) described above, we

choose that ratio to be the least-squares spectral value of f for frequency

15

f

PROJECTION
THEOREM

f- Q

s

FIGURE 2.

SECOND PROJECTION
f - ~ IN SPECTRAL ANALYSIS

FIGURE 3.

16

(31)

The least-squares spectrum of f is the collection of spectral values for all

(desired) frequencies w.,
J

~{w) = {s(w.); j=1,m}
J

LEAST-SQUARES SPECTRAL ANALYSIS WITH KNOWN CONSTITUENTS

(32)

For some applications we can consider a time series as consisting of

two kinds of constituents: those which we are interested in studying (and

having represented in the spectrum), i.e., the signal, and those which we

are not interested in, or which obscure the constituents we want to study,

i.e., the noise. The noise can be either periodic, rendering the series

"coloured" or other, rendering the series non-stationary, or both.

In both cases, we must know something about the constituent in order

to deal with it. Here we restrict ourselves to the case where we know the

noise base functions _!i (t) , but do not know what the magnitude of the

contribution is to the time series; that is if we represent

NK
f{t) = ~ ci _ii(t)

i
(33)

we know i(t) and all the _!i(t), and do not know the coefficients ci. So far

this is similar to the previous case.

Now, however, we partition ! into the known constituents !, and the

spectral functions, cos w.t, sin w.t, we used before, so that
J J

(34)

It was shown by Van{~ek [1971] that the known constituents do not have to be

removed from i before evaluating the spectrum. It speeds the computations

up, however, if the least-squares estimate i = c~ is removed before the

17

spectrum is evaluated. This simply means we decompose !(t) into its

orthogonal projection i £ {c$} and the residual i - p (which is orthogonal

top). We then have the residual time series

~(t) = !(t) - £(t) (35)

and it is this that we compute the spectrum for. We then orthogonally

project ~ onto the manifold M(lb) spanned by !_ = [!, cos wt, sin wt] and

obtain the projection ~ = ~ - i and residual v = ~ - ~ = ! - ~· Note that

whether we project! onto M(!_) directly, or i onto M(!) and then i- £onto

M(!_), we obtain the same final residual. Finally, we orthogonally project~

onto ~ and compute the ratio of the length of the projection to the length

of~ as our spectral value.

In summary:

(a) LSA and LLSPA involve one orthogonal projection: ! onto M(!_)·

(b) LLSA with no known constituents involves two orthogonal projections

(i) i onto M(!_) to obtain ~

(ii) ~onto i to obtain the spectral value.

(c) LSSA with known constituents involves three orthogonal projections

(i) f onto M(!) to eliminate the known constituents and obtain~

(ii) ~ onto M(!_) to obtain r

(iii) r onto~ to obtain the spectral value.

In order to geometrically illustrate the concept of these three

orthogonal projections as in Figure 4, we have to unrealistically restrict !_

to two dimensions. If we let $ = 11 be one dimensional, that leaves only

one dimension, 12 , to represent the spectral functions (of which we have in

actuality two). If we can live with this limitation in order to look at the

three projections conceptually, then the top part of Figure 4 shows the

first and second projections (! onto M(!), and~ onto M(!_)), and the bottom

part of the figure shows the second and third projections (~onto M(!_), and

~onto~).

By analogy with (29) the spectral value is

A

n.=s ~ _,

A

r=~-~

1. f onto

2. g onto

A

i
!

18 ~

SPECTRAl ANAL VSIS
WITH KNOWN
CONSTITUENTS

to obtain g

to obtain r

g-r

r

3. r onto g to obtain spectral value

FIGURE 4.

gT r(w.)
- - J = -;;;T_.......__

1i 1i

19

(36)

where 1i = i - i and E = ~ - i We must compute r(w.) for each spectral
- J

frequency w., however we need compute only once the quantities (from (28))
J

(37)

T
and _a _a. Then the projection of £ onto M(~) has the form

(38)

so that

(39)

T
Now£ ~ can be written

T T
_a ~=_a[!, cos w.t, sin w.t] (40)

J J

T
But£ ! = 0 (£is orthogonal toM(!)), so that

T T T
-g ~ = [0, 0, ••• ,0, ~ cos w.t, g sin w.t]

.s!. J - J
(41)

(39) 2 2 (..,T)-1 Hence in only the south-east by submatrix of .., ~ need be

computed.

T More specifically, denoting!! by A, we have

A
-T

A = u
T v

u -
cc
cs

v

cs
ss

where the NK by NK matrix A !T!, the NK-vectors u and v are given by ~j =

!~NK+l' j = 1,2, ••• ,NK and ~j = !~+Z' j = 1,2, ••• ,NK, and the elements

20

and SS
T

!NK+2!NK+2. (Note that

alternatives to the normal equations such as the Householder transformation

could be used;however, they would probably involve penalties in computation

times over the algorithm we have chosen.) Since the matrix A is positive

definite symmetric, it is most conveniently inverted by the Choleski method.

The residual time series then is ~ = _!_- !<!T!>-l!Ti and its quadratic norm

T T T -1 T
is FNORM = ~~ = ..!_ (.!_- _!(! !) !)..!_.

The orthogonal projection ..E. of ~ onto ~ is r = ~, where the

coefficient vector c satisfies the normal equations Ac = ~, where A = ~T~
T and b = _! ~ are known. T

Then ~..E. T bT = ~TA-1~, d () ~ ~c = _ .£ an .! ~ =

~TA-lb/FNORM. From (2) the first NK components of the (NK+2)-vector ~are
T T

zero, the last two being FCOS = ~!NK+l and FSIN = ~!NK+2 • Hence we really
-1

need only determine the lower right-hand 2 by 2 submatrix of A •

is:

It is easily shown that the lower right-hand 2 by 2 submatrix of A-l

1
DET

[
(SS-VAV),

-(CS-UAV),

-(CS-UAV)J

{CC-UAU)

T -1 T -1 T -1
where UAU = ~! ~, VAV = ~! ~, UAV = ~! ~,and DET = {CC-UAU)(SS-VAV)-

2 (CS-UAV) • Hence the algorithm for computing the spectrum of f is:

s(w) [(SS-VAV)FCOS2-2(CS-UAV)FCOS•FSIN+(CC-UAU)FSIN2]/(DET•FNORM). (42)

RELATIONSHIP TO OTHER SPECTRAL FUNCTIONS

To relate this spectrum to the Fourier spectrum, a basis for other

kinds of spectra, note that in the absence of known constituents UAU = VAV =

21

UAV = 0 and ~ = !_· If the time series is equally spaced and symmetrical

about the time origin, then CS = 0 and s(w) (1/FNORM)[(FCOS2/CC) +

(FSIN2 /SS)]. Letting the time series length increase beyond all limits as

the time series spacing decreases to zero, and introducing the compact

definition of the scalar product,

T co
x y = J x(t) y(t) dt,
-- -Q)- -

then in our notation the square of the absolute value of the Fourier
2 2 2

transform of !_,I C(w) I = (1/21f)(FCOS + FSIN) , can be compared with the

above expression for the least-squares spectrum.

There are other possibilities to define a least-squares spectrum,

namely, s(w) = (a2 + s2)/11!.11 2 , where a, B are evaluated (a) from the

orthogonal projection ~c + acos(wt) + Bsin(wt) of!_ onto M(~), or (b) from

the orthogonal projection acos(wt) + Bsin(wt) of ~ = f - .£. onto the

two-dimensional manifold spanned by {cos(wt), sin(wt)}. In the first case,

the spectrum is not defined for values of w which are present in the known

constituents. The second case (equivalent to the standard Fourier analysis

approach) distorts the spectrum by forcing it to go to zero for the

frequencies present in the known constituents. Both cases are discussed by

Taylor and Hamilton [1972] and neither is found to be advantageous from the

spectral accuracy point of view.

TYPES OF KNOWN CONSTITUENTS

We now turn to the specific software implementation of LSSA

documented in this report. In this software, the known constituent base

functions ~ can be of several types.

(a) <I>(t) = 1 for datum bias. For example, say a tide gauge was

moved twice in 10 years and the times of the move were known, but the

vertical relationship of the different locations was not known. The time

series would look like that shown in the top part of Figure 5. The three

datum bias known constituent base functions in Figure 5 would be used.

f(t)

22

~----~----~------~·
t-. ef 1st t-. ef 2IMI -·-···· ,_ ~

Time Series Containing Datum Biases

Base Functions to Remove Datum Biases

f(t)~t

Time Series Containing linear Trend

8(t)

Base Function to Remove Linear Trend

FIGURE 5.

23

(b) ~(t) = t, for linear trend. For example, say a tide gauge was

situated on a dock which was slowly (or uniformly) sinking into the seabed.

Then the time series would look like that in the bottom part of Figure 5.

The linear trend constituent base function in Figure 5 would be used to

remove this linear trend.

(c) ~ 1 (t) cos !lit

for forced periodic constituents, with

frequencies ll··
1.

For example, we know that a given time series contains the tidal frequencies

M2 and K1 (perhaps from a previous spectral analysis), so we want to remove

these peaks from the spectrum and see what is left.

(d) Ht) = "anything else" for user defined constituents. For

example, instead of a linear trend we may believe that some nonlinear trend

(say exponential) exists.

INPUT AND OUTPUT PARAMETERS

The input parameters for computing the spectrum (5) must specify the

time series, the limits and density of the spectral band to be produced, and

the known constituents $.

The time series is defined by the vectors (Fi, Ti) i=l,2, ••• ,NF where

the values Ti are in units of time, and for SPECUN (the version used for

unequidistant series) are unrestricted as to spacing. For SPECEQ (the

version used for equidistant series) the time series is assumed to consist

of a specific number (NIVL) of subintervals, each of which consists of

equally spaced data points separated by a time increment STEP common to all

subintervals. The subintervals need not be separated by integral multiples

of STEP. Separation of subintervals is specified as detected by the

software when two consecutive elements are not separated by STEP. The value

for STEP is defined by the difference between the first and second elements

in the time series.

24

The spectrum is defined by the vectors (Si' Pi) i=1,2, ••• ,NW, where

the values P. are specified spectral periods in the same units as T., and
1 1

the values Si are the computed spectral values.

The known constituents. Rather than requiring the user to specify

the form of !, it is useful to build some common types of known constituents

into the algorithm leaving the user free to ignore them and specify his own

functions if he so desires. This algorithm, therefore, provides four

optional types of known constituents:

(a) Datum Bias. Let the time series consist of NDAT segments, each

referred to a different datum. Then for NDAT > 1

{0
1

1i (E) =

if t is in the ith datum segment

i=1,2, ••• ,NDAT

otherwise

In the program in this case

NDAT 3 (number of segments of total time series separated by

datum shifts)

DAT(1) t (start time of first datum = start time of time series)
0

DAT(2) = t1 (start time of second datum)

DAT(3) t2 (start time of third datum).

If there are no datum biases we set NDAT = o, and the contents of DAT

are not used. On input to routines SPECUN and SPECEQ, if NDAT is

negative, a warning message is produced, NDAT is set to zero, and the

program continues. If NDAT is positive and DAT(1) f. t , a fa tal
0

message is produced and the program aborts.

(b) Linear Trend. If used, this known constituent is of the form

(c)

~.(t) = t, i = NDAT + 1
-1- -

(LT = 1 if used, LT = 0 otherwise) •

On input to routines SPECUN and SPECEQ, if LT is not either 0 or 1, a

warning message is produced, LT is set to 0, and the program continues.

Forced Periods. For NPER ~ 1 known periods PER. (and frequencies~.=
J J

2~/PERj), the known·constituents are the periodic functions

_!i(~) = cos(~jt)

i NDAT + LT + 2j-1, j=1,2, ••• ,NPER.

25

In the program in this case we set

NPER = 2 (number of frequencies to be removed)

PER(l) = 12.42 hours (for M2) (period of first frequency)

PER(2) 23.93 hours (for K1) (period of second frequency).

If we do not want to remove any periodic constituents before computing

the spectrum we set NPER = 0, and the contents of PER are not used. On

input to routines SPECUN and SPECEQ, if NPER is negative, a warning

message is produced, NPER is set to zero, and the program continues.

On input to routine SPECEQ only, if NPER is greater than the dimension

of the arrays required (NPERDM), a fatal message is produced and the

program aborts.

(d) User-specified. These known constituents are of arbitrary form (for

example, quadratic trend or exponential trend, a numerical function)

chosen by each user

i=NDAT + LT + 2*NPER + j, j=l,2, ••• ,NBASE.

In the example at the end of PART A we set

NBASE = 1 (number of user defined constituents to be removed)

and add the appropriate code in subroutine BASE to implement the

user-defined function. This particular user defined function is an

exponential trend and the code reads:

BASE = EXP(-T/25.).

If there are no user defined constituents to be removed, set NBASE = 0.

On input to routines SPECUN and SPECEQ, if NBASE is negative, a warning

message is produced, NBASE is set to zero, and the program continues.

The total number of known constituents then is:

NK NDAT + LT + 2*NPER + NBASE (43)

which may also equal to 0 (for NDAT LT = NPER NBASE 0).

On input to routines SPECUN and SPECEQ, if (43) is not satisfied, a

warning message is produced, NK is set equal to the right hand side of (43),

and the computation continues. If NK is greater than the dimensions of the

arrays required (NKDIM), a fatal message is produced, and the program

aborts.

26

The next two input parameters, MODE and EQORUN, specify whether a

sequential or batch solution is desired (MODE) and if SPECEQ or SPECUN

should be used. Standard deviations of and correlations between a priori

estimates c are also evaluated from the usual statistical formulae. Their

values are printed if they are considered significant. The significance

level for standard deviations (in percents) is another input parameter,

PCENT; for correlation, the level is called CLEVEL.

Two more statistical parameters are produced by the software: the

mean spectral value for white noise (see Vanf~ek [1971]):

RS = 2/(NF - NK) * 100% (44)

and the critical percentage variance on 95% for detecting statistically

significant peaks in the spectrum [Steeves, 1981]:

RS95 = (1 - nZ/(NF-NK-Z)) * 100% (45)

where n = 0.95. These are printed together with the spectrum.

GENERAL SCALAR PRODUCT ALGORITHM FOR EQUALLY SPACED DATA

The spectrum (5) requires evaluation of the scalar products FNORM,

FCOS, FSIN, CC, CS, SS, and Ui, Vi (i=1,2, ••• ,NK). For an unequally spaced

time series treated by SPECUN, all these scalar P!Oducts must be evaluated

directly from:

(46)

where, for convenience, we now introduce the bracket notation <x, y_>.
Provided that the time series is at least piecewise equally spaced (as

described in the previous section for input to SPECEQ), we can use much more

efficient formulae to evaluate CC, CS, SS and those elements of the vectors

£and~ corresponding to datum bias, linear trend, and forced period known

constituents. However, FNORM, FCOS, FSIN and those elements of £ and V

corresponding to user-defined known constituents must still be evaluated

directly from (44).

27

For convenience we define the function trig(x) as being either cos(x)

or sin(x). We seek, to begin with, an algorithm for the scalar products

<1, trig(wt)> = ET trig(wTi) i=1,2, ••• ,NF.
i

(47)

Direct evaluation requires computing NF trigonometric functional values. We

can reduce this number considerably by applying the identities [Korn and

Korn, 1968, p. 981]:

n
E trig(2ak +b) = [1/sin(a)]* sin(an +a)* trig(an +b). (48)

k=O

Let the jth subinterval of the time series F consist of equally

spaced data points, separated by the time increment STEP, the first data

point occurring at time TA. and the last at time TB .• Then setting
J J

k = (Ti- TAj)/STEP = 0,1, ••• ,n;

n = (TBj - TAj)/STEP;

a = (w/2)*STEP; and

b = w*TA .;
J

we have

TB.
E J trig(wTi) = [1/sin(Q)]* sin(NjQ)* trig(LjQ) (49)

Ti=TAj

where Q = (w/2)*STEP; Nj = 1 + (TBj - TAj)/STEP; and Lj = (TBj + TAj)/STEP.

Summing over the NIVL subintervals in F gives us the scalar product:

NIVL
1

<1, trig(wT)> = sin(Q) E
j=1

(SO)

which requires computing only (2*NIVL+1) trigonometric functional values,

where NIVL is the number of subintervals.

SPECIFIC SCALAR PRODUCT EXPRESSIONS

It now simply remains to reduce the scalar products CC, CS, SS, .!!_,

and V to the form of (SO). Using (46) it is easy to see that CC = (NF/2) +

28

(1/2)* <1, cos2wT>; CS = (1/2)* <1, sin2wT>; and SS

cos2wT> where from (SO) we can see that:

(NF/2) - (1/2)* <1,

NIVL
<1, trig(2wT)> sin(2N.Q)* trig(2L.Q)

J J
(51)

The first NDAT elements of vectors U and V involve constituents of

type (a) (datum biases). Let INTAi and INTBi be the first and last

subintervals referred to the ith datum. Then

1
U i = _s_i_n_Q

j=INTA.
l.

sinN.Q cosL.Q
J J

i=l,2, ••• ,NDAT (52)

l INTBi
vi = sinQ ~

j=INTA.
l.

sinN.Q sinL.Q
J J

If LT ~ O, the next element of U and V involves the known constituent

of type (b) (linear trend). Then

= _a_ <l i _ aQ a
UNDAT+ 1 aw ' s nwT> - aw aQ

VNDAT+l - !__ < 1 coswT> aw ,

After some development, we get

[1_ N~VL sinNJ.Q cosLJ.Q)
\inQ j=l

(53)

.(54)

STEP 1 NIVL . .
UNDAT+l = --2------i Q ~ -cotQsi.nN.Qsi.nL.Q+N.cosN.QsinL.Q+L.sinN.QcosL.Q (55)

s n j=l J J J J J J J J

STEP 1 NIVL
VNDAT+l = --2---r--Q ~ +cotQsinN.QcosL.Q-N.cosN.QcosL.Q+L.sinN.QsinLjQ .(56)

s n J=l J J J J J J J

The next (2*NPER) elements of U and V involve constituents of type

(c) (forced periods). Using (46), it is easy to see that:

29

1 1
Ui = 2 <1, cos(~k + w)T> + 2 <1, cos(~k - w)T> (57)

1 1
Ui+1 = 2 <1, sin(~k + w)T> + 2 <1, sin(~k- w)T> (58)

1 1 Vi = 2 <1, sin(~k + w)T> - 2 <1, sin(~k - w)T> (59)

1 1
Vi+1 = - 2 <1, cos(~k + w)T> + 2 <1, cos(~k - w)T> (60)

i NDAT + LT + 2*k-1

k 1,2, ••• ,NPER.

Letting Pk = (~k/2)*STEP, we see from (50) that

<1, trig(~k ± w)T>
l NIVL

~--;o=--:---=-'•' L sin(Pk ± Q) j=1

We note that the functions of sums of angles in (51) and (61) can be

expressed in terms of functions of angles only. Hence the scalar products

CC, CS, SS and those elements of Q, ! which refer to known constituents of

types (a), (b), and (c) can be computed from the (2*NPER + 4*NPER*NIVL)

functions trig(Pk)' trig(NjPk)' trig(LjPk) (which need only be computed once

for a given !) and from the (2 + 4*NIVL) functions trigQ, trig(N.Q),
J

trig(L.Q) (which must be computed for each desired spectral frequency w).
J

EXAMPLES

As a model of many time series encountered in practice, we have

generated the following time series:

5
f(t) = ci + O.Olt + 3*exp(-t/25) + L (ajcos~jt + bjsin~jt) , (62)

j=l

(where t is in years) that may represent a typical, say geophysical,

(coloured) time series. Three hundred values of f were generated spanning

50 years and grouped into four subintervals consisting of equally spaced

data, that is t E Dk' k=1,2,3,4, where

30

D1 - [0.1, 0.2, ... ' 10.0] years (100 values)

D2 - [20.1, 20.2, ... ' 25.0] years (50 values)

D3 - [28.1, 28.2, ... ' 40.0] years (120 values)

D4 - [47.1, 47.2, ... ' 50.0] years (30 values)

The datum biases were c1 = 1, t £ D1; c = -1 t £ D2; and c = 3, t £ D3' 2 , 3
D4. The amplitudes and periods of the trigonometric terms were a. = 1/2, 1,

J
0, 1.2, - 1.4; b.= 1, 1/2, 1, -1, O· and p. = 2Tr/)l. (2.759, 3.636, 5.714,

J
,

J J
40, 16) years. The graph of this time series is shown in Figure 6.

The time series (62) was analysed using both SPECEQ and SPECUN. In

addition, a second unequally spaced time series was generated from (62) by

adding to the linearly increasing t a sinusoidal variation of period 50

years and amplitude 0. 5 years. The second time series was analysed using

SPECUN only.

Nine runs were made for each of these three analyses, increasing the

number of known constituents from zero to 15. The SPECEQ results are shown

in Figure 7. The top four spectra illustrate the influence the datum biases

and the linear and exponential trends, and their removal, have on the

spectra. The next four spectra illustrate how the technique can be used in

searching for hidden periodicities. By suppressing the effect of the

periodic constituent which was the most prominent in the previous run, we

enhance the remaining peaks, revealing the existence of "weaker" periodic

constituents. The ninth run suppressed the effect of all constituents of

(62), in which case the residual time series consisted of round-off error

only, no spectrum was computed, and, as expected, the computed amplitudes of

the known constituents agreed within round-off with those used in (62). The

SPECUN generated results were identical to the SPECEQ generated results. As

expected for the unequally spaced SPECUN results, the computed amplitudes of

the known constituents and the height of the spectral peaks differed

slightly from the equally spaced analyses. However, there was no shift in

the position of the spectral peaks.

The execution times of Table 1 were obtained using the FORTRAN 77

compiler on an IBM 3081 computer. The equally spaced SPECEQ and unequally

spaced SPECUN execution times were essentially equal for small numbers of

5

0

0

JJ£2
~rJ\r '\,
~DATUM3 v

10 20 30 40 50
TIME <years)

Figure 6. Graph of test time series of 300 values generated by Equation (62).

w
t-'

KNOWN CONSTITUENTS

NK ' NDAT : L T NBASE NPER ' f-----.---i ---,------·----+---·-

0 0 0 0 0

3 3 0 0 0

4 3 0 0

32

RESIDUAL
NORM
grg_

5000

700

620
- --~---~-·--

5 3 0 600

3

II 3 6 23

13 3

15 3 I 10

SPECTRA

Ai

8'

C'

i
I
I

Hi

0 0.25 0.5
FREQUENCY (cycles/year)

Figure 7. Results from nine runs of program SPECEQ, analyzing
the time series of Figure 6. The number of known constituents
suppressed in each run are specified by NK, NDAT, LT, NEASE,
and NPER, respectively, giving the total number of constituents,
the number of datum biases, the linear trend, the number of user­
defined constituents, and the number of forced periods.

33

TABLE 1

IBM 3081 CPU Times for Test Time Series Containing 300 Values.

-
Number of
Known CPU Times (sec)
Constituents
NK SPECEQ SPEC UN

0 5. 77 5.83

3 5.82 6.95

4 6.04 7.32

5 6. 72 8.19

7 6.90 10.23

9 7.04 12.19

11 7.28 14.22

13 7.53 16.35

34

constituents. However, for longer time series and larger numbers of

constituents the difference in execution times increases considerably in

favour of equally spaced execution time.

REFERENCES

Bendat, J.S. and A.G. Piersol (1971). Random Data: Analysis and Measurement

Procedures. Wiley, New York.

Korn, G.A., and T.M. Korn (1968). Mathematical Handbook for Scientists and

Engineers. 2nd ed., McGraw-Hill, Toronto.

Kreyszig (1978). Introductory Functional Analysis with Applications.

Wiley.

Luenberger (1969). Optimization by Vector Space Methods. Wiley.

Maul, G.A. and A. Yanaway (1978). "Deep sea tides determination from

GEOS-3." NASA Contractor Report 141435, NOAA Atlantic Oceanographic

and Meteorological Laboratories, Miami, FL.

Oden, J.T. (1979). Applied Functional Analysis. Prentice-Hall.

Steeves, R.R. (1981). "A statistical test for significance of peaks in the

least squares spectrum." Collected Papers, Geodetic Survey,

Department of Energy, Mines and Resources. Surveys and Mapping

Branch, Ottawa, pp. 149-166.

Taylor, J. and s. Hamilton (1972). "Some tests of the Vanicek method of

spectral analysis." Astrophysics and Space Science, 17, pp. 357-367.

Vanicek, P. (1971). "Further development and properties of the spectral

analysis by least squares." Astrophysics and Space Science, 12, pp.

10-73.

Vanicek, P. and E.J. Krakiwsky (1982). Geodesy: The Concepts. North

Holland, Amsterdam.

35

Vanicek, P. and D.E. Wells (1972). "The least-squares approximation and

related topics." Department of Surveying Engineering Lecture Notes

22, University of New Brunswick, Fredericton, N.B., Canada.

Wells, D.E. and E.J. Krakiwsky (1971). "The method of least-squares."

Department of Surveying Engineering Lecture Notes 18, University of

New Brunswick, Fredericton.

36

37

PART B

USER'S GUIDE AND PROGRAM LISTINGS

38

INTRODUCTION

This version of the Least-Squares Spectral Analysis software has been

modified from the version published with the original version of this

report. Some modifications were made to correct errors in the original

version. Other modifications were made to expand the information provided

on output.

39

STRUCTURE OF THE SOFTWARE

The software has been modularized into 16 routines, shown in Figure 1.

Three of these specify the input:

TSPEC

TIMSER

DRIVER

Main program. Calls TIMSER, DRIVER and FPLOT.

Reads input time series.

Calls SPECUN or SPECEQ.

Five of these compute the known constituents, the spectrum, and the residual

time series

SPEC UN

SPECEQ

BASE

RESID

CHOLS

EPS

Computes least squares spectrum of unequally-spaced time

series.

Computes least squares spectrum of equally-spaced time

series.

Computes known constituent functional values.

Computes residual time series after removing known

constituents.

Inverts matrix in place using Cholesky decomposition.

Determines smallest E such that 1 + E is distinguishable from

1.

Four of these report the results on the lineprinter:

FPLar

AMPL

AMP HAS

COVAR

SPLar

ERROR

Plots input time series.

Lists sine and cosine least-squares estimated coefficients of

known constituents.

Lists least-squares estimated amplitude and phase (and their

standard deviations) of known constituents.

Lists covariance matrix of unknown constituents.

Plots output spectrum.

Prints error message. Stops if fatal error.

The central routine is either SPECUN or SPECEQ.

parameter list:

Both have the following

T input vector of time series times {t.}
1

F = input vector of time series values {fi}

NF

FNORM

NK

output vector of residual time series values {gi}

input length of T and F
T

output ~ _K

input total number of known constituents to be removed from F

INPUT f(t)

FIGURE 1

TSPEC

DRIVER. I

I
LIST g(t)

LIST SIGNIF II PLOT s(w)
COV ELEMS.

MESSAGE

~
0

41

DAT input vector of time new datum bias begins

NDAT = input number of datum biases (length of DAT)

LT = input linear trend switch

PER input forced periods

NPER input number of forced periods (length of PER)

NBASE input number of user defined constituents

c = output vector of amplitudes (coefficients) of removed known

constituents c. NK values.

P = input vector of periods for which spectral values will be

computed

S output vector of spectral values

NW input length of P, S.

IB = input spectral band label. If only one spectral band is to

be computed, set IB = 1. If more than one spectral band is

to be computed from same time series, set IB = 1 for first
T band, during which ~ and ~ ~ are computed. For subsequent

T
bands set IB > 1, and the previous values of ~ and ~ ~ are

used, rather than recomputing.

Thus SPECUN and SPECEQ accept inputs specifying

(a)

(b)

the time series {ti, fi}, i=1,2, ••• ,NF

the known constituents ~.(t), i=1,2, ••• ,NK to be removed from
-1

f

(c) the periods Pi' i=1,2, ••• ,NW for which spectral values are

wanted

and provides outputs specifying

SPECEQ

(a)

(b)

(c)

has

(a)

(b)

the residual time series {gi} i=1,2, ••• ,NF and its norm gT~
the amplitudes of the known constituents {c.} i=1,2, ••• ,NK

1

the spectral values {s.}, i=1,2, ••• ,NW.
1

four main blocks of code:

error checking

identification of equally spaced subintervals, and

precomputation of trigonometric functions

(c) computation of~ and gT~ (done by subroutine RESID)

(d) computation of s(w.) = gT r(w.)/gTg for each wJ .•
J - - J --

SPECUN omits the second of these four blocks of code.

42

MODIFYING THE SOFTWARE

The only routines that need be changed to accommodate new time

series, known constituents, or spectral periods are

TSPEC (main)

TIMSER

DRIVER

SPEC UN

BASE

(a) The only change to BASE is to add more user defined base functions, if

required.

(b) The only change to SPECUN is to redimension the following arrays if

there are more than 15 known constituents (NK > 15):

A(NK,NK)

B(NK)

U(NK)

V(NK)

reset NKDIM = NK

(c) The only changes to TSPEC (Main) are as follows:

Redimension FF(NF), T(NF) if NF > 500

Redimension PER(NPER) if NPER > 5

Redimension DAT(NAT) if NDAT > 3

(d) DRIVER generates the input specification of the periods for which

spectral values are wanted, and passes the parameters P, NW, IB to SPECUN.

If these are to be changed then the parameters PL, PS, NW, and IB in the

DATA statement must be changed.

In addition, DRIVER must be changed under the following

circumstances:

Redimension F(NF) for NF > 500

Redimension P(NW), S(NW) for NW > 500

Redimension C(NK) for NK > 15

(e) TIMSER generates the inputs specifications for

(i) the time series, passing T, F, NF to SPECUN

(ii) the known constituents to be removed, passing DAT, NDAT, LT,

PER, NPER, NBASE, to SPECUN.

If the time series is to be read in as data, replace the DO 10 loop

in TIMSER by a READ statement. If a different artificial time series is to

43

be generated by TIMSER, change the vectors A, B,C, P, NB, NE, IVL and the

scalars NIVL and STEP to appropriate values, taking care to redimension as

required.

If different known constituents are to be removed (including none to

be removed) change DAT, NDAT, LT, PER, NPER, and NBASE as required. Take

care to redimension DAT(NDAT) and PER(NPER) in TSPEC as required.

General redimensioning rules are, for TIMSER, to redimension

C(NK) if NK > 5

A(NPER), B(NPER), P(NPER) if NPER > 5

IVL(NDAT+l), NB(NDAT+l), NE(NDAT+l) if NDAT > 3.

44

PROGRAM TSPEC
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CHARACTER +2 EQORUN
CHARACTER +5 MODE .
DIMENSION DAT(3), FF(500), PER(6),
DATA IPR /6/

T(500)

TSPE 001
TSPE 002
TSPE 003
TSPE 004
TSPE 006
TSPE 006

C TSPE 007
C FUNCTION: TSPEC CALLS TIMSER TO GENERATE TEST TI~E SERIES TSPE 008
C AND CALLS DRIVER TO COMPUTE SEVERAL TSPE 009
C LEAST SQUARES SPECTRA OF THE TEST TSPE 010
C TIME SERIES TSPE 011
C TSPE 012
C UNIT NUMBER: IPR = 6 = LISTING OF INPUT AND OUTPUT TSPE 013
C TSPE 014
C EXTERNALS: DRIVER,FPLOT,TIMSER TSPE 016
C TSPE 016
C SUMMARY: TSPE 017
C CALL TIMSER TSPE 018
C CALL FPLOT TO PLOT INPUT TIME SERIES TSPE 019
C CALL DRIVER ADDING DATUM BIAS, LINEAR TREND, USE.R-DEFINED TSPE 020
C CONSTITUENTS AND FORCED FREQUENCIES SIMULTANEOUSLY (MODE=BATCH)TSPE 021
C CALL DRIVER WITH NO KNOWN CONSTITUENTS TSPE 022
C CALL DRIVER ADDING DATUM BIAS CONSTITUENTS TSPE 023
C CALL DRIVER ADDING LINEAR TREND CONSTITUENT TSPE 024
C CALL DRIVER ADDING USER-DEFINED CONSTITUENTS TSPE 026
C CALL DRIVER ADDING ONE FORCED FREQUENCY AT A TI~IE TSPE 026

CALL TIMSER(T, FF, NF, OAT, MOAT, MT, PER, MPER, MBASE, MODE, TSPE 027
$ EQORUN, PCENT, CLEVEL) TSPE 028

CALL FPLOT(T, FF, NF, OAT, MOAT, EQORUN, IPR) TSPE 029
IF (MODE .EQ. 'SQNTL') GO TO 1 - TSPE 030
IF (MODE . E~. 'BATCH') TSPE 031

$CALL DRIVER(T, FF, NF, OAT, MOAT, MT, PER, MPE.R, MBASE, IPR, TSPE 032
$ EQORUN, PCENT, CLEVEL) TSPE 033

STOP TSPE 034
1 NDAT = 0 TSPE 036

L T = 0 TSPE 036
NBASE = 0 TSPE 037
NPER = 0 TSPE 038
CALL DRIVER(T, FF, NF, OAT, NDAT, LT, PER, NPER, NBASE, IPR, TSPE 039

$ EQORUN, PCENT, CLEVEL) TSPE 040
IF (MOAT . EQ. 0) GO TO 5 TSPE 041
NDAT = MOAT TSPE 042
CALL DRIVER(T, FF, NF, OAT, NDAT, LT, PER, NPE.R, NBASE, IPR, TSPE 043

$ EQORUN, PCENT, CLEVEL) TSPE 044
5 IF (MT . EQ. 0) GO TO 10 TSPE 046

LT = MT TSPE 046
CALL DRIVER(T, FF, NF, OAT, NDAT, LT, PER, NPER, NBASE, IPR, TSPE 047

$ EQORUN, PCENT, CLEVEL) TSPE 048
10 IF(MBASE .EQ. 0) GO TO 15 TSPE 049

NBASE = MBASE TSPE 060
CALL DRIVER(T, FF, NF, OAT, NDAT, LT, PER, NPE.R, NBASE, IPR, TSPE 051

$ EQORUN, PCENT, CLEVEL) TSPE 052
15 IF (MPER . EQ. 0) GO TO 26 TSPE 053

DO 20 NPER = 1, MPER TSPE 054
20

$
CALL DRIVER(T, FF, NF, OAT, NDAT, LT, PER, NPER, NBASE, IPR, TSPE 055

25 STOP
END

EQORUN, PCENT, CLEVEL) TSPE 056
TSPE 057
TSPE 058

45

SUBROUTINE AMPL(A, NF, NK, FNORM, OAT, NDAT, LT, PER, NPER,
$ NBASE, C, IPR)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(100,100), C(1), DAT(1), PER(1)
DATA PI/3.141592653589793DO/

c
C FUNCTION:
c

AMPL LISTS PRELIMINARY COSINE AND SINE
COEFFICIENTS.

c
c
c
c
c
c
c
c
c
c
c
c
c
c

CALLED FROM: DRIVER

ARGUMENTS: A INVERTED MATRIX OF NORMAL EQUATIONS
TOTAL NUMBER OF KNOWN CONSTITUENTS

= TIMES NEW DATUM BEGINS
NK
DAT(NDAT)
LT
PER(NPER)
NBASE
C (NK)

IPR

= LINEAR TREND SWITCH (1 =·INCLUDED)
= FORCED PERIODS
= NUMBER OF USER-DEFINED CONSTITUENTS
= PRELIMINARY AMPLITUDES OF KNOWN

CONSTITUENTS
= UNIT NUMBER FOR OUTPUT

EXTERNALS: DSQRT, DATA2, DMOD
WRITE(IPR,1001) NDAT,LT,NPER,NPER,NPER,NBASE
IF(NDAT .GE. 1) WRITE(IPR,1002) (K,C(K),K=1,NDAT)
K = NDAT + 1

$
$

$
$
$

IF(LT .EQ. 1) WRITE(IPR,1003) K,C(K)
IF(NPER .EQ. 0) GO TO 10
DO 5 I= 1, NPER

K = NDAT + LT + 2 + I - 1
K1 = K + 1
AMP = DSQRT(C(K)+C(K) + C(K1)+C(K1))
GPL = DATAN2(C(K1),C(K)) + 180.DO /PI
GPL = DMOD(GPL + 360.DO, 360.DO)
ESTSD = DSQRT(FNORM / (NF - NK))
SIGAMP = DSQRT(C(K) + C(K) + A(K,K) + C(K1) + C(K1) +

A(K1,K1) + 2.DO + C(K) + C(K1) + A(K,K1)) +
ESTSD I AMP

SIGPL = DSQRT(C(K1~ + C~K1) + A(K,K) +
C(K) + C(K + A K1,K1) -
2.DO + C(K + C K1) + A(K,K1)) +
(ESTSD I (AMP • AMP)) • (180.DO I PI)

WRITE(IPR,1004) K,K1,PER(I),C(K),C(K1),AMP,SIGAMP,GPL,SIGAPL
5 CONTINUE

10 IF(NBASE .EQ. 0) RETURN
DO 15 I = 1,NBASE

15
K = NDAT + LT + 2 + NPER + I
WRITE(IPR,1005) K, C(K)

RETURN
1001 FORMAT(1H1,2X,31HSOLUTION FOR KNOWN CONSTITUENTS,///.

$ 14X,5HDATUM,4X,6HLINEAR,4X,6HFORCED,4X,6HCOSINE,6X,
$ 4HSINE,8X,4HUSER./,15X,4HBIAS,5X,5HTREND,
$ 4X,6HPERIOD,4X,4HTERM,8X,4HTERM,5X,7HDEFINED,2X,
$ 9HAMPLITUDE,3X,7H(SIGMA),4X,5HPHASE,2X,7H(SIGMA),j/,
$ 2X,6HNUMBER,5X,I5,5(7X,I3),//)

1002 FORMAT~7X,I3,E11.3)
1003 FORMAT 7X,I3,10X,E11.3)
1004 FORMAT 3X,I3,1H-,I3,18X,F11.3,2E11.3,10X,E10.3,1X,1H(,E10.3,

$ 1H),1X,F6.2,1X,1H(,F6.2,1H))
1005 FORMAT(7X,I3,51X,E11.3)

END

AMPL 001
AMPL 002
AMPL 003
AMPL 004
AMPL 005
AMPL 006
AMPL 007
AMPL 008
AMPL 009
AMPL 010
AMPL 011
AMPL 012
AMPL 013
AMPL 014
AMPL 015
AMPL 016
AMPL 017
AMPL 018
AMPL 019
AMPL 020
AMPL 021
AMPL 022
AMPL 023
AMPL 024
AMPL 025
AMPL 026
AMPL 027
AMPL 028
AMPL 029
AMPL 030
AMPL 031
AMPL 032
AMPL 033
AMPL 034
AMPL 035
AMPL 036
AMPL 037
AMPL 038
AMPL 039
AMPL 040
AMPL 041
AMPL 042
AMPL 043
AMPL 044
AMPL 045
AMPL 046
AMPL 047
AMPL 048
AMPL 049
AMPL 050
AMPL 051
AMPL 052
AMPL 053
AMPL 054
AMPL 055
AMPL 056
AMPL 057
AMPL 058
AMPL 059
AMPL 060

c

46

DOUBLE PRECISION FUNCTION BASE(!, T, OAT, NDAT, LT, PER, NPER)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION DAT(1), PER(1)
DATA PII3.141592653589793DOI

C FUNCTION: BASE COMPUTES KNOWN CONSTITUENT FUNCTIONAL
C VALUES.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

CALLED FROM: RESID

ARGUMENTS: I INDEX OF KNOWN CONSTITUENT TO BE COMPUTED
TIME AT WHICH KNOWN CONSTITUENT COMPUTED
INPUT TIMES NEW DATUM BEGINS

T
DAT(NDAT)
LT
PER(NPER)

INPUT LINEAR TREND SWITCH (1 = INCLUDED)
INPUT FORCED PERIODS

EXTERNALS: DCOS, DEXP. DSIN

LIMITATION: USER MUST SUPPLY CODING TO COMPUTE EACH
USER-DEFINED CONSTITUENT. AS AN EX~MPLE,
THIS VERSION CONTAINS THE EXPONENTIAL
TREND EXP(-TI25).

DATUM BIAS
IF(I .GT. NDAT) GO TO 5

$

BASE = 1. ODO
IF(I .EQ. NDAT
IF(I .LT. NDAT

BASE= O.ODO
RETURN

.AND. T .GE. DAT~I)) RETURN

.AND. T .GE. OAT I)

.AND. T .LT. OAT I+1)) RETURN

C LINEAR TREND

c

5 IF(I .GT. NDAT + LT) GO TO 10
BASE = T
RETURN

C FORCED PERIODS

c

10 IF(I .GT. NDAT + LT + 2 + NPER) GO TO 20
IND = (I - NDAT - LT + 1) I 2
IF(I - NDAT - LT .EQ. IND + 2) GO TO 15
BASE= DCOS(2.DO + PI + T I PER(IND))
RETURN

15 BASE= DSIN(2.DO + PI + T I PER(IND))
RETURN

C EXPONENTIAL TREND

c

20 IF(I .GT. NDAT + LT + 2 + NPER + 1) GO TO 25
BASE = DEXP(-T I 25.00)
RETURN

C ADD ADDITIONAL USER-DEFINED FUNCTIONS HERE
25 BASE ;:: O.DO

RETURN
END

BASE 001
BASE 002
BASE 003
BASE 004
BASE 005
BASE 006
BASE 007
BASE 008
BASE 009
BASE 010
BASE 011
BASE 012
BASE 013
BASE 014
BASE 015
BASE 016
BASE 017
BASE 018
BASE 019
BASE 020
BASE 021
BASE 022
BASE 023
BASE 024
BASE 025
BASE 026
BASE 027
BASE 028
BASE 029
BASE 030
BASE 031
BASE 032
BASE 033
BASE 034
BASE 035
BASE 036
BASE 037
BASE 038
BASE 039
BASE 040
BASE 041
BASE 042
BASE 043
BASE 044
BASE 045
BASE 046
BASE 047
BASE 048
BASE 049
BASE 050
BASE 051
BASE 052
BASE 053
BASE 054
BASE 055

c

47

SUBROUTINE CHOLS(A, IRDA, NA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(IRDA, NA)
DATA ROUND 1500.001

C FUNCTION:
c

CHOLS INVERTS MATRIX A IN PLACE
USING CHOLESKY DECOMPOSITION

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

CALLED FROM: RESID

ARGUMENTS: A(IRDA,NA) ARRAY CONTAINING POSITIVE DEFINITE
SYMMETRIC INPUT MATRIX, WITH ROW DIMENSION
IRDA. THE INPUT MATRIX SIZE IS (NA,NA)
AND IS INVERTED IN PLACE, DESTROYING THE
INPUT, RETURNING THE INVERSE.

EXTERNALS: EPS, ERROR, DSQRT

ERROR
101
102
103

CONDITIONS:
=FATAL. DIMENSION OF A .LT. 1
=FATAL. NEGATIVE SQUARE ROOT. A PROBABLY SINGULAR.

FATAL. DIAGONAL ELEMENT OF CHOLESKI DECOMPOSITION
NEGLIGIBLY SMALL COMPARED TO DIAGONAL ELEMENT OF A.
A PROBABLY SINGULAR.
("NEGLIGIBLY SMALL" MEANS LESS THAN EPS+RGUND,
WHERE EPS IS THE SMALLEST NUMBER SO THAT
1. + EPS .GT. 1., AND ROUND ACCOUNTS FOR
ACCUMULATED ROUNDOFF)

MATRIX DIMENSION CHECK
IF (NA . LT. 1) CALL ERROR(101)

C INVERSION OF 1X1 MATRIX
IF(NA .GT. 1) GO TO 5
A(1,1) = 1.0DO I A(1,1)
RETURN

c
C CHOLESKI DECOMPOSITION OF INPUT MATRIX

5 A(1,1) = DSQRT(A(1,1))

c

DO 10 I = 2, NA
10 A(I,1) = A(I,l) I A(1,1)

DO 30 J = 2, NA
SUM = O.ODO
DO 15 K = 2, J

15 SUM = SUM + A(J,K-1) ++ 2
IF(A(J,J) .LT. SUM) CALL ERROR(102)
SUM= DSQRT(A(J,J) -SUM)
IF(SUMIA(J,J) .LT. EPS(ARG)+ROUND) CALL ERROR(103)
A(J,J) = SUM
IF(J .EQ. NA) GO TO 30
J2 = J + 1
DO 25 I = J2, NA

SUM = O.ODO
DO 20 K = 2, J

20 SUM= SUM+ A(I,K-1) + A(J,K-1)
25 A(I,J) = (A(I,J) - SUM) I A(J,J)
30 CONTINUE

C INVERSION OF LOWER TRIANGULAR MATRIX
DO 35 I = 1, NA

35 A(I,I) = 1.0DO I A(I,I)

CHOL 001
CHOL 002
CHOL 003
CHOL 004
CHOL 005
CHOL 006
CHOL 007
CHOL 008
CHOL 009
CHOL 010
CHOL 011
CHOL 012
CHOL 013
CHOL 014
CHOL 015
CHOL 016
CHOL 017
CHOL 018
CHOL 019
CHOL 020
CHOL 021
CHOL 022
CHOL 023
CHOL 024
CHOL 025
CHOL 026
CHOL 027
CHOL 028
CHOL 029
CHOL 030
CHOL 031
CHOL 032
CHOL 033
CHOL 034
CHOL 035
CHOL 036
CHOL 037
CHOL 038
CHOL 039
CHOL 040
CHOL 041
CHOL 042
CHOL 043
CHOL 044
CHOL 045
CHOL 046
CHOL 047
CHOL 048
CHOL 049
CHOL 050
CHOL 051
CHOL 052
CHOL 053
CHOL 054
CHOL 055
CHOL 056
CHOL 057
CHOL 058
CHOL 059
CHOL 060
CHOL 061

48

DO 45 J = 2. NA CHOL 062 DO 45 I = J, NA CHOL 063
SUM = O.ODO CHOL 064
DO 40 K = J, I CHOL 065 40 SUM = SUM + A(I,K-1) + A(K-1,J-1) CHOL 066 45 A(I,J-1) = - A(I.I) + SUM CHOL 067 c CHOL 068 c CONSTRUCTION OF INVERSE OF INPUT MATRIX CHOL 069

DO 65 J = 1, NA CHOL 070 IF (J .EQ. 1) GO TO 55 CHOL 071
DO 50 I = 2, J CHOL 072 50 A(I-1,J) = A(J,I-1) CHOL 073 55 DO 65 I = J, NA CHOL 074

SUM = 0.000 CHOL 075
DO 60 K = I, NA CHOL 076 60 SUM= SUM+ A(K,I) + A(K,J) CHOL 077 65 A(I,J) = SUM CHOL 078 RETURN CHOL 079 END CHOL 080

c

49

SUBROUTINE COVAR(FNORM, NF, NK, A, C, PCENT, CLEVEL, IPR)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(100,1), COV(1,1), C(1)

C FUNCTION: COVAR COMPUTES THE VARIANCE-COVARIANCE MATRIX
C OF THE UNKNOWN CONSTITUENTS, THE CORRELATION
C MATRIX AND PRINTS RESULTS.
c
C CALLED FROM: DRIVER
c
C EXTERNALS: DS~RT, DABS
c

IF (NK .LE. 0) RETURN
c
C COMPUTE THE STANDARD DEVIATIONS STD, CHECK IF
C EXCEED PCENT+C(I) AND PRINT ALL OUTSTANDING
C STANDARD DEVIATIONS

c

SIGMA2 = FNORM I (NF - NK)
WRITE (IPR,1000) PCENT
NSTD = 0
DO 25 I = 1, NK

STD = DS~RT(SIGMA2 + A(I,I))
IF (STD .LT. DABS(PCENT+C(I) I 100.0DO)) GO TO 25
WRITE (IPR,1001) I, STD
NSTD = NSTD + 1

25 CONTINUE
IF(NSTD .E~. 0) WRITE (IPR, 1004)

C CHECK IF ANV CORRELATION EXCEEDS CLEVEL AND PRINT
C ALL OUTSTANDING CORRELATIONS

WRITE(IPR,1002) CLEVEL
NLEVEL = 0
DO 35 I= 1, NK

DO 30 J = 1, NK
IF(I .GE. J~ GO TO 30
COR= A(I,J / DS~RT(A(I,I) + A(J,J))
IF(DABS(COR .LT. CLEVEL) GO TO 30
WRITE (IPR,1003) I, J, COR
NLEVEL = NLEVEL + 1

30 CONTINUE
35 CONTINUE

IF(NLEVEL .E~. 0) WRITE (IPR, 1004)
1000 FORMAT(1H1, 5X,

$ 53HOUTSTANDING STANDARD DEVIATIONS OF KNOWN CONSTITUENTS
$,j,5X,12H(LARGER THAN, 1X, F5.1, 1X,
$ 25H% OF ESTIMATED MAGNITUDE),//. 5X, 6HNUMBER,
$ 2X, 18HSTANDARD DEVIATION,/)

1001 FORMAT(6X, I3, 9X, E9.3) .
1002 FORMAT(1H1, 5X,

$ 51HOUTSTANDING CORRELATIONS BETWEEN KNOWN CONSTITUENTS,/,
$ 5X, 30H(LARGER IN ABSOLUTE VALUE THAN, 1X, F4.2,1H),f/,
$ 6X,6HNUMBER, 6X, 11HCORRELATION,/)

1003 FORMAT(5X, I3, 1H-, I3, 5X, F11.8)
1004 FORMAT(10X, 14HNONE WAS FOUND)

END

COVA 001
COVA 002
COVA 003
COVA 004
COVA 006
COVA 006
COVA 007
COVA 008
COVA 009
COVA 010
COVA 011
COVA 012
COVA 013
COVA 014
COVA 015
COVA 016
COVA 017
COVA 018
COVA 019
COVA 020
COVA 021
COVA 022
COVA 023
COVA 024
COVA 025
COVA 026
COVA 027
COVA 028
COVA 029
COVA 030
COVA 031
COVA 032
COVA 033
COVA 034
COVA 036
COVA 036
COVA 037
COVA 038
COVA 039
COVA 040
COVA 041
COVA 042
COVA 043
COVA 044
COVA 045
COVA 046
COVA 047
COVA 048
COVA 049
COVA 050
COVA 051
COVA 052
COVA 053
COVA 054
COVA 056

50

SUBROUTINE DRIVER(T, FF, NF, OAT, NDAT, LT, P~R. NPER,
$ · EQORUN, PCENT, CLEVEL)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION A 100,100), C(100), DAT(1), F(2000),
CHARACTER +2 E~ORUN

$ P 2000), PER(1), S(2000), T(1)
DATA PL/ 200.00/,

$ PS/ 2.00/,
$ NW/125/,
$ IB/ 1/

c
C FUNCTION:
c

DRIVER CALLS SPECEQ OR SPECUN TO COMPUTE A
LEAST SQUARES SPECTRUM (P,S) FOR THE INPUT
TIME SERIES (T,F). c

c
c
c
c
c
c

CALLED FROM: TSPEC

ARGUMENTS: T(NF) = INPUT TIME SERIES TIMES
FF(NF) = INPUT TIME SERIES VALUES

NBASE,

FF (1),

c
DAT(NDAT) INPUT TIMES NEW DATUM BEGINS
LT = INPUT LINEAR TREND SWITCH (1 = INCLUDED)

c PER(NPER) = INPUT FORCED PERIODS
c NBASE = NUMBER OF USER-DEFINED CONSTITUENTS
c IPR UNIT NUMBER FOR OUTPUT

IPR,DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV

c EQORUN = FLAG FOR EQUALLY OR UNEQUALLY SPACED SERIES
DRIV
DRIV
DRIV c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

PCENT = PERCENTAGE LEVEL FOR DETECTING OUTSTANDING

CLEVEL
STANDARD DEVIATIONS OF UNKNOWNS

= CRITICAL LEVEL FOR DETECTING OUTSTANDING
CORRELATIONS IN THE SOLUTION

EXTERNALS: AMPL, DFLOAT, SPECEQ, SPECUN, SPLOT, ERROR(108)

SUMMARY:
COMPUTE SPECTRAL PERIODS, P

PL = LONGEST PERIOD IN P
PS = SHORTEST PERIOD IN P
NW = NUMBER OF PERIODS IN P

COPY VECTOR F (MODIFIED BY SPECEQ AND SPECUN)
COMPUTE NK = TOTAL NUMBER OF KNOWN CONSTITUENTS
CALL SPECEQ OR SPECUN TO COMPUTE SPECTRUM
CALL AMPL TO LIST KNOWN CONSTITUENT AMPLITUDES
CALL COVAR TO LIST ALL OUTSTANDING STANDARD DEVIATIONS

AND CORRELATIONS
LIST RESIDUAL TIME SERIES AND ITS QUADRATIC NORM
COMPUTE RS = MEAN SPECTRAL VALUE FOR WHITE NOISE
COMPUTE RS95 = CRITICAL PERCENTAGE VARIANCE AT 95%

CONFIDENCE LEVEL FOR DETECTING STATISTICALLY
SIGNIFICANT PEAKS IN THE SPECTRUM

PLOT SPECTRUM
DO 5 I == 1,NW

5

10

P(I) = DFLOAT(NW-1)/(DFLOAT(NW-I)/PL + DFLOAT(I-1)/PS)
DO 10 I = 1,NF

F(I) = FF(I)
NK = NDAT + LT + NBASE + 2 + NPER
IF(EQORUN. EQ. 'EQ')

$CALL SPECEQ(T, F, NF, FNORM,
$ NK, OAT, NDAT, LT, PER, NPER, NBASE, A, C,
$ P, S, NW, IB, ICRIT)

IF(EQORUN .EQ. 'UN')
$CALL SPECUN(T, F, NF, FNORM,
$ NK, OAT, NDAT, LT, PER, NPER, NBASE, A, C,

DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
045
047
048
049
050
051
052
053
054
055
055
057
058
059
060
061

1001
1002

51

$ P, S, NW, IB, ICRIT)
CALL AMPL(A, NF, NK, FNORM, OAT, NDAT, LT, PER, NPER,

$ NBASE, C, IPR)
CALL COVAR(FNORM, NF, NK, A, C, PCENT, CLEVEL, IPR)
RS = 200.000 / (NF - NK)
RS95 = 100.000~(1.000/(0.0500++(-2.000/(NF-NK-2))-1)+1)
WRITE(IPR,1001 (F(I),I=1,NF)
WRITE(IPR,1002 FNORM
IF(ICRIT .EQ. 0) CALL ERROR(108)
CALL SPLOT(P, S, NW, RS, RS95, IB, IPR)
RETURN
FORMAT(1H1,9X,20HRESIOUAL TIME SERIES//110(11E10.2/))
FORMAT(9X,35HRESIDUAL TIME SERIES QUADRATIC NORM,E15.5)
END

DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV
DRIV

062
063
064
066
066
067
068
069
070
071
072
073
074
076

c

52

DOUBLE PRECISION FUNCTION EPS(ARG)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C FUNCTION: EPS SETS FUNCTIONAL VALUE EPS AND ARGUMENT ARG
C BOTH EQUAL TO THE SMALLEST NUMBER SO THAT
C 1. + EPS .GT. 1.
c
C CALLED FROM: CHOLS, SPECUN, SPECEQ
c

EPS == 1.0DO
10 EPS = EPS / 2.0DO

IF ((1.0DO + EPS) - 1.0DO .EQ. EPS) GO TO 10
EPS = EPS + 2.0DO
ARG = EPS
RETURN
END

EPS
EPS
EPS
EPS
EPS
EPS
EPS
EPS
EPS
EPS
EPS
EPS
EPS
EPS
EPS
EPS

001
002
003
004
006
006
007
008
009
010
011
012
013
014
016
016

53

SUBROUTINE ERROR(IER) ERRO 001
INTEGER IER,IPR ERRO 002
DATA IPR /6/ ERRO 003

c ERRO 004
c FUNCTION: ERROR DETECTS WHETHER ERROR IS WARNING ERRO 006
c OR FATAL, AND PRINTS MESSAGE ERRO 006
c ERRO 007
c CALLED FROM: DRIVER, CHOLS, SPECUN, SPECE~ ERRO 008
c ERRO 009
c ARGUMENT: IER = ERROR INDEX ERRO 010
c WARNINGS HAVE INDICES 1 - 99 ERRO 011
c FATAL ERRORS HAVE INDICES 100 AND OVER. ERRO 012
c ERRO 013

IF(IER .GT. 100) GO TO 10 ERRO 014
WRITE(IPR,1001) IER ERRO 015
RETURN ERRO 016

10 WRITE(IPR,1002) IER ERRO 017
STOP ERRO 018

1001 FORMAT~11H +++WARNING,I5) ERRO 019
1002 FORMAT 15H +++FATAL ERROR,I5) ERRO 020

END ERRO 021

c

54

SUBROUTINE FPLOT(T, F, NF, OAT, NDAT, EQORUN, IPR)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CHARACTER +1 !BLANK, !STAR, !PLOT
CHARACTER +2 EQORUN
DIMENSION DAT(1), F(1), IPLOT(100), T(l)
DATA !BLANK/' '/,

$!STAR /'+'/

C FUNCTION:
c

FPLOT PLOTS TIME SERIES F
DETECTING TIMES OF NEW DATUM BIASES

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

CALLED FROM: TSPEC

ARGUMENTS: T (NF) = INPUT TIME SERIES TIMES
F (NF)
DAT(NDAT)
IPR

= INPUT TIME SERIES VALUES
INPUT TIMES NEW DATUM BEGINS
UNIT NUMBER FOR OUTPUT

EXTERNALS: DMAX1,DMIN1,IFIX

SUMMARY:
INITIALIZE PLOT ARRAY
COMPUTE MAXIMUM AND MINIMUM VALUES IN F
SCAN THROUGH TIME SERIES

5

10

12

15

20

CHECKING FOR NEW DATUM
PLOTTING TIME SERIES VALUES

WRITE(IPR,1001)
DO 5 I :::: 1,100

IPLOT(I) = !BLANK
FMIN = F(1)
FMAX :::: F(1)
DO 10 I = 2,NF

FMIN:::: DMIN1(FMIN,F(I))
FMAX = DMAX1(FMAX,F(I))

IDAT = 1
STEP :::: T(2) - T(1)
NGAP = 0
DO 20 I = 1,NF

IF (I .EQ. 1 .OR. EQORUN .EQ. 'UN') GO TO 12
IF (T(I)-T(I-1) .LT. 1.5DO+STEP) GO TO 12
NGAP = NGAP + 1
NPNT = (T(I) - T(I-1)) / STEP - 1
WRITE (IPR, 1004) NGAP, NPNT
IF(NDAT .EQ. 0 .OR. !OAT .GT. NOAT) GO TO 15
IF(DAT(IDAT) .GT. T(I)) GO TO 15
WRITE(IPR,1002) IDAT
IDAT :::: IDAT + 1
KF= 1 + (99.0DO + (F(I) - FMIN) / (FMAX - F~IN))
IF(KF .LT. 1) KF = 1
IF(KF .GT. 100) KF = 100
IPLOT~KF) = !STAR
WRITE IPR,1003) I,T(I),F(I),IPLOT
!PLOT KF) = !BLANK

RETURN
1001 FORMAT(1H1,9X,11HTIME SERIES//

$ 5X,1HI,8X,4HT(I),8X,4HF(I)/)
1002 FORMAT~/,30X,38(1H-),18HBEGINNING OF DATUM,I5,39(1H-),/)
1003 FORMAT 2X,I4,2E12.4,100A1)
1004 FORMAT /,30X,37(1H-),5HGAP #.I4,1X,2HOF,I6,1X,6HPOINTS,38(1H-))

END

FPLO 001
FPLO 002
FPLO 003
FPLO 004
FPLO 005
FPLO 006
FPLO 007
FPLO 008
FPLO 009
FPLO 010
FPLO 011
FPLO 012
FPLO 013
FPLO 014
FPLO 015
FPLO 016
FPLO 017
FPLO 018
FPLO 019
FPLO 020
FPLO 021
FPLO 022
FPLO 023
FPLO 024
FPLO 025
FPLO 026
FPLO 027
FPLO 028
FPLO 029
FPLO 030
FPLO 031
FPLO 032
FPLO 033
FPLO 034
FPLO 035
FPLO 036
FPLO 037
FPLO 038
FPLO 039
FPLO 040
FPLO 041
FPLO 042
FPLO 043
FPLO 044
FPLO 045
FPLO 046
FPLO 047
FPLO 048
FPLO 049
FPLO 050
FPLO 051
FPLO 052
FPLO 053
FPLO 054
FPLO 055
FPLO 056
FPLO 057
FPLO 058
FPLO 059
FPLO 060
FPLO 061

55

SUBROUTINE RESIO(T, F, NF,
$ NK, OAT, NDAT, LT, PER, NPER, NBASE,
$ A, B, C, NKDIM)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(NKDIM,1), B(1), C(1), DAT(1), F(1),

$ PER(1), T(1)
c
C FUNCTION:
c

RESID COMPUTES THE RESIDUAL TIME SERIES
AFTER REMOVING THE KNOWN CONSTITUENTS

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

CALLED FROM: SPECUN, SPECEQ

ARGUMENTS: T(NF)
F(NF)

= INPUT TIME SERIES TIMES = INPUT TIME SERIES VALUES

NK
OAT (NDAT)
LT
PER(NPER)
NBASE
A(NKDIM,NK)

B(NK)
C (NK)

= OUTPUT RESIDUAL TIME SERIES VALUES
= INPUT TOTAL NUMBER OF KNOWN CONSTITUENTS
= INPUT TIMES NEW DATUM BEGINS
= INPUT LINEAR TREND SWITCH (1 = INCLUDED)
= INPUT FORCED PERIODS
= NUMBER OF USER-DEFINED CONSTITUENTS
= OUTPUT ARRAY CONTAINING NORMAL

EQUATION COEFFICIENT MATRIX
= OUTPUT NORMAL EQUATION KNOWN VECTOR
= OUTPUT NORMAL EQUATION UNKNOWN VECTOR

EXTERNALS: BASE, CHOLS

SUMMARY:
CLEAR NORMAL EQUATION ARRAYS
CONSTRUCT NORMAL EQUATIONS FOR KNOWN CONSTITUENTS
INVERT NORMAL EQUATION MATRIX USING CHOLESKY ALGORITHM
COMPUTE SOLUTION TO NORMAL EQUATIONS
COMPUTE RESIDUAL TIME SERIES

5

DO 5 I = 1, NK
B(I) = 0.000
DO 5 J = 1, NK

A(I,J) = 0.000
DO 10 I = 1, NF

DO 10 J = 1, NK
FUNC = BASE(J, T(I), OAT, NDAT, LT, PER, NPER)
B(J) = B(J) + FUNC + F(I)
DO 10 K = J, NK

10 A(K,J) = A(K,J) + FUNC +

15

20

$ BASE(K, T(I), OAT, NDAT, LT, PER, NPER)
CALL CHOLS(A, NKDIM, NK)
DO 15 I = 1, NK

C(I) = 0.000
DO 15 J = 1, NK

C(I) = C(I) + A(I,J) + B(J)
DO 20 I = 1, NF

DO 20 J = 1, NK
F(I) = F(I) - C(J) +

BASE(J, T(I), OAT, NDAT, LT, PER, NPER) $
RETURN
END

RESI 001
RESI 002
RESI 003
RESI 004
RESI 006
RESI 006
RESI 007
RESI 008
RESI 009
RESI 010
RESI 011
RESI 012
RESI 013
RESI 014
RESI 016
RESI 016
RESI 017
RESI 018
RESI 019
RESI 020
RESI 021
RESI 022
RESI 023
RESI 024
RESI 026
RESI 026
RESI 027
RESI 028
RESI 029
RESI 030
RESI 031
RESI 032
RESI 033
RESI 034
RESI 035
RESI 036
RESI 037
RESI 038
RESI 039
RESI 040
RESI 041
RESI 042
RESI 043
RESI 044
RESI 045
RESI 046
RESI 047
RESI 048
RESI 049
RESI 050
RESI 051
RESI 052
RESI 053
RESI 054
RESI 056
RESI 066

c

56

SUBROUTINE SPLOT(P, S, NW, RS, RS95, IB, IPR)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CHARACTER +1 !BLANK, !STAR, !PLOT
DIMENSION IPLOT(100), P(1), S(1)
DATA !BLANK /' '/,

$!STAR /'+'/

C FUNCTION: SPLOT PLOTS SPECTRUM S
c
c
c
c
c
c
c
c
c
c
c
c
c
c

CALLED FROM: DRIVER

ARGUMENTS: P(NW) ~ INPUT SPECTRAL PERIODS
S(NW) ~ INPUT SPECTRAL VALUES
IPR ~ UNIT NUMBER FOR OUTPUT

EXTERNALS: IFIX

SUMMARY:
INITIALIZE PLOT ARRAY
SCAN THROUGH SPECTRUM

PLOTTING SPECTRAL VALUES (PERCENTAGE VARIANCES)

WRITE(IPR,1001) IB, NW, P(1), P(NW), RS, RS95
DO 5 I ~ 1,100

5 IPLOT(I) = IBLANK
DO 10 I = 1, NW
KS=S ~I)

IF KS .LT. 1) KS = 1
IF KS .GT. 100) KS = 100
IPLOT~KS) = ISTAR
WRITE IPR,1002) P(I), S(I), IPLOT

10 IPLOT KS) = !BLANK
RETURN

1001 FORMAT(1H1,10X,13HSPECTRAL BAND,I5,//.
$ 10X,I5,24H SPECTRAL VALUES BETWEEN,2F14.6,//.
$ 12X,35HMEAN SPECTRAL VALUE FOR WHITE NOISE,F11.2,f/,
$ 12X,35HCRITICAL RERCENTAGE VARIANCE AT 957.,/.
$ 12X,35HCONFIDENCE LEVEL FOR DETECTING,j,
$ 12X,35HSIGNIFICANT PEAKS IN THE SPECTRUM,F11.2,//.
$ 10X,6HPERIOD,6X,19HPERCENTAGE VARIANCE/)

1002 FORMAT(5X,F10.5,F12.3,100A1)
END

SPLO 001
SPLO 002
SPLO 003
SPLO 004
SPLO 005
SPLO 006
SPLO 007
SPLO 008
SPLO 009
SPLO 010
SPLO 011
SPLO 012
SPLO 013
SPLO 014
SPLO 015
SPLO 016
SPLO 017
SPLO 018
SPLO 019
SPLO 020
SPLO 021
SPLO 022
SPLO 023
SPLO 024
SPLO 025
SPLO 026
SPLO 027
SPLO 028
SPLO 029
SPLO 030
SPLO 031
SPLO 032
SPLO 033
SPLO 034
SPLO 035
SPLO 036
SPLO 037
SPLO 038
SPLO 039
SPLO 040
SPLO 041
SPLO 042

c
c

57

SUBROUTINE TIMSER(T, F, NF, OAT, NDAT, LT, PER, NPER, NBASE,
$ MODE, EQORUN, PCENT, CLEVEL)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CHARACTER +2 EQORUN, EQ, UN
CHARACTER +5 MODE, SQNTL, BATCH
DIMENSION X(5), Y(5), Z(5), DAT(3), F(500), IVL(4),

$ NB(4), NE(4), P(5), PER(5), T(500)
DATA X I 0.50000, 1.00000, 0.00000, 0.50000, -0.25000/.

s v 1 1.oooDo. o.5oooo, 1.oooDo, -o.5oooo, o.oooDO/.
s z 1 1.ooooo. -1.oooDo, 3.oooDo, o.o1oDo, 3.oooDO/.
s P 1 2.759Do, 3.636DO, 5.714DO, 4o.oooDo, 16.oooDO/.
$ NB / 1. 201, 281, 471/,
$ NE /100, 250, 400, 500/,
$ IVL/ 1, 2, 3, 3/,
$ NIVL/ 4/,
$ STEP/ 0.100/,
$ PI / 3.141592653589793DO/

DATA EQ l ' EQ ' / •
$ UN I 'UN' /.
$ SQNTL I 'SQNTL' /.
$ BATCH I 'BATCH' I

C FUNCTION:
c

TIMSER GENERATES A TEST TIME SERIES WITH
3 DATUM BIASES, A LINEAR TREND,
SIN/COSINE TERMS FOR 5 FREQUENCIES,
AND AN EXPONENTIAL TREND

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

CALLED FROM: TSPEC

TEST TIME SERIES VALUES
TIMES NEW DATUM BEGINS
LINEAR TREND SWITCH (1 = INCLUDED)
PERIODS FOR TRIGONOMETRIC TERMS
NUMBER OF USER-DEFINED CONSTITUENTS

F(NF)
DAT(NDAT) =
LT
PER(NPER) =
NBASE
EQORUN =EQUAL DR UNEQUAL SPACED· TIME SERIES

MODE

PCENT

CLEVEL

EQORUN = EQ: EQUAL SPACED TIME SERIES
(SUBROUTINE SPECEQ IS USED)

EQORUN = UN: UNEQUAL SPACED TIME SERIES
(SUBROUTINE SPECUN IS USED)

= BATCH OR SEQUENTIAL FORCING OF UNKNOWNS
MODE = SQNTL: SEQUENTIAL SOLUTION
MODE = BATCH: BATCH SOLUTION

= PERCENTAGE LEVEL FOR DETECTING
OUTSTANDING STANDARD DEVIATIONS OF UNKNOWNS

= CRITICAL LEVEL FOR DETECTING OUTSTANDING
CORRELATIONS IN THE SOLUTION

EXTERNALS: DCOS,DEXP,DFLOAT,DSIN

NDAT = 3
LT = 1
NPER = 5
NBASE = 1
EQORUN = EQ
MODE = SQNTL
PCENT = 25.0DO
CLEVEL = 0.5000
DO 5 I = 1,NPER

5 PER(I) = P(I)

TIMS 001
TIMS 002
TIMS 003
TIMS 004
TIMS 006
TIMS 006
TIMS 007
TIMS 008
TIMS 009
TIMS 010
TIMS 011
TIMS 012
TIMS 013
TIMS 014
TIMS 015
TIMS 016
TIMS 017
TIMS 018
TIMS 019
TIMS 020
TIMS 021
TIMS 022
TIMS 023
TIMS 024
TIMS 026
TIMS 026
TIMS 027
TIMS 028
TIMS 029
TIMS 030
TIMS 031
TIMS 032
TIMS 033
TIMS 034
TIMS 035
TIMS 036
TIMS 037
TIMS 038
TIMS 039
TIMS 040
TIMS 041
TIMS 042
TIMS 043
TIMS 044
TIMS 045
TIMS 046
TIMS 047
TIMS 048
TIMS 049
TIMS 050
TIMS 051
TIMS 052
TIMS 053
TIMS 054
TIMS 055
TIMS 056
TIMS 057
TIMS 058
TIMS 059
TIMS 060
TIMS 061

58

C E~UAL SPACING RUN TIMS 062 DTl = 0. DO TIMS 063 DT2 = 1.00 TIMS 064 c TIMS 065 c UNE~UAL SPACING RUN TIMS 066 c DTl = 0.5DO TIMS 067 c DT2 = 50.0DO TIMS 068 NF = 0 TIMS 069 DO 10 K = 1,NIVL TIMS 070
I1 = NB~K~ TIMS 071 I2 = NE K · TIMS 072 DO 10 I = I1,I2 TIMS 073 NF = NF + 1 TIMS 074 T(NF) = DFLOAT(I) + STEP + TIMS 075 $ DT1 + DSIN(PI + DFLOAT(I) I DT2) TIMS 076 F(NF) = Z~IVL(K)5 + Z(NDAT+1) + T(NF) + TIMS 077 $ Z NDAT+2 + DEXP(-T(NF) I 25.00) TIMS 078 DO 10 J = 1,NPER TIMS 079 10 F(NF) = F(NF) + X~Js + DCOS~2.DO + PI + T ~NFS I ~~3B TIMS 080 $ + Y J + DSIN 2.00 + PI + T NF I TIMS 081

DAT~1~ = T~1) TIMS 082 OAT 2 = T 1015 TIMS 083 OAT 3 = T 151 TIMS 084 RETURN TIMS 085 END TIMS 086

59

SUBROUTINE SPECEQ(T, F, NF, FNORM,
$ NK, OAT, NDAT, LT, PER, NPER, NBASE, A, C,
S P, S, NW, IB, ICRIT)

IMPLICIT DOUBLE PRECISION (A-H,O-Z~
DIMENSION A(100,100). B(100 , C(1), CLP~60,50),

S CNP(60,50), CP(50 , DAT(1), F 1), IVL(60), P(1),
$ PER(1), S(1), SLP(60,50), SNF 60,50), SP(50),
$ SPMQ(50), SPPQ(50), T(1), U(100), V(100),
$ XL(60), XN(60)

DATA PI/3.14159265358979300/,
$ ROUND /100000./,
$ NKDIM /100/,
$ NPERDM /50/,
$ IVLDIM /60/

c
C FUNCTION:
c

SPECEQ COMPUTES THE LEAST SQUARES SPECTRUM OF
A PIECEWISE EQUALLY SPACED TIME SERIES
AFTER SUPPRESSING KNOWN CONSTITUENTS c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

CALLED FROM: DRIVER

ARGUMENTS:
SPECIFYING THE INPUT TIME SERIES

T(NF) = INPUT TIME SERIES TIMES
F(NF) = INPUT TIME SERIES VALUES

FNORM
= OUTPUT RESIDUAL TIME SERIES VALUES

OUTPUT QUADRATIC NORM OF RESIDUAL F

SPECIFYING THE KNOWN
NK

CONSTITUENTS
= INPUT TOTAL NUMBER OF KNOWN CONSTITUENTS
= INPUT TIMES NEW DATUM BE.GINS DAT(NDAT)

LT

PER(NPER)
NBASE
A(NKDIM.NKDIM)

C (NK)

= INPUT LINEAR TREND SWITCH (1 = USE TREND)
(0 = DO NOT USE)

= INPUT FORCED PERIODS
INPUT NUMBER OF USER-DEFINED CONSTITUENTS

= OUTPUT NORMAL EQUATION MATRIX RESULTING
FROM SUPPRESSION OF KNOWN CONSTITUENTS

= OUTPUT PRELIMINARY AMPLITUDES OF KNOWN
CONSTITUENTS

SPECIFYING THE
P(NW) =
S(NW) =
IB
ICRIT =

OUTPUT SPECTRUM
INPUT SPECTRAL PERIODS
OUTPUT SPECTRAL VALUES
INPUT SPECTRAL BAND LABEL
ROUNDOFF FLAG
(1 = OK. CONTINUE ANALYSIS)
(0 = RESIDUAL TIME SERIES CONSISTS ONLY OF ROUNDOFF)

EXTERNALS: DABS, DMAX1, BASE, DCOS, EPS, ERROR, DFLOAT, RESID, DSIGN,
DSIN, DSQRT

ERROR CONDITIONS:
1 = WARNING. ARGUMENT NDAT .LT. 0. !'ET TO 0 l 2 = WARNING. ARGUMENT LT NOT 0 OR 1. SET TO 0.
3 WARNING. ARGUMENT NPER .LT. o. SET TO C.
4 = WARNING. ARGUMENT NBASE . LT. 0. SET TO 0 .
5 = WARNING. ARGUMENT NK .NE. NDAT+LT+2+NPER+NBASE.

(SET TO NDAT + LT + 2 + NPER + NBASE.)
104 = FATAL. LESS THAN 3 TIME SERIES VALUES INPUT.
105 = FATAL. T ELEMENT VALUES NOT MONOTONIC INCREASING
106 = FATAL. NK TOO LARGE FOR DIMENSIONS OF A,B,U,V

SPCQ 001
SPCQ 002
SPCQ 003
SPCQ 004
SPCQ 005
SPCQ 006
SPCQ 007
SPCQ 008
SPCQ 009
SPCQ 010
SPCQ 011
SPCQ 012
SPCQ 013
SPCQ 014
SPCQ 015
SPCQ 016
SPCQ 017
SPCQ 018
SPCQ 019
SPCQ 020
SPCQ 021
SPCQ 022
SPCQ 023
SPCQ 024
SPCQ 025
SPCQ 026
SPCQ 027
SPCQ 028
SPCQ 029
SPCQ 030
SPCQ 031
SPCQ 032
SPCQ 033
SPCQ 034
SPCQ 036
SPCQ 036
SPCQ 037
SPCQ 038
SPCQ 039
SPCQ 040
SPCQ 041
SPCQ 042
SPCQ 043
SPCQ 044
SPCQ 045
SPCQ 046
SPCQ 047
SPCQ 048
SPCQ 049
SPCQ 060
SPCQ 061
SPCQ 052
SPCQ 053
SPCQ 054
SPCQ 055
SPCQ 056
SPCQ 057
SPCQ 058
SPCQ 059
SPCQ 060
SPCQ 051

c
c
c
c
c
c
c
c
c
c
c

107
108

= FATAL.
= FATAL.

109 = FATAL.

110

111
112

FATAL.

FATAL.
= FATAL.

60

(LIMITATION NO. 2 BELOW)
DAT(1) .NE. T(1). (RE~UIREMENT NO. 2 BELOW)
RESIDUAL TIME SERIES CONSISTS OF ROUNDOFF
(NOW CALLED IN DRIVER)
NPER TOO LARGE FOR DIMENSIONS OF
CLP,CNP,CP,SLP,SNP,SP,SPM~.SPP~.
NIVL TOO LARGE FOR DIMENSIONS OF
CLP,CNP,IVL,SLP,SNP,XL,XN.
PER CONTAINS FORCED PERIOD .LT. 2. +STEP.
P CONTAINS SPECTRAL PERIOD .LT. 2. +STEP.

C CALLING ROUTINE REQUIREMENTS:
C 1. WHEN NO KNOWN CONSTITUENTS ARE TO BE SUPPRESSED, THE
C CALLING ROUTINE MUST PASS ZERO VALUES FOR NK,NDAT,
C LT,NPER AND NBASE.
C 2. WHEN NDAT .GT. 0, THE CALLING ROUTINE MUST SET
C DAT(1) = T(1)
C 3. THE CALLING ROUTINE MUST SET
C NK = NDAT + LT + 2 + NPER + NBASE.
C 4. WHEN NBASE .GT. 0, THE USER MUST SUPPLY CODING IN
C FUNCTION BASE TO COMPUTE EACH USER-DEFINED
C CONSTITUENT.
C 5. ON INITIAL CALL, CALLING ROUTINE MUST SET IB = 1 TO
C COMPUTE RESIDUAL TIME SERIES. MANY SPECTR~L BANDS
C FOR THE SAME SPECTRUM CAN THEN BE COMPUTED BY
C SETTING IB .NE. 1, AND CALLING REPEATEDLY,
C CHANGING ONLY P(NW).
C 6. CALLING ROUTINE MUST DIMENSION ARGUMENT ARRAYS .GE.
C T(NF),F(NF),DAT(NDAT),PER(NPER),C(NK),P(NW),S(NW).
C 7. T ELEMENT VALUES MUST CONSIST OF NIVL SUBINTERVALS,
C EACH SUBINTERVAL CONTAINING EQUALLY SPACED DATA
C SEPARATED BY A TIME INCREMENT STEP COMMON TO ALL
C SUBINTERVALS. THE GAPS BETWEEN SUBINTERVALS NEED
C NOT BE INTEGRAL MULTIPLES OF STEP. THE FIRST DATA
C POINT MUST NOT BE ISOLATED (MUST NOT BE FCLLOWED
C BY A GAP). T ELEMENT VALUES MUST INCREASE
C MONOTONICALLY. OAT, P AND PER ELEMENT VALuES MUST
C BE IN THE SAME UNITS AS T.
C 8. THE FORCED PERIODS IN PER AND SPECTRAL PERIODS IN P
C MUST BE SHORTER THAN 2 + STEP, EQUIVALENT TO THE
C MAXIMUM INTERVAL USED IN FOURIER ANALYSIS.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

LIMITATIONS:
1. WHEN CALLED WITH IB = 1, AND NK .GT. 0, THE CONTENTS

OF THE TIME SERIES F IS REPLACED BY THE RESIDUAL
TIME SERIES VALUES.

2. WHEN NK .GT. NKDIM, A,B,U AND V MUST BE REDIMENSIONED
.GE. NK, AND NKDIM CHANGED TO THE NEW DIMENSION.

3. WHEN NPER .GT. NPERDM THEN SP,CP,SPMQ,SPPQ AND THE
SECOND INDEX OF CLP,SLP,CNP,SNP MUST BE
REDIMENSIONED .GE. NPER, AND NPERDM CHANGED TO THE
NEW DIMENSION.

4. WHEN NIVL (= NDAT + NUMBER OF GAPS IN T BETWEEN DATUM
CHANGES) .GT. IVLDIM THEN XN,XL,IVL AND THE FIRST
INDEX OF CLP,SLP,CNP,SNP MUST BE REDIMENSIONED .GE.
NIVL, AND IVLDIM CHANGED TO THE NEW DIMENSION.

IF(IB .NE. 1) GO TO 65

C PROCESS INPUT ARGUMENTS
C CHECK NF .GE. 3

SPC~ 062
SPC~ 063
SPC~ 064
SPCQ 065
SPCQ 066
SPCQ 067
SPCQ 068
SPCQ 069
SPCQ 070
SPCQ 071
SPCQ 072
SPCQ 073
SPCQ 074
SPCQ 075
SPCQ 076
SPCQ 077
SPCQ 078
SPCQ 079
SPCQ 080
SPCQ 081
SPCQ 082
SPCQ 083
SPCQ 084
SPCQ 085
SPCQ 086
SPCQ 087
SPCQ 088
SPCQ 089
SPCQ 090
SPCQ 091
SPCQ 092
SPCQ 093
SPCQ 094
SPCQ 095
SPCQ 096
SPCQ 097
SPCQ 098
SPCQ 099
SPCQ 100
SPCQ 101
SPCQ 102
SPCQ 103
SPCQ 104
SPCQ 105
SPCQ 106
SPCQ 107
SPCQ 108
SPCQ 109
SPCQ 110
SPCQ 111
SPCQ 112
SPCQ 113
SPCQ 114
SPCQ 115
SPCQ 116
SPCQ 117
SPCQ 118
SPCQ 119
SPCQ 120
SPCQ 121
SPCQ 122

c
c
c
c

c

61

CHECK T INCREASES MONOTONICALLY
COMPUTE FMAX = MAXIMUM ABSOLUTE VALUE IN F
CHECK VALUES OF NDAT,LT,NPER,NBASE,AND NK
CHECK DAT(1) .EQ. T(1)

5

10

IF(NF .LT. 3)
DO 5 I = 2,NF

IF(T(I) .LE. T(I-1))
CONTINUE

FMAX = DABS(F(1))
DO 10 I = 2,NF

FMAX = DMAX1(FMAX,DABS(F(I)))
IF(NDAT .GE. 0) GO TO 15
CALL ERROR(1)
NDAT = 0

15 IF(LT .EQ. 0 .OR. LT .EQ. 1) GO TO 20
CALL ERROR(2)
LT = 0

20 IF(NPER .GE. 0) GO TO 25
CALL ERROR(3)
NPER = 0

25 IF(NBASE .GE. 0) GO TO 30
CALL ERROR(4)
NBASE = 0

CALL ERROR(104)

CALL ERROR(105)

30 IF(NK .EQ. NDAT + LT + 2 + NPER + NBASE) GO TO 35
CALL ERROR(5)
NK = NDAT + LT + 2 + NPER + NBASE

35 IF~NK .GT. NKDIM)
IF NDAT .GE. 1 .AND.
IF NPER .GT. NPERDM)
EPSARG = EPS(ARG)

CALL ERROR~106~
DAT(1) .NE. T(1)) CALL ERROR 107

CALL ERROR 109

C COMPUTE STEPSIZE IN T
STEP = T(2) - T(1)

c
C COMPUTE CRITICAL VALUE OF STEP FOR DETECTING GAPS IN T

STEP1 = 1.5DO +STEP
c
C INITIALIZE ARGUMENTS IDAT, NIVL, NGAP, TA

IDAT = 1
NIVL = 0
NGAP = 0
TA = T(1)

c
C FIND SUBINTERVAL BOUNDARIES (GAPS OR NEW DATUM SHIFTS) IN T

DO 45 N = 2,NF
NEWIVL = 0

c

IF(N .NE. NF) GO TO 39
NEWIVL = NGAP
IF(NEWIVL .EQ. 0) GO TO 45
GO TO 42

C CHECK IF THERE IS GAP AND DATUM SHIFT IN T
39 IF((T(N) - T(N-1)) .GT. STEP1 .AND.

$ DABS(DAT(IDAT+1)-T(N)) .LT. EPSARG+ROUND) GO TO 40 c
C CHECK IF THERE IS ONLY GAP IN T

IF((T(N) - T(N-1)) .GT. STEP1) GO TO 41
c
C CHECK IF THERE IS ONLY DATUM SHIFT IN T

IF (DABS(DAT(IDAT+1)-T(N)) .LT. EPSARG+ROUND) GO TO 40
IF (NEWIVL .EQ. 0) GO TO 45

SPCQ 123
SPCQ 124
SPCQ 125
SPCQ 126
SPCQ 127
SPCQ 128
SPCQ 129
SPCQ 130
SPCQ 131
SPCQ 132
SPCQ 133
SPCQ 134
SPCQ 135
SPCQ 136
SPCQ 137
SPCQ 138
SPCQ 139
SPCQ 140
SPCQ 141
SPCQ 142
SPCQ 143
SPCQ 144
SPCQ 145
SPCQ 146
SPCQ 147
SPCQ 148
SPCQ 149
SPCQ 150
SPCQ 151
SPCQ 152
SPCQ 153
SPCQ 154
SPCQ 155
SPCQ 156
SPCQ 157
SPCQ 158
SPCQ 159
SPCQ 160
SPCQ 161
SPCQ 162
SPCGl 163
SPCQ 164
SPCQ 165
SPCQ 166
SPCQ 167
SPCQ 168
SPCQ 169
SPCQ 170
SPCQ 171
SPCQ 172
SPCQ 173
SPCQ 174
SPCGl 175
SPCQ 176
SPCQ 177
SPCQ 178
SPCQ 179
SPCQ 180
SPC!il 181
SPCQ 182
SPCQ 183

62

GO TO 42
c
C COMPUTE NEWIVL, IDAT AND NGAP WHEN THERE IS DATUM SHIFT REGARDLESS
C OF PRESENCE OF GAP IN T

c

40 NEWIVL = NGAP + 1
DAT(IDAT+1) T(N)
IDAT = IDAT + 1
GO TO 42

C COMPUTE NEWIVL, IDAT AND NGAP WHEN THERE IS ONLY GAP IN T
41 NEWIVL = NGAP + 1

NGAP = NGAP + 1
IF(NEWIVL .EQ. 0) GO TO 45

c
C COMPUTE XL, XN, IVL FOR EACH SUBINTERVAL IN T

42 TB = T(N-1)

c

IF (N .EQ. NF) TB = T(NF)
NIVL = NIVL + 1
IF~NIVL .GT. IVLDIM) CALL ERROR(110)
XN NIVL) = 1.0DO + (TB- TA) I STEP
XL NIVL) = (TB + TA) I STEP
IVL(NIVL) = IDAT - NEWIVL + NGAP
TA = T(N)

45 CONTINUE
IF (NPER.LE.O) GO TO 52

C COMPUTE TRIG(PK), TRIG(XN+PK), TRIG(XL+PK) FOR EACH SUBINTERVAL IN T
DO 50 I= l,NPER

IF(PER(I) .LT. 2.000 + STEP) CALL ERROR(111)
PK = PI + STEP ~ PER(I)
SP(I) = DSIN(PK
CP(I) = DCOS(PK
DO 50 J = 1,NIVL

XNPK = XN~J5 + PK

SLP J,I = DSIN XLPK
CLP J,I = DCOS XLPK

~~~K!j:iXjL~Jg~~~p!~~~~l 
50 CONTINUE 

c 
C CHECK VALUES IF P .GE. 2+STEP 

52 DO 55 I = 1,NW 
IF(P(I) .LT. 2.000 +STEP) CALL ERROR(112) 

55 CONTINUE 
c 
C SUPPRESS KNOWN CONSTITUENTS 
C REPLACE F WITH RESIDUAL TIME SERIES 
C COMPUTE QUADRATIC NORM OF F 
C CHECK IF RMS VALUE OF RESIDUAL F IS LESS 
C THAN EPS + FMAX + ROUND, WHERE 
C EPS = EPSARG =SMALLEST NUMBER SO 1 + EPS .GT. 1 
C FMAX = MAXIMUM ABSOLUTE VALUE OF ORIGINAL F 
C ROUND ACCOUNTS FOR ACCUMULATED ROUNDOFF IN 
C COMPUTING RESIDUAL F 

IF(NK .GT. 0) CALL RESID(T. F, NF, 
$ NK, OAT, NDAT, LT. PER, NPER, NBASE, 
$ A, B, C. NKDIM) 

FNORM = O.ODO 
DO 60 I 1,NF 

FNORM = FNORM + F(I) ++ 2 

SPCQ 184 
SPCQ 185 
SPCQ 186 
SPCQ 187 
SPCQ 188 
SPCQ 189 
SPCQ 190 
SPCQ 191 
SPCQ 192 
SPCQ 193 
SPCQ 194 
SPCQ 195 
SPCQ 196 
SPCQ 197 
SPCQ 198 
SPCQ 199 
SPCQ 200 
SPCQ 201 
SPCQ 202 
SPCQ 203 
SPCQ 204 
SPCQ 205 
SPCQ 206 
SPCQ 207 
SPCQ 208 
SPCQ 209 
SPCQ 210 
SPCQ 211 
SPCQ 212 
SPCQ 213 
SPCQ 214 
SPCQ 215 
SPCQ 216 
SPCQ 217 
SPCQ 218 
SPCQ 219 
SPCQ 220 
SPCQ 221 
SPCQ 222 
SPCQ 223 
SPCQ 224 
SPCQ 225 
SPCQ 226 
SPCQ 227 
SPCQ 228 
SPCQ 229 
SPCQ 230 
SPCQ 231 
SPCQ 232 
SPCQ 233 
SPCQ 234 
SPCQ 235 
SPCQ 236 
SPCQ 237 
SPCQ 238 
SPCQ 239 
SPCQ 240 
SPCQ 241 
SPCQ 242 
SPCQ 243 
SPCQ 244 



63 

60 CONTINUE 
c 
C CHECK IF RESIDUAL F CONSISTS OF ROUNDOFF 

ICRIT = 1 
IF(DSQRT(FNORMIDFLOAT(NF)) .LT. 

$ EPSARG+FMAX+ROUND) ICRIT ; 0 
c 
C FOR EACH SPECTRAL PERIOD P(I),COMPUTE SPECTRAL VALUE S(I) 
C COMPUTE SCALAR PRODUCTS FCOS,FSIN,CC,CS,SS,U,V 
C COMPUTE BILINEAR FORMS UAU,UAV,VAV 
C COMPUTE PERCENTAGE VARIANCE S 

65 DO 130 I = 1,NW 
OMEGA = 2.0DO + PI I P(I) 
FCOS = 0.000 
FSIN = O.ODO 
cc = O.ODO 
cs = O.ODO 
ss = O.ODO 
IF(NK .EQ. 0) GO TO 75 
DO 70 J = 1, NK 

U(J) = O.ODO 
V(J) = 0.000 

70 CONTINUE 
75 DO 85 J = 1,NF 

WT = OMEGA + T(J) 
COSWT = DCOS(WT) 
SINWT = DSIN(WT) 
FCOS = FCOS + F(J) + COSWT 
FSIN = FSIN + F(J) + SINWT 
IF(NBASE .EQ. 0) GO TO 85 
DO 80 L = 1, NBASE 

K = NDAT + LT + 2 + NPER + L 
FUNC = 8ASE(K, T(J), OAT, NDAT, LT, PER, NPER) 
U(K) = U(K) + FUNC + COSWT 
V(K) = V(K) + FUNC + SINWT 

80 CONTINUE 
85 CONTINUE 

Q = 0.5DO + OMEGA + STEP 
SQ = DSIN(Q) 
CQ = DCOS(Q) 
IF(NPER .EQ. 0) GO TO 95 
DO 90 J = 1,NPER 

SPMQ(J) = SP!Jl + CQ - CP(J) + SQ 
IF(DABS(SPMQ J ) .LT. EPSARG) SPMQ(J) = DSIGN(EPSARG,SPMQ(J)) 
SPPQ(J) = SP J + CQ + CP(J) + SQ 
IF(DABS(SPPQ J ) .LT. EPSARG) SPPQ(J) = DSIGN(EPSARG,SPPQ(J)) 

90 CONTINUE 
95 DO 115 J = 1,NIVL 

XNQ = XN(J) + Q 
XLQ = XL(J) + Q 

SNQ = DSIN~XNQl CNQ = DCOS XNQ 
SLQ = DSIN XLQ 
CLQ = DCOS XLQ 
CC = CC + SNQ + CNQ + CLQ + CLQ - SNQ + CNQ + SLQ + SLQ 
CS = CS + SNQ + CNQ + SLQ + CLQ 
IF(NK .EQ. 0) GO TO 115 
IF(NDAT .EQ. 0) GO TO 100 
K = IVL(J) 
U(K) = U(K) + SNQ + CLQ I SQ 
V(K) = V(K) + SNQ + SLQ I SQ 

SPCQ 246 
SPCQ 246 
SPCQ 247 
SPCQ 248 
SPCQ 249 
SPCQ 250 
SPCQ 251 
SPCQ 252 
SPCQ 253 
SPCQ 254 
SPCQ 255 
SPCQ 266 
SPCQ 257 
SPCQ 258 
SPCQ 259 
SPCQ 260 
SPCQ 261 
SPCQ 262 
SPCQ 263 
SPCQ 264 
SPCQ 266 
SPCQ 266 
SPCQ 267 
SPCQ 268 
SPCQ 269 
SPCQ 270 
SPCQ 271 
SPCQ 272 
SPCQ 273 
SPCQ 274 
SPCQ 276 
SPCQ 276 
SPCQ 277 
SPCQ 278 
SPCQ 279 
SPCQ 280 
SPCQ 281 
SPCQ 282 
SPCQ 283 
SPCQ 284 
SPCQ 285 
SPCQ 286 
SPCQ 287 
SPCQ 288 
SPCQ 289 
SPCQ 290 
SPCQ 291 
SPCQ 292 
SPCQ 293 
SPCQ 294 
SPCQ 295 
SPCQ 296 
SPCQ 297 
SPCQ 298 
SPCQ 299 
SPCQ 300 
SPCQ 301 
SPCQ 302 
SPCQ 303 
SPCQ 304 
SPCQ 306 



100 

105 

110 
115 

120 
125 

IF(LT .EQ. 0) GO TO 105 
K = NDAT + 1 

64 

sscs = - SNQ + SLQ + CQ I SQ 
SCCS = SNQ + CLQ + CQ I SQ 
XNCS = XN(J) + CNQ + SLQ 
XNCC = - XN(J) + CNQ + CLQ 
XLSC XL(J) + SNQ + CLQ 
XLSS XL(J) + SNQ + SLQ 
STSQ = 0.5DO + STEP I SQ 
U(K) U(K) + STSQ + (SSCS + XNCS + XLSC) 
V(K) = V(K) + STSQ + (SCCS + XNCC + XLSS) 
IF(NPER .EQ. 0) GO TO 115 
DO 110 L = 1,NPER 

SINM = SLP J,L + CLQ- CLP J,L + SLQ 
i~~~~A: +~~~~~~:tl+:L~~~1~ ~~~ 3:tl : ~~~~ 
SINP = SLP J,L + CLQ + CLP J,L + SLQ 
COSM = CLP J,L + CLQ + SLP J,L + SLQ 
COSP = CLP J,L + CLQ- SLP J,L + SLQ 
U~K) = U~K) + 0.5DO + ~ COSP + COSMl U K+1) = U K+1) + 0.5DO + SINP + SINM 
V K) = V K) + 0.5DO + SINP - SINM 
V K+1) = V K+1) + 0.500 + -COSP + COSM 

CONTINUE 
CONTINUE 
SQCQ = SQ + CQ 
CCSQCQ = CC / SQCQ 
55 = 0.5DO + (DFLOAT(NF) - CCSQCQ) 
CC = 0.5DO + (DFLOAT(NF) + CCSQCQ) 
cs = cs I SQCQ 
UAU = 0.000 
UAV = O.ODO 
VAV = 0.000 
IF(NK .EQ. 0) GO TO 125 
DO 120 J = 1,NK 

DO 120 K = 1,NK 

UAU = UAU + U~J~ + A~~.K~ UAV = UAV + U J + A J,K 
VAV = VAV + V J + A J,K 

CONTINUE 
S(I) = 0.000 

+ U ~K~ + V K 
+ V K 

I SPMQ(L) 
I SPPQ(L) 
+ SNPMQ 
+ SNPPQ 
+ SNPMQ 
+ SNPPQ 

DET = (CC-UAU) + (SS-VAV) - (CS-UAV) + (CS-~AV) 
IF(DABS(DET) .LT. EPSARG) GO TO 130 
S(I) = 100.000 + (~SS - VAV~ + FCOS + FCOS -

2.0DO + CS - UAV + FCOS + FSIN + 
CC - UAU + FSIN + FSIN) I 

$ 
$ 
$ 

130 CONTINUE 
RETURN 
END 

DET + FNORM) 

SPCQ 306 
SPCQ 307 
SPCQ 308 
SPCQ 309 
SPCQ 310 
SPCGI 311 
SPCQ 312 
SPCGI 313 
SPCQ 314 
SPCQ 315 
SPCQ 316 
SPCQ 317 
SPCQ 318 
SPCQ 319 
SPCQ 320 
SPCGI 321 
SPCQ 322 
SPCQ 323 
SPCQ 324 
SPCQ 325 
SPCQ 326 
SPCQ 327 
SPCQ 328 
SPCQ 329 
SPCQ 330 
SPCQ 331 
SPCQ 332 
SPCQ 333 
SPCQ 334 
SPCQ 335 
SPCQ 336 
SPCQ 337 
SPCGI 338 
SPCQ 339 
SPCQ 340 
SPCQ 341 
SPCGI 342 
SPCGI 343 
SPCQ 344 
SPCGI 345 
SPCQ 346 
SPCQ 347 
SPCQ 348 
SPCQ 349 
SPCGI 350 
SPCQ 351 
SPCQ 352 
SPCGI 353 
SPCQ 354 
SPCQ 355 
SPCQ 356 



65 

SUBROUTINE SPECUN(T, F, NF, FNORM, 
$ NK, OAT, NDAT, LT, PER, NPER, NBASE, A, C, 
$ P, S, NW, IB, ICRIT) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION A(100,100), B(100), C(1), DAT(1), F(1), 

$ PER(1), S(1), T(1), U(100), V(100) 
P(1), 

DATA PI /3.14159265358979300/, 
$ ROUND /100000./, 
$ NKDIM /100/ 

c 
C FUNCTION: 
c 

SPECUN COMPUTES THE LEAST SQUARES SPECTRUM OF 
AN UNEQUALLY SPACED TIME SERIES 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

AFTER SUPPRESSING KNOWN CONSTITUENTS 

CALLED FROM: DRIVER 

ARGUMENTS: 
SPECIFYING THE INPUT TIME SERIES 

T(NF) = INPUT TIME SERIES TIMES 
F(NF) = INPUT TIME SERIES VALUES 

FNORM 
= OUTPUT RESIDUAL TIME SERIES VALUES = OUTPUT QUADRATIC NORM OF RESIDUAL F 

SPECIFYING THE KNOWN 
NK 

CONSTITUENTS 
= INPUT TOTAL NUMBER OF KNOWN CONSTITUENTS 
= INPUT TIMES NEW DATUM BEGINS DAT(NDAT) 

LT 

PER(NPER) 
NBASE 
A(NKDIM,NKDIM) 

C (NK) 

= INPUT LINEAR TREND SWITCH (1 = USE TREND) 
(0 = DO NOT USE) 

= INPUT FORCED PERIODS 
= INPUT NUMBER OF USER-DEFINED CONSTITUENTS 
= OUTPUT NORMAL EQUATION MATRIX RESULTING 

FROM SUPPRESSION OF KNOWN CONSTITUENTS 
= OUTPUT PRELIMINARY AMPLITUDES OF KNOWN 

CONSTITUENTS 

SPECIFYING THE 
P(NW) = 

OUTPUT SPECTRUM 
INPUT SPECTRAL PERIODS 
DSIN,DSQRT 

S(NW) 
IB 
ICRIT 

= OUTPUT SPECTRAL VALUES 
= INPUT SPECTRAL BAND LABEL 
= OUTPUT ROUNDOFF FLAG 

(1 =OK. CONTINUE ANALYSIS) 
(0 = RESIDUAL TIME SERIES CONSISTS ONLY OF ROUNDOFF) 

EXTERNALS: DABS, DMAX1, BASE, DCOS, EPS, ERROR, DFLOAT, RESID, 

ERROR 
1 
2 
3 
4 
5 

104 
105 
106 

107 
108 

CONDITIONS: 
= WARNING. ARGUMENT NDAT .LT. 0. ~SET TO O.l 
= WARNING. ARGUMENT LT NOT 0 OR 1. SET TO 0. 
=WARNING. ARGUMENT NPER .LT. 0. SET TO 0. 
=WARNING. ARGUMENT NBASE .LT. 0. SET TO 0. 
= WARNING. ARGUMENT NK .NE. NDAT+LT+2+NPER+NBASE. 

= FATAL. 
= FATAL. 
= FATAL. 

(SET TO NDAT + LT + 2 + NPER + NBASE.) 
LESS THAN 3 TIME SERIES VALUES INPUT. 
T ELEMENT VALUES NOT MONOTONIC INCREASING 
NK TOO LARGE FOR DIMENSIONS OF A,B,U,V 

(LIMITATION NO. 2 BELOW) 
FATAL. DAT(1) .NE. T(1). (REQUIREMENT NO. 2 BELOW) 

= FATAL. RESIDUAL TIME SERIES CONSISTS OF ROUNDOFF 
(NOW CALLED IN DRIVER) 

SPUN 001 
SPUN 002 
SPUN 003 
SPUN 004 
SPUN 005 
SPUN 006 
SPUN 007 
SPUN 008 
SPUN 009 
SPUN 010 
SPUN 011 
SPUN 012 
SPUN 013 
SPUN 014 
SPUN 015 
SPUN 016 
SPUN 017 
SPUN 018 
SPUN 019 
SPUN 020 
SPUN 021 
SPUN 022 
SPUN 023 
SPUN 024 
SPUN 025 
SPUN 026 
SPUN 027 
SPUN 028 
SPUN 029 
SPUN 030 
SPUN 031 
SPUN 032 
SPUN 033 
SPUN 034 
SPUN 035 
SPUN 036 
SPUN 037 
SPUN 038 
SPUN 039 
SPUN 040 
SPUN 041 
SPUN 042 
SPUN 043 
SPUN 044 
SPUN 045 
SPUN 046 
SPUN 047 
SPUN 048 
SPUN 049 
SPUN 050 
SPUN 051 
SPUN 052 
SPUN 053 
SPUN 054 
SPUN 055 
SPUN 056 
SPUN 057 
SPUN 058 
SPUN 059 
SPUN 060 
SPUN 061 



66 

C CALLING ROUTINE REQUIREMENTS: 
C 1. WHEN NO KNOWN CONSTITUENTS ARE TO BE SUPPRESSED, THE 
C CALLING ROUTINE MUST PASS ZERO VALUES FOR NK,NDAT, 
C LT,NPER AND NBASE. 
C 2. WHEN NDAT .GT. 0, THE CALLING ROUTINE MUST SET 
C DAT(1) = T(1) 
C 3. THE CALLING ROUTINE MUST SET 
C NK.: NDAT + LT + 2 + NPER + NBASE. 
C 4. WHEN NBASE .GT. 0, THE USER MUST SUPPLY CODING IN 
C FUNCTION BASE TO COMPUTE EACH USER-DEFINED 
C CONSTITUENT. 
C 5. ON INITIAL CALL, CALLING ROUTINE MUST SET IB = 1 TO 
C COMPUTE RESIDUAL TIME SERIES. MANY SPECTRAL BANDS 
C FOR THE SAME SPECTRUM CAN THEN BE COMPUTED BY 
C SETTING IB .NE. 1, AND CALLING REPEATEDLY, 
C CHANGING ONLY P(NW). 
C 6. CALLING ROUTINE MUST DIMENSION ARGUMENT ARRAYS .GE. 
C T(NF),F(NF),DAT(NDAT),PER(NPER),C(NK),P(NW),S(NW). 
C 7. T ELEMENT VALUES ARE UNRESTRICTED AS TO SPACING, BUT 
C MUST MONOTONICALLY INCREASE. P,DAT AND PER ELEMENT 
C VALUES MUST BE IN THE SAME UNITS AS T. 
c 
c 
c 
c 
c 
c 
c 
c 

c 

LIMITATIONS: 
1. WHEN CALLED WITH IB = 1, AND NK .GT. 0, THE CONTENTS 

OF THE TIME SERIES F IS REPLACED BY THE RESIDUAL 
TIME SERIES VALUES. 

2. WHEN NK .GT. NKDIM, A,B,U AND V MUST BE REDIMENSIONED 
.GE. NK, AND NKDIM CHANGED TO THE NEW DIMENSION. 

IF(IB .NE. 1) GO TO 65 

C PROCESS INPUT ARGUMENTS 
C CHECK NF .GE. 3 
C CHECK T INCREASES MONOTONICALLY 
C COMPUTE FMAX = MAXIMUM ABSOLUTE VALUE IN F 
C CHECK VALUES OF NDAT,LT,NPER,NBASE,AND NK 
C CHECK DAT(1) .EQ. T(1) 

IF(NF .LT. 3) CALL ERROR(104) 
DO 5 I = 2, NF 

IF(T(I) .LE. T(I-1)) CALL ERROR(105) 
5 CONTINUE 

FMAX = DABS(F(1)) 
DO 10 I = 2, NF 

10 FMAX = DMAX1(FMAX, DABS(F(I))) 
IF(NDAT .GE. 0) GO TO 15 
CALL ERROR(1) 
NDAT = 0 

15 IF(LT .EQ. 0 .OR. LT .EQ. 1) GO TO 20 
CALL ERROR(2) 
LT = 0 

20 IF(NPER .GE. 0) GO TO 25 
CALL ERROR(3) 
NPER = 0 

25 IF(NBASE .GE. 0) GO TO 30 
CALL ERROR(4) 
NBASE = 0 

30 IF(NK .EQ. NDAT + LT + 2 + NPER + NBASE) GO TO 35 
CALL ERROR(5) 
NK = NDAT + LT + 2 + NPER + NBASE 

35 IF(NK .GT. NKDIM) CALL ERROR(106) 
IF(NDAT .GE. 1 .AND. DAT(1) .NE. T(1)) CALL ERROR(107) 

SPUN 062 
SPUN 063 
SPUN 064 
SPUN 065 
SPUN 066 
SPUN 067 
SPUN 068 
SPUN 069 
SPUN 070 
SPUN 071 
SPUN 072 
SPUN 073 
SPUN 074 
SPUN 075 
SPUN 076 
SPUN 077 
SPUN 078 
SPUN 079 
SPUN 080 
SPUN 081 
SPUN 082 
SPUN 083 
SPUN 084 
SPUN 085 
SPUN 086 
SPUN 087 
SPUN 088 
SPUN 089 
SPUN 090 
SPUN 091 
SPUN 092 
SPUN 093 
SPUN 094 
SPUN 095 
SPUN 096 
SPUN 097 
SPUN 098 
SPUN 099 
SPUN 100 
SPUN 101 
SPUN 102 
SPUN 103 
SPUN 104 
SPUN 105 
SPUN 106 
SPUN 107 
SPUN 108 
SPUN 109 
SPUN 110 
SPUN 111 
SPUN 112 
SPUN 113 
SPUN 114 
SPUN 115 
SPUN 116 
SPUN 117 
SPUN 118 
SPUN 119 
SPUN 120 
SPUN 121 
SPUN 122 



67 

c 
C SUPPRESS KNOWN CONSTITUENTS 
C REPLACE F WITH RESIDUAL TIME SERIES 
C COMPUTE QUADRATIC NORM OF F 
C CHECK IF RMS VALUE OF RESIDUAL F IS LESS 
C THAN EPS + FMAX + ROUND, WHERE 
C EPS = EPSARG =SMALLEST NUMBER SO 1 + EPS .GT. 1 
C FMAX = MAXIMUM ABSOLUTE VALUE OF ORIGINAL F 
C ROUND ACCOUNTS FOR ACCUMULATED ROUNDOFF IN 
C COMPUTING RESIDUAL F 

IF (NK ·. GT. 0) CALL RESID (T, F, NF, 
$ NK, OAT, NDAT, LT, PER, NPER, NBASE, 
$ A, B, C, NKDIM) 

FNORM = 0.000 
EPSARG = EPS(ARG) 
DO 60 I = 1, NF 

60 FNORM = FNORM + F(I) + F(I) 
c 
C CHECK IF RESIDUAL F CONSISTS OF ROUNDOFF 

ICRIT = 1 
IF(DSQRT(FNORM/DFLOAT(NF)) .LT. 

$ EPSARG+FMAX+ROUND) ICRIT = 0 
c 
C FOR EACH SPECTRAL PERIOD P(I),COMPUTE SPECTRAL VALUE 
C COMPUTE SCALAR PRODUCTS FCOS,FSIN,CC,CS,SS,U,V 
C COMPUTE BILINEAR FORMS UAU,UAV,VAV 
C COMPUTE PERCENTAGE VARIANCE S 

65 DO 130 I = 1, NW 

70 
75 

OMEGA = 2.000 + PI / P(I) 
FCOS = 0.000 
FSIN = 0.000 
cc = 0.000 
cs = 0.000 
ss = o.ooo 
IF(NK .EQ. 0) GO TO 75 
DO 70 J = 1, NK 

U(J) = 0.000 
V(J) = 0.000 

DO e5 J = 1, NF 
WT = OMEGA + T(J) 
COSWT = DCOS(WT) 
SINWT = DSIN(WT) 
FCOS = FCOS + F(J) + COSWT 
FSIN = FSIN + F(J) + SINWT 
CC = CC + COSWT + COSWT 
CS = CS + COSWT + SINWT 
SS = SS + SINWT + SINWT 
IF(NK .EQ. 0) GO TO e5 
DO eo K = 1, NK 

S(I) 

FUNC = BASE(K, T(J), 
U(K) = U(K) + FUNC + 
V(K) = V(K) + FUNC + 

OAT, NDAT, LT, PER, NPER) 
COSWT eo 

e5 CONTINUE 
UAU = 0.000 
UAV = 0.000 
VAV = 0.000 
IF(NK .EQ. 0) GO TO 125 
DO 120 J = 1, NK 

DO 120 K = 1, NK 

SINWT 

UAU = UAU + U(J) + A(J,K) + UV(KK) 
UAV = UAV + U(J) + A(J,K) + ( ) 

SPUN 123 
SPUN 124 
SPUN 125 
SPUN 126 
SPUN 127 
SPUN 12e 
SPUN 129 
SPUN 130 
SPUN 131 
SPUN 132 
SPUN 133 
SPUN 134 
SPUN 135 
SPUN 136 
SPUN 137 
SPUN 13e 
SPUN 139 
SPUN 140 
SPUN 141 
SPUN 142 
SPUN 143 
SPUN 144 
SPUN 146 
SPUN 146 
SPUN 147 
SPUN 14e 
SPUN 149 
SPUN 150 
SPUN 151 
SPUN 152 
SPUN 163 
SPUN 164 
SPUN 166 
SPUN 156 
SPUN 157 
SPUN 15e 
SPUN 159 
SPUN 160 
SPUN 161 
SPUN 162 
SPUN 163 
SPUN 164 
SPUN 165 
SPUN 166 
SPUN 167 
SPUN 16e 
SPUN 169 
SPUN 170 
SPUN 171 
SPUN 172 
SPUN 173 
SPUN 174 
SPUN 176 
SPUN 176 
SPUN 177 
SPUN 17e 
SPUN 179 
SPUN 1e0 
SPUN 1e1 
SPUN 1e2 
SPUN 1e3 



68 

120 VAV = VAV + V(J) • A(J,K) • V(K) SPUN 184 
126 S(I) = 0.000 SPUN 186 

DET = (CC-UAU) • (SS-VAV~ - (CS-UAV) • (CS-UAV) SPUN 186 
IF(DABS(DET) .LT. EPSARG GO TO 130 SPUN 187 
S(I) = 100.000 + (!55 - VAVl + FCDS • FCOS SPUN 188 

$ 2.000 • CS - UAV • FCOS • FSIN + SPUN 189 
$ CC - UAU • FSIN • FSIN) I SPUN 190 
$ DET • FNORM) SPUN 191 

130 CONTINUE SPUN 192 
RETURN SPUN 193 
END SPUN 194 




