
LEAST-SQUARES 
SPECTRAL ANALYSIS 

REVISITED

D. WELLS
P. VANICEK

S. PAGIATAKIS

November 1985

TECHNICAL REPORT 
NO. 217

TECHNICAL REPORT 
NO. 84



PREFACE 
 

In order to make our extensive series of technical reports more readily available, we have 
scanned the old master copies and produced electronic versions in Portable Document 
Format. The quality of the images varies depending on the quality of the originals. The 
images have not been converted to searchable text. 



LEAST SQUARES SPECTRAL 
ANALYSIS REVISITED 

David E. Wells 
PetrVamcek 

Spiros Pagiatakis 

Department of Geodesy and Geomatics Engineering 
University of New Brunswick 

P.O. Box 4400 
Fredericton, N .B. 

Canada 
E3B 5A3 

November 1985 
Latest Reprinting August 1994 



PREFACE 

The original version of this report appeared in 1978 under the 

Report Series (Report BI-R-78-8) of the Bedford Institute of Oceanography, 

Dartmouth, Nova Scotia, when the first author was working there. It was 

authored by the first two authors of the present version. The third author 

has been mainly responsible for the changes and improvements in the present 

version of the software. 

This revised version is being issued for three reasons: 

(i) The original report is out of print. 

(ii) Students not exposed to functional analysis have had some 

difficulty in reading the report, so that the original report has 

been extended to include a more elementary description of 

least-squares spectral analysis. 

(iii) Since 1978 the software has been modified, both to eliminate some 

"bugs" and to be more versatile. 

The changes, program listings of the new version, and a user's guide are in 

PART B. 

The authors are grateful to the Bedford Institute of Oceanography 

for permission to reprint herewith parts of the original Report BI-R-78-8. 
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ABSTRACT 

An algorithm is described to compute the optimum least-squares 

spectrum of an unequally or equally spaced generally non-stationary and 

coloured time series for which some of the shapes of the constituents 

(systematic noise) are known. Known constituents of four kinds are provided 

for: datum biases, linear trend, periodic constituents with known periods, 

and arbitrary user-specified constituents. An alternative, more efficient 

algorithm is described for piecewise equally-spaced time series with 

possible gaps. 
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INTRODUCTION 

Observed time series are often composed of constituents that are of 

interest (which we will call the signal), and constituents that obscure the 

signal (which we will call the noise). Often we know the general form of a 

noise constituent, but not its magnitude (we will call such constituents 

systematic noise). 

One class of such time series is that dominated by a few periodic 

constituents (the systematic noise) and smaller amplitude periodic 

constituents (the signal) whose presence is obscured by the noise--coloured 

series. Extracting the signal from this series has been called the hidden 

periodicity problem. In general, the systematic noise may contaminate but 

not totally obscure the signal. 

If all the constituents of a time series are periodic, then we can 

say that it is a colour time series; that the noise is coloured noise; that 

the signal is a coloured signal; and that the extent to which the noise 

obscures the signal is the extent to which the noise discolours the signal. 

A property of a time series is the degree to which it is stationary. 

Strict sense (or strong) stationarity requires that all statistical 

properties of the time series (mean value, autocorrelation function, and all 

higher order moments) be independent of the choice of the time origin. Wide 

sense (or weak) stationarity requires that only the mean value and 

autocorrelation function be independent of the choice of the time origin 

[Benda t and Piersol, 1971]. One common violation of stationarity is the 

presence of datum shifts in the time series: that is, the mean value is 

shifted from time to time. Another common violation is the presence of a 

trend (perhaps linear) in the time series: the "mean" value changes linearly 

with time. 

Both these kinds of non-stationarity-inducing constituents (datum 

shifts and trends) can also be considered as systematic noise, as long as we 

know their general form, that is, the time at which datum shifts occurred, 

and the kind of trend (linear, quadratic, exponential, etc.). 

Another property of a time series is its spacing. Are all the data 

values equally spaced in time? Are there data gaps between otherwise 

equally-spaced segments of the series? Or are all the values in the time 
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series unequally spaced in time? Ideally we would like to have only equally 

spaced time series, but this is rarely the case in practice. 

A specific example of this situation is a time series of ocean tide 

gauge records, from which we are interested in the long period (> 1 year) 

constituents. Three kinds of systematic noise may contaminate this time 

series from our point of view. Firstly, there may be step functions due to 

sudden changes in the tide gauge datum (caused by alterations to the tide 

gauge or to its supporting structure, or possibly caused by vertical 

co-seismic displacements). The dates of such step functions are usually 

well documented, but it can be difficult to document their magnitudes. 

Secondly, there may be a gradual change in the tide gauge datum (due, for 

example, to changes in the mean sea level, or to land subsidence including 

the gauge), which is most simply modelled as a linear trend. Thirdly, the 

tide gauge time series are dominated by short (in our context) periodic 

constituents (i.e., tidal constituents) for which the periods are precisely 

known, but the magnitudes are not. In addition to these problems, there is 

almost certain to be data gaps due to equipment failures. It is this kind 

of series that we will analyse at the end of PART A as an example. 

To obtain an undistorted spectral image of the signal, we must 

somehow remove the influence of the systematic noise, both the "colours" and 

the non-stationarity. The usual way of dealing with this problem is to 

first find the magnitudes of the components of the noise, subtract the noise 

from the time series, and perform a spectral analysis on the "corrected" 

time series. It is known, however, that such a treatment affects the 

location of spectral peaks arising from the rest of the time series [Taylor 

and Hamilton, 1972]. We must somehow deal with the data gaps as well. When 

the data is piecewise equally spaced, as in the example given at the end of 

PART A, the two usual options are to treat each piece separately, or to 

somehow manufacture data to fill in the gaps. Neither is satisfactory. The 

problem is even more difficult when the time series is completely unequally 

spaced, rather than merely gappy. 

An alternative is the least-squares spectral analysis [Van!~ek, 

1971]. This alternative provides two advantages: systematic noise, 

including both colours and non-stationarity, can be rigorously accounted for 

(suppressed) without producing any shift of the existing spectral peaks 

[Taylor and Hamilton, 1972]; and time series with unequally spaced data can 
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be analysed [Maul and Yanaway, 1978]. 

The purpose of this report is to present a brief expos! tion of the 

method, for unequally spaced time series, and to describe how the spectrum 

computation can be made much faster if the time series is equally, or at 

least piecewise equally, spaced. 

Capitalized parameter names longer than one letter refer to 

identifiers used in FORTRAN subroutines SPECUN and SPECEQ which respectively 

compute the least-squares spectrum for unequally spaced and equally spaced 

time series (see PART B for program listings). 

SPECTRUM COMPUTATION 

There are many definitions of a spectrum, and many ways of computing 

a spectrum from a time series. 

general way: Given 

Here we simply state the problem in a 

(a) t = {ti}' i=l,2, ••• ,n, a vector of observation times, 

(b) !(~) = {fi} = {f(ti)}, a vector of observed values, 

(c) 

then find 

_!(~) 

w {wj}' j=l,2, ••• ,m, a 

spectral values are desired, 

vector of frequencies 

{s{w.)}, a vector of spectral values. 
J 

Note that 

(a) _f(_t) or {f., t.} together define a time series. 
~ ~ -----

for which 

(b) s(wj) must be some measure of the fractional content of !(~) 

which is represented by the frequency wj. 

Here we consider only one specific technique for computing s(w .) , which is 
J 

the Least-Squares Spectral Analysis (LSSA). This technique is an 

application of Least-Squares Approximation (LSA) [Van!~ek and Wells, 1972], 

which is closely related to the Linear Least-Squares Parametric Adjustment 

(LLSPA) [Wells and Krakiwsky, 1971; Vanf~ek and Krakiwsky, 1982]. 

LSA and LLSPA use the same algorithm, but they have different 

purposes, and different interpretations of the quantities involved. Those 

parts of the algorithm which we are interested in are, in our notation, 
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(1) 

~ = f - t c (2) 

For LLSPA, we are given 

f = a vector of observations 

t = the design matrix which models the physical relationship between 

the observations f and the vector of unknown parameters c via 

the observation equation!=!~ 
-1 

.S.f where .S.f is the covariance matrix of f, a statistical w = 
quantity, 

and the problem solved in part by ( 1) and (2) is to obtain an estimate for 

some physical parameters~· based on the observations f. What we want here 

is c (plus its covariance matrix). 

For LSA we are given 

f a known vector to be approximated, not necessarily based on 

observations, 

t a matrix considered to consist of several column vectors 

! = [~1 • ~2 , ••• , iro1 called base functions, each of which is a 

known function of the same dimension as f. Note that t does not 

necessarily model any physical dependence of !· 

W a weight function with no statistical meaning. Here we assume 

~=I (often the case in LSA). 

For LSA it is usual to rewrite f = t c in the form 

f 
m 

l: ci ~i 
i=1 

(3) 

and to state the LSA problem as finding the best fitting approximant 2 to f, 
that is 

m 
2 = l: 2i ~i 

i=1 
(4) 

such that the residuals "' v 

Note that for LSA we are 

= ! - 2 are minimized in the least-squares sense. 

more interested in ~ than in the coefficients c, 
although! is still given by (1). 

Specifically for LSSA we know i(t) and we use 
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(5) 

For each w. for which we want s(w.) we compute 
J J 

(6) 

where c = is determined from (1), that is 

(7) 

Now when p(w.) fits f perfectly (_v = 0), then the fractional content of! 
- J -

represented by~ is 1 (all of i is represented by~)· On the other hand, it 

is possible that c = 0 (that is ! is orthogonal to !) and ~ = 0. In this 

case, the fractional content of! represented by~ is 0. In general we will 

see below that the fractional content of f represented by ~ can be measured 

by the ratio 

length of the orthogonal projection of ~ onto ! 
s 

and that this can be computed from 

!_T ~ 
s 

length of f 

Note that since from (6) ~ = ~(wj), so also 

fT p{w.) 
- - J = --=-=--

fT f 

(8) 

(9) 

(10) 

that is, for each spectral value s(w .) we must separately compute the 
J 

least-squares approximant p(w .) • Therefore to compute the least-squares 
- J 

spectrum ~(w) = {sj, w.} we must compute m spectral values s(w.) j=1,2, ••• ,m 
J J 

which involves performing the least-squares approximation m times, each time 

to get p(w.) for a different frequency w3 .• 
- J 
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So far we have dealt only with the problem of computing the spectrum 

of a complete time series. This is one major application of LSSA. A second 

major application is to first remove some constituents from the time series, 

and then to compute the spectrum of the residual time series. This is more 

complicated, and is more easily described (and hopefully understood) using 

the language of functional analysis. 

REQUISITE ELEMENTS OF FUNCTIONAL ANALYSIS 

Functional analysis is the analysis of functionals [Luenberger, 1969; 

Kreyszig, 1978; Oden, 1979]. A functional is a scalar function of vector 

quantities. We are interested in three functionals called the scalar 

product, the norm, and the metric. First we define some spaces. 

In this report we will speak solely of spaces of finite dimensions. A 

vector space L of dimension n = dim L is a space of all possible n-tuples 

{R.l, 1 2 , ••• , in} of real numbers 11' 1 2 , ••• , 1 3 • It is required that a 

linear combination of any elements is also an element, that is if Vi:~i E L 

and ai E R (scalars), then 

b = 1: ai a. 
. -1 
1 

(11) 

is also from 1. A Hilbert (finite) space H is a vector space on which the 

scalar product is defined. If ~· b E H then we denote their scalar product 

by <a, ~ and define the norm (or length or magnitude) of a E H as 

and the metric (or distance) between ~· b E H as 

d(~. E_) II~- E.ll 1/2 [ < (~ - E_) , (a - E_) >] 

(12) 

(13) 

There are many ways of specifying a particular expression for the scalar 

product, some involving weight functions, some involving integrals. Here we 

use the most familiar and simplest expression 
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(14) 

We will use concepts of linear independence, basis, and manifold. An 

n-tuple of vectors a. E L is linearly independent when the equation 
-1 

n 
r a. a1 = 0 

i=1 1 -

, Vi: a. E R 
1 

(15) 

is satisfied if and only if Vi:ai = 0. That is none of the a. can be 
-1 

expressed as a linear combination of the others. Given 

independent n-tuple {a., Vi} C: L then the set of all vectors 
-1 

b. = r ai ai -J -
i 

a linearly 

(16) 

(where all possible combinations of scalar values a. are used to generate 
1 

different b.) form a manifoldS of L, and{~, Vi} is said to generateS, or 
-J -.~. 

to be a basis of s. The number n of vectors in {a., Vi} is the dimension of 
-1 

s. 

We will also use concepts of orthogonal! ty, and orthogonal 

projection. Let us explore how these concepts are intimately related to the 

scalar product. For illustration we will consider two vectors a and b in 

the real plane. If these two vectors intersect at a right angle then their 

scalar product is zero, <a, ~ = 0. In this case we say that _! and .£ are 

orthogonal (denoted _! 1 _£). In more general Hilbert spaces, the following 

statements also all mean the same thing, although "intersection at a right 

angle" can no longer be visualized: 

<a, b) = 0 means the same as 

.!1~, which means the same as 

a and b are orthogonal. 

So much for the special case of orthogonality. In general .! and _£ 

will not intersect at a right angle. What then is the geometrical meaning 

of the scalar product? 

Figure 1). We recall 

Let us say they intersect at some angle e (see 

~, b) 11_!11 11.£11 cos e (17) 



cos 9 = <~.b> 
lallbl 
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ORTHOGONAL 
PROJECTIONS 

~--~-----------+b 

Definition of angle 

lxl - lal 9 - <~.b> - - - cos - lbl 

lXI _ <~.b> x = <~.b> b 
lbl (b,b> , (b,b> -

__ ___.._ ......... ____ ,.. b 
t----- X ---tl 

Orthogonal Projection of a onto b 

(a,b> 
ll!l = lbl cos e = ~~ 

hll = <~.b> , Y. = <~.b> a 
lal <a,a> <a,a> 

__ ___.. ______ ..,. b 

Orthogonal Projection of b onto a 

FIGURE 1. 
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Orthogonality is such a useful concept that even in this case we want 

somehow to construct a right angle. There are two possibilities. Either we 

can drop a perpendicular from ~ onto ~ or we can drop a perpendicular from ~ 

onto a. In Figure 1, the vector x is called the orthogonal projection of ~ 

onto ~' and y is the orthogonal projection of b onto a. From (17) we see 

that the lengths of these vectors are 

11.!11 11~11 cos a = 
~' ~> 
11~11 

~' b) 

llyll = 11~11 cos a = ll~ll 

(18) 

To obtain expressions for the vectors themselves, we note that unit vectors 

in the direction of a (and z) and in the direction of ~ (and .!) are given by 

a and b ti 1 respec ve y. m m Hence, using (12), we have 

b ~' b) 
X = 11.!11 II ~II = ~' ~> ~ 

(19) 
a ~' b) 

y = llyll 11~11 = ~' a>~ 

from which we see that the ratio of the length of .! to the length of ~ (and 

similarly of y to~) is given by the ratio of two scalar products. Finally 

we note that (18) and (19) are not restricted to the simple example here, 

but are valid in any Hilbert space. 

THE PROJECTION THEOREM 

The shortest distance between a point and a plane is the 

perpendicular from the point to the plane. This is the projection theorem. 

We can rephrase this theorem, substituting the terms 

"minimum norm" for 

"(vector) element of Hilbert space" for 

"manifold of Hilbert space" for 

"orthogonal" for 

"shortest distance"; 

"point"; 

"plane"; and 

"perpendicular". 
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Given f e: H (point) and S C H (plane), then of all the elements 

s e: s, there is one element .E. e: s such that d(_!_, .E.) 5. d(!_, _!) (shortest -
distance). This element .2. is given by the orthogonal projection of f onto 

s, that is <.!. - .£) 1 s (perpendicular) (see Figure 2). 

In order to invoke this theorem, we need first to specify .!. and S. 

We can specify !_ in several ways, for example, as an ordered sequence of 

real numbers, or using an analytic functional expression. We can also 

specify S in many ways. Let us choose to specify S by specifying a basis 

{4>., :Yi} which generates S. Figure 2 illustrates the geometrical 
-I. 

relationships between _!., s' .E_, and {$., :Yi} 
-I. 

three-dimensional f and a two-dimensional S. 

expressed as 

for the simple case of a 

Then any s e: S can be 

s =I c. 4>. 
- • l. -l. 

l. 

(20) 

That is, there is some relationship between each n-tuple {ci, :Yi} and the 

corresponding s. Let the particular n-tuple of scalars { ci, :Yi} 

corresponding to .2. be denoted {ci, :Yi}. Then 

.E.= I c. 4>. (21) 
i l. -I. 

Now we can write the condition we must satisfy, (_!.- .E_) 1 S _ (_!.- .E_) 

I 4>.; :Yj, in terms of {ci, :Yi} corresponding to _p, that is 
--J 

vj:<<.!.- I ci 4>.), cp.> = o (22) 
i -l. -J 

This can be rewritten 

If we define 

N = 
<!1' .11> 
<!1' .12> 

<!1' .iu> 

<f, 4>.> 
-J 

<_12' .11> 
<iz' .1z> 

j=1,2, ••• ,n 

<.1n' .11 > 
<.iu' .1z> 

<4>,4>> -n -n 

(23) 



<f' !1> 
u = <!_, !2> 

" c = 

then (23) becomes 

<f' 4> > - -n 

c1 
" c2 

" c 
n 
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N c = u (24) 

the normal equations (!- ~ is normal or orthogonal to S). In fact if we 

define 

then N = ~T ~ and u = ~T f so that 

" N-1 c = u = 

which was equation (7). The approximant~ is then 

and the residual vector is 

T -1 T v = ! - ~ = ! - ! .§. = ! - ! (_! _!) ! i 

(25) 

(26) 

(27) 

(28) 

Note that v 1 ~· This follows from the projection theorem, where 

v = (!- ~) 1 S, that is~ is orthogonal to all vectors in S, in particular 

the column vectors of ~ (which generate S). Thus v is orthogonal to~ which 

is a linear combination of _!, and hence also lies in S. Thus the projection 

theorem (or LSA or LLSPA) decomposes f into two orthogonal components £ (the 

orthogonal projection of f onto S) and v (the perpendicular from! to S). 
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To compute something akin to the spectral value, we must perform a 

second orthogonal projection. However, this one is simpler. So far we have 

projected f onto the manifold S, in which case many projections are 

possible, and we used the minimum norm, or perpendicularity condition to 

select the one we want. For the second projection, we simply project~ back 

onto f. 

Figure 2. 

Figure 3 illustrates this for the simple case corresponding to 

The length of this orthogonal projection is, from (18) 

<!_, .£.> 

11!11 
The ratio of the length of this orthogonal projection to the length of f is, 

from (19) 

---=--
<:!_, f) fT f 

(29) 

This then is a measure of the fractional part of f which is represented by 

Since ..E. is a special element of S (the orthogonal projection of ! 

onto S), this ratio also tells us something about how much of f is 

"contained" in s. The "closer" to S that! lies, the closer to 1 will the 

ratio (29) become. If f lies in S, the ratio is 1. If f is orthogonal to 

S, the ratio is 0. 

Now let us apply this to spectral analysis. For each spectral 

frequency w., j=1,m, we have a different manifoldS spanned by 
J 

[cos w.t, sin w.t] 
J J 

(30) 

Consequently, the orthogonal projection p{w.) of f onto S will be different 
-:- J - • 

for each wj" Due to the properties of the ratio (29) described above, we 

choose that ratio to be the least-squares spectral value of f for frequency 
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f 

PROJECTION 
THEOREM 

f- Q 

s 

FIGURE 2. 

SECOND PROJECTION 
f - ~ IN SPECTRAL ANALYSIS 

FIGURE 3. 



16 

(31) 

The least-squares spectrum of f is the collection of spectral values for all 

(desired) frequencies w., 
J 

~{w) = {s(w.); j=1,m} 
J 

LEAST-SQUARES SPECTRAL ANALYSIS WITH KNOWN CONSTITUENTS 

(32) 

For some applications we can consider a time series as consisting of 

two kinds of constituents: those which we are interested in studying (and 

having represented in the spectrum), i.e., the signal, and those which we 

are not interested in, or which obscure the constituents we want to study, 

i.e., the noise. The noise can be either periodic, rendering the series 

"coloured" or other, rendering the series non-stationary, or both. 

In both cases, we must know something about the constituent in order 

to deal with it. Here we restrict ourselves to the case where we know the 

noise base functions _!i ( t) , but do not know what the magnitude of the 

contribution is to the time series; that is if we represent 

NK 
f{t) = ~ ci _ii(t) 

i 
(33) 

we know i(t) and all the _!i(t), and do not know the coefficients ci. So far 

this is similar to the previous case. 

Now, however, we partition ! into the known constituents !, and the 

spectral functions, cos w.t, sin w.t, we used before, so that 
J J 

(34) 

It was shown by Van{~ek [1971] that the known constituents do not have to be 

removed from i before evaluating the spectrum. It speeds the computations 

up, however, if the least-squares estimate i = c~ is removed before the 
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spectrum is evaluated. This simply means we decompose !(t) into its 

orthogonal projection i £ {c$} and the residual i - p (which is orthogonal 

top). We then have the residual time series 

~(t) = !(t) - £(t) (35) 

and it is this that we compute the spectrum for. We then orthogonally 

project ~ onto the manifold M(lb) spanned by !_ = [!, cos wt, sin wt] and 

obtain the projection ~ = ~ - i and residual v = ~ - ~ = ! - ~· Note that 

whether we project! onto M(!_) directly, or i onto M(!) and then i- £onto 

M(!_), we obtain the same final residual. Finally, we orthogonally project~ 

onto ~ and compute the ratio of the length of the projection to the length 

of~ as our spectral value. 

In summary: 

(a) LSA and LLSPA involve one orthogonal projection: ! onto M(!_)· 

(b) LLSA with no known constituents involves two orthogonal projections 

(i) i onto M(!_) to obtain ~ 

(ii) ~onto i to obtain the spectral value. 

(c) LSSA with known constituents involves three orthogonal projections 

(i) f onto M(!) to eliminate the known constituents and obtain~ 

(ii) ~ onto M(!_) to obtain r 

(iii) r onto~ to obtain the spectral value. 

In order to geometrically illustrate the concept of these three 

orthogonal projections as in Figure 4, we have to unrealistically restrict !_ 

to two dimensions. If we let $ = 11 be one dimensional, that leaves only 

one dimension, 12 , to represent the spectral functions (of which we have in 

actuality two). If we can live with this limitation in order to look at the 

three projections conceptually, then the top part of Figure 4 shows the 

first and second projections (! onto M(!), and~ onto M(!_)), and the bottom 

part of the figure shows the second and third projections (~onto M(!_), and 

~onto~). 

By analogy with (29) the spectral value is 



A 

n.=s ~ _, 

A 

r=~-~ 

1. f onto 

2. g onto 

A 

i 
! 

18 ~ ............ .. 

SPECTRAl ANAL VSIS 
WITH KNOWN 
CONSTITUENTS 

to obtain g 

to obtain r 

g-r 

r 

3. r onto g to obtain spectral value 

FIGURE 4. 



gT r(w.) 
- - J = -;;;T_.......__ 

1i 1i 

19 

(36) 

where 1i = i - i and E = ~ - i We must compute r(w.) for each spectral 
- J 

frequency w., however we need compute only once the quantities (from (28)) 
J 

(37) 

T 
and _a _a. Then the projection of £ onto M(~) has the form 

(38) 

so that 

(39) 

T 
Now£ ~ can be written 

T T 
_a ~=_a[!, cos w.t, sin w.t] (40) 

J J 

T 
But£ ! = 0 (£is orthogonal toM(!)), so that 

T T T 
-g ~ = [0, 0, ••• ,0, ~ cos w.t, g sin w.t] 

.s!. J - J 
(41) 

( 39 ) 2 2 ( ..,T )-1 Hence in only the south-east by submatrix of .., ~ need be 

computed. 

T More specifically, denoting!! by A, we have 

A 
-T 

A = u 
T v 

u -
cc 
cs 

v 

cs 
ss 

where the NK by NK matrix A !T!, the NK-vectors u and v are given by ~j = 

!~NK+l' j = 1,2, ••• ,NK and ~j = !~+Z' j = 1,2, ••• ,NK, and the elements 
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and SS 
T 

!NK+2!NK+2. (Note that 

alternatives to the normal equations such as the Householder transformation 

could be used;however, they would probably involve penalties in computation 

times over the algorithm we have chosen.) Since the matrix A is positive 

definite symmetric, it is most conveniently inverted by the Choleski method. 

The residual time series then is ~ = _!_- !<!T!>-l!Ti and its quadratic norm 

T T T -1 T 
is FNORM = ~~ = ..!_ (.!_- _!(! !) ! )..!_. 

The orthogonal projection ..E. of ~ onto ~ is r = ~, where the 

coefficient vector c satisfies the normal equations Ac = ~, where A = ~T~ 
T and b = _! ~ are known. T 

Then ~..E. T bT = ~TA-1~, d ( ) ~ ~c = _ .£ an .! ~ = 

~TA-lb/FNORM. From (2) the first NK components of the (NK+2)-vector ~are 
T T 

zero, the last two being FCOS = ~!NK+l and FSIN = ~!NK+2 • Hence we really 
-1 

need only determine the lower right-hand 2 by 2 submatrix of A • 

is: 

It is easily shown that the lower right-hand 2 by 2 submatrix of A-l 

1 
DET 

[ 
(SS-VAV), 

-(CS-UAV), 

-(CS-UAV)J 

{CC-UAU) 

T -1 T -1 T -1 
where UAU = ~! ~, VAV = ~! ~, UAV = ~! ~,and DET = {CC-UAU)(SS-VAV)-

2 (CS-UAV) • Hence the algorithm for computing the spectrum of f is: 

s(w) [(SS-VAV)FCOS2-2(CS-UAV)FCOS•FSIN+(CC-UAU)FSIN2]/(DET•FNORM). (42) 

RELATIONSHIP TO OTHER SPECTRAL FUNCTIONS 

To relate this spectrum to the Fourier spectrum, a basis for other 

kinds of spectra, note that in the absence of known constituents UAU = VAV = 
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UAV = 0 and ~ = !_· If the time series is equally spaced and symmetrical 

about the time origin, then CS = 0 and s(w) (1/FNORM)[(FCOS2/CC) + 

( FSIN2 /SS)]. Letting the time series length increase beyond all limits as 

the time series spacing decreases to zero, and introducing the compact 

definition of the scalar product, 

T co 
x y = J x(t) y(t) dt, 
-- -Q)- -

then in our notation the square of the absolute value of the Fourier 
2 2 2 

transform of !_,I C(w) I = (1/21f)(FCOS + FSIN ) , can be compared with the 

above expression for the least-squares spectrum. 

There are other possibilities to define a least-squares spectrum, 

namely, s(w) = (a2 + s2)/11!.11 2 , where a, B are evaluated (a) from the 

orthogonal projection ~c + acos(wt) + Bsin(wt) of!_ onto M(~), or (b) from 

the orthogonal projection acos(wt) + Bsin(wt) of ~ = f - .£. onto the 

two-dimensional manifold spanned by {cos(wt), sin(wt)}. In the first case, 

the spectrum is not defined for values of w which are present in the known 

constituents. The second case (equivalent to the standard Fourier analysis 

approach) distorts the spectrum by forcing it to go to zero for the 

frequencies present in the known constituents. Both cases are discussed by 

Taylor and Hamilton [1972] and neither is found to be advantageous from the 

spectral accuracy point of view. 

TYPES OF KNOWN CONSTITUENTS 

We now turn to the specific software implementation of LSSA 

documented in this report. In this software, the known constituent base 

functions ~ can be of several types. 

(a) <I>( t) = 1 for datum bias. For example, say a tide gauge was 

moved twice in 10 years and the times of the move were known, but the 

vertical relationship of the different locations was not known. The time 

series would look like that shown in the top part of Figure 5. The three 

datum bias known constituent base functions in Figure 5 would be used. 
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(b) ~(t) = t, for linear trend. For example, say a tide gauge was 

situated on a dock which was slowly (or uniformly) sinking into the seabed. 

Then the time series would look like that in the bottom part of Figure 5. 

The linear trend constituent base function in Figure 5 would be used to 

remove this linear trend. 

(c) ~ 1 (t) cos !lit 

for forced periodic constituents, with 

frequencies ll·· 
1. 

For example, we know that a given time series contains the tidal frequencies 

M2 and K1 (perhaps from a previous spectral analysis), so we want to remove 

these peaks from the spectrum and see what is left. 

(d) Ht) = "anything else" for user defined constituents. For 

example, instead of a linear trend we may believe that some nonlinear trend 

(say exponential) exists. 

INPUT AND OUTPUT PARAMETERS 

The input parameters for computing the spectrum (5) must specify the 

time series, the limits and density of the spectral band to be produced, and 

the known constituents $. 

The time series is defined by the vectors (Fi, Ti) i=l,2, ••• ,NF where 

the values Ti are in units of time, and for SPECUN (the version used for 

unequidistant series) are unrestricted as to spacing. For SPECEQ (the 

version used for equidistant series) the time series is assumed to consist 

of a specific number (NIVL) of subintervals, each of which consists of 

equally spaced data points separated by a time increment STEP common to all 

subintervals. The subintervals need not be separated by integral multiples 

of STEP. Separation of subintervals is specified as detected by the 

software when two consecutive elements are not separated by STEP. The value 

for STEP is defined by the difference between the first and second elements 

in the time series. 
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The spectrum is defined by the vectors (Si' Pi) i=1,2, ••• ,NW, where 

the values P. are specified spectral periods in the same units as T., and 
1 1 

the values Si are the computed spectral values. 

The known constituents. Rather than requiring the user to specify 

the form of !, it is useful to build some common types of known constituents 

into the algorithm leaving the user free to ignore them and specify his own 

functions if he so desires. This algorithm, therefore, provides four 

optional types of known constituents: 

(a) Datum Bias. Let the time series consist of NDAT segments, each 

referred to a different datum. Then for NDAT > 1 

{0
1 

1i (E) = 

if t is in the ith datum segment 

i=1,2, ••• ,NDAT 

otherwise 

In the program in this case 

NDAT 3 (number of segments of total time series separated by 

datum shifts) 

DAT(1) t (start time of first datum = start time of time series) 
0 

DAT(2) = t1 (start time of second datum) 

DAT(3) t2 (start time of third datum). 

If there are no datum biases we set NDAT = o, and the contents of DAT 

are not used. On input to routines SPECUN and SPECEQ, if NDAT is 

negative, a warning message is produced, NDAT is set to zero, and the 

program continues. If NDAT is positive and DAT( 1) f. t , a fa tal 
0 

message is produced and the program aborts. 

(b) Linear Trend. If used, this known constituent is of the form 

(c) 

~.(t) = t, i = NDAT + 1 
-1- -

(LT = 1 if used, LT = 0 otherwise) • 

On input to routines SPECUN and SPECEQ, if LT is not either 0 or 1, a 

warning message is produced, LT is set to 0, and the program continues. 

Forced Periods. For NPER ~ 1 known periods PER. (and frequencies~.= 
J J 

2~/PERj), the known·constituents are the periodic functions 

_!i(~) = cos(~jt) 

i NDAT + LT + 2j-1, j=1,2, ••• ,NPER. 
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In the program in this case we set 

NPER = 2 (number of frequencies to be removed) 

PER(l) = 12.42 hours (for M2 ) (period of first frequency) 

PER(2) 23.93 hours (for K1) (period of second frequency). 

If we do not want to remove any periodic constituents before computing 

the spectrum we set NPER = 0, and the contents of PER are not used. On 

input to routines SPECUN and SPECEQ, if NPER is negative, a warning 

message is produced, NPER is set to zero, and the program continues. 

On input to routine SPECEQ only, if NPER is greater than the dimension 

of the arrays required (NPERDM), a fatal message is produced and the 

program aborts. 

(d) User-specified. These known constituents are of arbitrary form (for 

example, quadratic trend or exponential trend, a numerical function) 

chosen by each user 

i=NDAT + LT + 2*NPER + j, j=l,2, ••• ,NBASE. 

In the example at the end of PART A we set 

NBASE = 1 (number of user defined constituents to be removed) 

and add the appropriate code in subroutine BASE to implement the 

user-defined function. This particular user defined function is an 

exponential trend and the code reads: 

BASE = EXP(-T/25.). 

If there are no user defined constituents to be removed, set NBASE = 0. 

On input to routines SPECUN and SPECEQ, if NBASE is negative, a warning 

message is produced, NBASE is set to zero, and the program continues. 

The total number of known constituents then is: 

NK NDAT + LT + 2*NPER + NBASE (43) 

which may also equal to 0 (for NDAT LT = NPER NBASE 0). 

On input to routines SPECUN and SPECEQ, if (43) is not satisfied, a 

warning message is produced, NK is set equal to the right hand side of (43), 

and the computation continues. If NK is greater than the dimensions of the 

arrays required (NKDIM), a fatal message is produced, and the program 

aborts. 
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The next two input parameters, MODE and EQORUN, specify whether a 

sequential or batch solution is desired (MODE) and if SPECEQ or SPECUN 

should be used. Standard deviations of and correlations between a priori 

estimates c are also evaluated from the usual statistical formulae. Their 

values are printed if they are considered significant. The significance 

level for standard deviations (in percents) is another input parameter, 

PCENT; for correlation, the level is called CLEVEL. 

Two more statistical parameters are produced by the software: the 

mean spectral value for white noise (see Vanf~ek [1971]): 

RS = 2/(NF - NK) * 100% (44) 

and the critical percentage variance on 95% for detecting statistically 

significant peaks in the spectrum [Steeves, 1981]: 

RS95 = (1 - nZ/(NF-NK-Z)) * 100% (45) 

where n = 0.95. These are printed together with the spectrum. 

GENERAL SCALAR PRODUCT ALGORITHM FOR EQUALLY SPACED DATA 

The spectrum (5) requires evaluation of the scalar products FNORM, 

FCOS, FSIN, CC, CS, SS, and Ui, Vi (i=1,2, ••• ,NK). For an unequally spaced 

time series treated by SPECUN, all these scalar P!Oducts must be evaluated 

directly from: 

(46) 

where, for convenience, we now introduce the bracket notation <x, y_>. 
Provided that the time series is at least piecewise equally spaced (as 

described in the previous section for input to SPECEQ), we can use much more 

efficient formulae to evaluate CC, CS, SS and those elements of the vectors 

£and~ corresponding to datum bias, linear trend, and forced period known 

constituents. However, FNORM, FCOS, FSIN and those elements of £ and V 

corresponding to user-defined known constituents must still be evaluated 

directly from (44). 
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For convenience we define the function trig(x) as being either cos(x) 

or sin(x). We seek, to begin with, an algorithm for the scalar products 

<1, trig(wt)> = ET trig(wTi) i=1,2, ••• ,NF. 
i 

(47) 

Direct evaluation requires computing NF trigonometric functional values. We 

can reduce this number considerably by applying the identities [Korn and 

Korn, 1968, p. 981]: 

n 
E trig(2ak +b) = [1/sin(a)]* sin(an +a)* trig(an +b). (48) 

k=O 

Let the jth subinterval of the time series F consist of equally 

spaced data points, separated by the time increment STEP, the first data 

point occurring at time TA. and the last at time TB .• Then setting 
J J 

k = (Ti- TAj)/STEP = 0,1, ••• ,n; 

n = (TBj - TAj)/STEP; 

a = (w/2)*STEP; and 

b = w*TA .; 
J 

we have 

TB. 
E J trig(wTi) = [1/sin(Q)]* sin(NjQ)* trig(LjQ) (49) 

Ti=TAj 

where Q = (w/2)*STEP; Nj = 1 + (TBj - TAj)/STEP; and Lj = (TBj + TAj)/STEP. 

Summing over the NIVL subintervals in F gives us the scalar product: 

NIVL 
1 

<1, trig(wT)> = sin(Q) E 
j=1 

(SO) 

which requires computing only (2*NIVL+1) trigonometric functional values, 

where NIVL is the number of subintervals. 

SPECIFIC SCALAR PRODUCT EXPRESSIONS 

It now simply remains to reduce the scalar products CC, CS, SS, .!!_, 

and V to the form of (SO). Using (46) it is easy to see that CC = (NF/2) + 
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(1/2)* <1, cos2wT>; CS = (1/2)* <1, sin2wT>; and SS 

cos2wT> where from (SO) we can see that: 

(NF/2) - (1/2)* <1, 

NIVL 
<1, trig(2wT)> sin(2N.Q)* trig(2L.Q) 

J J 
(51) 

The first NDAT elements of vectors U and V involve constituents of 

type (a) (datum biases). Let INTAi and INTBi be the first and last 

subintervals referred to the ith datum. Then 

1 
U i = _s_i_n_Q 

j=INTA. 
l. 

sinN.Q cosL.Q 
J J 

i=l,2, ••• ,NDAT (52) 

l INTBi 
vi = sinQ ~ 

j=INTA. 
l. 

sinN.Q sinL.Q 
J J 

If LT ~ O, the next element of U and V involves the known constituent 

of type (b) (linear trend). Then 

= _a_ <l i _ aQ a 
UNDAT+ 1 aw ' s nwT> - aw aQ 

VNDAT+l - !__ < 1 coswT> aw , 

After some development, we get 

[1_ N~VL sinNJ.Q cosLJ.Q) 
\inQ j=l 

(53) 

.(54) 

STEP 1 NIVL . . 
UNDAT+l = --2------i Q ~ -cotQsi.nN.Qsi.nL.Q+N.cosN.QsinL.Q+L.sinN.QcosL.Q (55) 

s n j=l J J J J J J J J 

STEP 1 NIVL 
VNDAT+l = --2---r--Q ~ +cotQsinN.QcosL.Q-N.cosN.QcosL.Q+L.sinN.QsinLjQ .(56) 

s n J=l J J J J J J J 

The next (2*NPER) elements of U and V involve constituents of type 

(c) (forced periods). Using (46), it is easy to see that: 



29 

1 1 
Ui = 2 <1, cos(~k + w)T> + 2 <1, cos(~k - w)T> (57) 

1 1 
Ui+1 = 2 <1, sin(~k + w)T> + 2 <1, sin(~k- w)T> (58) 

1 1 Vi = 2 <1, sin(~k + w)T> - 2 <1, sin(~k - w)T> (59) 

1 1 
Vi+1 = - 2 <1, cos(~k + w)T> + 2 <1, cos(~k - w)T> (60) 

i NDAT + LT + 2*k-1 

k 1,2, ••• ,NPER. 

Letting Pk = (~k/2)*STEP, we see from (50) that 

<1, trig(~k ± w)T> 
l NIVL 

~--;o=--:---=-'•' L sin(Pk ± Q) j=1 

We note that the functions of sums of angles in (51) and (61) can be 

expressed in terms of functions of angles only. Hence the scalar products 

CC, CS, SS and those elements of Q, ! which refer to known constituents of 

types (a), (b), and (c) can be computed from the (2*NPER + 4*NPER*NIVL) 

functions trig(Pk)' trig(NjPk)' trig(LjPk) (which need only be computed once 

for a given !) and from the (2 + 4*NIVL) functions trigQ, trig(N.Q), 
J 

trig(L.Q) (which must be computed for each desired spectral frequency w). 
J 

EXAMPLES 

As a model of many time series encountered in practice, we have 

generated the following time series: 

5 
f(t) = ci + O.Olt + 3*exp(-t/25) + L (ajcos~jt + bjsin~jt) , (62) 

j=l 

(where t is in years) that may represent a typical, say geophysical, 

(coloured) time series. Three hundred values of f were generated spanning 

50 years and grouped into four subintervals consisting of equally spaced 

data, that is t E Dk' k=1,2,3,4, where 



30 

D1 - [ 0.1, 0.2, ... ' 10.0] years (100 values) 

D2 - [20.1, 20.2, ... ' 25.0] years ( 50 values) 

D3 - [28.1, 28.2, ... ' 40.0] years (120 values) 

D4 - [47.1, 47.2, ... ' 50.0] years ( 30 values) 

The datum biases were c1 = 1, t £ D1; c = -1 t £ D2; and c = 3, t £ D3' 2 , 3 
D4. The amplitudes and periods of the trigonometric terms were a. = 1/2, 1, 

J 
0, 1.2, - 1.4; b.= 1, 1/2, 1, -1, O· and p. = 2Tr/)l. (2.759, 3.636, 5.714, 

J 
, 

J J 
40, 16) years. The graph of this time series is shown in Figure 6. 

The time series (62) was analysed using both SPECEQ and SPECUN. In 

addition, a second unequally spaced time series was generated from (62) by 

adding to the linearly increasing t a sinusoidal variation of period 50 

years and amplitude 0. 5 years. The second time series was analysed using 

SPECUN only. 

Nine runs were made for each of these three analyses, increasing the 

number of known constituents from zero to 15. The SPECEQ results are shown 

in Figure 7. The top four spectra illustrate the influence the datum biases 

and the linear and exponential trends, and their removal, have on the 

spectra. The next four spectra illustrate how the technique can be used in 

searching for hidden periodicities. By suppressing the effect of the 

periodic constituent which was the most prominent in the previous run, we 

enhance the remaining peaks, revealing the existence of "weaker" periodic 

constituents. The ninth run suppressed the effect of all constituents of 

(62), in which case the residual time series consisted of round-off error 

only, no spectrum was computed, and, as expected, the computed amplitudes of 

the known constituents agreed within round-off with those used in (62). The 

SPECUN generated results were identical to the SPECEQ generated results. As 

expected for the unequally spaced SPECUN results, the computed amplitudes of 

the known constituents and the height of the spectral peaks differed 

slightly from the equally spaced analyses. However, there was no shift in 

the position of the spectral peaks. 

The execution times of Table 1 were obtained using the FORTRAN 77 

compiler on an IBM 3081 computer. The equally spaced SPECEQ and unequally 

spaced SPECUN execution times were essentially equal for small numbers of 
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Figure 7. Results from nine runs of program SPECEQ, analyzing 
the time series of Figure 6. The number of known constituents 
suppressed in each run are specified by NK, NDAT, LT, NEASE, 
and NPER, respectively, giving the total number of constituents, 
the number of datum biases, the linear trend, the number of user­
defined constituents, and the number of forced periods. 



33 

TABLE 1 

IBM 3081 CPU Times for Test Time Series Containing 300 Values. 

-
Number of 
Known CPU Times (sec) 
Constituents 
NK SPECEQ SPEC UN 

0 5. 77 5.83 

3 5.82 6.95 

4 6.04 7.32 

5 6. 72 8.19 

7 6.90 10.23 

9 7.04 12.19 

11 7.28 14.22 

13 7.53 16.35 
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constituents. However, for longer time series and larger numbers of 

constituents the difference in execution times increases considerably in 

favour of equally spaced execution time. 
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PART B 

USER'S GUIDE AND PROGRAM LISTINGS 
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INTRODUCTION 

This version of the Least-Squares Spectral Analysis software has been 

modified from the version published with the original version of this 

report. Some modifications were made to correct errors in the original 

version. Other modifications were made to expand the information provided 

on output. 
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STRUCTURE OF THE SOFTWARE 

The software has been modularized into 16 routines, shown in Figure 1. 

Three of these specify the input: 

TSPEC 

TIMSER 

DRIVER 

Main program. Calls TIMSER, DRIVER and FPLOT. 

Reads input time series. 

Calls SPECUN or SPECEQ. 

Five of these compute the known constituents, the spectrum, and the residual 

time series 

SPEC UN 

SPECEQ 

BASE 

RESID 

CHOLS 

EPS 

Computes least squares spectrum of unequally-spaced time 

series. 

Computes least squares spectrum of equally-spaced time 

series. 

Computes known constituent functional values. 

Computes residual time series after removing known 

constituents. 

Inverts matrix in place using Cholesky decomposition. 

Determines smallest E such that 1 + E is distinguishable from 

1. 

Four of these report the results on the lineprinter: 

FPLar 

AMPL 

AMP HAS 

COVAR 

SPLar 

ERROR 

Plots input time series. 

Lists sine and cosine least-squares estimated coefficients of 

known constituents. 

Lists least-squares estimated amplitude and phase (and their 

standard deviations) of known constituents. 

Lists covariance matrix of unknown constituents. 

Plots output spectrum. 

Prints error message. Stops if fatal error. 

The central routine is either SPECUN or SPECEQ. 

parameter list: 

Both have the following 

T input vector of time series times {t.} 
1 

F = input vector of time series values {fi} 

NF 

FNORM 

NK 

output vector of residual time series values {gi} 

input length of T and F 
T 

output ~ _K 

input total number of known constituents to be removed from F 



INPUT f(t) 

FIGURE 1 

TSPEC 

DRIVER. I 

I 
LIST g(t) 

LIST SIGNIF II PLOT s(w) 
COV ELEMS. 

MESSAGE 

~ 
0 



41 

DAT input vector of time new datum bias begins 

NDAT = input number of datum biases (length of DAT) 

LT = input linear trend switch 

PER input forced periods 

NPER input number of forced periods (length of PER) 

NBASE input number of user defined constituents 

c = output vector of amplitudes (coefficients) of removed known 

constituents c. NK values. 

P = input vector of periods for which spectral values will be 

computed 

S output vector of spectral values 

NW input length of P, S. 

IB = input spectral band label. If only one spectral band is to 

be computed, set IB = 1. If more than one spectral band is 

to be computed from same time series, set IB = 1 for first 
T band, during which ~ and ~ ~ are computed. For subsequent 

T 
bands set IB > 1, and the previous values of ~ and ~ ~ are 

used, rather than recomputing. 

Thus SPECUN and SPECEQ accept inputs specifying 

(a) 

(b) 

the time series {ti, fi}, i=1,2, ••• ,NF 

the known constituents ~.(t), i=1,2, ••• ,NK to be removed from 
-1 

f 

(c) the periods Pi' i=1,2, ••• ,NW for which spectral values are 

wanted 

and provides outputs specifying 

SPECEQ 

(a) 

(b) 

(c) 

has 

(a) 

(b) 

the residual time series {gi} i=1,2, ••• ,NF and its norm gT~ 
the amplitudes of the known constituents {c.} i=1,2, ••• ,NK 

1 

the spectral values {s.}, i=1,2, ••• ,NW. 
1 

four main blocks of code: 

error checking 

identification of equally spaced subintervals, and 

precomputation of trigonometric functions 

(c) computation of~ and gT~ (done by subroutine RESID) 

(d) computation of s(w.) = gT r(w.)/gTg for each wJ .• 
J - - J --

SPECUN omits the second of these four blocks of code. 
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MODIFYING THE SOFTWARE 

The only routines that need be changed to accommodate new time 

series, known constituents, or spectral periods are 

TSPEC (main) 

TIMSER 

DRIVER 

SPEC UN 

BASE 

(a) The only change to BASE is to add more user defined base functions, if 

required. 

(b) The only change to SPECUN is to redimension the following arrays if 

there are more than 15 known constituents (NK > 15): 

A(NK,NK) 

B(NK) 

U(NK) 

V(NK) 

reset NKDIM = NK 

(c) The only changes to TSPEC (Main) are as follows: 

Redimension FF(NF), T(NF) if NF > 500 

Redimension PER(NPER) if NPER > 5 

Redimension DAT(NAT) if NDAT > 3 

(d) DRIVER generates the input specification of the periods for which 

spectral values are wanted, and passes the parameters P, NW, IB to SPECUN. 

If these are to be changed then the parameters PL, PS, NW, and IB in the 

DATA statement must be changed. 

In addition, DRIVER must be changed under the following 

circumstances: 

Redimension F(NF) for NF > 500 

Redimension P(NW), S(NW) for NW > 500 

Redimension C(NK) for NK > 15 

(e) TIMSER generates the inputs specifications for 

(i) the time series, passing T, F, NF to SPECUN 

(ii) the known constituents to be removed, passing DAT, NDAT, LT, 

PER, NPER, NBASE, to SPECUN. 

If the time series is to be read in as data, replace the DO 10 loop 

in TIMSER by a READ statement. If a different artificial time series is to 
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be generated by TIMSER, change the vectors A, B,C, P, NB, NE, IVL and the 

scalars NIVL and STEP to appropriate values, taking care to redimension as 

required. 

If different known constituents are to be removed (including none to 

be removed) change DAT, NDAT, LT, PER, NPER, and NBASE as required. Take 

care to redimension DAT(NDAT) and PER(NPER) in TSPEC as required. 

General redimensioning rules are, for TIMSER, to redimension 

C(NK) if NK > 5 

A(NPER), B(NPER), P(NPER) if NPER > 5 

IVL(NDAT+l), NB(NDAT+l), NE(NDAT+l) if NDAT > 3. 
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PROGRAM TSPEC 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
CHARACTER +2 EQORUN 
CHARACTER +5 MODE . 
DIMENSION DAT(3), FF(500), PER(6), 
DATA IPR /6/ 

T(500) 

TSPE 001 
TSPE 002 
TSPE 003 
TSPE 004 
TSPE 006 
TSPE 006 

C TSPE 007 
C FUNCTION: TSPEC CALLS TIMSER TO GENERATE TEST TI~E SERIES TSPE 008 
C AND CALLS DRIVER TO COMPUTE SEVERAL TSPE 009 
C LEAST SQUARES SPECTRA OF THE TEST TSPE 010 
C TIME SERIES TSPE 011 
C TSPE 012 
C UNIT NUMBER: IPR = 6 = LISTING OF INPUT AND OUTPUT TSPE 013 
C TSPE 014 
C EXTERNALS: DRIVER,FPLOT,TIMSER TSPE 016 
C TSPE 016 
C SUMMARY: TSPE 017 
C CALL TIMSER TSPE 018 
C CALL FPLOT TO PLOT INPUT TIME SERIES TSPE 019 
C CALL DRIVER ADDING DATUM BIAS, LINEAR TREND, USE.R-DEFINED TSPE 020 
C CONSTITUENTS AND FORCED FREQUENCIES SIMULTANEOUSLY (MODE=BATCH)TSPE 021 
C CALL DRIVER WITH NO KNOWN CONSTITUENTS TSPE 022 
C CALL DRIVER ADDING DATUM BIAS CONSTITUENTS TSPE 023 
C CALL DRIVER ADDING LINEAR TREND CONSTITUENT TSPE 024 
C CALL DRIVER ADDING USER-DEFINED CONSTITUENTS TSPE 026 
C CALL DRIVER ADDING ONE FORCED FREQUENCY AT A TI~IE TSPE 026 

CALL TIMSER(T, FF, NF, OAT, MOAT, MT, PER, MPER, MBASE, MODE, TSPE 027 
$ EQORUN, PCENT, CLEVEL) TSPE 028 

CALL FPLOT(T, FF, NF, OAT, MOAT, EQORUN, IPR) TSPE 029 
IF (MODE .EQ. 'SQNTL') GO TO 1 - TSPE 030 
IF (MODE . E~. 'BATCH') TSPE 031 

$CALL DRIVER(T, FF, NF, OAT, MOAT, MT, PER, MPE.R, MBASE, IPR, TSPE 032 
$ EQORUN, PCENT, CLEVEL) TSPE 033 

STOP TSPE 034 
1 NDAT = 0 TSPE 036 

L T = 0 TSPE 036 
NBASE = 0 TSPE 037 
NPER = 0 TSPE 038 
CALL DRIVER(T, FF, NF, OAT, NDAT, LT, PER, NPER, NBASE, IPR, TSPE 039 

$ EQORUN, PCENT, CLEVEL) TSPE 040 
IF (MOAT . EQ. 0) GO TO 5 TSPE 041 
NDAT = MOAT TSPE 042 
CALL DRIVER(T, FF, NF, OAT, NDAT, LT, PER, NPE.R, NBASE, IPR, TSPE 043 

$ EQORUN, PCENT, CLEVEL) TSPE 044 
5 IF (MT . EQ. 0) GO TO 10 TSPE 046 

LT = MT TSPE 046 
CALL DRIVER(T, FF, NF, OAT, NDAT, LT, PER, NPER, NBASE, IPR, TSPE 047 

$ EQORUN, PCENT, CLEVEL) TSPE 048 
10 IF(MBASE .EQ. 0) GO TO 15 TSPE 049 

NBASE = MBASE TSPE 060 
CALL DRIVER(T, FF, NF, OAT, NDAT, LT, PER, NPE.R, NBASE, IPR, TSPE 051 

$ EQORUN, PCENT, CLEVEL) TSPE 052 
15 IF (MPER . EQ. 0) GO TO 26 TSPE 053 

DO 20 NPER = 1, MPER TSPE 054 
20 

$ 
CALL DRIVER(T, FF, NF, OAT, NDAT, LT, PER, NPER, NBASE, IPR, TSPE 055 

25 STOP 
END 

EQORUN, PCENT, CLEVEL) TSPE 056 
TSPE 057 
TSPE 058 
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SUBROUTINE AMPL(A, NF, NK, FNORM, OAT, NDAT, LT, PER, NPER, 
$ NBASE, C, IPR) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION A(100,100), C(1), DAT(1), PER(1) 
DATA PI/3.141592653589793DO/ 

c 
C FUNCTION: 
c 

AMPL LISTS PRELIMINARY COSINE AND SINE 
COEFFICIENTS. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

CALLED FROM: DRIVER 

ARGUMENTS: A INVERTED MATRIX OF NORMAL EQUATIONS 
TOTAL NUMBER OF KNOWN CONSTITUENTS 

= TIMES NEW DATUM BEGINS 
NK 
DAT(NDAT) 
LT 
PER(NPER) 
NBASE 
C (NK) 

IPR 

= LINEAR TREND SWITCH (1 =·INCLUDED) 
= FORCED PERIODS 
= NUMBER OF USER-DEFINED CONSTITUENTS 
= PRELIMINARY AMPLITUDES OF KNOWN 

CONSTITUENTS 
= UNIT NUMBER FOR OUTPUT 

EXTERNALS: DSQRT, DATA2, DMOD 
WRITE(IPR,1001) NDAT,LT,NPER,NPER,NPER,NBASE 
IF(NDAT .GE. 1) WRITE(IPR,1002) (K,C(K),K=1,NDAT) 
K = NDAT + 1 

$ 
$ 

$ 
$ 
$ 

IF(LT .EQ. 1) WRITE(IPR,1003) K,C(K) 
IF(NPER .EQ. 0) GO TO 10 
DO 5 I= 1, NPER 

K = NDAT + LT + 2 + I - 1 
K1 = K + 1 
AMP = DSQRT(C(K)+C(K) + C(K1)+C(K1)) 
GPL = DATAN2(C(K1),C(K)) + 180.DO /PI 
GPL = DMOD(GPL + 360.DO, 360.DO) 
ESTSD = DSQRT(FNORM / (NF - NK)) 
SIGAMP = DSQRT(C(K) + C(K) + A(K,K) + C(K1) + C(K1) + 

A(K1,K1) + 2.DO + C(K) + C(K1) + A(K,K1)) + 
ESTSD I AMP 

SIGPL = DSQRT(C(K1~ + C~K1) + A(K,K) + 
C(K) + C(K + A K1,K1) -
2.DO + C(K + C K1) + A(K,K1)) + 
(ESTSD I (AMP • AMP)) • (180.DO I PI) 

WRITE(IPR,1004) K,K1,PER(I),C(K),C(K1),AMP,SIGAMP,GPL,SIGAPL 
5 CONTINUE 

10 IF(NBASE .EQ. 0) RETURN 
DO 15 I = 1,NBASE 

15 
K = NDAT + LT + 2 + NPER + I 
WRITE(IPR,1005) K, C(K) 

RETURN 
1001 FORMAT(1H1,2X,31HSOLUTION FOR KNOWN CONSTITUENTS,///. 

$ 14X,5HDATUM,4X,6HLINEAR,4X,6HFORCED,4X,6HCOSINE,6X, 
$ 4HSINE,8X,4HUSER./,15X,4HBIAS,5X,5HTREND, 
$ 4X,6HPERIOD,4X,4HTERM,8X,4HTERM,5X,7HDEFINED,2X, 
$ 9HAMPLITUDE,3X,7H(SIGMA),4X,5HPHASE,2X,7H(SIGMA),j/, 
$ 2X,6HNUMBER,5X,I5,5(7X,I3),//) 

1002 FORMAT~7X,I3,E11.3) 
1003 FORMAT 7X,I3,10X,E11.3) 
1004 FORMAT 3X,I3,1H-,I3,18X,F11.3,2E11.3,10X,E10.3,1X,1H(,E10.3, 

$ 1H),1X,F6.2,1X,1H(,F6.2,1H)) 
1005 FORMAT(7X,I3,51X,E11.3) 

END 

AMPL 001 
AMPL 002 
AMPL 003 
AMPL 004 
AMPL 005 
AMPL 006 
AMPL 007 
AMPL 008 
AMPL 009 
AMPL 010 
AMPL 011 
AMPL 012 
AMPL 013 
AMPL 014 
AMPL 015 
AMPL 016 
AMPL 017 
AMPL 018 
AMPL 019 
AMPL 020 
AMPL 021 
AMPL 022 
AMPL 023 
AMPL 024 
AMPL 025 
AMPL 026 
AMPL 027 
AMPL 028 
AMPL 029 
AMPL 030 
AMPL 031 
AMPL 032 
AMPL 033 
AMPL 034 
AMPL 035 
AMPL 036 
AMPL 037 
AMPL 038 
AMPL 039 
AMPL 040 
AMPL 041 
AMPL 042 
AMPL 043 
AMPL 044 
AMPL 045 
AMPL 046 
AMPL 047 
AMPL 048 
AMPL 049 
AMPL 050 
AMPL 051 
AMPL 052 
AMPL 053 
AMPL 054 
AMPL 055 
AMPL 056 
AMPL 057 
AMPL 058 
AMPL 059 
AMPL 060 
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DOUBLE PRECISION FUNCTION BASE(!, T, OAT, NDAT, LT, PER, NPER) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION DAT(1), PER(1) 
DATA PII3.141592653589793DOI 

C FUNCTION: BASE COMPUTES KNOWN CONSTITUENT FUNCTIONAL 
C VALUES. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

CALLED FROM: RESID 

ARGUMENTS: I INDEX OF KNOWN CONSTITUENT TO BE COMPUTED 
TIME AT WHICH KNOWN CONSTITUENT COMPUTED 
INPUT TIMES NEW DATUM BEGINS 

T 
DAT(NDAT) 
LT 
PER(NPER) 

INPUT LINEAR TREND SWITCH (1 = INCLUDED) 
INPUT FORCED PERIODS 

EXTERNALS: DCOS, DEXP. DSIN 

LIMITATION: USER MUST SUPPLY CODING TO COMPUTE EACH 
USER-DEFINED CONSTITUENT. AS AN EX~MPLE, 
THIS VERSION CONTAINS THE EXPONENTIAL 
TREND EXP(-TI25). 

DATUM BIAS 
IF(I .GT. NDAT) GO TO 5 

$ 

BASE = 1. ODO 
IF(I .EQ. NDAT 
IF(I .LT. NDAT 

BASE= O.ODO 
RETURN 

.AND. T .GE. DAT~I)) RETURN 

.AND. T .GE. OAT I) 

.AND. T .LT. OAT I+1)) RETURN 

C LINEAR TREND 

c 

5 IF(I .GT. NDAT + LT) GO TO 10 
BASE = T 
RETURN 

C FORCED PERIODS 

c 

10 IF(I .GT. NDAT + LT + 2 + NPER) GO TO 20 
IND = (I - NDAT - LT + 1) I 2 
IF(I - NDAT - LT .EQ. IND + 2) GO TO 15 
BASE= DCOS(2.DO + PI + T I PER(IND)) 
RETURN 

15 BASE= DSIN(2.DO + PI + T I PER(IND)) 
RETURN 

C EXPONENTIAL TREND 

c 

20 IF(I .GT. NDAT + LT + 2 + NPER + 1) GO TO 25 
BASE = DEXP(-T I 25.00) 
RETURN 

C ADD ADDITIONAL USER-DEFINED FUNCTIONS HERE 
25 BASE ;:: O.DO 

RETURN 
END 

BASE 001 
BASE 002 
BASE 003 
BASE 004 
BASE 005 
BASE 006 
BASE 007 
BASE 008 
BASE 009 
BASE 010 
BASE 011 
BASE 012 
BASE 013 
BASE 014 
BASE 015 
BASE 016 
BASE 017 
BASE 018 
BASE 019 
BASE 020 
BASE 021 
BASE 022 
BASE 023 
BASE 024 
BASE 025 
BASE 026 
BASE 027 
BASE 028 
BASE 029 
BASE 030 
BASE 031 
BASE 032 
BASE 033 
BASE 034 
BASE 035 
BASE 036 
BASE 037 
BASE 038 
BASE 039 
BASE 040 
BASE 041 
BASE 042 
BASE 043 
BASE 044 
BASE 045 
BASE 046 
BASE 047 
BASE 048 
BASE 049 
BASE 050 
BASE 051 
BASE 052 
BASE 053 
BASE 054 
BASE 055 
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SUBROUTINE CHOLS(A, IRDA, NA) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION A(IRDA, NA) 
DATA ROUND 1500.001 

C FUNCTION: 
c 

CHOLS INVERTS MATRIX A IN PLACE 
USING CHOLESKY DECOMPOSITION 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

CALLED FROM: RESID 

ARGUMENTS: A(IRDA,NA) ARRAY CONTAINING POSITIVE DEFINITE 
SYMMETRIC INPUT MATRIX, WITH ROW DIMENSION 
IRDA. THE INPUT MATRIX SIZE IS (NA,NA) 
AND IS INVERTED IN PLACE, DESTROYING THE 
INPUT, RETURNING THE INVERSE. 

EXTERNALS: EPS, ERROR, DSQRT 

ERROR 
101 
102 
103 

CONDITIONS: 
=FATAL. DIMENSION OF A .LT. 1 
=FATAL. NEGATIVE SQUARE ROOT. A PROBABLY SINGULAR. 

FATAL. DIAGONAL ELEMENT OF CHOLESKI DECOMPOSITION 
NEGLIGIBLY SMALL COMPARED TO DIAGONAL ELEMENT OF A. 
A PROBABLY SINGULAR. 
("NEGLIGIBLY SMALL" MEANS LESS THAN EPS+RGUND, 
WHERE EPS IS THE SMALLEST NUMBER SO THAT 
1. + EPS .GT. 1., AND ROUND ACCOUNTS FOR 
ACCUMULATED ROUNDOFF) 

MATRIX DIMENSION CHECK 
IF (NA . LT. 1) CALL ERROR(101) 

C INVERSION OF 1X1 MATRIX 
IF(NA .GT. 1) GO TO 5 
A(1,1) = 1.0DO I A(1,1) 
RETURN 

c 
C CHOLESKI DECOMPOSITION OF INPUT MATRIX 

5 A(1,1) = DSQRT(A(1,1)) 

c 

DO 10 I = 2, NA 
10 A(I,1) = A(I,l) I A(1,1) 

DO 30 J = 2, NA 
SUM = O.ODO 
DO 15 K = 2, J 

15 SUM = SUM + A(J,K-1) ++ 2 
IF(A(J,J) .LT. SUM) CALL ERROR(102) 
SUM= DSQRT(A(J,J) -SUM) 
IF(SUMIA(J,J) .LT. EPS(ARG)+ROUND) CALL ERROR(103) 
A(J,J) = SUM 
IF(J .EQ. NA) GO TO 30 
J2 = J + 1 
DO 25 I = J2, NA 

SUM = O.ODO 
DO 20 K = 2, J 

20 SUM= SUM+ A(I,K-1) + A(J,K-1) 
25 A(I,J) = (A(I,J) - SUM) I A(J,J) 
30 CONTINUE 

C INVERSION OF LOWER TRIANGULAR MATRIX 
DO 35 I = 1, NA 

35 A(I,I) = 1.0DO I A(I,I) 

CHOL 001 
CHOL 002 
CHOL 003 
CHOL 004 
CHOL 005 
CHOL 006 
CHOL 007 
CHOL 008 
CHOL 009 
CHOL 010 
CHOL 011 
CHOL 012 
CHOL 013 
CHOL 014 
CHOL 015 
CHOL 016 
CHOL 017 
CHOL 018 
CHOL 019 
CHOL 020 
CHOL 021 
CHOL 022 
CHOL 023 
CHOL 024 
CHOL 025 
CHOL 026 
CHOL 027 
CHOL 028 
CHOL 029 
CHOL 030 
CHOL 031 
CHOL 032 
CHOL 033 
CHOL 034 
CHOL 035 
CHOL 036 
CHOL 037 
CHOL 038 
CHOL 039 
CHOL 040 
CHOL 041 
CHOL 042 
CHOL 043 
CHOL 044 
CHOL 045 
CHOL 046 
CHOL 047 
CHOL 048 
CHOL 049 
CHOL 050 
CHOL 051 
CHOL 052 
CHOL 053 
CHOL 054 
CHOL 055 
CHOL 056 
CHOL 057 
CHOL 058 
CHOL 059 
CHOL 060 
CHOL 061 
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DO 45 J = 2. NA CHOL 062 DO 45 I = J, NA CHOL 063 
SUM = O.ODO CHOL 064 
DO 40 K = J, I CHOL 065 40 SUM = SUM + A(I,K-1) + A(K-1,J-1) CHOL 066 45 A(I,J-1) = - A(I.I) + SUM CHOL 067 c CHOL 068 c CONSTRUCTION OF INVERSE OF INPUT MATRIX CHOL 069 

DO 65 J = 1, NA CHOL 070 IF (J .EQ. 1) GO TO 55 CHOL 071 
DO 50 I = 2, J CHOL 072 50 A(I-1,J) = A(J,I-1) CHOL 073 55 DO 65 I = J, NA CHOL 074 

SUM = 0.000 CHOL 075 
DO 60 K = I, NA CHOL 076 60 SUM= SUM+ A(K,I) + A(K,J) CHOL 077 65 A(I,J) = SUM CHOL 078 RETURN CHOL 079 END CHOL 080 
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SUBROUTINE COVAR(FNORM, NF, NK, A, C, PCENT, CLEVEL, IPR) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION A(100,1), COV(1,1), C(1) 

C FUNCTION: COVAR COMPUTES THE VARIANCE-COVARIANCE MATRIX 
C OF THE UNKNOWN CONSTITUENTS, THE CORRELATION 
C MATRIX AND PRINTS RESULTS. 
c 
C CALLED FROM: DRIVER 
c 
C EXTERNALS: DS~RT, DABS 
c 

IF (NK .LE. 0) RETURN 
c 
C COMPUTE THE STANDARD DEVIATIONS STD, CHECK IF 
C EXCEED PCENT+C(I) AND PRINT ALL OUTSTANDING 
C STANDARD DEVIATIONS 

c 

SIGMA2 = FNORM I (NF - NK) 
WRITE (IPR,1000) PCENT 
NSTD = 0 
DO 25 I = 1, NK 

STD = DS~RT(SIGMA2 + A(I,I)) 
IF (STD .LT. DABS(PCENT+C(I) I 100.0DO)) GO TO 25 
WRITE (IPR,1001) I, STD 
NSTD = NSTD + 1 

25 CONTINUE 
IF(NSTD .E~. 0) WRITE (IPR, 1004) 

C CHECK IF ANV CORRELATION EXCEEDS CLEVEL AND PRINT 
C ALL OUTSTANDING CORRELATIONS 

WRITE(IPR,1002) CLEVEL 
NLEVEL = 0 
DO 35 I= 1, NK 

DO 30 J = 1, NK 
IF(I .GE. J~ GO TO 30 
COR= A(I,J / DS~RT(A(I,I) + A(J,J)) 
IF(DABS(COR .LT. CLEVEL) GO TO 30 
WRITE (IPR,1003) I, J, COR 
NLEVEL = NLEVEL + 1 

30 CONTINUE 
35 CONTINUE 

IF(NLEVEL .E~. 0) WRITE (IPR, 1004) 
1000 FORMAT(1H1, 5X, 

$ 53HOUTSTANDING STANDARD DEVIATIONS OF KNOWN CONSTITUENTS 
$ ,j,5X,12H(LARGER THAN, 1X, F5.1, 1X, 
$ 25H% OF ESTIMATED MAGNITUDE),//. 5X, 6HNUMBER, 
$ 2X, 18HSTANDARD DEVIATION,/) 

1001 FORMAT(6X, I3, 9X, E9.3) . 
1002 FORMAT(1H1, 5X, 

$ 51HOUTSTANDING CORRELATIONS BETWEEN KNOWN CONSTITUENTS,/, 
$ 5X, 30H(LARGER IN ABSOLUTE VALUE THAN, 1X, F4.2,1H),f/, 
$ 6X,6HNUMBER, 6X, 11HCORRELATION,/) 

1003 FORMAT(5X, I3, 1H-, I3, 5X, F11.8) 
1004 FORMAT(10X, 14HNONE WAS FOUND) 

END 

COVA 001 
COVA 002 
COVA 003 
COVA 004 
COVA 006 
COVA 006 
COVA 007 
COVA 008 
COVA 009 
COVA 010 
COVA 011 
COVA 012 
COVA 013 
COVA 014 
COVA 015 
COVA 016 
COVA 017 
COVA 018 
COVA 019 
COVA 020 
COVA 021 
COVA 022 
COVA 023 
COVA 024 
COVA 025 
COVA 026 
COVA 027 
COVA 028 
COVA 029 
COVA 030 
COVA 031 
COVA 032 
COVA 033 
COVA 034 
COVA 036 
COVA 036 
COVA 037 
COVA 038 
COVA 039 
COVA 040 
COVA 041 
COVA 042 
COVA 043 
COVA 044 
COVA 045 
COVA 046 
COVA 047 
COVA 048 
COVA 049 
COVA 050 
COVA 051 
COVA 052 
COVA 053 
COVA 054 
COVA 056 
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SUBROUTINE DRIVER(T, FF, NF, OAT, NDAT, LT, P~R. NPER, 
$ · EQORUN, PCENT, CLEVEL) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

DIMENSION A 100,100), C(100), DAT(1), F(2000), 
CHARACTER +2 E~ORUN 

$ P 2000), PER(1), S(2000), T(1) 
DATA PL/ 200.00/, 

$ PS/ 2.00/, 
$ NW/125/, 
$ IB/ 1/ 

c 
C FUNCTION: 
c 

DRIVER CALLS SPECEQ OR SPECUN TO COMPUTE A 
LEAST SQUARES SPECTRUM (P,S) FOR THE INPUT 
TIME SERIES (T,F). c 

c 
c 
c 
c 
c 
c 

CALLED FROM: TSPEC 

ARGUMENTS: T(NF) = INPUT TIME SERIES TIMES 
FF(NF) = INPUT TIME SERIES VALUES 

NBASE, 

FF (1), 

c 
DAT(NDAT) INPUT TIMES NEW DATUM BEGINS 
LT = INPUT LINEAR TREND SWITCH (1 = INCLUDED) 

c PER(NPER) = INPUT FORCED PERIODS 
c NBASE = NUMBER OF USER-DEFINED CONSTITUENTS 
c IPR UNIT NUMBER FOR OUTPUT 

IPR,DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 

c EQORUN = FLAG FOR EQUALLY OR UNEQUALLY SPACED SERIES 
DRIV 
DRIV 
DRIV c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

PCENT = PERCENTAGE LEVEL FOR DETECTING OUTSTANDING 

CLEVEL 
STANDARD DEVIATIONS OF UNKNOWNS 

= CRITICAL LEVEL FOR DETECTING OUTSTANDING 
CORRELATIONS IN THE SOLUTION 

EXTERNALS: AMPL, DFLOAT, SPECEQ, SPECUN, SPLOT, ERROR(108) 

SUMMARY: 
COMPUTE SPECTRAL PERIODS, P 

PL = LONGEST PERIOD IN P 
PS = SHORTEST PERIOD IN P 
NW = NUMBER OF PERIODS IN P 

COPY VECTOR F (MODIFIED BY SPECEQ AND SPECUN) 
COMPUTE NK = TOTAL NUMBER OF KNOWN CONSTITUENTS 
CALL SPECEQ OR SPECUN TO COMPUTE SPECTRUM 
CALL AMPL TO LIST KNOWN CONSTITUENT AMPLITUDES 
CALL COVAR TO LIST ALL OUTSTANDING STANDARD DEVIATIONS 

AND CORRELATIONS 
LIST RESIDUAL TIME SERIES AND ITS QUADRATIC NORM 
COMPUTE RS = MEAN SPECTRAL VALUE FOR WHITE NOISE 
COMPUTE RS95 = CRITICAL PERCENTAGE VARIANCE AT 95% 

CONFIDENCE LEVEL FOR DETECTING STATISTICALLY 
SIGNIFICANT PEAKS IN THE SPECTRUM 

PLOT SPECTRUM 
DO 5 I == 1,NW 

5 

10 

P(I) = DFLOAT(NW-1)/(DFLOAT(NW-I)/PL + DFLOAT(I-1)/PS) 
DO 10 I = 1,NF 

F(I) = FF(I) 
NK = NDAT + LT + NBASE + 2 + NPER 
IF(EQORUN. EQ. 'EQ') 

$CALL SPECEQ(T, F, NF, FNORM, 
$ NK, OAT, NDAT, LT, PER, NPER, NBASE, A, C, 
$ P, S, NW, IB, ICRIT) 

IF(EQORUN .EQ. 'UN') 
$CALL SPECUN(T, F, NF, FNORM, 
$ NK, OAT, NDAT, LT, PER, NPER, NBASE, A, C, 

DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 

001 
002 
003 
004 
005 
006 
007 
008 
009 
010 
011 
012 
013 
014 
015 
016 
017 
018 
019 
020 
021 
022 
023 
024 
025 
026 
027 
028 
029 
030 
031 
032 
033 
034 
035 
036 
037 
038 
039 
040 
041 
042 
043 
044 
045 
045 
047 
048 
049 
050 
051 
052 
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059 
060 
061 
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1002 

51 

$ P, S, NW, IB, ICRIT) 
CALL AMPL(A, NF, NK, FNORM, OAT, NDAT, LT, PER, NPER, 

$ NBASE, C, IPR) 
CALL COVAR(FNORM, NF, NK, A, C, PCENT, CLEVEL, IPR) 
RS = 200.000 / (NF - NK) 
RS95 = 100.000~(1.000/(0.0500++(-2.000/(NF-NK-2))-1)+1) 
WRITE(IPR,1001 (F(I),I=1,NF) 
WRITE(IPR,1002 FNORM 
IF(ICRIT .EQ. 0) CALL ERROR(108) 
CALL SPLOT(P, S, NW, RS, RS95, IB, IPR) 
RETURN 
FORMAT(1H1,9X,20HRESIOUAL TIME SERIES//110(11E10.2/)) 
FORMAT(9X,35HRESIDUAL TIME SERIES QUADRATIC NORM,E15.5) 
END 

DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
DRIV 
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067 
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070 
071 
072 
073 
074 
076 
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DOUBLE PRECISION FUNCTION EPS(ARG) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

C FUNCTION: EPS SETS FUNCTIONAL VALUE EPS AND ARGUMENT ARG 
C BOTH EQUAL TO THE SMALLEST NUMBER SO THAT 
C 1. + EPS .GT. 1. 
c 
C CALLED FROM: CHOLS, SPECUN, SPECEQ 
c 

EPS == 1.0DO 
10 EPS = EPS / 2.0DO 

IF ((1.0DO + EPS) - 1.0DO .EQ. EPS) GO TO 10 
EPS = EPS + 2.0DO 
ARG = EPS 
RETURN 
END 

EPS 
EPS 
EPS 
EPS 
EPS 
EPS 
EPS 
EPS 
EPS 
EPS 
EPS 
EPS 
EPS 
EPS 
EPS 
EPS 

001 
002 
003 
004 
006 
006 
007 
008 
009 
010 
011 
012 
013 
014 
016 
016 
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SUBROUTINE ERROR(IER) ERRO 001 
INTEGER IER,IPR ERRO 002 
DATA IPR /6/ ERRO 003 

c ERRO 004 
c FUNCTION: ERROR DETECTS WHETHER ERROR IS WARNING ERRO 006 
c OR FATAL, AND PRINTS MESSAGE ERRO 006 
c ERRO 007 
c CALLED FROM: DRIVER, CHOLS, SPECUN, SPECE~ ERRO 008 
c ERRO 009 
c ARGUMENT: IER = ERROR INDEX ERRO 010 
c WARNINGS HAVE INDICES 1 - 99 ERRO 011 
c FATAL ERRORS HAVE INDICES 100 AND OVER. ERRO 012 
c ERRO 013 

IF(IER .GT. 100) GO TO 10 ERRO 014 
WRITE(IPR,1001) IER ERRO 015 
RETURN ERRO 016 

10 WRITE(IPR,1002) IER ERRO 017 
STOP ERRO 018 

1001 FORMAT~11H +++WARNING,I5) ERRO 019 
1002 FORMAT 15H +++FATAL ERROR,I5) ERRO 020 

END ERRO 021 
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SUBROUTINE FPLOT(T, F, NF, OAT, NDAT, EQORUN, IPR) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
CHARACTER +1 !BLANK, !STAR, !PLOT 
CHARACTER +2 EQORUN 
DIMENSION DAT(1), F(1), IPLOT(100), T(l) 
DATA !BLANK/' '/, 

$ !STAR /'+'/ 

C FUNCTION: 
c 

FPLOT PLOTS TIME SERIES F 
DETECTING TIMES OF NEW DATUM BIASES 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

CALLED FROM: TSPEC 

ARGUMENTS: T (NF) = INPUT TIME SERIES TIMES 
F (NF) 
DAT(NDAT) 
IPR 

= INPUT TIME SERIES VALUES 
INPUT TIMES NEW DATUM BEGINS 
UNIT NUMBER FOR OUTPUT 

EXTERNALS: DMAX1,DMIN1,IFIX 

SUMMARY: 
INITIALIZE PLOT ARRAY 
COMPUTE MAXIMUM AND MINIMUM VALUES IN F 
SCAN THROUGH TIME SERIES 

5 

10 

12 

15 

20 

CHECKING FOR NEW DATUM 
PLOTTING TIME SERIES VALUES 

WRITE(IPR,1001) 
DO 5 I :::: 1,100 

IPLOT(I) = !BLANK 
FMIN = F(1) 
FMAX :::: F(1) 
DO 10 I = 2,NF 

FMIN:::: DMIN1(FMIN,F(I)) 
FMAX = DMAX1(FMAX,F(I)) 

IDAT = 1 
STEP :::: T(2) - T(1) 
NGAP = 0 
DO 20 I = 1,NF 

IF (I .EQ. 1 .OR. EQORUN .EQ. 'UN') GO TO 12 
IF (T(I)-T(I-1) .LT. 1.5DO+STEP) GO TO 12 
NGAP = NGAP + 1 
NPNT = (T(I) - T(I-1)) / STEP - 1 
WRITE (IPR, 1004) NGAP, NPNT 
IF(NDAT .EQ. 0 .OR. !OAT .GT. NOAT) GO TO 15 
IF(DAT(IDAT) .GT. T(I)) GO TO 15 
WRITE(IPR,1002) IDAT 
IDAT :::: IDAT + 1 
KF= 1 + (99.0DO + (F(I) - FMIN) / (FMAX - F~IN)) 
IF(KF .LT. 1 ) KF = 1 
IF(KF .GT. 100) KF = 100 
IPLOT~KF) = !STAR 
WRITE IPR,1003) I,T(I),F(I),IPLOT 
!PLOT KF) = !BLANK 

RETURN 
1001 FORMAT(1H1,9X,11HTIME SERIES// 

$ 5X,1HI,8X,4HT(I),8X,4HF(I)/) 
1002 FORMAT~/,30X,38(1H-),18HBEGINNING OF DATUM,I5,39(1H-),/) 
1003 FORMAT 2X,I4,2E12.4,100A1) 
1004 FORMAT /,30X,37(1H-),5HGAP #.I4,1X,2HOF,I6,1X,6HPOINTS,38(1H-)) 

END 

FPLO 001 
FPLO 002 
FPLO 003 
FPLO 004 
FPLO 005 
FPLO 006 
FPLO 007 
FPLO 008 
FPLO 009 
FPLO 010 
FPLO 011 
FPLO 012 
FPLO 013 
FPLO 014 
FPLO 015 
FPLO 016 
FPLO 017 
FPLO 018 
FPLO 019 
FPLO 020 
FPLO 021 
FPLO 022 
FPLO 023 
FPLO 024 
FPLO 025 
FPLO 026 
FPLO 027 
FPLO 028 
FPLO 029 
FPLO 030 
FPLO 031 
FPLO 032 
FPLO 033 
FPLO 034 
FPLO 035 
FPLO 036 
FPLO 037 
FPLO 038 
FPLO 039 
FPLO 040 
FPLO 041 
FPLO 042 
FPLO 043 
FPLO 044 
FPLO 045 
FPLO 046 
FPLO 047 
FPLO 048 
FPLO 049 
FPLO 050 
FPLO 051 
FPLO 052 
FPLO 053 
FPLO 054 
FPLO 055 
FPLO 056 
FPLO 057 
FPLO 058 
FPLO 059 
FPLO 060 
FPLO 061 
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SUBROUTINE RESIO(T, F, NF, 
$ NK, OAT, NDAT, LT, PER, NPER, NBASE, 
$ A, B, C, NKDIM) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION A(NKDIM,1), B(1), C(1), DAT(1), F(1), 

$ PER(1), T(1) 
c 
C FUNCTION: 
c 

RESID COMPUTES THE RESIDUAL TIME SERIES 
AFTER REMOVING THE KNOWN CONSTITUENTS 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

CALLED FROM: SPECUN, SPECEQ 

ARGUMENTS: T(NF) 
F(NF) 

= INPUT TIME SERIES TIMES = INPUT TIME SERIES VALUES 

NK 
OAT (NDAT) 
LT 
PER(NPER) 
NBASE 
A(NKDIM,NK) 

B(NK) 
C (NK) 

= OUTPUT RESIDUAL TIME SERIES VALUES 
= INPUT TOTAL NUMBER OF KNOWN CONSTITUENTS 
= INPUT TIMES NEW DATUM BEGINS 
= INPUT LINEAR TREND SWITCH (1 = INCLUDED) 
= INPUT FORCED PERIODS 
= NUMBER OF USER-DEFINED CONSTITUENTS 
= OUTPUT ARRAY CONTAINING NORMAL 

EQUATION COEFFICIENT MATRIX 
= OUTPUT NORMAL EQUATION KNOWN VECTOR 
= OUTPUT NORMAL EQUATION UNKNOWN VECTOR 

EXTERNALS: BASE, CHOLS 

SUMMARY: 
CLEAR NORMAL EQUATION ARRAYS 
CONSTRUCT NORMAL EQUATIONS FOR KNOWN CONSTITUENTS 
INVERT NORMAL EQUATION MATRIX USING CHOLESKY ALGORITHM 
COMPUTE SOLUTION TO NORMAL EQUATIONS 
COMPUTE RESIDUAL TIME SERIES 

5 

DO 5 I = 1, NK 
B(I) = 0.000 
DO 5 J = 1, NK 

A(I,J) = 0.000 
DO 10 I = 1, NF 

DO 10 J = 1, NK 
FUNC = BASE(J, T(I), OAT, NDAT, LT, PER, NPER) 
B(J) = B(J) + FUNC + F(I) 
DO 10 K = J, NK 

10 A(K,J) = A(K,J) + FUNC + 

15 

20 

$ BASE(K, T(I), OAT, NDAT, LT, PER, NPER) 
CALL CHOLS(A, NKDIM, NK) 
DO 15 I = 1, NK 

C(I) = 0.000 
DO 15 J = 1, NK 

C(I) = C(I) + A(I,J) + B(J) 
DO 20 I = 1, NF 

DO 20 J = 1, NK 
F(I) = F(I) - C(J) + 

BASE(J, T(I), OAT, NDAT, LT, PER, NPER) $ 
RETURN 
END 

RESI 001 
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RESI 033 
RESI 034 
RESI 035 
RESI 036 
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RESI 038 
RESI 039 
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RESI 044 
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RESI 052 
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SUBROUTINE SPLOT(P, S, NW, RS, RS95, IB, IPR) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
CHARACTER +1 !BLANK, !STAR, !PLOT 
DIMENSION IPLOT(100), P(1), S(1) 
DATA !BLANK /' '/, 

$ !STAR /'+'/ 

C FUNCTION: SPLOT PLOTS SPECTRUM S 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

CALLED FROM: DRIVER 

ARGUMENTS: P(NW) ~ INPUT SPECTRAL PERIODS 
S(NW) ~ INPUT SPECTRAL VALUES 
IPR ~ UNIT NUMBER FOR OUTPUT 

EXTERNALS: IFIX 

SUMMARY: 
INITIALIZE PLOT ARRAY 
SCAN THROUGH SPECTRUM 

PLOTTING SPECTRAL VALUES (PERCENTAGE VARIANCES) 

WRITE(IPR,1001) IB, NW, P(1), P(NW), RS, RS95 
DO 5 I ~ 1,100 

5 IPLOT(I) = IBLANK 
DO 10 I = 1, NW 
KS=S ~I) 

IF KS .LT. 1) KS = 1 
IF KS .GT. 100) KS = 100 
IPLOT~KS) = ISTAR 
WRITE IPR,1002) P(I), S(I), IPLOT 

10 IPLOT KS) = !BLANK 
RETURN 

1001 FORMAT(1H1,10X,13HSPECTRAL BAND,I5,//. 
$ 10X,I5,24H SPECTRAL VALUES BETWEEN,2F14.6,//. 
$ 12X,35HMEAN SPECTRAL VALUE FOR WHITE NOISE,F11.2,f/, 
$ 12X,35HCRITICAL RERCENTAGE VARIANCE AT 957.,/. 
$ 12X,35HCONFIDENCE LEVEL FOR DETECTING,j, 
$ 12X,35HSIGNIFICANT PEAKS IN THE SPECTRUM,F11.2,//. 
$ 10X,6HPERIOD,6X,19HPERCENTAGE VARIANCE/) 

1002 FORMAT(5X,F10.5,F12.3,100A1) 
END 
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SUBROUTINE TIMSER(T, F, NF, OAT, NDAT, LT, PER, NPER, NBASE, 
$ MODE, EQORUN, PCENT, CLEVEL) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
CHARACTER +2 EQORUN, EQ, UN 
CHARACTER +5 MODE, SQNTL, BATCH 
DIMENSION X(5), Y(5), Z(5), DAT(3), F(500), IVL(4), 

$ NB(4), NE(4), P(5), PER(5), T(500) 
DATA X I 0.50000, 1.00000, 0.00000, 0.50000, -0.25000/. 

s v 1 1.oooDo. o.5oooo, 1.oooDo, -o.5oooo, o.oooDO/. 
s z 1 1.ooooo. -1.oooDo, 3.oooDo, o.o1oDo, 3.oooDO/. 
s P 1 2.759Do, 3.636DO, 5.714DO, 4o.oooDo, 16.oooDO/. 
$ NB / 1. 201, 281, 471/, 
$ NE /100, 250, 400, 500/, 
$ IVL/ 1, 2, 3, 3/, 
$ NIVL/ 4/, 
$ STEP/ 0.100/, 
$ PI / 3.141592653589793DO/ 

DATA EQ l ' EQ ' / • 
$ UN I 'UN' /. 
$ SQNTL I 'SQNTL' /. 
$ BATCH I 'BATCH' I 

C FUNCTION: 
c 

TIMSER GENERATES A TEST TIME SERIES WITH 
3 DATUM BIASES, A LINEAR TREND, 
SIN/COSINE TERMS FOR 5 FREQUENCIES, 
AND AN EXPONENTIAL TREND 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

CALLED FROM: TSPEC 

TEST TIME SERIES VALUES 
TIMES NEW DATUM BEGINS 
LINEAR TREND SWITCH (1 = INCLUDED) 
PERIODS FOR TRIGONOMETRIC TERMS 
NUMBER OF USER-DEFINED CONSTITUENTS 

F(NF) 
DAT(NDAT) = 
LT 
PER(NPER) = 
NBASE 
EQORUN =EQUAL DR UNEQUAL SPACED· TIME SERIES 

MODE 

PCENT 

CLEVEL 

EQORUN = EQ: EQUAL SPACED TIME SERIES 
(SUBROUTINE SPECEQ IS USED) 

EQORUN = UN: UNEQUAL SPACED TIME SERIES 
(SUBROUTINE SPECUN IS USED) 

= BATCH OR SEQUENTIAL FORCING OF UNKNOWNS 
MODE = SQNTL: SEQUENTIAL SOLUTION 
MODE = BATCH: BATCH SOLUTION 

= PERCENTAGE LEVEL FOR DETECTING 
OUTSTANDING STANDARD DEVIATIONS OF UNKNOWNS 

= CRITICAL LEVEL FOR DETECTING OUTSTANDING 
CORRELATIONS IN THE SOLUTION 

EXTERNALS: DCOS,DEXP,DFLOAT,DSIN 

NDAT = 3 
LT = 1 
NPER = 5 
NBASE = 1 
EQORUN = EQ 
MODE = SQNTL 
PCENT = 25.0DO 
CLEVEL = 0.5000 
DO 5 I = 1,NPER 

5 PER(I) = P(I) 
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TIMS 058 
TIMS 059 
TIMS 060 
TIMS 061 



58 

C E~UAL SPACING RUN TIMS 062 DTl = 0. DO TIMS 063 DT2 = 1.00 TIMS 064 c TIMS 065 c UNE~UAL SPACING RUN TIMS 066 c DTl = 0.5DO TIMS 067 c DT2 = 50.0DO TIMS 068 NF = 0 TIMS 069 DO 10 K = 1,NIVL TIMS 070 
I1 = NB~K~ TIMS 071 I2 = NE K · TIMS 072 DO 10 I = I1,I2 TIMS 073 NF = NF + 1 TIMS 074 T(NF) = DFLOAT(I) + STEP + TIMS 075 $ DT1 + DSIN(PI + DFLOAT(I) I DT2) TIMS 076 F(NF) = Z~IVL(K)5 + Z(NDAT+1) + T(NF) + TIMS 077 $ Z NDAT+2 + DEXP(-T(NF) I 25.00) TIMS 078 DO 10 J = 1,NPER TIMS 079 10 F(NF) = F(NF) + X~Js + DCOS~2.DO + PI + T ~NFS I ~~3B TIMS 080 $ + Y J + DSIN 2.00 + PI + T NF I TIMS 081 

DAT~1~ = T~1) TIMS 082 OAT 2 = T 1015 TIMS 083 OAT 3 = T 151 TIMS 084 RETURN TIMS 085 END TIMS 086 
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SUBROUTINE SPECEQ(T, F, NF, FNORM, 
$ NK, OAT, NDAT, LT, PER, NPER, NBASE, A, C, 
S P, S, NW, IB, ICRIT) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z~ 
DIMENSION A(100,100). B(100 , C(1), CLP~60,50), 

S CNP(60,50), CP(50 , DAT(1), F 1), IVL(60), P(1), 
$ PER(1), S(1), SLP(60,50), SNF 60,50), SP(50), 
$ SPMQ(50), SPPQ(50), T(1), U(100), V(100), 
$ XL(60), XN(60) 

DATA PI/3.14159265358979300/, 
$ ROUND /100000./, 
$ NKDIM /100/, 
$ NPERDM /50/, 
$ IVLDIM /60/ 

c 
C FUNCTION: 
c 

SPECEQ COMPUTES THE LEAST SQUARES SPECTRUM OF 
A PIECEWISE EQUALLY SPACED TIME SERIES 
AFTER SUPPRESSING KNOWN CONSTITUENTS c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

CALLED FROM: DRIVER 

ARGUMENTS: 
SPECIFYING THE INPUT TIME SERIES 

T(NF) = INPUT TIME SERIES TIMES 
F(NF) = INPUT TIME SERIES VALUES 

FNORM 
= OUTPUT RESIDUAL TIME SERIES VALUES 

OUTPUT QUADRATIC NORM OF RESIDUAL F 

SPECIFYING THE KNOWN 
NK 

CONSTITUENTS 
= INPUT TOTAL NUMBER OF KNOWN CONSTITUENTS 
= INPUT TIMES NEW DATUM BE.GINS DAT(NDAT) 

LT 

PER(NPER) 
NBASE 
A(NKDIM.NKDIM) 

C (NK) 

= INPUT LINEAR TREND SWITCH (1 = USE TREND) 
(0 = DO NOT USE) 

= INPUT FORCED PERIODS 
INPUT NUMBER OF USER-DEFINED CONSTITUENTS 

= OUTPUT NORMAL EQUATION MATRIX RESULTING 
FROM SUPPRESSION OF KNOWN CONSTITUENTS 

= OUTPUT PRELIMINARY AMPLITUDES OF KNOWN 
CONSTITUENTS 

SPECIFYING THE 
P(NW) = 
S(NW) = 
IB 
ICRIT = 

OUTPUT SPECTRUM 
INPUT SPECTRAL PERIODS 
OUTPUT SPECTRAL VALUES 
INPUT SPECTRAL BAND LABEL 
ROUNDOFF FLAG 
(1 = OK. CONTINUE ANALYSIS) 
(0 = RESIDUAL TIME SERIES CONSISTS ONLY OF ROUNDOFF) 

EXTERNALS: DABS, DMAX1, BASE, DCOS, EPS, ERROR, DFLOAT, RESID, DSIGN, 
DSIN, DSQRT 

ERROR CONDITIONS: 
1 = WARNING. ARGUMENT NDAT .LT. 0. !'ET TO 0 l 2 = WARNING. ARGUMENT LT NOT 0 OR 1. SET TO 0. 
3 WARNING. ARGUMENT NPER .LT. o. SET TO C. 
4 = WARNING. ARGUMENT NBASE . LT. 0. SET TO 0 . 
5 = WARNING. ARGUMENT NK .NE. NDAT+LT+2+NPER+NBASE. 

(SET TO NDAT + LT + 2 + NPER + NBASE.) 
104 = FATAL. LESS THAN 3 TIME SERIES VALUES INPUT. 
105 = FATAL. T ELEMENT VALUES NOT MONOTONIC INCREASING 
106 = FATAL. NK TOO LARGE FOR DIMENSIONS OF A,B,U,V 

SPCQ 001 
SPCQ 002 
SPCQ 003 
SPCQ 004 
SPCQ 005 
SPCQ 006 
SPCQ 007 
SPCQ 008 
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SPCQ 024 
SPCQ 025 
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SPCQ 039 
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SPCQ 044 
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SPCQ 054 
SPCQ 055 
SPCQ 056 
SPCQ 057 
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SPCQ 059 
SPCQ 060 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

107 
108 

= FATAL. 
= FATAL. 

109 = FATAL. 

110 

111 
112 

FATAL. 

FATAL. 
= FATAL. 

60 

(LIMITATION NO. 2 BELOW) 
DAT(1) .NE. T(1). (RE~UIREMENT NO. 2 BELOW) 
RESIDUAL TIME SERIES CONSISTS OF ROUNDOFF 
(NOW CALLED IN DRIVER) 
NPER TOO LARGE FOR DIMENSIONS OF 
CLP,CNP,CP,SLP,SNP,SP,SPM~.SPP~. 
NIVL TOO LARGE FOR DIMENSIONS OF 
CLP,CNP,IVL,SLP,SNP,XL,XN. 
PER CONTAINS FORCED PERIOD .LT. 2. +STEP. 
P CONTAINS SPECTRAL PERIOD .LT. 2. +STEP. 

C CALLING ROUTINE REQUIREMENTS: 
C 1. WHEN NO KNOWN CONSTITUENTS ARE TO BE SUPPRESSED, THE 
C CALLING ROUTINE MUST PASS ZERO VALUES FOR NK,NDAT, 
C LT,NPER AND NBASE. 
C 2. WHEN NDAT .GT. 0, THE CALLING ROUTINE MUST SET 
C DAT(1) = T(1) 
C 3. THE CALLING ROUTINE MUST SET 
C NK = NDAT + LT + 2 + NPER + NBASE. 
C 4. WHEN NBASE .GT. 0, THE USER MUST SUPPLY CODING IN 
C FUNCTION BASE TO COMPUTE EACH USER-DEFINED 
C CONSTITUENT. 
C 5. ON INITIAL CALL, CALLING ROUTINE MUST SET IB = 1 TO 
C COMPUTE RESIDUAL TIME SERIES. MANY SPECTR~L BANDS 
C FOR THE SAME SPECTRUM CAN THEN BE COMPUTED BY 
C SETTING IB .NE. 1, AND CALLING REPEATEDLY, 
C CHANGING ONLY P(NW). 
C 6. CALLING ROUTINE MUST DIMENSION ARGUMENT ARRAYS .GE. 
C T(NF),F(NF),DAT(NDAT),PER(NPER),C(NK),P(NW),S(NW). 
C 7. T ELEMENT VALUES MUST CONSIST OF NIVL SUBINTERVALS, 
C EACH SUBINTERVAL CONTAINING EQUALLY SPACED DATA 
C SEPARATED BY A TIME INCREMENT STEP COMMON TO ALL 
C SUBINTERVALS. THE GAPS BETWEEN SUBINTERVALS NEED 
C NOT BE INTEGRAL MULTIPLES OF STEP. THE FIRST DATA 
C POINT MUST NOT BE ISOLATED (MUST NOT BE FCLLOWED 
C BY A GAP). T ELEMENT VALUES MUST INCREASE 
C MONOTONICALLY. OAT, P AND PER ELEMENT VALuES MUST 
C BE IN THE SAME UNITS AS T. 
C 8. THE FORCED PERIODS IN PER AND SPECTRAL PERIODS IN P 
C MUST BE SHORTER THAN 2 + STEP, EQUIVALENT TO THE 
C MAXIMUM INTERVAL USED IN FOURIER ANALYSIS. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

LIMITATIONS: 
1. WHEN CALLED WITH IB = 1, AND NK .GT. 0, THE CONTENTS 

OF THE TIME SERIES F IS REPLACED BY THE RESIDUAL 
TIME SERIES VALUES. 

2. WHEN NK .GT. NKDIM, A,B,U AND V MUST BE REDIMENSIONED 
.GE. NK, AND NKDIM CHANGED TO THE NEW DIMENSION. 

3. WHEN NPER .GT. NPERDM THEN SP,CP,SPMQ,SPPQ AND THE 
SECOND INDEX OF CLP,SLP,CNP,SNP MUST BE 
REDIMENSIONED .GE. NPER, AND NPERDM CHANGED TO THE 
NEW DIMENSION. 

4. WHEN NIVL (= NDAT + NUMBER OF GAPS IN T BETWEEN DATUM 
CHANGES) .GT. IVLDIM THEN XN,XL,IVL AND THE FIRST 
INDEX OF CLP,SLP,CNP,SNP MUST BE REDIMENSIONED .GE. 
NIVL, AND IVLDIM CHANGED TO THE NEW DIMENSION. 

IF(IB .NE. 1) GO TO 65 

C PROCESS INPUT ARGUMENTS 
C CHECK NF .GE. 3 
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CHECK T INCREASES MONOTONICALLY 
COMPUTE FMAX = MAXIMUM ABSOLUTE VALUE IN F 
CHECK VALUES OF NDAT,LT,NPER,NBASE,AND NK 
CHECK DAT(1) .EQ. T(1) 

5 

10 

IF(NF .LT. 3) 
DO 5 I = 2,NF 

IF(T(I) .LE. T(I-1)) 
CONTINUE 

FMAX = DABS(F(1)) 
DO 10 I = 2,NF 

FMAX = DMAX1(FMAX,DABS(F(I))) 
IF(NDAT .GE. 0) GO TO 15 
CALL ERROR(1) 
NDAT = 0 

15 IF(LT .EQ. 0 .OR. LT .EQ. 1 ) GO TO 20 
CALL ERROR(2) 
LT = 0 

20 IF(NPER .GE. 0) GO TO 25 
CALL ERROR(3) 
NPER = 0 

25 IF(NBASE .GE. 0) GO TO 30 
CALL ERROR(4) 
NBASE = 0 

CALL ERROR(104) 

CALL ERROR(105) 

30 IF(NK .EQ. NDAT + LT + 2 + NPER + NBASE) GO TO 35 
CALL ERROR(5) 
NK = NDAT + LT + 2 + NPER + NBASE 

35 IF~NK .GT. NKDIM) 
IF NDAT .GE. 1 .AND. 
IF NPER .GT. NPERDM) 
EPSARG = EPS(ARG) 

CALL ERROR~106~ 
DAT(1) .NE. T(1)) CALL ERROR 107 

CALL ERROR 109 

C COMPUTE STEPSIZE IN T 
STEP = T(2) - T(1) 

c 
C COMPUTE CRITICAL VALUE OF STEP FOR DETECTING GAPS IN T 

STEP1 = 1.5DO +STEP 
c 
C INITIALIZE ARGUMENTS IDAT, NIVL, NGAP, TA 

IDAT = 1 
NIVL = 0 
NGAP = 0 
TA = T(1) 

c 
C FIND SUBINTERVAL BOUNDARIES (GAPS OR NEW DATUM SHIFTS) IN T 

DO 45 N = 2,NF 
NEWIVL = 0 

c 

IF(N .NE. NF) GO TO 39 
NEWIVL = NGAP 
IF(NEWIVL .EQ. 0) GO TO 45 
GO TO 42 

C CHECK IF THERE IS GAP AND DATUM SHIFT IN T 
39 IF((T(N) - T(N-1)) .GT. STEP1 .AND. 

$ DABS(DAT(IDAT+1)-T(N)) .LT. EPSARG+ROUND) GO TO 40 c 
C CHECK IF THERE IS ONLY GAP IN T 

IF((T(N) - T(N-1)) .GT. STEP1) GO TO 41 
c 
C CHECK IF THERE IS ONLY DATUM SHIFT IN T 

IF (DABS(DAT(IDAT+1)-T(N)) .LT. EPSARG+ROUND) GO TO 40 
IF (NEWIVL .EQ. 0) GO TO 45 
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GO TO 42 
c 
C COMPUTE NEWIVL, IDAT AND NGAP WHEN THERE IS DATUM SHIFT REGARDLESS 
C OF PRESENCE OF GAP IN T 

c 

40 NEWIVL = NGAP + 1 
DAT(IDAT+1) T(N) 
IDAT = IDAT + 1 
GO TO 42 

C COMPUTE NEWIVL, IDAT AND NGAP WHEN THERE IS ONLY GAP IN T 
41 NEWIVL = NGAP + 1 

NGAP = NGAP + 1 
IF(NEWIVL .EQ. 0) GO TO 45 

c 
C COMPUTE XL, XN, IVL FOR EACH SUBINTERVAL IN T 

42 TB = T(N-1) 

c 

IF (N .EQ. NF) TB = T(NF) 
NIVL = NIVL + 1 
IF~NIVL .GT. IVLDIM) CALL ERROR(110) 
XN NIVL) = 1.0DO + (TB- TA) I STEP 
XL NIVL) = (TB + TA) I STEP 
IVL(NIVL) = IDAT - NEWIVL + NGAP 
TA = T(N) 

45 CONTINUE 
IF (NPER.LE.O) GO TO 52 

C COMPUTE TRIG(PK), TRIG(XN+PK), TRIG(XL+PK) FOR EACH SUBINTERVAL IN T 
DO 50 I= l,NPER 

IF(PER(I) .LT. 2.000 + STEP) CALL ERROR(111) 
PK = PI + STEP ~ PER(I) 
SP(I) = DSIN(PK 
CP(I) = DCOS(PK 
DO 50 J = 1,NIVL 

XNPK = XN~J5 + PK 

SLP J,I = DSIN XLPK 
CLP J,I = DCOS XLPK 

~~~K!j:iXjL~Jg~~~p!~~~~l 
50 CONTINUE 

c 
C CHECK VALUES IF P .GE. 2+STEP 

52 DO 55 I = 1,NW 
IF(P(I) .LT. 2.000 +STEP) CALL ERROR(112) 

55 CONTINUE 
c 
C SUPPRESS KNOWN CONSTITUENTS 
C REPLACE F WITH RESIDUAL TIME SERIES 
C COMPUTE QUADRATIC NORM OF F 
C CHECK IF RMS VALUE OF RESIDUAL F IS LESS 
C THAN EPS + FMAX + ROUND, WHERE 
C EPS = EPSARG =SMALLEST NUMBER SO 1 + EPS .GT. 1 
C FMAX = MAXIMUM ABSOLUTE VALUE OF ORIGINAL F 
C ROUND ACCOUNTS FOR ACCUMULATED ROUNDOFF IN 
C COMPUTING RESIDUAL F 

IF(NK .GT. 0) CALL RESID(T. F, NF, 
$ NK, OAT, NDAT, LT. PER, NPER, NBASE, 
$ A, B, C. NKDIM) 

FNORM = O.ODO 
DO 60 I 1,NF 

FNORM = FNORM + F(I) ++ 2 
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60 CONTINUE 
c 
C CHECK IF RESIDUAL F CONSISTS OF ROUNDOFF 

ICRIT = 1 
IF(DSQRT(FNORMIDFLOAT(NF)) .LT. 

$ EPSARG+FMAX+ROUND) ICRIT ; 0 
c 
C FOR EACH SPECTRAL PERIOD P(I),COMPUTE SPECTRAL VALUE S(I) 
C COMPUTE SCALAR PRODUCTS FCOS,FSIN,CC,CS,SS,U,V 
C COMPUTE BILINEAR FORMS UAU,UAV,VAV 
C COMPUTE PERCENTAGE VARIANCE S 

65 DO 130 I = 1,NW 
OMEGA = 2.0DO + PI I P(I) 
FCOS = 0.000 
FSIN = O.ODO 
cc = O.ODO 
cs = O.ODO 
ss = O.ODO 
IF(NK .EQ. 0) GO TO 75 
DO 70 J = 1, NK 

U(J) = O.ODO 
V(J) = 0.000 

70 CONTINUE 
75 DO 85 J = 1,NF 

WT = OMEGA + T(J) 
COSWT = DCOS(WT) 
SINWT = DSIN(WT) 
FCOS = FCOS + F(J) + COSWT 
FSIN = FSIN + F(J) + SINWT 
IF(NBASE .EQ. 0) GO TO 85 
DO 80 L = 1, NBASE 

K = NDAT + LT + 2 + NPER + L 
FUNC = 8ASE(K, T(J), OAT, NDAT, LT, PER, NPER) 
U(K) = U(K) + FUNC + COSWT 
V(K) = V(K) + FUNC + SINWT 

80 CONTINUE 
85 CONTINUE 

Q = 0.5DO + OMEGA + STEP 
SQ = DSIN(Q) 
CQ = DCOS(Q) 
IF(NPER .EQ. 0) GO TO 95 
DO 90 J = 1,NPER 

SPMQ(J) = SP!Jl + CQ - CP(J) + SQ 
IF(DABS(SPMQ J ) .LT. EPSARG) SPMQ(J) = DSIGN(EPSARG,SPMQ(J)) 
SPPQ(J) = SP J + CQ + CP(J) + SQ 
IF(DABS(SPPQ J ) .LT. EPSARG) SPPQ(J) = DSIGN(EPSARG,SPPQ(J)) 

90 CONTINUE 
95 DO 115 J = 1,NIVL 

XNQ = XN(J) + Q 
XLQ = XL(J) + Q 

SNQ = DSIN~XNQl CNQ = DCOS XNQ 
SLQ = DSIN XLQ 
CLQ = DCOS XLQ 
CC = CC + SNQ + CNQ + CLQ + CLQ - SNQ + CNQ + SLQ + SLQ 
CS = CS + SNQ + CNQ + SLQ + CLQ 
IF(NK .EQ. 0) GO TO 115 
IF(NDAT .EQ. 0) GO TO 100 
K = IVL(J) 
U(K) = U(K) + SNQ + CLQ I SQ 
V(K) = V(K) + SNQ + SLQ I SQ 
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100 

105 

110 
115 

120 
125 

IF(LT .EQ. 0) GO TO 105 
K = NDAT + 1 

64 

sscs = - SNQ + SLQ + CQ I SQ 
SCCS = SNQ + CLQ + CQ I SQ 
XNCS = XN(J) + CNQ + SLQ 
XNCC = - XN(J) + CNQ + CLQ 
XLSC XL(J) + SNQ + CLQ 
XLSS XL(J) + SNQ + SLQ 
STSQ = 0.5DO + STEP I SQ 
U(K) U(K) + STSQ + (SSCS + XNCS + XLSC) 
V(K) = V(K) + STSQ + (SCCS + XNCC + XLSS) 
IF(NPER .EQ. 0) GO TO 115 
DO 110 L = 1,NPER 

SINM = SLP J,L + CLQ- CLP J,L + SLQ 
i~~~~A: +~~~~~~:tl+:L~~~1~ ~~~ 3:tl : ~~~~ 
SINP = SLP J,L + CLQ + CLP J,L + SLQ 
COSM = CLP J,L + CLQ + SLP J,L + SLQ 
COSP = CLP J,L + CLQ- SLP J,L + SLQ 
U~K) = U~K) + 0.5DO + ~ COSP + COSMl U K+1) = U K+1) + 0.5DO + SINP + SINM 
V K) = V K) + 0.5DO + SINP - SINM 
V K+1) = V K+1) + 0.500 + -COSP + COSM 

CONTINUE 
CONTINUE 
SQCQ = SQ + CQ 
CCSQCQ = CC / SQCQ 
55 = 0.5DO + (DFLOAT(NF) - CCSQCQ) 
CC = 0.5DO + (DFLOAT(NF) + CCSQCQ) 
cs = cs I SQCQ 
UAU = 0.000 
UAV = O.ODO 
VAV = 0.000 
IF(NK .EQ. 0) GO TO 125 
DO 120 J = 1,NK 

DO 120 K = 1,NK 

UAU = UAU + U~J~ + A~~.K~ UAV = UAV + U J + A J,K 
VAV = VAV + V J + A J,K 

CONTINUE 
S(I) = 0.000 

+ U ~K~ + V K 
+ V K 

I SPMQ(L) 
I SPPQ(L) 
+ SNPMQ 
+ SNPPQ 
+ SNPMQ 
+ SNPPQ 

DET = (CC-UAU) + (SS-VAV) - (CS-UAV) + (CS-~AV) 
IF(DABS(DET) .LT. EPSARG) GO TO 130 
S(I) = 100.000 + (~SS - VAV~ + FCOS + FCOS -

2.0DO + CS - UAV + FCOS + FSIN + 
CC - UAU + FSIN + FSIN) I 

$ 
$ 
$ 

130 CONTINUE 
RETURN 
END 

DET + FNORM) 
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SUBROUTINE SPECUN(T, F, NF, FNORM, 
$ NK, OAT, NDAT, LT, PER, NPER, NBASE, A, C, 
$ P, S, NW, IB, ICRIT) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION A(100,100), B(100), C(1), DAT(1), F(1), 

$ PER(1), S(1), T(1), U(100), V(100) 
P(1), 

DATA PI /3.14159265358979300/, 
$ ROUND /100000./, 
$ NKDIM /100/ 

c 
C FUNCTION: 
c 

SPECUN COMPUTES THE LEAST SQUARES SPECTRUM OF 
AN UNEQUALLY SPACED TIME SERIES 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

AFTER SUPPRESSING KNOWN CONSTITUENTS 

CALLED FROM: DRIVER 

ARGUMENTS: 
SPECIFYING THE INPUT TIME SERIES 

T(NF) = INPUT TIME SERIES TIMES 
F(NF) = INPUT TIME SERIES VALUES 

FNORM 
= OUTPUT RESIDUAL TIME SERIES VALUES = OUTPUT QUADRATIC NORM OF RESIDUAL F 

SPECIFYING THE KNOWN 
NK 

CONSTITUENTS 
= INPUT TOTAL NUMBER OF KNOWN CONSTITUENTS 
= INPUT TIMES NEW DATUM BEGINS DAT(NDAT) 

LT 

PER(NPER) 
NBASE 
A(NKDIM,NKDIM) 

C (NK) 

= INPUT LINEAR TREND SWITCH (1 = USE TREND) 
(0 = DO NOT USE) 

= INPUT FORCED PERIODS 
= INPUT NUMBER OF USER-DEFINED CONSTITUENTS 
= OUTPUT NORMAL EQUATION MATRIX RESULTING 

FROM SUPPRESSION OF KNOWN CONSTITUENTS 
= OUTPUT PRELIMINARY AMPLITUDES OF KNOWN 

CONSTITUENTS 

SPECIFYING THE 
P(NW) = 

OUTPUT SPECTRUM 
INPUT SPECTRAL PERIODS 
DSIN,DSQRT 

S(NW) 
IB 
ICRIT 

= OUTPUT SPECTRAL VALUES 
= INPUT SPECTRAL BAND LABEL 
= OUTPUT ROUNDOFF FLAG 

(1 =OK. CONTINUE ANALYSIS) 
(0 = RESIDUAL TIME SERIES CONSISTS ONLY OF ROUNDOFF) 

EXTERNALS: DABS, DMAX1, BASE, DCOS, EPS, ERROR, DFLOAT, RESID, 

ERROR 
1 
2 
3 
4 
5 

104 
105 
106 

107 
108 

CONDITIONS: 
= WARNING. ARGUMENT NDAT .LT. 0. ~SET TO O.l 
= WARNING. ARGUMENT LT NOT 0 OR 1. SET TO 0. 
=WARNING. ARGUMENT NPER .LT. 0. SET TO 0. 
=WARNING. ARGUMENT NBASE .LT. 0. SET TO 0. 
= WARNING. ARGUMENT NK .NE. NDAT+LT+2+NPER+NBASE. 

= FATAL. 
= FATAL. 
= FATAL. 

(SET TO NDAT + LT + 2 + NPER + NBASE.) 
LESS THAN 3 TIME SERIES VALUES INPUT. 
T ELEMENT VALUES NOT MONOTONIC INCREASING 
NK TOO LARGE FOR DIMENSIONS OF A,B,U,V 

(LIMITATION NO. 2 BELOW) 
FATAL. DAT(1) .NE. T(1). (REQUIREMENT NO. 2 BELOW) 

= FATAL. RESIDUAL TIME SERIES CONSISTS OF ROUNDOFF 
(NOW CALLED IN DRIVER) 
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C CALLING ROUTINE REQUIREMENTS: 
C 1. WHEN NO KNOWN CONSTITUENTS ARE TO BE SUPPRESSED, THE 
C CALLING ROUTINE MUST PASS ZERO VALUES FOR NK,NDAT, 
C LT,NPER AND NBASE. 
C 2. WHEN NDAT .GT. 0, THE CALLING ROUTINE MUST SET 
C DAT(1) = T(1) 
C 3. THE CALLING ROUTINE MUST SET 
C NK.: NDAT + LT + 2 + NPER + NBASE. 
C 4. WHEN NBASE .GT. 0, THE USER MUST SUPPLY CODING IN 
C FUNCTION BASE TO COMPUTE EACH USER-DEFINED 
C CONSTITUENT. 
C 5. ON INITIAL CALL, CALLING ROUTINE MUST SET IB = 1 TO 
C COMPUTE RESIDUAL TIME SERIES. MANY SPECTRAL BANDS 
C FOR THE SAME SPECTRUM CAN THEN BE COMPUTED BY 
C SETTING IB .NE. 1, AND CALLING REPEATEDLY, 
C CHANGING ONLY P(NW). 
C 6. CALLING ROUTINE MUST DIMENSION ARGUMENT ARRAYS .GE. 
C T(NF),F(NF),DAT(NDAT),PER(NPER),C(NK),P(NW),S(NW). 
C 7. T ELEMENT VALUES ARE UNRESTRICTED AS TO SPACING, BUT 
C MUST MONOTONICALLY INCREASE. P,DAT AND PER ELEMENT 
C VALUES MUST BE IN THE SAME UNITS AS T. 
c 
c 
c 
c 
c 
c 
c 
c 

c 

LIMITATIONS: 
1. WHEN CALLED WITH IB = 1, AND NK .GT. 0, THE CONTENTS 

OF THE TIME SERIES F IS REPLACED BY THE RESIDUAL 
TIME SERIES VALUES. 

2. WHEN NK .GT. NKDIM, A,B,U AND V MUST BE REDIMENSIONED 
.GE. NK, AND NKDIM CHANGED TO THE NEW DIMENSION. 

IF(IB .NE. 1) GO TO 65 

C PROCESS INPUT ARGUMENTS 
C CHECK NF .GE. 3 
C CHECK T INCREASES MONOTONICALLY 
C COMPUTE FMAX = MAXIMUM ABSOLUTE VALUE IN F 
C CHECK VALUES OF NDAT,LT,NPER,NBASE,AND NK 
C CHECK DAT(1) .EQ. T(1) 

IF(NF .LT. 3) CALL ERROR(104) 
DO 5 I = 2, NF 

IF(T(I) .LE. T(I-1)) CALL ERROR(105) 
5 CONTINUE 

FMAX = DABS(F(1)) 
DO 10 I = 2, NF 

10 FMAX = DMAX1(FMAX, DABS(F(I))) 
IF(NDAT .GE. 0) GO TO 15 
CALL ERROR(1) 
NDAT = 0 

15 IF(LT .EQ. 0 .OR. LT .EQ. 1) GO TO 20 
CALL ERROR(2) 
LT = 0 

20 IF(NPER .GE. 0) GO TO 25 
CALL ERROR(3) 
NPER = 0 

25 IF(NBASE .GE. 0) GO TO 30 
CALL ERROR(4) 
NBASE = 0 

30 IF(NK .EQ. NDAT + LT + 2 + NPER + NBASE) GO TO 35 
CALL ERROR(5) 
NK = NDAT + LT + 2 + NPER + NBASE 

35 IF(NK .GT. NKDIM) CALL ERROR(106) 
IF(NDAT .GE. 1 .AND. DAT(1) .NE. T(1)) CALL ERROR(107) 
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c 
C SUPPRESS KNOWN CONSTITUENTS 
C REPLACE F WITH RESIDUAL TIME SERIES 
C COMPUTE QUADRATIC NORM OF F 
C CHECK IF RMS VALUE OF RESIDUAL F IS LESS 
C THAN EPS + FMAX + ROUND, WHERE 
C EPS = EPSARG =SMALLEST NUMBER SO 1 + EPS .GT. 1 
C FMAX = MAXIMUM ABSOLUTE VALUE OF ORIGINAL F 
C ROUND ACCOUNTS FOR ACCUMULATED ROUNDOFF IN 
C COMPUTING RESIDUAL F 

IF (NK ·. GT. 0) CALL RESID (T, F, NF, 
$ NK, OAT, NDAT, LT, PER, NPER, NBASE, 
$ A, B, C, NKDIM) 

FNORM = 0.000 
EPSARG = EPS(ARG) 
DO 60 I = 1, NF 

60 FNORM = FNORM + F(I) + F(I) 
c 
C CHECK IF RESIDUAL F CONSISTS OF ROUNDOFF 

ICRIT = 1 
IF(DSQRT(FNORM/DFLOAT(NF)) .LT. 

$ EPSARG+FMAX+ROUND) ICRIT = 0 
c 
C FOR EACH SPECTRAL PERIOD P(I),COMPUTE SPECTRAL VALUE 
C COMPUTE SCALAR PRODUCTS FCOS,FSIN,CC,CS,SS,U,V 
C COMPUTE BILINEAR FORMS UAU,UAV,VAV 
C COMPUTE PERCENTAGE VARIANCE S 

65 DO 130 I = 1, NW 

70 
75 

OMEGA = 2.000 + PI / P(I) 
FCOS = 0.000 
FSIN = 0.000 
cc = 0.000 
cs = 0.000 
ss = o.ooo 
IF(NK .EQ. 0) GO TO 75 
DO 70 J = 1, NK 

U(J) = 0.000 
V(J) = 0.000 

DO e5 J = 1, NF 
WT = OMEGA + T(J) 
COSWT = DCOS(WT) 
SINWT = DSIN(WT) 
FCOS = FCOS + F(J) + COSWT 
FSIN = FSIN + F(J) + SINWT 
CC = CC + COSWT + COSWT 
CS = CS + COSWT + SINWT 
SS = SS + SINWT + SINWT 
IF(NK .EQ. 0) GO TO e5 
DO eo K = 1, NK 

S(I) 

FUNC = BASE(K, T(J), 
U(K) = U(K) + FUNC + 
V(K) = V(K) + FUNC + 

OAT, NDAT, LT, PER, NPER) 
COSWT eo 

e5 CONTINUE 
UAU = 0.000 
UAV = 0.000 
VAV = 0.000 
IF(NK .EQ. 0) GO TO 125 
DO 120 J = 1, NK 

DO 120 K = 1, NK 

SINWT 

UAU = UAU + U(J) + A(J,K) + UV(KK) 
UAV = UAV + U(J) + A(J,K) + ( ) 
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120 VAV = VAV + V(J) • A(J,K) • V(K) SPUN 184 
126 S(I) = 0.000 SPUN 186 

DET = (CC-UAU) • (SS-VAV~ - (CS-UAV) • (CS-UAV) SPUN 186 
IF(DABS(DET) .LT. EPSARG GO TO 130 SPUN 187 
S(I) = 100.000 + (!55 - VAVl + FCDS • FCOS SPUN 188 

$ 2.000 • CS - UAV • FCOS • FSIN + SPUN 189 
$ CC - UAU • FSIN • FSIN) I SPUN 190 
$ DET • FNORM) SPUN 191 

130 CONTINUE SPUN 192 
RETURN SPUN 193 
END SPUN 194 




