LEAST-SQUARES SPECTRAL ANALYSIS REVISITED

D. WELLS
P. VANICEK
S. PAGIATAKIS

November 1985

PREFACE

In order to make our extensive series of technical reports more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text.

LEAST SQUARES SPECTRAL ANALYSIS REVISITED

David E. Wells Petr Vaníček Spiros Pagiatakis

Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton, N.B. Canada E3B 5A3

> November 1985 Latest Reprinting August 1994

PREFACE

The original version of this report appeared in 1978 under the Report Series (Report BI-R-78-8) of the Bedford Institute of Oceanography, Dartmouth, Nova Scotia, when the first author was working there. It was authored by the first two authors of the present version. The third author has been mainly responsible for the changes and improvements in the present version of the software.

This revised version is being issued for three reasons:

- (i) The original report is out of print.
- (ii) Students not exposed to functional analysis have had some difficulty in reading the report, so that the original report has been extended to include a more elementary description of least-squares spectral analysis.
- (iii) Since 1978 the software has been modified, both to eliminate some "bugs" and to be more versatile.

The changes, program listings of the new version, and a user's guide are in PART B.

The authors are grateful to the Bedford Institute of Oceanography for permission to reprint herewith parts of the original Report BI-R-78-8.

TABLE OF CONTENTS

																	Page
Prefa	ace	•			•					•	•					•	ii
Table	e of	Cont	ents	s .		•			•	•							iii
PART	A:	LEAST	'-sqt	JARE	S SP	ECTRA	L AN	NALY	SIS	•	•	•	•	•	•	•	1
A	Abst	ract		•		•		•	•	•	•		•			•	2
	Intr	oduct	ion			•	•	•	•	•	•	•	•	•		•	3
9	Spec	trum	Com	puta	tion		•	•	•	•		•	•	•	•	•	5
í	Requ	isite	E16	emen	ts o	f Fun	ctic	nal	Ana	lysis	•	•	•	•	•	•	8
7	Γhe	Proje	cti	on T	heor	em			•	•	•	•	•			•	11
1	Leas	t-Squ	ares	з Sp	ectr	al An	alys	sis	with	Knov	m C	onst	itue	nts	•	•	16
						r Spe						•	•	•	•	•	20
						ituen					•					•	21
]	Inpu	t and	Out	tput	Par	amete	rs		•	•	•					•	23
						ct Al		ithm	for	Equa	a11y	Spac	ced 1	Data		•	26
						uct E	_			•	•	•					27
		ples					•		•	•	•						29
		rence	s		•		•		•	•							34
PART	В:	USER	a's (GUID	E AN	D PRO	GRAM	1 LI	STIN	GS	•	•	•	•	•	•	37
-	Intr	oduct	ion	•	•	•	•	•	•	•		•					38
:	Stru	icture	of	the	Sof	tware	•	•	•	•	•	•	•	•	•	•	39
1	Modi	ficat	ion	of	the	Softw	are	•	•	•	•	•	•	•	•	•	42
	TSPE	C		•	•	•	•	•	•	•	•	•	•	•	•	•	44
A	AMPL			•	•	•	•	•		•	•	•	•	•	•	•	45
]	BASE	:		•	•		•		•			•		•			46
(CHOL	4S	•	•	•		•	•	•	•	•	•		•			47
(COVA	∆R	•			•	•	•	•	•			•				49
1	DRIV	ER.				•		•									50
I	EPS				•	•			•	•							52
]	ERRO)R		•	•	•	•	•		•	•		•	•			53
J	FPLO	T		•	•		•			•				•	•	•	54
1	RESI	D			•	•	•			•							55
9	SPLO	T			•							•					56
	TIMS		•			•	•	•	•	•		•					57
5	SPEC	ΈQ			•	•	•	•			•	•	•		•	•	59
9	SPEC	UN	•			•			•	•							65

PART A

LEAST-SQUARES SPECTRAL ANALYSIS

ABSTRACT

An algorithm is described to compute the optimum least-squares spectrum of an unequally or equally spaced generally non-stationary and coloured time series for which some of the shapes of the constituents (systematic noise) are known. Known constituents of four kinds are provided for: datum biases, linear trend, periodic constituents with known periods, and arbitrary user-specified constituents. An alternative, more efficient algorithm is described for piecewise equally-spaced time series with possible gaps.

INTRODUCTION

Observed time series are often composed of constituents that are of interest (which we will call the <u>signal</u>), and constituents that obscure the signal (which we will call the <u>noise</u>). Often we know the general form of a noise constituent, but not its magnitude (we will call such constituents <u>systematic</u> <u>noise</u>).

One class of such time series is that dominated by a few periodic constituents (the systematic noise) and smaller amplitude periodic constituents (the signal) whose presence is obscured by the noise--coloured series. Extracting the signal from this series has been called the hidden periodicity problem. In general, the systematic noise may contaminate but not totally obscure the signal.

If all the constituents of a time series are periodic, then we can say that it is a <u>colour time series</u>; that the noise is <u>coloured noise</u>; that the signal is a <u>coloured signal</u>; and that the extent to which the noise obscures the signal is the extent to which the noise <u>discolours</u> the signal.

A property of a time series is the degree to which it is stationary. Strict sense (or strong) stationarity requires that all statistical properties of the time series (mean value, autocorrelation function, and all higher order moments) be independent of the choice of the time origin. Wide sense (or weak) stationarity requires that only the mean value and autocorrelation function be independent of the choice of the time origin [Bendat and Piersol, 1971]. One common violation of stationarity is the presence of datum shifts in the time series: that is, the mean value is shifted from time to time. Another common violation is the presence of a trend (perhaps linear) in the time series: the "mean" value changes linearly with time.

Both these kinds of non-stationarity-inducing constituents (datum shifts and trends) can also be considered as systematic noise, as long as we know their general form, that is, the time at which datum shifts occurred, and the kind of trend (linear, quadratic, exponential, etc.).

Another property of a time series is its spacing. Are all the data values equally spaced in time? Are there data gaps between otherwise equally-spaced segments of the series? Or are all the values in the time

series unequally spaced in time? Ideally we would like to have only equally spaced time series, but this is rarely the case in practice.

A specific example of this situation is a time series of ocean tide gauge records, from which we are interested in the long period (> 1 year) constituents. Three kinds of systematic noise may contaminate this time series from our point of view. Firstly, there may be step functions due to sudden changes in the tide gauge datum (caused by alterations to the tide gauge or to its supporting structure, or possibly caused by vertical co-seismic displacements). The dates of such step functions are usually well documented, but it can be difficult to document their magnitudes. Secondly, there may be a gradual change in the tide gauge datum (due, for example, to changes in the mean sea level, or to land subsidence including the gauge), which is most simply modelled as a linear trend. Thirdly, the tide gauge time series are dominated by short (in our context) periodic constituents (i.e., tidal constituents) for which the periods are precisely known, but the magnitudes are not. In addition to these problems, there is almost certain to be data gaps due to equipment failures. It is this kind of series that we will analyse at the end of PART A as an example.

To obtain an undistorted spectral image of the signal, we must somehow remove the influence of the systematic noise, both the "colours" and the non-stationarity. The usual way of dealing with this problem is to first find the magnitudes of the components of the noise, subtract the noise from the time series, and perform a spectral analysis on the "corrected" time series. It is known, however, that such a treatment affects the location of spectral peaks arising from the rest of the time series [Taylor and Hamilton, 1972]. We must somehow deal with the data gaps as well. When the data is piecewise equally spaced, as in the example given at the end of PART A, the two usual options are to treat each piece separately, or to somehow manufacture data to fill in the gaps. Neither is satisfactory. The problem is even more difficult when the time series is completely unequally spaced, rather than merely gappy.

An alternative is the least-squares spectral analysis [Vanicek, 1971]. This alternative provides two advantages: systematic noise, including both colours and non-stationarity, can be rigorously accounted for (suppressed) without producing any shift of the existing spectral peaks [Taylor and Hamilton, 1972]; and time series with unequally spaced data can

be analysed [Maul and Yanaway, 1978].

The purpose of this report is to present a brief exposition of the method, for unequally spaced time series, and to describe how the spectrum computation can be made much faster if the time series is equally, or at least piecewise equally, spaced.

Capitalized parameter names longer than one letter refer to identifiers used in FORTRAN subroutines SPECUN and SPECEQ which respectively compute the least-squares spectrum for unequally spaced and equally spaced time series (see PART B for program listings).

SPECTRUM COMPUTATION

There are many definitions of a spectrum, and many ways of computing a spectrum from a time series. Here we simply state the problem in a general way: Given

- (a) $\underline{t} = \{t_i\}$, i=1,2,...,n, a vector of observation times,
- (b) $\underline{f}(\underline{t}) = \{f_i\} = \{f(t_i)\}, \text{ a vector of observed values,}$
- (c) $\underline{\omega} = \{\omega_j\}$, j=1,2,...,m, a vector of frequencies for which spectral values are desired,

then find

$$\underline{s}(\underline{\omega}) = \{s_i\} = \{s(\omega_i)\}, \text{ a vector of spectral values.}$$

Note that

- (a) $\underline{f}(\underline{t})$ or $\{f_i, t_i\}$ together define a \underline{time} \underline{series} .
- (b) $s(\omega_j)$ must be some measure of the fractional content of $\underline{f}(\underline{t})$ which is represented by the frequency ω_i .

Here we consider only one specific technique for computing $s(\omega_j)$, which is the Least-Squares Spectral Analysis (LSSA). This technique is an application of Least-Squares Approximation (LSA) [Vaniček and Wells, 1972], which is closely related to the Linear Least-Squares Parametric Adjustment (LLSPA) [Wells and Krakiwsky, 1971; Vaniček and Krakiwsky, 1982].

LSA and LLSPA use the same algorithm, but they have different purposes, and different interpretations of the quantities involved. Those parts of the algorithm which we are interested in are, in our notation,

$$\underline{\hat{\mathbf{c}}} = \left(\underline{\boldsymbol{\phi}}^{\mathrm{T}} \ \underline{\mathbf{W}} \ \underline{\boldsymbol{\phi}}\right)^{-1} \ \underline{\boldsymbol{\phi}}^{\mathrm{T}} \ \underline{\mathbf{W}} \ \underline{\mathbf{f}} \tag{1}$$

$$\underline{\hat{\mathbf{v}}} = \underline{\mathbf{f}} - \underline{\mathbf{\phi}} \ \underline{\hat{\mathbf{c}}} \quad . \tag{2}$$

For LLSPA, we are given

f = a vector of observations

 $\underline{\Phi}$ = the design matrix which models the physical relationship between the observations \underline{f} and the vector of unknown parameters \underline{c} via the observation equation \underline{f} = $\underline{\Phi}$ \underline{c}

the observation equation $\underline{f} = \underline{\Phi} \ \underline{c}$ $\underline{W} = \underline{C}_{\underline{f}}^{-1} \text{ where } \underline{C}_{\underline{f}} \text{ is the covariance matrix of } \underline{\underline{f}}, \text{ a statistical quantity,}$

and the problem solved in part by (1) and (2) is to obtain an estimate for some physical parameters \underline{c} , based on the observations \underline{f} . What we want here is $\underline{\hat{c}}$ (plus its covariance matrix).

For LSA we are given

 $\underline{\underline{f}}$ = a known vector to be approximated, not necessarily based on observations,

 $\underline{\phi}$ = a matrix considered to consist of several column vectors $\underline{\phi}$ = $[\underline{\phi}_1, \underline{\phi}_2, \dots, \underline{\phi}_m]$ called <u>base functions</u>, each of which is a known function of the same dimension as \underline{f} . Note that $\underline{\phi}$ does not necessarily model any physical dependence of f.

 $\underline{\underline{W}}$ = a weight function with no statistical meaning. Here we assume $\underline{\underline{W}}$ = $\underline{\underline{I}}$ (often the case in LSA).

For LSA it is usual to rewrite $\underline{f} = \underline{\phi} \underline{c}$ in the form

$$\underline{\underline{f}} = \sum_{i=1}^{m} c_i \underline{\phi}_i$$
(3)

and to state the LSA problem as finding the best fitting approximant \underline{p} to \underline{f} , that is

$$\underline{p} = \sum_{i=1}^{m} \hat{c}_{i} \underline{\phi}_{i}$$

$$(4)$$

such that the residuals $\hat{\underline{v}} = \underline{f} - \underline{p}$ are minimized in the least-squares sense. Note that for LSA we are more interested in \underline{p} than in the coefficients $\hat{\underline{c}}$, although $\hat{\underline{c}}$ is still given by (1).

Specifically for LSSA we know f(t) and we use

$$\phi_1 = \cos \omega_j t$$

$$\phi_2 = \sin \omega_j t \qquad . \tag{5}$$

For each ω_{j} for which we want $s(\omega_{j})$ we compute

$$\underline{p}(\omega_{i}) = \hat{c}_{1} \cos \omega_{i} t + \hat{c}_{2} \sin \omega_{i} t$$
 (6)

where $\frac{\hat{c}}{\hat{c}} = \begin{vmatrix} \hat{c}_1 \\ \hat{c}_2 \end{vmatrix}$ is determined from (1), that is

$$\underline{\hat{\mathbf{c}}} = (\underline{\boldsymbol{\phi}}^{\mathrm{T}} \underline{\boldsymbol{\phi}})^{-1} \underline{\boldsymbol{\phi}}^{\mathrm{T}} \underline{\mathbf{f}} \qquad . \tag{7}$$

Now when $\underline{p}(\omega_j)$ fits \underline{f} perfectly $(\underline{v}=0)$, then the fractional content of \underline{f} represented by \underline{p} is 1 (all of \underline{f} is represented by \underline{p}). On the other hand, it is possible that $\underline{\hat{c}}=0$ (that is \underline{f} is orthogonal to $\underline{\phi}$) and $\underline{p}=0$. In this case, the fractional content of \underline{f} represented by \underline{p} is 0. In general we will see below that the fractional content of \underline{f} represented by \underline{p} can be measured by the ratio

$$s = \frac{\text{length of the orthogonal projection of } \underline{p} \text{ onto } \underline{f}}{\text{length of } \underline{f}}$$
 (8)

and that this can be computed from

$$s = \frac{\underline{f}^{T} \underline{p}}{\underline{f}^{T} \underline{f}} . \tag{9}$$

Note that since from (6) $\underline{p} = \underline{p}(\omega_{1})$, so also

$$s(\omega_{j}) = \frac{\underline{f}^{T} \underline{p}(\omega_{j})}{\underline{f}^{T} \underline{f}}$$
 (10)

that is, for each spectral value $s(\omega_j)$ we must separately compute the least-squares approximant $\underline{p}(\omega_j)$. Therefore to compute the least-squares spectrum $\underline{s}(\omega) = \{s_j, \omega_j\}$ we must compute m spectral values $s(\omega_j)$ $j=1,2,\ldots,m$ which involves performing the least-squares approximation m times, each time to get $\underline{p}(\omega_j)$ for a different frequency ω_j .

So far we have dealt only with the problem of computing the spectrum of a complete time series. This is one major application of LSSA. A second major application is to first remove some constituents from the time series, and then to compute the spectrum of the <u>residual</u> time series. This is more complicated, and is more easily described (and hopefully understood) using the language of functional analysis.

REQUISITE ELEMENTS OF FUNCTIONAL ANALYSIS

Functional analysis is the analysis of functionals [Luenberger, 1969; Kreyszig, 1978; Oden, 1979]. A functional is a scalar function of vector quantities. We are interested in three functionals called the scalar product, the norm, and the metric. First we define some spaces.

In this report we will speak solely of spaces of finite dimensions. A vector space L of dimension n = dim L is a space of all possible n-tuples $\{\ell 1,\ \ell_2,\ \ldots,\ \ell_n\}$ of real numbers $\ell_1,\ \ell_2,\ \ldots,\ \ell_3$. It is required that a linear combination of any elements is also an element, that is if $\forall i:\underline{a}_i$ \in L and α_i \in R (scalars), then

$$\underline{\mathbf{b}} = \sum_{\mathbf{i}} \alpha_{\mathbf{i}} \ \underline{\mathbf{a}}_{\mathbf{i}} \tag{11}$$

is also from L. A <u>Hilbert (finite) space</u> H is a vector space on which the <u>scalar product</u> is defined. If \underline{a} , \underline{b} ϵ H then we denote their scalar product by $\langle \underline{a}, \underline{b} \rangle$ and define the <u>norm</u> (or <u>length</u> or <u>magnitude</u>) of \underline{a} ϵ H as

$$||\underline{a}|| = (\langle \underline{a}, \underline{a} \rangle)^{1/2} \tag{12}$$

and the <u>metric</u> (or <u>distance</u>) between \underline{a} , \underline{b} ϵ H as

$$d(\underline{a}, \underline{b}) = ||\underline{a} - \underline{b}|| = [\langle (\underline{a} - \underline{b}), (\underline{a} - \underline{b}) \rangle]^{1/2} . \tag{13}$$

There are many ways of specifying a particular expression for the scalar product, some involving weight functions, some involving integrals. Here we use the most familiar and simplest expression

$$\langle \underline{\mathbf{a}}, \underline{\mathbf{b}} \rangle = \underline{\mathbf{a}}^{\mathrm{T}} \underline{\mathbf{b}} = \sum_{\mathbf{i}} \mathbf{a}_{\mathbf{i}} \mathbf{b}_{\mathbf{i}}$$
 (14)

We will use concepts of linear independence, basis, and manifold. An n-tuple of vectors \underline{a}_i ϵ L is $\underline{linearly\ independent}$ when the equation

$$\sum_{i=1}^{n} \alpha_{i} = 0 , \forall i : \alpha_{i} \in R$$
(15)

is satisfied if and only if $\forall i: \alpha_i = 0$. That is none of the \underline{a}_i can be expressed as a linear combination of the others. Given a linearly independent n-tuple $\{\underline{a}_i, \forall i\} \subset L$ then the set of all vectors

$$\underline{\mathbf{b}}_{\mathbf{j}} = \sum_{\mathbf{i}} \alpha_{\mathbf{i}} \ \underline{\mathbf{a}}_{\mathbf{i}} \tag{16}$$

(where all possible combinations of scalar values α_i are used to generate different \underline{b}_j) form a <u>manifold</u> S of L, and $\{\underline{a}_i, \forall i\}$ is said to <u>generate</u> S, or to be a <u>basis</u> of S. The number n of vectors in $\{\underline{a}_i, \forall i\}$ is the <u>dimension</u> of S.

We will also use concepts of orthogonality, and orthogonal projection. Let us explore how these concepts are intimately related to the scalar product. For illustration we will consider two vectors \underline{a} and \underline{b} in the real plane. If these two vectors intersect at a right angle then their scalar product is zero, $\langle \underline{a}, \underline{b} \rangle = 0$. In this case we say that \underline{a} and \underline{b} are orthogonal (denoted $\underline{a} \mid \underline{b}$). In more general Hilbert spaces, the following statements also all mean the same thing, although "intersection at a right angle" can no longer be visualized:

 $\langle \underline{a}, \underline{b} \rangle = 0$ means the same as $\underline{a} \perp \underline{b}$, which means the same as \underline{a} and \underline{b} are orthogonal.

So much for the special case of orthogonality. In general \underline{a} and \underline{b} will not intersect at a right angle. What then is the geometrical meaning of the scalar product? Let us say they intersect at some angle θ (see Figure 1). We recall

$$\langle \underline{\mathbf{a}}, \underline{\mathbf{b}} \rangle = ||\underline{\mathbf{a}}|| \ ||\underline{\mathbf{b}}|| \cos \theta$$
 (17)

ORTHOGONAL PROJECTIONS

Definition of angle

Orthogonal Projection of a onto b

Orthogonal Projection of **b** onto **a**

FIGURE 1.

Orthogonality is such a useful concept that even in this case we want somehow to construct a right angle. There are two possibilities. Either we can drop a perpendicular from \underline{a} onto \underline{b} or we can drop a perpendicular from \underline{b} onto \underline{a} . In Figure 1, the vector \underline{x} is called the <u>orthogonal projection</u> of \underline{a} onto \underline{b} , and \underline{y} is the <u>orthogonal projection</u> of \underline{b} onto \underline{a} . From (17) we see that the <u>lengths</u> of these vectors are

$$||\underline{x}|| = ||\underline{a}|| \cos \theta = \frac{\langle \underline{a}, \underline{b} \rangle}{||\underline{b}||},$$

$$||\underline{y}|| = ||\underline{b}|| \cos \theta = \frac{\langle \underline{a}, \underline{b} \rangle}{||\underline{a}||}.$$
(18)

To obtain expressions for the vectors themselves, we note that unit vectors in the direction of \underline{a} (and \underline{y}) and in the direction of \underline{b} (and \underline{x}) are given by \underline{a} and \underline{b} respectively. Hence, using (12), we have

$$\underline{\mathbf{x}} = ||\underline{\mathbf{x}}|| \frac{\underline{\mathbf{b}}}{||\underline{\mathbf{b}}||} = \frac{\langle \underline{\mathbf{a}}, \underline{\mathbf{b}} \rangle}{\langle \underline{\mathbf{b}}, \underline{\mathbf{b}} \rangle} \underline{\mathbf{b}} ,$$

$$\underline{\mathbf{y}} = ||\underline{\mathbf{y}}|| \frac{\underline{\mathbf{a}}}{||\underline{\mathbf{a}}||} = \frac{\langle \underline{\mathbf{a}}, \underline{\mathbf{b}} \rangle}{\langle \underline{\mathbf{a}}, \underline{\mathbf{a}} \rangle} \underline{\mathbf{a}} ,$$

$$(19)$$

from which we see that the ratio of the length of \underline{x} to the length of \underline{b} (and similarly of \underline{y} to \underline{a}) is given by the ratio of two scalar products. Finally we note that (18) and (19) are not restricted to the simple example here, but are valid in any Hilbert space.

THE PROJECTION THEOREM

The shortest distance between a point and a plane is the perpendicular from the point to the plane. This is the projection theorem.

We can rephrase this theorem, substituting the terms

"minimum norm" for

"shortest distance";

"(vector) element of Hilbert space" for

"manifold of Hilbert space" for

"orthogonal" for

"perpendicular".

Given \underline{f} ϵ H (point) and S \subset H (plane), then of all the elements \underline{s} ϵ S, there is one element \underline{p} ϵ S such that $d(\underline{f}, \underline{p}) \leq d(\underline{f}, \underline{s})$ (shortest distance). This element \underline{p} is given by the orthogonal projection of \underline{f} onto S, that is $(\underline{f} - \underline{p}) \perp S$ (perpendicular) (see Figure 2).

In order to invoke this theorem, we need first to specify \underline{f} and S. We can specify \underline{f} in several ways, for example, as an ordered sequence of real numbers, or using an analytic functional expression. We can also specify S in many ways. Let us choose to specify S by specifying a basis $\{\underline{\phi}_i, \forall i\}$ which generates S. Figure 2 illustrates the geometrical relationships between \underline{f} , S, \underline{p} , and $\{\underline{\phi}_i, \forall i\}$ for the simple case of a three-dimensional \underline{f} and a two-dimensional S. Then any \underline{s} ε S can be expressed as

$$\underline{\mathbf{s}} = \sum_{\mathbf{i}} \mathbf{c}_{\mathbf{i}} \ \underline{\boldsymbol{\phi}}_{\mathbf{i}} \quad . \tag{20}$$

That is, there is some relationship between each n-tuple $\{c_i, \forall i\}$ and the corresponding \underline{s} . Let the particular n-tuple of scalars $\{c_i, \forall i\}$ corresponding to \underline{p} be denoted $\{\hat{c}_i, \forall i\}$. Then

$$\underline{\mathbf{p}} = \sum_{\mathbf{i}} \hat{\mathbf{c}}_{\mathbf{i}} \, \underline{\boldsymbol{\phi}}_{\mathbf{i}} \quad . \tag{21}$$

Now we can write the condition we must satisfy, $(\underline{f} - \underline{p}) \perp S \equiv (\underline{f} - \underline{p})$ $\perp \underline{\phi}_j$; $\forall j$, in terms of $\{\hat{c}_i, \forall i\}$ corresponding to \underline{p} , that is

$$\forall j : \langle (\underline{f} - \underline{\Sigma} \ \hat{c}_{\underline{i}} \ \underline{\phi}_{\underline{i}}), \ \underline{\phi}_{\underline{j}} \rangle = 0$$
 (22)

This can be rewritten

$$\sum_{i} \hat{c}_{i} \langle \underline{\phi}_{i}, \underline{\phi}_{j} \rangle = \langle \underline{f}, \underline{\phi}_{j} \rangle \qquad j=1,2,...,n \qquad (23)$$

If we define

$$\underline{\mathbf{N}} = \begin{bmatrix}
\langle \underline{\phi}_1, \underline{\phi}_1 \rangle & \langle \underline{\phi}_2, \underline{\phi}_1 \rangle & \dots & \langle \underline{\phi}_n, \underline{\phi}_1 \rangle \\
\langle \underline{\phi}_1, \underline{\phi}_2 \rangle & \langle \underline{\phi}_2, \underline{\phi}_2 \rangle & \dots & \langle \underline{\phi}_n, \underline{\phi}_2 \rangle \\
\vdots & \vdots & \ddots & \vdots \\
\langle \underline{\phi}_1, \underline{\phi}_n \rangle & \langle \underline{\phi}_2, \underline{\phi}_n \rangle & \dots & \langle \underline{\phi}_n, \underline{\phi}_n \rangle
\end{bmatrix}$$

$$\underline{\mathbf{u}} = \begin{bmatrix} \langle \underline{\mathbf{f}}, \ \underline{\phi}_1 \rangle \\ \langle \underline{\mathbf{f}}, \ \underline{\phi}_2 \rangle \\ \vdots \\ \langle \underline{\mathbf{f}}, \ \underline{\phi}_n \rangle \end{bmatrix}$$

$$\frac{\hat{\mathbf{c}}}{\hat{\mathbf{c}}} = \begin{bmatrix} \hat{\mathbf{c}}_1 \\ \hat{\mathbf{c}}_2 \\ \vdots \\ \hat{\mathbf{c}}_n \end{bmatrix}$$

then (23) becomes

$$\underline{N} \ \hat{\underline{c}} = \underline{u} \tag{24}$$

the <u>normal equations</u> (\underline{f} - \underline{p} is <u>normal</u> or <u>orthogonal</u> to S). In fact if we define

$$\underline{\Phi} = [\underline{\phi}_1, \underline{\phi}_2, \dots, \underline{\phi}_n] \tag{25}$$

then $\underline{N} = \underline{\phi}^T \underline{\phi}$ and $\underline{u} = \underline{\phi}^T \underline{f}$ so that

$$\frac{\hat{\mathbf{c}}}{\mathbf{c}} = \underline{\mathbf{N}}^{-1} \underline{\mathbf{u}} = (\underline{\boldsymbol{\phi}}^{\mathrm{T}} \underline{\boldsymbol{\phi}})^{-1} \underline{\boldsymbol{\phi}}^{\mathrm{T}} \underline{\mathbf{f}}$$
 (26)

which was equation (7). The approximant \underline{p} is then

$$\underline{p} = \underline{\Phi} \ \underline{\hat{c}} = \Sigma \ \hat{c}_{\underline{i}} \ \underline{\phi}_{\underline{i}}$$
 (27)

and the residual vector is

$$\frac{\hat{\mathbf{v}}}{\mathbf{p}} = \mathbf{f} - \mathbf{p} = \mathbf{f} - \mathbf{\Phi} \hat{\mathbf{c}} = \mathbf{f} - \mathbf{\Phi} (\mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathsf{T}} \mathbf{f} \qquad (28)$$

Note that $\hat{\underline{v}} \perp \underline{p}$. This follows from the projection theorem, where $\hat{\underline{v}} = (\underline{f} - \underline{p}) \perp S$, that is $\hat{\underline{v}}$ is orthogonal to all vectors in S, in particular the column vectors of $\underline{\Phi}$ (which generate S). Thus $\hat{\underline{v}}$ is orthogonal to \underline{p} which is a linear combination of $\underline{\Phi}$, and hence also lies in S. Thus the projection theorem (or LSA or LLSPA) decomposes \underline{f} into two orthogonal components \underline{p} (the orthogonal projection of \underline{f} onto S) and $\hat{\underline{v}}$ (the perpendicular from \underline{f} to S).

To compute something akin to the spectral value, we must perform a $\underline{\text{second}}$ orthogonal projection. However, this one is simpler. So far we have projected \underline{f} onto the manifold S, in which case many projections are possible, and we used the minimum norm, or perpendicularity condition to select the one we want. For the second projection, we simply project \underline{p} back onto \underline{f} . Figure 3 illustrates this for the simple case corresponding to Figure 2.

The length of this orthogonal projection is, from (18)

$$\frac{\langle \underline{f}, \underline{p} \rangle}{||\underline{f}||}$$
.

ωj

The ratio of the length of this orthogonal projection to the length of \underline{f} is, from (19)

$$\frac{\langle \underline{\mathbf{f}}, \ \underline{\mathbf{p}} \rangle}{\langle \underline{\mathbf{f}}, \ \underline{\mathbf{f}} \rangle} = \frac{\underline{\mathbf{f}}^{\mathrm{T}} \ \underline{\mathbf{p}}}{\underline{\mathbf{f}}^{\mathrm{T}} \ \underline{\mathbf{f}}} \quad . \tag{29}$$

This then is a measure of the fractional part of \underline{f} which is represented by \underline{p} .

Since \underline{p} is a special element of S (the orthogonal projection of \underline{f} onto S), this ratio also tells us something about how much of \underline{f} is "contained" in S. The "closer" to S that \underline{f} lies, the closer to 1 will the ratio (29) become. If \underline{f} lies in S, the ratio is 1. If \underline{f} is orthogonal to S, the ratio is 0.

Now let us apply this to spectral analysis. For each spectral frequency $\boldsymbol{\omega}_{\mbox{\scriptsize j}},\mbox{ j=1,m,}$ we have a different manifold S spanned by

$$\underline{\Phi} = [\cos \omega_{j}t, \sin \omega_{j}t]$$
 (30)

Consequently, the orthogonal projection $\underline{p}(\omega_{j})$ of \underline{f} onto S will be different for each ω_{j} . Due to the properties of the ratio (29) described above, we choose that ratio to be the <u>least-squares spectral value</u> of \underline{f} for frequency

$$s(\omega_{j}) = \frac{f^{T} p (\omega_{j})}{f^{T} f}$$
(31)

The <u>least-squares spectrum</u> of \underline{f} is the collection of spectral values for all (desired) frequencies ω_{i} ,

$$\underline{\mathbf{s}}(\omega) = \{\mathbf{s}(\omega_{j}); j=1,m\}$$
 (32)

LEAST-SQUARES SPECTRAL ANALYSIS WITH KNOWN CONSTITUENTS

For some applications we can consider a time series as consisting of two kinds of constituents: those which we are interested in studying (and having represented in the spectrum), i.e., the signal, and those which we are not interested in, or which obscure the constituents we want to study, i.e., the noise. The noise can be either periodic, rendering the series "coloured" or other, rendering the series non-stationary, or both.

In both cases, we must know something about the constituent in order to deal with it. Here we restrict ourselves to the case where we know the noise base functions $\phi_i(t)$, but do not know what the magnitude of the contribution is to the time series; that is if we represent

$$\underline{f}(t) = \sum_{i} c_{i} \underline{\phi}_{i}(t)$$
(33)

we know $\underline{f}(t)$ and all the $\underline{\phi}_i(t)$, and do not know the coefficients c_i . So far this is similar to the previous case.

Now, however, we partition $\underline{\phi}$ into the known constituents $\underline{\hat{\phi}}$, and the spectral functions, $\cos \omega_j t$, $\sin \omega_j t$, we used before, so that

$$\underline{\Phi} = [\hat{\Phi}_1, \hat{\Phi}_2, \dots, \hat{\Phi}_{NK}, \cos \omega_j t, \sin \omega_j t]$$
 (34)

It was shown by Vaníček [1971] that the known constituents do not have to be removed from \underline{f} before evaluating the spectrum. It speeds the computations up, however, if the least-squares estimate $\hat{p} = \hat{c}\hat{b}$ is removed before the

spectrum is evaluated. This simply means we decompose $\underline{f}(t)$ into its orthogonal projection $\hat{\underline{p}}$ ε $\{\underline{c}\hat{\Phi}\}$ and the residual $\underline{f} - \hat{\underline{p}}$ (which is orthogonal to \hat{p}). We then have the <u>residual time series</u>

$$\underline{g}(t) = \underline{f}(t) - \hat{\underline{p}}(t) \tag{35}$$

and it is this that we compute the spectrum for. We then orthogonally project \underline{g} onto the manifold $M(\Phi)$ spanned by $\underline{\Phi} = [\underline{\hat{\Phi}}, \cos \omega t, \sin \omega t]$ and obtain the projection $\underline{r} = \underline{p} - \underline{\hat{p}}$ and residual $\underline{\hat{v}} = \underline{g} - \underline{r} = \underline{f} - \underline{p}$. Note that whether we project \underline{f} onto $M(\underline{\Phi})$ directly, or \underline{f} onto $M(\underline{\hat{\Phi}})$ and then $\underline{f} - \underline{\hat{p}}$ onto $M(\underline{\Phi})$, we obtain the same final residual. Finally, we orthogonally project \underline{r} onto \underline{g} and compute the ratio of the length of the projection to the length of \underline{g} as our spectral value.

In summary:

- (a) LSA and LLSPA involve one orthogonal projection: \underline{f} onto $M(\underline{\phi})$.
- (b) LLSA with no known constituents involves two orthogonal projections
 - (i) \underline{f} onto $M(\underline{\Phi})$ to obtain \underline{p}
 - (ii) \underline{p} onto \underline{f} to obtain the spectral value.
- (c) LSSA with known constituents involves three orthogonal projections
 - (i) f onto $M(\hat{\Phi})$ to eliminate the known constituents and obtain g
 - (ii) \underline{g} onto $M(\underline{\Phi})$ to obtain \underline{r}
 - (iii) \underline{r} onto \underline{g} to obtain the spectral value.

In order to geometrically illustrate the <u>concept</u> of these three orthogonal projections as in Figure 4, we have to unrealistically restrict $\underline{\phi}$ to two dimensions. If we let $\hat{\phi} = \underline{\phi}_1$ be one dimensional, that leaves only one dimension, $\underline{\phi}_2$, to represent the spectral functions (of which we have in actuality two). If we can live with this limitation in order to look at the three projections conceptually, then the top part of Figure 4 shows the first and second projections (\underline{f} onto $\underline{M}(\underline{\hat{\phi}})$, and \underline{g} onto $\underline{M}(\underline{\phi})$), and the bottom part of the figure shows the second and third projections (\underline{g} onto $\underline{M}(\underline{\phi})$), and \underline{r} onto \underline{g}).

By analogy with (29) the spectral value is

- 1. $\underline{\mathbf{f}}$ onto $\underline{\underline{\mathbf{\Phi}}}$ to obtain $\underline{\mathbf{g}}$
- 2. g onto Φ to obtain \underline{r}

3. <u>r</u> onto <u>g</u> to obtain spectral value FIGURE 4.

$$s(\omega_{j}) = \frac{g^{T} \underline{r}(\omega_{j})}{g^{T} g}$$
(36)

where $\underline{g} = \underline{f} - \underline{\hat{p}}$ and $\underline{r} = \underline{p} - \underline{\hat{p}}$. We must compute $\underline{r}(\omega_j)$ for each spectral frequency ω_j , however we need compute only once the quantities (from (28))

$$\underline{\mathbf{g}} = \underline{\mathbf{f}} - \underline{\hat{\mathbf{g}}} \left(\hat{\mathbf{g}}^{\mathrm{T}} \underline{\hat{\mathbf{g}}} \right)^{-1} \hat{\mathbf{g}}^{\mathrm{T}} \underline{\mathbf{f}}$$
 (37)

and $\underline{g}^T \underline{g}$. Then the projection of \underline{g} onto $\mathtt{M}(\underline{\phi})$ has the form

$$\underline{\mathbf{r}} = \underline{\boldsymbol{\Phi}} \left(\underline{\boldsymbol{\Phi}}^{\mathrm{T}} \underline{\boldsymbol{\Phi}}\right)^{-1} \underline{\boldsymbol{\Phi}}^{\mathrm{T}} \underline{\mathbf{g}} \tag{38}$$

so that

$$\underline{g}^{\mathrm{T}} \underline{r} = \underline{g}^{\mathrm{T}} \underline{\phi} \left(\underline{\phi}^{\mathrm{T}} \underline{\phi}\right)^{-1} \underline{\phi}^{\mathrm{T}} \underline{g} . \tag{39}$$

Now $\underline{g}^T \Phi$ can be written

$$\underline{\mathbf{g}}^{\mathrm{T}} \underline{\boldsymbol{\phi}} = \underline{\mathbf{g}}^{\mathrm{T}} [\widehat{\boldsymbol{\phi}}, \cos \omega_{\mathbf{j}} t, \sin \omega_{\mathbf{j}} t] . \tag{40}$$

But $\underline{g}^T \hat{\Phi} = 0$ (\underline{g} is orthogonal to $M(\hat{\Phi})$), so that

$$\underline{\mathbf{g}}^{\mathsf{T}} \underline{\boldsymbol{\phi}} = [0, 0, \dots, 0, \underline{\mathbf{g}}^{\mathsf{T}} \cos \omega_{\mathbf{j}} t, \underline{\mathbf{g}}^{\mathsf{T}} \sin \omega_{\mathbf{j}} t] \qquad (41)$$

Hence in (39) only the south-east 2 by 2 submatrix of $(\underline{\phi}^T \ \underline{\phi})^{-1}$ need be computed.

More specifically, denoting $\underline{\Phi}^T\underline{\Phi}$ by \underline{A} , we have

$$\underline{\underline{A}} = | \underline{\underline{u}}^{T} \quad \underline{\underline{v}} \quad | \underline{\underline{v}} |$$

$$| \underline{\underline{v}}^{T} \quad CS \quad SS \mid$$

where the NK by NK matrix $\hat{\underline{A}} = \hat{\underline{\phi}}^T \hat{\underline{\phi}}$, the NK-vectors $\underline{\underline{u}}$ and $\underline{\underline{v}}$ are given by $\underline{\underline{u}}_j = \frac{\underline{v}}{\underline{j}} \hat{\underline{v}}_{NK+1}$, $\underline{j} = 1, 2, ..., NK$ and $\underline{\underline{v}}_j = \frac{\underline{v}}{\underline{j}} \hat{\underline{v}}_{NK+2}$, $\underline{j} = 1, 2, ..., NK$, and the elements

CC = $\frac{\sigma}{NK+1} \frac{\phi}{NK+1}$, CS = $\frac{\sigma}{NK+1} \frac{\phi}{NK+2}$, and SS = $\frac{\sigma}{NK+2} \frac{\phi}{NK+2}$. (Note that alternatives to the normal equations such as the Householder transformation could be used; however, they would probably involve penalties in computation times over the algorithm we have chosen.) Since the matrix $\frac{\hat{\Lambda}}{\Delta}$ is positive definite symmetric, it is most conveniently inverted by the Choleski method. The residual time series then is $\underline{g} = \underline{f} - \frac{\hat{\sigma}}{\Delta} (\frac{\hat{\sigma}}{\Delta})^{-1} \frac{\hat{\sigma}}{\Delta}^T \underline{f}$ and its quadratic norm is FNORM = $\underline{g}^T \underline{g} = \underline{f}^T (\underline{I} - \frac{\hat{\sigma}}{\Delta} (\frac{\hat{\sigma}}{\Delta})^{-1} \frac{\hat{\sigma}}{\Delta}^T) \underline{f}$.

The orthogonal projection \underline{r} of \underline{g} onto $\underline{\phi}$ is $\underline{r} = \underline{\phi}\underline{c}$, where the coefficient vector \underline{c} satisfies the normal equations $\underline{A}\underline{c} = \underline{b}$, where $\underline{A} = \underline{\phi}^T\underline{\phi}$ and $\underline{b} = \underline{\phi}^T\underline{g}$ are known. Then $\underline{g}^T\underline{r} = \underline{g}^T\underline{\phi}\underline{c} = \underline{b}^T\underline{c} = \underline{b}^T\underline{A}^{-1}\underline{b}$, and $\underline{s}(\underline{\omega}) = \underline{b}^T\underline{A}^{-1}\underline{b}/\text{FNORM}$. From (2) the first NK components of the (NK+2)-vector \underline{b} are zero, the last two being FCOS = $\underline{g}^T\underline{\phi}_{NK+1}$ and FSIN = $\underline{g}^T\underline{\phi}_{NK+2}$. Hence we really need only determine the lower right-hand 2 by 2 submatrix of \underline{A}^{-1} .

It is easily shown that the lower right-hand 2 by 2 submatrix of \underline{A}^{-1} is:

$$\frac{1}{DET} \begin{bmatrix} (SS-VAV), & -(CS-UAV) \\ \\ -(CS-UAV), & (CC-UAU) \end{bmatrix},$$

where UAU = $\underline{u}^{T}\underline{A}^{-1}\underline{u}$, VAV = $\underline{v}^{T}\underline{A}^{-1}\underline{v}$, UAV = $\underline{u}^{T}\underline{A}^{-1}\underline{v}$, and DET = (CC-UAU)(SS-VAV) - (CS-UAV)². Hence the algorithm for computing the spectrum of \underline{f} is:

 $s(\omega) = [(SS-VAV)FCOS^2 - 2(CS-UAV)FCOS \cdot FSIN+(CC-UAU)FSIN^2]/(DET \cdot FNORM). (42)$

RELATIONSHIP TO OTHER SPECTRAL FUNCTIONS

To relate this spectrum to the <u>Fourier spectrum</u>, a basis for other kinds of spectra, note that in the absence of known constituents UAU = VAV =

UAV = 0 and $\underline{g} = \underline{f}$. If the time series is equally spaced and symmetrical about the time origin, then CS = 0 and $s(\omega) = (1/\text{FNORM})[(\text{FCOS}^2/\text{CC}) + (\text{FSIN}^2/\text{SS})]$. Letting the time series length increase beyond all limits as the time series spacing decreases to zero, and introducing the compact definition of the scalar product,

$$\underline{x}^{T}\underline{y} = \int_{-\infty}^{\infty} \underline{x}(t) \underline{y}(t) dt,$$

then in our notation the square of the absolute value of the Fourier transform of \underline{f} , $|C(\omega)|^2 = (1/2\pi)(FCOS^2 + FSIN^2)$, can be compared with the above expression for the least-squares spectrum.

There are other possibilities to define a least-squares spectrum, namely, $s(\omega) = (\alpha^2 + \beta^2)/||\underline{f}||^2$, where α , β are evaluated (a) from the orthogonal projection $\underline{\delta c} + \alpha cos(\omega t) + \beta sin(\omega t)$ of \underline{f} onto $\underline{M}(\underline{\phi})$, or (b) from the orthogonal projection $\alpha cos(\omega t) + \beta sin(\omega t)$ of $\underline{g} = \underline{f} - \underline{\hat{p}}$ onto the two-dimensional manifold spanned by $\{cos(\omega t), sin(\omega t)\}$. In the first case, the spectrum is not defined for values of ω which are present in the known constituents. The second case (equivalent to the standard Fourier analysis approach) distorts the spectrum by forcing it to go to zero for the frequencies present in the known constituents. Both cases are discussed by Taylor and Hamilton [1972] and neither is found to be advantageous from the spectral accuracy point of view.

TYPES OF KNOWN CONSTITUENTS

We now turn to the specific software implementation of LSSA documented in this report. In this software, the known constituent base functions & can be of several types.

(a) $\phi(t) = 1$ for <u>datum bias</u>. For example, say a tide gauge was moved twice in 10 years and the <u>times</u> of the move were known, but the vertical relationship of the different locations was <u>not</u> known. The time series would look like that shown in the top part of Figure 5. The three datum bias known constituent base functions in Figure 5 would be used.

Time Series Containing Datum Biases

Base Functions to Remove Datum Biases

Time Series Containing Linear Trend

Base Function to Remove Linear Trend FIGURE 5.

(b) $\phi(t)$ = t, for <u>linear trend</u>. For example, say a tide gauge was situated on a dock which was slowly (or uniformly) sinking into the seabed. Then the time series would look like that in the bottom part of Figure 5. The linear trend constituent base function in Figure 5 would be used to remove this linear trend.

(c)
$$\phi_1(t) = \cos \mu_i t$$
 | | for forced periodic constituents, with | frequencies μ_i . $\phi_2(t) = \sin \mu_i t$ |

For example, we know that a given time series contains the tidal frequencies $^{M}2$ and $^{K}1$ (perhaps from a previous spectral analysis), so we want to remove these peaks from the spectrum and see what is left.

(d) ϕ (t) = "anything else" for <u>user defined</u> constituents. For example, instead of a linear trend we may believe that some nonlinear trend (say exponential) exists.

INPUT AND OUTPUT PARAMETERS

The input parameters for computing the spectrum (5) must specify the time series, the limits and density of the spectral band to be produced, and the known constituents $\hat{\Phi}$.

The <u>time series</u> is defined by the vectors (F_i, T_i) i=1,2,...,NF where the values T_i are in units of time, and for SPECUN (the version used for unequidistant series) are unrestricted as to spacing. For SPECEQ (the version used for equidistant series) the time series is assumed to consist of a specific number (NIVL) of subintervals, each of which consists of equally spaced data points separated by a time increment STEP common to all subintervals. The subintervals need not be separated by integral multiples of STEP. Separation of subintervals is specified as detected by the software when two consecutive elements are not separated by STEP. The value for STEP is defined by the difference between the first and second elements in the time series.

The <u>spectrum</u> is defined by the vectors (S_i, P_i) i=1,2,...,NW, where the values P_i are specified spectral periods in the same units as T_i , and the values S_i are the computed spectral values.

The known constituents. Rather than requiring the user to specify the form of $\frac{\delta}{2}$, it is useful to build some common types of known constituents into the algorithm leaving the user free to ignore them and specify his own functions if he so desires. This algorithm, therefore, provides four optional types of known constituents:

(a) <u>Datum Bias</u>. Let the time series consist of NDAT segments, each referred to a different datum. Then for NDAT > 1

referred to a different datum. Then for NDAT
$$\geq 1$$

$$\underbrace{\phi_{i}(\underline{t})} = \begin{cases}
1 & \text{if t is in the ith datum segment} \\
0 & \text{otherwise}
\end{cases}$$
 $i=1,2,\ldots,NDAT$

In the program in this case

NDAT = 3 (number of segments of total time series separated by datum shifts)

 $DAT(1) = t_0$ (start time of first datum = start time of time series)

 $DAT(2) = t_1$ (start time of second datum)

 $DAT(3) = t_2$ (start time of third datum).

If there are no datum biases we set NDAT = 0, and the contents of DAT are not used. On input to routines SPECUN and SPECEQ, if NDAT is negative, a warning message is produced, NDAT is set to zero, and the program continues. If NDAT is positive and DAT(1) \neq t_o, a fatal message is produced and the program aborts.

- (b) <u>Linear Trend</u>. If used, this known constituent is of the form $\underline{\phi_i(\underline{t})} = \underline{t}, \ i = \text{NDAT} + 1 \qquad (\text{LT} = 1 \text{ if used, LT} = 0 \text{ otherwise}) \ .$ On input to routines SPECUN and SPECEQ, if LT is not either 0 or 1, a warning message is produced, LT is set to 0, and the program continues.
- (c) Forced Periods. For NPER \geq 1 known periods PER $_j$ (and frequencies $\mu_j = 2\pi/\text{PER}_j$), the known constituents are the periodic functions $\underline{\phi_j}(\underline{t}) = \cos(\mu_j t)$

$$i = NDAT + LT + 2j-1, j=1,2,...,NPER.$$

$$\frac{\phi_{i+1}(\underline{t}) = \sin(\mu_i t)}$$

In the program in this case we set

NPER = 2 (number of frequencies to be removed)

PER(1) = 12.42 hours (for M_2) (period of first frequency)

PER(2) = 23.93 hours (for K_1) (period of second frequency).

If we do not want to remove any periodic constituents before computing the spectrum we set NPER = 0, and the contents of PER are not used. On input to routines SPECUN and SPECEQ, if NPER is negative, a warning message is produced, NPER is set to zero, and the program continues. On input to routine SPECEQ only, if NPER is greater than the dimension of the arrays required (NPERDM), a fatal message is produced and the program aborts.

(d) <u>User-specified</u>. These known constituents are of arbitrary form (for example, quadratic trend or exponential trend, a numerical function) chosen by each user

$$\phi_i(\underline{t}) = ?$$
, $i=NDAT + LT + 2*NPER + j$, $j=1,2,...,NBASE$.

In the example at the end of PART A we set

NBASE = 1 (number of user defined constituents to be removed) and add the appropriate code in subroutine BASE to implement the user-defined function. This particular user defined function is an exponential trend and the code reads:

BASE =
$$EXP(-T/25.).$$

If there are no user defined constituents to be removed, set NBASE = 0. On input to routines SPECUN and SPECEQ, if NBASE is negative, a warning message is produced, NBASE is set to zero, and the program continues.

The total number of known constituents then is:

$$NK = NDAT + LT + 2*NPER + NBASE$$
, (43) which may also equal to 0 (for NDAT = LT = NPER = NBASE = 0).

On input to routines SPECUN and SPECEQ, if (43) is not satisfied, a warning message is produced, NK is set equal to the right hand side of (43), and the computation continues. If NK is greater than the dimensions of the arrays required (NKDIM), a fatal message is produced, and the program aborts.

The next two input parameters, MODE and EQORUN, specify whether a sequential or batch solution is desired (MODE) and if SPECEQ or SPECUN should be used. Standard deviations of and correlations between a priori estimates \hat{c} are also evaluated from the usual statistical formulae. Their values are printed if they are considered significant. The significance level for standard deviations (in percents) is another input parameter, PCENT; for correlation, the level is called CLEVEL.

Two more statistical parameters are produced by the software: the mean spectral value for white noise (see Vanicek [1971]):

$$RS = 2/(NF - NK) * 100\%$$
 (44)

and the critical percentage variance on 95% for detecting statistically significant peaks in the spectrum [Steeves, 1981]:

RS95 =
$$(1 - \alpha^{2/(NF-NK-2)}) * 100\%$$
, (45)

where $\alpha = 0.95$. These are printed together with the spectrum.

GENERAL SCALAR PRODUCT ALGORITHM FOR EQUALLY SPACED DATA

The spectrum (5) requires evaluation of the scalar products FNORM, FCOS, FSIN, CC, CS, SS, and U_i , V_i (i=1,2,...,NK). For an unequally spaced time series treated by SPECUN, all these scalar products must be evaluated directly from:

$$\underline{\mathbf{x}}^{\mathrm{T}}\underline{\mathbf{y}} = \langle \underline{\mathbf{x}}, \ \underline{\mathbf{y}} \rangle = \sum_{\mathbf{t}_{\mathbf{i}}} \mathbf{x}(\mathbf{t}_{\mathbf{i}}) \ \mathbf{y}(\mathbf{t}_{\mathbf{i}})$$
 (46)

where, for convenience, we now introduce the bracket notation $\langle \underline{x}, \underline{y} \rangle$. Provided that the time series is at least piecewise equally spaced (as described in the previous section for input to SPECEQ), we can use much more efficient formulae to evaluate CC, CS, SS and those elements of the vectors \underline{U} and \underline{V} corresponding to datum bias, linear trend, and forced period known constituents. However, FNORM, FCOS, FSIN and those elements of \underline{U} and \underline{V} corresponding to user-defined known constituents must still be evaluated directly from (44).

For convenience we define the function trig(x) as being either cos(x) or sin(x). We seek, to begin with, an algorithm for the scalar products

<1, trig(
$$\omega$$
t)> = Σ_{T_i} trig(ω T_i) i=1,2,...,NF. (47)

Direct evaluation requires computing NF trigonometric functional values. We can reduce this number considerably by applying the identities [Korn and Korn, 1968, p. 981]:

n

$$\Sigma$$
 trig(2ak + b) = [1/sin(a)]* sin(an + a)* trig(an + b). (48)
k=0

Let the jth subinterval of the time series F consist of equally spaced data points, separated by the time increment STEP, the first data point occurring at time TA_i and the last at time TB_i . Then setting

$$k = (T_i - TA_j)/STEP = 0,1,...,n;$$

 $n = (TB_j - TA_j)/STEP;$
 $a = (\omega/2)*STEP;$ and
 $b = \omega*TA_j;$

we have

$$TB_{j} trig(\omega T_{i}) = [1/\sin(Q)] * \sin(N_{j}Q) * trig(L_{j}Q) , \qquad (49)$$

$$T_{i} = TA_{j}$$

where Q = $(\omega/2)*STEP$; $N_j = 1 + (TB_j - TA_j)/STEP$; and $L_j = (TB_j + TA_j)/STEP$.

Summing over the NIVL subintervals in F gives us the scalar product:

<1, trig(
$$\omega T$$
)> = $\frac{1}{\sin(Q)} \sum_{j=1}^{\text{NIVL}} \sin(N_j Q) * \text{trig}(L_j Q)$, (50)

which requires computing only (2*NIVL+1) trigonometric functional values, where NIVL is the number of subintervals.

SPECIFIC SCALAR PRODUCT EXPRESSIONS

It now simply remains to reduce the scalar products CC, CS, SS, \underline{U} , and \underline{V} to the form of (50). Using (46) it is easy to see that CC = (NF/2) +

(1/2)* <1, $\cos 2\omega T$ >; CS = (1/2)* <1, $\sin 2\omega T$ >; and SS = (NF/2) - (1/2)* <1, $\cos 2\omega T$ > where from (50) we can see that:

<1, trig(2
$$\omega$$
T)> = $\frac{1}{\sin(2Q)} \sum_{j=1}^{\text{NIVL}} \sin(2N_j Q)^* \text{trig}(2L_j Q)$. (51)

The first NDAT elements of vectors $\underline{\textbf{U}}$ and $\underline{\textbf{V}}$ involve constituents of type (a) (datum biases). Let INTA $_i$ and INTB $_i$ be the first and last subintervals referred to the ith datum. Then

$$U_{i} = \frac{1}{\sin Q} \sum_{j=INTA_{i}}^{INTB_{i}} \sin N_{j} Q \cos L_{j} Q$$

$$i=1,2,...,NDAT . (52)$$

$$V_{i} = \frac{1}{\sin Q} \sum_{j=INTA_{i}}^{INTB_{i}} \sin N_{j} Q \sin L_{j} Q$$

If LT \neq 0, the next element of \underline{U} and \underline{V} involves the known constituent of type (b) (linear trend). Then

$$U_{\text{NDAT+1}} = \frac{\partial}{\partial \omega} < 1, \quad \sin \omega T > = \frac{\partial Q}{\partial \omega} \frac{\partial}{\partial Q} \left(\frac{1}{\sin Q} \sum_{j=1}^{\text{NIVL}} \sin N_{j} Q \sin L_{j} Q \right)$$
(53)

$$V_{\text{NDAT+1}} = -\frac{\partial}{\partial \omega} < 1$$
, $\cos \omega T > = -\frac{\partial Q}{\partial \omega} \frac{\partial}{\partial Q} \left(\frac{1}{\sin Q} \sum_{j=1}^{\text{NIVL}} \sin N_j Q \cos L_j Q \right)$ (54)

After some development, we get

$$U_{NDAT+1} = \frac{\text{STEP}}{2} \frac{1}{\sin Q} \sum_{j=1}^{\text{NIVL}} -\cot Q \sin N_{j} Q \sin L_{j} Q + N_{j} \cos N_{j} Q \sin L_{j} Q + L_{j} \sin N_{j} Q \cos L_{j} Q \quad (55)$$

$$V_{\text{NDAT+1}} = \frac{\text{STEP}}{2} \frac{1}{\sin Q} \sum_{j=1}^{\text{NIVL}} + \cot Q \sin N_{j} Q \cos L_{j} Q - N_{j} \cos N_{j} Q \cos L_{j} Q + L_{j} \sin N_{j} Q \sin L_{j} Q . (56)$$

The next (2*NPER) elements of \underline{U} and \underline{V} involve constituents of type (c) (forced periods). Using (46), it is easy to see that:

$$U_{i} = \frac{1}{2} < 1, \cos(\mu_{k} + \omega)T > + \frac{1}{2} < 1, \cos(\mu_{k} - \omega)T >$$
 (57)

$$U_{i+1} = \frac{1}{2} < 1$$
, $\sin(\mu_k + \omega)T > + \frac{1}{2} < 1$, $\sin(\mu_k - \omega)T >$ (58)

$$V_i = \frac{1}{2} < 1$$
, $\sin(\mu_k + \omega)T > -\frac{1}{2} < 1$, $\sin(\mu_k - \omega)T > (59)$

$$V_{i+1} = -\frac{1}{2} < 1, \cos(\mu_k + \omega)T > +\frac{1}{2} < 1, \cos(\mu_k - \omega)T >$$
 (60)

i = NDAT + LT + 2*k-1

 $k = 1, 2, \dots, NPER.$

Letting $P_k = (\mu_k/2)*STEP$, we see from (50) that

<1, trig(
$$\mu_k \pm \omega$$
)T> = $\frac{1}{\sin(P_k \pm Q)} \sum_{j=1}^{\text{NIVL}} \sin N_j(P_k \pm Q) \text{ trigL}_j(P_k \pm Q)$. (61)

We note that the functions of sums of angles in (51) and (61) can be expressed in terms of functions of angles only. Hence the scalar products CC, CS, SS and those elements of \underline{U} , \underline{V} which refer to known constituents of types (a), (b), and (c) can be computed from the (2*NPER + 4*NPER*NIVL) functions $\operatorname{trig}(P_k)$, $\operatorname{trig}(N_jP_k)$, $\operatorname{trig}(L_jP_k)$ (which need only be computed once for a given $\underline{\hat{\Phi}}$) and from the (2 + 4*NIVL) functions $\operatorname{trig}(P_k)$, $\operatorname{trig}(N_jQ)$, $\operatorname{trig}(L_jQ)$ (which must be computed for each desired spectral frequency ω).

EXAMPLES

As a model of many time series encountered in practice, we have generated the following time series:

$$f(t) = c_{i} + 0.01t + 3*exp(-t/25) + \sum_{j=1}^{5} (a_{j}cos\mu_{j}t + b_{j}sin\mu_{j}t), (62)$$

(where t is in years) that may represent a typical, say geophysical, (coloured) time series. Three hundred values of f were generated spanning 50 years and grouped into four subintervals consisting of equally spaced data, that is t ϵ D_k, k=1,2,3,4, where

```
D_1 \equiv [0.1, 0.2, ..., 10.0] years (100 values)

D_2 \equiv [20.1, 20.2, ..., 25.0] years (50 values)

D_3 \equiv [28.1, 28.2, ..., 40.0] years (120 values)

D_{\Delta} \equiv [47.1, 47.2, ..., 50.0] years (30 values).
```

The datum biases were c_1 = 1, t ϵ D₁; c_2 = -1, t ϵ D₂; and c_3 = 3, t ϵ D₃, D4. The amplitudes and periods of the trigonometric terms were a_j = 1/2, 1, 0, 1.2, -1.4; b_j = 1, 1/2, 1, -1, 0; and p_j = $2\pi/\mu_j$ = (2.759, 3.636, 5.714, 40, 16) years. The graph of this time series is shown in Figure 6.

The time series (62) was analysed using both SPECEQ and SPECUN. In addition, a second unequally spaced time series was generated from (62) by adding to the linearly increasing t a sinusoidal variation of period 50 years and amplitude 0.5 years. The second time series was analysed using SPECUN only.

Nine runs were made for each of these three analyses, increasing the number of known constituents from zero to 15. The SPECEQ results are shown in Figure 7. The top four spectra illustrate the influence the datum biases and the linear and exponential trends, and their removal, have on the spectra. The next four spectra illustrate how the technique can be used in searching for hidden periodicities. By suppressing the effect of the periodic constituent which was the most prominent in the previous run, we enhance the remaining peaks, revealing the existence of "weaker" periodic constituents. The ninth run suppressed the effect of all constituents of (62), in which case the residual time series consisted of round-off error only, no spectrum was computed, and, as expected, the computed amplitudes of the known constituents agreed within round-off with those used in (62). The SPECUN generated results were identical to the SPECEQ generated results. As expected for the unequally spaced SPECUN results, the computed amplitudes of the known constituents and the height of the spectral peaks differed slightly from the equally spaced analyses. However, there was no shift in the position of the spectral peaks.

The execution times of Table 1 were obtained using the FORTRAN 77 compiler on an IBM 3081 computer. The equally spaced SPECEQ and unequally spaced SPECUN execution times were essentially equal for small numbers of

Figure 6. Graph of test time series of 300 values generated by Equation (62).

Figure 7. Results from nine runs of program SPECEQ, analyzing the time series of Figure 6. The number of known constituents suppressed in each run are specified by NK, NDAT, LT, NBASE, and NPER, respectively, giving the total number of constituents, the number of datum biases, the linear trend, the number of user-defined constituents, and the number of forced periods.

TABLE 1

IBM 3081 CPU Times for Test Time Series Containing 300 Values.

Number of Known Constituents	CPU Time	es (sec)
NK	SPECEQ	SPECUN
0	5.77	5.83
3	5.82	6.95
4	6.04	7.32
5	6.72	8.19
7	6.90	10.23
9	7.04	12.19
11	7.28	14.22
13	7.53	16.35

constituents. However, for longer time series and larger numbers of constituents the difference in execution times increases considerably in favour of equally spaced execution time.

REFERENCES

- Bendat, J.S. and A.G. Piersol (1971). Random Data: Analysis and Measurement Procedures. Wiley, New York.
- Korn, G.A., and T.M. Korn (1968). <u>Mathematical Handbook for Scientists and</u> Engineers. 2nd ed., McGraw-Hill, Toronto.
- Kreyszig (1978). <u>Introductory Functional Analysis with Applications</u>. Wiley.
- Luenberger (1969). Optimization by Vector Space Methods. Wiley.
- Maul, G.A. and A. Yanaway (1978). "Deep sea tides determination from GEOS-3." NASA Contractor Report 141435, NOAA Atlantic Oceanographic and Meteorological Laboratories, Miami, FL.
- Oden, J.T. (1979). Applied Functional Analysis. Prentice-Hall.
- Steeves, R.R. (1981). "A statistical test for significance of peaks in the least squares spectrum." Collected Papers, Geodetic Survey, Department of Energy, Mines and Resources. Surveys and Mapping Branch, Ottawa, pp. 149-166.
- Taylor, J. and S. Hamilton (1972). "Some tests of the Vanicek method of spectral analysis." Astrophysics and Space Science, 17, pp. 357-367.
- Vanicek, P. (1971). "Further development and properties of the spectral analysis by least squares." <u>Astrophysics and Space Science</u>, 12, pp. 10-73.
- Vanicek, P. and E.J. Krakiwsky (1982). <u>Geodesy: The Concepts</u>. North Holland, Amsterdam.

- Vanicek, P. and D.E. Wells (1972). "The least-squares approximation and related topics." Department of Surveying Engineering Lecture Notes 22, University of New Brunswick, Fredericton, N.B., Canada.
- Wells, D.E. and E.J. Krakiwsky (1971). "The method of least-squares."

 Department of Surveying Engineering Lecture Notes 18, University of

 New Brunswick, Fredericton.

PART B

USER'S GUIDE AND PROGRAM LISTINGS

INTRODUCTION

This version of the Least-Squares Spectral Analysis software has been modified from the version published with the original version of this report. Some modifications were made to correct errors in the original version. Other modifications were made to expand the information provided on output.

STRUCTURE OF THE SOFTWARE

The software has been modularized into 16 routines, shown in Figure 1. Three of these specify the input:

TSPEC Main program. Calls TIMSER, DRIVER and FPLOT.

TIMSER Reads input time series.

DRIVER Calls SPECUN or SPECEQ.

Five of these compute the known constituents, the spectrum, and the residual time series

SPECUN Computes least squares spectrum of unequally-spaced time series.

SPECEQ Computes least squares spectrum of equally-spaced time series.

BASE Computes known constituent functional values.

RESID Computes residual time series after removing known constituents.

CHOLS Inverts matrix in place using Cholesky decomposition.

EPS Determines smallest ϵ such that $1+\epsilon$ is distinguishable from 1.

Four of these report the results on the lineprinter:

FPLOT Plots input time series.

AMPL Lists sine and cosine least-squares estimated coefficients of known constituents.

AMPHAS Lists least-squares estimated amplitude and phase (and their standard deviations) of known constituents.

COVAR Lists covariance matrix of unknown constituents.

SPLOT Plots output spectrum.

ERROR Prints error message. Stops if fatal error.

The central routine is either SPECUN or SPECEQ. Both have the following parameter list:

T = input vector of time series times {t;}

F = input vector of time series values {f_i}

output vector of residual time series values $\{g_i^{}\}$

NF = input length of T and F

FNORM = output $\underline{g}^{T} \underline{g}$

NK = input total number of known constituents to be removed from F

DAT = input vector of time new datum bias begins

= input number of datum biases (length of DAT) NDAT

= input linear trend switch LT

= input forced periods PER

NPER = input number of forced periods (length of PER)

NBASE = input number of user defined constituents

= output vector of amplitudes (coefficients) of removed known constituents $\hat{\underline{c}}$. NK values.

P = input vector of periods for which spectral values will be computed

= output vector of spectral values S

= input length of P, S. NW

= input spectral band label. If only one spectral band is to IB be computed, set IB = 1. If more than one spectral band is to be computed from same time series, set IB = 1 for first band, during which \underline{g} and $\underline{g}^{T}\underline{g}$ are computed. For subsequent bands set IB > 1, and the previous values of \underline{g} and $\underline{g}^T\underline{g}$ are used, rather than recomputing.

Thus SPECUN and SPECEQ accept inputs specifying

- the time series $\{t_i, f_i\}, i=1,2,...,NF$ (a)
- the known constituents $\hat{\phi}_{i}(t)$, i=1,2,...,NK to be removed from (b)
- the periods P_i , i=1,2,...,NW for which spectral values are (c) wanted

and provides outputs specifying

- the residual time series $\{g_i\}$ i=1,2,...,NF and its norm g^Tg (a)
- (b) the amplitudes of the known constituents $\{\hat{c}_i\}$ i=1,2,...,NK
- the spectral values $\{s_i\}$, $i=1,2,\ldots,NW$.

SPECEQ has four main blocks of code:

- (a) error checking
- (b) identification of equally spaced subintervals, precomputation of trigonometric functions
- (c)
- computation of \underline{g} and $\underline{g}^T\underline{g}$ (done by subroutine RESID) computation of $s(\omega_j) = \underline{g}^T\underline{r}(\omega_j)/\underline{g}^T\underline{g}$ for each ω_j .

SPECUN omits the second of these four blocks of code.

MODIFYING THE SOFTWARE

The only routines that need be changed to accommodate new time series, known constituents, or spectral periods are

TSPEC (main)

TIMSER

DRIVER

SPECUN

BASE

- (a) The only change to BASE is to add more user defined base functions, if required.
- (b) The only change to SPECUN is to redimension the following arrays if there are more than 15 known constituents (NK > 15):

A(NK, NK)

B(NK)

U(NK)

V(NK)

reset NKDIM = NK

(c) The only changes to TSPEC (Main) are as follows:

Redimension FF(NF), T(NF) if NF > 500

Redimension PER(NPER) if NPER > 5

Redimension DAT(NAT) if NDAT > 3

(d) DRIVER generates the input specification of the periods for which spectral values are wanted, and passes the parameters P, NW, IB to SPECUN. If these are to be changed then the parameters PL, PS, NW, and IB in the DATA statement must be changed.

In addition, DRIVER must be changed under the following circumstances:

Redimension F(NF) for NF > 500

Redimension P(NW), S(NW) for NW > 500

Redimension C(NK) for NK > 15

- (e) TIMSER generates the inputs specifications for
 - (i) the time series, passing T, F, NF to SPECUN
 - (ii) the known constituents to be removed, passing DAT, NDAT, LT, PER, NPER, NBASE, to SPECUN.

If the time series is to be read in as data, replace the DO 10 loop in TIMSER by a READ statement. If a different artificial time series is to

be generated by TIMSER, change the vectors A, B,C, P, NB, NE, IVL and the scalars NIVL and STEP to appropriate values, taking care to redimension as required.

If different known constituents are to be removed (including none to be removed) change DAT, NDAT, LT, PER, NPER, and NBASE as required. Take care to redimension DAT(NDAT) and PER(NPER) in TSPEC as required.

General redimensioning rules are, for TIMSER, to redimension C(NK) if $NK \,>\, 5$

A(NPER), B(NPER), P(NPER) if NPER > 5

IVL(NDAT+1), NB(NDAT+1), NE(NDAT+1) if NDAT > 3.

```
TSPF 001
       PROGRAM TSPEC
       IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                                        TSPE 002
                                                                                        TSPE 003
       CHARACTER +2 EQORUN
                                                                                        TSPE 004
       CHARACTER +5 MODE
                       DAT(3), FF(500), PER(5), T(500)
                                                                                        TSPE 005
       DIMENSION
                                                                                        TSPE 006
       DATA
                       IPR /6/
                                                                                        TSPE 007
  FUNCTION: TSPEC CALLS TIMSER TO GENERATE TEST TIME SERIES
                                                                                        TSPE 008
                    AND CALLS DRIVER TO COMPUTE SEVERAL
                                                                                        TSPE 009
С
                                                                                        TSPE 010
                    LEAST SQUARES SPECTRA OF THE TEST
Ċ
                     TIME SERIES
                                                                                        TSPE 011
С
                                                                                        TSPE 012
  UNIT NUMBER: IPR = 6 = LISTING OF INPUT AND OUTPUT
                                                                                        TSPE 013
C
                                                                                        TSPE 014
С
С
                                                                                        TSPE 015
  EXTERNALS: DRIVER, FPLOT, TIMSER
                                                                                        TSPE 016
C
  SUMMARY:
                                                                                        TSPE 017
                                                                                        TSPE 018
С
     CALL TIMSER
C
     CALL FPLOT TO PLOT INPUT TIME SERIES
                                                                                        TSPE 019
    CALL DRIVER ADDING DATUM BIAS, LINEAR TREND, USER-DEFINED TSPE 020 CONSTITUENTS AND FORCED FREQUENCIES SIMULTANEOUSLY (MODE=BATCH) TSPE 021
C
С
C
     CALL DRIVER WITH NO KNOWN CONSTITUENTS
                                                                                        TSPE 022
С
     CALL DRIVER ADDING DATUM BIAS CONSTITUENTS
                                                                                        TSPE 023
C
     CALL DRIVER ADDING LINEAR TREND CONSTITUENT
                                                                                        TSPE 024
     CALL DRIVER ADDING USER-DEFINED CONSTITUENTS
                                                                                        TSPE 025
С
     CALL DRIVER ADDING ONE FORCED FREQUENCY AT A TIME
                                                                                        TSPE 026
      CALL TIMSER(T, FF, NF, DAT, MDAT, MT, PER, MPER, MBASE, MODE,

$ EQORUN, PCENT, CLEVEL)

CALL FPLOT(T, FF, NF, DAT, MDAT, EQORUN, IPR)

IF (MODE .EQ. 'SQNTL') GO TO 1

IF (MODE .EQ. 'BATCH')

$CALL DRIVER(T, FF, NF, DAT, MDAT, MT, PER, MPER, MBASE, IPR,
                                                                                        TSPE 027
                                                                                         TSPE 028
                                                                                         TSPE 029
                                                                                         TSPE 030
                                                                                         TSPE 031
                                                                                         TSPE 032
                      EQORUN, PCENT, CLEVEL)
                                                                                         TSPE 033
       STOP
                                                                                         TSPE 034
     1 \text{ NDAT} = 0
                                                                                         TSPE 035
       LT = 0
                                                                                         TSPE 036
                                                                                         TSPE 037
       NBASE = 0
                                                                                         TSPE 038
       NPER = 0
       CALL DRIVER(T, FF, NF, DAT, NDAT, LT, PER, NPER, NBASE, IPR,
                                                                                         TSPE 039
                      EQORUN, PCENT, CLEVEL)
                                                                                         TSPE 040
       IF (MDAT .EQ. 0) GO TO 5
                                                                                         TSPE 041
       NDAT = MDAT
                                                                                         TSPE 042
       CALL DRIVER(T, FF, NF, DAT, NDAT, LT, PER, NPER, NBASE, IPR,
                                                                                         TSPE 043
                      EQORUN, PCENT, CLEVEL)
                                                                                         TSPE 044
     5 IF(MT .EQ. 0) GO TO 10
                                                                                         TSPE 045
       LT = MT
                                                                                         TSPE 046
    CALL DRIVER(T, FF, NF, DAT, NDAT, LT, PER, NPER, NBASE, IPR, $ EQORUN, PCENT, CLEVEL)

10 IF(MBASE .EQ. 0) GO TO 15
                                                                                         TSPE 047
                                                                                         TSPE 048
                                                                                         TSPE 049
       NBASE = MBASE
                                                                                         TSPE 050
        CALL DRIVER(T,
                         FF, NF, DAT, NDAT, LT, PER, NPER, NBASE, IPR,
                                                                                         TSPE 051
                      EQORUN, PCENT, CLEVEL)
                                                                                         TSPE 052
    15 IF(MPER .EQ. 0) GO TO 25
                                                                                         TSPE 053
       DO 20 NPER = 1, MPER
                                                                                         TSPE 054
         CALL DRIVER(T, FF, NF, DAT, NDAT, LT, PER, NPER, NBASE, IPR, EQORUN, PCENT, CLEVEL)
                                                                                         TSPE 055
      $
                                                                                         TSPE 056
    25 STOP
                                                                                         TSPE 057
        END
                                                                                         TSPE 058
```

```
SUBROUTINE AMPL(A, NF, NK, FNORM, DAT, NDAT, LT, PER, NPER,
                                                                                                                                                                                        AMPL 001
               NBASE, C, IPR)
IMPLICIT DOUBLE PRECISION (A-H, D-Z)
                                                                                                                                                                                         AMPL 002
                                                                                                                                                                                         AMPL 003
                                                        A(100,100), C(1), DAT(1), PER(1)
               DIMENSION
                                                                                                                                                                                        AMPL 004
               DATA PI/3.141592653589793D0/
                                                                                                                                                                                         AMPL 005
                                                                                                                                                                                        AMPL 006
    FUNCTION: AMPL LISTS PRELIMINARY COSINE AND SINE
                                                                                                                                                                                        AMPL 007
                                           COEFFICIENTS.
                                                                                                                                                                                         AMPL 008
С
                                                                                                                                                                                         AMPL 009
С
     CALLED FROM: DRIVER
                                                                                                                                                                                        AMPL 010
C
                                                                                                                                                                                        AMPL 011
С
                                                           = INVERTED MATRIX OF NORMAL EQUATIONS
     ARGUMENTS: A
                                                                                                                                                                                        AMPL 012
                                 NK = TOTAL NUMBER OF KNOWN CONSTITUENTS
DAT(NDAT) = TIMES NEW DATUM BEGINS
С
                                                                                                                                                                                        AMPL 013
С
                                                                                                                                                                                        AMPL 014
C
                                                           = LINEAR TREND SWITCH (1 = INCLUDED)
                                 LT
                                                                                                                                                                                        AMPL 015
C
                                 PER(NPER) = FORCED PERIODS
                                                                                                                                                                                        AMPL 016
                                                           = NUMBER OF USER-DEFINED CONSTITUENTS
C
                                 NBASE
                                                                                                                                                                                        AMPL 017
C
                                 C(NK)
                                                           = PRELIMINARY AMPLITUDES OF KNOWN
                                                                                                                                                                                        AMPL 018
C
                                                                CONSTITUENTS
                                                                                                                                                                                        AMPL 019
С
                                                           = UNIT NUMBER FOR OUTPUT
                                                                                                                                                                                        AMPL 020
                                                                                                                                                                                        AMPL 021
C EXTERNALS: DSQRT, DATA2, DMOD
                                                                                                                                                                                         AMPL 022
               WRITE(IPR,1001) NDAT,LT,NPER,NPER,NPER,NBASE
IF(NDAT .GE. 1) WRITE(IPR,1002) (K,C(K),K=1,NDAT)
K = NDAT + 1
                                                                                                                                                                                        AMPL 023
                                                                                                                                                                                        AMPL 024
                                                                                                                                                                                        AMPL 025
               IF(LT .EQ. 1) WRITE(IPR,1003) K,C(K)
                                                                                                                                                                                        AMPL 026
               IF(NPER .EQ. 0) GO TO 10
DO 5 I = 1, NPER
                                                                                                                                                                                        AMPL 027
                                                                                                                                                                                        AMPL 028
                    K = NDAT + LT + 2 + I - 1
                                                                                                                                                                                         AMPL 029
                    K1 = K + 1
                                                                                                                                                                                        AMPL 030
                    AMP = DSQRT(C(K)*C(K) + C(K1)*C(K1))
GPL = DATAN2(C(K1),C(K)) * 180.D0 / PI
GPL = DMOD(GPL + 360.D0, 360.D0)
                                                                                                                                                                                        AMPL 031
                                                                                                                                                                                        AMPL 032
                    ESTSD = DSQRT(FNDRM / (NF - NK))

SIGAMP = DSQRT(C(K) * C(K) * A(K,K) + C(K1) * C(K1) *

A(K1,K1) + 2.D0 * C(K) * C(K1) * A(K,K1)) *
                                                                                                                                                                                        AMPL 033
                                                                                                                                                                                        AMPL 034
                                                                                                                                                                                        AMPL 035
                   A(K1,K1) + 2.DO + C(K) + C(K1) + A(K,K1)) +
ESTSD / AMP

SIGPL = DSQRT(C(K1) + C(K1) + A(K,K) +
C(K) + C(K) + A(K1,K1) -
2.DO + C(K) + C(K1) + A(K,K1)) +
(ESTSD / (AMP + AMP)) + (180.DO / PI)
WRITE(IPR,1004) K,K1,PER(I),C(K),C(K1),AMP,SIGAMP,GPL,SIGAPL
                                                                                                                                                                                         AMPL 036
            $
                                                                                                                                                                                        AMPL 037
                                                                                                                                                                                        AMPL 038
                                                                                                                                                                                         AMPL 039
            $
                                                                                                                                                                                        AMPL 040
            $
                                                                                                                                                                                        AMPL 041
                                                                                                                                                                                         AMPL 042
          5 CONTINUE
                                                                                                                                                                                         AMPL 043
       10 IF(NBASE .EQ. 0) RETURN DO 15 I = 1,NBASE
                                                                                                                                                                                         AMPL 044
                                                                                                                                                                                        AMPL 045
                    K = NDAT + LT + 2 * NPER + I
WRITE(IPR,1005) K, C(K)
                                                                                                                                                                                         AMPL 046
                                                                                                                                                                                         AMPL 047
               RETURN
                                                                                                                                                                                        AMPL 048
  1001 FORMAT(1H1,2X,31HSOLUTION FOR KNOWN CONSTITUENTS,///,
                                                                                                                                                                                        AMPL 049
            $ 14X,5HDATUM,4X,6HLINEAR,4X,6HFORCED,4X,6HCOSINE,6X,
                                                                                                                                                                                        AMPL 050
                   4HSINE,8X,4HUSER,/,15X,4HBIAS,5X,5HTREND,
4X,6HPERIOD,4X,4HTERM,8X,4HTERM,5X,7HDEFINED,2X,
9HAMPLITUDE,3X,7H(SIGMA),4X,5HPHASE,2X,7H(SIGMA),//,
                                                                                                                                                                                        AMPL 051
                                                                                                                                                                                        AMPL 052
                                                                                                                                                                                         AMPL 053
                    2X,6HNUMBER,5X,15,5(7X,13),//)
 $ 2X,OHNUMBER,OA,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK,A,13,OK
                                                                                                                                                                                        AMPL 054
                                                                                                                                                                                        AMPL 055
                                                                                                                                                                                        AMPL 056
                                                                                                                                                                                        AMPL 057
                                                                                                                                                                                        AMPL 058
                                                                                                                                                                                        AMPL 059
                                                                                                                                                                                        AMPL 060
```

```
DOUBLE PRECISION FUNCTION BASE(I, T, DAT, NDAT, LT, PER, NPER)
                                                                                      BASE 001
       IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION DAT(1), PER(1)
                                                                                      BASE 002
       DIMENSION
                                                                                      BASE 003
       DATA PI/3.141592653589793D0/
                                                                                      BASE 004
                                                                                      BASE 005
C FUNCTION: BASE COMPUTES KNOWN CONSTITUENT FUNCTIONAL
                                                                                      BASE 006
                                                                                      BASE 007
С
                   VALUES.
C
                                                                                      BASE 008
  CALLED FROM: RESID
                                                                                      BASE 009
C
                                                                                      BASE 010
С
                                                                                      BASE 011
  ARGUMENTS: I
                           = INDEX OF KNOWN CONSTITUENT TO BE COMPUTED
c
                           = TIME AT WHICH KNOWN CONSTITUENT COMPUTED
                                                                                      BASE 012
               DAT(NDAT) = INPUT TIMES NEW DATUM BEGINS
                                                                                      BASE 013
C
                           = INPUT LINEAR TREND SWITCH (1 = INCLUDED)
               LT
                                                                                      BASE 014
C
               PER(NPER) = INPUT FORCED PERIODS
                                                                                      BASE 015
Č
                                                                                      BASE 016
C
  EXTERNALS: DCOS, DEXP, DSIN
                                                                                      BASE 017
                                                                                      BASE 018
Ċ
  LIMITATION: USER MUST SUPPLY CODING TO COMPUTE EACH
                                                                                      BASE 019
С
                    USER-DEFINED CONSTITUENT. AS AN EXAMPLE,
                                                                                      BASE 020
C
                    THIS VERSION CONTAINS THE EXPONENTIAL
                                                                                      BASE 021
c
                    TREND EXP(-T/25).
                                                                                      BASE 022
C
                                                                                      BASE 023
  DATUM BIAS
                                                                                      BASE 024
       IF(I .GT. NDAT) GO TO 5
BASE = 1.0DO
                                                                                      BASE 025
BASE 026
       IF(I .EQ. NDAT .AND. T .GE. DAT(I)) RETURN
IF(I .LT. NDAT .AND. T .GE. DAT(I)
S .AND. T .LT. DAT(I+1)) RETURN
                                                                                      BASE 027
                                                                                      BASE 028
                                                                                      BASE 029
      $
       BASE = 0.000
                                                                                      BASE 030
       RETURN
                                                                                      BASE 031
                                                                                      BASE 032
C LINEAR TREND
5 IF(I .GT. NDAT + LT) GO TO 10
BASE = T
                                                                                      BASE 033
                                                                                      BASE 034
                                                                                      BASE 035
       RETURN
                                                                                      BASE 036
С
                                                                                      BASE 037
C FORCED PERIODS
                                                                                      BASE 038
    10 IF(I .GT. NDAT + LT + 2 * NPER) GO TO 20
IND = (I - NDAT - LT + 1) / 2
IF(I - NDAT - LT .EQ. IND * 2) GO TO 15
                                                                                      BASE 039
                                                                                      BASE 040
                                                                                      BASE 041
       BASE = DCOS(2.DO * PI * T / PER(IND))
                                                                                      BASE 042
       RETURN
                                                                                      BASE 043
    15 BASE = DSIN(2.DO + PI + T / PER(IND))
                                                                                      BASE 044
       RETURN
                                                                                      BASE 045
                                                                                      BASE 046
C EXPONENTIAL TREND
                                                                                      BASE 047
    20 IF(I .GT. NDAT + LT + 2 * NPER + 1) GO TO 25
BASE = DEXP(-T / 25.DO)
                                                                                      BASE 048
                                                                                      BASE 049
       RETURN
                                                                                      BASE 050
                                                                                      BASE 051
  ADD ADDITIONAL USER-DEFINED FUNCTIONS HERE
                                                                                      BASE 052
    25 BASE = 0.DO
                                                                                      BASE 053
       RETURN
                                                                                      BASE 054
        END
                                                                                      BASE 055
```

```
SUBROUTINE CHOLS (A, IRDA, NA)
                                                                                              CHOL 001
       IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
                                                                                              CHOL 002
                             A(IRDA, NA)
ROUND /500.DO/
       DIMENSION
                                                                                              CHOL 003
       DATA
                                                                                              CHOL 004
                                                                                              CHOL 005
  FUNCTION: CHOLS INVERTS MATRIX A IN PLACE
С
                                                                                              CHOL 006
С
                      USING CHOLESKY DECOMPOSITION
                                                                                              CHOL 007
CHOL 008
  CALLED FROM: RESID
                                                                                              CHOL 009
С
                                                                                              CHOL 010
CHOL 011
  ARGUMENTS: A(IRDA,NA) = ARRAY CONTAINING POSITIVE DEFINITE
С
                                 SYMMETRIC INPUT MATRIX, WITH ROW DIMENSION IRDA. THE INPUT MATRIX SIZE IS (NA,NA)
                                                                                              CHOL 012
Č
                                                                                              CHOL 013
С
                                  AND IS INVERTED IN PLACE, DESTROYING THE
                                                                                              CHOL 014
C
                                  INPUT, RETURNING THE INVERSE.
                                                                                              CHOL 015
C
                                                                                              CHOL 016
С
  EXTERNALS: EPS, ERROR, DSQRT
                                                                                              CHOL 017
CHOL 018
CHOL 019
С
  ERROR CONDITIONS:
     101 = FATAL. DIMENSION OF A .LT. 1
102 = FATAL. NEGATIVE SQUARE ROOT. A PROBABLY SINGULAR.
                                                                                              CHOL 020
С
                                                                                              CHOL 021
CHOL 022
C
     103 = FATAL. DIAGONAL ELEMENT OF CHOLESKI DECOMPOSITION
C
             NEGLIGIBLY SMALL COMPARED TO DIAGONAL ELEMENT OF A.
                                                                                              CHOL 023
С
             A PROBABLY SINGULAR.
                                                                                              CHOL 024
CHOL 025
            ("NEGLIGIBLY SMALL" MEANS LESS THAN EPS*ROUND, WHERE EPS IS THE SMALLEST NUMBER SO THAT
С
C
                                                                                              CHOL 026
             1. + EPS .GT. 1., AND ROUND ACCOUNTS FOR
С
                                                                                              CHOL 027
CHOL 028
C
             ACCUMULATED ROUNDOFF)
                                                                                              CHOL 029
  MATRIX DIMENSION CHECK
                                                                                              CHOL 030
       IF(NA .LT. 1)
                                                       CALL ERROR(101)
                                                                                              CHOL 031
                                                                                              CHOL 032
  INVERSION OF 1X1 MATRIX
                                                                                              CHOL 033
       IF (NA .GT. 1) GO TO 5 A(1,1) = 1.0DO / A(1,1)
                                                                                              CHOL 034
                                                                                              CHOL 035
CHOL 036
       RETURN
                                                                                              CHOL 037
C CHOLESKI DECOMPOSITION OF INPUT MATRIX
                                                                                              CHOL 038
    5 A(1,1) = DSQRT(A(1,1))

DO 10 I = 2, NA

10 A(I,1) = A(I,1) / A(1,1)
                                                                                              CHOL 040
                                                                                              CHOL 041
CHOL 042
       DO 30 J = 2, NA
          SUM = 0.000
          DO 15 K = 2, J

SUM = SUM + A(J,K-1) ** 2

IF(A(J,J) .LT. SUM)

SUM = DSQRT(A(J,J) - SUM)
                                                                                              CHOL 043
                                                                                              CHOL 044
CHOL 045
   15
                                                        CALL ERROR(102)
                                                                                              CHOL 046
                                                                                              CHOL 047
CHOL 048
          IF (SUM/A(J,J) .LT. EPS(ARG) + ROUND) CALL ERROR (103)
A(J,J) = SUM
                                                                                              CHOL 049
          IF(J .EQ. NA) GO TO 30
                                                                                              CHOL 050
          J2 = J + 1
                                                                                              CHOL 051
          DO 25 I = J2, NA
                                                                                              CHOL 052
             SUM = 0.0D0
                                                                                              CHOL 053
            DD 20 K = 2, J

SUM = SUM + A(I,K-1) * A(J,K-1)

A(I,J) = (A(I,J) - SUM) / A(J,J)
                                                                                              CHOL 054
   20
                                                                                              CHOL 055
CHOL 056
   25
          CONTINUE
   30
                                                                                              CHOL 057
                                                                                              CHOL 058
CHOL 059
  INVERSION OF LOWER TRIANGULAR MATRIX
       DO 35 I = 1, NA
                                                                                              CHOL 060
        A(I,I) = 1.000 / A(I,I)
                                                                                              CHOL 061
```

```
DO 45 J = 2, NA
DO 45 I = J, NA
SUM = 0.0DO
                                                                                                                           CHOL 062
                                                                                                                           CHOL 063
                                                                                                                           CHOL 064
                 DD 40 K = J, I
                                                                                                                           CHOL 065
                 SUM = SUM + A(I,K-1) * A(K-1,J-1)
A(I,J-1) = - A(I,I) * SUM
     40
                                                                                                                           CHOL 066
CHOL 067
     45
                                                                                                                           CHOL 068
C CONSTRUCTION OF INVERSE OF INPUT MATRIX
                                                                                                                           CHOL 069
CHOL 070
CHOL 071
         DO 65 J = 1, NA

IF(J .EQ. 1) GO TO 55

DO 50 I = 2, J

A(I-1,J) = A(J,I-1)

DO 65 I = J, NA

SUM = 0.0DO
                                                                                                                           CHOL 072
     50
                                                                                                                           CHOL 073
CHOL 074
     55
                                                                                                                           CHOL 075
                 DO 60 K = I, NA

SUM = SUM + A(K,I) * A(K,J)

A(I,J) = SUM
                                                                                                                           CHOL 076
CHOL 077
     60
                                                                                                                           CHOL 078
          RETURN
                                                                                                                           CHOL 079
          END
                                                                                                                           CHOL 080
```

```
SUBROUTINE COVAR (FNORM, NF, NK, A, C, PCENT, CLEVEL, IPR) IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                                               COVA 001
                                                                                               COVA 002
       DIMENSION A(100,1), CDV(1,1), C(1)
                                                                                               COVA 003
                                                                                               COVA 004
                                                                                               COVA 005
COVA 006
  FUNCTION: COVAR COMPUTES THE VARIANCE-COVARIANCE MATRIX
                     OF THE UNKNOWN CONSTITUENTS, THE CORRELATION
                     MATRIX AND PRINTS RESULTS.
                                                                                               COVA 007
                                                                                               COVA OOB
                                                                                                COVA 009
  CALLED FROM: DRIVER
                                                                                                COVA 010
                                                                                                COVA 011
  EXTERNALS: DSQRT. DABS
                                                                                                COVA 012
       IF (NK .LE. O) RETURN
                                                                                                COVA 013
                                                                                                COVA 014
C
  COMPUTE THE STANDARD DEVIATIONS STD, CHECK IF
                                                                                                COVA 015
С
                                                                                                COVA 016
C
     EXCEED PCENT*C(I) AND PRINT ALL OUTSTANDING
     STANDARD DEVIATIONS
                                                                                                COVA 017
       SIGMA2 = FNORM / (NF - NK)
WRITE (IPR,1000) PCENT
                                                                                                COVA 018
                                                                                                COVA 019
        NSTD = 0
                                                                                                COVA 020
        DO 25 I = 1, NK
                                                                                                COVA 021
          STD = DSQRT(SIGMA2 + A(I,I))
IF (STD .LT. DABS(PCENT+C(I) / 100.0D0)) GD TO 25
                                                                                                COVA 022
                                                                                                COVA 023
          WRITE (IPR, 1001) I, STD
                                                                                                COVA 024
          NSTD = NSTD + 1
                                                                                                COVA 025
    25 CONTINUE
                                                                                                CDVA 026
        IF(NSTD .EQ. 0) WRITE (IPR, 1004)
                                                                                                COVA 027
                                                                                                COVA 028
C CHECK IF ANY CORRELATION EXCEEDS CLEVEL AND PRINT
                                                                                                COVA 029
     ALL OUTSTANDING CORRELATIONS
                                                                                                COVA 030
        WRITE(IPR, 1002) CLEVEL
                                                                                                COVA 031
        NLEVEL = 0
                                                                                                COVA 032
        DO 35 I = 1, NK
                                                                                                COVA 033
          DO 30 J = 1, NK

IF(I .GE. J) GO TO 30

COR = A(I,J) / DSQRT(A(I,I) + A(J,J))

IF(DABS(COR) .LT. CLEVEL) GO TO 30

WRITE (IPR,1003) I, J, COR
                                                                                                COVA 034
                                                                                                COVA 035
                                                                                                COVA 036
                                                                                                COVA 037
                                                                                                COVA 038
             NLEVEL = NLEVEL + 1
                                                                                                COVA 039
          CONTINUE
    30
                                                                                                COVA 040
    35 CONTINUE
                                                                                                COVA 041
        IF(NLEVEL .EQ. 0) WRITE (IPR, 1004)
                                                                                                COVA 042
  1000 FORMAT (1H1, 5X,
                                                                                                COVA 043
       $
                 53HOUTSTANDING STANDARD DEVIATIONS OF KNOWN CONSTITUENTS
                                                                                                COVA 044
                 ,/,5X,12H(LARGER THAN, 1X, F5.1, 1X, 25H% OF ESTIMATED MAGNITUDE),//, 5X, 6HNUMBER,
       $
                                                                                                COVA 045
                                                                                                COVA 046
 $ 2X, 18HSTANDARD DEVIATION,/)
1001 FORMAT(6X, I3, 9X, E9.3)
1002 FORMAT(1H1, 5X,
                                                                                                COVA 047
                                                                                                COVA 048
                                                                                                COVA 049
 $ 51HOUTSTANDING CORRELATIONS BETWEEN KNOWN CONSTITUENTS,/,
$ 5X, 30H (LARGER IN ABSOLUTE VALUE THAN, 1X, F4.2,1H),//,
$ 6X,6HNUMBER, 6X, 11HCORRELATION,/)
1003 FORMAT(5X, I3, 1H-, I3, 5X, F11.8)
1004 FORMAT(10X, 14HNONE WAS FOUND)
                                                                                                COVA 050
                                                                                                COVA 051
                                                                                                COVA 052
                                                                                                COVA 053
                                                                                                 COVA 054
                                                                                                 COVA 055
```

```
SUBROUTINE DRIVER(T, FF, NF, DAT, NDAT, LT, PER, NPER, NBASE, IPR,DRIV 001
EQORUN, PCENT, CLEVEL)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DRIV 003
     $
      CHARACTER #2
                                                                                 DRIV 004
                          EQORUN
                          A(100,100), C(100), DAT(1), F(2000), FF(1), P(2000), PER(1), S(2000), T(1)
                                                                                DRIV 005
      DIMENSION
                                                                                DRIV 006
      DATA
                           PL/ 200.DO/,
                                                                                 DRIV 007
                          PS/ 2.DO/,
NW/125/,
     $
                                                                                 DRIV 008
                                                                                 DRIV 009
     $
                           IB/ 1/
                                                                                 DRIV 010
     $
                                                                                 DRIV 011
 FUNCTION:
              DRIVER CALLS SPECEQ OR SPECUN TO COMPUTE A
                                                                                 DRIV 012
                   LEAST SQUARES SPECTRUM (P,S) FOR THE INPUT
                                                                                 DRIV 013
                   TIME SERIES (T,F).
                                                                                 DRIV 014
                                                                                 DRIV 015
 CALLED FROM: TSPEC
                                                                                 DRIV 016
                                                                                 DRIV 017
                         = INPUT TIME SERIES TIMES
                                                                                 DRIV 018
  ARGUMENTS: T(NF)
              FF(NF) = INPUT TIME SERIES VALUES
DAT(NDAT) = INPUT TIMES NEW DATUM BEGINS
                                                                                 DRIV 019
C
                                                                                 DRIV 020
C
C
                         = INPUT LINEAR TREND SWITCH (1 = INCLUDED)
                                                                                 DRIV 021
C
              PER (NPER)
                         = INPUT FORCED PERIODS
                                                                                 DRIV 022
                                                                                 DRIV 023
С
              NBASE
                         = NUMBER OF USER-DEFINED CONSTITUENTS
С
              IPR
                         = UNIT NUMBER FOR OUTPUT
                                                                                 DRIV 024
                         = FLAG FOR EQUALLY OR UNEQUALLY SPACED SERIES
C
                                                                                 DRIV 025
              EQORUN
                         = PERCENTAGE LEVEL FOR DETECTING OUTSTANDING
                                                                                 DRIV 026
C
              PCENT
С
                            STANDARD DEVIATIONS OF UNKNOWNS
                                                                                 DRIV 027
C
                         = CRITICAL LEVEL FOR DETECTING OUTSTANDING
                                                                                 DRIV 028
              CLEVEL
                                                                                 DRIV 029
С
                            CORRELATIONS IN THE SOLUTION
                                                                                 DRIV 030
  EXTERNALS: AMPL, DFLOAT, SPECEQ, SPECUN, SPLOT, ERROR (108)
                                                                                 DRIV 031
                                                                                 DRIV 032
С
  SUMMARY:
                                                                                 DRIV 033
    COMPUTE SPECTRAL PERIODS, P
                                                                                 DRIV 034
С
C
        PL = LONGEST PERIOD IN P
                                                                                 DRIV 035
C
        PS = SHORTEST PERIOD IN P
                                                                                 DRIV 036
        NW = NUMBER OF PERIODS IN P
                                                                                 DRIV 037
C
C
    COPY VECTOR F (MODIFIED BY SPECEQ AND SPECUN)
                                                                                 DRIV 038
    COMPUTE NK = TOTAL NUMBER OF KNOWN CONSTITUENTS
                                                                                 DRIV 039
    CALL SPECEQ OR SPECUN TO COMPUTE SPECTRUM
                                                                                 DRIV 040
C
С
    CALL AMPL TO LIST KNOWN CONSTITUENT AMPLITUDES
                                                                                 DRIV 041
С
    CALL COVAR TO LIST ALL OUTSTANDING STANDARD DEVIATIONS
                                                                                 DRIV 042
         AND CORRELATIONS
С
                                                                                 DRIV 043
C
    LIST RESIDUAL TIME SERIES AND ITS QUADRATIC NORM
                                                                                 DRIV 044
С
    COMPUTE RS = MEAN SPECTRAL VALUE FOR WHITE NOISE
                                                                                 DRIV 045
C
    COMPUTE RS95 = CRITICAL PERCENTAGE VARIANCE AT 95%
                                                                                 DRIV 046
c
c
                     CONFIDENCE LEVEL FOR DETECTING STATISTICALLY
                                                                                 DRIV 047
                     SIGNIFICANT PEAKS IN THE SPECTRUM
                                                                                 DRIV 048
    PLOT SPECTRUM
                                                                                 DRIV 049
       DO 5 I = 1,NW
                                                                                 DRIV 050
        P(I) = DFLOAT(NW-1)/(DFLOAT(NW-I)/PL + DFLOAT(I-1)/PS)
                                                                                 DRIV 051
       DO 10 I = 1,NF
                                                                                 DRIV 052
         F(I) = FF(I)
                                                                                 DRIV 053
       NK = NDAT + LT + NBASE + 2 * NPER IF (EQORUN. EQ. 'EQ')
                                                                                 DRIV 054
                                                                                 DRIV 055
      $CALL SPECEQ(T, F, NF, FNORM,

NK, DAT, NDAT, LT, PER, NPER, NBASE, A, C,
                                                                                 DRIV 056
                                                                                 DRIV 057
                    P, S, NW, IB, ICRIT)
                                                                                 DRIV 058
       IF(EQORUN .EQ. 'UN')
                                                                                 DRIV 059
      $CALL SPECUN(T, F, NF, FNORM,
                                                                                 DRIV 060
                    NK, DAT, NDAT, LT, PER, NPER, NBASE, A, C,
                                                                                 DRIV 061
```

\$ P, S, NW, IB, ICRIT) DRIV	
	063
CALL AMPL(A, NF, NK, FNORM, DAT, NDAT, LT, PER, NPER, DRIV	
\$ NBASE, C, IPR) DRIV	064
CALL COVAR(FNORM, NF, NK, A, C, PCENT, CLEVEL, IPR) DRIV	065
RS = 200.0D0 / (NF - NK) DRIV	066
RS95 = 100.0D0/(1.0D0/(0.05D0**(-2.0D0/(NF-NK-2))-1)+1) DRIV	067
WRITE(IPR, 1001) $(F(I), I=1, NF)$ DRIV	068
WRITE(IPR,1002) FNORM DRIV	069
IF(ICRIT .EQ. 0) CALL ERROR(108) DRIV	070
CALL SPLOT(P, S, Nw. RS. RS95, IB, IPR)	071
RETURN DRIV	072
1001 FORMAT(1H1,9X,20HRESIDUAL TIME SERIES//110(11E10.2/)) DRIV	073
1002 FORMAT (9X, 35HRESIDUAL TIME SERIES QUADRATIC NORM, E15.5) DRIV	074
END	

DOUBLE PRECISION FUNCTION EPS(ARG) IMPLICIT DOUBLE PRECISION (A-H,O-Z)		001 002 003
C FUNCTION: EPS SETS FUNCTIONAL VALUE EPS AND ARGUMENT ARG C BOTH EQUAL TO THE SMALLEST NUMBER SO THAT	EPS EPS EPS	004
C 1. + EPS .GT. 1.	EPS EPS	006 007
C CALLED FROM: CHOLS, SPECUN, SPECEQ	EPS EPS EPS	008
EPS = 1.0D0 10 EPS = EPS / 2.0D0 IF ((1.0D0 + EPS) - 1.0D0 .EQ. EPS) GD TO 10		010 011 012
EPS = EPS + 2.0D0 ARG = EPS	EPS EPS EPS	013
RETURN END	EPS EPS	015 016

SUBROUTINE ERROR(IER) INTEGER IER,IPR DATA IPR /6/	ERRO 001 ERRO 002 ERRO 003
c zww.	ERRO 004
C FUNCTION: ERROR DETECTS WHETHER ERROR IS WARNING	ERRO 005
C OR FATAL. AND PRINTS MESSAGE	ERRO 006
c c	ERRO 007
C CALLED FROM: DRIVER, CHOLS, SPECUN, SPECEQ	ERRD 008
c	ERRD 009
C ARGUMENT: IER = ERROR INDEX	ERRO 010
C WARNINGS HAVE INDICES 1 - 99	ERRO 011
C FATAL ERRORS HAVE INDICES 100 AND OVER.	ERRO 012
c	ERRO 013
IF(IER .GT. 100) GO TD 10	ERRO 014
WRITE(IPR.1001) IER	ERRO 015
RETURN	ERRO 016
10 WRITE(IPR,1002) IER	ERRO 017
STOP	ERRO 018
1001 FORMAT(11H ***WARNING, I5)	ERRO 019
1002 FORMAT (15H ***FATAL ERROR, I5)	
END	ERRO 020 ERRO 021

```
SUBROUTINE FPLOT(T, F, NF, DAT, NDAT, EQORUN, IPR) IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                                              FPL0 001
                                                                                              FPL0 002
        CHARACTER +1
                              IBLANK, ISTAR, IPLOT
                                                                                              FPL0 003
        CHARACTER #2
                              EQORUN
                                                                                              FPL0 004
                              DAT(1), F(1), IPLOT(100), T(1)
IBLANK /' '/,
ISTAR /'*'/
       DIMENSION
                                                                                              FPL0 005
       DATA
                                                                                              FPL0 006
      $
                                                                                              FPL0 007
                                                                                              FPL0 008
  FUNCTION: FPLOT PLOTS TIME SERIES F
                                                                                              FPL0 009
С
                     DETECTING TIMES OF NEW DATUM BIASES
                                                                                              FPL0 010
                                                                                              FPLO 011
C CALLED FROM: TSPEC
                                                                                              FPL0 012
С
                                                                                              FPL0 013
  ARGUMENTS: T(NF)
                             = INPUT TIME SERIES TIMES
                                                                                              FPLO 014
С
                 F(NF)
                             = INPUT TIME SERIES VALUES
                                                                                              FPLO 015
С
                 DAT (NDAT) = INPUT TIMES NEW DATUM BEGINS
                                                                                              FPLO 016
С
                             = UNIT NUMBER FOR OUTPUT
                                                                                              FPLO 017
                                                                                              FPL0 018
C EXTERNALS: DMAX1, DMIN1, IFIX
                                                                                              FPLO 019
                                                                                              FPL0 020
  SUMMARY:
С
                                                                                              FPLO 021
C
     INITIALIZE PLOT ARRAY
                                                                                              FPL0 022
С
     COMPUTE MAXIMUM AND MINIMUM VALUES IN F
                                                                                              FPL0 023
С
     SCAN THROUGH TIME SERIES
                                                                                              FPL0 024
       CHECKING FOR NEW DATUM
                                                                                              FPLO 025
C
       PLOTTING TIME SERIES VALUES
                                                                                              FPL0 026
                                                                                              FPL0 027
       WRITE(IPR, 1001)
                                                                                              FPLD 028
       DO 5 I = 1,100
IPLOT(I) = IBLANK
                                                                                              FPLD 029
                                                                                              FPLD 030
        FMIN = \dot{F}(1)
                                                                                              FPL0 031
        FMAX = F(1)
                                                                                              FPL0 032
       DO 10 I = 2,NF
                                                                                              FPL0 033
          FMIN = DMIN1(FMIN,F(I))
                                                                                              FPL0 034
          FMAX = DMAX1(FMAX,F(I))
                                                                                              FPL0 035
       IDAT = 1
                                                                                              FPL0 036
       STEP = T(2) - T(1)
                                                                                              FPL0 037
       NGAP = 0
                                                                                              FPL0 038
       DO 20 I = 1.NF
                                                                                              FPLO 039
          IF (I .EQ. 1 .OR. EQORUN .EQ. 'UN') GO TO 12 IF (T(I)-T(I-1) .LT. 1.5DO*STEP) GO TO 12
                                                                                              FPL0 040
          IF (|(1)-|(1-1) .LI. 1.500#5|EF, GO |0 12

NGAP = NGAP + 1

NPNT = (T(I) - T(I-1)) / STEP - 1

WRITE (IPR, 1004) NGAP, NPNT

IF (NDAT .EQ. O .OR. IDAT .GT. NDAT) GO TO 15

IF (DAT(IDAT) .GT. T(I)) GO TO 15
                                                                                              FPL0 041
                                                                                              FPLD 042
                                                                                              FPL0 043
                                                                                              FPL0 044
   12
                                                                                              FPL0 045
                                                                                              FPL0 046
          WRITE(IPR, 1002) IDAT
                                                                                              FPLO 047
          IDAT = IDAT + 1
                                                                                              FPLD 048
          KF= 1 + (99.0D0 * (F(I) - FMIN) / (FMAX - FMIN))
IF(KF .LT. 1 ) KF = 1
IF(KF .GT. 100) KF = 100
   15
                                                                                              FPL0 049
                                                                                              FPL0 050
                                                                                              FPL0 051
          IPLOT(KF) = ISTAR
                                                                                              FPL0 052
          WRITE(IPR,1003) I,T(I),F(I),IPLOT
                                                                                              FPLO 053
          IPLOT(KF) = IBLANK
                                                                                              FPL0 054
       RETURN
                                                                                              FPLO 055
 1001 FORMAT (1H1,9X,11HTIME SERIES//

$ 5X,1HI,8X,4HT(I),8X,4HF(I)/)

1002 FORMAT (/,30X,38(1H-),18HBEGINNING OF DATUM,I5,39(1H-),/)

1003 FORMAT (2X,I4,2E12.4,100A1)
                                                                                              FPLO 056
                                                                                              FPL0 057
                                                                                              FPL0 058
                                                                                              FPLO 059
 1004 FORMAT(/,30X,37(1H-),5HGAP #,I4,1X,2HOF,I6,1X,6HPOINTS,38(1H-))
                                                                                              FPL0 060
                                                                                              FPL0 061
```

```
SUBROUTINE RESID(T, F, NF,

NK, DAT, NDAT, LT, PER, NPER, NBASE,

A, B, C, NKDIM)
                                                                             RESI 001
                                                                             RESI 002
                                                                             RESI 003
      RESI 004
                                                                             RESI 005
                                                                             RESI 006
                                                                             RESI 007
             RESID COMPUTES THE RESIDUAL TIME SERIES
                                                                              RESI 008
Ċ
                                                                              RESI 009
                  AFTER REMOVING THE KNOWN CONSTITUENTS
                                                                              RESI 010
  CALLED FROM: SPECUN, SPECEQ
                                                                              RESI 011
C
                                                                              RESI 012
                           = INPUT TIME SERIES TIMES
  ARGUMENTS: T(NF)
                                                                              RESI 013
              F(NF)
                           = INPUT TIME SERIES VALUES
С
                                                                              RESI 014
C
                           = OUTPUT RESIDUAL TIME SERIES VALUES
                                                                              RESI 015
                           = INPUT TOTAL NUMBER OF KNOWN CONSTITUENTS
000000000
                                                                              RESI 016
              DAT (NDAT)
                           = INPUT TIMES NEW DATUM BEGINS
                                                                              RESI 017
                           = INPUT LINEAR TREND SWITCH (1 = INCLUDED)
                                                                              RESI 018
              LT
              PER (NPER)
                           = INPUT FORCED PERIODS
                                                                              RESI 019
                           = NUMBER OF USER-DEFINED CONSTITUENTS
              NBASE
                                                                              RESI 020
              A(NKDIM, NK) = DUTPUT ARRAY CONTAINING NORMAL
                                                                              RESI 021
                             EQUATION COEFFICIENT MATRIX
                                                                              RESI 022
              B(NK)
                           = OUTPUT NORMAL EQUATION KNOWN VECTOR
                                                                              RESI 023
                           = OUTPUT NORMAL EQUATION UNKNOWN VECTOR
              c(NK)
                                                                              RESI 024
                                                                              RESI 025
                                                                              RESI 026
RESI 027
C
  EXTERNALS: BASE, CHOLS
C
  SUMMARY:
С
                                                                              RESI 028
C
    CLEAR NORMAL EQUATION ARRAYS
                                                                              RESI 029
C
    CONSTRUCT NORMAL EQUATIONS FOR KNOWN CONSTITUENTS
                                                                              RESI 030
C
    INVERT NORMAL EQUATION MATRIX USING CHOLESKY ALGORITHM
                                                                              RESI 031
    COMPUTE SOLUTION TO NORMAL EQUATIONS
                                                                              RESI 032
    COMPUTE RESIDUAL TIME SERIES
                                                                              RESI 033
                                                                              RESI 034
      DO 5 I = 1, NK
                                                                              RESI 035
        B(I) = 0.000
                                                                              RESI 036
         DO 5 J = 1, NK
                                                                              RESI 037
           A(I,J) = 0.0D0
                                                                              RESI 038
      DO 10 I = 1, NF
DO 10 J = 1, NK
                                                                              RESI 039
                                                                              RESI 040
           FUNC = BASE(J, T(I), DAT, NDAT, LT, PER, NPER)
                                                                              RESI 041
           B(J) = B(J) + FUNC * F(I)
DO 10 K = J, NK
                                                                              RESI 042
                                                                              RESI 043
             A(K,J) = A(K,J) + FUNC +
BASE(K, T(I), DAT, NDAT, LT, PER, NPER)
                                                                              RESI 044
                                                                              RESI 045
       CALL CHOLS (A, NKDIM, NK)
                                                                              RESI 046
      DO 15 I = 1, NK
                                                                              REST 047
         C(I) = 0.0D0
                                                                              RESI 048
         DO 15 J = 1, NK

C(I) = C(I) + A(I,J) + B(J)
                                                                              RESI 049
                                                                              RESI 050
      DO 20 I = 1, NF
DO 20 J = 1, NK
                                                                              RESI 051
                                                                              RESI 052
           F(I) = F(I) - C(J)
                                                                              RESI 053
                   BASE(J, T(I), DAT, NDAT, LT, PER, NPER)
                                                                              RESI 054
      RETURN
                                                                              RESI 055
      END
                                                                              RESI 056
```

```
SUBROUTINE SPLOT(P, S, NW, RS, RS95, IB, IPR)

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

CHARACTER *1 IBLANK, ISTAR, IPLOT

DIMENSION IPLOT(100), P(1), S(1)

DATA IBLANK /' '/,

ISTAR /'*'/
                                                                                                         SPL0 001
                                                                                                         SPL0 002
                                                                                                         SPL0 003
                                                                                                         SPL0 004
                                                                                                         SPL0 005
                                                                                                         SPL0 006
                                                                                                         SPL0 007
  FUNCTION: SPLOT PLOTS SPECTRUM S
                                                                                                         SPL0 008
                                                                                                         SPL0 009
С
                                                                                                         SPL0 010
  CALLED FROM: DRIVER
С
                                                                                                         SPL0 011
                                                                                                         SPL0 012
С
  ARGUMENTS: P(NW) = INPUT SPECTRAL PERIODS
                   S(NW) = INPUT SPECTRAL VALUES
                                                                                                         SPL0 013
С
С
                   IPR
                          = UNIT NUMBER FOR OUTPUT
                                                                                                         SPL0 014
C
                                                                                                         SPL0 015
                                                                                                         SPL0 016
SPL0 017
C EXTERNALS: IFIX
С
С
  SUMMARY:
                                                                                                         SPL0 018
                                                                                                         SPL0 019
SPL0 020
С
      INITIALIZE PLOT ARRAY
С
      SCAN THROUGH SPECTRUM
С
         PLOTTING SPECTRAL VALUES (PERCENTAGE VARIANCES)
                                                                                                          SPL0 021
                                                                                                          SPL0 022
                                                                                                          SPL0 023
         WRITE(IPR,1001) IB, NW, P(1), P(NW), RS, RS95
        DO 5 I = 1,100
IPLOT(I) = IBLANK
                                                                                                          SPL0 024
                                                                                                          SPL0 025
         DO 10 I = 1, NW
                                                                                                          SPL0 026
        KS=S(I)

IF(KS .LT. 1) KS = 1

IF(KS .GT. 100) KS = 100
                                                                                                          SPL0 027
                                                                                                          SPL0 028
                                                                                                          SPL0 029
           IPLOT(KS) = ISTAR
WRITE(IPR,1002) P(I), S(I), IPLOT
IPLOT(KS) = IBLANK
                                                                                                          SPL0 030
                                                                                                          SPL0 031
                                                                                                          SPL0 032
         RETURN
                                                                                                          SPL0 033
  1001 FORMAT(1H1,10X,13HSPECTRAL BAND,15,//,
                                                                                                          SPL0 034
       $ 10X, I5, 24H SPECTRAL VALUES BETWEEN, 2F14.6, //,
$ 12X, 35HMEAN SPECTRAL VALUE FOR WHITE NOISE, F11.2, //,
$ 12X, 35HCRITICAL RERCENTAGE VARIANCE AT 95%, /,
                                                                                                          SPL0 035
                                                                                                          SPL0 036
SPL0 037
          12X,35HCONFIDENCE LEVEL FOR DETECTING,/,
12X,35HSIGNIFICANT PEAKS IN THE SPECTRUM,F11.2,//,
10X,6HPERIOD,6X,19HPERCENTAGE VARIANCE/)
                                                                                                          SPL0 038
                                                                                                          SPL0 039
                                                                                                          SPL0 040
  1002 FORMAT (5X,F10.5,F12.3,100A1)
                                                                                                          SPL0 041
         END
                                                                                                          SPL0 042
```

```
SUBROUTINE TIMSER(T, F, NF, DAT, NDAT, LT, PER, NPER, NBASE, MODE, EQORUN, PCENT, CLEVEL)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

CHARACTER *2 EQORUN, EQ, UN
                                                                                                TIMS 001
                                                                                                 TIMS 002
                                                                                                 TIMS 003
                                                                                                 TIMS 004
                      EQURON, EQ. UN

MODE, SQNTL, BATCH

X(5), Y(5), Z(5), DAT(3), F(500), IVL(4),

NB(4), NE(4), P(5), PER(5), T(500)

0.500D0, 1.000D0, 0.000D0, 0.500D0, -0.250D0/,

1.000D0, 0.500D0, 1.000D0, -0.500D0, 0.000D0/,

1.000D0, -1.000D0, 3.000D0, 0.010D0, 3.000D0/,

2.759D0, 3.636D0, 5.714D0, 40.000D0, 16.000D0/,
                                                                                                 TIMS 005
       CHARACTER +5
                                                                                                 TIMS 006
       DIMENSION
                                                                                                 TIMS 007
      $
                                                                                                 TIMS 008
       DATA X
                                                                                                 TIMS 009
                                                                                                 TIMS 010
      $
              Z
              Р
                                                                                                 TIMS 011
      $
              NB / 1.
NE /100,
                                                    471/,
                              201,
                                         281,
      $
                                                                                                 TIMS 012
                      1,
                               250,
                                         400,
                                                    500/,
                                                                                                 TIMS 013
      $
      $
              IVL/ 1,
NIVL/ 4/,
                      1,
                                 2,
                                            З,
                                                       3/,
                                                                                                 TIMS 014
                                                                                                 TIMS 015
      $
             STEP/ 0.1D0/,
PI / 3.141592653589793D0/
EQ / 'EQ' /,
UN / 'UN' /,
      $
                                                                                                 TIMS 016
      $
                                                                                                 TIMS 017
                                                                                                 TIMS 018
       DATA
      $
                                                                                                 TIMS 019
              SQNTL / 'SQNTL' /,
BATCH / 'BATCH' /
      $
                                                                                                 TIMS 020
                                                                                                 TIMS 021
                                                                                                 TIMS 022
                                                                                                 TIMS 023
                 TIMSER GENERATES A TEST TIME SERIES WITH
                                                                                                 TIMS 024
  FUNCTION:
                       3 DATUM BIASES, A LINEAR TREND,
                                                                                                 TIMS 025
С
                       SIN/COSINE TERMS FOR 5 FREQUENCIES,
                                                                                                 TIMS 026
C
                       AND AN EXPONENTIAL TREND
                                                                                                 TIMS 027
C
                                                                                                 TIMS 028
С
  CALLED FROM: TSPEC
                                                                                                 TIMS 029
                                                                                                 TIMS 030
                 F(NF) = TEST TIME SERIES VALUES
DAT(NDAT) = TIMES NEW DATUM BEGINS
С
                                                                                                 TIMS 031
c
c
                                                                                                 TIMS 032
                 LT
                               = LINEAR TREND SWITCH (1 = INCLUDED)
                                                                                                 TIMS 033
                                                                                                 TIMS 034
С
С
С
                 PER (NPER)
                              = PERIODS FOR TRIGONOMETRIC TERMS
                 NBASE
                               = NUMBER OF USER-DEFINED CONSTITUENTS
                                                                                                 TIMS 035
                 EQORUN
                               = EQUAL OR UNEQUAL SPACED TIME SERIES
                                                                                                 TIMS 036
                                  EQORUN = EQ: EQUAL SPACED TIME SERIES
0000
                                                                                                 TIMS 037
                                                    (SUBROUTINE SPECEQ IS USED)
                                                                                                 TIMS 038
                                  EQORUN = UN: UNEQUAL SPACED TIME SERIES
                                                                                                 TIMS 039
                                                    (SUBROUTINE SPECUN IS USED)
                                                                                                 TIMS 040
\circ
                 MODE
                               = BATCH OR SEQUENTIAL FORCING OF UNKNOWNS
                                                                                                 TIMS 041
                                  MODE = SQNTL: SEQUENTIAL SOLUTION
                                                                                                 TIMS 042
                                  MODE = BATCH: BATCH SOLUTION
                                                                                                 TIMS 043
                               = PERCENTAGE LEVEL FOR DETECTING
                                                                                                 TIMS 044
                 PCENT
CCC
                                  OUTSTANDING STANDARD DEVIATIONS OF UNKNOWNS
                                                                                                 TIMS 045
                 CLEVEL.
                               = CRITICAL LEVEL FOR DETECTING OUTSTANDING
                                                                                                 TIMS 046
                                                                                                 TIMS 047
                                  CORRELATIONS IN THE SOLUTION
                                                                                                 TIMS 048
  EXTERNALS: DCOS, DEXP, DFLOAT, DSIN
                                                                                                 TIMS 049
                                                                                                  TIMS 050
        NDAT = 3
                                                                                                  TIMS 051
        LT = 1
                                                                                                  TIMS 052
        NPER = 5
                                                                                                  TIMS 053
        NBASE = 1
                                                                                                  TIMS 054
        EQORUN = EQ
                                                                                                  TIMS 055
        MODE = SQNTL
PCENT = 25.000
                                                                                                  TIMS 056
                                                                                                  TIMS 057
        CLEVEL = 0.50D0
                                                                                                  TIMS 058
        DO 5 I = 1, NPER
                                                                                                  TIMS 059
           PER(I) = P(I)
                                                                                                  TIMS 060
C
                                                                                                  TIMS 061
```

```
C EQUAL SPACING RUN
                                                                                                                                             TIMS 062
TIMS 063
           DT1 = 0.D0
DT2 = 1.D0
                                                                                                                                             TIMS 064
                                                                                                                                             TIMS 065
TIMS 066
C UNEQUAL SPACING RUN
C DT1 = 0.5D0
C DT2 = 50.0D0
                                                                                                                                             TIMS 067
            DT2 = 50.000
                                                                                                                                             TIMS 068
          NF = 0

DO 10 K = 1,NIVL

I1 = NB(K)

I2 = NE(K)

DO 10 I = I1,I2

NF = NF + 1

T(NF) = DFLOAT(I) * STEP +

* DT1 * DSIN(PI * DFLOAT(I) / DT2)

F(NF) = Z(IVL(K)) + Z(NDAT+1) * T(NF) +

Z(NDAT+2) * DEXP(-T(NF) / 25.D0)

DO 10 J = 1,NPER
           NF = 0
                                                                                                                                             TIMS 069
                                                                                                                                             TIMS 070
                                                                                                                                             TIMS 071
TIMS 072
                                                                                                                                             TIMS 073
                                                                                                                                             TIMS 074
                                                                                                                                             TIMS 075
         $
                                                                                                                                             TIMS 076
                                                                                                                                             TIMS 077
         $
                   DO 10 J = 1,NPER

F(NF) = F(NF) + X(J) * DCOS(2.DO * PI * T(NF) / P(J))

+ Y(J) * DSIN(2.DO * PI * T(NF) / P(J))
                                                                                                                                             TIMS 078
                                                                                                                                             TIMS 079
      10
                                                                                                                                             TIMS 080
           DAT(1) = T(1)
DAT(2) = T(101)
DAT(3) = T(151)
                                                                                                                                             TIMS 081
                                                                                                                                             TIMS 082
                                                                                                                                             TIMS 083
                                                                                                                                             TIMS 084
           RETURN
                                                                                                                                             TIMS 085
TIMS 086
           END
```

```
SUBROUTINE SPECEQ(T, F, NF, FNORM,
NK, DAT, NDAT, LT, PER, NPER, NBASE, A, C,
                                                                                         SPCQ 001
                                                                                         SPCQ 002
      $
      $
      $
      $
      $
                                                                                         SPCQ 010
       DATA
                            PI/3.141592653589793DO/,
      $
                            ROUND /100000./,
                                                                                         SPCQ 011
                            NKDIM /100/,
NPERDM /50/,
IVLDIM /60/
      $
                                                                                         SPCQ 012
                                                                                         SPCQ 013
      $
                                                                                         SPCQ 014
                                                                                         SPCQ 015
  FUNCTION:
                SPECEQ COMPUTES THE LEAST SQUARES SPECTRUM OF
                                                                                         SPCQ 016
                     A PIECEWISE EQUALLY SPACED TIME SERIES
C
                                                                                         SPCQ 017
¢
                     AFTER SUPPRESSING KNOWN CONSTITUENTS
                                                                                         SPCQ 018
C
                                                                                         SPCQ 019
C
  CALLED FROM: DRIVER
                                                                                         SPCQ 020
С
                                                                                         SPCQ 021
С
  ARGUMENTS:
                                                                                         SPCQ 022
    SPECIFYING THE INPUT TIME SERIES T(NF) = INPUT TIME SERIES TIMES
С
                                                                                         SPCQ 023
c
                                                                                         SPCQ 024
             F(NF) = INPUT TIME SERIES VALUES
                                                                                         SPCQ 025
             = OUTPUT RESIDUAL TIME SERIES VALUES
FNORM = OUTPUT QUADRATIC NORM OF RESIDUAL F
C
                                                                                         SPCQ 026
c
                                                                                         SPCQ 027
                                                                                         SPCQ 028
     SPECIFYING THE KNOWN CONSTITUENTS
C
                                                                                         SPCQ Q29
С
                                = INPUT TOTAL NUMBER OF KNOWN CONSTITUENTS
= INPUT TIMES NEW DATUM BEGINS
                                                                                         SPCQ 030
             NK
c
             DAT (NDAT)
                                                                                          SPCQ 031
                                = INPUT LINEAR TREND SWITCH (1 = USE TREND)
(0 = DO NOT USE)
             LT
                                                                                          SPCQ 032
C
                                                                                         SPCQ 033
             PER (NPER)
                                = INPUT FORCED PERIODS
= INPUT NUMBER OF USER-DEFINED CONSTITUENTS
000
                                                                                          SPCQ 034
             NBASE
                                                                                          SPCQ 035
             A(NKDIM, NKDIM) = OUTPUT NORMAL EQUATION MATRIX RESULTING
                                                                                          SPCQ 036
C
C
C
                                   FROM SUPPRESSION OF KNOWN CONSTITUENTS
                                                                                          SPCQ 037
             c(NK)
                                                                                          SPCQ 038
                                = OUTPUT PRELIMINARY AMPLITUDES OF KNOWN
                                   CONSTITUENTS
                                                                                          SPCQ 039
С
                                                                                          SPCQ 040
c
     SPECIFYING THE DUTPUT SPECTRUM
                                                                                          SPCQ 041
             P(NW) = INPUT SPECTRAL PERIODS
S(NW) = DUTPUT SPECTRAL VALUES
                                                                                          SPCQ 042
С
                                                                                          SPCQ 043
                    = INPUT SPECTRAL BAND LABEL
CCC
                                                                                          SPCQ 044
             IB
              ICRIT = ROUNDOFF FLAG
                                                                                          SPCQ 045
                        (1 = OK. CONTINUE ANALYSIS)
                                                                                          SPCQ 046
С
                          = RESIDUAL TIME SERIES CONSISTS ONLY OF ROUNDOFF) SPCQ 047
C
                                                                                          SPCQ 048
С
  EXTERNALS: DABS, DMAX1, BASE, DCOS, EPS, ERROR, DFLOAT, RESID, DSIGN, SPCQ 049
С
                DSIN, DSQRT
                                                                                          SPCQ 050
С
                                                                                          SPCQ 051
C
  ERROR CONDITIONS:
                                                                                          SPCQ 052
                                                      (SET TO 0.)
(SET TO 0.)
(SET TO 0.)
(SET TO 0.)
C
       1 = WARNING. ARGUMENT NDAT .LT. O.
                                                                                          SPCQ 053
       2 = WARNING. ARGUMENT LT NOT 0 OR 1.
3 = WARNING. ARGUMENT NPER .LT. 0.
С
                                                                                          SPCQ 054
С
                                                                                          SPCQ 055
С
        4 = WARNING. ARGUMENT NBASE .LT. O.
                                                                                          SPCQ 056
     5 = WARNING. ARGUMENT NK .NE. NDAT+LT+2*NPER+NBASE.

(SET TO NDAT + LT + 2 * NPER + NBASE.)

104 = FATAL. LESS THAN 3 TIME SERIES VALUES INPUT.

105 = FATAL. T ELEMENT VALUES NOT MONOTONIC INCREASING
                                                                                          SPCQ 057
                                                                                          SPCQ 058
                                                                                          SPCQ 059
                                                                                          SPCQ 060
     106 = FATAL. NK TOO LARGE FOR DIMENSIONS OF A,B,U,V
                                                                                          SPCQ 061
```

```
(LIMITATION NO. 2 BELOW)
                                                                                                    SPCQ 062
     107 = FATAL. DAT(1) .NE. T(1). (REQUIREMENT NO. 2 BELOW)
108 = FATAL. RESIDUAL TIME SERIES CONSISTS OF ROUNDOFF
c
                                                                                                    SPCQ 063
                                                                                                    SPCQ 064
                        (NOW CALLED IN DRIVER)
                                                                                                    SPCQ 065
     109 = FATAL. NPER TOO LARGE FOR DIMENSIONS OF CLP, CNP, CP, SLP, SNP, SP, SPMQ, SPPQ.
110 = FATAL. NIVL TOO LARGE FOR DIMENSIONS OF
С
                                                                                                    SPCQ 066
c
c
                                                                                                    SPCQ 067
                                                                                                    SPCQ 068
                                                                                                   SPCQ 069
                       CLP, CNP, IVL, SLP, SNP, XL, XN.
     111 = FATAL. PER CONTAINS FORCED PERIOD .LT. 2. * STEP. 112 = FATAL. P CONTAINS SPECTRAL PERIOD .LT. 2. * STEP.
c
                                                                                                    SPCQ 070
                                                                                                   SPCQ 071
                                                                                                   SPCQ 072
                                                                                                    SPCQ 073
С
  CALLING ROUTINE REQUIREMENTS:
С
     1. WHEN NO KNOWN CONSTITUENTS ARE TO BE SUPPRESSED, THE
                                                                                                    SPCQ 074
                                                                                                    SPCQ 075
С
              CALLING ROUTINE MUST PASS ZERO VALUES FOR NK, NDAT,
                                                                                                    SPCQ 076
C
              LT, NPER AND NBASE.
Č
     2. WHEN NDAT .GT. O, THE CALLING ROUTINE MUST SET \mathrm{DAT}(1) = \mathrm{T}(1)
                                                                                                    SPCQ 077
                                                                                                    SPCQ 078
     3. THE CALLING ROUTINE MUST SET
                                                                                                    SPCQ 079
С
     NK = NDAT + LT + 2 * NPER + NBASE.
4. WHEN NBASE .GT. O, THE USER MUST SUPPLY CODING IN
                                                                                                    SPCQ 080
CCC
                                                                                                    SPCQ 081
SPCQ 082
              FUNCTION BASE TO COMPUTE EACH USER-DEFINED
              CONSTITUENT.
                                                                                                    SPCQ 083
CCC
                                                                                                    SPCQ 084
SPCQ 085
     5. ON INITIAL CALL, CALLING ROUTINE MUST SET IB = 1 TO COMPUTE RESIDUAL TIME SERIES. MANY SPECTRAL BANDS
                                                                                                    SPCQ 086
              FOR THE SAME SPECTRUM CAN THEN BE COMPUTED BY
                                                                                                    SPCQ 087
SPCQ 088
              SETTING IB .NE. 1, AND CALLING REPEATEDLY, CHANGING DNLY P(Nw).
CCC
                                                                                                    SPCQ 089
      6. CALLING ROUTINE MUST DIMENSION ARGUMENT ARRAYS .GE.
              T(NF), F(NF), DAT(NDAT), PER(NPER), C(NK), P(NW), S(NW).
                                                                                                    SPCQ 090
      7. T ELEMENT VALUES MUST CONSIST OF NIVL SUBINTERVALS,
                                                                                                    SPCQ 091
                                                                                                    SPCQ 092
SPCQ 093
              EACH SUBINTERVAL CONTAINING EQUALLY SPACED DATA
              SEPARATED BY A TIME INCREMENT STEP COMMON TO ALL
000
              SUBINTERVALS. THE GAPS BETWEEN SUBINTERVALS NEED
                                                                                                    SPCQ 094
              NOT BE INTEGRAL MULTIPLES OF STEP. THE FIRST DATA
                                                                                                    SPCQ 095
              POINT MUST NOT BE ISOLATED (MUST NOT BE FCLLOWED BY A GAP). T ELEMENT VALUES MUST INCREASE
                                                                                                    SPCQ 096
                                                                                                    SPCQ 097
C
C
              MONOTONICALLY. DAT, P AND PER ELEMENT VALUES MUST BE IN THE SAME UNITS AS T.
                                                                                                    SPCQ 098
SPCQ 099
      8. THE FORCED PERIODS IN PER AND SPECTRAL PERIODS IN P
                                                                                                     SPCQ 100
                                                                                                     SPCQ 101
SPCQ 102
              MUST BE SHORTER THAN 2 * STEP, EQUIVALENT TO THE MAXIMUM INTERVAL USED IN FOURIER ANALYSIS.
С
C
С
                                                                                                     SPCQ 103
                                                                                                     SPCQ 104
   LIMITATIONS:
      1. WHEN CALLED WITH IB = 1, AND NK .GT. O, THE CONTENTS OF THE TIME SERIES F IS REPLACED BY THE RESIDUAL
                                                                                                     SPCQ 105
                                                                                                     SPCQ 106
С
С
               TIME SERIES VALUES.
                                                                                                     SPCQ 107
     2. WHEN NK .GT. NKDIM, A,B,U AND V MUST BE REDIMENSIONED
.GE. NK, AND NKDIM CHANGED TO THE NEW DIMENSION.

3. WHEN NPER .GT. NPERDM THEN SP,CP,SPMQ,SPPQ AND THE
SECOND INDEX OF CLP,SLP,CNP,SNP MUST BE
REDIMENSIONED .GE. NPER, AND NPERDM CHANGED TO THE
                                                                                                     SPCQ 108
Č
                                                                                                     SPCQ 109
                                                                                                     SPCQ 110
                                                                                                     SPCQ 111
                                                                                                     SPCQ 112
000
                                                                                                     SPCQ 113
              NEW DIMENSION.
      4. WHEN NIVL (= NDAT + NUMBER OF GAPS IN T BETWEEN DATUM
                                                                                                     SPCQ 114
               CHANGES) .GT. IVLDIM THEN XN,XL,IVL AND THE FIRST INDEX OF CLP,SLP,CNP,SNP MUST BE REDIMENSIONED .GE.
000
                                                                                                     SPCQ 115
                                                                                                     SPCQ 116
               NIVL, AND IVLDIM CHANGED TO THE NEW DIMENSION.
                                                                                                     SPCQ 117
                                                                                                     SPCQ 118
         IF(IB .NE. 1) GO TO 65
                                                                                                     SPCQ 119
 C
                                                                                                     SPCQ 120
   PROCESS INPUT ARGUMENTS
                                                                                                     SPCQ 121
      CHECK NF .GE. 3
                                                                                                     SPCQ 122
```

```
CHECK T INCREASES MONOTONICALLY
COMPUTE FMAX = MAXIMUM ABSOLUTE VALUE IN F
                                                                                     SPCQ 123
                                                                                     SPCQ 124
    CHECK VALUES OF NDAT, LT, NPER, NBASE, AND NK
С
                                                                                     SPCQ 125
    CHECK DAT(1) .EQ. T(1)

IF(NF .LT. 3)

DO 5 I = 2,NF

IF(T(I) .LE. T(I-1))
                                                                                     SPCQ 126
                                                    CALL ERROR (104)
                                                                                     SPCQ 127
                                                                                     SPCQ 128
                                                    CALL ERROR (105)
                                                                                     SPCQ 129
        CONTINUE
                                                                                     SPCQ 130
       FMAX = DABS(F(1))
                                                                                     SPCQ 131
       DO 10 I = 2,NF
                                                                                     SPCQ 132
       FMAX = DMAX1(FMAX, DABS(F(I)))
                                                                                     SPCQ 133
       IF(NDAT .GE. 0) GO TO 15
                                                                                     SPCQ 134
       CALL ERROR(1)
                                                                                     SPCQ 135
       NDAT = 0
                                                                                     SPCQ 136
   15 IF(LT .EQ. 0 .OR. LT .EQ. 1 ) GO TO 20
                                                                                     SPCQ 137
       CALL ERROR(2)
                                                                                     SPCQ 138
   LT = 0
20 IF(NPER .GE. 0) GO TO 25
                                                                                     SPCQ 139
                                                                                     SPCQ 140
       CALL ERROR(3)
                                                                                     SPCQ 141
       NPER = 0
                                                                                     SPCQ 142
   25 IF (NBASE .GE. 0) GO TO 30
                                                                                     SPCQ 143
       CALL ERROR (4)
                                                                                     SPCQ 144
   NBASE = 0
30 IF(NK .EQ. NDAT + LT + 2 * NPER + NBASE) GO TO 35
                                                                                     SPCQ 145
                                                                                     SPCQ 146
       CALL ERROR (5)
                                                                                     SPCQ 147
   NK = NDAT + LT + 2 * NPER + NBASE
35 IF (NK .GT. NKDIM)
                                                                                     SPCQ 148
                                                     CALL ERROR (106)
                                                                                     SPCQ 149
       IF (NDAT .GE. 1 .AND. DAT(1) .NE. T(1)) CALL ERROR(106)
IF (NPER .GT. NPERDM)
CALL ERROR(109)
                                                                                     SPCQ 150
                                                     CALL ERROR (109)
                                                                                     SPCQ 151
       EPSARG = EPS(ARG)
                                                                                     SPCQ 152
                                                                                     SPCQ 153
C COMPUTE STEPSIZE IN T
                                                                                     SPCQ 154
       STEP = T(2) - T(1)
                                                                                     SPCQ 155
                                                                                     SPCQ 156
C COMPUTE CRITICAL VALUE OF STEP FOR DETECTING GAPS IN T
                                                                                     SPCQ 157
       STEP1 = 1.5D0 * STEP
                                                                                     SPCQ 158
                                                                                     SPCQ 159
C
  INITIALIZE ARGUMENTS IDAT, NIVL, NGAP, TA
                                                                                     SPCQ 160
       IDAT = 1
                                                                                     SPCQ 161
       NIVL = 0
                                                                                     SPCQ 162
       NGAP = 0
                                                                                     SPCQ 163
       TA = T(1)
                                                                                     SPCQ 164
C
                                                                                     SPCQ 165
C FIND SUBINTERVAL BOUNDARIES (GAPS OR NEW DATUM SHIFTS) IN T
                                                                                     SPCQ 166
       DO 45 N = 2,NF
                                                                                     SPCQ 167
         NEWIVL = 0
                                                                                     SPCQ 168
         IF(N .NE. NF) GO TO 39
                                                                                     SPCQ 169
         NEWIVL = NGAP
                                                                                     SPCQ 170
         IF (NEWIVL .EQ. 0) GD TO 45
                                                                                     SPCQ 171
         GO TO 42
                                                                                     SPCQ 172
                                                                                     SPCQ 173
C CHECK IF THERE IS GAP AND DATUM SHIFT IN T
                                                                                     SPCQ 174
         IF((T(N) - T(N-1)) .GT. STEP1 .AND.
    DABS(DAT(IDAT+1)-T(N)) .LT. EPSARG*ROUND) GD TO 40
   39
                                                                                     SPCQ 175
                                                                                     SPCQ 176
                                                                                     SPCQ 177
C CHECK IF THERE IS ONLY GAP IN T
IF((T(N) - T(N-1)) .GT. STEP1) GO TO 41
                                                                                     SPCQ 178
                                                                                     SPCQ 179
                                                                                     SPCQ 180
C CHECK IF THERE IS ONLY DATUM SHIFT IN T
                                                                                     SPCQ 181
         IF (DABS(DAT(IDAT+1)-T(N)) .LT. EPSARG*ROUND) GO TO 40 IF (NEWIVL .EQ. 0) GO TO 45
                                                                                     SPCQ 182
                                                                                     SPCQ 183
```

```
GO TO 42
                                                                                                 SPCQ 184
C
                                                                                                 SPCQ 185
C COMPUTE NEWIVL, IDAT AND NGAP WHEN THERE IS DATUM SHIFT REGARDLESS C OF PRESENCE OF GAP IN T
                                                                                                 SPCQ 186
                                                                                                 SPCQ 187
           NEWIVL = NGAP +
    40
                                                                                                 SPCQ 188
           DAT(IDAT+1) = T(N)
                                                                                                 SPCQ 189
           IDAT = IDAT + 1
                                                                                                 SPCQ 190
           GO TO 42
                                                                                                 SPCQ 191
                                                                                                 SPCQ 192
C COMPUTE NEWIVL, IDAT AND NGAP WHEN THERE IS ONLY GAP IN T
41 NEWIVL = NGAP + 1
                                                                                                 SPCQ 193
                                                                                                 SPCQ 194
           NGAP = NGAP + 1
                                                                                                 SPCQ 195
           IF (NEWIVL .EQ. 0) GD TD 45
                                                                                                 SPCQ 196
                                                                                                 SPCQ 197
C COMPUTE XL, XN, IVL FOR EACH SUBINTERVAL IN T
                                                                                                 SPCQ 198
    42
           TB = T(N-1)
                                                                                                 SPCQ 199
           IF (N \cdot EQ \cdot NF) TB = T(NF)
                                                                                                 SPCQ 200
           NIVL = NIVL + 1

IF (NIVL .GT. IVLDIM)

XN(NIVL) = 1.0D0 + (TB - TA) / STEP

XL(NIVL) = (TB + TA) / STEP
                                                                                                 SPCQ 201
                                                            CALL ERROR(110)
                                                                                                 SPCQ 202
                                                                                                 SPCQ 203
                                                                                                 SPCQ 204
           IVL(NIVL) = IDAT - NEWIVL + NGAP
                                                                                                 SPCQ 205
           TA = T(N)
                                                                                                 SPCQ 206
    45 CONTINUE
                                                                                                 SPCQ 207
        IF (NPER.LE.O) GO TO 52
                                                                                                 SPCQ 208
С
                                                                                                 SPCQ 209
C COMPUTE TRIG(PK), TRIG(XN*PK), TRIG(XL*PK) FOR EACH SUBINTERVAL IN T
                                                                                                SPCQ 210
        DO 50 I = 1,NPER
          J 50 1 = 1,NPEK

IF(PER(I) .LT. 2.0D0 * STEP)

PK = PI * STEP / PER(I)

SP(I) = DSIN(PK)

CP(I) = DCOS(PK)

DO 50 J = 1,NIVL
                                                                                                 SPCQ 211
                                                            CALL ERROR (111)
                                                                                                 SPCQ 212
                                                                                                 SPCQ 213
                                                                                                 SPCQ 214
                                                                                                 SPCQ 215
                                                                                                 SPCQ 216
             XNPK = XN(J) * PK

XNPK = XL(J) * PK

XLPK = XL(J) * PK

SNP(J,I) = DSIN(XNPK)

CNP(J,I) = DCOS(XNPK)

SLP(J,I) = DSIN(XLPK)

CLP(J,I) = DCOS(XLPK)
                                                                                                 SPCQ 217
                                                                                                 SPCQ 218
                                                                                                 SPCQ 219
                                                                                                 SPCQ 220
                                                                                                 SPCQ 221
                                                                                                 SPCQ 222
    50 CONTINUÈ
                                                                                                 SPCQ 223
                                                                                                 SPCQ 224
C CHECK VALUES IF P .GE. 2*STEP

52 DO 55 I = 1,NW

IF(P(I) .LT. 2.0DO * STEP)
                                                                                                 SPCQ 225
                                                                                                 SPCQ 226
                                                          CALL ERROR(112)
                                                                                                 SPCQ 227
    55 CONTINUE
                                                                                                 SPCQ 228
                                                                                                 SPCQ 229
  SUPPRESS KNOWN CONSTITUENTS
                                                                                                 SPCQ 230
С
     REPLACE F WITH RESIDUAL TIME SERIES
                                                                                                 SPCQ 231
С
     COMPUTE QUADRATIC NORM OF F
                                                                                                 SPCQ 232
C
     CHECK IF RMS VALUE OF RESIDUAL F IS LESS
                                                                                                 SPCQ 233
Č
         THAN EPS * FMAX * ROUND, WHERE
EPS = EPSARG = SMALLEST NUMBER SO 1 + EPS .GT. 1
FMAX = MAXIMUM ABSOLUTE VALUE OF ORIGINAL F
                                                                                                 SPCQ 234
С
                                                                                                 SPCQ 235
С
                                                                                                 SPCQ 236
         ROUND ACCOUNTS FOR ACCUMULATED ROUNDOFF IN
                                                                                                 SPCQ 237
         COMPUTING RESIDUAL F
                                                                                                 SPCQ 238
        IF(NK .GT. 0) CALL RESID(T, F, NF,
                                                                                                 SPCQ 239
                                         NK, DAT, NDAT, LT, PER, NPER, NBASE, A, B, C, NKDIM)
                                                                                                 SPCQ 240
                                                                                                 SPCQ 241
        FNORM = 0.0D0
                                                                                                 SPCQ 242
        DO 60 I = 1,NF
                                                                                                 SPCQ 243
          FNORM = FNORM + F(I) ** 2
                                                                                                 SPCQ 244
```

```
60 CONTINUE
                                                                                                             SPCQ 245
                                                                                                             SPCQ 246
C CHECK IF RESIDUAL F CONSISTS OF ROUNDOFF
                                                                                                             SPCQ 247
         ICRIT = 1
                                                                                                             SPCQ 248
         IF(DSQRT(FNORM/DFLOAT(NF)) .LT.
                                                                                                             SPCQ 249
           EPSARG+FMAX+ROUND) ICRIT = 0
                                                                                                             SPCQ 250
                                                                                                             SPCQ 251
C FOR EACH SPECTRAL PERIOD P(I), COMPUTE SPECTRAL VALUE S(I)
                                                                                                             SPCQ 252
      COMPUTE SCALAR PRODUCTS FCOS, FSIN, CC, CS, SS, U, V
                                                                                                             SPCQ 253
      COMPUTE BILINEAR FORMS UAU, UAV, VAV
                                                                                                             SPCQ 254
     COMPUTE PERCENTAGE VARIANCE S
                                                                                                             SPCQ 255
    65 DO 130 I = 1,NW
                                                                                                             SPCQ 256
            OMEGA = 2.0D0 * PI / P(I)
                                                                                                             SPCQ 257
            FCOS = 0.0D0
                                                                                                             SPCQ 258
            FSIN = 0.0D0
                                                                                                             SPCQ 259
            CC = 0.000
                                                                                                             SPCQ 260
            CS = 0.0D0
                                                                                                             SPCQ 261
            SS = 0.0D0
                                                                                                             SPCQ 262
           IF (NK .EQ. 0) GO TO 75
DO 70 J = 1,NK
U(J) = 0.0DO
V(J) = 0.0DO
                                                                                                             SPCQ 263
                                                                                                             SPCQ 264
                                                                                                             SPCQ 265
                                                                                                             SPCQ 266
    70
            CONTINUE
                                                                                                             SPCQ 267
            DO 85 J = 1,NF
    75
                                                                                                             SPCQ 268
              WT = OMEGA * T(J)
COSWT = DCOS(WT)
SINWT = DSIN(WT)
                                                                                                             SPCQ 269
                                                                                                             SPCQ 270
                                                                                                             SPCQ 271
              FCOS = FCOS + F(J) * COSWT
FSIN = FSIN + F(J) * SINWT
IF(NBASE .EQ. 0) GO TO 85
DO 80 L = 1, NBASE
                                                                                                             SPCQ 272
                                                                                                             SPCQ 273
                                                                                                             SPCQ 274
                                                                                                             SPCQ 275
                 K = NDAT + LT + 2 * NPER + L

FUNC = BASE(K, T(J), DAT, NDAT, LT, PER, NPER)

U(K) = U(K) + FUNC * COSWT

V(K) = V(K) + FUNC * SINWT
                                                                                                             SPCQ 276
                                                                                                             SPCQ 277
                                                                                                             SPCQ 278
                                                                                                             SPCQ 279
    80
               CONTINUE
                                                                                                             SPCQ 280
    85
           CONTINUE
                                                                                                             SPCQ 281
           Q = 0.500 * OMEGA * STEP
                                                                                                             SPCQ 282
           SQ = DSIN(Q)
                                                                                                             SPCQ 283
            CQ = DCOS(Q)
           CQ = DCUS(Q)

IF (NPER .EQ. 0) GO TO 95

DD 90 J = 1,NPER

SPMQ(J) = SP(J) * CQ - CP(J) * SQ

IF (DABS(SPMQ(J)) .LT. EPSARG) SPMQ(J) = DSIGN(EPSARG,SPMQ(J)) SPCQ 288

SPPQ(J) = SP(J) * CQ + CP(J) * SQ

IF (DABS(SPPQ(J)) .LT. EPSARG) SPPQ(J) = DSIGN(EPSARG,SPPQ(J)) SPCQ 289

CONTINUE
                                                                                                             SPCQ 284
            CONTINUE
    90
                                                                                                             SPCQ 291
           XNQ = XN(J) * Q
XLQ = XL(J) * Q
    95
                                                                                                             SPCQ 292
                                                                                                             SPCQ 293
                                                                                                             SPCQ 294
              SNQ = DSIN (XNQ)
CNQ = DCOS (XNQ)
SLQ = DSIN (XLQ)
CLQ = DCOS (XLQ)
                                                                                                             SPCQ 295
                                                                                                             SPCQ 296
                                                                                                             SPCQ 297
                                                                                                             SPCQ 298
               CC = CC + SNQ * CNQ * CLQ * CLQ - SNQ * CNQ * SLQ * SLQ
                                                                                                             SPCQ 299
               CS = CS + SNQ * CNQ * SLQ * CLQ IF (NK .EQ. 0) QD TO 115
                                                                                                             SPCQ 300
                                                                                                             SPCQ 301
              IF (NDAT .EQ. 0) GD TO 100

K = IVL(J)

U(K) = U(K) + SNQ + CLQ / SQ

V(K) = V(K) + SNQ + SLQ / SQ
                                                                                                             SPCQ 302
                                                                                                             SPCQ 303
                                                                                                             SPCQ 304
                                                                                                             SPCQ 305
```

```
100
                 IF(LT .EQ. 0) GO TO 105
                                                                                                                                                       SPCQ 306
                 K = NDAT + 1
                                                                                                                                                       SPCQ 307
                 SPCQ 308
                 SCCS = SNQ + CLQ + CQ / SQ

XNCS = XN(J) + CNQ + SLQ

XNCC = -XN(J) + CNQ + CLQ
                                                                                                                                                       SPCQ 309
                                                                                                                                                       SPCQ 310
                                                                                                                                                       SPCQ 311
                 XNCC = - XN(J) * CNQ * CLQ

XLSC = XL(J) * SNQ * CLQ

XLSS = XL(J) * SNQ * SLQ

STSQ = 0.5DO * STEP / SQ

U(K) = U(K) + STSQ * (SSCS + XNCS + XLSC)

V(K) = V(K) + STSQ * (SCCS + XNCC + XLSS)

IF(NPER .EQ. 0) GO TO 115

DO 110 L = 1,NPER
                                                                                                                                                       SPCQ 312
                                                                                                                                                       SPCQ 313
                                                                                                                                                       SPCQ 314
                                                                                                                                                       SPCQ 315
                                                                                                                                                       SPCQ 316
105
                                                                                                                                                       SPCQ 317
                     | 110 L = 1,NPEK

| K = NDAT + LT + 2 * L - 1

| SNPMQ = (SNP(J,L) * CNQ - CNP(J,L) * SNQ) / SPMQ(L)

| SNPPQ = (SNP(J,L) * CNQ + CNP(J,L) * SNQ) / SPPQ(L)

| SINM = (SLP(J,L) * CLQ - CLP(J,L) * SLQ) * SNPMQ

| SINP = (SLP(J,L) * CLQ + CLP(J,L) * SLQ) * SNPPQ

| COSM = (CLP(J,L) * CLQ + SLP(J,L) * SLQ) * SNPMQ

| COSP = (CLP(J,L) * CLQ - SLP(J,L) * SLQ) * SNPPQ

| U(K) = U(K) + O.5DO * (COSP + COSM)
                                                                                                                                                       SPCQ 318
                                                                                                                                                       SPCQ 319
                                                                                                                                                       SPCQ 320
                                                                                                                                                       SPCQ 321
                                                                                                                                                       SPCQ 322
                                                                                                                                                       SPCQ 323
                                                                                                                                                       SPCQ 324
                                                                                                                                                       SPCQ 325
                     U(K) = U(K) + 0.5D0 + (COSP + COSM)

U(K+1) = U(K+1) + 0.5D0 + (SINP + SINM)

V(K) = V(K) + 0.5D0 + (SINP - SINM)

V(K+1) = V(K+1) + 0.5D0 + (-COSP + COSM)
                                                                                                                                                       SPCQ 326
                                                                                                                                                       SPCQ 327
                                                                                                                                                       SPCQ 328
                                                                                                                                                       SPCQ 329
110
                 CONTINUE
                                                                                                                                                       SPCQ 330
115
             CONTINUE
                                                                                                                                                       SPCQ 331
            SQCQ = SQ + CQ

CCSQCQ = CC / SQCQ

SS = 0.5D0 + (DFLOAT(NF) - CCSQCQ)

CC = 0.5D0 + (DFLOAT(NF) + CCSQCQ)
                                                                                                                                                       SPCQ 332
                                                                                                                                                       SPCQ 333
                                                                                                                                                       SPCQ 334
                                                                                                                                                       SPCQ 335
             CS = CS / SQCQ
UAU = 0.0D0
                                                                                                                                                       SPCQ 336
                                                                                                                                                       SPCQ 337
             UAV = 0.0D0
                                                                                                                                                       SPCQ 338
             VAV = 0.0D0
                                                                                                                                                       SPCQ 339
             IF(NK .EQ. 0) GO TO 125
                                                                                                                                                       SPCQ 340
             DO 120 J = 1,NK
                                                                                                                                                       SPCQ 341
                 DD 120 K = 1,NK

UAU = UAU + U(J) + A(J,K) + U(K)

UAV = UAV + U(J) + A(J,K) + V(K)

VAV = VAV + V(J) + A(J,K) + V(K)
                                                                                                                                                       SPCQ 342
                                                                                                                                                       SPCQ 343
                                                                                                                                                       SPCQ 344
                                                                                                                                                       SPCQ 345
120
             CONTINUE
           CONTINUE
S(I) = 0.0D0
DET = (CC-UAU) * (SS-VAV) - (CS-UAV) * (CS-UAV)
IF(DABS(DET) .LT. EPSARG) GD TO 130
S(I) = 100.0D0 * ((SS - VAV) * FCOS * FCOS -
2.0D0 * (CS - UAV) * FCOS * FSIN +
(CC - UAU) * FSIN * FSIN) /
                                                                                                                                                       SPCQ 346
125
                                                                                                                                                       SPCQ 347
                                                                                                                                                       SPCQ 348
                                                                                                                                                       SPCQ 349
                                                                                                                                                       SPCQ 350
      $
                                                                                                                                                       SPCQ 351
      $
                                                                                                                                                       SPCQ 352
      $
                                                                                                                                                       SPCQ 353
130 CONTINUE
                                                                                                                                                       SPCQ 354
        RETURN
                                                                                                                                                       SPCQ 355
        END
                                                                                                                                                       SPCQ 356
```

```
SUBROUTINE SPECUN(T, F, NF, FNORM,

NK, DAT, NDAT, LT, PER, NPER, NBASE, A, C,

P, S, NW, IB, ICRIT)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
                                                                                              SPUN 001
                                                                                              SPUN 002
                                                                                              SPUN 003
                               A(100,100), B(100), C(1), DAT(1), F(1), P(1), PER(1), S(1), T(1), U(100), V(100) PI /3.141592653589793DO/, ROUND /100000./,
                                                                                              SPUN 004
       DIMENSION
                                                                                              SPUN 005
                                                                                              SPUN 006
      $
                                                                                              SPUN 007
       DATA
                                                                                              SPUN 008
      $
                               NKDIM /100/
                                                                                              SPUN 009
                                                                                              SPUN 010
  FUNCTION: SPECUN COMPUTES THE LEAST SQUARES SPECTRUM OF
                                                                                              SPUN 011
                 AN UNEQUALLY SPACED TIME SERIES
                                                                                              SPUN 012
C
                                                                                              SPUN 013
                 AFTER SUPPRESSING KNOWN CONSTITUENTS
                                                                                              SPUN 014
C
  CALLED FROM: DRIVER
                                                                                              SPUN 015
                                                                                               SPUN 016
С
                                                                                               SPUN 017
C
  ARGUMENTS:
C
     SPECIFYING THE INPUT TIME SERIES
                                                                                               SPUN 018
              T(NF) = INPUT TIME SERIES TIMES
F(NF) = INPUT TIME SERIES VALUES
C
                                                                                               SPUN 019
c
                                                                                               SPUN 020
                      = OUTPUT RESIDUAL TIME SERIES VALUES
                                                                                               SPUN 021
C
              FNORM = OUTPUT QUADRATIC NORM OF RESIDUAL F
                                                                                               SPUN 022
C
                                                                                               SPUN 023
     SPECIFYING THE KNOWN CONSTITUENTS
                                                                                               SPUN 024
                                  = INPUT TOTAL NUMBER OF KNOWN CONSTITUENTS
= INPUT TIMES NEW DATUM BEGINS
С
                                                                                               SPUN 025
              DAT (NDAT)
                                                                                               SPUN 026
0000000
                                  = INPUT LINEAR TREND SWITCH (1 = USE TREND)
(0 = DO NOT USE)
                                                                                               SPUN 027
                                                                                               SPUN 028
              PER (NPER)
                                  = INPUT FORCED PERIODS
                                                                                               SPUN 029
                                  = INPUT NUMBER OF USER-DEFINED CONSTITUENTS
                                                                                               SPUN 030
              NBASE
              A(NKDIM, NKDIM) = OUTPUT NORMAL EQUATION MATRIX RESULTING
                                                                                               SPUN 031
                                     FROM SUPPRESSION OF KNOWN CONSTITUENTS
                                                                                               SPUN 032
CCC
               c(NK)
                                  = OUTPUT PRELIMINARY AMPLITUDES OF KNOWN
                                                                                               SPUN 033
                                                                                               SPUN 034
                                     CONSTITUENTS
                                                                                               SPUN 035
     SPECIFYING THE OUTPUT SPECTRUM
                                                                                               SPUN 036
CCC
               P(NW) = INPUT SPECTRAL PERIODS
                                                                                               SPUN 037
                                                                                               SPUN 038
                         DSIN, DSQRT
               S(NW) = OUTPUT SPECTRAL VALUES
                                                                                               SPUN 039
C
                      = INPUT SPECTRAL BAND LABEL
               TR
                                                                                               SPUN 040
č
               ICRIT = OUTPUT ROUNDOFF FLAG
                                                                                               SPUN 041
C
                          (1 = OK. CONTINUE ANALYSIS)
                                                                                               SPUN 042
                          (O = RESIDUAL TIME SERIES CONSISTS ONLY OF ROUNDOFF) SPUN 043
                                                                                               SPUN 044
                                                                                               SPUN 045
С
   EXTERNALS: DABS, DMAX1, BASE, DCOS, EPS, ERROR, DFLOAT, RESID,
                                                                                               SPUN 046
C
   ERROR CONDITIONS:
                                                                                               SPUN 047
Ċ
        1 = WARNING. ARGUMENT NDAT .LT. O.
                                                                                               SPUN 048
                                                         (SET TO 0.)
                                                         (SET TO 0.)
(SET TO 0.)
(SET TO 0.)
        2 = WARNING. ARGUMENT LT NOT 0 OR 1.
                                                                                               SPUN 049
        3 = WARNING. ARGUMENT NPER .LT. O.
4 = WARNING. ARGUMENT NBASE .LT. O.
C
                                                                                               SPUN 050
С
                                                                                               SPUN 051
     5 = WARNING. ARGUMENT NK .NE. NDAT+LT+2*NPER+NBASE.

(SET TO NDAT + LT + 2 * NPER + NBASE.)

104 = FATAL. LESS THAN 3 TIME SERIES VALUES INPUT.

105 = FATAL. T ELEMENT VALUES NOT MONOTONIC INCREASING
Ċ
                                                                                               SPUN 052
                                                                                               SPUN 053
                                                                                               SPUN 054
                                                                                               SPUN 055
C
      106 = FATAL. NK TOO LARGE FOR DIMENSIONS OF A,B,U,V
                                                                                               SPUN 056
     (LIMITATION NO. 2 BELOW)

107 = FATAL. DAT(1) .NE. T(1). (REQUIREMENT NO. 2 BELOW)

108 = FATAL. RESIDUAL TIME SERIES CONSISTS OF ROUNDOFF
                                                                                               SPUN 057
                                                                                               SPUN 058
                                                                                               SPUN 059
                       (NOW CALLED IN DRIVER)
                                                                                               SPUN 060
                                                                                               SPUN 061
```

```
C CALLING ROUTINE REQUIREMENTS:
                                                                                        SPUN 062
    1. WHEN NO KNOWN CONSTITUENTS ARE TO BE SUPPRESSED, THE CALLING ROUTINE MUST PASS ZERO VALUES FOR NK, NDAT,
                                                                                       SPUN 063
                                                                                       SPUN 064
C
            LT, NPER AND NBASE.
                                                                                       SPUN 065
    2. WHEN NDAT .GT. O, THE CALLING ROUTINE MUST SET DAT(1) = T(1)
                                                                                       SPUN 066
C
                                                                                       SPUN 067
Č
    3. THE CALLING ROUTINE MUST SET
                                                                                       SPUN 068
    NK = NDAT + LT + 2 * NPER + NBASE.
4. WHEN NBASE .GT. 0, THE USER MUST SUPPLY CODING IN
                                                                                       SPUN 069
                                                                                      SPUN 070
SPUN 071
c
            FUNCTION BASE TO COMPUTE EACH USER-DEFINED
            CONSTITUENT.
                                                                                      SPUN 072
    5. ON INITIAL CALL, CALLING ROUTINE MUST SET IB = 1 TO
                                                                                       SPUN 073
С
С
С
            COMPUTE RESIDUAL TIME SERIES. MANY SPECTRAL BANDS
                                                                                       SPUN 074
            FOR THE SAME SPECTRUM CAN THEN BE COMPUTED BY SETTING IB .NE. 1, AND CALLING REPEATEDLY, CHANGING ONLY P(NW).
                                                                                      SPUN 075
                                                                                       SPUN 076
                                                                                       SPUN 077
    6. CALLING ROUTINE MUST DIMENSION ARGUMENT ARRAYS .GE.
T(NF),F(NF),DAT(NDAT),PER(NPER),C(NK),P(NW),S(NW).
                                                                                      SPUN 078
c
                                                                                       SPUN 079
    7. T ELEMENT VALUES ARE UNRESTRICTED AS TO SPACING, BUT MUST MONOTONICALLY INCREASE. P, DAT AND PER ELEMENT
С
                                                                                       SPUN 080
                                                                                       SPUN 081
C
            VALUES MUST BE IN THE SAME UNITS AS T.
                                                                                       SPUN 082
                                                                                       SPUN 083
  LIMITATIONS:
                                                                                       SPUN 084
    1. WHEN CALLED WITH IB = 1, AND NK .GT. 0, THE CONTENTS OF THE TIME SERIES F IS REPLACED BY THE RESIDUAL
                                                                                       SPUN 085
                                                                                       SPUN 086
С
            TIME SERIES VALUES.
                                                                                       SPUN 087
    2. WHEN NK .GT. NKDIM, A,B,U AND V MUST BE REDIMENSIONED
С
                                                                                       SPUN 088
č
            .GE. NK, AND NKDIM CHANGED TO THE NEW DIMENSION.
                                                                                       SPUN 089
С
                                                                                        SPUN 090
       IF(IB .NE. 1) GO TO 65
                                                                                        SPUN 091
                                                                                        SPUN 092
  PROCESS INPUT ARGUMENTS
                                                                                        SPUN 093
    CHECK NF .GE. 3
                                                                                        SPUN 094
    CHECK T INCREASES MONOTONICALLY
                                                                                        SPUN 095
    COMPUTE FMAX = MAXIMUM ABSOLUTE VALUE IN F
C
                                                                                        SPUN 096
    CHECK VALUES OF NDAT, LT, NPER, NBASE, AND NK CHECK DAT(1) .EQ. T(1)
                                                                                        SPUN 097
                                                                                        SPUN 098
       IF(NF .LT. 3)
                                                     CALL ERROR(104)
                                                                                        SPUN 099
       DO 5 I = 2, NF
IF(T(I) .LE. T(I-1))
CONTINUE
                                                                                        SPUN 100
                                                     CALL ERROR (105)
                                                                                        SPUN 101
                                                                                        SPUN 102
       FMAX = DABS(F(1))
                                                                                        SPUN 103
       DO 10 I = 2, NF
                                                                                        SPUN 104
SPUN 105
         FMAX = DMAX1(FMAX, DABS(F(I)))
       IF(NDAT .GE. 0) GO TO 15
                                                                                        SPUN 106
       CALL ERROR(1)
                                                                                        SPUN 107
SPUN 108
       NDAT = 0
   15 IF(LT .EQ. 0 .OR. LT .EQ. 1) GO TO 20
                                                                                        SPUN 109
       CALL ERROR(2)
                                                                                        SPUN 110
   LT = 0
20 IF(NPER .GE. 0) GO TO 25
                                                                                        SPUN 111
                                                                                        SPUN 112
       CALL ERROR(3)
                                                                                        SPUN 113
       NPER = 0
                                                                                        SPUN 114
   25 IF(NBASE .GE. 0) GO TO 30
                                                                                        SPUN 115
       CALL ERROR (4)
                                                                                        SPUN 116
       NBASE = 0
                                                                                        SPUN 117
   30 IF(NK .EQ. NDAT + LT + 2 + NPER + NBASE) GO TO 35
                                                                                        SPUN 118
       CALL ERROR (5)
                                                                                        SPUN 119
   NK = NDAT + LT + 2 + NPER + NBASE
35 IF (NK .GT. NKDIM)
                                                                                       SPUN 120
                                                      CALL ERROR (106)
                                                                                       SPUN 121
       IF(NDAT .GE. 1 .AND. DAT(1) .NE. T(1)) CALL ERROR(107)
                                                                                       SPUN 122
```

```
SPUN 123
  SUPPRESS KNOWN CONSTITUENTS
                                                                                              SPUN 124
     REPLACE F WITH RESIDUAL TIME SERIES
                                                                                              SPUN 125
     COMPUTE QUADRATIC NORM OF F
                                                                                              SPUN 126
C
     CHECK IF RMS VALUE OF RESIDUAL F IS LESS
                                                                                              SPUN 127
        THAN EPS + FMAX + ROUND, WHERE
EPS = EPSARG = SMALLEST NUMBER SO 1 + EPS .GT. 1
FMAX = MAXIMUM ABSOLUTE VALUE OF ORIGINAL F
C
                                                                                              SPUN 128
Ċ
                                                                                              SPUN 129
                                                                                              SPUN 130
         ROUND ACCOUNTS FOR ACCUMULATED ROUNDOFF IN
С
                                                                                              SPUN 131
         COMPUTING RESIDUAL F
       IF(NK GT. 0) CALL RESID(T, F, NF,

NK, DAT, NDAT, LT, PER, NPER, NBASE,
A, B, C, NKDIM)
                                                                                              SPUN 132
                                                                                              SPUN 133
                                                                                             SPUN 134
                                                                                              SPUN 135
       FNORM = 0.000
                                                                                              SPUN 136
       EPSARG = EPS(ARG)
                                                                                              SPUN 137
       DO 60 I = 1, NF
                                                                                              SPUN 138
         FNORM = FNORM + F(I) + F(I)
                                                                                              SPUN 139
                                                                                              SPUN 140
C CHECK IF RESIDUAL F CONSISTS OF ROUNDOFF
                                                                                              SPUN 141
       ICRIT = 1
                                                                                              SPUN 142
       IF(DSQRT(FNORM/DFLOAT(NF)) .LT.
                                                                                              SPUN 143
           EPSARG+FMAX+ROUND) ICRIT = 0
                                                                                              SPUN 144
                                                                                              SPUN 145
  FOR EACH SPECTRAL PERIOD P(I), COMPUTE SPECTRAL VALUE S(I)
                                                                                              SPUN 146
     COMPUTE SCALAR PRODUCTS FCOS, FSIN, CC, CS, SS, U, V
                                                                                              SPUN 147
     COMPUTE BILINEAR FORMS UAU, UAV, VAV
                                                                                              SPUN 148
     COMPUTE PERCENTAGE VARIANCE S
                                                                                              SPUN 149
    65 DO 130 I = 1, NW
                                                                                              SPUN 150
          OMEGA = 2.0D0 + PI / P(I)
                                                                                              SPUN 151
          FCOS = 0.0D0
                                                                                              SPUN 152
          FSIN = 0.0D0
                                                                                              SPUN 153
          CC = 0.0D0
                                                                                              SPUN 154
          CS = 0.0D0
                                                                                              SPUN 155
          SS = 0.0D0
                                                                                              SPUN 156
          IF(NK .EQ. 0) GO TO 75
                                                                                              SPUN 157
          DO 70 J = 1, NK
                                                                                              SPUN 158
            V(J) = 0.000
V(J) = 0.000
                                                                                              SPUN 159
    70
                                                                                              SPUN 160
    75
          DO 85^{\circ} J = 1, NF
                                                                                              SPUN 161
            WT = OMEGA + T(J)
COSWT = DCOS(WT)
SINWT = DSIN(WT)
                                                                                              SPUN 162
                                                                                              SPUN 163
            SINWI = DSIN(WI)

FCOS = FCOS + F(J) * COSWT

FSIN = FSIN + F(J) * SINWT

CC = CC + COSWT * COSWT

CS = CS + COSWT * SINWT

SS = SS + SINWT * SINWT

TE(NK FO O) CO TO TO
                                                                                              SPUN 164
                                                                                              SPUN 165
                                                                                              SPUN 166
                                                                                              SPUN 167
                                                                                              SPUN 168
                                                                                              SPUN 169
             IF (NK .EQ. 0) GO TO 85
DO 80 K = 1, NK
                                                                                              SPUN 170
                                                                                              SPUN 171
               FUNC = BASE(K, T(J), DAT, NDAT, LT, PER, NPER)
U(K) = U(K) + FUNC + COSWT
V(K) = V(K) + FUNC + SINWT
                                                                                              SPUN 172
                                                                                              SPUN 173
    80
                                                                                              SPUN 174
    85
             CONTINUE
                                                                                              SPUN 175
          UAU = 0.0D0
                                                                                              SPUN 176
          UAV = 0.0D0
                                                                                              SPUN 177
          VAV = 0.0D0
IF(NK .EQ. 0) GD TO 125
                                                                                              SPUN 178
                                                                                              SPUN 179
          DO 120 J = 1, NK
                                                                                              SPUN 180
             DO 120 K = 1, NK
                                                                                              SPUN 181
               UAU = UAU + U(J) + A(J,K) + V(K)
UAV = VAV + U(J) + A(J,K) + V(K)
                                                                                              SPUN 182
                                                                                              SPUN 183
```

```
VAV = VAV + V(J) * A(J,K) * V(K)
S(I) = 0.0D0
DET = (CC-UAU) * (SS-VAV) - (CS-UAV) * (CS-UAV)
IF(DABS(DET) .LT. EPSARG) GD TO 130
S(I) = 100.0D0 * ((SS - VAV) * FCOS * FCOS -
2.0D0 * (CS - UAV) * FCOS * FSIN +
(CC - UAU) * FSIN * FSIN) /
(DET * FNORM)
                                                                                                                                                                                            SPUN 184
SPUN 185
120
125
                                                                                                                                                                                            SPUN 186
                                                                                                                                                                                            SPUN 187
                                                                                                                                                                                            SPUN 188
SPUN 189
                                                                                                                                                                                            SPUN 190
SPUN 191
        $
        $
              CONTINUE
                                                                                                                                                                                             SPUN 192
130
                                                                                                                                                                                            SPUN 193
SPUN 194
          RETURN
           END
```