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ABSTRACT 

Recent studies have shown that the Canadian height 

control network, which was defined on the basis of 

normal gravity, suffers from the influence of gravity 

anomalies that can introduce significant systematic 

regional distortions. Proposals have been made for a 

new definition of heights for Canada which would be 

based on observed gravity values. Since, observed 

gravity is not now available at all points along 

levelling paths, (as required by the new definition), 

the prediction nf point 

gravity values at bench marks,say,are, therefore, 

r'equired. 

The performances of three prediction techniques -

least-squares surface fit, least-squares collocation, 

and weighted mean methods - in three terrain situations 

in Canada were evaluated. The terrain situations 

considered correspond to the flat, gently rolling, 

and mountainous terrain types. Test points were 

selected randomly from each terrain type considered, 

and the nine samples generated by using each technique 

to predict for point gravity anomalies at the selected 

points were vigorously tested statistically. The 
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method of weighted means performed well in the three 

different types of terrain. It was the fastest of the 

three techniques, and the most economical in terms of 

computer time. The other two techniques gave good 

results in the flat, and rolling terrains, but did 

not perform so well in the mountainous terrain. 
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CHAPTER 1 

INTRODlJl.TT0:-.1 

At the time of the first continental acljustment of the 

Canadian levelling network,which took place in 192R 

(Lachapelle, 1978b),a detailed knowledge of geoidal 

IV 
undulations and gravity field was non-e:dstent (Vantcek 

ct al, 1972). lienee, heights- those in the levelling 

net\o:ork of 1928 and aclditional ones- h'hich 110\\' consUtutc 

the present Canadian vertical control system were defined 

on the basis of normal gravity. The question of how the 

neglect of gravity anomalies affects heights has been 

debated by pracLicjn~ geoJesists and theoreticians alike 

(Nassar and Vani~ek, 1975), and in 1948 the International 

Association of Geodesy adopted a resolution recomMending 

that height systems be based on actual gravity (I.A.G., 

1950). Recent studies in Canada have shown the influence 

of the neglect on heights in precise levelling networks 

to be significant (Nassar, 1977); and the need for are-

definition of the Can~Hlian reference system was reali:ed 

after due considerations had been given to other problems 

affecting the present netHorks (Lachapelle, 1~7Rh). 

According to proposals made for investigation into 

/\( 
n nc\~ definition of heights for Canntla (Vnn1cek C't nl, 

1972), the systel:ts proposC'd included dynamic nnd orthometric 

heights, hoth based on geopotential numhcrs rC'flccting 

1 
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the observed gravity in the area. \\'hichevcr system is 

finally adopted wi11 require a continuous knowledge of 

observed r,ravi ty in the area; and if only the hench marks 

arc considered, the system \vill require that gravity values 

be availahle for every bench m:-trk in Canada. Such infor­

mation is not available now. llowcver, the present gravity 

coverage in the country is sufficiently dense for one to 

predict gravity :1t bench marks other than those \\·here it 

11as been directly observed ("lass~n, 1977; Lachapelle, 197Rb). 

]t becomes necessary, therefore, to resort to intcrpciJating 

techniques for the densific.:1tion of the gravity ncth·ork in 

Canada. 

The purpose of this work, therefore, is to evaluate 

exist in g m c tho d s sui t a b 1 e for g r a v it y (or g r £n< i. t y an o Ill a 1 y) 

predictions at bench marks using grDvity data from Earth 

Physics Branch gravity data files. 

In the works of Kcars1cy (1977) and Tchnerning (1980) 

various techniques which have been used to extend the 

gravity field from its discrete form to a continuous one 

were highlighted. These include the methods of least-

s qua r c s s u r fa c e f i t t i n g , s i m p 1 c and 1 cast - s q u ;1 r c s p 1 .:1 n c 

fitting, minimum Cli1Taturc surf.:1cc, sol ids of n'vo1ution, 

1 c a s t s q u a r e s c o 1 1 o l. ~~ t i o 11 , s c r i c s f i t t i 11 g , .:1 11 d s p 1 i n c s • 

Two o f t h c s c~ t c c h n i q u e s - 1 c ~ s t - s qua r e s c o 1 1 o c a t i on .:l!Hl 

least-square's surf~rcc fitting methods- which ~•rc most 

widely used arc chosen for cvDluDtion. A third method 

c. h o s c n f o r c v a 1 u a t i on i s n o t i n c 1 u tl c d i n t h c 1 i s t a b o v c . 

It is the method of Wcighte(l means which has hccn used 



by Kearsley (1977) to estimate geoidal heights. It was 

chosen because of the very simple concept upon which it 

is based, and out of curiosity to sec how it would 

perform compared to the other two methods. 

It is necessary, at this stage, to clarify the need 

for the prediction ot gravity values at bench marks. The 

height definition presently in use in Canada has been 

sa'id to be based on nqrmal gravity. This implies that 

instead of using the observed gravity value g at a point 

on the earth's surface to define its height, an approxi-

3 

mate value - the normal gravity value - which is computed 

(Nassar,1977) for the terrain point, is adopted. 

The intention, therefore, is to account for the 

difference in height due to the neglected difference (g-y) 

between observed and normal gravity values. This height 

difference _has been expressed by.Nassar (1977) as a 

correction which could be added to existing height 

differences 6h~such that the corresponding height diffe-

renee, appropriately based on actual gravity, are 

obtaincd. In Vanf~ck et al, (1980), the difference is 

expressed in terms of observed elevation diffen'nce. 

The expressions \\'en~ obtained by first expressing 

actual geopotential number difference between points A 

and B, say, in terms of both normal and observed gravity 

(Nassar,1977) as: 

-t\CAB 6h .. 
lJ (1.1) 
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and -r g .. flh .. 
i lJ lJ 

(1. 2) 

where 
j = i+l 

y* = ~ ( y* + y* ) 
ij i j 

- !:z (g. ) g .. = + g. 
lJ 1 J 

flh .. = h. - h. 
lJ J 1 

and y* is the normal gravity computed from a normal 

gravity formula developed by the United States Coast and 

Geodetic Survey (USCGS) in 1907 (Nassar, 1977). llcight 
,...., 

differences ~hA8 ,and 6hAB arc next obtained from equat-

ions (1.1), and (1.2) respectively under the dynamic 

system of heights, say, as: 

and 
IV where G (Van1cek 

1 = b.CAB/ G = G I 
i 

ct al, 1980) is 

~ij6hij= 6hA8 +DCAB (1.4) 

the reference gravity 

computed for dynamic heights taken for the United States, 

and Canada as the normal gravity on the ellipsoid at 
0 

latitude 45 , and DC is the dynamic correction to the 

observed height differences. The diff0r0nce betwc0n the 
,... 

corrcctiV<.' terms DCAB' ~111d })CAB is the required gravity 

correction GC~B to existing height difference llh1\n· Gc;~H 

is expressed as 

AhAB t - -* 
a --c- /. ( g ij - Y ij ) 

i 
(1. S) 



Its values between pairs 6£ bench marks can be obtained 

if observed gravity values arc available for the bench 

marks. 

The observed gravity at a point i can be expressed 
,v 

in terms of free-air or Bouguer anomalies (Vanlcek and 

Krakiwsky, in prep; Nassar, 1977) as: 

g. 
1 

= F 6g. 
1 

o.3DS6h. + Yo . 
1 ,1 

(1. 6) 

B or g. == 6g. 0.1967h. + Yo . (1. 7) 1 1 1 '1 

where g. is the observed gravity of the terrain point 1 
1 

F dB . 1 f . d in mgals, 6gi an 6g 1 arc respcct1ve y ree-a1r an 

Bouguer anomalies in mgals, h. is the levelled height of 
0 1 

point j in metres, 0.3086 and 0.1967 are respectively 

free-air and Bouguer gradients of gravity in mgal per 

metre, and y 0 . is the normal gravity value of terrain 
'1 

point i. Free-air and Bouguer anomalies are smoother than 

5 

the corre~p~nding absolute values of the observed gravity. 

They can, therefore, be predicted to better accuracies. 

Hence, once they have been predicted for, the corresponding 

observed values could be obtained through equations (1.6) 

and (1.7). 

The approach decided upon for the evaluation is to 

test the chosen prediction methods in three terrain 

situations in Canada which correspond to flat, gently 

rolling and mountainous terrain types. 

In this work, the second chapter will be devoted to 

the presentation of the various mathematical models for 
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the three techniques. The third chapter will deal with the 

identification of terrain types, while the fourth chapter 

will dicuss the various tests and test statistics needed 

for the evaluations, and the fifth chapter w]ll discuss the 

results. The conclusions reached and the recommendations 

made will be presented in Chapter Six. 



CIIAPTE R 2 

PREOTCTTON HET!!OTJS 

The mathematical models and other characteristics of 

the three prediction techniques chosen for evaluation -

least-squares surface fitting, least-squares collocation, 

and \,·eightCll means -arc presented. A fourth technique 

(a coniliination of ~he surface fit.ting and collocation 

methoJs) experimented with for the Rocky r.Iountains dat.:1 

is also described. 

2.1 LEAST-SQtL\RES SURFACE fiTTING ~-1f:Tll011 

If there 1s sufficient gravity data iii an area, the 

gravity field 1n the area can be predicted by regressions, 

"" the mathematical model for which is (Vanicek et al, in prep 

(ch. 22)) 

T 
hg(~,A.) = 4l (~,A.) c 
,.... - - (2 .1) 

where !;:] is the pre J ic ted value of gravity (or gravity 

anomaly) while tT($,lJ is the Vandcrmonde's matrix composed 

of selected base functions, and c is a vector of coefficients 

t o he de t c r m i n c d us i n g a v a i1 a h 1 c g r a v i t y d a t a • Th e s c l e c t i on 

of the base functions for the VandC'rmoJHil''s matrix and the 

metholl h)' which the vector c:_ is dctcrmin<.'ll decide the nature 

of the approximntion mctholl. 

The base functions arc usually to he selected 

'" (Vnnicck et al, in prep (Ch. 14)) \dth due consideration 

given to the nature of the ohservnbles and their measuring 

7 
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process. The selection may he achieved through the modelling 

of some natural phenomena affecting the observable or the 

measuring process (e.g. the determination of local mean 

sea level), or it may reflect the behavior of the observable 

as predicted by a law of physics or geometry (e.g. the 

development of gravitational potential into sphedcal 

harm01dcs). Otherwise, the selection has to be made arbi-

trarily. The base functions in this work arc selected 

"" arbitrarily (Vanicck 'ct al, in prep. (Ch. 22) )the simplest 

choice being the mixed algebraic functions 1, x, y, xy, 2 
X ' 

•••• , with x, y indicating local cartesian coorclin:1tcs. 

The gravity field in the area is, in effect, being rcpre-

sented by a surface described by a mixed algebr:1ic poly-

nornial P (x, y) of order n, the general form of which 
n 

is. given as: 

where: 

k = int 

+ n-k 
cO,(n-k) Y + cl,O x + cl,l xy + ··• 

2 
+ cl,2 xy 

( n ) 
Z" 

+ ... + k (n-k) 
ck, (n-k) x Y 

( 2. 2) 

n = order of polynomial (positive intel~er) ,and 

ck, (n-k)= coe fficicnts ~ to be determined. 

Po\'>'crs of x ~nd y present in some specific orders of poly­

nomi:tl arc sho\\11 in figure 1. In a shorter form equation 



(2.2) can be written as: 

k 

~ 
i=O 

(n-k) 

I 
j=O 

( 2. 3) 

The source of the gravity data used in this work 

provides a pair of geographical coordinates ( rp, A) for 

every point value. The coordinates arc transformed into 

cartesian coordinates (x,y) by (~assar et al, 1975) 

X = R (cf>-<P 0 ) 

y = R (A-A 0 )cosrp (2.4) 

where the point (<P 0 ,A 0 ) is taken for convenience as the 

prediction point. In this way, the prediction point is 

the origin of the cartesian coordi11atc system. The mean 

radius of curvature R is computed at the point (<P 0 ,A 0 ) 

. ,~ 

as (Nassar and Vanicck, 1975) 

where 

R = I(M N } 
0 0 

2 
M = _a_(=-1--e----") ___ _ 

o (l-e2 sin2c1> )3/2 
0 

N = a 
0 /(l-e2 sin2tP ) 

0 

2 2 2 2 {e =(a -b )/a } 

(2. 5) 

9 

and a, h .. major and minor semi-axes of rL'fcrcncc ellipsoid. 

The order n of the polynomial Jetermines the diillcnsions 

of the vector of coefficients c It is, therefore, 

chosen such that the dimension of c is smaller than the ... 
number of avail~1ble data. In this way, when trying to 

solve for c , one is faced with an overdetermined }Hoblcm-
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the problem of approximation - loJhich is solvable by the 

least-squares technique. 

The least-squares technique has been developed in 
,.., 

great detail in the literature (Vanicek and ~ells, 1972; 
,., 

Vanicek and Krakiwsky, in prep (Ch. 12)), and will be 

stated here (without proofs) in the context of the problem 

at hand. A function F defined on a discrete set M [ x1, .. ,XN} 
r 

in terms of observed point gravity anomaly values is to be 

approximated by the polynomial Pn(X,Y) given in equation 

(2.3) namely: 

P (x,y) = 
n . 

where: 

k 
I 

i=O 

(n-k) 
L c .. xi Yj = 

j=O 1J 

k, n arc as defined above 

rn = (k + 1) (n-k+l) 

m 

L CL 4>L 
L=l 

{2.6) 

C •. = CL = lJ element of vector of coefficients for the 
polynomial 

~ = (x,y) 

N = number of point data available 
r 

and 4> = {411,-t>z,(h, •• ,4>m} arc m linc'arly indept'ntlent base 

functions. In matrix form equation (2.6) can be written 

ns: 

p = ~ c 
n - - (2.7) 

where 
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and 

If, in addition, weight functions \\'(x) arc defined on M, 

the least-squares approximation prohlcm can be said to 

be the determination of the vector of coefficients c which 

minimizes the distance p (F,P) with weight function \1/(x), 
n ,.., 

the distance hcing defined as (Vanicck and Wells, 1972) 

2 
p (F I p ) = '.; 

n ). W(X){ F(X)-P (X)} } M 
XEM n Discrete 

(2.8) 

The required solution is obtained by solving the normal 

equations. 
m 
L < 4> i, 4> • > c . = < F, ct> . > i= 1, 2, ... , m ( 2. 9) 

j~ 1 ) ) 1 

where 

< 4>. , ct>. > :: L w (X )q>. (X) ¢ . (X) 
1 ) XEM 1 . ) 

and 

L W(X)F (X) cf>.(X) 
xeM 1 

In. matrix form and according to the development in '" Vanicek 

an d 1\ r a k i\,· s k r , ( i n . p r ~ p , ( C h • 1 2 ) ) ( 2 • 9 ) c a n b c \H i t t e n a s : 

Ac = u (2.10) 

where 
A = 4>TW 4> 

~ - -
u = 4>T\-J F .. ... -
w = weight matrix 

F = vector of functions F 
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and ~' c are as defined above 

The solution is given as: 

c = A-l U (2.11) 

The matrix ~ of normal equations called the ~ram matrix is 

regular non-singult;~r,i [ its determinant (Gr.:un's determinant) 

is different from zero. This requirement is met i [the 

base functions arc linearly independent. The problem is 

further simplified if orthogonal base functions nrc used; 

then, the Gram matrix -which is a matrix of the scalar 

products of all possible pairs of vectors of the base 

functions -becomes a diagonal matrix which can be easily 

inverted and the solution for ~ is straightforward. Any 

system of base functions can be trans formed in to an 

orthogonal system by the process of orthogonnli:ation. 

The best known of the many processes of orthogonali:ation 

is (Vani~ek and Krakiwsky, in prep) the Gram Schmid process. 

Weights I! nrc assigned inversely proportional to the 

vadanccs of the individual observations as: 

\~. 
~ 

2 = 1/S. 
~ 

\~here: 

s.2 
1 

. f . th 1 . • var1ance o 1 olscrvatJon 

The estimate of the variance-covariance matrix of 

the coefficients c is given as: 

r c o2 1\.-1 = o 
.. c -0 - (2.13) 
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where: 
<r,r> 

0 2(estimatetl variance factor) = 
df -o 

r = residuals 

and df = degrees of freedom 

The residuals are obtained hy resuhstituting the coefficients 

~ from(2.11) into equation (2.6) for every point data used 

and by cor.1paring the computed function P with the observed n . 

v:1lue F. The residual is given as: 

r·== F- P 
-n 

(2.14) 

S i n c e \,· e no h' h a v c a s o 1 u t i on for t he v c c t o r c we can 

approximate the gravity field in the area by equation (2.1). 

The accuracies of approximations arc obtained through the 

variance-covariance matrix Q (Equation 2.13). The predicted 

g r a vi t r an om a 1 )· at a prediction point (the centre of cell) 

and the accuracy of prediction a6 (standard deviation of 
9p 

predicted value) arc given as: 

t.g 
p 

a t.g = I Q 1 1 
p , 

The c s t i mated v a r ian c e f :1 c tor 

(2. 15) 

(2. 16) 

is used in (2.13) to 

scale thC' v:1riancc-covariance matrix of the coefficients. 

The mathcmatical models used together \dth the available 

data and weighting scheme a.re assumed to he ideal. lienee, 

the apriori varinncc factor is unity. If the :~ssumptions 

made arc indeed correct, the estinwtcd 

vari:~ncc f:tctor should be unity :~nd (.John, 1976) the 

standnnl ~kviations of JHellict cd values should h:~vc the 
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same order of magnitulle as the residuals at the observation-

points. Large residuals at observation points express 

not only the uncertainties in the observations, hut also 

"'" (Vanicek ct al., in prep. (Ch. 14)) the uncertainties in 

the mathcnatical model (that is, the selected base functions) 

and perhaps those due to a poor weighting scheme. 

2. 2 LEAST -SQ!I!\!U:S COL LOCAT TO :..I 

The method of least squares was first useJ by C.F. 

Gauss an:.! :\.~-1. Legendre to process astronor1ical observations 

in 17!15 (;)almino, 1978). It has since developed considerably 

through the Korks of mathematicians and other scientists 

,,·ho succeclled in generalizing the odginal method of static 

and dyna.;:-.lc applicat~ons, .:mJ for se:qu<:ntial solul:ions 

of proble:as (Halrnino, 1978). It was furthcT modified in 

the \vorks of Krarup (1969) and Horit: (1972) such that in 

add:i tion to solving for unknown parameters, it can also 

predict for signal quantities (statistically dependent 

residual component s) at points other than the observation 

points. This modified method is known as least-squares 

collocation. 

The purpose in this section is to present the mathc-

matical I:'.Olll'l for the prediction of gravity anomalies by 

least-squares collocation followin!~ the approach of, and 

'" using the notation of ,Vanicck and Krakih•ski ,(:in prep.) 

The implicit linear mathematical model for a one compo­
.-v 

nent adjustment is given as (Vanicek anu Krakiw~ki, 

in prcp(Ch. 12)) 
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A6 + Br + w = 0 (2.17) 

where 

A = first design matrix 

6 = vector of corrections to unknown parameter 
approximations 

B = second design matrix 

r = vector of corrections to observations 

w = vector of constants 
2 

and the cqui\·alence of the covariance mattices c 1 ::c =diag(a1 ) - -r . 
1 

is assumed to be true. I t i s seen that I i. s not tlc c o mp o s c Ll 

here in to its t\,'O components s and v (to be de fined 1 a ter) 

which arc lumped together in it (!) 

In a simple adjustment one would be interested only in 

obtaining estimates for (a) the unknown parameters and 

(b) the corrections to the observations to make them con-

sistent within ~he framework of an overdetermined model. 

The relevant expressions for the one-component adjustment 
'V 

as developed in Vanicek and Krakiwski, (in prep), arc: 

6 =-{ AT(BC BT)-lA }-lAT(BC BT)-l w 
- - --r- - - --r- -

(2.19a) 

0 

X = X + 6 (2 .19b) 

CR= {AT(BC_BT)-1 A }-1 = C· 
-x - --~- - -6 

(2.19c) 

K = (BC BT)-1 (A6 + w) --r- (2 .1 9d) 

r = -C BTK 
-r- -

(2 .1 9e) 

(2.l9f) 

.. 
1 = 1 + r (2.l9g) .. 



where 

and 

= c 
~r 

M = BC BT 
~~r~ 

2 = estimates 

x,c~= estimates 
~ ~x 

and their 

" estimates K = 

- c (2.]9h) 
~r 

of the solution vector 

of the un kn O\-Jn r [I r;! meters 

covariances. 

of the vee tv r of correlates 

r,C~= estimates of residuals and their covariances 
- -r 
l,c~= estimates of actuo.l observations and their 
- -1 

covar1ance. 

The implicit linear mathematical model and the 

1 7 

variation function for a two-component adjustment of obser-

"" vations arc given as (Vanicck and Krakiwsky, in prep) 

Ao + B s+ B v+ w = o (2.20) 
-s- -v-

and (2.21) 

where s, v, (assumed to be uncorrclated) are respectively, 

the statistically dependent and statistically independent 

components of the residuals r_, and the matrices C and C -s -v 

arc respectively fully populated and diagonal" It is 

seen that the residual r has bcC'n dccomJWSL'd into its 

t\\'0 components s and v. The component s docs not in the - ~ -
general case belong in the space cL of observations, but 

in the space J of statistically dependent observations 

(sec figure 2). This fact has been considered, and the 

necessary transformations tnallc in equation (2.20) 

Similar expressions to equntions (2.19 (a-h)) can be 
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Jt 

8 
Figure 2: 

Sp~ccs Used for Lc~st-Squnres Collocntion Prediction 



derived for the two-component case hy replacjng the 

matrices B, ~r' and r in the equation by their two-

· B',c' , and r' component equivalents _ -r 

B .. = r 

c' 
-r 

B 
-s 

. T 
r' = [ ~ 

~v ] 

given as: 

(2o22a) 

(2.22b) 

(2.22c) 
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In addition, the prediction of the residtwl component ~,at 

points other than the observation points,is made possible 

by the method of least-squares collocation,1vhich combines 

the two-component adjustment with this prediction feature. 

It views ~ as a san~lc of an effect that can be modelled 

in a prediction space ? wider than the space c! , where 

cfc.?J (figure 2). The prediction feature is built into 

the mathematical model of the two-component adjustment 

by introducing a null vector into the hyper-matrix ~·, 

and expanding the hyper-vector r•to include the required 

si~nal s at )n·ediction })Oint!'. s is stiiHtlatcd to have 
. -P -P 

the same slochilstic char:1cteristics as the signals at 

observ:1tion points. The covariance matrix c• is also modi­
r 

fied to refll'ct the correlation bettvcen sand ~p. The 

1 t . t . 1) ", c II l II • I I rcsu 111!! 111:1 r1ccs , ,aJh vector r arc g1ven ))' t 1c 
.r 

expressions: 



II 

B = ( 0 

II 

r = 

II 

c = 
-r 

[ T 
s 
-P 

c .. s 
p 

c 
-SS 

-0-
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: B : B ] 
-5 .. v ( 2. 2 3a) 

T T ] (2.23b) :s :v 

c IQ 

I 
.. s S-

P'" c 10 (2.23c) 
-s p 
0 -,c-

-V 

When these expressions replace the matrices ~' ~r ancl vector 

r in equations (2.19) accordingly, and if 1vc consillcr a 

condition model explicit in the observatjons 1 (that is, 

B = B =-I; A= 0 and w = -1), the predicted signal :?_p 
.. s .. v 

and its covariance matrix arc given as: 

s 
-P 

~s p 

= C (C + C )-ll 
.. s s -s -v -p 

= C -C (C +C )-lC T 
.. s -s s -s -v -s s p p 

(2.24) 

(2.25) 

The predicted signal of equation (2.24) is obtained as 

a correction to observations which arc set to zero initjally 

through the null-vector in (2.23a). lienee, realising that 

the obscn·a t ions l rep resent the observed a noma 1 i cs 

l.HJ , the rcquircll value of gravity anomaly 

point and its variance arc given as: 

and 2 
CJ ::: 
.. (lg 

p 

C (C +C )-l 6g_ 
-s s .. s .. v 

p 

C -C (C +C )-lC T 
-s -s s -s -v .. s s p p 

at a prediction 

(2.26) 

(2.27) 
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where: 6g ,o 6 = predicted gravity anomaly ~t n pre-
p 9p diction point, anJ its v~riance 

62 =vector of observeJ gravity anomal ics 

c = covariance matrix of me~rsuring errors 
-v 
c = covariance matrix of the resiJual com-
-s 

and C ,C T = 
-s s -s s 

p p 

ponen t s 

cross covariance matrices between s at 
observation points and ~p at prcdi~tion 
points; T denotes matrix transpose. 

It .is seen. in equation (2o26) that the errors in the ohser-

vations arc taken into account for the prediction. The 

vector Sp in (2.24) may consist of one component (as the 

predicted~g at a prediction point) or it may consist of 
p 

several components.· The result for the same signal quantity 

will al~ays be the same since (Moritz, 1972) the prediction 

is dependent only on the observations, and each co1nponcnt 

is determined independent of the others. 

Local ~ovariance functions computed for Canada by 

Schwarz and Lachapelle (1979) are used in the sequel to 

compute the covariance matrices Cs and Cs s. The functions 
- p 

'"ere computed using available gravity anomaly data for 

Canada. The model function used is an isotropic harmonic 

function, the general form of \vhich is given as: (Sc11\v~rr: 

and Lachapelle, 1979) 

C(P,Q) = ' A 
N+2 

} PN(cos ~} =C(~ } 

(2.28) 

'"here P, and Q nrc t\"O points in space with radius vectors 
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rp and rq, 1P is the angle between the radius vectors, 

PN (cos'~) arc legendre's polynomials, Rg is the radius of 

the Bjcrhammar sphere, and C'J arc anomaly degree variances 

de fined as: 

= N - 1 (2.29) 
(n-2) (n+D) 

where n is a constant integer describing the structure of the 

anomaly degree variances. Its value is chosen such that 

the sur1mation of C for N = 3 to some arbitrarily large num­
:.1 

her (Delikaraoglou, 1976) would yield the point anomaly 

variance c0 which is the covariance C( ~) when ~ = 0. 

Th·o covariance functions \;rerc computed - one for the 

Rocky ~·Iountains and another for the rest of Canada. In 

the Rocky ~lountains, linear correlation with height was removed 

(Lachapelle and Schwarz, 1979) from the free-air gravity 

anomalies, prior to the numerical evaluation of the 

covariance function, by computing for regression para-

meters (slope and intercept) through a least squares fit 

of the data in the area. "llcight indepC'ndent" gravity 

* anom:tlics <\g arc given as: 

* t.g = t.g. - b!l. 
~ ~ 

(2. 30) 

where: * t.g = "h~ight inllcpenJcnt" gravity anomaly of 
it 1 observation point 

A l . I f . 't 1 [ -th ug.= O}SCIVCl ree-a1r grav1 ·y anoma yo 1 

~ ohserv:-ltion point 

b = slope of regression ljne. 



23 

and h h .th b . . t H.= Hcig t oft c 1 o scrvat1on pow • 
~ 

* The "height independent" ~momal ies /\g arc used ns data for 

the prediction. The free-air anomaly at the prediction 

point is, therefore, obtained as: 

where 

and 

2 • 2. ] 

t.g = 
p 

* t.g = 
p 

= * t.g + 
p 

bH (2.31) 

predicted free-air gravity anomaly at a pre­
diction point 
predicted "height independent" gr:1vity anomaly 
at a prediction point 

H = height of prediction point 
b is as defined above. 

COV,\RIA:-\CE FILTER 

The prediction of gravity anomalies at computation 

points can be regarded as a filtering process where the pre-

dictc~l ~ ..... , '. ~ ·~ 
\ u .l \.1\:;:, filtered data. The relevan-r 

expression for the filtered data is equation (2.26) namely: 

= C (C +C ) -l t.g 
-S S -S -V -

(2.32) 
p 

* or 6g = F 69 
-P -

(2.33) 

Where F*=c (C +C )-1 is the filter which mav. be called a 
- -s s -s -v 

p 
c o v a r i an c c f i It c r ( V a n i c e k c t a 1 , i n p r c r , C h • 1 'l ) • T h c 

filtered data of equation (2.32) consists of only one 

c 1 c m C' n t • I [ p red i c t i on s \'' e r c nw d c , s a y , a t t h r e c p o i n t s 

1, 2, 3; and assuming th:lt the original data /\g consists of 

five anomalies corresponding to the points 3 - c in Figure 

3, the expression for the covariance filter is obtained 

in matrix form as follows: 



a 

d 

G 

1 

b 

e 

Figure 3 

c 

Predictions at three points 1, 2, 3 
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from equation (2.32) 

flg 
-P 

flg 
-P 

cla clb clc cld cle p Pab p Pad p 6g 
a a ac ae a 

= c2a c2b c2c c2d c2e Pba pbb Pbc pbd Pbe 6gb 

c3a c3b c3c c3d c3e 
p Pcb p . Pcd p 6g 
ca cc ce c 

= c -s s p 

= 

l :da 
ea 

* F 

pdb Pdc 

Peb p 
ec 

<c + s 

I 

pdd : dej Agdj 
Ped 6g 

ee e 

c;;v> 
-1 

6g 

(2.34) 

C ( . 12 3 · b )-clements of ~sps m~trix • • 1= I I ;J=a, • • -
l.J expressing correlations b.ctwecn 

prediction and data points 

Pjk(j,k=a,b, ... ,e) = clcmcnt~ 1 of the inverted m~trix 
(C 5 +Cv> expressing correlations 
between pairs of data points. 



It is seen that the filter F*is composed of two matrices 

one c expressing correlations between prediction and 
-s s 
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p -1 . 1 data points, and the other (C +C ) cxprcssutg corrc a-
-s -V 

tions between pairs of data points in terms of inverses 

of covarianccs. The dimensions of the former arc dependent 

on the numbers of prediction and data points; while those 

of the latter arc dependent on the number of data points 

-1 f alone. lienee, the ,matrix (C +C ) remains the same or 
-s -v 

predictions regardless of how many prediction points there 

arc, for as long as the data set is the same. 

2.3 WEIGHTED ~lEANS 

The method of weighted means has been used to some 

extent for height predictions (Davis, 1973). In constructing. 

contour maps for instance, the first step usually is to 

produce regular grid data from a data set not regularly 

distributed; Estimates of heights at the grid points are 

known to have been derived from the nearest obscrva-

tions or from trend surfaces. The former approach (Davis, 

1973) is likely to produce erratic values which often 

results in discontinuities in the nwps, while the latter 

approach though it produces a smooth and continuous surface, 

has the disndv<1ntage that none of the ori!~inal observations 

arc lik('ly to be on the surface. The method of \vcighted 

means has, therefor(', been recommended for its simplicity 

and it has been so used successfully. Kearsley (1977) 

has used the same technique in the estimation of r,eoidal 

undulations, while Sjoberg (Kenrslcy, 1977) used it for 
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gravity anomalies' prediction. 

The method predicts a gravity anomaly at ~~ prediction 

point by taking a weighted me<1n of the nearest ohscrvaUons 

surrounding the point. Weights arc assigned to the obser­

vations inversely proportional to the distances d of the 

observations from the prediction points, raised to some 

power 

1977) 

where 

\) 0 The mathematical 
n v l. (L'Ig./dp.) 

:= i= 1 ' l l 

n 
I n; dp~ 

i=l 

model is given by (Kearslcy, 

(2,33) 

L'lg = predicted gravity anomaly of a prediction 
6 P point th 
gi = gravity anomalv of the i observation point 
.-1Pi= .11'"'+,-.--~e __,c ~th Ob'"'~"''"~+~cn n,-,;,1+ Frnm +hP \,A U -.Jl.-Uli\,... V.I. . ..1. J\...-J.. Wl.L\,...L. l"' j-'V..&...& ..._ __._ .....,.,, '- ... ..,... 

prediction point 
v = exponent of d for the weights 

and n = number of observations 

Kcarslcy (1977) estimated the errors of prediction from 

two uncorelated sources - (i) the error due to the obser-

vations ~ ), and (ii) the error of representation of the 
e 

weighted mean (or) - the total prediction error being 

given by: 

(2 0 34) 

where: 

o 2 = v a r Lm c e o f pre ll i c t e J g r <1 v i t y an o 111 a 1 y 
6gp 

The error due to the observations ( a ) was obtained through 
e 

the variance of the mean L'lgPHith the observations used to 

generate it; n . v 
l. (1/dp') (1\gp-t..g') 2 

i=l l 1 
= n (2. 35) 

(n-1) L (1/dvp.) 
i=l 1 



While the error of the representation of the mean a was r 

obtained as a function of the distances d 
n 

c' L (1/dp.) 
. ) l l.= 

(2.36) 
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where the value of c'had to be experimentally determined. 

Equation (2.35) will succeed i11 giving us information about 

the ruggedness of the data used, but neither of the two 

contributing error functions considers the errors in the 

observations which arc kno\m to us. It is felt, therefore, 

that it h'Ot!ld be adequate enough for our purpose to propa-

gate the errors in the observaUons through the mathcrnatic.:ll 

model equation (2.33) rather than usc (2.34). The error 

of prediction is, therefore, obtained by propagating the 

variances of the observed values as: 

( _aa. _t.g_P ) z a" 
A t.gl.. ug. 

1. 
(2.37) 

where: 

2 • f . th b 1 . o = variance o 1 o servcc gravity anomaly. 6g. 
1. 

If equation (2.33) is substituted into (2.37) and if the 

partial derivatives arc taken with respect to the observed 

values, equation (2.37) becomes: 

(2.38) 

\ 1/d\). ) 2 
/. Pl. 

The method of weighted means has been known to perform 

very '"ell (t\carsley, 1~)77) in areas where data is comparatively 

dense. When the data coverage is sparse, it has sometimes 

given unacceptable results. It is, however, a simple 

prediction method which requires very little in terms of 

pro~! ranmting ski 11. 
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2.3.1 PREI>ICTIO~ BY WETGIITED r.JEANS AS i\ PTI.TEHf~(~ PROCESS 

If one is prepared to accept as filtered d~ta the values 

of gravity anomalies obtained at prediction points from 

using the method of weighted means, the prediction process 

can, then, he called a filtering process. The expression 

for the filter can be obtained from equation (2.33) namely: 

n 
l (6g. /dp"'. 

i=1 ~ ~ (2. 39) 
n 
l ( 1/d~. ) 

i=1 ~ 
Let the \.,:eight (1/d~i) be represented by Wpi; then, 

(2.39) becomes: 

n 
l (WPi 6g.) 

i=l l. 
6g = --------------p n 

l WPi 
and in matrix form: 

llgp 
1 w 6g = 

l: WPi 
i 

** or: 6gp = F 6~ 

\vhcrc: ** 1 
F = 

nvPi 
w -

il2 = original 

and: 6gp= fil tercd 
point 

is the 

data at 

data -

If the example used in Section 2. 2 .1 

(2,41) '"hl'n '"ri tten in full becomes: 

(2.40) 

(2. 41) 

(2.42) 

required 1 in ear filter 

observation points 

predicted at a prediction 

is used here, equation 

(sec figure 3) 



llg 
1 

6g2 = 

llg3 

or ll~p 

or ll~p 

where: 

and 
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_j__ 0 0 wlawibwlcwldHle /l.g a 
EWlk llgb 

_l_ 0 w2aw2bw2cw2dw2c f..gc 0 (2.43) EW2k llgd 

0 0 _)__ w3aw3bw3cw3dw3e /l.g 

EW3k 
e 

= W* w ll~ ( 2. 4 4) 

= F** llg (2. 45) 

ll2P vector of filtered data 

llg = original data 

W* = diagonal matrix with inverses of weights' 
summation as clements 

W = matrix of weights assigned to each data 
with respect to each prediction point 

F**= W* W is the linear filter. 

The filter is seen, therefore, to be composed of two matrices 

W* and W The matrix W* is di~gonal with clements which 

arc inverses of summations of weights, \V"herc the element 

in the (1,1) position is the summation of the weights 

assigncll to each data (a-c) lvith respect to the prediction 

point 1. The second matrix W is a matrix of weights, each 

ro\V' containing the \oJcights assigned to each data point with 

respect to a corresponding prediction point. A weight is 

ass igncd inversely proportional to the distance hct\oJccn 

a prediction point and a data point raised to some power 

w . 
pl. (2.46) 
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If this filter is compared with the covnrinncc filter 

(equation (2.34)) it can be seen that a matrix similar .in 

I ( C C ) -1 . . b t h 1"}1 e content to t 1c -s + -v matr1x 1s a sen ere. 

functions of ·the two filters nrc however similar, since they 

both produce the filtered data A2pfrom the original data 

Ag • The filter from the weighted mean method assigns weights 

to data such that the closest points arc required to con-

tribute most to the filtering process. 

2.4 cm!BT\'ATTO:-.: or LE1\ST-SOtL\RES SliRF:\CE FTTTT:-.JG A\'D 
I.EAST-SQliARLS COLLOCr\TIO\ ~!ETllOflS 

Gravity anomalies' prediction in the Rocky ~fountains 

is problematic due ~o the ruggedness of the gravity field 

(free-air anomaly values range between - 180 mgals and 

+ 125 rugal) and its strong correlation with heights. When 

a smoother gravity field is required, the corresponding 

Bouguer values arc used. Hence, these arc the values used 

with the least- squ .. 1.rcs surface fitting technique and the 

method of weighted means. In order for a successful 

application of the collocation method in th:i s terrain, 

the corr~lation between the free-air anomalies and heights 

had to he removed from the data through the usc of a 

regression 1 inc (Sect ion 2. 2). The par:llnet.l'rs (slope and 

intercept) of the line arc then used to reduce the data 

to "height independent" gravity anomalies l)('forc a predic­

tion is effected. This is equivalent to fitting a plane 

to tlw gravity data and treating the residtwls from this 

as "height independent" anomalies, which arc foutlll to he 
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much smoother than the free air values. 

A similar approach to this, hut more rigorous, replaces 

the p1ane by a higher order surface and treats the residuals 

as above. This approach uses the least-squares surface 

fitting technique (section 2.1) to fit n surface to the 

data surrounding the prediction point, takes the 

resulting residuals and inputs them as data into n least-

squares collocation method (Section 2.2). The latter pre-

diction is, therefore, used to refine that from the former. 

This technique is used on the smoother Bouguer anomaly 

values. 

The covariance functions used to compute the necessary 

covariance matrices for the collocation me~hod (to refine 

the first prediction) arc computed from available data 

by using a polynomial approximation, to the andlytical 

covariance functions: 

{ d ) }-1 C(d) = c 0 1+( s 
which is given as (Merry, 1979). 

3 
= r 
i=l 

\ihe rc: 

d i c. 
~ 

(2. 3) 

(2.39) 

C(d),C(d 1) "'covariance expressed as functions of 
distances d, d1 

c,s "' coefficients to he determined 
and d, o1 = separation (distance) between t\vo points in 

space. 

The covariance function is isotropic, and its value docs 

not depend on the position of points in the region hut 

only on the separation l1 between pairs of pojnts. 



The data for covariance computations arc residual 

anomalies fig*"! obtai ned from fourth order polynomial 

surface fit to 2° X 2° gravity data blocks. 

The covariance value C(d1 ) for a distance d1 is 

obtained as a mean of the products of all possible pairs 

of residual anomalies 6g**at distance c1 1 apart, and can 

be expressed as: 

(2.40) 

\.;here: 

** ** . . . 6g 1 ,6g 2 arc residual anomalies at any two points In 
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space at distance d1 apart and E is mathematical expectation 

(Linear operator). Thirteen covariance values arc obtained 

in this way for thir~ecn distances from 0' to 60' both 

inclusive, and the correspondi11g observation equations are 

written according to (2.39). Since only four coefficients 

are required, we arc again faced by an overdetermined 

problem. The coefficients arc obtained by using the 

method of least-squares to solve the thirteen equations. 



CHAPTER 3 

TERRAIN TYPES AND GRAVITY DATA 

3.1 TERRAIN TYPES 

The prediction methods chosen for the evaluation arc 

to be tested in three kinds of terrain in Canada which 

correspond to flat, gently rolling and mountainous terrain 

types. It is necessary, therefore, to usc some criterion 

to help identify the different kinds of tcrr~dn. The cr­

iterion used is as follows: 

A flat terrain is considered as any area where the 

height range is 0-1500 meters; while a rolJing terrain 1s 

considered as any area with heights ranging from 1500 

meters (or less) to 2500 meters; and a mountainous terrain 

as any area with heights above 2500 meters. This is 

only used as a guide since these areas do overlap. Hence, 

the Maritime Provinces, Quebec, Ontario, Manitoba and 

Saskatchewan arc considered to have flat terrain type; 

while Alberta and part of British Columbia arc considered 

to have the rolling terrain type; and the Rocky ~lountains 

in British Columbia considered to ha\'C the mountainous 

terrain trpc. Gravity llata exist 011 tapes and lhsks for 

all the three terrain situations. llowcvcr, smaller files 

which would holll data in smaller blocks (5° x 5°, say) 

need to he created from the tapes or disks for easy handling. 
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3.2 GRAVITY DATA 

The gravity data used in this work are those 

extracted from the gravity file supplied by the Gravity 

Division of the Department of Energy, Mines, and 
~v 

Resources, Ottawa (Nassar and Vanicek, 1975). They 

consist of gravity values for about 110,000 stations 

in Canada, and are residing on seven files (for 

geographically overlapping areas). Each file consists 

of records filed sequentially; and each record (for 

one gravity station) contains, geographical coordinates 

(t,A), observed gravity, free-air gravity anomaly, 

elevation, and elevation accuracy of the station 
~~ 

(Nassar and vanicek, 1975(Appendix II)). 

Free-air anomalies,from the files,are used in the 

least-squares collocation method since, the covariance 

functions for the technique were derived using free-air 

anomalies (Schwarz and Lachapelle, 1979). However, since 

Bouguer anomaly values are smoother than free-air 

anomalies, they are used in the least-squares surface 

fit, and weighted mean metltods. Bouguer anomal1es and 

their accuracies arc obtained, from the gravity data 
IV 'V 

described above, as (Vanicek et al, 1972; Vanicek and 

Krakiwsky, iri prep) 

and 

6gB c 6gF - 0.1119 h 

a 2 n 6g = (0.05) 2 + (0.1967 ah) 2 

(3.1) 

(3.2) 
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where: 8 
l\g 

l\gF 

h 

o 2 B = Bouguer anomaly and its variance 
!\g 

o 2 F = free-air anomaly and its variance 
l\g 

= height (of station in metres) and 
its variance 

and the gravity .gradient (0.1119) is in mgal/metre. 

The corresponding expression for the variance of 

free-air anomaly is, 

( 3. 3) 

which is seen to be made up of two terms; the first 

accounting for measurement error, and the second 

being a function of the error in height. 
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CHAPTER 4 

STATISTICAL TESTINr. Of- PI:RFOR~l.i\NCJ:S 

OF I NJ>I VI IHJAL TECII\! fOliES 

The approach followed for evaluating the performances 

of individual techniques is equivalent to measuring a 

quantity (the difference between observed and predicted 

anomaly) whose value is known (mathematical expectation 
I'V 

equals zero) with a technique of unknown accuracy (Vanicek 

and Krakiwsky, in prep, Ch. 13). One can, therefore, 

determine and compare estimates of accuracies of the 

techniques for the ~urposc of the evaluation. 

In this chapter, the test st~t:istics needed 

evaluation arc defined. The statistical tests used to 

aiscss the observations and to analyse the results of 

predictions. arc described. 

4.1 TEST STATISTICS 

Test statistics arc the various measures that will 

be used to evaluate the performances of the prediction 

methods based on the differences obtained between pre-

dieted and observed gravity anomalies. In this section 

the· test statistics to he defined include (1) the 

difference o!g het\ieen the predicted and ohservecl gravity 

anomaly at a prediction point (2) the standard deviation 

o669 of the difference, (3) the mean of differences o6g 

36 
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in a sample and (4) the variance 2 S of the mean. 

4.1.1 TilE IJTJTERJ:~CE (of-g) BETNEE~ OBSERVED AND PREilTCTf:D 
1\NTJTii\ I, II; S 

The differcnce8~g between the observed and predicted 

gravity anomalies at a prediction point i~ given by: 

where 

6gobs = observed gravity anomaly 

6gp = predicted gravity anomaly 

( 4 .1) 

If the prediction technique were perfect, the difference 

ol\g would ideally be zero. But, it would. seldom be so 

because the prediction method is not perfect, and the 

observed value is not without error. It is, however, the 

best measure we have of how well the prediction method 

has performed in predicting the gravity anomaly at one point. 

4.1.2 THE STANDARD DEVIATION °o6g0F TilE DIFFERENCE 

The standard deviation a 06~f the difference ol\g is 

obtained as a quadratic sum of the stand;ud llcviations 

a6 ,a of the predicted and observed anomalies rcs-
9P l\gobs 

pectively. It is given as: 

'"here: 

(4.2) 

.. stnndard deviation of predicted nnomaly 

.. stnndnrd deviation of observed anomaly. 
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More will be said about this measure in Section 4.3.5. 

4 .1. 3 1-1EAN DT ITERE~CE 61\g 

The mean difference ~ is the mean of the differences 

66g generated hi a prediction method in a particular 
""' 

terrain, and is given by the expression: 

1 n 
CS6g = - L 66g. n. 1 1 . 

. 1= 

( 4. 3) 

where 

o6g. 
1 

= difference between predicted and observed 
anomaly of the ith sample point. 

This measure is discussed in greater detail in 4.3.4. 

4 .1. 4 STANDARD DEVI ATT ON S OF OBSE RVATT ONS ABOUT TilE ~tEMJ 

The standard deviation S of the differences 66g about 

the mean difference o6g is given by: 

1 n 
S = I { ( n J. ) i I1 {c56g.-c56g b )2 } 

1 0 s 
{ 4. 4) 

Since the mean difference o6g is an estimate of the popula-

tion mean , one degree of freedom is given up for using the 

same observations again. Hence, the usc of the factor 

1f(n-1)in (·1.4). The population mean J.l of the di[f<.'renccs 

is kno\vll to he ::era. If this is used to compute, equation 

(4.4) becomes: 

S* = 1 2 } 1 { - r o6g. n 1 
( 4. 5) 

The two standard deviations s, S* nrc the same quantities. 

The expression for Sis used \'lhcn the popuL1tion mean is 
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not known and has to he estimated from the ohscrv:1tions. 

The standard deviation s is a measure of the dispersion 

of the differences about the mean. A small value of S in-

dicates that the variables arc clustered tightly around 

the mean, while a large value indicates a wide scatter 

about the mean. A prediction method with the smallest 

ollg and s values is considered to have given the best 

p e r form an c c i n 1dw t eve r t e r r a i n s i t u a t i on i s b c in g con -

sidered. 

4.2 TilE DirrERE\JCE cS/\g AS /\ STATISTICAL SMIPLE 

The purpose in this work as stated in Chapter 1 is to 

evaluate the pcrform~mces of the chosen prediction methods; 

and the differences 'ollg between observed and predicted 

anomalies provide the necessary information for the evalua-

tion (sec 4.1.1). The quantity cSLig is generated every 

time a prediction method is used to predict at a sample 

point. If the sample points arc selected randomly (sec 

5.1.1), the quantities ollg can be regarded as random 

varjablcs, and the sample of these quantities obtained from 

using a prediction method In a particular terrain as a 

rnndom sa mp 1 e. 

4.2.1 nASlC POSTULATE 

An)' rnndom sample is consitlered to belong to a 

"" population infinite in size (Vanicek, 197-1), and the 

distribution of the population is usually postulated 

for the random sample. A very large number of random 
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variables observed in nature arc known to possess ? normal 

probability distribution (~!endcnhall, 1979). lienee, the 

PDF for the population of most random variables is usually 

the normal. The postulated PDF for the sample of differ-

ences 66g is, therefore, the normal PDF. It is necessary 

to test this.postulate for statistical validity, so that 

any in fercnce s that may eventually be made based on it 

wo~ld be justifiable. But, before going into that, one has 

to ensu~c that the observations arc free of outliers. 

4.2.2 TESTING fOR OUTLIERS 

This test examines each observation o6g separately 

and tries to check how statistically compatible it is with 

the remaining observations. The null hypothesis (il 0 ) to 

be tested, therefore, is that the observation ollg. belongs 
~ 

to a sample with PDf 2 
N(ol\g;~,s ) , where ~ is the popula-

t · d s 2 · th 1 · 1on mean an IS e samp c variance. '" (Vanicek and 

Krakiwsky, in prep (Ch. 13)). 

The test computes a statistic y which is later com­

pared with a t-distribution (tdf) with degrees of freedom 

df at some level of significance (usually 5~). The 

statistic y can also be used with the t-distribution to 

obtain a confidence interval within which the observation 

should be. The statistic y and the (1-a) confidence 

interval arc given by: 

y = 
~g. - ll 

l 

s 
( 4. 6) 
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where 

s = sample standard deviation 

u = population mean 

t 1 a= t-distrihution with (n-1) degree of freedom 
n-. '2 

and at ; level of significance 

and n = sample size. 

If the observation falls outside the confidence interval, 

it is rejected and removed from the sample. 

The test describeJ so far is for "out of context" 

testing in which an individual observation is tested 

while the existence of the other members of the series 

is disregarded. The "within context" testing on the other 

hand tests each observation within the context of the 

observation series. The necessary confidence interval 

is obtained by multiplying the standard deviation S by a 

factor obtained through a new statistic - max y which 

(Vanicek et al, in prep (Ch. 13)) accounts for the inter-

play of the individual members of the series. The factor 

can be scaled from a graph of multiples of standard 

'"' deviation against degrees of freedom (Vanicek and 

Kraki\\'skr, in prep) prepared using the max y statistic. 

The confidence interval corrcspondin!~ to.(4.7) for 100 

degrees of freedom is, therefore, given by:. 

u - < lJ + 3.4S ( 4. 8) 

where the factor scaled from the graph is 3.4. 
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4.2.3 STANDARDIZATlON OF 6/\g (o.A.g·~t) 

The outcome t of the stnndardizat.ion of the di ffcrcnce 

66g is given hy: 

t ( 4. 9) 

where: 

u - difference between observed [Uld JJrcd.ktcd nnomaly uug, CJ J: "_g- . 
uu and its standard deviation 

If oAg was a random variable with mean value and variance 

) , the outcome t would also be a stantlardized 

random variable with mean value and variance ( J.l o 2 ) t I t 
,., 

(Vanicek, 1974), However, the difference oAg is postulated 

to be a normal varia!>lc. Hence, the outcome t should be 

a standard normal variable w.ith the PDF N(t; 0,1). This 

can also be tested. 

The ~can i and variance s 2 of the standardized 
t 

differences arc given by: 

1 n 
t = ·- I t. (4.10) 

n i=l ~ 

and 

s2 1 
n 2 = - I <t. - J.lt) (4.]]) 

t n i=l ~ where: 

t, s2 = mean and va ri ancc of t 
t 

l-It "' population mean of t 

and n = sample size 



4.3 TESTTNC; TilE BAST\. POSTULATE 

4.3.1 TEST FOH Till; ~lEAN or::cj or: Dir:FEHE~\.ES ollg (or t) 

The mean 6/.\g of differences o~gis given by equation 

(4.3) namely: 

where: 

(ollg). = 
l. 

66g = 
n 

1 I (ot.g). 
n i= 1 1 

(4.12) 

difference between observed and predicted 

1 . f I . th 1 . anoma 1es ·or t1e 1 samp e po1nt. 

It is an unbiased estimator of the population mean \dlich 

is known to be zero. lienee, ideally the mean ollg should 

be equal to zero. But, it is seldom so. 

The test on ollg (or t ) , therefore, compnrcs it 
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with the population mean and tries to establish whether 

the difference between them (ollg, lJ ) is statistically 

significant· or not. The null hypothesis (H0 ) being tested 

2 
is that the sample has the PDF-N(66g;lJ, S ). 

The test procedure is similar to that described in 

section 4.2.2, but with y statistic and (1-a) confidence 
.. v 

interval given as: (\'anicek and Krakiwsky, in prep, Ch. 13) 

and 

y = 07\9 - l1 

S/ln 
(4.13) 

""07lCi" s s (4.14) 

where: 
9 - Tn tn-1 ,~ < l1 < 6/\g + r=n t a 2 ~n n-1,1--2 

s2 a sample variance 
~ = population mean 
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t 1 a= t-distrihution with (n-1) degree of freedom 
n- '2 a 

and ~ level of significance. 

and n = sample size. 

If the population mean falls outside the confidence interval 

(4.14), II is rejected, and the mean "''Kg· is statistically 
0 

different from the population mean. 

If t \vere the quantity to he tested, we only need to 

replace ol:!g and sin (4.13) and (4.14) hy t and st respec­

tively. 

4.3.2 TEST FOR ST;\:"-iDARil DEVTi\TTO:"-i 0 8/\g OF TilE DIITERE:-JC:Eot\g 

The standard deviation a 0A9of the difference oAg is 

given by equation (4.2) namely: 

0 oAg = ·.; ( 02 + 
Agobs 

02 
Ag (4.15) 

where: 

oil = standard deviation of observed anomaly 
gobs 

and oflg = standard deviation of predicted anomaly 

It reflects the errors of both the predicted and observed 

values, and should be statistically compatible with the 

difference ol\g if the prediction method is estimating its 

precision properly. The precision estimate may he optimistic 

or pessimistic. This can he determined through a test on 

the standard deviation ~&Ag" 

The test uses the outcomes t of the standardi:ation 

of the differences 6.1\gh)' the corresponding standard ,.... . 

deviations ~.Sl:!g • The outcomes ! arc cxpcctccl to have a 

stnndard normal PDF-n(t:;O,l) (sec 4.2.3); hence, the 
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sample mean t should be zero, and the sample variance should 

be unity if the standard deviations ~ 6 A9are properly com­

puted. The null hypothesis (lb), therefore, is that the 

mean t of outcomes t be not statistically different from 

zero, and that the sample variance s! be not statistically 

d ff f . ( 2)0 i · erent rom unity a • 

The mean t and variance s! arc computed using cqu<~tjons 
-(4.10) and (4.11). The test on mean t is carried out as 

in section 4.3.4. The v statistic and the (1-a) confidence 

f } h . 2 
interval or t1c test on t e variance St arc given as: 

(Vani~ck and Krakh:sky, in prep (Ch. 13)) 

2 
ti-ll nSt n ? 

y = (-;i)O ' = I -- ) -
i=l 

a (4.16) 

2 2 

and 
nSt 

< (a2)0< 
nSt 

(4.17) ---
x2 a x2 a 

where: n, 1-2 n,2 

( a 2 } 0 = unity (one) 

If the variance (a 2 ) 0 falls within the interval (4.17), 

the test passes, and the standard deviations a 8 A9are con-

s i d c r c d t o be com pitt e d p r o p e r 1 y • I f the t c s t fa i 1 s b e c a u s e 

I . 2 
t1c var1ance St is too large, this is an indication th;1t 

the precision estimates a 6llg arc optimistic. That is, they 

arc much smaller than they should he as indicated hv the 

value of the difference ot-.g. If, on the other haJH.l, the 

test fails because s~ is too small, this is an indication 

that the pr<'cision estimates a 0ll9arc p<'ssimistic. The 
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values arc much larger than they should he, and the method 

is in effect saying the predicted value is not good enough 

when, in actual fact, it is good as indicated by the 

difference o6g • 

Another approach to the test on o069 is to determine 

a measure T as in the following section. 

4. 3. 2. 1 PE RCE:.iT ,\GE (T) 0 F ABSOLUTE STA:--.lllARD T Zf: D DI FFf:RE:.iCf:S 

. t LESS TIL\N U~ITY 
r.~·-----------------

If ·the PDF of a variable is known, areas under the dis-

tribution curve \dthin any specified range (Davis, 1973) 

can be calculated precisely. In the case of a standard 

normal PDF, the are.a under the curve within one standard 

deviation on either side of the mean line (navis, 1973; 

Klugh, 1970(p. SO)) is approximately 68"; of the total area 

(figure 4). lienee, for an observation series which is 

normally d ist ribu ted, a bout 6 8 ~ of the observations should 

have values greater than or less than the mean value by one 

standard deviation. 

The standardized differences ! from 4.2.3 arc expected 

to have a standard normal PDF. If the PDF is indeed the 

standard normal - ~ (t; 0, 1) the percentage T of the 

absolute stnntlartli:cd differences t with values less than 

unity should be approximately 68~. If T \vas less than or 

greater than 68~ this is an indication that the standard 

deviations o669 used to standan.li:c o6g arc not being 

computed properly. If Twas less than 68~, o069 nrc 

said to be optimistic; and if Twas greater than 68~, they 



arc said to be pessimistic. 

T is computed from the express ion: 

T = (_2)100~ 
. n 

(4.18) 

where: 

n1 = number of absolute t less than unity 

n = s~mplc size 

Figure 4 

A normal distribution showing relative frequencies 
with1n given standard deviation distances from 

the mean(l\lugh, 1970 (p. SO)) 

4.3.3 TEST FOR NOIHl:\J.TTY 
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The postulated PDf for the differences 86g is (4.2.1) 

the normal PDF - N(ot'lg;~,s 2 ). In order to test the correct-

n c s s o f t hi s post ul ate , the d i f fer en c e s L1 .£9 arc s Lm d a nl i :: e tl 

using the estimated population standard deviation Cs;rn) 

(Sncdccor ct al, 1973 (p. 70)); and the outcomes~ arc expected 

to have a standard normal PDF-N(3;0,1). lienee the chi­

square goodness of fit test can be performed on the stan­

dardi:ed differences ~ given by: 



z = 66g - 'U 
s/ln 

where n = is the sample size. 
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(4.19) 

The null hypothesis (11 0 ) to be tested, therefore, is 

that the histogram of the quantities l is compatible with 

the standard normal PDF. 

The test essentially computes a statistic y which is 

later compared with' a. chi-square ( X~f )distribution with 

degrees of freedom df. The statistic y is computed 

according to the expression: (Vanicek et al, in prep. 

(Ch. 13)) 

y (4.20) 

where: 

a. = actual count for the ith class/segment 
1 

c. = theoretical count for the ith class/segment 
1 

n 2 = number of class/segments 

and y = chi-square statistic 

One approach for obtaining the counts a., 0. is to group 
1 1 

the standarlli :L'd di ffcrcnces t. into di ffcrcnt classes 

and (a) to count the differences ~ in each class - actual 

count a.; then, (h) to multiply the area of each class, 
1 

as represented under the standard normal curve, into the 

total number of observations- theoretical count c .• The 
1 

nppro~1ch used here (Davis, 1973) is to divide the area 

under the standarl1 normal curve into equal segments - two, 
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three, four or ten equal segments - so that the theoretical 

count is the same for each. The correspontling 1 imits for 

each segment arc Jctcrmincd from a table of the standarJ 

normal distribution, and the actual counts arc found using 

the limits. 

The (1-a) confidence interval for the tested quantity 

is given by (Vanicck ct al. in prep (Ch. 13)). 

0 < y 2 
Xn -1 1-a 2 I 

< (4.21) 

The degrees of freedom is (n 2 - 2) because the population 

mean of the differences is known. Othendsc, it woulJ have 

had to be estimated along with the population standard 

deviation from the corresponding sample statistics (86g, 

S ) , and the degrees of freedom would ha~c been 

(n 2 - 3). The 95% confidence level is used in the test. 

If y docs not fall within the interval defined in (4.21), 

the test fails, and the null hypothesis is rejected. 

According to Snedccor and Cochran (1973), this test may 

be described as a non-specific test, in that the test 

criterion is directed against no particular type of 

departure from normality. lienee, the observations may he sk-

2 
ewed anJ x test may still pass. It is necessary, therefore, 

2 to supplement the X test with the tests for skewness and 

kurtosis. 

4.3.4 TEST FOR Klll~TOSTS 

If observations arc grouped mostly around the mean, 

the distribution ls said to be peaked or kurtic. A mc:tsurc 

of peakedness or kurtosis (a 4 ) is computed according to the 

cxprcs~don: (Freund, 1975; Sncdcccr and Cochran, 1973) 
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rn4 
a4 = 

) 2 
(4.22) 

rn2 

where mk (k=l' 2 ' 3' ... ) is the kth moment of the observa-

tions about their moan. m k is g i vc n h y: 

n k L (ot-.9 . -obg > 
i=l ~ 

= (4.23) 
n 

If the observations were normally distributed the value,of 

a i should·hc 3 (Snedecor and Cochran, 1973). If the computed 

value is greater than 3, the distribution is lcptokurtic; 

and if less than 3 the distribution is platykurtic. These 

criteria arc accurate for large sample sizes (greater than 

200). In sample siies less than 200, an alternative test 

c r i t c r .i u 11 f u r i\. u r t o s i s i s ( S n e d c c o r ali d Co c h ran , 1 9 7 3 ) 

n 

~4 = 
r lobg.-obgl 

i=l ~ 
nl rn 2 

(4.24) 

where a 4 is a new measure of kurtosis. 

If ot.g were normally distributed, the value of a 4 computed 

for the whole population should be (Snedecor and Cochran, 

1973) O. 7979. Values lower than this indicate leptokurtosis 

while higher values indicate platykurtosis. Values of 

a 4 anda 4 arc computed atHl compared (sec Section 5.2.3). 

In very large samples which arc normally dist.rjhutcd, 

(a 4 - 3) should he normally distributed with zero mean 

and s tanda nl deviation of (24/n) (Snedccor et al, 1973). 

4.3.4 TEST FOR SKEWNESS 

If the clistrihution of the observations is not 
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symmetrical but has a pronounced tail on one side, it is 

said to be skewed. The distribution is negatively skewed 

if the lower (left side) tail is pronounced, and positively 

skewed if the upper (right hand) tail is pronounced. A 

measure of skewness a 3 is given hy (Freund, J973; Snedecor 

and Cochran, 1973). 

= 
(4.25) 

w h c r c rnk ( k = 1 , 2 , 3 , • • • ) i s de f i n e d i n e q u a t i on ( 4 • 2 3 ) • I f 

the sample comes from a normal population, a 3 1s approximately 

normally distributed with zero mean and standard deviation 

/(6/n) (Sncdecor and Cochran, 1973). This i~ accurate enough 

for sample si:es greater than 150. For sample sizes 

bdtwccn 25 and 200, there arc tables that could be consulted 

{at significance levels 5~ and 1~) for critical values of 

a 3 {Snedecor et al, 1973(Tahle A6)1 called a 3* in this work. 



CHAPTER 5 

COMPUT/\TTO~/\L CO:-.ISTDEI~/\TIO~S 

AND HESULTS 

5.1 CmtPUTATIO~/\L CO~SIDE!l'\TIONS 

The intention in this section is to outUne some 

computational details about the prediction methods which 

s h o ul d be con s i de red f o r e f f e c t i v e a p p 1 i c a tl on s • The 

first section, therefore, deals with such considerations 

which apply to all the methods. Subsequent sections 

treat such considerations which vary from one method 

to another. 

5.1.1 SELECTION OF POINTS 

It is essential to make the test situations the 

same or nearly so for all prediction methods. In this 

way, each method is given a fair chance, and bias is 

removed from the process of evaluation •. 

The samples for the evaluation arc selected from 

three kinds of terrain in Canada - flat, gently rolling 

and mountainous. lienee, there arc three samples in al1 • .. 
The sample for a particular terrain is made up of 100-150 

points selected randomly (for the appropriate terrain 

type) from gravity files which, for each kind of terrain, 

are set up in (5° X 5°) blocks with a 30' overlap around 

each block. The files, when set up this \·my, nrc easier 

to handle. One has easier access to a small set of data 

52 
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than if the ?>laster fi lc \~ere to he used; and the prcd ict ton 

of a sample point at the edge of a block is made possible 

by the 30' overlap. The distribution of sample points in 

one terrain is shown in Figure 5. 

The data for the predictions is assembled just prior 

to the prediction. The procedure followed for each method 

is to set up a 30' x 30' (or 1° x 1° in areas of sp<nsc 

da~a) block with the prediction point at the centre, 

and to extract from file all available data for the block. 

Then, sL:nting from the centre, points within a S' ring arc 

selected from the extracted data. The ring size is increased 

in steps of 5' each time (Sec figure 6) until enough points 

have been selected according to the maximum number of data 

points (50) specified, or alternatively, according to 

some other requirement depending on the method. In 

this way, the sane set of data (or part of) arc used to 

predict for the same sample point by all the methods. 

The distribution of data around a prediction point 

is controlled by imposing the conditions that there be at 

least one data point in :my three of the four quadrants 

arotmtl it; and that if there arc clusters of points, 

to replan' each by a weighted mean of the points constituting 

the· cluster. 

5.1.2 SURfACE FITTING TECII:--JIQllE 

The choice of the overdc tenn ined case is made for 

this technique (section 2.1) so that the method of least­

squares can he used to sol vc for the vector of coc f fi c ien t s 



figure 6 
S C' 1 C' c t i o n o f d ;t t ;1 f o r _ _r r e d k t i o n 

l. Pis the prediction point. Tn the fir~t 
5 1 rin1~ there <Ire only four d;tta points 
in t\\'O qu:tdr:mts. 

2. \~hl'll ring s i:c is inrre:tsed hy S', six 
mon' points arc picked up and the dis­
trihut ion improved. 
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c in equation (2. 7) namely: 

p = 41 c 
-n 

(5.1) 

It is essential, therefore, that enough data be selected 

to give adequate degrees of freedom for the prediction based 

on the order of polynomial chosen, and, thus, the number 

of coefficients to be determined. The criterion used is 

that the degrees of freedom be not less than half the 

number of coefficients to he dctcirmined. The data selec-

tion, therefore, continues until this condition is fulfHlcd. 

Three polynomial orders - 4th, 6th and 8th orders -

arc tested for this technique in the three kinds of terrain 

using a sample size of SO points for each terrain. The 

results summarized ii1 Table 1, indicate that the fourth 

order polynomial is quite adequate for our purpose. The 

results obtained for it arc r~asonable. While the higher 

orders give marginal improvements on the results, the coctra 

CPU times required for the improvements are too high. 

It would be uneconomical to usc them. 

5.1.3 COI.I.Ol.:\TIO~ 

Two covari.:1nce functions - one for the fl:1t and ro1ling 

tcrrnin, and one for the mount:1inous terrain - :1re used 

for this technique. The covar iancc functions were computed 

by Sclwar: and Lachapelle (1979),thc model function being 

an isotropic harmonic function (sec section 2.2). A program 

COVAX was ad;tptcd (COV/\SX) to compute the functions. It 

tnkcs as input, some essential parameters and the spherical 



PRE.DICTION 
TEC!I:'\IQUE 

9-tcm 
pol ::-no::1ial 
(Jth order) 

16-tcnn 
pol;11o:nial 
(6th order) 

25-term 
polynomial 
(Sth order) 

Table 1 

CO~WARISON OF RESULTS FOR DIFFERENT 

ORDERS OF POLYNUMIAL 

(SAMPLE SIZE = 50) 

FLAT (PRAIRIE) ROLLING 

~lean R:,lS T CPU }.1c an R~!S T CPU 
Diff. Diff % < lo Time Diff. Diff. %<lcr Time 
mgal mgal sec rngal rngal sec 

0.41 1. 77 70 3.94 -0.86 3.92 51 2.38 

0.40 1.64 79 9.44 -1.4'7 4.59 40 8. oc 

r0.6l 3.95 51 20.58 

~!OUNTAINOUS (ROCKIES) I 
~·lean 
Diff. 
rngal 

0.22 

0.15 

1.03 

R:-.!S T CPU 
Diff.% < 1 a Time 
rngal sec 

6.30 47 2.50 

5.81 43 8.45 

6.36 48 20.71 

U1 
-.J 
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distance between the pair of points, and outputs a 

covariance value as required. By using the appropriate 

essential parameters, either of the covariance functions may 

be so computed (Schwarz and Lachapelle, 1979). 

5.1.4 CO~IBINED ~JETIIOD 

The approximate function used to compute the covariance 

functions for this technique is defined in equation (2.39) 

namely: 
3 . 
I c. d~l 

. 0 1 
~= 

= (5. 2) 

Four coefficients constituting the vector ~ arc required. 

Two data blocks (sec figure 7) arc used to compute the 

coefficients. The results are summarized in Table 2, and 

the plots of the functions arc shown in Figure 8. 

5_.2 RESULTS 

The gravity anomaly values of selected sample points 

together with their standard deviations arc extracted from 

gravity files to be used as observed quantities. 

The gravity anomaly at a sample point is predicted 

using the data assembled as described in section 5.1.1. 

Us :i n g t he same tech n i que , t h i s pro c e s s i s rep e ~lt c ll 

until gra\'.itr anomalies have been predicted for every 

point in the sample. The process above is repeated for 

the remaining prediction methods, and that completes 

the test predictions for one sample. All of the above 

nrc, then, repeated for each sample to complete all 

test predictions. 



. 
Table 2 

COEFFICIENTS FOR TWO COVARIANCE FUNCTIONS 

IN Tl!E ROCKY i-lOtJNTADlS 

2 3 C(d) = c 0 + c1d + c 2d + c3d Samrle Size 

Covariance co cl cz c3 ~lean s 
Function Difference 

Block 

1 51.05 -228.81 375.10 -188.06 0.52 11.88 

2 111.91 -625.62 1018.45 -497.89 o.so 11.82 
------ ··--------- - ---------· ------- - -~--- --- -- - --- - ---

= lOS 

T 
% < 
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5.2.1 PRE!ITCTTO~S 

The results of all predictions arc stllnJTlari:::ed in 

Table 4. on page 64. The test statistics -66g, S, and T -­

tabulated have been defined in Chapter 4. (4.1.3, 4.1.4, 

and 4.3.5.1) The CPU (Central Processing Unit) time spent 

actually computing the predicted anomaly,assuming that 

all information required was available is also computed. 

lt ,docs not include time spent selecting data for the 

pred ic U on, nor the time spent computing covar i ;1ncc 

functions in the case of the collocation technique. 

5.2.1.1 TESTING FOR OUTLIERS 

The highest percentage of outliers detected using 

the "within context" test is less than 2% of the observa­

tions. The outliers are removed from the sample and the 

test statistics - o6g , S, T - recomputed before other 

tests arc-performed. 

5.2.1.2 TESTING FOR BIAS 

The null hypothesis 1n this test (Section 4.3.1) is 

that the mean tliJfcrence ng is not significantly tli fferent 

from the population mean IJ (JJ=O). The test passed at the 

95~ significance level for each sample and prcllict.ion 

method, except for the sample generated hy the sur face fit 

method in the rolling terrain which passed at the 9~)':; 

significance level. The results nrc summarized in 

Table 3. The mean differences nrc, therefore, not statis­

tically diffe~cnt from zero. 



PREDICTIO::-.z 
TECll::-.ziQUES 

1 
Least-squares 
surface fit 

2 
Least-squares 
Collocation 

3 

h"eighted 
Neans 

4 

Combination 

of 
1 and 2 

Table 3 . 

RESULTS OF TEST FOR BIAS 
AT 95% SIGNIFICANCE LEVEL 

FLAT(PRAIRIES) ROLLING 

Mean Diff. Test for ~lean Di ff. 
Bias 

mgal mgal 

0.01 Pass -0.73 

-0.32 Pass 0. 2 0 

0.17 Pass -0.68 

. I 
----

Test for 
Bias 

-
-

Fail 

Pass 

Pass 

MOUNTAINOUS(ROCKIES) 

~lean Di ff. Test for 
Bias 

mgal 

1. 85 Pass 

o.ss Pass 

0.54 Pass 

1. OS Pass 

-------

I 

' 

C\ 
t,... 
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5. 2 .I. 3 SURfACE fTT ~fETIIOO 

The performance of the least-~([Uares surface fit 

technique in the Prairies, with mean difference and 

standard. deviation values of 0.01 and 2.40 mr,a1s (Table 4), 

is reasonable. Its T value of 74~ is greater than 68~. 

Hence, some of the tcchn i que's prcc is ion cs t ima tcs (a 66g ) 

arc pessimistic. That is, they arc larger than expected 

as indicated by individual differences o6g • 

In the rolling terrain, the mean di ffercnce failed 

the test for bias at the 95~ significance level, but 

passed at the 99~ level. The standard deviation is, however, 

reasonable compared to the performances of the other 

techniques 1n this terrain. The T value of ~0% is less than 

68%. Some of the prbcision estimates arc, therefore, 

optimistic. 

In the Rocky Mountains, the mean difference obtained 

is not significantly different from zero, and the standard 

deviation compares very well with that of the collocation 

method (Table 4). The T value again indicates that the 

technique has computed some optimistic precision estimates 

in this terrain. 

The trend shown in these results is that th<.' perfor­

mance of the technique worsened as we go across the tahle 

(Tnhlc 4) from the flat terrain to the mountainous terrn in. 

This is attributed first to the fact that the density of 

gravity data coverage, in relative terms, is best in the 

Prni rics and \~orst in the Rock}' ~fountains; and second, to the 



fact that the degree of ruggedness of the dat:t incre~ses 

as we approach the mountninous terrnin from the flat 

terrain. It is felt that the former contr:ihutes more 

65 

than the latter, to the clccl ini ng performance of the tech­

nique since there is not enough data to work with. It is 

also noticed that while the individual precision estimates 

in the Prairies arc pessimistic, those in the rolling and 

mountainous terrains arc optimistic. The estimates in 

the Prairies arc, in fact, closer to reality than those 

in the other two kinds of terrain. This is again attri­

buted to the two factors mentioned above. 

The time of computation for the Prairies is seen to 

be about twice as high as in the other kinds of terrain. 

This is due to the data coverage too, and the maximum of 

SO points specified (Section 5.1.1) is usually obtained 

in this terrain. The technique docs not take much time 

in computing. 

5. 2 .1. 4 COLLOCJ\TI ON ~tETIIOD 

The least-squares collocation method gave a good per­

formance in the flat terrain. The mean difference is not 

statistically diffcrt'nt from zero, and the standard dt'via-

t ion i s b c t t e r t h an t h a t o h t a in c d 'd t h the sur fa c c f i t 

technique'. Its T value indicates that its precision 

estimates arc pessimistic. The time of computation in this 

terrain is higher than either of the times in the other kinds 

of terrain. The reason for this is as explained above. 

(Section 5.2.1.3) 
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In the rolling terrain, the technique gave the best 

performance, compared to the other two techniques. Its 

mean difference and standard deviation values arc 0.20 and 

3.94 mgals respectively. Its T value also indicates 

that it computes pessimistic precision estimates. 

The performance of this technique in the Rocky Mountains 

is comparable with that of the surface fit method in the same 

tcrrain,though with a hctter mean difference of 0.58. Its 

T value is 57% indicating a little optimism in its precision 

estimates. 

It is noted that, of the three techniques under study 

in this work, the least-square collocation takes the greatest 

CPU time for computations in any kind of terrnin. Tt takes 

about twice as much time as the surface fit method and 

four times as much time as the weighted ntean technique. 

Nost of the excess time is spent in the inversion of the 

covariance matrix C~s + ~v) in equation (2.26) namely: 

= C (C +C ) -l t.g 
-sps -s -v -

(5.3) 

The dimensions of this matrix arc the same as the number 

of data (maximum = SO) used for the prediction. The only 

matrix in\·ertcd in the surface fit technique has dimensions 

equal to the number of coeffJcicnts (9 for 4th order poly-

nomial) to he determined, \-Jhilc the weighted mean technique, 

if expressed in matrix form, has only a diagonal matrix 

to invert (Section 2.3.1, equation (2.43)). 

l.cast-squarcs collocation technique has consistently 

performed well in the Prairies nnd rolling terrain. This 



is attributed to the covariance function used which is 

considered very appropriate for Canada excluding the 

Rocky ~fountains. 

The trend noted above for the surface fit method, 

with regards to the decline in the performance of the 

prediction technique as we move across the tahle from 

flat to mountainous terrains,is also apparent here. 

The collocation method is observed to be more 

realistic in estimating its precision. 

5.2.1.5 WEIGHTED ~IEA:--;S TI:Cfi:\IOUE 

h7 

The best performance in the Prairies is given by the 

weighted mean methrid with a mean difference and standard 

ucv.i.ation values uf 0.17 anu 1.19 mgals. 1\ T valu0 of SZ~ 

indicates that some of the technique's precision estimates 

cd66g ) arc pessimistic. 

In the.rolling terrain, the performance of the technique 

is comparable with that of the surface fit technique and 

is quite reasonable. The T value indicates optimistic 

precision estimates. 

In the Rocki cs, the tech1d que gave the hcst perfor-

mancc \\·ith a mcon difference of Ou54 mgals, and a standard 

deviation of 7.73 mgals. Again the precision estimates 

arc optimistic. 

The performances given by this techniquc,thercfore 
' 

is surprising considering that the concept it uses is 

a simple one requiring no modelling of the gravity field. 



It is the fastest of the three techniques being lnvcsti-

gated. The decline in performance as the data coverage 

becomes more scarce, and the terrain (or data) becomes 

more rugged is apparent here too. It is seen to have 

the worst performance in estimating its precision in 

the rolling and mountainous terrains. 
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5.2.1.6 Cm!BT~ATTO~ or SURfACE FIT AND COJ.LOCt\TIO~ METIIODS 

The mean difference and standard deviation values 

given by this technique which is appl icd only in the 

Rocky Nowttains arc reasonable. The mean difference is 

not significantly different from zero, and the standard 

deviation is improved compared to those given by 

the surface fit and collocation methods. The T value also 

indicates that the technique's precision estimates arc 

very realistic. The time of computation, is, however, 

rather high·, and the quest ion which comes to mind is 

whether the improved performance is really worth the extra 

time spent, especially when the weighted mean method 

took one eighth of the time and gave better results with 

the same sample. 

5.2.2 TESTl:-.:G FOR ClPTHIIS~! A:\]) PESSH!fSill 

The test for the standard deviation a 669 is des~rihcd 

in section 4.3.4. It uses the standardi::cd differences 

! expected to have a standard normal PDF- N(t;O,l), and 

- . 2 checked their means t and variances St for statistical 

compatibility with the corresponding standard normal 



Table 4 
RESULTS OF ALL PRf:DTCTIO~S 

PREDICTI<l\ FLAT (PRAIRIES) ROLLI~G 

TEOr-;IQUES ~~-nlr- Si-r- = lSO lSO 
·:EA.\ DIFF S CPU ~:EA.\1 DIFF s 

ctJg i 5 * T TI~lE S* T 6!Jg 
I":'. gal r.IQal 0, sec I mual rnr.al g.; ·a ..... 

LEAST-
SQUARES 0.01 2.40 74 11 -0.73 4.42 40 
SURFACE fiT 2.40 4.47 

lEAST-
SQm.RES -0.32 1.88 76 19 0.20 3.94 82 
COLLCCATIQ~ 1.88 3.95 

h"EIGITED 0.17 1.19 82 6 -0.68 4.44 21 

~lEA.~ 
1.19 4.47 

CQ\ffii~TIO~~ 
OF 1 A\'D 2 

~- ----

: MJIJ\'TAI~OUS (ROCK! ES) 

110 

CPU }[':A.~ DIFF S 

!I o!Jg 
~* T THlE .... 

sec . mgal mgal o, 

" 

6 1.85 10.76 37 
10.87 

13 0.58 10.85 57 
10.86 

3 0.54 7.73 18 
7.71 

1.05 8.94 63 
8.89 

CPU 
TD!E 
sec 

5 

10 

2 

16 

':;\ 
c.!) 
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parameters- O,and 1. The results of the tests arc summarized 

in Table 5. T values (Section 4.3.2.1) arc also included. 

The tests on means t passed at the 95". significance 

level except for two samples generated in the rolling 

terrain by the surface fit method and the weighted mc~:m 

technique. lienee, but for these two samples, the means of 

outcomes t arc not significantly different from zero. On 

the other hand, the tests on the variances St 2 fail eel 

for each sample and prediction method at the 95~ level of 

significance. 

From the standard deviation (St) values in table 5, 

it is seen how the outcomes t arc distributed around the 

mean value. A small value of st shows that they arc grouped 

tightly around the mean. In effect, the quantities ! are 

closer to zero in absolute value. This indicates that the 

precision estimates o~ arc pessimistic. If on the other 
vl1g 

hand the standard deviation st is large, this shows that 

the quantities ~ arc larger, indicating that o 6 L1 9is optimistic 

- that is, o is smaller than expected. These indications 
oflg 

arc also seen in the T values '"hich ~He grcGter thGn or 

lesser than (18':, as oot.g arc pessimistic or optindstic. 

While the collocation method ga\'C pcssiPtistic precision 

estim:ttcs in the flat and rolling tcrrt1ins, the csti.matos 

seem to he more realistic. The mcthotl perfonJCd best in 

estimating its precision in the three kinds of terr~dn. 

The mctholl of weighted means gnve the largest values of 

St in the rolling and mountainous terrains. Its precision 



~REDICTIOr-:: 
frECHNIQUES 

LEAST 
SQtJ'J..RES 
StiRFACE 
FIT 

LEAST 
SQUARES 
COLLOCAT-
IO~ 

V."EIGHTED 
!·1EANS 

Table 5 

RESULTS OF TESTS FOR OPTIMISM 

AND PESSIMISM AT 95% SIGNIFICANCE LEVEL 

FLAT (PRAIRIES) ROLLING MOUTAINOUS (ROCKIES) 

Samole size- 150 l50 1 1 0 

lestton t 

-
st t st t st 

T T 

Test on s; Test on t Test on s! Test on t Test on S 2 

mgal mga1. ¥; mga1. lngciT '(; - IIII:jdJ. Illl':jdJ. 

0.03 1.13 74 -0.49 2. 61 40 0.24 3.60 

Pass Fail Fail Fail Pass Fail 

-0.02 1. 25 76 -0.03 1. 74 82 0.01 2.05 

Pass Fail Pass Fail Pass Fail 

0.31 1. 23 82 -2.89 17.56 21 1. 73 24.97 

Pass Fail Fail Fail Pass Fail 

-----

T 

~ 

37 

57 

18 

-.J .... 
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estimates arc too optimistic. 

5. 2. 3 TESTT NC: FOR :-JOR~IJ\ I.T TY 

The basic postulate for the differences 6!:5J , \vhich IS 

2 the normal PDF-N(66g; ~,s ), is being tested through the 

standardized differences ~' by checking the statistical 

compatibility of the histogram of ~ with the standard 

normal PDF. The test failed for each sample and prcdic-

tloh method at the 95~ significance level. The distribu-

tions may, therefore, be kurtic or skc~ed. Hence, measures 

of kurtosis and skewness are computeu (sec sections 4.3.4, 

4.3.5). The results of these computations arc summarized 

in Table 6. 

There is no obvious trend that could be read into 

the values shown in Table 6 with regards to whether the 

observations become more skewed or kurtic as the terrain 

becomes moxc rugged or as data becomes more scarce. The 

highest skewness measure recorded is - 2.41, which is sig-

nificant at the 5' level. The remaining skewness measures 

but one are also significant at the 5% level. However, the 

observations arc generally not badly skewed. The two 

measures df kurtosis computed ( a 4 ,a4 ) both compare well 

except for the observations gcneratell in the mounta.inous 

terrain by the \oJeighted mean and surface fit techniques. 

While a 4 indicates that the distributions arc only slightly 

leptokurtic (compare 3.86 and 4.50 to the value of 3.00 

for observations with normal PDF) the other measure a 4 
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indicates that they arc more so (the values 0.07 and 0.071 

arc much less than 0.7979 for observations with normal PDI:). 

The latter measure is, however, expected to be more accurate 

for small sample ~izes. Hence, the nine samples are 

leptokurtic. This situation is not expected especially 

since outliers have been removed from the samples. It is 

believed that there arc some other errors in the samples 

which arc not accounted for, and which affect the values 

of the standard deviations of the samples. 
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CHAPTER 6 

CONCLUSIONS 

The performances of three prediction methods suitable 

for gravity anomaly predictions at bench marks have been 

evaluated for three terrain situations in Canada. The 

t~~t sittiations were set up such that each technique 

was given a fair chance (Section 5-l). 

It was found for the least-squares surface fitting 

technique, that a fourth order polynomial was adequate 

for predictions iri the three terrain situations (section 

5.1.2). The method was found to have performed well in 

the flat and rolling terrains but, not so well in the Rocky 

Mountains (Table 4). It was simple to usc and did not 

take much .computer time in an overall sense; and it per­

formed better than the method of weighted means in estima­

ting its precision (Section 5.2.2). 

The least-squares collocation method gave consistently 

good results in the flat and rolling tcrr~dns (Table 4). 

The CO\'ariance function used in these terrains was felt 

to be quite adequate for Canada excluding the Rocky ~loun­

tains. Its performance in the Rockies was about the same 

as that of the least-squares surface fitting method. The 

technique rcquire~.l t\"ice nnd four times as much time for 

comput:ttions as the surface fitting nnd weighted means 

techniques respectively (Table 4). It, however, performed 
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best in estimating its precision (Section 5.2.2). 

The method of weighted means was the simplest of the 

three techniques conceptually. It performed well in all 

the three terrain situations and gave the best results 

in the flat and mountainous terrains (Table 4). The 
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estimates of its precision were the poorest (Section 5.2.2). 

It was, however, the fastest of the three techniques 

(Table 4) • 

The combination of surface fitting and collocation 

methods applied only 1n the mountainous terrain gave 

improved results compared to either the surface fitting 

technique or the collocation method. It, h9wever, took 

eight times as much time as the method of we~ghted means 

which gave better results (Table 4). 

6.1· RECOHHENDATIONS 

In the evaluation of the performances of the three most 

common prediction methods, it was seen that the method 

of weighted means gave the best performances - in an 

overall sense - for point anomaly predictions in three 

kinds of terrain (Table 4). However, the technique 

performed poorly in estimating its precision compared 

to the collocation method (Section 5.2.1.5). In an 

attempt made to discover the reason for the superior 

performances of the technique over those of the others, 

the weighted mean method was expressed as a filter and 

compared with the covariance filter (Sections 2.2.1, 

2.3.1). The two filters were set up such that the matrices 



77 

constituting them might be compared. The main difference 

between them was that while the corelations of gravity 

anomalies at observation and prediction points were 

modelled through a covariance function for the covaria­

nce filter, the weighted mean method did not model core­

lations, but it assigned weights to observed anomalies 

such, that t~e closest to the prediction point contri­

buted most to the predicted value (Section 2.3.1). The 

exact structures of the two filters have not been found 

yet. However, the weighted mean method was seen to be 

a better filter than.the covariance filter. 

It is recommended, therefore, that the weighted 

means method be used where point predictions of gravity 

anomalies are required. It is a fast and economical 

technique to use. The technique's precision estimations 

must, however, be improved upon. 

It is also recommended that the possibility of 

designing a covariance function for point predictions 

of gravity anomalies from the concept used in the wei­

ghted means method be investigated. 

6.2 CONTRIBUTIONS 

(i) The most hopeful techniques for point predictions 

of gravity anomalies have been evaluated giving the best 

possible chance to each method. 



(ii) The mathematical models for the collocation 

and weighted means techniques were compared with the 

intent to discover why the latter was a better filter. 

(iii) The results of predictions by the ·three tech­

niques chosen for evaluation were vigorously tested 

and assesed statistically. 
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