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ABSTRACT

Long baseline interferometry software and data,
developed by the Canadian L.B.I. group at York University,
has been combined with a least squares adjustment package.
‘The options have been implemented to accept an input of
both weighted parameters and functional parameter constraints.
The results are then analysed statistically, including a
chi-square goodness-of-fit test on the residuals,'a
rejection criteria for residual outliers, and a chi-square
test on the variance factor.

The package has been developed with close regard to
computer economy. Computer storage space has been reduced
by 60% and processing time has been reduced by 96% compared
with the previously used maximum likelihood adjustment
routines. This increase in efficiency has resulted in an
ability to input a large number of observations and,

accordingly, in an improvement in accuracy.
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CHAPTER 1
INTRODUCTION

This thesis describes a least sqﬁares adjustment
package written for one specific geodetic method: long
baseline interferometry (L.B.I.). The importance of
L.B.I. to the determination of geophysical and geometrical
properties of the earth has been extensively discussed
by such authors as Jones [1969], Meeks [1976], Cannon
[1978], and Shapiro [1978]. ‘Only a brief deséription is
thus given of L.B.I. principles sufficient to outline the
L.B.I. process and the specific computational problems.
The main concern has been to produce an efficient
adjustment and statistical testing package to process
‘LQB.I. observations. The routines developed from this
work form a contribution to the Canadian L.B.I. software
system [Cannon, 1978; Langley, 1979].

The initials V.L.B.I. will be encountered in some
literature, the V standing for "very'. There is no
implied difference between V.L.B.I. and L.B.I. except
that L.B.I. tends to be used by the Canadian workers
centred at York University in Toronto. The other main
groups working on L.B.I. are the '""East Coast Group' which

includes the Massachusetts Institute of Technology, in



Cambridge, Massachusetts, the Haystack Observatory,
Westford, Massachusetts, and Goddard Space Flight Center,
Greenbelt, Maryland. The '"West Coast Group” is based at
the Jet Propulsion Laboratory, Pasadena, California. A
European group 1is centred at Bonn, West Germany.

The historical background to the Canadian system is
that radio astronomers at the Herzberg‘Institute of Astro-
physics in Ottawa, the Appleton Laboratory in the United
Kingdom, and the University of Toronto, have developed
instrumentation to study compact extragalactic radio
sources. These organisations are concerned mainly with
astrophysics. Use of the Canadian observations és a
geodetic tool was initiated by the Geodetic Survey of
Canada [Jones, 1969], and was continued by a group at
York University in Toronto.

The group at York University have developed software
to determine parameters of geodetic interest that uses a
maximum likelihood adjustment. The maximum likelihood
routines were considered very expensive to use on the
computer. The central processor unit (C.P.U.) requirement
in time and immediate access store space were restrictiveiy
high to the extent that from an observation period involving
5,700 observations a sample of only 180 were processed to
give results [Langley, 1979]. A more efficient adjustment

package would allow the economical use of the full set of
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observations, and correspondingly a decrease in the
standard error of results, since accuracy of a set of
independent observations is proportional to the square-
root of the number of observations.

The aim of this thesis has been to produce an
efficient least squares adiustment packagé. The options
have been implemented to accept an input of both weighted
parameters, and functional parameter constraints.
Statistical analysis used includes a chi-square goodness-
of-fit test on the residuals, a rejection procedure for
residual outliers, and a chi-square test on the variance
factor.

A data set of 180 observations was processed at York
University using the established computer package,
including the maximum likelihood adjustment. This package,
the data set of 180 observations, and the full data set
of 5,700 observations were then transferred to the
University of New Brunswick. The author reproduced the
output computed at York with the maximum likelihood
adjustment. A least squares adjustment was then used to
produce the same results, but at a mdre economical level.
As a result the immediate access store requirement was
reduced by 60%, and C.P.U. time was reduced by 96%. The
full data set of observations was then adjusted and

standard errors were found to be reduced by a factor of



approximately five. The author's least squares adjustment
routines were thus considered ready to be used in any
subsequent L.B.I. observation set analysis.

Chapter 2 describes the basic principles of L.B.I.,
showing thé mathematical models used in the adjustment,
and summarising the observing process. Chapter 3 shows
the derivation of the least squares adjustment equations,
and Chapter 4 outlines the statistical tests available
in the routines. Chapter 5 comments on some attributes of
the author's computer subroutines, especially those which
have allowed the reported savings in computer storage
space and C.P.U. time. A comparison of results between
the maximum likelihood and the least squares adjustment
routines, including results from a full observation set,
is given in Chapter 6. Chapter 7 concludes with recommen-

dations for future work.



CHAPTER 2
A BRIEF INTRODUCTION TO L.B.I.

This chapter gives a summary of L.B.I. as used for
geodesy. Some aspects of the radio sources are discussed.
Definitions are given of the observables: delay and friﬁge
frequency. Parameters which are typically resolved such
as the baseline components, source directions, and clock
polynomial coeffiéients are outlined. Simplified descrip—‘
tions are given of the L.B.I. models used in the adjustment
process, and also given is a limited description of the

L.B.I. observing and processing sequences.

2.1 The Source of the Radio Signal

In L.B.I. observations are made of the signal emitted
from compact extragalactic radio sources which, for astro-
physical purposes, can be classified into quasars,

Seyfert galaxies, and BL Lac type objects. Definitions

of these source types are befond the scope of this thesis.
The sources are situated at extragalactic distances allowing
an assumption of being at infinity. Angular size and
proper motion are negligible to the extent that the

sources may be considered as points fixed on the celestial
sphere. These sources can thus be useful to define a

stable celestial reference frame.



Since the radio signal received is weak directional
antennae of dimensions between twenty and forty metres
in diameter are commonly used for reception. The signal
reaches the earth in the form of plane wave-fronts because
of the sources being sited at such large distances. It
is these plane wave-fronts which, on being received by

pairs of antennae, give the L.B.I. observations.

2.2 Definitions of Observations of Delay and Fringe

Frequency

An L.B.I. baseline, shown in Figure 2.1, is defined
as the vector between two antennae which record the plane
wave-fronts from a source. Delay is the time taken for a
particular wave-front to pass between the two antennae.
Because the earth is rotating both antennae will be
moving and introducing a Doppler shift to the recorded
signal at each station. Fringe frequency is the difference
in Doppler shifts of the recorded signal at each station.
Delay and fringe frequency are the observations of interest
to geodesy and for the»respective instant of time express
a relationship between the baseline vector and the direction

to the source.

2.3 Resolvable Parameters

Parameters which may be deduced from L.B.I. include
the three dimensional baseline vectors, and the directions

to the sources. The absolute position of the baseline
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Figure 2.1. L.B.I. Baseline Receiving Plane Wave-fronts.



vector cannot be resolved from L.B.T., so baseline results
are usually given as differences in three dimensional
cartesian coordinates of the respective stations. Source
directions are conveniently expressed in the form of right
ascension and declination.

A third set of parameters are clock polynomial
coefficients. A polynomial is used to model the difference
in time as given by the clocks at each station. The in-
coming signal at each station is recorded on magnetic tape
with precise time marks given by a clock. These clocks
will have errors, and these errors will not be constant.
Absolute error cannot be detected, only the difference
between the two clocks affect L.B.I. observations. A
polynomial in time is thus used to represent the error
difference between the two clocks: an epoch difference
gives a zero order polynomial, a rate difference implies
a first order polynomial, and a difference in acceleration
gives a second order polynomial. The order of the clock
polynomial should represent the instability of the clock
mechanisms, but the exact modelling is unknown and either
an order is assumed, or a search is made with varying
orders of polynomial. The polynomial fit which forms a
minimum of the sum of the squares of the weighted residuals
can be accepted as the best model.

Clock polynomial coefficients are not directly useful

to geodesy, but their values do indicate the stabilities



of the clocks, and their correct modelling is important
to yield parameters which are directly useful to geodesy.
There are other parameters which can be determined
by L.B.I. such as the earth's rotation, and polar motion,
but these are held fixed in the model routines used by

the author.

2.4 The L.B.I. Models

Models are mathematical relationships between sets
of parameters and observations. They are used to derive
the solution equations for the parameters. 1In L.B.I.
there are two classes of models: a non-linear parametric
model relating observations and parameters, and a linear
model relating only parameters.

The non-linear parametric class of model can be
derived from Figure 2.2, showing a baseline of length
|2] between stations 1 and 2. The source is essentially
at infinity in the direction of unit vector §. The angle
6 is between the directions to the source and of the
baseline vector.

In Figure 2.2 the wave path difference (ct) 1s the
distance travelled by a wave-front between the two L.B.I.
stations. This shows the delay observation. The speed
of 1light is ¢ and the value of delay is 1. The formula

for the geometric value of delay can be deduced:
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Baseline
vector

Station 2

Figure 2.2. Two L.B.I. Receivers Observing a Source.
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cos’e = ng (2.1)
T= l%l cos 0 (2.2)

The observed value of delay is measured from the
difference in the times, as given by the two clocks, that
the wave-front is received at each antenna. The measured
delay thus involves a polynomial to model the clock's
error difference. The same symbol T can be used for

measured delay.
-ﬂL cos 6+ a.+at+at™+ ..., (2.3)

The argument of the polynomial 1is time (t), and the co-
efficients are a, i=0,1,2,...

Fringe frequency has been defined as the difference
in Doppler shift of the received signals at the two stations.
This is equivalent to the rate of change of cycles of the
received signal along the wave path difference. The
number of cycles of the received frequency along the wave

path difference equals frequency multipled by delay:
cycles = frt (2.4)

Measured fringe frequency (F) equals the rate of change of

the number of these cycles.
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F = f 3L (2.5)

Differentiating equation (2.3) with respect to time

O Fh

| 2] siné %9 + f(a; +2a

+ S td ) (2.6)

The clock polynomial coefficients of the fringe
frequency observation equation (2.6) are in theory functions
of their respective coefficients in the delay observation
equation (2.3). This could be implied as a constraint
into the adjustment or could be allowed to vary, but
subsequently checked to validify the adjustment.

When three stations simultaneously observe a single
source further constraints may be imposed on the adjust-
ment. The differences in clock errors around the three
baselines sum to zero. This is implied by the summation
around the three baselines of each respective order of

polynomial coefficient to zero [Langley, 1979].
3 .
T aJi =0 (2.7)

The number of the baseline is j, and i the order of the
polynomial.
Previous estimates of parameters can be introduced

into the adjustment as parameter constraints. A source
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position, for example, can be set equal to a pre-determined
value with a weight representing the amount of confidence
in the value. This is essentially an observation of a
parameter,

There are two models in the L.B.I. adjustment. The
first describes the expressions for the measured observations
of delay and fringe frequency. The second describes the
constraints which may be imposed on the parameters. A
relationship between parameters which is known to be true
is termed a functional parameter coﬁstraint, while an
estimation of a parameter with a weight is termed a weighted
parameter constraint [Mikhail, 1970]. 1In the author's
adjustment the functional parameter constraints are not
rigorously applied, but are included as observations of
parameter relationships with high weights. This is
further discussed in Chapter 5.

Equations (2.3) and (2.6) are simplifications of the
equations used in the York L.B.I. software [Langley 1979;
Cannon 1978]. The reduction phase of the process involves
a tropospheric correction. The York software model
includes the effects of the retarded baseline, precession,
nutation, polar motion, solid earth tides and the variation
of UT1-UTC.

The constraints on the clock polynomials are only

correct with perfect instrumentation and a simplified
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earth model. The delay clock polynomials are due to a
combination of the atomic frequency standard and the
clock, while the fringe frequency '"clock" polynomials

are due to a combination of the atomic frequency standard
and the oscillator. The sum to zero around a three-
baseline array is not always implied because of the effect

of the retarded baseline.

2.5 The L.B.I. Observing and Correlation Process

An L.B.I. observation period may last for several
days with perhaps an observation every minute. There is
thus a large number of observations and computer control
and magnetic tape storage is required to process the data.
Two antennae simultaneously record the signal from the
same source. The received signal band at each antenna
is translated to a lower frequency band to allow recording

on magnetic tape together with accurate timing records.
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At a later date two tapes for each baseline are played
back at the correlator facility. Using the recorded

time signals one tape is delayed with respect to the

other until obtaining a maximum correspondence between

the two signals. The observations of delay and fringe
frequency for an instant of observation time are abstracted
and recordéd on magnetic tape. The final processing stage
is an adjustment using the delay and fringe frequency
observations to resolve the parameters of baseline

vector, source direction, and clock polynomial coefficients.



CHAPTER 3
LEAST SQUARES ADJUSTMENT

In this chapter the least squares solution is derived
from the two classes Qf L.B.I. models. The least squares
solution gives estimates for the parameters which minimise
the summation of the squares of the weighted residuals
[Mikhail,‘1976]. The true parameters cannot be deduced,
but least squares gives a best estimate of parameters.

The derivation uses the Lagrange method. The covariance
matrix of the results is deduced, and the expression 1is
given for the variance factor.

Symbols used in this chapter arc underlined capital
letters (e.g. A) for a matrix, and underlined lower case

letters for a vector (e.g. x°, §).

3.1 Derivation of the Least Squares Equations

3.1.1 Input for the adjustment,

A major input into the adjustment is the vector of
observations pertaining to the first model of Chapter 2
(2,3), (2.6), and its covariance matrix (92). The second
model outlined in Chapter 2 involves the constraint obser-
vation vector (&X) and its covariance matrix (QX).

The two mathematical models for L.B.I. relate the

parameters and the observations.

16
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F,(x,8) = (3.1)

|

52(5’&)() = (3'2)

(k=

The observations will have errors, so the true
observations (gﬁgx) are given as the observation plus the
residual.

L=g+v (3.3)

(3.4)

i
=
+
<

The a priori parameter vector (5?) is the initial
guess of the parameters. Added to the parameter increments

(8) gives the correct parameters.
X = 50 + 8 (3.5)

The adjustment will give an estimation of the parameter

increment vector.

3.1.2 A Taylor's expansion of the models

The models are currently in a form expressing the
true parameters and true observations. The & priori
parameters and observations, and the parameter increments

and residuals, can be involved using a Taylor's expansion,
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but neglecting second order terms.

o 851€X , )
El(?i’&) = 51(5 ) — s
32& EO,&
9F1 (x°,2)
+ v (3.6)
3L o 9
The misclosure vector is
wy = Fi(x%,0) - (3.7)

The first design matrix, sometimes termed the A matrix is

3F, (x°,2)
L (3.8)
9X

The second design matrix, or B matrix is

9F, (x°,2)
B, = ————— . (3.9)
9%

The model can thus be expressed:

\ +Al§_+_B_11=_O_. (3.10)
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A similar expression can be derived for the second model.

Wy, * A, 8+ Byv, = 0. (3.11)
Neglecting the second order terms in the Taylor's
expansion can falsify the derived equations. If the model
is linear, then the second and higher order terms will be
zero. With a non-linear model, but with a priori parameters
selected as close to the true parameters, then the second
and higher order terms will approach zero. In general
one would continue iterations of the adjustment using

updated parameter values until the iterations cease to

significantly change the results.

3.1.3 The least squares solution by the Lagrange

method
The sum of the weighted squares of the residuals can

be expressed in matrix form for the two models:

vi P, v (3.12)
vip v (3.13)
—X —X —X ’

where Bz and Bx are the weights of the respective obser-
vations.

The variation function is formed:
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¢ =v Py vV POV,
+ Zkt(A § + B, v + w,)
=1*=1 - =1 = =1
. .
* 2k (A, 6+ By v+ ow,) (3.14)

k1 and kz are column vectors of Lagrange correlates which

will be determined. The extremal value of the variation
function is found by differentiating with respect to the

unknowns (v, V. g; k. and EZ) and equating each derivative

1

to a zero vector.

90 _ .t t _
gi = 2V Bg + 2&1 Bl 0
. Py v v Bl k=0 (3.15)

30 _ .t Lt _
ov_ sz Pe t 2132 B, 9
—X

P Vv, *B; k=0 o (3.16)
3¢ _ .t t _
§§ - 251 Al + 252 Az 9

AT ky + AT ky=0 (3.17)
:,)a(bl - él _5_ + El v o+ El =9 (3.18)
3
S_gl_ = éz 55_ + EZ Kx +v12 =9 (3.19)
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Simultaneous solution. to equations (3.15) through
(3.19) is the least squares solution. The result gives
the minimum of the sum of the squares of the weighted
residuals since the second derivatives of (3.15) and (3.16)
are positive through the definition of the weight matrices
P, and P being positive definite.

A hypermatrix expression is formed for the simultaneous

equations to be solved:

_ S - _
t

P, O By O 0 v 0
0 p 0 Bt 0 0
X — =2 - —X -~

B0 0 0o Ak |y |ro G20
0 B, © 0 A, k, uly}
o o A 0o o] |s 0

The method of partitioning of matrices is used where,

given
D E b'e d
[’"t R R (3.21)
LE F X2 4,
then
Xy = 0l x, +d;) (3.22)
and
(F-e" 07t E)x, - BT DTNy v d, =0 (3.23)
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where matrix D is not singular. Equation (3.20) is solved:

1

i p,oo | B K

N ! (3.24)
~ -1 t =
v=-P," By k (3.25)
v =-p 1 Bl (3.26)

Further partitioning will result in expressions for all

the variable parameters.

~ _1 ~ .
ko=t Eewp (3.27)
where M, =8, p ! gt (3.28)
Mp=b B By -4
ko= mt oA, Bew) (3.29)
X 7y 4y oWy :
where M, =8, P L BE (3.30)
Ma=5, B By :
§=-at Mt A +al Ml g )nl(At Ml wo w At Mot vy
0= (4 Mym Ay Ay Mpm Ay (A Mym Wy v A, M Wy
(3.31)

The 'hat' symbol above the solution vectors signifies that
these are only the best estimates as given by the least

squares solution. Another defined solution might give
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different results, and neither may be the true results.

. . t -1 t -1 .
The normal equation matrix (él Ml él + 52 ﬁz &2)~1S

seen to be the summation of normal equations due to the

two respective models. The vector of constant terms

(A7 M7y ¢ A MY

vectors due to the two models.

Kz) is similarly the summation of the

3.1.4 Solution simplification of a parametric model

Equation (3.31) is used in the author's adjustment

routines, but with some simplification. Both El and EZ

negative unit matrices from their definitions of being the

are

derivatives of the model with respect to the observations.

The definition of a parametric model is that B = I or

B, = -1 (3.32)

B, = -1 (3.33)

If the constraints are not used, or not all of the
parameters are involved in the constraints, then there
are some modifications to the contributions due to the
second model. Without constraints, these contributions
reduce to zero. ‘When only certain parameters are involved
then only additions corresponding to those parameters are

added to the normal equation matrix and vector of constant
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terms. Considering the addition of the second model in

(3.31) and using §2= -1 and g;l = Ex’ the additions become
t
A2 Bx &y

P t

and Ay B

The problem of zero diagonal elements of Bx is not
encountered: terms are added to the normal matrix and the
vector of constant terms as defined by the parameters used

in the constraints.

3.1.5 The residuals

The equation for the residuals from the first model,

from equations (3.25), (3.27) and (3.32) is

A 3 + W

AL S +owg (3.34)

|<>
]

The residuals from the second model are derived from the

computed value of the model misclosure:

<>

¥o= Ey(%,2) (3.35)

3.2 Covariance Matrix of Parameters

The covariance matrix of the estimated parameters (98)
is deduced from the covariance matrix of the observations

using the covariance law. The covariance law in matrix
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form is given by

Cs (3.36)

where J is the Jacobian of transformation between the

observations and the parameters.

§ = E(L) (3.37)
IF (%)
J = 5T (3.38)

It is convenient to use equation (3.31) which has the

vectors of constant terms, El

to be transformed. From equations (3.7) and (3.9)

and Wy, as the variables

w, = B (x7,8)
831 BEE
S, T SoE (3.39)
C =B C BY=m (3.40)
=w 21221 T3 :
1
o]
W, = Fo(x7,20)
8»12 3\_&_12:
C C (3.41)
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t

= =M (3.42)

sz 2

The covariance matrix of the parameters can be
derived using equation (3.31) and the covariance matrices

of the misclosure vectors (3.40) and (3.42).

t t
_ 88 4 885, 88 38

C/\
=3 Bgl —1 3@1 BEZ —2 812

(3.43)

This assumes zero correlation between the two misclosure

vectors. Matrix manipulation can be shown to give

=t mt A e At miloayt

c Ap M7 A A M AY)

Ca (3.44)

Noting that a covariance matrix is the inverse of the
corresponding weight matrix, equation (3.44) is the
inverse of the normal equation matrix, as given in equation

(3.31).

3.3 The Variance Factor

The standard error of observations (gz) may not be
known, but for a solution relative errors of observations
(Eil) must be known for substitution into equation (3.31).
Then the covariance matrix is known only to a scale factor.

=g pl (3.45)
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This scale factor is termed the variance factor, and
gives the standard error of an observation of unit weight
as given by the weight matrix Elc The variance factor
does not affect the estimation of the results for the
parameters or the residuals, but it does scale the co-
variance matrices of the results.

It can be shown that the estimate of the variance

factor equals [Mikhail, 1976]

2 ﬁ P, i + ﬁx Ex gx
= . (3.46)

% degrees of treedom

The standard errors are known with observation sets
used by the author [Langley, 1979], and present use of
the variance factor, which is discussed further in Chapter
4 has been to check the validity of these standard errors

and of the L.B.I. models.



CHAPTER 4
STATISTICAL ASSESSMENT OF RESULTS

Methods of statistical analysis of results used with
the least squares routines are described in this chapter.
The tests are based on the works of Hamilton [1964],
Mikhail [1976], and Vanicek and Krakiwsky [1980], and are
based on the confidence interval method. In general an
hypothesis is made about a population and from a sample
of this population a statistic is calculated which is
tested at a particular confidence level. The confidence
level is defined as (1 - o), where a is the significance
level. The significance level is the probability of a
type I error: the rejection of a true hypothesis.

The significance level can be varied, being an
input value for a program run. The tests carried out by
the program and described here are a test for normality
of the residuals, a test on the variance factor, and a
detection of outliers. The standard error of the unweighted
delay and fringe frequency residuals, and the covariance

between them are also evaluated by the program.

4.1 Test for Normality of the Residuals

The test for normality of the residuals is carried

out because subsequent tests rely on the residuals being

28
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normally distributed. Different residuals will in general
have different standard errors, and cannot be described

as from the same normal distribution. Standardization
will imply that all residuals have the same distribution
and is achieved by division by the respective residual's

standard error. The standardized residual is defined by

.- 4 (4.1)

o

. d
where vy > n(0,1).

The standardized residuals are grouped into classes
according to value. From the standardized normal proba-
bility distribution function (p.d.f.) can be estimated
the number which should be in that class. -The summation
of the squares of the difference between these values,
divided by the estimated value is defined as the chi-
square statistic [Hamilton, 1964].

2
n (a.-e.)
N R S L (4.2)

The observed number in the class 1is a;, €5 is the expected
number from the p.d.f., and n is the number of classes.
The chi-square statistic is obtained at the o significance
level with (n-1) or (n-2) degrees of freedom. The degree

of freedom is (n-1) if the computation results (x) were
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computed from the set of observations. A second degree
of freedom is lost, giving (n-2) if the standard errors
of obServations are unknown. In this second case the
variance factor has been estimated from the set of obser-
vations and used to scale the weight matrix (section 3.3).
Hamilton [1964] writes that ey should be at least five.
The subroutines group the class intervals at the 1limits
of the normal curve together until e, is greater than
five.

As a visual aid for checking the normality of the
residuals the histogramsof the standardized residuals of
both delay and fringe frequency are printed, overlaid:
with the standardized normal p.d.f. (Figure 4.1).

Vanicek and Krakiwsky [1980] write that the distri-
bution of the residuals will depend on what components of
that curve are estimated from the observations. If the
results (x) are estimated then the residuals have a
t-distribution, while if also the variaﬁce factor (85)
is estimated then the residuals have a tau (t) distribution.
For large numbers of observations both these distributions
approach a normal distribution. The author's routines
thus compute the estimated numbers in each class from a
normal p.d.f. This is considered acceptable because L.B.I.
observation sets are usually in large numbers. The actual
computation of the estimated standard error of a residual

is computationally expensive, but Pope [1976] concludes
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that for large numbers of observations it can be approxi-

mated by the standard error of the observation.

4.2 Chi-square Test on the Variance Factor

A check is made on the variance factor (3§, section
3.3, or as it 1is also termed, the quadratic form of the
residuals. When the observation standard errors are
considered known, then the a posteriori variance factor
should equal one. Discussed as from the least squares
equations in section 3.3, the variance factor can also be
deduced from the definition of the chi-square statistic.
Hamilton [1964] writes that the sum of the squares of
random variables each having a standardized normal distri-

bution has a chi-square distribution.

2 .
2 n ) noov,
X = I v. P. = I (=& (4.3)
df e 1T a0
v, d
since 5o n(0,1).
i

The ith residual is vy and its weight is Pi' The number
of observations is n. Observations include those of
constraints. The degrees of freedom (df) equal the total
number of observations from both models, minus the number
of estimated parameters. The expected value of this

statistic is the degrees of freedom. Failure of this test
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implies that the residuals-do not have a normal distri-
bution and can suggest that either the 3 priori standard
errors of observations are incorrect, or that the L.B.I.
models have errors.

At the (1-0) confidence level the a posteriori
variance factor (8§) is compared with the & priori

variance factor (Gg) by the bounds given by Vanicek and

Krakiwsky [1980]:

af 8(2) , dfc?cz)
e (4.4
X
Q o
df,l‘—z— df,j‘

2

£ o, is the abscissa value of the x° statistic corresponding

to the degrees of freedom, and the respective probability.

4,3 Detection of Residual Outliers

A detection of residual outliers is carried out by
the author's routines. The residuals are hypothesised to
have a normal distribution and a residual not complying
with a normal distribution can be rejécted. The normal
p.d.f. (Figure 4.2) shows that the probability of a
residual plotting within the limits given by the critical
values (+c,-c) is (1l-a). The probability is o of the
residual lying outside this confidence region. Rejection
of an observation whose residual plots outside the confi-

~dence region would only have an o probability of loosing
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a good observation. At this expense, all gross errors
should be eliminated.

In the test each residual is standardized by dividing
by the standard error of the observation and .compared
with the critical value abstracted from a standardized
normal p.d.f. at the a significance level. All residuals
are plotted as a function of time of observation, and
residuals that may be rejected are shown with an asterisk
(Figure 4.3).

Outlying residuals may be specified within the
context of the other residuals (max-test) or out of
context [Krakiwsky, 1978; Vanicek and Krakiwsky, 1980].
The difference is outlined as the probability of one
residual being within certain limits, compared with the
probability of a large number of residuals being within
the same limits. If the probability of one observation
being within certain limits is the confidence level (1-a),
then the simultaneous probability of n such occurrences

equals
(1-a)™ = 1-na (4.5)

In the routines, if the probabilitynof all n obser-
vations being within the confidence interval is required
to be defined under the significance level then each

residual 1s tested individually at a lower significance
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level (%).

4.4 Standard Error, and Covariance Between, Unweighted

Fringe Frequency and Delay Residuals

The standard errors of the unweighted delay and fringe

frequency residuals are evaluated using the formula

) v?:
A g 4
o4 ‘/‘?1?.“‘ (4.6)
i
where j = 1,2,...,n
n = number of the ith type of observation
i =1, 2 (delay and fringe frequency observations)
dfi = degree of freedom of the ith type of observation.

The correlation between the two types of observation

residual obtained for the same instant of time is calculated:

2 ; Titvin
Gij e 4.7)
where i, j = delay, fringe frequency
k = number of time points with delay and fringe
frequency observations
1=1,2,...,k.
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These statistics were -evaluated in the maximum
likelihood adjustment. The standard error of the residuals
can be compared with the a priori standard errors, and the

covariance should approach zero.






CHAPTER 5
PROGRAMMING APPLICATIONS

The aim of this chapter is to assist in an ﬁnder—
standihg of the author's routines so that future users
may be able to adapt and improve the present adjustment.
This 1is achieved by outlining some specific computing
methods used by the author. Most are applied to increase
efficiency of the routines: compressing the A matrix,
storing the A matrix on a sequential file, the iteration
requirements, the use of station coordinates as parameters,
| and the method of imposing parameter constraints. An
efficient method of detecting singularities in the normal

equation matrix is also described.

5.1 Compressing the First Design (A) Matrix

There are many zeros in the A matrik because the
partial derivatives of the model with respect to some of
the parameters will be zero. vThis means that full storage
of the A matrix, and numerical manipulations on that
matrix will be wasteful on two accounts: much of the
computer space will be storing zero, and there will. be
manipulations and additions involving zero. In the
present form of the routines the maximum number of non-

zero elements in one row of the A matrix is thirteen,
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while the number of columns in the A matrix is typically
greater than thirty. This assumes a fourth order clock
polynomial, six parameters corresponding to the two
station positions, and two source parameters. Storing
only non-zero elements in each row of the A matrix, as
done in the least squares routines, is thus given the
phase 'compressing the A matrix'.

An integer value for each observation gives the
number of non-zero elements in the row of A pertaining to
the observation (Figure 5.1). An integer vector contains
a number for each non-zero element corresponding to the
correct position in the row if the zero elements had been
stored. Additions and multiplications can then be carried
out efficiently manipulating with only non-zero elements.
The true array position of the results are indicated by

the integer vector of element positions.

5.2 Storing the A matrix

For a large number of observations, a few thousand
of which is possible after only a few days of observations,
the storage of even the compressed A matrix would be
prohibitively expensive. Thus the A matrix is not stored
in immediate access computer store. At first, in the
author's routines each time that a row of the A matrix
was required the row was again computed. This was found

to be expensive in time, as the routines used to evaluate
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i observation, row of A matrix
[aj15 2555 2535 05 «on 05 855, 336, 359, 0,
0, ... 0, ai175 351g° 0, ... 0, 3,95 35305 0, 0]
Compressed row of A matrix
integer integer vector
10 (1, 2, 3, 7, 8, 9, 17, 18, 29, 30]

Compressed row

[aj15 @525 2535 @375 258> 2590 23775 35187 3290 2530)

FIGURE 5.1. The Compressed A Matrix.
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the partial derivatives and computed observations consume
large amounts of time.

The final procedure adopted was to store the partial
derivatives in the compressed form with the integer
vector of positions, the computed observations, and other
necessary logistic information on a sequential disc file.
An iteration, of course, requires complete re-evaluation
of the A matrix, but comments on this are given in section
5.3. The residuals however, are computed very efficiently

using the formula (3.34):

5.3 1Iteration Requirement for a Solution

The first mathematical model (equations 2.3, 2.6) is
nonlinear, and iterations of the computation with updated
parameter values should be required until the absolute
values of the increments approach zero. The author found,
however, that a second iteration was never required.

th iteration it is considered

(For the definition of the i
that the first approximation (§°) on being updated by the
first set of increments consistutes the first iteration.)
The sensitivity of the model to & priori station coordinates

and clock polynomial coefficients is low. The source

positions are usually well known so often
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one iteration will suffice.to give good results.

It is thus suggested that C.P.U. time can be
economically decreased by using only one iteration. The
ability for any defined number of iterations, or until
the increments approach zero, is available in the author's

routines.

5.4 Station Positions Used as Parameters Instead of

Baseline Components

The maximum likelihood routines use the baseline
components as parameters in the adjustment. The least
squares adjustment uses the station coordinates, with one
station fixed in space. This reduces the number of
parameters, allowing savings in computer space and time,
since for any number of baselines there is always an
equal or lower number of adjustable stations. For example,
with five stations, one is fixed giving four adjustable
station sets of parameters. Using baselines, five
stations would imply ten baseline sets of parameters.

A set in each case would be the three-dimensional (X,Y,Z)
coordinates. |

The results are the same from either parameter
definition used in the adjustment. L.B.I. can only
detect coordinate differences, which are in effect the
baseline components, so the least squares routines print

out the differences in station coordinates for all



44

combinations of baselines.
The covariance matrices of all baselines are evaluated
applying the covariance law to the parameter covariance
matrix (98, equation 3.44).
The parameter covariance matrix can be considered as
composed of sub-matrices corresponding to parameter tYpes,

and their covariance sub-matrices.

gs s,q =s,C _
Cr =] C C C 5.1
=0 =4, —q,C (5.1)
Ceos S0 &
The parameter subsets:
S ... station coordinates

q ... source directions
C ... clock polynomial coefficients.
Baseline components can be deduced as a function of

the station coordinates.

b = F(s) (5.2)

where b ... vector of baseline components
S ... vector of station coordinates.
The covariance law (equation (3.36) is applied as in

section 3.2 to give the covariance matrix of the baseline

components.
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5.5 Weighted Parameters and Functional Parameter Constraints
In section 2.4 are derived the two classes of constraint
which may be implied in an L.B.I. adjustment: functional
parameter constraints, and weighted parameter constraints.
Mikhail [1976] gives the standard method of rigorously

imposing the former class, using the notation of Chapter 3:

-1

N 1 -1..t -1 1
§=8"-N [52(52 N7 A (W, +A, 87)] (5.3)
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