
A LEAST SQUARES ADJUSTMENT FOR LONG BASELINE INTERFEROMETRY

D. A. DAVIDSON

June 1980

PREFACE

In order to make our extensive series of technical reports more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text.

A LEAST SQUARES ADJUSTMENT FOR LONG BASELINE INTERFEROMETRY

by

Derek A. Davidson

B.Sc. (Land Surveying Sciences)

North East London Polytechnic, 1978

Department of Surveying Engineering
University of New Brunswick

Technical Report No. 71

June, 1980

Latest Reprinting April 1990

ABSTRACT

Long baseline interferometry software and data, developed by the Canadian L.B.I. group at York University, has been combined with a least squares adjustment package. The options have been implemented to accept an input of both weighted parameters and functional parameter constraints. The results are then analysed statistically, including a chi-square goodness-of-fit test on the residuals, a rejection criteria for residual outliers, and a chi-square test on the variance factor.

The package has been developed with close regard to computer economy. Computer storage space has been reduced by 60% and processing time has been reduced by 96% compared with the previously used maximum likelihood adjustment routines. This increase in efficiency has resulted in an ability to input a large number of observations and, accordingly, in an improvement in accuracy.

TABLE OF CONTENTS

			Page
ABST	TRACT		. ii
LIST	OF	FIGURES	. vi
LIST	OF	TABLES	vii
ACKN	NOWLE	DGEMENTS	viii
1.	INTRO	ODUCTION	. 1
2.	A BR	IEF INTRODUCTION TO L.B.I	. 5
	2.1	The Source of the Radio Signal	. 5
	2.2	Definitions of Observations of Delay and Fringe Frequency	. 6
	2.3	Resolvable Parameters	. 6
	2.4	The L.B.I. Models	. 9
	2.5	The L.B.I. Observing and Correlation Process	. 13
3.	LEAS	T SQUARES ADJUSTMENT	. 16
	3.1	Derivation of the Least Squares Equations	. 16
		3.1.1 Input for the adjustment	. 16
		3.1.2 A Taylor's expansion of the models	. 17
		3.1.3 The least squares solution by the Lagrange method	. 19
		3.1.4 Solution simplification of a parametric model	. 23
		3.1.5 The residuals	. 24
	3.2	Covariance Matrix of Parameters	. 24
	3.3	The Variance Factor	. 26

TAB	LE OF	CONTENTS - Continued	Page
4.	STAT	ISTICAL ASSESSMENT OF RESULTS	28
	4.1	Test for Normality of the Residuals	28
	4.2	Chi-square Test on the Variance Factor	32
	4.3	Detection of Residual Outliers	33
	4.4	Standard Error, and Covariance Between, Unweighted Fringe Frequency and Delay Residuals	37
5.	PROGI	RAMMING APPLICATIONS	39
	5.1	Compressing the First Design (A) Matrix .	39
	5.2	Storing the A Matrix	40
	5.3	Iteration Requirement for a Solution	42
	5.4	Station Positions used as Parameters Instead of Baseline Components	43
	5.5	Weighted Parameters and Functional Parameter Constraints	45
	5.6	The "Googe Number" as an Indicator of Singularity	46
6.	RESUI	LTS	52
7.	CONCI	LUSIONS AND RECOMMENDATIONS	59
	7.1	Analyse Full Sets of Observations	59
	7.2	Consistency in Accuracy Throughout the Model	59
	7.3	Iterative Process Mode	60
	7.4	Data Storage on Direct Access File	60
	7.5	Permanent Storage of the A Matrix	61
	7.6	Comparison of Doppler Satellite and L.B.I. Coordinate Systems	61

TABLE O	F CONTENTS - Continued Page	
7.7	L.B.I. Observing Programme for Geodetic Results	
7.8	Spectral Analysis of Residuals 62	
REFEREN	CES	
APPENDI	X 1 - JOB CONTROL FOR I.B.M. 370/3032 AT UNB 66	
APPENDI	X 2 - INPUT DATA	
APPENDI	X 3 - CANADIAN L.B.I. ANALYSIS PROGRAM (MAY 1980)	

LIST OF FIGURES

Figure		Page
2.1	L.B.I. Baseline Receiving Plane Wavefronts	7
2.2	Two L.B.I. Receivers Observing a Source	10
2.3	The L.B.I. Process	1.4
4.1	Test for Normality of the Residuals	31
4.2	A Normal Probability Distribution Function	
	(p.d.f.)	34
4.3	Residual Plot	36
5.1	Compressed A Matrix	41

LIST OF TABLES

Table		Page
6.1	Comparison of Computer Space and C.P.U.	
	Time	54
6.2	Baseline Component Comparison	55
6.3	Source Position Comparison	56
6.4	Clock Polynomial Coefficient Comparison	57

ACKNOWLEDGEMENTS

This thesis was supervised by Dr. P. Vanicek. It formed a continuation in studies on geodetic applications of L.B.I. being carried out at York University, Toronto, by Dr. W.H. Cannon, Dr. R.B. Langley, and W.T. Petrachenko. This group developed the software and, together with astronomers at the Herzberg Institute of Astrophysics, Ottawa, undertook the observations which have been used by the author.

Continued assistance has been rendered by many individuals. Mrs. L. Mills has assisted as a computer consultant. T. Wray has given mathematical guidance. W.T. Petrachenko demonstrated the use of various packages. R.R. Steeves has given advice and allowed adaption of his programs. Dr. R.B. Langley has instigated advice and programs, all by correspondence. Fellow graduate students have also given assistance to this work.

Financial assistance to the author through this period of study has been made available through graduate teaching and research assistantships from the Surveying Engineering Department. The National Research Council forwarded funds towards L.B.I. research.

The typing was carried out by Mrs. S. Burgess.

The author extends his gratitude to these individuals and organisations, as well as to others who may have assisted, but space prohibits recognition.

CHAPTER 1

INTRODUCTION

This thesis describes a least squares adjustment package written for one specific geodetic method: long baseline interferometry (L.B.I.). The importance of L.B.I. to the determination of geophysical and geometrical properties of the earth has been extensively discussed by such authors as Jones [1969], Meeks [1976], Cannon [1978], and Shapiro [1978]. Only a brief description is thus given of L.B.I. principles sufficient to outline the L.B.I. process and the specific computational problems. The main concern has been to produce an efficient adjustment and statistical testing package to process L.B.I. observations. The routines developed from this work form a contribution to the Canadian L.B.I. software system [Cannon, 1978; Langley, 1979].

The initials V.L.B.I. will be encountered in some literature, the V standing for "very". There is no implied difference between V.L.B.I. and L.B.I. except that L.B.I. tends to be used by the Canadian workers centred at York University in Toronto. The other main groups working on L.B.I. are the "East Coast Group" which includes the Massachusetts Institute of Technology, in

Cambridge, Massachusetts, the Haystack Observatory,
Westford, Massachusetts, and Goddard Space Flight Center,
Greenbelt, Maryland. The "West Coast Group" is based at
the Jet Propulsion Laboratory, Pasadena, California. A
European group is centred at Bonn, West Germany.

The historical background to the Canadian system is that radio astronomers at the Herzberg Institute of Astrophysics in Ottawa, the Appleton Laboratory in the United Kingdom, and the University of Toronto, have developed instrumentation to study compact extragalactic radio sources. These organisations are concerned mainly with astrophysics. Use of the Canadian observations as a geodetic tool was initiated by the Geodetic Survey of Canada [Jones, 1969], and was continued by a group at York University in Toronto.

The group at York University have developed software to determine parameters of geodetic interest that uses a maximum likelihood adjustment. The maximum likelihood routines were considered very expensive to use on the computer. The central processor unit (C.P.U.) requirement in time and immediate access store space were restrictively high to the extent that from an observation period involving 5,700 observations a sample of only 180 were processed to give results [Langley, 1979]. A more efficient adjustment package would allow the economical use of the full set of

observations, and correspondingly a decrease in the standard error of results, since accuracy of a set of independent observations is proportional to the square-root of the number of observations.

The aim of this thesis has been to produce an efficient least squares adjustment package. The options have been implemented to accept an input of both weighted parameters, and functional parameter constraints.

Statistical analysis used includes a chi-square goodness-of-fit test on the residuals, a rejection procedure for residual outliers, and a chi-square test on the variance factor.

A data set of 180 observations was processed at York University using the established computer package, including the maximum likelihood adjustment. This package, the data set of 180 observations, and the full data set of 5,700 observations were then transferred to the University of New Brunswick. The author reproduced the output computed at York with the maximum likelihood adjustment. A least squares adjustment was then used to produce the same results, but at a more economical level. As a result the immediate access store requirement was reduced by 60%, and C.P.U. time was reduced by 96%. The full data set of observations was then adjusted and standard errors were found to be reduced by a factor of

approximately five. The author's least squares adjustment routines were thus considered ready to be used in any subsequent L.B.I. observation set analysis.

Chapter 2 describes the basic principles of L.B.I., showing the mathematical models used in the adjustment, and summarising the observing process. Chapter 3 shows the derivation of the least squares adjustment equations, and Chapter 4 outlines the statistical tests available in the routines. Chapter 5 comments on some attributes of the author's computer subroutines, especially those which have allowed the reported savings in computer storage space and C.P.U. time. A comparison of results between the maximum likelihood and the least squares adjustment routines, including results from a full observation set, is given in Chapter 6. Chapter 7 concludes with recommendations for future work.

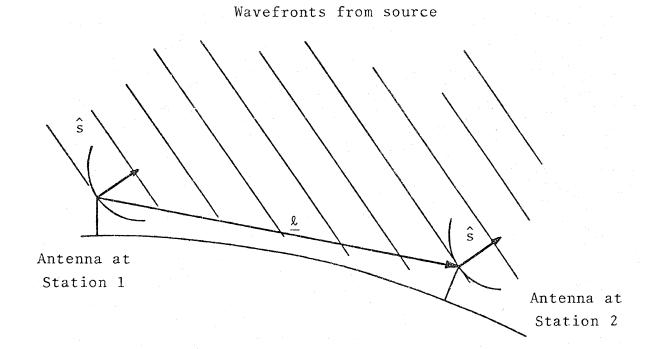
CHAPTER 2

A BRIEF INTRODUCTION TO L.B.I.

This chapter gives a summary of L.B.I. as used for geodesy. Some aspects of the radio sources are discussed. Definitions are given of the observables: delay and fringe frequency. Parameters which are typically resolved such as the baseline components, source directions, and clock polynomial coefficients are outlined. Simplified descriptions are given of the L.B.I. models used in the adjustment process, and also given is a limited description of the L.B.I. observing and processing sequences.

2.1 The Source of the Radio Signal

In L.B.I. observations are made of the signal emitted from compact extragalactic radio sources which, for astrophysical purposes, can be classified into quasars, Seyfert galaxies, and BL Lac type objects. Definitions of these source types are beyond the scope of this thesis. The sources are situated at extragalactic distances allowing an assumption of being at infinity. Angular size and proper motion are negligible to the extent that the sources may be considered as points fixed on the celestial sphere. These sources can thus be useful to define a stable celestial reference frame.


Since the radio signal received is weak directional antennae of dimensions between twenty and forty metres in diameter are commonly used for reception. The signal reaches the earth in the form of plane wave-fronts because of the sources being sited at such large distances. It is these plane wave-fronts which, on being received by pairs of antennae, give the L.B.I. observations.

2.2 <u>Definitions of Observations of Delay and Fringe</u> Frequency

An L.B.I. baseline, shown in Figure 2.1, is defined as the vector between two antennae which record the plane wave-fronts from a source. Delay is the time taken for a particular wave-front to pass between the two antennae. Because the earth is rotating both antennae will be moving and introducing a Doppler shift to the recorded signal at each station. Fringe frequency is the difference in Doppler shifts of the recorded signal at each station. Delay and fringe frequency are the observations of interest to geodesy and for the respective instant of time express a relationship between the baseline vector and the direction to the source.

2.3 Resolvable Parameters

Parameters which may be deduced from L.B.I. include the three dimensional baseline vectors, and the directions to the sources. The absolute position of the baseline

- \hat{s} ... unit vector in direction of source
- $\underline{\textbf{\textit{k}}}$... baseline vector

Figure 2.1. L.B.I. Baseline Receiving Plane Wave-fronts.

vector cannot be resolved from L.B.I., so baseline results are usually given as differences in three dimensional cartesian coordinates of the respective stations. Source directions are conveniently expressed in the form of right ascension and declination.

A third set of parameters are clock polynomial coefficients. A polynomial is used to model the difference in time as given by the clocks at each station. coming signal at each station is recorded on magnetic tape with precise time marks given by a clock. These clocks will have errors, and these errors will not be constant. Absolute error cannot be detected, only the difference between the two clocks affect L.B.I. observations. polynomial in time is thus used to represent the error difference between the two clocks: an epoch difference gives a zero order polynomial, a rate difference implies a first order polynomial, and a difference in acceleration gives a second order polynomial. The order of the clock polynomial should represent the instability of the clock mechanisms, but the exact modelling is unknown and either an order is assumed, or a search is made with varying orders of polynomial. The polynomial fit which forms a minimum of the sum of the squares of the weighted residuals can be accepted as the best model.

Clock polynomial coefficients are not directly useful to geodesy, but their values do indicate the stabilities

of the clocks, and their correct modelling is important to yield parameters which are directly useful to geodesy.

There are other parameters which can be determined by L.B.I. such as the earth's rotation, and polar motion, but these are held fixed in the model routines used by the author.

2.4 The L.B.I. Models

Models are mathematical relationships between sets of parameters and observations. They are used to derive the solution equations for the parameters. In L.B.I. there are two classes of models: a non-linear parametric model relating observations and parameters, and a linear model relating only parameters.

The non-linear parametric class of model can be derived from Figure 2.2, showing a baseline of length $|\underline{\mathfrak{L}}|$ between stations 1 and 2. The source is essentially at infinity in the direction of unit vector $\hat{\mathbf{s}}$. The angle θ is between the directions to the source and of the baseline vector.

In Figure 2.2 the wave path difference (c τ) is the distance travelled by a wave-front between the two L.B.I. stations. This shows the delay observation. The speed of light is c and the value of delay is τ . The formula for the geometric value of delay can be deduced:

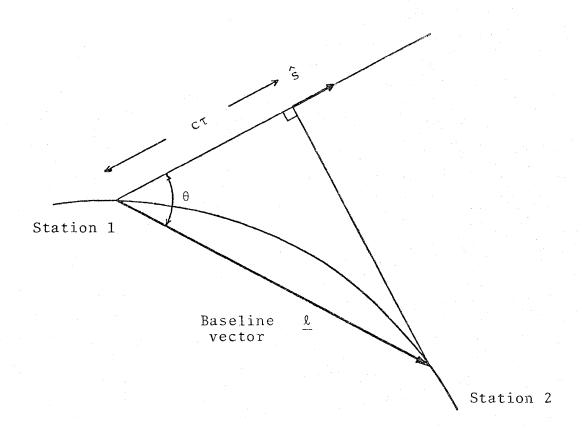


Figure 2.2. Two L.B.I. Receivers Observing a Source.

$$\cos \theta = \frac{c\tau}{|\underline{\ell}|} \tag{2.1}$$

$$\tau = \frac{|\underline{\ell}|}{C} \cos \theta \tag{2.2}$$

The observed value of delay is measured from the difference in the times, as given by the two clocks, that the wave-front is received at each antenna. The measured delay thus involves a polynomial to model the clock's error difference. The same symbol τ can be used for measured delay.

$$\tau = \frac{|\mathcal{L}|}{c} \cos \theta + a_0 + a_1 t + a_2 t^2 + \dots$$
 (2.3)

The argument of the polynomial is time (t), and the coefficients are a_i , i = 0,1,2,...

Fringe frequency has been defined as the difference in Doppler shift of the received signals at the two stations. This is equivalent to the rate of change of cycles of the received signal along the wave path difference. The number of cycles of the received frequency along the wave path difference equals frequency multipled by delay:

cycles =
$$f\tau$$
 (2.4)

Measured fringe frequency (F) equals the rate of change of the number of these cycles.

$$F = f \frac{\partial \tau}{\partial t}$$
 (2.5)

Differentiating equation (2.3) with respect to time

$$F = -\frac{f}{c} \left| \underline{\ell} \right| \sin \theta \frac{d\theta}{dt} + f(a_1 + 2a_2 t + \dots)$$
 (2.6)

The clock polynomial coefficients of the fringe frequency observation equation (2.6) are in theory functions of their respective coefficients in the delay observation equation (2.3). This could be implied as a constraint into the adjustment or could be allowed to vary, but subsequently checked to validify the adjustment.

When three stations simultaneously observe a single source further constraints may be imposed on the adjustment. The differences in clock errors around the three baselines sum to zero. This is implied by the summation around the three baselines of each respective order of polynomial coefficient to zero [Langley, 1979].

$$\sum_{j=1}^{3} a_{i}^{j} = 0$$
(2.7)

The number of the baseline is j, and i the order of the polynomial.

Previous estimates of parameters can be introduced into the adjustment as parameter constraints. A source

position, for example, can be set equal to a pre-determined value with a weight representing the amount of confidence in the value. This is essentially an observation of a parameter.

There are two models in the L.B.I. adjustment. The first describes the expressions for the measured observations of delay and fringe frequency. The second describes the constraints which may be imposed on the parameters. A relationship between parameters which is known to be true is termed a functional parameter constraint, while an estimation of a parameter with a weight is termed a weighted parameter constraint [Mikhail, 1970]. In the author's adjustment the functional parameter constraints are not rigorously applied, but are included as observations of parameter relationships with high weights. This is further discussed in Chapter 5.

Equations (2.3) and (2.6) are simplifications of the equations used in the York L.B.I. software [Langley 1979; Cannon 1978]. The reduction phase of the process involves a tropospheric correction. The York software model includes the effects of the retarded baseline, precession, nutation, polar motion, solid earth tides and the variation of UT1-UTC.

The constraints on the clock polynomials are only correct with perfect instrumentation and a simplified

earth model. The delay clock polynomials are due to a combination of the atomic frequency standard and the clock, while the fringe frequency "clock" polynomials are due to a combination of the atomic frequency standard and the oscillator. The sum to zero around a three-baseline array is not always implied because of the effect of the retarded baseline.

2.5 The L.B.I. Observing and Correlation Process

An L.B.I. observation period may last for several days with perhaps an observation every minute. There is thus a large number of observations and computer control and magnetic tape storage is required to process the data. Two antennae simultaneously record the signal from the same source. The received signal band at each antenna is translated to a lower frequency band to allow recording on magnetic tape together with accurate timing records.

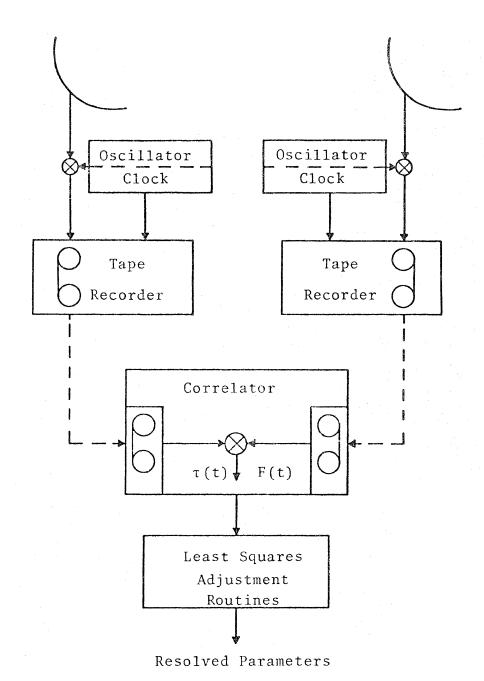


Figure 2.3. The L.B.I. Process.

At a later date two tapes for each baseline are played back at the correlator facility. Using the recorded time signals one tape is delayed with respect to the other until obtaining a maximum correspondence between the two signals. The observations of delay and fringe frequency for an instant of observation time are abstracted and recorded on magnetic tape. The final processing stage is an adjustment using the delay and fringe frequency observations to resolve the parameters of baseline vector, source direction, and clock polynomial coefficients.

CHAPTER 3

LEAST SQUARES ADJUSTMENT

In this chapter the least squares solution is derived from the two classes of L.B.I. models. The least squares solution gives estimates for the parameters which minimise the summation of the squares of the weighted residuals [Mikhail, 1976]. The true parameters cannot be deduced, but least squares gives a best estimate of parameters. The derivation uses the Lagrange method. The covariance matrix of the results is deduced, and the expression is given for the variance factor.

Symbols used in this chapter are underlined capital letters (e.g. \underline{A}) for a matrix, and underlined lower case letters for a vector (e.g. \underline{x}° , $\underline{\delta}$).

3.1 Derivation of the Least Squares Equations

3.1.1 Input for the adjustment

A major input into the adjustment is the vector of observations pertaining to the first model of Chapter 2 (2,3), (2.6), and its covariance matrix (\underline{C}_{ℓ}). The second model outlined in Chapter 2 involves the constraint observation vector ($\underline{\ell}_{x}$) and its covariance matrix (\underline{C}_{x}).

The two mathematical models for L.B.I. relate the parameters and the observations.

$$\underline{F}_1(\underline{x},\underline{\ell}) = \underline{0} \tag{3.1}$$

$$\underline{F}_{2}(\underline{x}, \underline{\ell}_{x}) = \underline{0} \tag{3.2}$$

The observations will have errors, so the true observations $(\hat{\underline{\ell}},\hat{\underline{\ell}}_X)$ are given as the observation plus the residual.

$$\frac{\hat{L}}{L} = L + V \tag{3.3}$$

$$\frac{\hat{\ell}_{X}}{\ell} = \frac{\ell_{X}}{\ell} + \frac{\nu_{X}}{\ell} \tag{3.4}$$

The à priori parameter vector (\underline{x}^0) is the initial guess of the parameters. Added to the parameter increments $(\underline{\delta})$ gives the correct parameters.

$$\underline{x} = \underline{x}^{O} + \underline{\delta} \tag{3.5}$$

The adjustment will give an estimation of the parameter increment vector.

3.1.2 A Taylor's expansion of the models

The models are currently in a form expressing the true parameters and true observations. The à priori parameters and observations, and the parameter increments and residuals, can be involved using a Taylor's expansion,

but neglecting second order terms.

$$\underline{F}_{1}(\underline{x},\underline{\ell}) = \underline{F}_{1}(\underline{x}^{0},\underline{\ell}) + \frac{\partial \underline{F}_{1}(\underline{x}^{0},\underline{\ell})}{\partial \underline{x}^{0}} \Big|_{\underline{x}^{0},\underline{\ell}} \cdot \underline{\delta} + \frac{\partial \underline{F}_{1}(\underline{x}^{0},\underline{\ell})}{\partial \underline{\ell}} \Big|_{\underline{x}^{0},\underline{\ell}} \cdot \underline{v} \quad (3.6)$$

The misclosure vector is

$$\underline{\mathbf{w}}_{1} = \mathbf{F}_{1}(\underline{\mathbf{x}}^{0}, \underline{\ell}) \tag{3.7}$$

The first design matrix, sometimes termed the A matrix is

$$\underline{A}_{1} = \frac{\partial \underline{F}_{1}(\underline{x}^{0}, \underline{\ell})}{\partial \underline{x}^{0}}$$
 (3.8)

The second design matrix, or B matrix is

$$\underline{B}_{1} = \frac{\partial \underline{F}_{1}(\underline{x}^{0}, \underline{\ell})}{\partial \ell} . \tag{3.9}$$

The model can thus be expressed:

$$\underline{\mathbf{w}}_1 + \underline{\mathbf{A}}_1 \underline{\delta} + \underline{\mathbf{B}}_1 \underline{\mathbf{v}} = \underline{\mathbf{0}} . \tag{3.10}$$

A similar expression can be derived for the second model.

$$\underline{\mathbf{w}}_2 + \underline{\mathbf{A}}_2 \underline{\delta} + \underline{\mathbf{B}}_2 \underline{\mathbf{v}}_2 = \underline{\mathbf{0}}. \tag{3.11}$$

Neglecting the second order terms in the Taylor's expansion can falsify the derived equations. If the model is linear, then the second and higher order terms will be zero. With a non-linear model, but with a priori parameters selected as close to the true parameters, then the second and higher order terms will approach zero. In general one would continue iterations of the adjustment using updated parameter values until the iterations cease to significantly change the results.

3.1.3 The least squares solution by the Lagrange method

The sum of the weighted squares of the residuals can be expressed in matrix form for the two models:

$$\underline{\mathbf{v}}^{\mathsf{t}} \ \underline{\mathbf{P}}_{\ell} \ \underline{\mathbf{v}} \tag{3.12}$$

$$\underline{\mathbf{v}}_{\mathbf{x}}^{\mathbf{t}} \ \underline{\mathbf{P}}_{\mathbf{x}} \ \underline{\mathbf{v}}_{\mathbf{x}} \tag{3.13}$$

where \underline{P}_{ℓ} and \underline{P}_{X} are the weights of the respective observations.

The variation function is formed:

$$\phi = \underline{v}^{t} \underline{P}_{\ell} \underline{v} + \underline{v}_{x}^{t} \underline{P}_{x} \underline{v}_{x}$$

$$+ 2\underline{k}_{1}^{t} (\underline{A}_{1} \underline{\delta} + \underline{B}_{1} \underline{v} + \underline{w}_{1})$$

$$+ 2\underline{k}_{2}^{t} (\underline{A}_{2} \underline{\delta} + \underline{B}_{2} \underline{v}_{x} + \underline{w}_{2}) \qquad (3.14)$$

 k_1 and k_2 are column vectors of Lagrange correlates which will be determined. The extremal value of the variation function is found by differentiating with respect to the unknowns $(\underline{v}, \underline{v}_x, \underline{\delta}, \underline{k}_1 \text{ and } \underline{k}_2)$ and equating each derivative to a zero vector.

$$\frac{\partial \phi}{\partial \underline{v}} = 2\underline{v}^{\mathsf{t}} \ \underline{P}_{\ell} + 2\underline{k}_{1}^{\mathsf{t}} \ \underline{B}_{1} = \underline{0}$$

$$\vdots \ \underline{P}_{\ell} \ \underline{v} + \underline{B}_{1}^{\mathsf{t}} \ \underline{k}_{1} = \underline{0}$$
(3.15)

$$\frac{\partial \phi}{\partial \underline{\mathbf{v}}_{\mathbf{X}}} = 2\underline{\mathbf{v}}_{\mathbf{X}}^{\mathbf{t}} \underline{\mathbf{P}}_{\mathbf{X}} + 2\underline{\mathbf{k}}_{\mathbf{2}}^{\mathbf{t}} \underline{\mathbf{B}}_{\mathbf{2}} = \underline{\mathbf{0}}$$

$$\vdots \underline{\mathbf{P}}_{\mathbf{X}} \underline{\mathbf{v}}_{\mathbf{X}} + \underline{\mathbf{B}}_{\mathbf{2}}^{\mathbf{t}} \underline{\mathbf{k}}_{\mathbf{2}} = \underline{\mathbf{0}}$$
(3.16)

$$\frac{\partial \phi}{\partial \underline{\delta}} = 2\underline{k}_{1}^{t} \underline{A}_{1} + 2\underline{k}_{2}^{t} \underline{A}_{2} = \underline{0}$$

$$. \underline{A}_{1}^{t} \underline{k}_{1} + \underline{A}_{2}^{t} \underline{k}_{2} = \underline{0}$$
(3.17)

$$\frac{\partial \phi}{\partial \underline{k}_1} = \underline{A}_1 \underline{\delta} + \underline{B}_1 \underline{v} + \underline{w}_1 = \underline{0}$$
 (3.18)

$$\frac{\partial \phi}{\partial \underline{k}_2} = \underline{A}_2 \underline{\delta} + \underline{B}_2 \underline{v}_x + \underline{w}_2 = \underline{0}$$
 (3.19)

Simultaneous solution to equations (3.15) through (3.19) is the least squares solution. The result gives the minimum of the sum of the squares of the weighted residuals since the second derivatives of (3.15) and (3.16) are positive through the definition of the weight matrices \underline{P}_{ℓ} and \underline{P}_{x} being positive definite.

A hypermatrix expression is formed for the simultaneous equations to be solved:

$$\begin{bmatrix} \underline{P}_{\mathcal{Q}} & \underline{O} & \underline{B}_{1}^{t} & \underline{O} & \underline{O} \\ \underline{O} & \underline{P}_{x} & \underline{O} & \underline{B}_{2}^{t} & \underline{O} \\ \underline{B}_{1} & \underline{O} & \underline{O} & \underline{O} & \underline{A}_{1} \\ \underline{O} & \underline{B}_{2} & \underline{O} & \underline{O} & \underline{A}_{2} \\ \underline{O} & \underline{O} & \underline{A}_{1}^{t} & \underline{O} & \underline{O} \end{bmatrix} \begin{bmatrix} \underline{v} \\ \underline{v}_{x} \\ \underline{k}_{1} \\ \underline{k}_{2} \\ \underline{\delta} \end{bmatrix} + \begin{bmatrix} \underline{O} \\ \underline{O} \\ \underline{w}_{1} \\ \underline{w}_{2} \\ \underline{O} \end{bmatrix} = \underline{O} \quad (3.20)$$

The method of partitioning of matrices is used where, given

$$\begin{bmatrix} \frac{D}{E} & \frac{E}{E} \\ \frac{E}{E} & \frac{E}{E} \end{bmatrix} \begin{bmatrix} \frac{x_1}{x_2} \\ \frac{d}{2} \end{bmatrix} + \begin{bmatrix} \frac{d}{d_1} \\ \frac{d}{d_2} \end{bmatrix} = \underline{0}$$
 (3.21)

then

$$\underline{x}_1 = -\underline{D}^{-1} (\underline{E} \ \underline{x}_2 + d_1)$$
 (3.22)

and

$$(\underline{F} - \underline{E}^{t} \ \underline{D}^{-1} \ \underline{E}) \underline{x}_{2} - \underline{E}^{t} \ \underline{D}^{-1} \ \underline{d}_{1} + \underline{d}_{2} = \underline{0}$$
 (3.23)

where matrix \underline{D} is not singular. Equation (3.20) is solved:

$$\begin{bmatrix} \frac{\hat{\mathbf{v}}}{\hat{\mathbf{v}}_{\mathbf{x}}} \end{bmatrix} = -\begin{bmatrix} \frac{\mathbf{p}}{2} & \mathbf{0} \\ \mathbf{0} & \frac{\mathbf{p}}{2} \end{bmatrix}^{-1} \begin{bmatrix} \frac{\mathbf{B}_{1}^{t}}{1} & \frac{\mathbf{k}_{1}}{1} \\ \frac{\mathbf{B}_{2}^{t}}{1} & \frac{\mathbf{k}_{2}}{1} \end{bmatrix}$$
(3.24)

$$\hat{v} = -\underline{P}_{\ell}^{-1} \ \underline{B}_{1}^{t} \ \underline{k}_{1}$$
 (3.25)

$$\hat{v}_{x} = -P_{-x}^{-1} \quad B_{2}^{t} \quad k_{2} \tag{3.26}$$

Further partitioning will result in expressions for all the variable parameters.

$$\hat{\underline{k}}_{1} = \underline{M}_{1}^{-1} (\underline{A}_{1} \ \hat{\underline{\delta}} + \underline{w}_{1})$$
 (3.27)

where

$$\underline{\mathbf{M}}_{1} = \underline{\mathbf{B}}_{1} \ \underline{\mathbf{P}}_{2}^{-1} \ \underline{\mathbf{B}}_{1}^{\mathsf{t}} \tag{3.28}$$

$$\frac{\hat{\mathbf{k}}_2}{\mathbf{k}_2} = \underline{\mathbf{M}}_2^{-1} \quad (\underline{\mathbf{A}}_2 \quad \hat{\underline{\delta}} + \underline{\mathbf{w}}_2) \tag{3.29}$$

where

$$\underline{M}_2 = \underline{B}_2 \ \underline{P}_x^{-1} \ \underline{B}_2^t \tag{3.30}$$

$$\frac{\hat{\delta}}{\hat{\delta}} = -\left(\underline{A}_{1}^{t} \ \underline{M}_{1}^{-1} \ \underline{A}_{1} + \underline{A}_{2}^{t} \ \underline{M}_{2}^{-1} \ \underline{A}_{2}\right)^{-1} \left(\underline{A}_{1}^{t} \ \underline{M}_{1}^{-1} \ \underline{w}_{1} + \underline{A}_{2}^{t} \ \underline{M}_{2}^{-1} \ \underline{w}_{2}\right)$$
(3.31)

The 'hat' symbol above the solution vectors signifies that these are only the best estimates as given by the least squares solution. Another defined solution might give

different results, and neither may be the true results. The normal equation matrix $(\underline{A}_1^t \ \underline{M}_1^{-1} \ \underline{A}_1 + \underline{A}_2^t \ \underline{M}_2^{-1} \ \underline{A}_2)$ is seen to be the summation of normal equations due to the two respective models. The vector of constant terms $(\underline{A}_1^t \ \underline{M}_1^{-1} \ \underline{w}_1 + \underline{A}_2^t \ \underline{M}_2^{-1} \ \underline{w}_2)$ is similarly the summation of the vectors due to the two models.

3.1.4 Solution simplification of a parametric model

Equation (3.31) is used in the author's adjustment routines, but with some simplification. Both \underline{B}_1 and \underline{B}_2 are negative unit matrices from their definitions of being the derivatives of the model with respect to the observations. The definition of a parametric model is that $\underline{B} = \underline{I}$ or $\underline{B} = -\underline{I}$.

$$\underline{B}_1 = -\underline{I} \tag{3.32}$$

$$\underline{B}_2 = -\underline{I} \tag{3.33}$$

If the constraints are not used, or not all of the parameters are involved in the constraints, then there are some modifications to the contributions due to the second model. Without constraints, these contributions reduce to zero. When only certain parameters are involved then only additions corresponding to those parameters are added to the normal equation matrix and vector of constant

terms. Considering the addition of the second model in (3.31) and using \underline{B}_2 = -I and \underline{C}_x^{-1} = \underline{P}_x , the additions become

$$\underline{A}_2^t \underline{P}_x \underline{A}_2$$

and

$$\underline{A}_2^{t} \underline{P}_{x} \underline{w}_{2}.$$

The problem of zero diagonal elements of \underline{P}_{x} is not encountered: terms are added to the normal matrix and the vector of constant terms as defined by the parameters used in the constraints.

3.1.5 The residuals

The equation for the residuals from the first model, from equations (3.25), (3.27) and (3.32) is

$$\frac{\hat{\mathbf{v}}}{\mathbf{v}} = \underline{\mathbf{A}}_1 \quad \hat{\underline{\delta}} + \underline{\mathbf{w}}_1 \tag{3.34}$$

The residuals from the second model are derived from the computed value of the model misclosure:

$$\frac{\hat{\mathbf{v}}_{\mathbf{x}}}{\mathbf{v}} = \underline{\mathbf{F}}_{2}(\hat{\mathbf{x}}, \underline{\boldsymbol{\ell}}_{\mathbf{x}}) \tag{3.35}$$

3.2 Covariance Matrix of Parameters

The covariance matrix of the estimated parameters $(\underline{C}_{\widehat{\delta}})$ is deduced from the covariance matrix of the observations using the covariance law. The covariance law in matrix

form is given by

$$\underline{C}_{\hat{\delta}} = \underline{J} \underline{C}_{k} \underline{J}^{t} \tag{3.36}$$

where \underline{J} is the Jacobian of transformation between the observations and the parameters.

$$\hat{\underline{\delta}} = \underline{F}(\underline{\ell}) \tag{3.37}$$

$$\underline{J} = \frac{\partial \underline{F}(\underline{\ell})}{\partial \underline{\ell}} \tag{3.38}$$

It is convenient to use equation (3.31) which has the vectors of constant terms, $\underline{\mathbf{w}}_1$ and $\underline{\mathbf{w}}_2$, as the variables to be transformed. From equations (3.7) and (3.9)

$$\underline{\mathbf{w}}_1 = \underline{\mathbf{F}}_1(\underline{\mathbf{x}}^0, \underline{\boldsymbol{\ell}})$$

$$\underline{C}_{W_1} = \frac{\partial \underline{W}_1}{\partial \lambda} \underline{C}_{\lambda} \frac{\partial \underline{W}_2^t}{\partial \lambda}$$
 (3.39)

$$\underline{\mathbf{w}}_2 = \underline{\mathbf{F}}_2(\underline{\mathbf{x}}^0, \underline{\boldsymbol{\ell}}_{\mathbf{x}})$$

$$\underline{C}_{w_2} = \frac{\partial \underline{w}_2}{\partial \underline{\ell}_x} \underline{C}_x \frac{\partial \underline{w}_2^t}{\partial \underline{\ell}_x}$$
 (3.41)

The covariance matrix of the parameters can be derived using equation (3.31) and the covariance matrices of the misclosure vectors (3.40) and (3.42).

$$\underline{C}_{\hat{\delta}} = \frac{\partial \underline{\delta}}{\partial \underline{w}_{1}} \underline{M}_{1} \frac{\partial \underline{\delta}^{t}}{\partial \underline{w}_{1}} + \frac{\partial \underline{\delta}}{\partial \underline{w}_{2}} \underline{M}_{2} \frac{\partial \underline{\delta}^{t}}{\partial \underline{w}_{2}}$$
(3.43)

This assumes zero correlation between the two misclosure vectors. Matrix manipulation can be shown to give

$$\underline{C}_{\hat{\delta}} = (\underline{A}_{1}^{t} \underline{M}_{1}^{-1} \underline{A}_{1} + \underline{A}_{2}^{t} \underline{M}_{2}^{-1} \underline{A}_{2})^{-1}$$
 (3.44)

Noting that a covariance matrix is the inverse of the corresponding weight matrix, equation (3.44) is the inverse of the normal equation matrix, as given in equation (3.31).

3.3 The Variance Factor

The standard error of observations (\underline{C}_{ℓ}) may not be known, but for a solution relative errors of observations $(\underline{P}_{\ell}^{-1})$ must be known for substitution into equation (3.31). Then the covariance matrix is known only to a scale factor.

$$\underline{C}_{\ell} = \sigma_0^2 \underline{P}_{\ell}^{-1} \tag{3.45}$$

This scale factor is termed the variance factor, and gives the standard error of an observation of unit weight as given by the weight matrix \underline{P}_{ℓ} . The variance factor does not affect the estimation of the results for the parameters or the residuals, but it does scale the covariance matrices of the results.

It can be shown that the estimate of the variance factor equals [Mikhail, 1976]

$$\hat{\sigma}_{o}^{2} = \frac{\hat{\mathbf{y}} \quad \underline{\mathbf{P}}_{\ell} \quad \hat{\mathbf{v}} \quad + \quad \hat{\mathbf{v}}_{x} \quad \underline{\mathbf{P}}_{x} \quad \hat{\mathbf{v}}_{x}}{\text{degrees of freedom}} . \tag{3.46}$$

The standard errors are known with observation sets used by the author [Langley, 1979], and present use of the variance factor, which is discussed further in Chapter 4 has been to check the validity of these standard errors and of the L.B.I. models.

CHAPTER 4

STATISTICAL ASSESSMENT OF RESULTS

Methods of statistical analysis of results used with the least squares routines are described in this chapter. The tests are based on the works of Hamilton [1964], Mikhail [1976], and Vanicek and Krakiwsky [1980], and are based on the confidence interval method. In general an hypothesis is made about a population and from a sample of this population a statistic is calculated which is tested at a particular confidence level. The confidence level is defined as $(1-\alpha)$, where α is the significance level. The significance level is the probability of a type I error: the rejection of a true hypothesis.

The significance level can be varied, being an input value for a program run. The tests carried out by the program and described here are a test for normality of the residuals, a test on the variance factor, and a detection of outliers. The standard error of the unweighted delay and fringe frequency residuals, and the covariance between them are also evaluated by the program.

4.1 Test for Normality of the Residuals

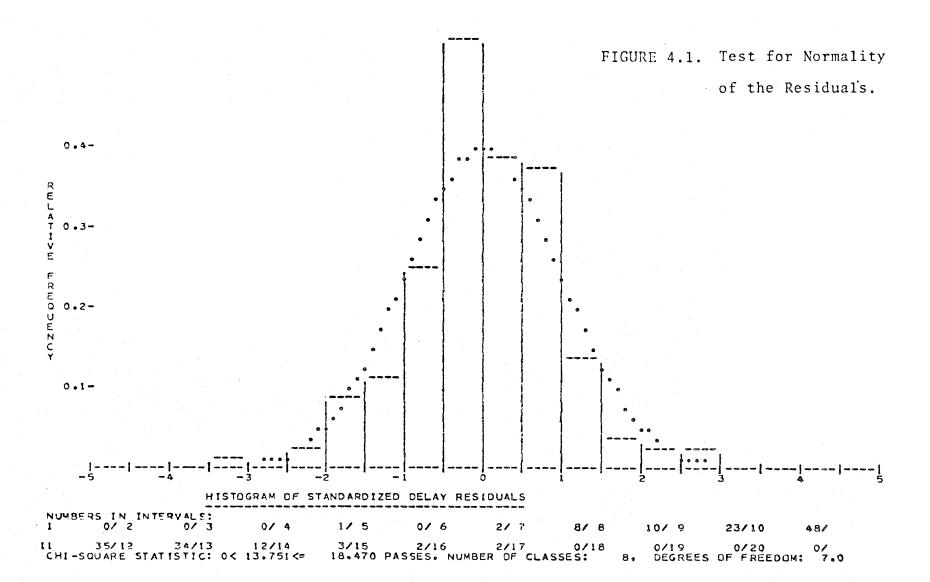
The test for normality of the residuals is carried out because subsequent tests rely on the residuals being

normally distributed. Different residuals will in general have different standard errors, and cannot be described as from the same normal distribution. Standardization will imply that all residuals have the same distribution and is achieved by division by the respective residual's standard error. The standardized residual is defined by

$$\tilde{v}_{i} = \frac{v_{i}}{\sigma_{i}} \tag{4.1}$$

where $\tilde{v}_{i} \rightarrow n(0,1)$.

The standardized residuals are grouped into classes according to value. From the standardized normal probability distribution function (p.d.f.) can be estimated the number which should be in that class. The summation of the squares of the difference between these values, divided by the estimated value is defined as the chisquare statistic [Hamilton, 1964].


$$\chi^{2} = \sum_{i=1}^{n} \frac{(a_{i} - e_{i})^{2}}{e_{i}}$$
 (4.2)

The observed number in the class is a_i , e_i is the expected number from the p.d.f., and n is the number of classes. The chi-square statistic is obtained at the α significance level with (n-1) or (n-2) degrees of freedom. The degree of freedom is (n-1) if the computation results (x) were

computed from the set of observations. A second degree of freedom is lost, giving (n-2) if the standard errors of observations are unknown. In this second case the variance factor has been estimated from the set of observations and used to scale the weight matrix (section 3.3). Hamilton [1964] writes that e should be at least five. The subroutines group the class intervals at the limits of the normal curve together until e is greater than five.

As a visual aid for checking the normality of the residuals the histograms of the standardized residuals of both delay and fringe frequency are printed, overlaid with the standardized normal p.d.f. (Figure 4.1).

Vanicek and Krakiwsky [1980] write that the distribution of the residuals will depend on what components of that curve are estimated from the observations. If the results (\underline{x}) are estimated then the residuals have a t-distribution, while if also the variance factor $(\hat{\sigma}_0^2)$ is estimated then the residuals have a tau (τ) distribution. For large numbers of observations both these distributions approach a normal distribution. The author's routines thus compute the estimated numbers in each class from a normal p.d.f. This is considered acceptable because L.B.I. observation sets are usually in large numbers. The actual computation of the estimated standard error of a residual is computationally expensive, but Pope [1976] concludes

that for large numbers of observations it can be approximated by the standard error of the observation.

4.2 Chi-square Test on the Variance Factor

A check is made on the variance factor $(\hat{\sigma}_0^2)$, section 3.3), or as it is also termed, the quadratic form of the residuals. When the observation standard errors are considered known, then the à posteriori variance factor should equal one. Discussed as from the least squares equations in section 3.3, the variance factor can also be deduced from the definition of the chi-square statistic. Hamilton [1964] writes that the sum of the squares of random variables each having a standardized normal distribution has a chi-square distribution.

$$\chi_{df}^{2} = \sum_{i=1}^{n} v_{i}^{2} P_{i} = \sum_{i=1}^{n} (\frac{v_{i}}{\sigma_{i}})^{2}$$
 (4.3)

since
$$\frac{v_i}{\sigma_i} \stackrel{d}{\rightarrow} n(0,1)$$
.

The ith residual is v_i and its weight is P_i. The number of observations is n. Observations include those of constraints. The degrees of freedom (df) equal the total number of observations from both models, minus the number of estimated parameters. The expected value of this statistic is the degrees of freedom. Failure of this test

implies that the residuals do not have a normal distribution and can suggest that either the à priori standard errors of observations are incorrect, or that the L.B.I. models have errors.

At the $(1-\alpha)$ confidence level the à posteriori variance factor $(\hat{\sigma}_0^2)$ is compared with the à priori variance factor (σ_0^2) by the bounds given by Vanicek and Krakiwsky [1980]:

$$\frac{\operatorname{df} \hat{\sigma}_{o}^{2}}{\xi_{\chi^{2} \operatorname{df}, 1-\frac{\alpha}{2}}} < \sigma_{o}^{2} < \frac{\operatorname{df} \hat{\sigma}_{o}^{2}}{\xi_{\chi^{2} \operatorname{df}, \frac{\alpha}{2}}}$$

$$(4.4)$$

 ξ_{χ^2} is the abscissa value of the χ^2 statistic corresponding to the degrees of freedom, and the respective probability.

4.3 Detection of Residual Outliers

A detection of residual outliers is carried out by the author's routines. The residuals are hypothesised to have a normal distribution and a residual not complying with a normal distribution can be rejected. The normal p.d.f. (Figure 4.2) shows that the probability of a residual plotting within the limits given by the critical values (+c,-c) is $(1-\alpha)$. The probability is α of the residual lying outside this confidence region. Rejection of an observation whose residual plots outside the confidence region would only have an α probability of loosing

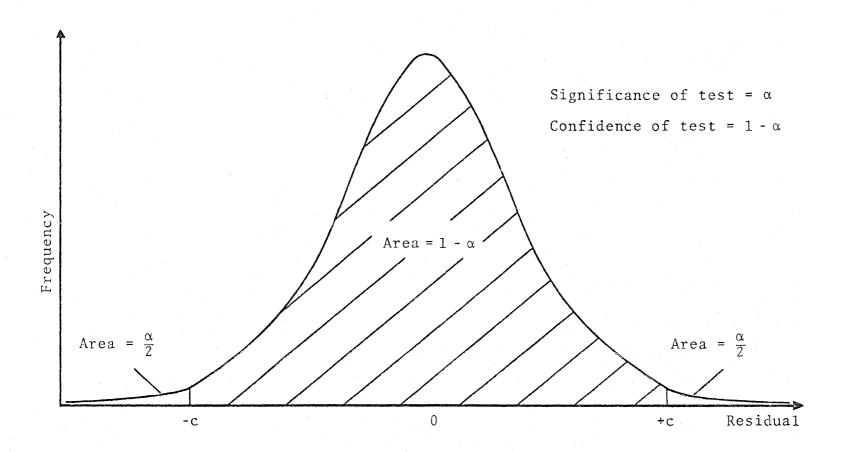


Figure 4.2. A Normal Probability Distribution Function (p.d.f.)

a good observation. At this expense, all gross errors should be eliminated.

In the test each residual is standardized by dividing by the standard error of the observation and compared with the critical value abstracted from a standardized normal p.d.f. at the α significance level. All residuals are plotted as a function of time of observation, and residuals that may be rejected are shown with an asterisk (Figure 4.3).

Outlying residuals may be specified within the context of the other residuals (max-test) or out of context [Krakiwsky, 1978; Vanicek and Krakiwsky, 1980]. The difference is outlined as the probability of one residual being within certain limits, compared with the probability of a large number of residuals being within the same limits. If the probability of one observation being within certain limits is the confidence level $(1-\alpha)$, then the simultaneous probability of n such occurrences equals

$$(1-\alpha)^{n} \simeq 1-n\alpha \tag{4.5}$$

In the routines, if the probability of all n observations being within the confidence interval is required to be defined under the significance level then each residual is tested individually at a lower significance

RESIDUALS

* . . RESIDUAL . GT . CRITERIA + STD . ERROR

TIME SOURCE FF DLY
DAYHR.MN BASELINE NO. 3 OVCH

-6.000E-02	-3.600E-02	-1.200E-02	1.200E-02	3.600E-02	6.000E-02
				·	•
134 1. 9		1	F D		7 1.05E-03 1.11E-02
134 1.19			F D		7 1.45E-03 9.52E-03
134 1.26		F	• D		7 1.55E-04 9.84E-03
134 1.38		D F			1 7-1.07E-03 -5.30E-03
134 1.42		D 1	F		7 7.16E-04 -4.67E-03
134 1.49		DF			7 5.86E-04 -1.29E-03

FIGURE 4.3. Residual Plot.

level $(\frac{\alpha}{n})$.

4.4 Standard Error, and Covariance Between, Unweighted
Fringe Frequency and Delay Residuals

The standard errors of the unweighted delay and fringe frequency residuals are evaluated using the formula

$$\hat{\sigma}_{i} = \sqrt{\frac{\sum_{j} v_{ij}^{2}}{df_{i}}}$$
 (4.6)

where $j = 1, 2, \ldots, n$

n = number of the ith type of observation

i = 1, 2 (delay and fringe frequency observations)

 df_i = degree of freedom of the i^{th} type of observation.

The correlation between the two types of observation residual obtained for the same instant of time is calculated:

$$\hat{\sigma}_{ij}^2 = \frac{\sum_{ij}^{\Sigma} v_{i1} v_{j1}}{k} \tag{4.7}$$

where i, j = delay, fringe frequency

k = number of time points with delay and fringe
 frequency observations

1 = 1, 2, ..., k.

These statistics were evaluated in the maximum likelihood adjustment. The standard error of the residuals can be compared with the à priori standard errors, and the covariance should approach zero.

CHAPTER 5

PROGRAMMING APPLICATIONS

The aim of this chapter is to assist in an understanding of the author's routines so that future users may be able to adapt and improve the present adjustment. This is achieved by outlining some specific computing methods used by the author. Most are applied to increase efficiency of the routines: compressing the A matrix, storing the A matrix on a sequential file, the iteration requirements, the use of station coordinates as parameters, and the method of imposing parameter constraints. An efficient method of detecting singularities in the normal equation matrix is also described.

5.1 Compressing the First Design (A) Matrix

There are many zeros in the A matrix because the partial derivatives of the model with respect to some of the parameters will be zero. This means that full storage of the A matrix, and numerical manipulations on that matrix will be wasteful on two accounts: much of the computer space will be storing zero, and there will be manipulations and additions involving zero. In the present form of the routines the maximum number of nonzero elements in one row of the A matrix is thirteen,

while the number of columns in the A matrix is typically greater than thirty. This assumes a fourth order clock polynomial, six parameters corresponding to the two station positions, and two source parameters. Storing only non-zero elements in each row of the A matrix, as done in the least squares routines, is thus given the phase "compressing the A matrix".

An integer value for each observation gives the number of non-zero elements in the row of A pertaining to the observation (Figure 5.1). An integer vector contains a number for each non-zero element corresponding to the correct position in the row if the zero elements had been stored. Additions and multiplications can then be carried out efficiently manipulating with only non-zero elements. The true array position of the results are indicated by the integer vector of element positions.

5.2 Storing the A matrix

For a large number of observations, a few thousand of which is possible after only a few days of observations, the storage of even the compressed A matrix would be prohibitively expensive. Thus the A matrix is not stored in immediate access computer store. At first, in the author's routines each time that a row of the A matrix was required the row was again computed. This was found to be expensive in time, as the routines used to evaluate

 \mathbf{i}^{th} observation, row of A matrix

$$[a_{i1}, a_{i2}, a_{i3}, 0, \dots 0, a_{i7}, a_{i8}, a_{i9}, 0,$$

$$0, \ldots 0, a_{i17}, a_{i18}, 0, \ldots 0, a_{i29}, a_{i30}, 0, 0$$

Compressed row of A matrix

integer integer vector 10

[1, 2, 3, 7, 8, 9, 17, 18, 29, 30]

Compressed row

FIGURE 5.1. The Compressed A Matrix.

the partial derivatives and computed observations consume large amounts of time.

The final procedure adopted was to store the partial derivatives in the compressed form with the integer vector of positions, the computed observations, and other necessary logistic information on a sequential disc file. An iteration, of course, requires complete re-evaluation of the A matrix, but comments on this are given in section 5.3. The residuals however, are computed very efficiently using the formula (3.34):

$$\hat{\mathbf{v}} = \underline{\mathbf{A}}_1 \quad \hat{\underline{\delta}} + \underline{\mathbf{w}}_1$$

5.3 Iteration Requirement for a Solution

The first mathematical model (equations 2.3, 2.6) is nonlinear, and iterations of the computation with updated parameter values should be required until the absolute values of the increments approach zero. The author found, however, that a second iteration was never required. (For the definition of the ith iteration it is considered that the first approximation ($\underline{\mathbf{x}}^{\mathbf{o}}$) on being updated by the first set of increments consistutes the first iteration.) The sensitivity of the model to a priori station coordinates and clock polynomial coefficients is low. The source positions are usually well known so often

one iteration will suffice to give good results.

It is thus suggested that C.P.U. time can be economically decreased by using only one iteration. The ability for any defined number of iterations, or until the increments approach zero, is available in the author's routines.

5.4 <u>Station Positions Used as Parameters Instead of</u> <u>Baseline Components</u>

The maximum likelihood routines use the baseline components as parameters in the adjustment. The least squares adjustment uses the station coordinates, with one station fixed in space. This reduces the number of parameters, allowing savings in computer space and time, since for any number of baselines there is always an equal or lower number of adjustable stations. For example, with five stations, one is fixed giving four adjustable station sets of parameters. Using baselines, five stations would imply ten baseline sets of parameters.

A set in each case would be the three-dimensional (X,Y,Z) coordinates.

The results are the same from either parameter definition used in the adjustment. L.B.I. can only detect coordinate differences, which are in effect the baseline components, so the least squares routines print out the differences in station coordinates for all

combinations of baselines.

The covariance matrices of all baselines are evaluated applying the covariance law to the parameter covariance matrix (\underline{C}_{δ} , equation 3.44).

The parameter covariance matrix can be considered as composed of sub-matrices corresponding to parameter types, and their covariance sub-matrices.

$$\underline{C}\hat{\delta} = \begin{bmatrix}
\underline{C}_{s} & \underline{C}_{s,q} & \underline{C}_{s,c} \\
\underline{C}_{q,s} & \underline{C}_{q} & \underline{C}_{q,c} \\
\underline{C}_{c,s} & \underline{C}_{c,q} & \underline{C}_{c}
\end{bmatrix}$$
(5.1)

The parameter subsets:

s ... station coordinates

q ... source directions

c ... clock polynomial coefficients.

Baseline components can be deduced as a function of the station coordinates.

$$\underline{b} = \underline{F}(\underline{s}) \tag{5.2}$$

where \underline{b} ... vector of baseline components

 \underline{s} ... vector of station coordinates.

The covariance law (equation (3.36) is applied as in section 3.2 to give the covariance matrix of the baseline components.

5.5 Weighted Parameters and Functional Parameter Constraints

In section 2.4 are derived the two classes of constraint which may be implied in an L.B.I. adjustment: functional parameter constraints, and weighted parameter constraints.

Mikhail [1976] gives the standard method of rigorously imposing the former class, using the notation of Chapter 3:

$$\underline{\hat{\delta}} = \underline{\delta}^1 - \underline{N}_1^{-1} \left[\underline{A}_2^{\mathsf{t}} \left(\underline{A}_2 \ \underline{N}_1^{-1} \ \underline{A}_2 \right)^{-1} \left(\underline{w}_2 + \underline{A}_2 \ \underline{\delta}^1 \right) \right] \tag{5.3}$$

where
$$\underline{N}_1 = \underline{A}_1^t \ \underline{P}_{\ell} \ \underline{A}_1$$

$$\underline{\delta}^1 = -\underline{N}_1^{-1} \ \underline{A}_1^t \ \underline{M}_1 \ \underline{w}_1.$$

The standard method of imposing weighted parameter constraints is to use an observation:

$$\underline{\mathbf{x}} = \underline{\ell}_{\mathbf{X}} \tag{5.4}$$

A weight reflects the amount of confidence in these parameter observations.

The least squares routines impose the functional parameter constraints in a method similar to the weighted parameters, but with a high weight reflecting the fact that these constraints are known to be true. The observation is of the form

$$\underline{F}(\underline{x}) = \underline{\ell}_{x} \tag{5.5}$$

since these constraints involve more than one parameter.

Both classes of constraint can thus be included in the second model (equation 3.2) in the least squares adjustment.

The main reason for applying the constraints in the above manner is computer economy. Equation 5.3 is relatively uneconomic in the adjustment. Another reason is that the normal equation matrix (\underline{N}_1 in equation 5.3) is inverted without the constraints. It is possible that the normal equation matrix is ill-conditioned without imposing the functional parameter constraints. When observing to a single source for a long period the clock polynomial coefficients become highly correlated with the other parameters. This is a consequence of the information content of the observables [Shapiro, 1978]. The functional parameter constraints may reduce these correlations.

5.6 The "Googe Number" as an Indicator of Singularity

The normal equation matrix used in L.B.I. can be ill-conditioned. The various parameters have different scales, in that unit changes in different parameters will not cause similar changes in the variation function [Adby and Dempster, 1974]. Computer round-off errors may then affect the result. There may also be high correlations between parameters as the observing programme may have been designed for astrophysics, which involves observations to a single source for long periods of time. This can

cause high correlations between parameters [Shapiro, 1978]. The problem of an ill-conditioned normal equation matrix may not be readily apparent, and computer round-off may even produce apparently good results.

The author has not completely resolved this problem, having experimented with scaling the matrix, and calculating the determinant, but an economical answer, giving directly the poorly determined parameter is the method of the Googe number [Schwarz, 1978]. This facility has been incorporated into the inversion routine.

The Googe number for each parameter expresses the dependence of that parameter with respect to the sub-space defined by the previously determined parameters. It is calculated by dividing the respective diagonal element of the normal matrix into the corresponding diagonal term of the Cholesky decomposed upper triangular matrix before this latter number has been square-rooted.

In the Cholesky inversion the normal matrix is decomposed into the upper triangular matrix \underline{U} , where

$$U^{\dagger} U = N \tag{5.6}$$

The Googe number for the ith parameter is defined as

$$g_{i} = \frac{u_{ii}^{2}}{n_{ii}} \tag{5.7}$$

To appreciate the geometric evaluation of the Googe number of the $i^{\mbox{th}}$ parameter one considers the first design (A) matrix,

$$\underline{A} = [\underline{A}_{i-1} \ \underline{a}_{i} \ \underline{A}_{u-i}]$$

where u = total number of parameters.

Since the sub-space corresponding to the u-i parameters beyond the ith are not involved, the normal matrix can be expressed, with convenient disregard of the weights:

$$\underline{N} = \begin{bmatrix}
\underline{A}_{i-1}^{t} & \underline{A}_{i-1} & \underline{A}_{i-1}^{t} & \underline{a}_{i} & \underline{A}_{i-1}^{t} & \underline{A}_{u-i} \\
\underline{a}_{i}^{t} & \underline{A}_{i-1} & \underline{a}_{i}^{t} & \underline{a}_{i} & \underline{a}_{i}^{t} & \underline{A}_{u-i} \\
\underline{A}_{u-i} & \underline{A}_{i-1} & \underline{A}_{u-i} & \underline{a}_{i} & \underline{A}_{u-i} & \underline{A}_{u-i}
\end{bmatrix}$$
(5.9)

In the process of the Cholesky decomposition up to the $\ensuremath{\text{i}}^{th}$ column

$$\underline{\underline{U}}_{i} = \begin{bmatrix} \underline{\underline{U}}_{i-1} & (\underline{\underline{U}}_{i-1}^{t})^{-1} & \underline{\underline{A}}_{i-1} & \underline{\underline{a}}_{i} \\ \\ \underline{\underline{0}} & \underline{\underline{u}}_{ii} \end{bmatrix}$$
 (5.10)

where

$$u_{ii}^{2} = \underline{a}_{i}^{t} \ \underline{a}_{i} - \underline{a}_{i}^{t} \ \underline{A}_{i-1} \ \underline{U}_{i-1}^{-1} \ (\underline{U}_{i-1}^{t})^{-1} \ \underline{A}_{i-1}^{t} \ \underline{a}_{i}$$
 (5.11)

since

$$\underline{N}_{i-1}^{-1} = (\underline{U}_{i-1}^{t} \ \underline{U}_{i-1})^{-1} = (\underline{A}_{i-1}^{t} \ \underline{A}_{i-1})^{-1}$$
 (5.12)

$$u_{ii}^{2} = \underline{a}_{i}^{t} [\underline{I} - \underline{A}_{i-1} (\underline{A}_{i-1}^{t} \underline{A}_{i-1})^{-1} \underline{A}_{i-1}^{t}] \underline{a}_{i}.$$
 (5.13)

The matrix in the square brackets of equation (5.13) is recognised as idempotent. Where \underline{S}_{i-1} equals this idempotent matrix, multiplication will show

$$\underline{S}_{i-1}^2 = \underline{S}_{i-1}. \tag{5.14}$$

 \underline{S}_{i-1} is thus a projection operator. Some projection operators annihilate spaces [Jacobson, 1953]. Multiplication of

$$\underline{S}_{i-1} \underline{A}_{i-1} = 0$$
 (5.15)

shows that this projection operator annihilates, at least, the i-l sub-space. Multiplication of any vector, for example \underline{a}_i , by \underline{S}_{i-1} , would result in the component of \underline{a}_i which is the orthogonal complement to the i-l sub-space. Thus

$$u_{ii}^2 = a_i^t \underline{S}_{i-1} \underline{a}_i$$
 (5.16)

$$u_{i,i}^{2} = \underline{a}_{i}^{t} \underline{S}_{i-1}^{t} \underline{S}_{i-1} \underline{a}_{i}$$
 (5.17)

since S_{i-1} is symmetric.

. .
$$u_{ii}^2 = (\underline{S}_{i-1} \ \underline{a}_i)^t (\underline{S}_{i-1} \ \underline{a}_i)$$
. (5.18)

Equation (5.18) is recognised as the dot product of the vector component of \underline{a}_i which is orthogonal to the i-1 sub-space. The square of the complete length of the \underline{a}_i vector is given by

$$n_{ii} = a_i^t a_i. \tag{5.19}$$

The Googe number can thus be interpreted as the square of the sine of the angle of the ith parameter vector with the i-l parameter sub-space.

The Googe number should ideally equal one. The ith parameter vector is then orthogonal to the i-1 sub-space. If equal to zero, then the ith parameter vector is dependent on some previously determined parameters. The author's routines compare each Googe number to a tolerance value, and prints a warning if the parameter is ill-determined. Schwarz [1978] uses a comparison with

0.1 x 10^{-5} , but the author found a value of 0.1 x 10^{-3} was required to detect an ill-conditioned L.B.I. adjustment.

CHAPTER 6

RESULTS

The objectives of this thesis have been achieved, and an economical least squares adjustment of L.B.I. observations, with statistical evaluation of the results, has been developed. This chapter gives results of computations involving a full data set, and a 180 observation sub-set of that set. The 180 observation subset had been selected from the full set by Langley [1979] previous to being supplied to the author, and all observations with large residuals had been deleted. The full data set was reduced by the author, and observations with residuals greater than three times the standard error have been rejected to leave 4,300 from the original 5,700 observations.

Results are given in tabular form. The 180 data sub-set results from both the maximum likelihood adjustment and the least squares adjustment are shown in each table. This shows that the same results are produced, but more efficiently, by the least squares adjustment. Each table also gives the results of using the 4,300 data set, showing the increased accuracy of results obtained economically. Table 6.1 gives the comparison of

computer space and C.P.U. time from the three adjustments.

Table 6.2 shows the corresponding baseline results,

Table 6.3 compares the source position results, and

Table 6.4 gives the clock polynomial coefficients.

The parameters used in these adjustments are the same as used and described by Langley [1979]. The three antennae are at Algonquin Park (AR) Ontario, Owen's Valley (OV) California, and Chilbolton (CH) England. The baselines can thus be described by the initials AROV, ARCH, and OVCH. The sources are listed in Table 6.3, except 3C 273B which was held fixed. The fringe frequency clock polynomials were two first order on AROV, one second and one first order on ARCH, and one first order on OVCH. The delay polynomials were the same in number and order as the fringe frequency polynomials. For the reasons described in 2.4 independent coefficients were used for delay and fringe frequency.

The standard errors as shown for the 4300 observation set are not correct. The author assumed that the standard errors of observations were correct, while they should have been scaled by the variance factor. Too many outlying observations were rejected thus giving standard errors of parameters which were too optimistic. The differences in results shown between the 180 and 4300 observation sets do, however, agree at the two sigma level.

Table 6.1

Comparison of Computer Space and C.P.U. Time

Adjustment Number of	Maximum Likelihood	Least Squares	Least Squares				
Observations	180	180	4,300				
Compiler	Fortran G	Fortran H	Fortran H				
Link region	652 K	652 K	652 K				
Link C.P.U. time	2.66 seconds	2.65 seconds	2.64 seconds				
Go region	464 K	180 K	196 K				
Go C.P.U. time	298.16 seconds	14.26 seconds	332.01 seconds				

Computer: IBM 370/3032 with the VS2 operating system using almost completely double precision.

Table 6.2

Baseline Component Comparison

Adjustmer Number o		N	Maxim	num L	ike	1i	hoo	d		Lea	ıst	Squ	ar	es			Lea	ast	Squ	are	es ·	
Observation				18	0						1	80						4,	300			
Baselines	-	.,																				
AROV																						
X Y Z		- 3 - -	132	634. 217. 369.	45:	± 0	.30	m		327 132 723	217	. 45	±	0.33	L m	- 3 - -	327 132 723	217	.77	± (0.06	m
ARCH																						
X Y Z			245	274. 482. 826.	03:	± 0	.40	m		090 245 381		.03	±	0.43	L m		090 245 381		.17	± (0.09	m
OVCH																						
X Y Z		4	377	909. 699. 195.	44 :	± 0	.78	m	4	417 377 105	699	. 49	±	0.60	5 m	4	417 377 105	699	.94	± (1.14	m

Table 6.3

Source Position Comparison

Adjustment	Maximum Likelihood	Least Squares	Least Squares							
Number of Observations	180	180	4,300							
Source										
0J 287			· · · · · · · · · · · · · · · · · · ·							
Right ascension	$08^{h} 51^{m} 57.2517 \pm 0.0013$	$08^{h} 51^{m} 57.2517 \pm 0.0014$	08^{h} 51^{m} 57.2529 ± 0.0003							
Declination	20° 17' 58".372 ± 0".037	20° 17' 58".373 ± 0".035	20° 17' 58'.399 ± 0'.008							
4C 39.25										
Right ascension	09^{h} 23^{m} 55.3215 ± 0.0018	$09^{\text{h}} 23^{\text{m}} 55.3215 \pm 0.0018$	$09^{\text{h}} 23^{\text{m}} 55.3205 \pm 0.0004$							
Declination	39° 15' 23".603 ± 0".024	39° 15' 23'.'603 ± 0'.'024	39° 15' 23.605 ± 0.005							
3C 345										
Right ascension	16^{h} 41^{m} 17.6100 ± 0.0012	$16^{h} 41^{m} 17.6100 \pm 0.0013$	16^{h} 41^{m} 17.6104 ± 0.0003							
Declination	39° 54' 10''803 ± 0''016	39° 54' 10''804 ± 0''016	39° 54' 10''823 ± 0''003							
BLLAC										
Right ascension	22^{h} 00^{m} 39.3636 ± 0.0014	22^{h} 00^{m} 39.3636 ± 0.0014	22^{h} 00^{m} 39.3636 ± 0.0003							
Declination	42° 02' 08".562 ± 0".014	42° 02' 08".562 ± 0".014	42° 02' 08'.519 ± 0'.003							

Table 6.4

Clock Polynomial Coefficient Comparison

Adjustment Number of Observations	Maximum Likelihood	Least Squares	Least Squares
Parameter No.			
AROV $a_2(F)$	$-(0.62 \pm 0.03) \times 10^{-8}$	$-(0.61 \pm 0.03) \times 10^{-8}$	$-(0.651 \pm 0.005) \times 10^{-8}$
a ₂ (F 2nd)	$-(0.50 \pm 0.02) \times 10^{-8}$	$-(0.50 \pm 0.02) \times 10^{-8}$	$-(0.521 \pm 0.003) \times 10^{-8}$
ARCH a ₂ (F)	$-(0.38 \pm 0.05) \times 10^{-8}$	$-(0.38 \pm 0.05) \times 10^{-8}$	$-(0.445 \pm 0.009) \times 10^{-8}$
a ₃ (F)	$-(0.44 \pm 0.07) \times 10^{-10}$	$-(0.44 \pm 0.08) \times 10^{-10}$	$-(0.247 \pm 0.014) \times 10^{-10}$
a ₂ (F 2nd)	$-(0.51 \pm 0.02) \times 10^{-8}$	$-(0.51 \pm 0.02) \times 10^{-8}$	$-(0.499 \pm 0.004) \times 10^{-8}$
OVCH a ₂ (F)	$-(0.75 \pm 0.61) \times 10^{-9}$	$-(0.76 \pm 0.33) \times 10^{-9}$	$-(0.166 \pm 0.061) \times 10^{-9}$
AROV $a_1(\tau)$	$(0.87 \pm 0.03) \times 10^{-6}$	$(0.87 \pm 0.03) \times 10^{-6}$	$(0.863 \pm 0.005) \times 10^{-6}$
a ₂ (τ)	$-(0.58 \pm 0.09) \times 10^{-8}$	$-(0.58 \pm 0.09) \times 10^{-8}$	$-(0.573 \pm 0.018) \times 10^{-8}$
a ₁ (τ 2nd)	$(0.63 \pm 0.01) \times 10^{-6}$	$(0.63 \pm 0.01) \times 10^{-6}$	$(0.628 \pm 0.002) \times 10^{-6}$
a ₂ (τ 2nd)	$-(0.54 \pm 0.02) \times 10^{-8}$	$-(0.54 \pm 0.02) \times 10^{-8}$	$-(0.552 \pm 0.004) \times 10^{-8}$
ARCH a ₁ (τ)	$-(0.44 \pm 0.05) \times 10^{-6}$	$-(0.44 \pm 0.05) \times 10^{-6}$	$-(0.342 \pm 0.010) \times 10^{-6}$

Table 6.4 - Continued

Adjustment Number of Observations	Maximum Likelihood 180	Least Squares	Least Squares 4,300
Parameter No.			
a ₂ (τ)	$-(0.82 \pm 4.05) \times 10^{-9}$	$-(0.83 \pm 3.95) \times 10^{-9}$	$-(0.906 \pm 0.079) \times 10^{-8}$
a ₃ (τ)	$-(0.12 \pm 0.08) \times 10^{-9}$	$-(0.12 \pm 0.08) \times 10^{-9}$	$(0.558 \pm 0.152) \times 10^{-10}$
ARCH $a_1(\tau 2nd)$	$-(0.65 \pm 0.01) \times 10^{-6}$	$-(0.65 \pm 0.01) \times 10^{-6}$	$-(0.644 \pm 0.002) \times 10^{-6}$
a ₂ (τ 2nd)	$-(0.51 \pm 0.02) \times 10^{-8}$	$-(0.51 \pm 0.02) \times 10^{-8}$	$-(0.545 \pm 0.004) \times 10^{-8}$
OVCH $a_1(\tau)$	$-(1.18 \pm 0.01) \times 10^{-6}$	$-(1.18 \pm 0.01) \times 10^{-6}$	$-(1.178 \pm 0.002) \times 10^{-6}$
a ₂ (τ)	$-(0.75 \pm 0.27) \times 10^{-9}$	$-(0.75 \pm 0.26) \times 10^{-9}$	$-(0.772 \pm 0.050) \times 10^{-9}$

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

An efficient least squares adjustment package has been produced and it is recommended that future analysis involves these routines. There are undoubtably changes that can be made to improve the routines and to suit specific customer requirements.

7.1 Analyse Full Sets of Observations

It is suggested that previous data sets in which only a small proportion of available observations were processed should be re-analysed. The author has carried out some experimentation with the full data sets and has found that the standard errors of results has decreased in proportion to the increase in number of observations. Lack of time has limited these experiments, but initial results do give cause for optimism with respect to accuracies which can be obtained using the full data sets.

7.2 Consistency in Accuracy Throughout the Model

Improvements in accuracy from the adjustment may cause some parts of the L.B.I. models to be deficient in attaining these accuracies. Langley [1979] reports

the model to be accurate to the order of 10 centimetres. Polar motion is currently given a single set of values for a three or four day observation period. It is suggested that full sets of observations may cause such model parameter errors to be above the error level of the least squares adjustment. A thorough analysis of the model is thus required to ensure consistency in error level in the L.B.I. model.

7.3 Interactive Process Mode

The author's routines were processed in batch mode, but it might be more efficient to use a video display unit (V.D.U.), and possibly a fully interactive computation and storage process. While experimenting with data sets of 5,000 observations the author found the task of inspecting the residual plot and deleting outlying observations time consuming and prone to errors. To delete an observation cards had to be punched, and the reduced data set stored on disc. Problems were also found with the paper plot residual scale. Use of a V.D.U. should thus be able to improve efficiency in analysing data.

7.4 Data Storage on Direct Access File

The present use of a sequential file to store the data is a main cause for inefficiency in deleting outlying observations. A direct access file would allow an outlying observation to be marked while the residual is being

computed, or, in an interactive process, on deletion from the V.D.U. screen inspection. Possibly a value overprinted in a particular column would show deletion. This could be involved with an ability of subtracting the effect of that observation from the current adjustment. Subsequent adjustments would check the deletion column of the observation storage line. An original copy of the unedited data would, of course, be stored, probably on a tape.

7.5 Permanent Storage of the A Matrix

Permanent storage of the first design (A) matrix coefficients, with observations and logistic information, could be combined in an interactive process. The author's routines, having compressed the A matrix, could be adapted, and lead to even greater C.P.U. time efficiency. In an L.B.I. analysis many of the computer runs vary only in their use of different orders of clock polynomials. Time could be greatly reduced since this implies that exactly the same computations are carried out in each run to form most of the coefficients of the A matrix.

7.6 <u>Comparison of Doppler Satellite and L.B.I. Coordinate</u> Systems

Langley [1979] compared L.B.I. results with those of Doppler satellite and was able to deduce scale and

orientation differences between coordinate systems as defined by the Bureau International de l'Heure (B.I.H.) and the United States Navy Navigation System. This comparison should be repeated with a re-evaluation of the L.B.I. observations using the least squares adjustment routines and the full set of observations.

7.7 L.B.I. Observing Programme for Geodetic Results

Observations used for L.B.I. using the Canadian observation system have been designed for the needs of astrophysics. This involves continued observations to a single source for many hours. This situation is not ideal for geodetic use of the observations, causing high correlations between parameters. Observations to sources in various positions on the celestial sphere for short periods provides better resolution for geodetic results. This is mainly a financial problem, but it is suggested that the full advantages of the whole L.B.I. system for geodesy can only be realised from a specifically geodetic observing programme.

7.8 Spectral Analysis of Residuals

Initial computations of full data sets shows the plots of residuals to display sinusoidal tendencies.

It is suggested that a spectral analysis of the residuals might lead to an improvement of the L.B.I. model.

Atmospheric and oscillator effects in particular have possibilities for model improvements.

REFERENCES

- Adby, P.R. and M.A.H. Dempster (1974). "Introduction to optimization methods", Chapman and Hall, London.
- Cannon, W.H. (1978). "The classical analysis of the response of a long baseline radio interferometer", J.R. Astr. Soc. 53, 503-530.
- Hamilton, W.C. (1964). "Statistics in physical science", Ronald Press, New York.
- Jacobson, N. (1953). "Lectures in abstract algebra", Van Nostrand Co., New York.
- Jones, H.E. (1969). "Geodetic ties between continents by means of radio telescopes", Canadian Surveyor 23, 377-388.
- Krakiwsky, E.J. (1978). "Statistical techniques and Doppler satellite positioning", Invited paper, The Roy. Soc., Satellite Doppler Tracking and Geodetic Applications, London, 10-11 Oct. 1978.
- Langley, R.B. (1979). "Precision geodesy and astrometry with a three station long baseline interferometer", Ph.D. Thesis, York University, Toronto.
- Meeks, M.L., ed. (1976). "Methods of experimental physics", 12(c), Academic Press, New York.
- Mikhail, E.M. (1970). "Parameter constraints in least squares", Photogrammetric Engineering 36(12), 1277-1291.
- Mikhail, E.M. (1976). "Observations and least squares", IEP, New York.
- Pope, A.J. (1976). "The statistics of residuals and the detection of outliers", NOAA Tech. Rept. NOS 65 NGS-1, U.S. Dept. of Commerce.
- Schwarz, C.R. (1978). "TRAV10 horizontal network adjustment program", NOAA Tech. Mem. NOS NGS-12, U.S. Dept. of Commerce.

- Shapiro, I.I. (1978). "Principles of very-long-baseline interferometry", Proc. 9th GEOP Conf., 2-5 Oct. 1978, Columbus, Ohio.
- Vanicek, P. and E.J. Krakiwsky (1980). "Geodesy: the Concepts", North-Holland (in preparation).

APPENDIX 1

JOB CONTROL FOR I.B.M. 370/3032 AT U.N.B.

```
An example of the J.C.L. to run the least squares routines at U.N.B. The observations of delay and fringe frequency are stored on disc.
```

```
//LBIJOB , , S=335,R=704,L=13,LC=0,ANAME
/*SETUP DISK=SEGEOM

// EXEC FORTXCLG,RG=320K,RL=704K,

// PARM.LKED='LIST,MAP,LET,SIZE=(650K,128K)'

//FORT.SYSIN DD *
```

MAIN ROUTINE

AND BLOCK DATA

```
/*
//LKED.SYSLIB DD DSN=DAVIDSON.LBI.X,DISP=SHR
//
              DD DSN=DAVIDSON.ETIDE.X,DISP=SHR
11
              DD DSN=SYS1.FORTXLIB, DISP=SHR
              DD DSN=UNB1.FORTLIB, DISP=SHR
//
11
              DD DSN=UNB1.IMSL.LOAD&LIB,DISP=SHR
//LKED.SYSUT1 DD SPACE=(TRK, (100, 10))
//GO.FT06F001 DD SYSOUT=S
//GO.FT11F001 DD DSN=&&TEMPA, DISP=(NEW, PASS), UNIT=SYSDA,
     SPACE=(TRK, (50,10)), DCB=(RECFM=VBS, LRECL=140,
//
                       BLKSIZE=7004)
```

```
//GO.SYSIN DD *

CONTROL DATA

/*

//GO.FT05F002 DD *

EARTH TIDE DATA

//GO.FT09F001 DD DSN=DAVIDSON.MAY77.REJ3P0,DISP=SHR

//
```

APPENDIX 2

INPUT DATA

Control data cards

The data cards and the variable names are described in the position order of the input pack.

1. Variables: MD, NPARAM, NUSED, NFIXED, NVARBL, NPLNS,

MXEPOC, NCONS, INTS, NUPDT, NCDIM

Format: (2613)

Definitions:

MD Model number. Used to reference the

program run.

NPARAM Maximum parameter reference number.

Parameter reference numbers are allocated

according to parameter type.

1 - 30 station coordinates

31 - 50 source coordinates

51 - NPARAM clock polynomial coefficients.

NUSED Total number of fixed and variable parameters

used in the adjustment.

NFIXED Number of fixed parameters.

NVARBL Number of variable parameters.

NPLNS Number of clock polynomials

(Note: NPARAM = 50 + (NPLNS*5).

MXEPOC Maximum number of epochs in any baseline.

An epoch is the start point of a clock

polynomial.

NCONS Number of constraints

INTS Number of class intervals in histogram of residuals.

NUPDT Number of updated parameters.

NCDIM Dimension value for arrays used in connection with constraints.

Read in MAIN routine

Example card

001100036005031010003000020006020

2. Variables: ((IPARAM(K), ISTAT(IPARAM(K)), K=1, NUSED)

Format: (13(I4, I2))

Definitions:

IPARAM Vector of all used parameters. Values stored are the parameter reference numbers.

ISTAT Vector of status numbers for each parameter stored in reference value element, e.g.,

1st station coordinate status number in

ISTAT(1)

1st source right ascension status number in ISTAT(31)

Status number 1 implies fixed parameter.

Status number 3 implies variable parameter.

Read in RDWRT

Example card

000101000201000301000403000503

004301004401004503004603

007703008103008203 009703

3. Variables: MTYPE, ITIDE, ISIGMA, IMAX, ISAME, ICORR

Format: (3(I1,1X),I2,1X,I1,1X,I1)

Definitions:

MTYPE Model type, signifies types of observations used in adjustment.

- 3 .. fringe frequency and delay observations.
- 2 .. delay observations.
- 1 .. fringe frequency observations.

ITIDE Signifies use of earth tide corrections.

- 0 .. no earth tide corrections.
- 1 .. earth tide corrections are applied.

ISIGMA Indicates whether standard errors are used with observations.

- 0 .. no standard errors applied.
- 1 .. standard errors applied.

IMAX Number of iterations (update of à priori parameters constitutes first iteration).

- 0 .. any number, until increments approach
 zero.
- 1 .. one iteration only
- n .. n iterations, or until increments approach zero.

ISAME Indicates whether delay clock polynomial coefficients are to be equal to their respective fringe frequency coefficients.

0 .. coefficients are equal.

1 .. coefficients are not equal.

ICORR Corrects time of observation by +1 second.

0 .. corrects by +1 second.

n .. any other number does not correct time.

Read in RDWRT

Example card

3 1 1 1 1

4. Variables: (XTRASM(K,1) K=1,8)
(XTRASM(K,2) K=1,8)

Format: 8 F 10.5

This set of cards apply extra standard errors, according to baseline (K) and observation type (1 or 2), which have been estimated using the variance factor. If ISIGMA equals 0, then these cards are omitted. Fringe frequency increases are given on the first card; delay increases are given on the second card. If only delay observations are used, then only the delay increases card is used.

Definition:

XTRASM Array of increases to standard errors of observations.

Read in RDWRT

Example card

0.0018 0.0016

0.0025

0.01

0.01

0.01

5. Variable: SESION

Format:

(2A8)

Definition:

SESION Observation session name, using up to

16 letters.

Read in RDWRT

Example card

MAY 1977

6. Variables: OBSFRQ, JDJANO

Format:

(F10.5, T15, I10)

Definitions:

OBSFRQ Observing frequency (MHz)

JDJANO Julian Day January 0 at beginning of the

year of the observations.

Read in RDWRT

Example card

10680.0

2443144

7. Variable: TOBS1

Format:

F15.5

Definition:

TOBS1

Day of year immediately prior to all obser-

vations. Used as epoch day for the first

clock polynomials of each baseline, and to initialise the earth tide routines.

Read in RDWRT

Example card

133.0

8. Variables: XPOLE, YPOLE, OMEGA, UTPOLY(K), K=1,3)

Format: (3D20.5/3D20.5)

Symbol / denotes card skip.

Definitions:

XPOLE X coordinate of polar motion, in seconds of arc.

YPOLE Y coordinate of polar motion, in seconds of arc.

OMEGA Rotation rate of earth, in radians per U.T. second.

UTPOLY UT1-UTC polynomial coefficients.

These values are taken from external information, e.g., B.I.H. [Langley, 1979].

Read in RDWRT

Example card

-0.139

7.292114897D-05

2.330175D-04

-1.557534D-06

2.738229D-

9. Constraint cards. If NCONS equal 0, then none of these cards are used as input.

0.482

A. Variables: (NCONP(I), I=1, NCONS)

Format: (26I3)

Definition:

NCONP Vector of number of constrained parameters in each constraint.

Read in RDWRT

Example card

3 3 3 1 1

Format: (D25.16,D10.3,915)

One card for each constraint equation.

Definitions:

ESTCON Estimation of constraint.

SGMCON Standard error of constraint.

ICONS Each row gives the defined parameter numbers, and signs, used in a constraint.

Read in WDWRT

Example cards

0.0 0.1D-8 52 -62 72

-0.24096185 D+0.4 0.5D-4 4

10. A priori station coordinates.

Input in the form of ellipsoidal coordinates on a local geodetic datum. The first card gives the number of stations, followed by three cards for each station.

A. Variable: NSTNS

Format: (I1)

Definition:

NSTNS Number of stations

Read in STNGEO

Example card

3

Format: (1X, 2A8, 3X, 4A8, 3(2X, F7.2))

Definitions:

STNAM Vector (COMPLEX*16) of station names.

RSURF1, Vectors (COMPLEX*16) which, when together,
RSURF2 give the geodetic reference surface of each station.

Read in STNGEO

Example card

ARO 46M

CLARKE ELLIPSOID OF 1866 N.A.D.

-27.0 + 160.0 + 180.0

C. Variables: EQTRAD(I), FLAT(I), SGN, IDLAT(I),

IMLAT(I), RSLAT(I), IDLONG(I),

IMLONG(I), RSLAT(I), HEIGHT(I)

Format: (1X,F11.6,5X,F10.6,5X,A1,I2,1X,I2,1X,F7.4,

5X, I3, 1X, I2, 1X, F7.4, 5X, F8.3)

Definitions:

EQTRAD Vector of equatorial radii of ellipsoids (Km)

FLAT Vector of inverse of ellipsoidal flattenning

(1/F)

SGN Sign of latitude (+ or -)

IDLAT degrees

IMLAT minutes vectors of latitude

RSLAT seconds

IDLONG degrees

IMLONG minutes vectors of longitude

RSLONG seconds

HEIGHT Vector of heights above ellipsoid (m)

Read in STNGEO

Example card

6378.2064 294.978698

+45 57 19.812

281 55 37.055

260.42

D. Variable: OFFSET(I)

Format: F8.2

Definition:

OFFSET Vector of offsets of antennae axes (m)

Example card

0.0

11. Variable: FOFSET(L)

Format: (F10.4)

Definition:

FOFSET Vector of frequency offsets for each baseline (Hz). One card for each baseline.

Read in RDWRT

Example card

0.0

12. Clock polynomial data

A set of cards for each baseline gives the number of clock polynomials for that baseline and if the number is greater than 1, the starting time epochs for the subsequent polynomials. The epoch of the first polynomial is TOBS1. The end card of this set gives the order of each polynomial. Polynomials are arranged first into fringe frequency and delay, then into baseline number, and finally into time of epoch.

A. Variable: NCP(L)

Format: (I1)

Definition:

NCP Vector of number of clock polynomials in each baseline.

Read in RDWRT

Example card

2

B. If NCP for the baseline is 1, there is not any following epoch card.

Variable: (EPOCHS(L,J), J=2, NCP(L))

Format: (4D20.10)

Definition:

EPOCHS Zero time for Jth polynomial on Lth baseline.

Read in RDWRT

Example card

134.7291666666667D00

C. Variables: (NPOLY(L), L=1), NPLNS)

Format: (26I3)

Definition:

NPOLY Vector of the order of the polynomial for each of the polynomials.

Read in RDWRT

Example card

1 1 2 1 1 1 1 2 1 1

13. A priori source positions.

First card gives the number of sources, followed by 1 card for each source. The maximum number is 10 sources. Not all input sources need be used in the adjustment: those used are defined as such by the input card of used parameters.

A. Variable: NSORCE

Format: (I2)

Definition:

NSORCE Total number of source positions.

Read in SOURCE

Example card

10

B. Variables: SCNAME(JSORCE),

IHOURA, IMINRA, SECRA,

SGN1, IDGDEC, IMNDEC, SECDEC

Format:

(1X,A7,7X,I2,1X,I2,1X,F6.3,1X,A1,I2,1X,

12,1X,F5.2

Definitions:

SCNAME Vector of source names.

IHOURA hours

IMINRA minutes

Right ascension.

SECRA seconds

SGN1 sign (+ or -)

IDGDEC degrees

Declination.

IMNDEC minutes

SECDEC seconds

Read in SOURCE

Example card

0235+16

02 35 52.634 +16 24 4.01

14. Variables: NSKIP, NOBS, (NOBSLN(K), K=1, NBASE)

Format: (8I10)

Definitions:

NSKIP Number of observations at the beginning

of data file to be skipped.

NOBS Number of observations to be used from the data set.

NOBSLN Vector of number of observations for each baseline.

Read in RDWRT

Example card

4607 1770 1834 1003

15. Update of parameters

If NUPDT=0, the following cards are not included.

An input card is used for each parameter updated.

Variables: K, X(K)

Format: (I5,5X,D25.16)

Definitions:

K Defined parameter number

e.g. K = 1 - 30 station coordinates K = 31 - 50 source coordinates

X Vector of parameter values.

Units X(1) - X(30) km X(31) - X(50) degrees

Read in RDWRT

Example card

4 -0.2409618078849968D +04

16. Statistical information

A single input card with all variables as REAL*4.

Variables: AMAX1, AMAX2, ALPHA, XFIRST, YFIRST, YINC,

CRIT

Format: (2A4, F7.4, 6F10.6)

Definitions:

AMAX1 Word definiting method of rejecting outliers.

AMAX2 i.e., DICTATED .. stated rejection criteria

MAX .. max text

NON-MAX .. non-max test.

ALPHA Probability of a type I error, i.e., significance level of all statistical tests.

XFIRST Addition to TOBS1, in hours, to give start time for each residual plot.

YFIRST Left-hand side of residual plot scale.

YINC Increment of residual scale per printer column.

CRIT Defined criteria for outlier rejection.

This value is used if AMAX1 = DICT, otherwise CRIT is statistically computed.

Outlying residuals are denoted with an asterisk, but not subtracted from the solution.

Read in RDWRT

Example card

MAX 0.01 12. -0.06 0.0012

17. Delay and fringe frequency observations

Observations are inputted after the GO.FT09

J.C.L. card in the form of card images. A card, or
a line in the storage file, exists for each observation

time point.

Variables: IDYOBS, UTH, UTM, SNAME, BNAME, OBDLY,

SGMDLY, OBFF, SGMFF

Format: (3X, I3, 2F3.0, 1X, A8, 1X, A4, D18.10, F6.3,

D18.10, F7.4)

Definitions:

IDYOBS Day of observation.

UTH Hour of observation.

UTM Minute of observation.

SNAME Source name.

BNAME Baseline name.

OBDLY Observed delay value (micro-seconds).

SGMDLY Standard error of delay (micro-seconds)

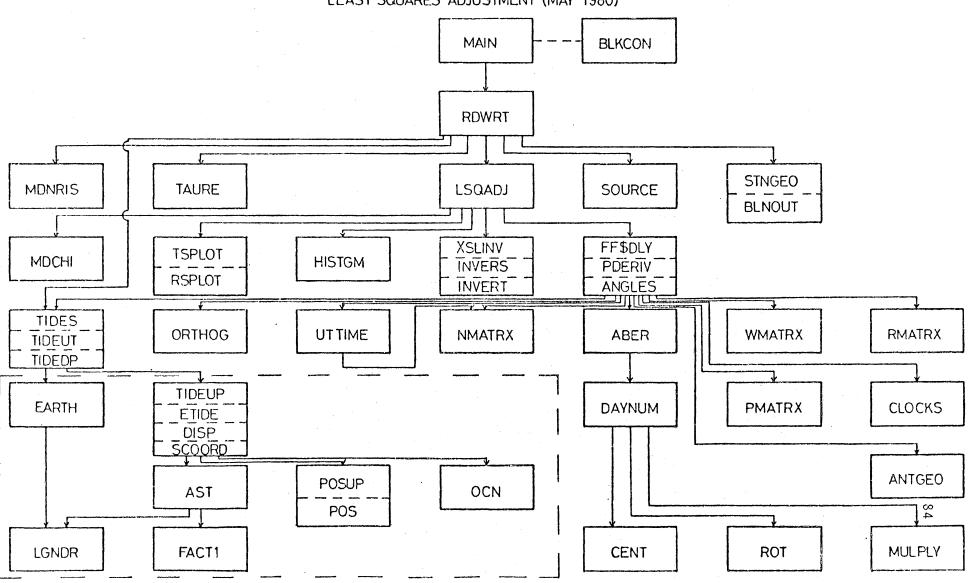
if equals 0.0, denotes rejected delay

observation.

OBFF Observed fringe frequency value (Hz).

SGMFF Standard error of fringe frequency (Hz)

if equals 0.0, denotes rejected fringe


frequency observation.

APPENDIX 3

CANADIAN L.B.I. ANALYSIS PROGRAM (MAY 1980)

A flow chart is shown of the fringe frequency and delay analysis program which uses the U.N.B. least squares adjustment. Card images are given of the routines which have been developed mainly at U.N.B. The remaining routines used in the Canadian L.B.I. analysis are the property of York University and are not produced in this appendix.

CANADIAN FRINGE FREQUENCY AND DELAY ANALYSIS PROGRAM LEAST SQUARES ADJUSTMENT (MAY 1980)


```
CMAIN
C
      MAIN
                                                                    MAIN
                                                                    CMAIN
C CARD INPUT TO START LEAST SQUARES ADJUSTMENT OF L.B.I. DATA.
                                                                    CMAIN
C COMMON /ADJUST/ USED IN ROWRT LSQADJ
                                                                   CMAIN
C DIMENSIONS ARRAYS OF VARIABLE SIZE.
                                        CALLS ROWRT
                                                                    CMAIN
                                                                    CMAIN
C DIMENSIONS MUST MATCH INPUT CARDS:
                                                                    CMAIN
   X(NPARAM), CLPOLY(5, NPLNS), EPOCHS(10, MXEPOC), ICOL(NPARAM),
                                                                           9
                                                                    CMAIN
    ISTAT(NPARAM). NPOLY(NPLNS).
                                                                    CMAIN
                                                                          10
C
    IVARBL( ), DELTA( ), ATRW( ), ANS( ), ANDRM( , ), PACC( );
                                                                    CMAIN
                                                                          11
C
          ALL DIMENSIONED NVARBL
                                                                    CMAIN
    IPARAM(NUSED).
                                                                    CMAIN
                                                                          13
    ICONS(NCDIM.5), NCONP(NCDIM), SGMCON(NCDIM), ESTCON(NCDIM).
C
                                                                    CMAIN
                                                                           14
                                                                    CMAIN
                                                                           15
C D. 4. DAVIDSON MAY 1980
                                                                    CMAIN
                                                                           16
                                                                    CMAIN
                                                                          17
     IMPLICAT REAL*8(A-H, 0-Z)
                                                                    MAIN
                                                                          18
     REAL *4 XFIRST, YFIRST, YINC
                                                                    MAIN
                                                                          19
     COMMON /ADJUST/ FOFSET(10), OBSFRQ, XTRASM(10.2).
                                                                    MAIN
                                                                           20
    &SCNAME(10), VBNAME(10),
                                                                    MAIN
                                                                          21
     S XFIRST.YFIRST.YINC.
                                                                    MAIN
                                                                           22
     1 NOBSLN(10) NCDNS.
                                                                    MAIN
                                                                           23
    2 MTYPE . ISIGNA . NY . NSTNS . NSKIP . ICORR
                                                                    MAIN
                                                                           24
    3.5APB(40)
                                                                    MAIN
                                                                           25
    DIMENSION X(100), CLPOLY(5,10), EPOCHS(10,3), ICUL(100), ISTAT(100),
                                                                    MAIN
                                                                           26
     1 NPOLY(10).
                                                                           27
                                                                     MAIN
    2 IVARBL(31).DELTA(31).ATRW(31).ANS(31).ANDRM(31,31).PACC(31).
                                                                    MAIN
                                                                          28
    3 TPARAM(36).
                                                                    MAIN
                                                                           29
     4 1 CONS (20.5) . NCONP(20) . SGMCON(20) . ESTCON(20)
                                                                     MAIN
                                                                           30
     EQUIVALENCE (X(51), CLPDLY(1,11)
                                                                    MAIN
                                                                           31
     READ(5,5000) MD.NPARAM.NUSED, NFIXED.NVARBL.NPLNS, MXEPOC.NCONS.
                                                                    MAIN
    1 INTS.NUPDT.NCDIM
                                                                    MAIN
                                                                          33
 5000 FORMAT (2613)
                                                                    MAIN
                                                                           34
    CALL POWRT(X,CLPOLY,EPOCHS,ICOL,ISTAT,NPOLY,NPARAM,NPLNS,
                                                                    MAIN
                                                                          35
     1 IVARBL, DELTA, ATRW, ANS, ANORM, PACC,
                                                             NVARBL, MAIN
                                                                           36
     2 IPARAM,
                                                                     MAIN
                                                                           37
     3 ICONS, NCOMP, SGMCON, ESTCON,
                                                             NCDIM.
                                                                    MAIN
     5 MXEPOC, MD, NUSED, NFIXED, INTS, NUPDI
                                                                    MAIN
                                                                           39
     STOP
                                                                    MAIN
                                                                          . 40
      END
                                                                    MAIN
                                                                           41
     BLOCK DATA
                                                                    MAIN
                                                                          42
   C INITIALIZATION OF CONSTANTS IN COMMON BLOCK, BLKCON
```

```
CMAIN
                                                                             45
     C 299792.5 KM/S
C
                                                                      CMAIN
                                                                              46
C
    TWOPI 6.283185307179586
                                                                      CMAIN
                                                                              47
     DEGRAD 0.01745329251994329
                                                                       CMAIN
                                                                              48
     FADDEG 57.29577951308232
C
                                                                      CMAIN
                                                                              49
C
    Q 1.00002098083496
                                                                      CMAIN
    FPCLE 6356.7747 KM
                                                                      CMAIN
                                                                              51
    REGTOR 6378.160 KM
                                                                      CMAIN .52
     FLATNG 0.00033528919
                                                                       CMAIN
                                                                              53
                                                                      CMAIN
                                                                              54
C R. B. LANGLEY - 1 DECEMBER 1977
                                                                       CMAIN
                                                                              55
     IMPLICIT FEAL*8(A-H, D-Z)
COMMON /BLKCON/ C.TWOPI.DEGRAD.RADDEG.Q.RPOLE, REQTOR.FLATNG
                                                                              57
                                                                       MAIN
     DATA C.TWOPI.DEGRAD.RADDEG.Q.RPULE.REQTOR.FLATNG/239792.500.
                                                                      MAIN
     1 6.283185307179586D0, 1.745329251994329D-02, 57.29577951308232D0. MAIN
     2 1.00000209808349600. 6356.774700. 6378.16000. 3.35289190-03/ MAIN
     END
      SUPROUTINE HISTGM(MTYPE,NY,NHIST,VAL,INTS,NOB,ISIGMA,ALPHA)
      ---CHIST
                                                                               2
C HISTOM PLOTS THE HISTOGRAMS OF STANDARDIZED DELAY & FRINGE FREQUENCY CHIST
C RESIDUALS OVEFLAID WITH A NORMAL CURVE. A CHI-SQUARE GOODNESS-UF-FIT CHIST
C TEST IS PERFORMED. IT IS BASED ON "GODFIT" BY R.R.STEEVES IN "GEOPAN"CHIST
C CALLED BY LSOADJ CALLS MONOR MOCHI
                                                                               7
                                                                      CHIST
C INFUT PARAMETERS
                                                                       CHIST
                                                                               8
C MTYPE DENOTES OBSERVATIONS LEFF, 2=DLY, 3=FF AND DLY
                                                                      CHIST
                                                                               9
         NUMBER OF OBSERVATION TYPES IE. 1 OR 2
                                                                       CHIST
C NHIST TWO VECTORS OF CLASSES FOR DLY AND FF STANDARDIZED RESIDUALS. CHIST
        MAXIMUM CLASS NUMBER = 40.
                                                                       CHIST
                                                                              12
         VALUE OF CLASS WIDTH.
C VAL
                                                                       CHIST
                                                                              13
       NUMBER OF CLASS INTERVALS FOR HISTOGRAM. GUDDNESS-OF-FIT TEST CHIST
\mathbf{C}
  INTS
        WILL GROUP CLASSES AT LIMITS OF CURVE UNTIL EXPECTED NUMBER
C
                                                                      CHIST
                                                                              15
C GT. 5. AND THEN USE THE HISTOGRAM INTERVALS
C NO3 NUMBER OF OBSERVATIONS OF DLY AND FF.
C ISIGMA WHETHER STANDARD ERRORS APPLIED (=0 NO STD. ERR, =1 STD ERR
                                                                       CHIST
                                                                              16
                                                                      CHIST
                                                                              17
                                                                      CHIST
C ALPHA PROBABILITY OF REJECTING A TRUE HYPOTHESIS
                                                                      CHIST
                                                                              19
C THERE ARE NO OUTPUT PARAMETERS.
                                                                       CHIST
                                                                              20
C REFERENCE D. A. DAVIDSON M.SC.L. THESIS U.N.B.
                                                                      CHIST
                                                                              21
        D. A. DAVIDSON MAY 1980
C
                                                                      CHIST
                                                                      CHIST
                                                                              23
```

```
PEAL *4 ESTN(2), CHISQ(2), VAL, Y, P, ANUM, UPTU, DF, CONF, CHI
                                                                             HIST
                                                                                     25
     INTEGER NOR(2).NVEC(53).ITCTI(2).ITCTO(2).MTYPE.NY.INTS
                                                                              HIST
                                                                                     26
      INTEGER NER(2,40), NHIST(2,40)
                                                                              HIST
                                                                                     27
      LOGICAL*1 STRING(101). VLINES(101). SV(34)
                                                                              HIST
                                                                                     28
      LOGICAL*1 VLINE/ ! / BLANK/ 1/ DOT/ . 1/ HLINE/ - 1/
                                                                              HIST
                                                                                     29
      DATA SV/4* * * * * R * ; * E * , * L * , * A * , * T * , * I * , * V * , * E * , * F * , * F * , * R * , * E * , * G * , HIST
                                                                                     30
     6 TU 1, 1E 1, TN 1, 1C 1, 1Y 1, 2*1 1/
                                                                              HIST
                                                                                     31
      DATA NVEC/22*0.4*1.2.2.3.4.4.5.6.8.9.10.12.14.16.17.19.21.23.25.27HIST
                                                                                     32
     6,28,29,31,31,3*32,31/
                                                                                     33
C ZERD TOTALS OF EXTERNAL HISTOGRAM CLASSESS WHICH ARE GROUPED TO HAVE CHIST
                                                                                     34
C ALL EXPECTED CLASS NUMBERS GREATER THAN 5
                                                                             CHIST
                                                                                     35
                                                                              HIST
                                                                                     36
       C = (L)ITOTI
                                                                              HIST
                                                                                     37
     1 \text{ ITOTO}(J) = 0
                                                                              HIST
                                                                                     38
C FIND OUTSIDE CLASS TO SUM TO > 5
                                                                             CHIST
                                                                                     39
      I = 0
                                                                              HIST
                                                                                     40
    3 I=I+1
                                                                              HIST
                                                                                     41
      Y=-5.0+VAL*FLOAT(I)
                                                                              HIST
                                                                                     42
      CALL MONOR (Y,P)
                                                                              HIST
      ESTN(1)=P*FLOAT(NOB(1))

IF(ESTN(1).LT.5.0) GO TO 2

IF(NY.EQ.2) ESTN(2)=P*NOB(2)
                                                                                     43
                                                                              HIST
                                                                                     44
                                                                                     45
                                                                              HIST
                                                                                     46
C HISTOGRAM CLASS HEIGHT OF "OUTER" CLASSES AND GROUPS THESE CLASSES FORHIST
                                                                                     47
C CHI-SQUARE G-0-F TEST. COMPUTES CHI-SQUARE STATISTIC FOR D. OF FREEDOMHIST
                                                                                     48
      DO 3. JU=1.I
                                                                              HIST
                                                                                     49
       ICJJ=INIS-JJ+1
                                                                              HIST
                                                                                     50
      DO 3 J=1.NY
                                                                              HIST
                                                                                     51
       ANUM=FLUAT(NHIST(J.JJ)*80)/FLOAT(NOB(J))/VAL
                                                                              HIST
                                                                                     52
      NER(J.JJ)=ANUM+0.5
                                                                              HIST
                                                                                     53
       ITOTI(J)=ITOTI(J)+NHIST(J,JJ)
                                                                              HIST
                                                                                     54
       ANUM=FLOAT(NHIST(J.IOJJ)*80)/FLOAT(NOB(J))/VAL
                                                                              HIST
                                                                                     55
    (LLDI.L) TRIMN+(L) DTOTI = (L) DTOTI E
                                                                              HIST
                                                                                     56
                                                                              HIST
                                                                                     57
      NCLASS=INTS-2*I+2
                                                                              HIST
                                                                                     58
       DF=FLOAT(NCLASS-1)
                                                                              HIST
                                                                                     59
       IF (ISIGMA.NE.1) DF=DF-1.0
                                                                              HIST
                                                                                     60
       IF (DF.LT.1.0) GO TO 7
CONF=1.0-ALPHA
                                                                              HIST
                                                                                     61
      CCNF=1.0-ALPHA
                                                                              HIST
                                                                                     62
       CALL MOCHI (CONF. DF. CHI. IER)
                                                                              HIST
                                                                                     63
      DO 4 J=1.NY
                                                                              HIST
                                                                                     64
      CHISQ(J)=(ITOTI(J)-ESTN(J))**2/ESTN(J)
                                                                              HIST
    4 CHISQ(J)=CHISQ(J)+(ITOTO(J)-ESTN(J))**2/ESTN(J)
                                                                              HIST
                                                                                     66
       GO TO 7
                                                                              HIST
                                                                                     67
C HISTOGRAM CLASS HT. OF "INNER" CLASSES. SUMS CHI-SQUARE STATISTIC.
                                                                             CHIST
```

```
1077=1077-1
    5 1=1+1
                                                                           HIST
                                                                                  69
                                                                           HIST
                                                                                  7 C
      UP TO=P
                                                                           HIST
                                                                                  71
      Y=-5.C+VAL *FLDAT(1)
                                                                           HIST
                                                                                  72
      CALL MONOF (Y.P.)
                                                                           HIST
                                                                                  73
      UPTO=P-UPTO
                                                                           HIST
                                                                                  74
      DC 6 J=1.NY
                                                                           HIST
                                                                                  75
      ESTN(J)=UPTO*FLOAT(NOB(J))
                                                                           HIST
                                                                                  76
      ANUM=FLOAT(NHIST(J,I)*80)/FLOAT(NOB(J))/VAL
                                                                                  77
                                                                           HIST
      NER(J. I)=ANUM+0.5
                                                                           HIST
                                                                                  78
      CHISQ(J)=CHISQ(J)+(NHIST(J,I)-ESTN(J))**2/ESTN(J)
                                                                           HIST
                                                                                  79
      IF (IOJJ.EO.I) GO TO 6
                                                                                  80
                                                                           HIST
      ANUM=FLCAT (NHIST(J, IOJJ) *80)/FLCAT (NOB(J))/VAL
                                                                           HIST
                                                                                  81
      NFP(J_{\bullet}IQJJ) = 4NUM+0.5
                                                                           HIST
                                                                                  82
      CHISQ(J)=CHISQ(J)+(NHIST(J, IOJJ)=ESTN(J))**2/ESTN(J)
                                                                           HIST
                                                                                  33
    6 CONTINUE
                                                                           HIST
                                                                                  84
    7 IF (1*2.LT.INTS) GO TO 5
                                                                           HIST
                                                                                  85
C PLCTS HISTOGRAM, NORMAL CURVE, FRUM TOP OF PAGE. PRINTS STATS.
                                                                           CHIST
                                                                                  86
      A= ? . 4
                                                                           HIST
                                                                                  67
      E=0.3
                                                                           HIST
                                                                                  8 ಕ
      C = 2.2
                                                                           HIST
                                                                                  89
      D= 0.1
                                                                           HIST
                                                                                  90
      II I=1)0/INTS-2
IF(III.LT.1) III=1
                                                                           HIST
                                                                                  91
                                                                           HIST
                                                                                  92
      DU 55 7=1.NA
                                                                           HIST
                                                                                  93
      MAX=50
                                                                           HIST
                                                                                  94
      KK = 1
                                                                           HIST
                                                                                  95
      C=MIXAM
                                                                           HIST
                                                                                  96
      1=51
                                                                           HIST
                                                                                  97
      DO 20 JJ=1.101
                                                                           HIST
                                                                                  98
      VLIMES(JJ)=PLANK
                                                                           HIST
                                                                                  99
   20 STRING(JJ)=BLANK
                                                                           HIST 100
      WRITE(6,6000)
                                                                           HIST 101
 6000 FORMAT(*11)
                                                                           HIST 102
      DO 9 JJ=1, INTS
                                                                           HIST 103
      L=NFR(J.JJ)
                                                                           HIST 104
      IF (L.LE.MAX) GO TO B
                                                                           HIST 105
      II=(JJ-1) * 100/INTS+1
                                                                           HIST 106
    8 IF(L.GT.MAXIM) MAXIM=L
IF(MAXIM.GE.MAXI) CO
                                                                           HIST 107
                                                                           HIST 108
                                                                           HIST 109
      IF (MAXIM.GE.MAX) GO TO 10
IF (MAXIM.LT.32) MAXIM=32
                                                                           HIST 110
                                                                           HIST 111
      L=MAX-MAXIM
                                                                           HIST 112
```

```
DO 9 JJ=1.L
                                                                         HIST 113
   9 WRITE(6,6001)
                                                                         HIST 114
6001 FOFMAT(* *)
                                                                         HIST 115
     MAX = MAX - L
                                                                         HIST 116
  10 WRITE(6,6002)(VLINES(JJ),JJ=1,101)
                                                                         HIST 117
6002 FORMAT(* *,6X,10141)
                                                                         HIST 118
     DO 21 JJ=1.101
                                                                         HIST 119
  21 STRING(JJ)=PLANK
                                                                         HIST 120
     IF (MAX.GT.32) GO TO 12
IF (NVEC(I).NE.MAX) GO TO 12
                                                                         HIST 121
                                                                         HIST 122
  1.1 \text{ K} = 1.22 - 1
                                                                         HIST 123
     STPING(I)=DOT
                                                                         HIST 124
     STRING(K)=DOT
                                                                         HIST 125
     I = I - I
                                                                         HIST 126
     IF (NVEC(I+1) . EQ. NVEC(I)) GO TO 11
                                                                         HIST 127
  12 DO 14 JJ=1, INTS
                                                                         HIST 128
     IF (NFR (J.JJ) .NE .MAX) GO TO 14
                                                                         HIST 129
     S+27/1/001*(1-LL)=11
                                                                         HIST 133
     ITP=II+III
                                                                         HIST 131
     CO 13 L=11,11P
                                                                         HIST 132
  13 STRING(L)=HLINE
                                                                         HIST 133'
     VLINES(II-1)=VLINE
                                                                         HIST 134
     VLIMES(II+III+1)=VLINE
                                                                         HIST 135
  14 CONTINUE
     IF (MAX.GT.32.QR.MAX.LT.8) GO TU 15
                                                                         HIST 13E
                                                                         HIST 137
     WRITE(6,6)03) SV(KK),(STRING(JJ),JJ=1,101)
                                                                         HIST 138
6003 FORMAT (*+*,1X,41,4X,10141)
                                                                         HIST 139
     KK #KK+1
                                                                         HIST 140
     IF (MAX . EQ . 32) WPITE (6,6004) A
                                                                         HIST 141
     IF (MAX. EQ. 24) WRITE (6, 6004) B
                                                                         HIST 142
     IF (MAX.EQ.16) WRITE(6,6304) C
                                                                         HIST 143
     IF (MAX . EQ. 8) WRITE (6 . 6004) D
                                                                         HIST 144
6004 FERMAT(++,3x,F3.1,4-+)
GD TO 16
                                                                         HIST 145
                                                                         HIST 146
15 WRITE(6,6005)(STRING(JJ),JJ=1,101)
6005 FCPMAT('+',6X,101A1)
16 MAX=MAX-1
IF(MAX.GT.0) GO TO 10
                                                                         HIST 147
                                                                         HIST 148
                                                                         HIST 149
     WRITE(6,6002)(VLINES(JJ),JJ=1,101)
WRITE(6,6006)
                                                                         HIST 150
                                                                         HIST 151
     WRITE(6,6306)
                                                                         HIST 152
6006 FORMAT (1+1.6x.20(1 ----1),1 1/1 1.5x,1-51.8x,1-41.8x,1-31.8x,1-20,HIST 153
    E 8X, 1-11, 9X, 101, 9X, 11, 9X, 12, 9X, 13, 9X, 14, 9X, 151) HIST 154
     IF(MTYPE*J/NY.GE.2) GO TO 17
WRITE(6,6007)
                                                                        HIST 155
                                                                         HIST 156
```

```
6007 FORMAT('0',21x, 'HISTOGRAM OF STANDARDIZED FRINGE FREQUENCY RESIDUAHIST 157
                                                                         HIST 158
    ELS!,/! !,21x,52(!-!))
                                                                         HIST 159
      GO TO 18
  17 WRITE(6.6308)
                                                                         HIST 163
 6008 FORMAT('0',21X,'HISTOGRAM OF STANDARDIZED DELAY RESIDUALS',/ ",
                                                                         HIST 161
     E 21X.41(!-!))
                                                                         HIST 162
   18 WRITE(6,6009)((JJ.NHIST(J.JJ)).JJ=1,INTS)
                                                                         HIST 163
                                                                         HIST 164
6009 FORMAT(2X.*NUMBERS IN INTERVALS:',(/* ',10(12,17,*/*)))
      IF (DF.LT.1.0) GO TO 19
                                                                         H15T 165
      IF(CHISQ(J).LE.CHI) WRITE(6,6010) CHISQ(J),CHI,NCLASS,DF
                                                                         HIST 166
6010 FORMAT(* CHI-SQUARE STATISTIC: 0<*.F7.3,*<=*.F9.3,* PASSES. NUMBEHIST 167
     EP OF CLASSES: ', 15, ', DEGREES OF FREEDOM: ', F5, 1)
                                                                         HIST 168
      IF (CHISQ(J).GT.CHI) WRITE (6,6011) CHISQ(J).CHI, NCLASS.DF
                                                                         HIST 169
6011 FORMAT(* CHI-SQUARE STATISTIC: O<*,F7.3,*NOT <=*,F9.3,* FAILS. NUHIST 170
     EMBER OF CLASSES: 1,15,1, DEGREES OF FREEDOM: 1,F5.1)
                                                                         HIST 171
      GO TO 22
                                                                         HIST 172
   19 WRITE(6,6012) DF
                                                                         HIST 173
6012 FORMAT(! CHI-SQUARE GUODNESS OF FIT TEST WAS NOT PERFORMED: DEGREHIST 174
    SES OF FREEDOM=1.F6.3)
                                                                         HIST 175
   22 CONTINUE
                                                                         HIST 176
      RE TURN
                                                                         HIST 177,
      END
                                                                         HIST 178
      SUPPOUTINE LSGADJ(X, ICOL, ISTAT.
                                                                 NPARAM. LSQA
                                                                                 2
     1 ANDRM, ATRW, DELTA, PACC, ANS, IVARBL,
                                                                 NVARBL. LSUA
                                                                                 3
     2 IPARAM.
                                                                 NUSED. LSQ4
     3 I CONS • NCONP • SGMCON • ESTCON •
                                                                 NCDIM. LSGA
     5 CLPOLY. NPOLY. NPLNS.
                                            EPOCHS,
                                                                                 5
                                                                 MXEPOC, LSQA
                                                                        LSGA
     6 INTS
                                                                                 7
                                                                        CLSQA
C LSCADJ PERFORMS A LEAST SQUARES ADJUSTMENT OF L.B.I. OBSERVATIONS.
                                                                         CLSQA
                                                                                 8
 HAS ABILITY OF CONSTRAINTS ON PARAMETERS. RESULTS. STANDARD ERRORS.
                                                                        CL SUA
                                                                                 9
C AND STATISTICAL ANALYSIS ARE PRINTED
                                                                        CLSUA
                                                                                10
C
 CALLED BY
                   POWRT
                                                                        CLSQA
                                                                                11
                   FF$DLY
                             PDERIV
                                                  INVERT
                                                            TSPLJT
                                                                         CLSUA
C CALLS
                                       XSLINV
                                                                                12
                             MDCHI
                   RSPLOT
                                       HISTGM
                                                                         CL SQA
                                                                                13
                   D. A. DAVIDSON M.SC.E. THESIS U.N.B.
C REFERENCE
                                                                        CLSUA
                                                                                14
C WRITTEN BY D. A. DAVIDSON
                                       MAY 1980
                                                                        CLSUA
                                                                                15
                                                                        CL SU4
                                                                                16
      IMPLICIT REAL*8(A-H, D-Z)
                                                                         LSUA
                                                                                17
      REAL*4 YSCALE(6), YFIRST, YINC, XFIRST, WR4(2)
                                                                         LSUA
                                                                                18
      PEAL #4 STD . VAL , CRIT , ALPHA , P , STATI , STATZ
                                                                         LSQA
                                                                                19
      INTEGER#2 SABB1, SABB2, SABB
                                                                         LSQA
                                                                                20
```

C

```
LSUA
                                                                                                                                                                                                                                                                                                21
                                                                                                                                                                                                                                                                   LSUA
                                                                                                                                                                                                                                                                                                22
                                                                                                                                                                                                                                                                    LSUA
                                                                                                                                                                                                                                                                                                 23
           $SCNAME(10), VENAME(10),

$SCNAME(10), VENAME(10),

$XFIRST, YHIRST, YINC,

1 NOPSLN(10), NCONS,

2 MTYPE, ISIGMA, NY, NSTNS, NSKIP, ICORR

3, $A3B(40)

COMMON /LBIVAR/

LSUA

LSUA
                                                                                                                                                                                                                                                                                                 24
                                                                                                                                                                                                                                                                                                 25
                                                                                                                                                                                                                                                                                                 26
                                                                                                                                                                                                                                                                                                 27
                                                                                                                                                                                                                                                                                                 28
                                                                                                                                                                                                                                                                                                 3 C
            2UTPOLY(3),XPOLE,YPOLE,OMEGA,TOBS1,
3 NCP(10),JDJAN1,NBASE,NSDRCE,IT1DE,ISAME,NOBS,IMAX
COMMUN./SINABB/SABB1,SABB2
CCNMCN./SIATS/ CRIT,ALPHA
INTEGER NHIST(2,40),NOB(2)
DIMENSION X(NPARAM),CLPOLY(5,NPLNS),EPGCHS(10,MXEPDC),NPOLY(NPLNS)LSGA
                                                                                                                                                                                                                                                                                                 31
                                                                                                                                                                                                                                                                                                 32
                                                                                                                                                                                                                                                                                                 33
                                                                                                                                                                                                                                                                                                 34
                                                                                                                                                                                                                                                                                                 35
                                                                                                                                                                                                                                                                                                 36
              I.ICOL(NPARAM), ISTAT(NPARAM),
                                                                                                                                                                                                                                                                   LSUA
                                                                                                                                                                                                                                                                                                 37
             3 ANDRY (NVARBL, NVARBL), ATRW (NVARBL), DELTA (NVARBL), PACC (NVARBL).
                                                                                                                                                                                                                                                                        LSQA
                                                                                                                                                                                                                                                                                                38
             4 PD(13), PF(13), NACOLD(13), NACOLF(13), 1FROM(3), 1TD(3), COVAR(3,3)
                                                                                                                                                                                                                                                                  LSUA
                                                                                                                                                                                                                                                                                                 39
            5, ICUT(2), IY(2), SIGMB(3), SMUW(2),
6 ANS(NVAREL), IYARBL(NVARBL), IPARAM(NUSED),
7 NCONP(NCDIM), ICONS(NCDIM, 5), SGMCON(NCDIM), ESTCON(NCDIM)
                                                                                                                                                                                                                                                                        LSQA
                                                                                                                                                                                                                                                                                                40
6 ANS(NVAREL), IVARPL(NVARBL), IPARAM(NUSED),
7 NCONP(NCDIM), ICONS(NCDIM,5), SGMCON(NCDIM), ESTCON(NCDIM)
LSUA 42
ECUIVALENCE (PNAME, SABB1)
LATA RADDEG /57.29577951308232/
ISUA 43
ITNO=0
VAL=1C.0/FLOAT(INTS)
DO 10 1=1.6
LSUA 45
17 YSCALE(I)=YFIPST+YINC*20.*(I-1)
NAXIS=MTYPE/2+2
LCCP=3*NSTNS
DO 2 II=1.NVARBL
IK=!VARBL[II]
PACC(II)=3.3707865160-10
IF(IK.LE.30)PACC(II)=1.0-5
IF(IK.LE.30)PACC(II)=1.0-5
IF(IK.LE.30)PACC(II)=1.0-5
IT(CHEK=0
ITNO=ITNO+1
DO 5 II=1.NVARBL
LSUA 53
LSUA 55
LSUA 56
LSUA 57
LSUA 66
LSUA 66
LSUA 67
LSUA 67
LSUA 67
LSUA 68
LSUA 67
LSUA 68
LSUA 68
                                                                                                                                                                                                                                                                        L SuA
                                                                                                                                                                                                                                                                                                 41
                                                                                                                                                                                                                                                                       LSQA
                                                                                                                                                                                                                                                                                                42
```

```
5 ANCRM(II.JJ)=0.00
                                                                                          LSUA 65
C
                                                                                           CL SQA 66
C INCREMENTS THE NORMAL MATRIX AND CONSTANT VECTOR FOR PARAMETER
                                                                                           CLSUA
                                                                                                    67
C CONSTRAINTS
                                                                                           CLSUA
        1F (NCONS.EQ.-2) GO TO 57
                                                                                                    68
       1F(NCONS.EO.)) GU IU 5,

DO 6 I=1.NCONS

WCCN=0.0D0

NPAPI=NCCNP(I)

SIGMSU=SGMCON(I)**2

DO 1 J=1.NPAPI

'T-1CONS(I.J)
                                                                                           LSUA
                                                                                                    69
                                                                                            LSUA
                                                                                                    70
                                                                                            LSUA
                                                                                                    71
                                                                                            LSQA
                                                                                                    72
                                                                                            LSUA
                                                                                                    73
                                                                                            LSQA
                                                                                                    74
                                                                                                    75
                                                                                            LSUA
     1 WCCN=WCON+DFLDAT(ISIGN(II)) *X(IABS(II))
                                                                                            LSUA
                                                                                                    76
        WCON=WCON-FSTCCH(I)
                                                                                            LSQA
                                                                                                    77
        DO A J=1.NFARI
       TO A J=1,NFARI

JJ=ICGL(IABS(ICCNS(I,J)))

DSGNJ=DFLCAT(ISIGN(ICCNS(I,J)))

ATRW(JJ)=ATRW(JJ)-DSGNJ*WCON/SIGMSQ

DO A IK=1,J

II=ICOL(IABS(ICCNS(I,IK)))

DSGNI=DFLOAT(ISIGN(ICCNS(I,IK)))
                                                                                            LSUA
                                                                                                    78
                                                                                            LSQA
                                                                                                    79
                                                                                            LSGA
                                                                                            LSUA
                                                                                                    81
                                                                                           LSUA
                                                                                                    82
                                                                                           LSGA
                                                                                                    83
                                                                                            LSQA
                                                                                                    84
     6 ANORM(II, JJ) = ANORM(II, JJ) + DSGNI*USGNJ/SIGMSQ
                                                                                            LSOA
                                                                                                    85 -
   57 IE(NSKIP.EO.C)GD TO 9
DD 8 I=1.NSKIP
8 FFAD(9,5001) JUNK
                                                                                            LSGA
                                                                                                    86
                                                                                            LSUA
                                                                                                    87
                                                                                            LSUA
                                                                                                    88
                                                                                           CLSQA
                                                                                                    89
C PERFORMS A LOOP FOR EACH OBSERVATION. COMPRESSED A MATRIX COMPUTED
                                                                                           CLSUA
                                                                                                    90
C AND STORED. NORMAL MATRIX AND CONSTANT VECTOR INCREMENTED.
                                                                                           CLSQA
                                                                                                    91
C NB. NEGATIVE VALUE OF CONSTANT VECTOR FOR SOLUTION IN XSLINV
                                                                                           CLSQA
                                                                                                    92
C
                                                                                           CLSQA
                                                                                                    93
     9 DO 301 I=1.NOBS
                                                                                            LSUA
                                                                                                    94
    12 FE AD (9.5001) IDYOBS. UTH. UTM. SNAME, BNAME, DBDLY. SGMOLY. DBFF. SGMFF
                                                                                            LSUA
                                                                                                    95
 5001 FORMAT(3X,13,2F3.0,1X,48,1X,A4,D18.10,F6.3,D18.10,F7.4)
                                                                                           LSQA .
                                                                                                   96
        LTC=UTH+UTM/60.00
                                                                                           LSQA 97
C
        COPRECTION FOR 603US TIMING ERROR AT PLAYBACK
                                                                                          LSQA 98
        UT C=UT C-603.D-6/3600.D0
IF (ICORR.E0.2) UTC=UTC+1.D0/3630.D0
                                                                                           LSUA 99
                                                                                           LS44 100
        DO 13 J=1.NSOPCE
DO 13 J=1,NSOPCE

13 IF(SNAME.e.O.SCNAME(J))JSORCE=J

DO 25 J=1.NBASE

DO 25 J=1.NBASE

LSQA 103

LSQA 103

LSQA 104

JBASE=IBASE*100

DO 26 J=1.NSTNS

IF(SABB1.eQ.SABB(8*J-7))JBASE=JBASE+J*10

LSQA 105

LSQA 106

LSQA 107

LSQA 107

LSQA 107

LSQA 108
                                                                                          LSQA 101
```

```
CALL FF&DLY(X, FPOCHS, CLPOLY, FOFSET (IBASE) + OBSFRQ, UTC, NPOLY + ICOL, LSQA 109
       1 ISTAT. JSGRCE, JBASE, IDYGBS, NPARAM, MTYPE, NPLNS, NAXIS, MXEPOC, HRANGL, LSQA 113
        CALL PDERIV(PD, PF, NACOLD, NACOLF, IACOL, IACOLF)

If (MTYPE.E0.2.OF.SGMFF.EQ.0.D0)G0 T0 281

WF=FFMCDL-OBFF

IF (ISIGMA.E0.0)G0 T0 28

SGMFF=DSORT(SGMFF**2*YTPACH/IACOT
       2 FFMODL DYMODE)
        IF(ISIGMA.EG.01GU 1U 25
SGMFF=DSORT(SGMFF**2+XTRASM(IBASE.1)**2)
  SGMEF=DSORT(SGMEF**2*XTRASM(IBASE*1)***2)
%F=WF/SGMEF
DU 27 K=1,IACOLE
27 PF(K)=PF(K)/SGMEF
28 CCNTINUE
DO 29 II=1*IACOLE
K=NACULE(II)
ATRW(K)=ATRW(K)-PF(II)*WF
DG 29 JJ=II*IACOLE
L=NACOLE(JJ)
ANOFM(K*L)=ANORM(K*L)+PF(II)*PF(JJ)
26 CONTINUE
                                                                                                                       LSQA 116
                                                                                                                       LSQ4 117
                                                                                                                        LSUA 118
                                                                                                                        LSUA 119
                                                                                                                        LSU4 120
                                                                                                                        LSQA 121
                                                                                                                        LSQ4 122
                                                                                                                        LSQA 123
                                                                                                                        LSQ4 124
                                                                                                                        LSQA 125
                                                                                                                        LSUA 126
   29 CONTINUE
                                                                                                                        LSQA 127
29 CERTINUE
281 IF(MTYPE.EG.1.OR.SGMDLY.EQ.O.DO)GO TO 3011
                                                                                                                       LSUA 128
        WD=DYMODL=DBDLY
IF(ISIGMA.EQ.D)GD TO 31
SGMDLY=DSGRT(SGMDLY**2+XTRASM(IEASE.NY)**2)
        WD=DYMODL-OBDLY
                                                                                                                       LS04 129 .
                                                                                                                       LSQA 130
                                                                                                                       LSQA 131
  SGMILT=DSGRI(SGWDLY##2+XTRASM(18ASE,NY)##2)

ND=WD/SGMDLY

DO 30 K=1.IACOL

3) PD(K)=PD(K)/SGMDLY

31 CONTINUE

DO 32 II=1.IACOL

K=MACOLD(II)

ATFW(K)=ATRW(K)-PD(II)*WD

DO 32 JJ=II.IACOL

L=NACOLD(JJ)
                                                                                                                       LSUA 132
                                                                                                                        LSQA 133
                                                                                                                        LSGA 134
                                                                                                                        LSQA 135
                                                                                                                        LSQ4 136
                                                                                                                        LSQA 137
                                                                                                                       LSUA 138
DO 32 JJ=II,IACOL
L=NACOLD(JJ)
ANCOM(K,L)=ANORM(K,L)+PD(II)*PD(JJ)
32 CONTINUE
3011 WRITE(I1) IDYOBS,UTH,UTM,UTC,JSGRCE,IBASE,
1 WF,SGMFF,IACOLF,((PF(J),NACOLF(J)),J=1,IACOLF),
2 WD,SGMDLY,IACOL,((PD(J),NACOLD(J)),J=1,IACOL)
301 CONTINUE
                                                                                                                       LSQA 139
                                                                                                                       LSQA 140
                                                                                                                      LSUA 141
                                                                                                                      . LSUA 142
                                                                                                                   LSQA 143
                                                                                                                      LSQA 144
  REWIND 9

REWIND 11

DO 45 II=1.LOOP

IIP1=II+1

DO 45 JJ=IIP1.NVARBL

DO 45 JJ=IIP1.NVARBL

45 ANDRM(II,JJ)=1.IACOL)
                                                                                                                       LSQA 145
                                                                                                                       LS04 146
                                                                                                                       LSUA 147
                                                                                                                       LSU4 148
                                                                                                                      LSQA 149
                                                                                                                       LSUA 150
                                                                                                                        LSU4 151
                                                                                                                      LSQA 152
```

```
C FURMATION OF THE SOLUTION VECTOR (DELTA)

NCODE=2

CALL XSLINV(ANDEM, ATRW, NVARBL, NVARBL, NCODE, ANS. DET, IDEXP, DELTA)

LSQA 155

LSQA 156
          WRITE(6,6306)DET.IDEXP
                                                                                                                           LSQA 157
  6006 FORMAT (1HC. DETERMINANT=".F15.6, "D ".15./. INCREMENTS")
                                                                                                                          - LSUA 158
  WRITE(6,6302)(DELTA(II).II=1,NVARBL)
6002 FORMAT(5D24.16)
DO 46 II=1,NVARBL
L=IVARBL(II)
X(L)=X(L)+DELTA(II)
4NS(II)=X(L)
ISOMORPHICATION
                                                                                                                            LS04 159
                                                                                                                            LSUA 160
                                                                                                                            LS44 161
                                                                                                                            LSGA 162
                                                                                                                            LSQA 163
                                                                                                                           LSUA 164
          IF (DABS(DELTA(II)).GE.PACC(II))ITCHEK=ITCHEK+1
                                                                                                                           LSUA 165
     46 CONTINUE
                                                                                                                           LSQ4 166
          WRITE(6,6001)ITNO
                                                                                                                           LSQ4 167
  6001 FORMAT(1HO. TITERATION . 15. PARAMETERS ../)
                                                                                                                           LSQ4 168
          WRITE(6,6002)(ANS(II), II=1, NVARBL)
                                                                                                                           LSUA 169
 DD 47 J=1.NSORCE

K=31+2*(J-1)

RA(J)=X(K)

47 DFC(J)=X(K+1)

WRITE(6.6003)ITCHEK,IMAX

6003 FORMAT(IHO,*ITCHEK*.IS,* IMAX*.IS)

IF(ITCHEK.GE.1.4ND.(IMAX.EQ.0.0R.ITNO.LT.IMAX))GD TO 3
                                                                                                                           LSUA 170
                                                                                                                           LSQ4 171
                                                                                                                           LSUA 172
                                                                                                                           LSQ4 173
                                                                                                                           LSQA 174
                                                                                                                           LSGA 175
                                                                                                                           LSQA 176
          WFITE(6.6000)
                                                                                                                           LSGA 177
 WEITE(6,6000)
6010 FORMAT(IH1)

CALL INVERT(ANORM)

WRITE(6,6017)

6017 FORMAT(IH0,TI5,*CORRELATION MATRIX

CONLY SINCE SYMMETRIC*///)

DO 77 I=1,NVARBL

77 ATRW(I)=DSORT(ANORM(I,I))

DO 56 I=1,NVARBL

DO 78 J=I,NVARBL

79 ANS(J)=ANORM(I,J)/(ATRW(I)*ATRW(J))

56 WRITE(6,6018) IVARBL(I),ANORM(I,I),(ANS(J),J=I,NVARBL)

50 WRITE(6,6018) IVARBL(I),ANORM(I,I),CANS(J),J=I,NVARBL)

51 ECRMAT(*OVARTANCE **15,D15,6*10X**CORRELATIONS:**/(***20F6.2))
  6018 FORMAT ('OVARIANCE '. 15.D15.6.10X. CURRELATIONS: 1./(1 1.20F6.2)) LSQA 189
         FURMAI('UVARIANCE '$15,015.0,10A, CORRELATIONS ), SUMW=0.00

SSOP1=0.00

SSOP2=0.00

SMUW(1)=0.00

SMUW(2)=0.00

NCB(1)=0

NOP(2)=0
                                                                                                                           LS04 190
                                                                                                                           LSUA 191
                                                                                                                           LSQA 192
                                                                                                                       LSQA 193
                                                                                                                         LSUA 194
                                                                                                                         LSU4 195
                                                                                                                         LSUA 196
```

```
I\cap UT(1)=0
                                                                          LSQA 197
      IOUT(2)=0
                                                                            LSQ4 198
      DO 58 I=1.NY
                                                                             LSQA 199
                                                                             LSUA 200
      CO 58 J=1.INTS
   53 NHIST(I,J)=0
                                                                             LSQ4 201
                                                                            CL 5 4 202
C COMPUTATION OF RESIDUALS. LOOP PER BASELINE; INNER LOOP FOR EACH
                                                                            CLSUA 203
C DESERVATION. RESIDUALS ARE PLOTTED. HISTOGRAM CLASSES ARE INCREMENTED. LSUA 204
  SUM WEIGHTED RESIDUALS AND SUM UNWEIGHTED RESIDUALS ARE INCREMENTED. CLSOA 205
C
                                                                            CLSUA 206
      TK = 0
                                                                             LSGA 207
      DO 16 L=1 NBASE
                                                                             LSQ4 238
      N1 = IK+1
                                                                             LSUA 209
      IK=IK+NOBSLN(L)
                                                                             LS0A 210
 IK=IK+NOBSLN(L)
IF(MTYPE.EQ.2) GD TO 60
LSQA 211
VRITE(6,6011) L.VBNAME(L)
6011 FOFMAT(1H1.T50.*RESIDUALS*/T50.9(*=*)./T90.**..RESIDUAL.GT.CRITERILSQA 213
     1 A*STD. ERROF 1//3X, TIMET, TIOS, TSOURCET, IX, FFF(HZ) 1,3X, DLY(US) 1// LSQA 214
     P * DAYHR.MN*,T50,*BASELINE NO.*,15.2X, A4,///)
                                                                            LSU4 215
                                                                             LSQA 216
   60 WRITE(6,6027) L, VBNAME(L)
                                                                             LSQ4 217
 6027 FORMAT(1H1.T52, TRESIDUALS!/T50,9(*=*),/T90, **..RESIDUAL.GT.CRITERILSQA 218
     1 A*STD. ERROR 1//3X, TIME 1, T108, SUURCE 1, 3X, DLY (US) 1//
     P! DAYHR.MN'.T50. BASELINE NO. 1, 15, 2X, 44, ///)
WRITEL6.6012)(YSCALE(I).I=1.6)
                                                                             LSJ4 223
   61 WRITE(6,6012)(YSCALE(1),1=1,6)
                                                                             LSUA 221
 6012 FOFMAT(9X. FRINGE FREQUENCY PLUT SCALE SMALLER BY TEN 1/4X.
                                                                             LSQ4 222
     1 6(1PE10.3.10X)/9X,*+*,10(9(*-*),*+*))
CALL TSPLOT(YPIRST.YINC,MTYPE.NY)
                                                                             LSUA 223
                                                                             LSGA 224
      DO 15 I=N1.IK
                                                                             LSU4 225
      READ(11) IDYORS.UTH.UTM.UTC.JSDRCE.IBASE.
                                                                             LSUA 226
     1 WF.SGMFE.IACOLF.((PF(J).NACOLF(J)).J=1.IACOLF).
                                                                             LSU4 227
     2 WD.SGMDLY.IACPL.((PD(J).NACDLD(J)).J=1,IACDL)
                                                                             LSQA 228
      DO 11 JJ=1,NY
                                                                             LSQ4 229
      O = (LL) T \cup OI
                                                                             LSUA 230
      0 = (LL)YI
                                                                             LSUA 231
      FF JCT(JJ)=BL ANK
                                                                             LSQ4 232
   11 \text{ VR4(JJ)=C}.
                                                                             LSGA 233
C TO USE TIME INTERVAL DIFFERENT FROM 1 MINUTE USE 60 ./ (TIME INT)+1.5 CLSUA 234
C CHANGES REQUIRED IN ISPLOT TO HAVE 2 OR MORE OBS IN AN INTERVAL
                                                                             CLSUA 235
      IX=((FLOAT(IDYOPS)-TOBS1)*24.+UTC-XFIRST)*60.+1.5
                                                                             LS04.236
                                                                             LSUA 237
       IF (IX.LT.1) IX=1
      IF (MTYPE.EQ. 2. OR . SGMFF. EQ. 0. DO) GO TO 39
                                                                             LSUA 238
      NOB(1) = NOB(1) + 1
                                                                             LSUA 239
      CO 79 J=1. IA(OLF
                                                                             LSQ4 240
```

```
79 WF=WF+PF(J)*DFLTA(NACOLF(J))
IF(ISIGMA.EO.1) WF=WF*SGMFF
WW=WF* NF
WP4(1)=SNGL(WF)
SMUW(1)=SMUW(1)+WN
II=(WR4(1)-YFIRST)/YINC+1.5
IF(MTYPE.NE.2) II=(WR4(1)*10.-YFIRST)/YINC+1.5
IE(II-II-II) II=1
                                                                                                                                                                                            LSQA 241
                                                                                                                                                                                              LSU4 242
                                                                                                                                                                                               LSUA 243
                                                                                                                                                                                               LSUA 244
                                                                                                                                                                                                LSUA 245
                                                                                                                                                                                               LSUA 246
IF(MTYPE.NE.2) II=(WR4(1)*10.-YFIRST)/YINC+1.5
IF(!!.LT.1) II=1
IF(!I.GT.101) II=101
IY(!)=!I
IOUT(!)=!
IF(!SIGM4.E0.0)GO TO 38
STD=WR4(!)/SNGL(S3MFF)
IF(ABS(STD).GT.CRIT) REJCT(!)=STAR
IF(STD.LT.-5.0) STD=-5.0
IF(STD.3E.5.0) STD=4.999
IHIST=(5.C+STD)/V4L+1.0
NHIST(!,!HIST)=NHIST(!.!HIST)+1
WF=WF/(SGMFF*SGMFF)
WW=WW/(SGMFF*SGMFF)
38 SUMW=SUMW+WF
SSCP!=3SQR!+WW
39 CONTINUE
IF(MIYPE.EQ.1.0F.SGMDLY.EQ.0.00) GO TO 14
                                                                                                                                                                                               LSQ4 247
                                                                                                                                                                                               LS04 248
                                                                                                                                                                                               LSQA 249
                                                                                                                                                                                               LSQA 250
                                                                                                                                                                                                LSQA 251
                                                                                                                                                                                                LSU4 252
                                                                                                                                                                                                LSUA 253
                                                                                                                                                                                                LSQ4 254
                                                                                                                                                                                                LSQA 255
                                                                                                                                                                                                 LSQA 256
                                                                                                                                                                                                LSQA 257
                                                                                                                                                                                                LSUA 258
                                                                                                                                                                                                LSG4 259
                                                                                                                                                                                                LSUA 260
                                                                                                                                                                                                LSQA 261
                                                                                                                                                                                                LSUA 262
            CONTINUE
IF (MIYPE.EQ.1.OR.SGMDLY.EQ.0.D3) GD IO 14
                                                                                                                                                                                                LSQ4 263
  LSQA 264
LSQA 265
DO 80 J=1,IACUL

81 WD=WU+PD(J)*DFLTA(NACOLD(J))
LSQA 267
IF(ISIGMA.EC.1) WD=WD*SGMDLY
LSQA 268
W=WU*WD
WE4(NY)=SNGL(WD)
SMUW(NY)=SNGU(WD)
SMUW(NY)=SMUW(NY)+WW
COV=COV+DGLE(WP4(1)*WR4(2))
LSQA 273
LF(II.LT.1) II=1
LSQA 274
IF(II.GT.101) II=101
LSQA 275
IY(NY)=II
LSQA 276
LSQA 277
IF(ISIGMA.EC.0)GD TO 40
STD=WR4(NY)-SNGL(SGMDLY)
IF(SIGMA.EC.0)GT.CRII) REJCT(NY)=STAR
LF(STD.LT.-5.0) STD=-5.0
LSQA 278
LSQA 280
LSQA 281
LSQA 283
NHIST(NY,IHIST)=NHIST(NY,IHIST)+1
                                                                                                                                                                                               LSQ4 264
            NOE(NY)=NOB(NY)+1
DO 80 J=1,IACCL
```

```
LSQA 285
                                                                                                                        LSUA 286
                                                                                                                        LSQA 267
                                                                                                                         LSUA 288
                                                                                                                          LSU4 289
                                                                                                                          LSUA 290
                                                                                                                          LSU4 291
 6015 FCPMAT('+',13,2F3.0,T111,12,2(1PE9.2,A1))
LSQA 292
LSQA 293
WRITE(6,6014)(YSCALE(I),I=1,6)
LSQA 294
6014 FCRMAT(9X,'+',10(9('-'),'+')/5X,6(1PE10.3,10X)/9X,'FRINGE FREQUENCLSUA 295
 6014 FORMAT(9X.*+*.10(9('-'),*+*)/5X.+0(1PE1U.3.1UA//3A. 12.

1Y PLUT SCALE SMALLER BY TEN*)

16 CONTINUE

550WT=0.D0

IF(NCONS.E0.0) GD TO 49

VRITE(6,6004)

6004 FORMAT('OWEIGHTED CONSTRAINTS RESIDUALS*)

DO 48 I=1.NCONS
                                                                                                                          LSQ4 296
                                                                                                                          LSUA 297
                                                                                                                          LSQ4 298
                                                                                                                          LSQA 299
                                                                                                                          LSGA 300
                                                                                                                          LSQA 301
      DO 48 I=1, NCONS

W=0.DO

NPADI=NCONP(I)

SIGMSO=SGMCON(I)**2

DO 7 J=1, NPARI

II=ICONS(I,J)

7 W=W+DFLUAI(ISIGN(II))*X(IABS(II))

W=W+ESICON(I)
                                                                                                                          LSUA 302
                                                                                                                          LS04 303
                                                                                                                          LSUA 304
                                                                                                                          LSQA 305
                                                                                                                          LSQA 306
                                                                                                                          LSQA 307
                                                                                                                          LS04 308
 WPITE(6.6)05) W,(ICONS(I,J),J=1,NPARI)
6005 FORMAT(T40,D16.6,T4.515)
SUMW=SUMW+W/SIGMSQ
48 SSGWT=SSGWT+W*W/SIGMSQ
                                                                                                                          LSUA 309
                                                                                                                          LSQ4 313
                                                                                                                          LSGA 311
                                                                                                                          LSQA 312
                                                                                                                         LSUA 313
C CHI-SQUARE TEST ON VARIANCE FACTOR. PLOTS HISTOGRAM OF RESIDUALS.
                                                                                                                         CLSQA 314
C CHI-SQUARE GUQDNESS-OF -FIT TEST

49 DENOM=DFLCAT(NOP(1)+NOB(2)+NCONS-NVARBL)

SMACAP=(SSOP1+SSOR2+SSQWT)/DENOM

VPITE(6,6000)

VRITE(6,6007) SMACAP, DENOM
                                                                                                                        CLSUA 315
                                                                                                                         LSUA 316
                                                                                                                          LSQA 317
                                                                                                                          LSGA 318
                                                                                                                          LSQA 319
 6307 FORMAT( OESTIMATED VARIANCE FACTUR: ".FI7.7/" DEGREES OF FREEDOM: "LSUA 320
         FORMAT("OESTIMATED VARIANCE FACTUR: ",FI7.//" DEGREES UP FREEDUM: "LSUA 321 LSUA 321 STD=SNGL(DENOM)
P=1.0-ALPHA/2.0
CALL MDCHI(P,STD.STAT1,IER)
F=ALPHA/2.0
CALL MDCHI(P,STD.STAT2,IER)
STD=STD*SNGL(SMACAP)
STAT1=STD/STAT1
LSUA 325 LSUA 326 LSUA 327 LSUA 327
        E.FI0.1)
```

```
STAT2=STD/STAT2
IF(STAT1.LT.1.0.AND.STAT2.GT.1.0) GO TU 62
WRITE(6,6026) STAT1.STAT2
                                                                                         LSUA 329
                                                                                          LSQA 330
                                                                                           LSUA 331
 6026 FREMAT (OCHI-SQUARE TEST ON VARIANCE FACTOR: 1// 0 , F16.6, 4 < 1.0 KLSOA 332
 E '.F16.6,' FAILS'///)

CO TO 63

62 WRITE(6,6028) STAT1,STAT2

6328 FURMAT('OCHI-SQUARE TEST ON VARIANCE FACTOR:'/'0',F16.6,' < 1.0 < LSUA 336
      61.F16.6.4 PASSES*////)
                                                                                           LSGA 337
    63 DO 64 I=1.NY
                                                                                           LSQA 338
    64 SMUW(I)=DSQRT(SMUW(I)/(DFLOAT(NOB(I)+NWTPRM+NCONS-NVARBL)))
                                                                                           LSUA 339
        COV=COV/DFLCAT(NO3(1)+NWTPRM+NCUNS-NVARBL)
                                                                                           LSUA 340
        IF (MTYPE .EQ. 2) GO TO 65
                                                                                           LSUA 341
        WRITE(6.6029)
                                                                                           LSQ4 342
 6031 FORMAT(1H0,33X,*DELAY*)
 6029 FORMAT(1H0,27X, FRINGE FREQUENCY , 30X, DELAY )
                                                                                          LSQA 343
                                                                                          LSUA 344
                                                                                        - LSQA 345
                                                                                          LSUA 346
   56 WRITE(6,6)31)(NOB(I),I=1,2),(SMUW(J),J=1,2),COV
                                                                                          LSUA 347
 6031 FORMAT(1HA. *NÚMBER OF OBSERVATIONS . 5X, 110, 30X, 110// STANDARD ERRESUA 348
      ECR OFIZE UNKEIGHTED RESIDUALS , 9x, D13.6,27x, D13.6,7/ COVARIANCE .LSQA 349
                                                                                           LSUA 350
        IF (ISIGMA.EO.O.CR.NOBS.LE.II) GG TO 59
                                                                                           LSQA 351
        CALL HISTGMEMTYPE, NY, NHIST, VAL, INTS, NOB, ISIGMA, ALPHA)
                                                                                           LSQ4 352
C TRANSFORMATION OF SUB-MATRIX OF COVARIANCE MATRIX FOR STATIONS INTO CLISTA 353
C COVAFIANCE MATRICES OF BASELINES

59 L=0

DO 21 I=1.3

DO 21 J=1.1

21 COVAR(I,J)=0.00

WRITE(6,6013)
                                                                                          CL 304 354
                                                                                          LSUA 355
                                                                                           LSUA 356
                                                                                          LSUA 357
                                                                                           LSUA 358
VRITE(6,6013)

6013 FORMAT(1H1.43X.*BASELINE ERROR ANALYSIS*/44X.23(*-*))

LSQ4 350

LSQ4 360

LSQ4 361

LSQ4 362

LSQ4 362

LSQ4 363

LSQ4 363

LSQ4 365

LSQ4 365

IFROM(IAXIS)=II*3-(3-IAXIS)

LSQ4 366

LSQ4 366

LSQ4 367

LSQ4 368

CONTINUE

CONTINUE

CONTINUE

CONTINUE

LSQ4 368

LSQ4 369

ITJ=ICOL(ITO(J))

IFJ=ICOL(IFFOM(J))

LSQ4 370

LSQ4 371

LSQ4 372
                                                                                           LSQ4 359
```

```
COV=C.DC
                                                                         LSUA 373
     ITI = ICOL(ITO(I))
                                                                         LSUA 374
     IF I = ICCL(IFFOM(I))
                                                                         LSUA 375
     IF (ITI . EQ . 0) GO TO 68
                                                                         LSUA J76
     IF(!IJ.EQ.0) GO TO 22
                                                                         LSQ4 377
     IF(ITI.GT.ITJ) GD TO 76
                                                                         LSUA 378
     COV=CUV+ANOFM(ITI.ITJ)
                                                                         LSU4 379
     GO TO 22
                                                                         LSQA 380
  76 COV=COV+ANORM(ITJ,ITI)
                                                                         LSQ4 381
  22 IF (IFJ.E0.0) GO TO 68
                                                                         LSUA 382
     IF(ITI.GT.IFJ) GO TO 67
                                                                         LSUA 383
     COV=COV-ANDRM(ITI.IFJ)
                                                                         LSUA 384
     GO TO 68
                                                                         LSUA 385
  67 COV=COV-ANDEM(IFJ, ITI)
                                                                         L504 386
  68 IF (IFI.EQ.0) GC TO 72
                                                                         LSUA 387
     IF(ITJ.EQ.0) GO TO 70
                                                                         LSQA 388
     IF (IFI.GT.ITJ) GC TO 69
                                                                         LSQ4 389
     COV=COV-ANDRM(IFI.ITJ)
                                                                         LSUA 390
     GO TO 70
                                                                         LS04 391
  69 COV=COV-ANDRM(ITJ, IFI)
                                                                         LSQA 392
  70 IF(IFJ.EQ.0) GO TO 72
                                                                         LSUA 393+
     IF(IFI.GT.IFJ) GO TO 71
                                                                         LSQA 394
     COV=COV+ANDRM(IFI.IFJ)
                                                                         LSGA 395
     GO TC 72
                                                                         LSU4 396
  71 COV=COV+ANDRM(IFJ.IFI)
                                                                         LSUA 397
  72 COVAR(I.J)=COV
                                                                         LSQ4 398
     IF (MTYPE.NE.1) GO TO 74
                                                                         LSQA 359
     DO 73 I=1.2
                                                                         LSQ4 400
  73 COVAR(1,3)=0.00
                                                                       - LSUA 401
  74 DO 75 I=1.NAXIS
                                                                         LSQA 402
  75 ANS(I)=DSQFT(COVAR(I,I))
                                                                         L544 403
     WPITE(6,6019)L,(((CDVAR(I,J),J=1.3),ANS(I)),I=1,NAXIS)
                                                                         LS0A 404
6019 FORMAT ( -BASELINE 1.16/ COVARIANCE MATRIX 1.17X. X 1.19X. Y 1.19X. LSQA 405
    P 'Z' 15X, 'STANDARD ERRORS'//28X, 3(U15.6.5X), 3X, "X:", F13.10//28X, LSQA 436
    Q 3(D15.6.5X).3X,"Y:".Fl3.10/28X,"SYMMETRIC MATRIX"/28X,3(D15.6.5X)LSUA 407
    R.3X, 'Z:', F13.10)
                                                                         LS04 438
     BASE 1=DSQRT(XBASE(L)**2+YBASE(L)**2)
                                                                         LSUA 4C9
     SMLONG=(YBASE(L)**2*COVAR(I,I) + XBASE(L)**2*COVAR(2,2) - 2.00 * LSQA 410
    P XPASE(L)*YBASE(L)*COVAR(1,2) )
                                                                         LSQA 411
     SML ONG=RAD DE G* DSQRT (SMLONG) *3600.DOZBASE1**2
                                                                         LSUA 412
     SMEQL=DSQRT( ( XBASE(L)**2*COVAR([,1] + YBASE(L)**2*COVAR(2,2) + LSQA 413
    P 2.D0*XEASE(L)*YBASE(L)*COVAR(1,2) }/BASE1**2 }
                                                                         LSUA 414
     WRITE(6,6020) SMLONG, SMEQL
                                                                         LSQ4 415
6020 FORMAT (1HO+21X+"LONGITUDE (SECONDS ARC) EQUATORIAL LENGTH (KM)
                                                                       DLSUA 416
```

```
ECCLINATION (SECONDS ARC) TOTAL LENGTH (KM) 1// STANDARD ERRORS: 1, LSQA 417
     P 4X,2(5X,F15,10,5X))
                                                                        LS04 418
    - IF (MTYPE.EQ.I) GO TO 24
                                                                        LSQA 419
      PSLNGT=DSQRT(XPASE(L)**2+YBASE(L)**2+ZBASE(L)**2)
                                                                        LS34 420
      SMDFC=( (ZRASE(L)/BASE1)**2 * ( XBASE(L)**2*CUVAR(1,1)+YBASE(L)**2LSQ4 421
     P #CDVAR(2,2) ) + BASE1**2*CDVAR(3,3) + 2.00*ZBASE(L) * ( XBASE(L)*LSQA 422
     Q YPASE(L)*ZBASE(L)*CGVAR(1.2)/BASE1**2 - XBASE(L)*CGVAR(1.3) -
     R YPASE(L)*COVAR(2.3) ) )
                                                                        LSJA 424
      SMDFC= KADDEG*DSORT (SMDEC) *36 JO. DO/BSLNGT**2
                                                                        LSUA 425
      SMITHIL=DSGRI (XHASE(L)**2*COV4R(1.1) + YHASE(L)**2*COVAR(2.2) + LSQA 426
     P ZDASE(L)**2*COVAR(3.3) + 2.00*( XBASE(L)*YBASE(L)*COVAR(1.2) +
                                                                        LSGA 427
     Q XPASE(L)*ZEASE(L)*COVAR(1.3) + YBASE(L)*ZBASE(L)*COVAR(2.3) ) . LSGA 428
     R /PSLNGT**2 )
LSQA 429
                                                                        LSQ4 430
                                                                        LSQA 431
  24 CONTINUE
                                                                        LSQ4 432
      FETURN
                                                                        LSQA 433
      END
                                                                        LSGA 434
      SUPROUTINE ROWRT(X, CLPOLY, EPOCHS, I COL, ISTAT, NPULY, NPARAM, NPLNS,
     1 IVARBL, DELTA, ATRW, ANS, ANDRM, PACC,
                                                                NVARBL . KUWA
                                                                                2
     2 IPARAM.
                                                                        ADWR
                                                                                3
     3 ICONS, NCONP, SGMCON, ESTCON,
                                                                NCD IM.
                                                                        RUWK
                                                                                4
     1 MXEPUC, MD, NUSED, NFIXED, INTS, NUPDT)
                                                                        ROWR
                                                                                5
                                                                        CRUWR
 ROWRT PEADS AND WRITES ADJUSTMENT INFORMATION. IT IS BASED ON DER
                                                                        CHDWR
C WRITTEN BY R. B. LANGLEY.
                                                                        CKDWR
                                                                                8
C CALLED BY . MAIN
                                                                                ς
                                                                        CKUWK
C CALLS SINGED
                   SCURCE
                             TAURE
                                       MUNRIS
                                                 TIDES
                                                           LSQADJ
                                                                        CHOWR
                                                                               10
         BLNOUT
                                                                        CROWR
                                                                               11
C COMMON /LBIVAR/ USED IN
                             LSQADJ
                                       FF$DLY
                                                 STNGEO
                                                                        CROWR
                                                                               12
C COMMON /STNABBY USED IN
                             LSQADJ
                                                                        CROWR
                                                                               13
C COMMON /STATS/ USED IN
                             LSGADJ
                                                                        CRDWR
                                                                               14
С.
         D. A. DAVIDSON.
                                                                               15
                                                                        CHOWH
C
      CRDWR
IMPLICIT REAL*8(A-H.O-Z)
RUWR
COMPLEX*16 SESION
REAL*4 XFIRST.YFIRST.YINC.AMAX1.AMAX2.AMAX.ALPHA.CRIT.P.ALPH.ADICTROWR
                                                                       CHOWR
                                                                               10
                                                                               17
                                                                               18
                                                                               19
      INTEGER*2 SARBI.SABB2.SABB
                                                                               20
      COMMON /ADJUST/ FOFSET(10).08SFRQ.XTRASM(10.2).
                                                                        RUNR
                                                                               21
     ESCNAME(10). VPNAME(10).
                                                                        ROWR
                                                                               22
     S XFIRST, YEIRST, YINC,
                                                                        ROVR
                                                                               23
     1 NOBSLN(10) NCONS.
```

```
Z MTYPE . ISIGMA . NY . NSTNS . NSKIP . ICURR
                                                                            RD#R
                                                                                   25
     CCMMCN /LBIVAR/
     3.SARB(40)
                                                                            ROWR
                                                                                   26
                                                                            KUWK
                                                                                   27
     1PA(10).DEC(10).XBASE(10).YBASE(13).ZBASE(10).OFFSET(5).HEIGHT(5). RJWR
                                                                                   28
     2UTPOLY(3), XPOLE, YPOLE, OMEGA, TOBS1,
                                                                            RUMR
                                                                                   29
     3NCP(13), JDJANO, NBASE, NSORCE, ITIDE, ISAME, NOBS, IMAX
                                                                            RDWR
                                                                                   30
      COMMON /STNASS/SABBL.SABB2
                                                                            KUWR
                                                                                   31
      CEMMUN /STATS/ CRIT, ALPHA
                                                                            ROWR
                                                                                   32
      DIMENSION REAT(5), REONG(5),
                                                                            ROWR
                                                                                   33
     1 X(NPARAM), CLPOLY(5, NPLNS), EPUCHS(10, MXEPUC), NPOLY(NPLNS),
                                                                            KUNK
                                                                                   34
     2 ICOL(NPARAM), ISTAT(NPARAM),
                                                                            ROWR
                                                                                   35
     3 ANCRM(NVARBL, NVARBL), ATRW(NVARBL), DELTA(NVARBL), PACC(NVARBL),
                                                                            RUWK
                                                                                   36
     6 ANS (NVARPL), I VARBL (NVARBL), IPAR AM (NUSED),
                                                                            RDWR
                                                                                   37
     7 NCCOP(NCDIM), ICONS(NCDIM, 5), SGMCON(NCDIM), ESTCON(NCDIM)
                                                                            ROWR
                                                                                   38
      NATA AMAX/ MAX "/. ADICT/ DICT !/
                                                                            KOWR
                                                                                   39
      WPITE(6.6000)
                                                                            ROWK
                                                                                   40
600 0 FORMAT("1",55%,"CANADIAN LPI PRUGRAMME"/" ",55%,22("-"),/, ")",49%,RDWR
                                                                                   41
     1 *FRINGE FREQUENCY AND DELAY ANALYSIS*/50X.35(*-*)/*0*.54X.
                                                                                   42
     2 *LEAST SQUARES ADJUSTMENT*/55X,24(*-4)/*0*.55x.
                                                                            ROKK
                                                                                   43
     3 *VERSION: U.N.B. MAY 1980*/56X,24(*-*))
DO 1 K=1,NPARAM
                                                                            ROAR
                                                                                   44
                                                                            KDWK
                                                                                   45
      ISTAT(K)=C
                                                                            KDWK
                                                                                   46
   i = ICDL(K) = 0
                                                                            ROWR
                                                                                   47
      FEAD (5,5001) ((IPARAM(K), ISTAT(IPARAM(K))), K=1, NUSED)
                                                                            RUNK
                                                                                   48
 5001 FORMAT(13(14.12))
                                                                            RUWR
                                                                                   49
C THIS LOOP DERIVES "COMPRESSED A MATRIX" COLUMN NUMBERS OF ALL
                                                                           CROWR
                                                                                   50
C VARIABLE PARAMETERS
                                                                           CROWR
                                                                                   51
      I=0
DO 2 K=1, NUSED
L=IPARAM(K)
      I = C
                                                                            ROWH
                                                                                   52
                                                                            RDAR
                                                                                   53
     L=[PARAM(K)

IF(ISTAT(L).LT.2)GD TO 2

I=I+1

ICCL(L)=I

IVARBL(I)=L

CONTINUE

IF(I.NE.NVARBL)GD TO 998

IF((NFIXED+NVARBL).NE.NUSED) GD TO 999

IF((NFIXED+NVARBL).NE.NUSED) GD TO 999
                                                                            ROKK
                                                                                   54
                                                                                   55
                                                                            RUNR
                                                                            ROWR
                                                                                   56
                                                                                   57
                                                                            RDAR
                                                                            KUNH
                                                                                   58
 . 2 CONTINUE
                                                                            RDWR
                                                                                   59
                                                                            んじゅん
                                                                                   60
      PEAD(5,5002) MTYPE.ITIDE.ISIGMA.IMAX.ISAME.ICORR
                                                                            RDWR
                                                                                   6 i
                                                                            RD WR
                                                                                   62
5002 FORMAT(3(I1,1X),I2,1X,I1,1X,I1)
NY=1+MTYPE/3
                                                                            KUWR
                                                                                   63
                                                                            KOWK.
                                                                                  64
      IF (NY.EQ.1) ISAME=0
                                                                            スロミス
                                                                                   65
C THIS INPUT SET SHOULD BE AFTER NEASE COMPUTED, THEN LOOP TO NEASE(8) CRDWR
                                                                                   66
      IF(ISIGMA.EO.1)READ(5.5003)(XTRASM(K.1),K=1.8)
                                                                            KUWR
                                                                                   67
      IF (MTYPE.EQ.3. AND.ISIGMA.EG.1) READ (5.5003) (XTRASM(K.2).K=1.8)
                                                                            RDWX
                                                                                   68
```

```
5)03 FORMAT (8F10.5)
                                                                                 ROWR
      FEAD(E.5004) SESION
                                                                                 ROWR
                                                                                        70
5334 FORMAT (2AR)

READ(5,5005) OBSERQ, JDJANO

5305 FORMAT (F10.5,115,110)

FEAD(5,5006) TOBSE

5304 FORMAT (F15.5)
                                                                                KUNR
                                                                                        71
                                                                                 ROWK
                                                                                        72
                                                                                        73
                                                                                 RUAR
                                                                                 ROWR
                                                                                        74
      FORMAT(F15.5)
FE AD(5.5307) XPOLE.YPOLE.OMEGA.(UTPOLY(K).K=1.3)
                                                                                        75
                                                                                 ROWR
                                                                                 RDWR
                                                                                        76
5007 FORMAT (3020.5/3020.5)
                                                                                 RUNK
                                                                                        77
      WRITE(6,6001)SESION, OBSFRQ, XPOLE, YPGLE, OMEG4, (UTPOLY(K), K=1,3)
                                                                               ROWR
                                                                                        78
6701 FORMAT("-", "OBSERVING SESSION: ",288,/"-", "OBSERVING FREQUENCY (MHRDWR
     17): 1.F10.3/1-1. COCRDINATES OF PULE 1/101. 1.F6.3/101. 1.F6.3/101.
     2): 1,F6.3/1-1, ROTATION RATE (RADIANS PER UT SECOND): 4,1PD25.15/, ROWR
     3'-','UT1-UTC POLYNOMIAL COEFFICIENTS: (,1P3D25.16)
                                                                                        82
      IF (NCUNS.EQ.Q) GO TO 10
                                                                                 KD#R
                                                                                        83
      WRITE(6,6016)
PRITE(6,6016)

6)16 FORMAT(1HO, *PARAMETER CONSTRAINTS USED:*)

IF(NCDIM-LT-NCONS) WRITE(6,6030) NCDIM-NCONS

ROWR

6030 FORMAT(* *WARNING* DIMENSION (*,15,*) LESS THAN NUMBER (*,15,*)*) ROWR
                                                                                 KDWK
                                                                                        84
                                                                                        87
     RE 4D(5,50)0)(NCONP(I),I=1,NCONS)
FOFMAT(2613)
                                                                                 KUNR
                                                                                        88
5000 FOFMAT(2613)
                                                                                 KDWR
                                                                                        89
     DC 9 I=1.NCCNS
                                                                                 KDAK
                                                                                        90
      K=NCONP(I)
                                                                                 KDWR
                                                                                        91
      FEAD(5,5011) ESTCON(1),SGMCON(1),(ICONS(1,J),J=1,K)
                                                                                 ROWR
    9 WRITE(6.5011) ESTCON(I).SGMCON(I).(ICONS(I.J).J=1.K)
                                                                                 ROWR
                                                                                        93
5011 FORMAT (D25.16.D10.3.915)
                                                                                 ROWR
  10 CONTINUE
                                                                                 RDWR
                                                                                        95
      CBSFRQ=OBSFPQ*1.D6
                                                                                 ROWR
                                                                                        96
      CALL STNGED (X. NPARAM, NSTNS, RLAT, RLONG, SABB, VBNAME)
                                                                                 KDAK
                                                                                        97
  DO 3 L=1.NBASE
3 READ(5,5008) FOFSET(L)
                                                                                 ROWR
                                                                                        98
                                                                                RDWR 99
5008 FORMAT(F10.4)
DO 4 L=1.NBASE
                                                                               RD#R 100
                                                                               ROWR 101
      FF AD (5,5009) NCP(L)
                                                                               ROWR 102
5009 FORMAT([1]
                                                                                ROWR 103
      K=NCF(L)
                                                                               - ROWR 134
      IF (K.GT.1) RE 40 (5.5010) (EPOCHS(L.J).J=2.K)
                                                                                RDWR 105
5010 FORMAT (4D20.10)
                                                                                KOWR 106
  4 EPOCHS(L,1)=TORS1
                                                                                RDAR 107
  READ(5,5000)(NPOLY(L),L=1,NPLNS)
DO 5 L=1,NPLNS
J=NPCLY(L)+1
DO 5 II=1,J
5 CLPOLY(II,L)=0,00
                                                                                 ROWR 108
                                                                                 RD&K 109
                                                                                 ROWR 110
                                                                                 ROWR 111
                                                                                 RD#R 112
```

```
CALL SOURCE (NP ARAM, SCNAME, RA, DEC, X, NSORCE)
                                                                                                                                                        RD#R 113
ROWR 114

ROWR 115

ROWR 116

ROWR 117

ROWR 117

ROWR 118

ROWR 118
6004 FORMAT(*-*.58X.*DELAY*)

WRITE(6,6005)

6005 FORMAT(* * 52* *6* 00**
                                                                                                                                                          - KDWH 121
                                                                                                                                                            KUWR 122
                                                                                                                                                            RDWR 123
 6005 FORMAT(* 1,52X, *CLOCK POLYNOMIALS*/*01,30X, *BASELINE*,10X, *POLYNOMROWR 124
          11AL",10X, "EPOCH", 10X, "AVAILABLL "/84X, "PARAMETERS"/)
                                                                                                                                                            RDWR 125
            J=51
IF(KK.EQ.2.AND.ISAME.EQ.1) J=51+5*NPLNS/2
                                                                                                                                                            RDWR 126
                                                                                                                                                         RDWR 127
            DO 6 K=1 . NBASE
                                                                                                                                                        KUWK 128
DO 6 K=1.NDASE

LL=NCP(K)

WRITE(6.6006)VBNAME(K)

6006 FORMAT(33X.44)

DO 6 L=1.LL

I=I+1

II=NPOLY(I)

JJ=J+II

WRITE(6.6007)L.EPOCHS(K.L).J.JJ

6007 FORMAT(*+*.52X.I2.10X.F13.9.5X.I4.* - *.I4/IX)
                                                                                                                                                         - ROWR 129
                                                                                                                                                            RU#R 130
                                                                                                                                                            RDWR 131
                                                                                                                                                            ROWR 132
                                                                                                                                                            ROWR 133
                                                                                                                                                            RUNK 134
                                                                                                                                                       - ADWR 135
                                                                                                                                                        RD#R 136
                                                                                                                                                           KDWR 137
            J= JJ+5-II
WPITE(6,6308)(IPARAM(K),K=1,NUSED)
     6 J=JJ+5-II
                                                                                                                                                            ROWR 138
                                                                                                                                                          RUWR 139
 6008 FORMAT('1', 'PARAMETERS USED IN ANALYSIS'//(' ',2015))
                                                                                                                                                           RUWH 140
            IF (MTYPE.EQ.2) WRITE(6.6010)
IF (MTYPE.EQ.3) WRITE(6.6011)
FORMAT(1-1, *FRINGE EPEQUENCY
                                                                                                                                                            KOAR 141
                                                                                                                                                            KUNH 142
                                                                                                                                                            RUWR 143
6309 FORMAT(!-!, FRINGE FREQUENCY DATA ONLY!)
6010 FORMAT(!-!, DELAY DATA ONLY!)
6011 FORMAT(!-!, FRINGE FREQUENCY AND DELAY DATA!)
                                                                                                                                                            KUNK 144
                                                                                                                                                            RU&R 145
                                                                                                                                                           ROWR 146
 IF(ISIGMA.NE.1)GO TO 7

ROWR 147

WRITE(6,6012)

6012 FORMAT('-'.'WEIGHTED DATA')

IF(MTYPE.E0.1.OR.MTYPE.E0.3)WRITE(6.6013)(VBNAME(K),XTRASM(K,1).K=RDWR 150
 6013 FORMAT(*0*/(1x.*INPUT FRINGE FREQUENCY VARIANCES FOR BASELINE * . ROWR 152
          144, INCREASED BY ( . D15, 7, ) **2 ) )

J=MTYPE-1
                                                                                                                                                             HUWR 153
                                                                                                                                                             ROWR 154
           IF (MTYPE . EQ. 2. OR . MTYPE . EQ. 3) WRITE (6, 6014) (VBNAME (K), XTRASM (K, J) . K=ROWR 155
                                                                                                                                                             ROWR 156
```

```
6014 FORMAT("0"/(1X,"INPUT DELAY VARIANCES FOR BASELINE ",A4," INCREASEROWR 157
      ED BY (*,D15.7,')**2'))
                                                                                        KUWR 158
    7 CONTINUE
                                                                                        RUNH 159
        IF(ITIDE.EQ.1)WRITE(5,6015)
                                                                                       RDWR 160
 6315 FORMAT( "0" . " FARTH TIDE CORRECTION INCLUDED IN MODEL ")
                                                                                        KOWK 161
       READ(5.5911)NSKIP.NOBS.(NOBSLN(K), K=1.NBASE)
                                                                                        RUMR 162
 5911 FCFMAT(8110)
                                                                                        ROWR 163
        IF(NUPDT.EQ.O) GO TO 28
WRITE(6.6028)
                                                                                        KDWR 164
       WRITE(6.6028)
                                                                                        ROWR 165
 6028 FORMAT( OUPDATED PARAMETERS: / PARAMETER . LIX . VALUE )
                                                                                        KUAR 166
       DO 27 J=1.NUPDT
                                                                                        KDWK 167
        FEAD (5,5016) K.X(K)
                                                                                        RDWR 168
 WPITE(6,5016) K,X(K)
5016 FORMAT(15,5X,D25,16)
IF(K,LE,30,0R,K,GE,51) GD TD 27
                                                                                        RUNK 169
                                                                                      ROWR 173
                                                                                      RUWR 171
IF(K.LE.30.0R.K.GE.51) GO TO 27

JJ=(K-30)/2

IF(K/2*2.NE.K) GO TO 26

CEC(JJ)=X(K)

GO TO 27

26 FA(JJ+1)=X(K)

27 CONTINUE

C COMPUTES UUTLYING RESIDUAL CRITERIA...CRIT

28 FEAD(5.5015)AMAX1.AMAX2.ALPHA.XFIRST.YFIRST.YINC.CRIT

5015 FORMAL(204.F7.4.6F10.6)
                                                                                      RDWR 172
                                                                                     ROWR 173
ROWR 174
ROWR 175
                                                                                    RUWR 176
                                                                                       ROWR 177
                                                                                       CROWR 178
                                                                                       ROWR 179
 5)15 FOFMAT (2A4, F7.4, 6F10.6)

IF (AMAX1.EQ.ADICT) GC TO 25

K=NCUS-NVARBL+NWTPRN+NCONS

IF (AMAX1.FO.AMAX) GO TO 23
                                                                                        ROWR 180
                                                                                        ROWK 181
                                                                                        ROWR 182
        IF (AMAXI.EQ.AMAX) GO TO 23
                                                                                        KDWR 183
        IF(ISIGMA.NE.1) GO TO 22
                                                                                      RDWR 184
       P=1.0-4LPH4/2.0
                                                                                      RDWR 135
                                                                                     KOWK 186
KOAK 187
       CALL MONRIS(P, CPIT, IER)
       GO TC 25
   22 DALPHA=DBLE(ALPHA)
       DALPHA=DBLE(ALPHA;
CALL TAURE(1,K.DALPHA.DCRIT)
CRIT=SNGL(DCRIT)
                                                                                       KUWH 188
                                                                                        RUWR 189
                                                                                        ROWR 193
                                                                                        RUNR 191
    23 ALPH=ALPHA/FLOAT(NOBS)
                                                                                        ROWR 192
        IF(ISIGMA.NE.1) GO TO 24
                                                                                        ROWR 193
        F= 1 • 0- ALPH/2 • 0
                                                                                        RDWR 194
        CALL MONRIS(P. CRIT. IER)
                                                                                        RUNR 195
    GO TO 25
24 DALPHA=DBLE(ALPH)
                                                                                        KDWR 196
                                                                                       RO#R 197
    CALL TAURE(1.K.DALPHA.DCRIT)
CRIT=SNGL(DCRIT)
25 WRITE(6.6027) ALPHA.AMAXI.AMAX2.CRIT
        CALL TAURE (1.K.DALPHA.DCRIT)
                                                                                       RD#K 198
                                                                                       KOWK 199
                                                                                      ROWR 200
```

```
6027 FORMAT("CALL STATISTICS BASED ON PROBABILITY OF A TYPE I ERROR(ALPROWN 201
    6HA): 1.F10.571 RESIDUAL BUTLIERS DETECTED USING 1,244.1 CRITERIA. RD&R 202
     & FACTOR: 1.F16.6)
                                                                        KU#R 203
      IF(ITIDE,EQ.0)GO TO 17
                                                                        RDWR 204
      TO1=OFLOAT (JDJANO)+TGBS1-0.500
                                                                        HOWH 205
      FE AD (5,5002, END=16) JUNK
                                                                        ROWR 206
  16 CALL TIDES(TDI, NSTNS, RLAT, RLONG)
                                                                        ROWR 237
  17 CONTINUE
                                                                        ROWR 208
     IF (NOBS.LE.50) INTS=INTS/2*2
IF (INTS.GT.40) INTS=40
                                                                        ROWR 209
                                                                        ROWR 210
      WRITE(6,6029) MD
                                                                        RDAR 211
 6029 FORMAT(1H1.*LEAST SQUARES PARAMETRIC ADJUSTMENT*//* MODEL NUMBER: *kokr 212
     (01103
      CALL LSQADJ(X.ICOL.ISTAT.
                                                                NPARAM. ROWR 214
     1 AMORM. ATRW. DELTA, PACC, ANS, IVARBL.
                                                                NVARBL. ROWR 215
     2 IPARAM.
     3 ICONS, NCONF, SGMCON, ESTCON,
                                                                NUSED. RDWR 216
                                                                NCDIM. RDAR 217
     5 CLPCLY, NPOLY, NPLNS,
                                               EPOCHS.
                                                                MXEPOC. RDWR 218
     6 INTS
                                                                     ) ROWR 219
C PRINTS PARAMETER RESULTS AND STANDARD ERRORS
                                                                       CROWN 220
      WRITE(6,6017)
                                                                        ROMR 221
 6017 FORMAT("IRESULTS"/" ".7("-")/" PARAMETER",10x. "ESTIMATE",17x.
                                                                        RDWR 222
     1 'STANDARD ERROR'./)
                                                                        ROWR 223
      DO 20 II=1.NUSED
                                                                        HUWR 224
      L=IPARAM(II)
                                                                        ROWR 225
      IF(L.GT.30) GO TO 18
WRITE(6,6018)L.X(L)
                                                                        KJ#K 226
                                                                       RDWR 227
 6018 FORMAT(1H0,15,5X,F15,6,1 KM1)
IF(1STAT(L),LT,2)G0 T0 20
                                                                       RD#K 228
                                                                      KUWR 224
      STDEK=DSGRT(ANORM(ICOL(L),ICOL(L)))
                                                                      RDWR 230
      WRITE(6,6022) STDER
                                                                      HOWR 231
 6022 FORMAT ( + + + T46, FLQ . 6 . KM )
                                                                       RDWK 232
  18 IF(L.GT.50)GO TO 19
                                                                      RDWR 233
                                                                      RDWR 234
      IF(L/2*2.EQ.L)60 TO 21
                                                                      RUMR 235
      HRS=X(L)/15.D0
                                                                      RD#R 236
      IHP=HRS
                                                                      RUWR 237
      FMINS=DABS (HRS-DFLOAT(IHR)) *60.00
                                                                       KD*R 238
      IMINS=RMINS
                                                                       ROWR 239
      FSEX=(RMINS-DFLOAT(IMINS))*60.DO
                                                                       KUNR 240
                                                                       RUWR 241
      WFITE(6,6021)L, IHR, IMINS, RSEX
 6021 FORMAT (1HC, 15, 5X, 15, " HR ", 15, " MIN", F8.4, " SEC")
                                                                      KOWR 242
      IF (ISTAT(L).LT.2)GO TO 20
                                                                      RDWH 243
      STDER=DSGRT(ANORM(ICGL(L),ICGL(L)))/15.D0*3600.D0
                                                                      RUBH 244
```

```
WRITE(6,6023) STDER

6023 FDFMAT('+',146,F10.6, SEC')

GO TO 20

21 CONTINUE

IDEG=X(L)

PMINS=DARS(VII) CONTINUE
                                                                                                        ROWR 245
                                                                                                        RD#R 246
                                                                                                       HOWR 247
                                                                                                        KOWR 248
                                                                                                          KDWR 249
         PMINS=DABS(X(L)-DFLOAT(IDEG))*60.00
                                                                                                          KUAK 250
 IMINS=RMINS

FSEX=(RMINS-DFLCAT(IMINS)) $60.00

WFITE(6.6019)L.IDEG.IMINS.FSEX

6019 FCRMAT(1H0.15.5X,15.* DEG*.15.* MIN*.F7.3.* SEC*)
         IMINS=RMINS
                                                                                                          RDWR 251
                                                                                                          HOWR 252
                                                                                                           KOHR 253
                                                                                                           ROWR 254
         IF (ISTAT(L) .LT .2)GO TO 20
                                                                                                          RDWR 255
         STDEK=DSORT(ANORM(ICCL(L).ICCL(L)))*3600.DO
                                                                                                          ROWR 256
 WRITE(6,6024) STDER
6024 FORMAT("+",T45,F1).5," SEC")
 19 WRITE(6,6020) L,X(L)
6020 FORMAT(1H0,15,5X,D17.7)
IF(1STAT(L),LT.2)GD TO 20
STDCR=DSQRT(ANORM(ICCL(L),ICUL(L))
WRITE(6,6025) STDCR
                                                                                                          RDWR 257
                                                                                                        HUNR 258
                                                                                                        KOWR 259
                                                                                                          KDWR 260
                                                                                                          RDWR 261
 IF (ISTAT(L).LT.2)GD TO 20
STDTE=DSGRT(ANGRM(ICCL(L),ICUL(L)))
WFITE(6,6025) STDER

6025 FORMAT('+',T46,D10.3)
RDWR 264
RDWR 265
RDWR 265
RDWR 265
RDWR 266
RDWR 266
RDWR 266
RDWR 267
RETURN

998 WRITE(6,6992)
6992 FORMAT('-',PARAMETERS GIVEN AS VARIABLE STATUS DO NOT SUM TO NVARRDWR 273
RDWR 269
RDWR 269
                                                                                                          RDWR 262
       EPL!)
  8PL*)
GO TO 9999
999 WPITE(6,6991)
                                                                                                         - RDWR 272
                                                                                                        RDWR 273
 6991 FORMAT( -- , 'NFIXED+NVARBL DOES NOT EQUAL NUSED )
 9999 CONTINUE FETURN END
                                                                                                          KOWR 274
                                                                                                          RDWR 275
                                                                                                    KDWR 276
                                                                                                        RDWR 277
     SUBROUTINE TAURE( NT.NU.ALPH.CRTAU ) TAUR COMPUTES THE REJECTION LEVEL FOR NORMALISED RESIDUALS FOR A GIVEN NUTAUR
      COSERVATIONS . DEGREES OF FREEDOM AND DESIRED LEVEL OF TYPE I ERROR TAUR
        PARAMETERS
           ARAMETERS

MT - NUMBER OF OBSERVATIONS

NU - DEGREES OF FREEDOM

ALPH - DESIPED PROBABILITY OF TYPE I ERROR

CRIAU - CRITICAL VALUE ( MAX-TAU ) PRODUCED BY THE SUBROUTINE TAUR
C
\mathsf{C}
      REFERENCE : 4. J. POPE (1976) - "THE STATISTICS OF RESIDUALS AND THE TAUR
```

```
DETECTION OF OUTLIERS" . U.S. DEPT. OF COMMERCE . NOAA TTAUR 10
C
       DETECTION OF OUTLIERS" . U.S. DEPI. OF REPORT NOS 65 NGS 1.

IMPLICIT FEAL* 8(A-H,O-Z)
DATA PI/ 3.1415026535898 /
PD = 2. /PI
S = 1.
WNU = NU
U = WNU +1.
IF( U.EQ.C. ) GD TO 72
IF ( ALPH.EQ.O. ) GO TO 72
IF ( ALPH.LT.1. ) GO TO 10
CPTAU = 0.
                                                                                                    TAUR 12
                                                                                                    TAUR 13
                                                                                                    TAUR
                                                                                                             14
                                                                                                    TAUR
                                                                                                             15
                                                                                                    TAUR 16
                                                                                                    TAUR
                                                                                                            17
                                                                                                    TAUR
                                                                                                             18
                                                                                                    TAUR
                                                                                                             19
                                                                                                    TAUR
                                                                                                             20
                                                                                                    TAUR
                                                                                                             21
C
                                                                                                    TAUR
                                                                                                             22
        RETURN
                                                                                                    TAUR
                                                                                                             23
C
                                                                                                    TAUR
                                                                                                             24
    10 Q = NT
                                                                                                    TAUR
                                                                                                             25
       G = N)
IF ( ALPH.GT.0.5 ) GC TO 19
AA = ALPH / Q
DELT = AA
DO 18 I = 1.100
XI = I
DELT = DELT * ALPH * (( XI*Q - 1.)/(( XI+1.)*Q))
                                                                                                    TAUR
                                                                                                             26
                                                                                                    TAUR
                                                                                                             27
                                                                                                    TAUR
                                                                                                    TAUR
                                                                                                             29
                                                                                                    TAUR
                                                                                                             30
                                                                                                    TAUR
                                                                                                             31
        IF ( DELT.LT.1.D-14 ) GO TO 20
                                                                                                    TAUR
                                                                                                              32
   18 AA = AA + DELT

19 A4 = 1. - (1.-ALPH)**(1./Q)

20 P = 1. - AA

IF(U.EQ.1.) GO TO 71

F = 1.3862943611199 - 2.*DLGG(AA)

G = DSQRT(F)

X = G - (2.515517 + 0.802853*G + 0.010328*F)
    18 AA = AA + DELT
                                                                                                    TAUR
                                                                                                             33
                                                                                                    TAUR
                                                                                                             34
                                                                                                   TAUR
                                                                                                   TAUR
                                                                                                             36
                                                                                                  TAUR
                                                                                                             37
                                                                                                  TAUR
                                                                                                             38
                                                                                              TAUR
                                                                                                             34
       $ / (1. + 1.432788*G + F*(0.189269 + 0.001308*G))
                                                                                                   TAUR
                                                                                                             40
        Y = X*X

A = X*(1. + Y)/4.

B = X*(3. + Y*(16. + 5.*Y))/96.

C = X*(-15. + Y*(17. + Y*(19. + J.*Y)))/384.
        Y = X * X
                                                                                                    TAUR
                                                                                                             41
                                                                                                    TAUR
                                                                                                             42
                                                                                                    TAUR
                                                                                                             43
                                                                                                    TAUR
                                                                                                             44
        F = X*(-945. + Y*(-1920. + Y*(1482. + Y*(776. + 79.*Y))))/92160. TAUR
                                                                                                             45
        V = 1./U
                                                                                                     TAUR
                                                                                                             46
        T = X + V*(A + V*(B + V*(C + E*V)))
                                                                                                    TAUR
                                                                                                             47
        S = T/DSQRT(U + T*T)
                                                                                                    TAUR
                                                                                                             48
        UM = U - 1.

DELL = 1.

DO 70 M = 1.50
                                                                                                    TAUR.
                                                                                                             49
                                                                                                    TAUR :
                                                                                                             50
                                                                                                    TAUR
                                                                                                             51
        H = 1. - S*S
                                                                                                    TAUR
                                                                                                             52
        R = 0.0
                                                                                                    TAUR
```

```
IF ( DMCD(U.2.D0).EQ.0.0 ) GU.TO 49
   IF ( DMCD(U.2.DC).EQ.D.D ) GU IU 49
DD = DSORT(H)
N = 0.5*UM
DC 45 I = 1.N
Z = 2*I
R = R + DD
D = DD
45 DD = DD * H * (Z/(Z+1.))
R = PD*(P*S + DARSIN(S))
D = PD*D*UM
GC TO 61
                                                                                          TAUR
                                                                                          TAUK
                                                                                                  55
                                                                                           TAUR
                                                                                                  56
                                                                                          TAUR
                                                                                                   57
                                                                                          TAUR
                                                                                                   58
                                                                                          TAUR
                                                                                                   59
                                                                                          TAUR
                                                                                                  60
                                                                                          TAUR
                                                                                                  61
                                                                                          TAUR
                                                                                                  62
   D = PD*D*UM
GO TO G1

49 PD = 1.

N = 0.5*U

DO =5 I = 1.N

Z = 2*I

R = R + DD

C = DD
                                                                                          TAUR
                                                                                                  63
                                                                                          TAUR
                                                                                                  64
                                                                                          TAUR
                                                                                                  65
                                                                                          TAUR 66
                                                                                          TAUK
                                                                                                  67
                                                                                          TAUK
                                                                                                  68
                                                                                          TAUR
                                                                                                  69
                                                                                          TAUR
                                                                                                  70
    55 \text{ CD} = 00 + H * ((Z-1.)/Z)
                                                                                          TAUR
                                                                                                  71
        F = R*S
                                                                                          TAUR
                                                                                                  72
       F = R#S

C = D*UM

CCNTINUE

CEL = (P-R)/D

IF( D48S( DEL/DELL ) .GT.0.5) GO TO 72
                                                                                          TAUR
                                                                                                  73
    61 CONTINUE
                                                                                          TAUR
                                                                                                  74
                                                                                          TAUR
                                                                                                  75
                                                                                          TAUR
                                                                                                 76
       DELL = DEL
                                                                                          TAUR
                                                                                                  77
        S = S + DEL
                                                                                          TAUR
                                                                                                  78
       IF( DABS(DEL) .LT. l.D-8 ) GQ TO 72
CONTINUE
GQ TQ 72
                                                                                          TAUR
                                                                                                  79
    70 CONTINUE
                                                                                          TAUR
                                                                                                  80
    GO TO 72
71 S = OSIN(P/PD)
72 CRTAU = S*DSORT(*NU)
                                                                                          TAUR
                                                                                                  81
                                                                                          TAUR
                                                                                                  82
                                                                                          TAUR
                                                                                                  83
        RETURN
                                                                                          TAUR
                                                                                                  84
        END
                                                                                          TAUR
                                                                                                  85
        SUBPOUTINE TSPLOT(YFIRST, YINC, MTYPE, NY)
                                                                                          TSPL
                                                                                                    1
                                                                                         CTSPL
C TSPLOT PLOTS DLY AND FF RESIDUALS AGAINST TIME FOR EACH BASELINE.
                                                                                         CISPL
C TIME SCALE IS DOWN THE PAGE; RESIDUAL SCALE ACROSS THE PAGE.
                                                                                         CTSPL
C IT IS BASED ON TSPLOT BY R.B.LANGLEY 19 NOVEMBER 1979.
C CALLED IN LSGADJ -TSPLOT INITIALISES FOR A BASELINE.
                                                                                          CTSPL
                                                                                         CISPL
                       -ENTRY RSPLOT PLOTS RESIDUALS FOR EACH OBSN. TIME
                                                                                                    7
                                                                                         CTSPL
C INPUT PARAMETERS
                                                                                         CTSPL
C YFIRST EXTREME NEGATIVE VALUE OF RESIDUALS TO BE PLOTTED
                                                                                         CTSPL
                                                                                                   9
C YINC
              INCREMENT PER. PRINTER SPACE ACROSS PAGE
                                                                                         CTSPL
```

```
TYPE OF ORSERVATIONS 1=FF , 2=DLY , 3=FF AND DLY CTSPL NUMBER OF OBSERVATION TYPES IE . EITHER 1 OR 2 CTSPL
                                                                                                                                                               11
C
      NY
                                                                                                                                                               12
                     LINE NUMBER FROM START TIME OF PLOT
POSITION ACROSS PAGE FOR EACH RESIDUAL
DENDIES PRESENCE OF DLY AND FF RESIDUALS FOR TIME POINT
C
      1 X
                                                                                                                                             CTSPL
                                                                                                                                                               13
C
      ΙY
                                                                                                                                              CT SPL
                                                                                                                                                               14
C
      ICUT
                                                                                                                                              CTSPL
                                                                                                                                                               15
C
                      D. A. DAVIDSON MAY 1980
           LOGICAL*1 STRING(101)
LOGICAL*1 STRING(101)
LOGICAL*1 LINE/*|*/*, *D*, *B*/
LOGICAL*1 SYMBOL(3)/*F*, *D*, *B*/
INTEGER IOUT(2), IY(2), IXOLD, IYZERO, IX
IXOLD=1
IYZERO=1.5+YFIRST/YINC
IF(MTYPE.EQ.2) SYMBOL(1)=SYMBOL(2)
RETURN
ENTRY PSO(5)
                                                                                                                                                CTSPL
                                                                                                                                                               16
C
                                                                                                                                                CTSPL
                                                                                                                                                               17
                                                                                                                                                 TSPL
                                                                                                                                                               18
                                                                                                                                                 TSPL
                                                                                                                                                               19
                                                                                                                                                 TSPL
                                                                                                                                                               20
                                                                                                                                                 TSPL
                                                                                                                                                               21
                                                                                                                                                 TSPL
                                                                                                                                                               22
IXCLD=1
IYZFRO=1.S-YFIRST/YINC
IF(MIYPE.EG.2) SYMBOL(1)=SYMBOL(2)
RETURN
ENTRY RSPLCI(IX.IY.ICUT)
IF(IX-LE.IXOLD) GG TO 2
IF(IX-IXOLD.LT.20) GG TO 5
IXCLD=IX-3
WPITE(6.6003)
6003 FORMAT(////)
5 IXM1=IX-1
DG 1 K=IXCLD.IXM1
1 WRITE(6.6001) LINE
6001 FCRMAI(TIO.41)
2 CONTINUE
STRING(1)=LINE
STRING(1)=LINE
STRING(IYZERG)=LINE
DG 3 K=1.NY
IF(IOUT(K).EG.C) GG TO 3
STRING(IY(K))=SYMBOL(K)
3 CONTINUE
IF(IOUT(1)*IOUT(2).EG.1.4ND.IY(1).EG.[Y(2)) SIR
                                                                                                                                                 ISPL
                                                                                                                                                               23
                                                                                                                                                 TSPL
                                                                                                                                                               24
                                                                                                                                                 TSPL
                                                                                                                                                               25
                                                                                                                                                  TSPL
                                                                                                                                                               26
                                                                                                                                                  TSPL
                                                                                                                                                               27
                                                                                                                                                  TSPL
                                                                                                                                                               28
                                                                                                                                                  TSPL
                                                                                                                                                               29
                                                                                                                                                  TSPL
                                                                                                                                                               30
                                                                                                                                                  TSPL
                                                                                                                                                               31
                                                                                                                                                  TSPL
                                                                                                                                                               32
                                                                                                                                                  TSPL
                                                                                                                                                               33
                                                                                                                                                  TSPL
                                                                                                                                                               34
                                                                                                                                                  TSPL
                                                                                                                                                               35
                                                                                                                                                  TSPL
                                                                                                                                                               30
                                                                                                                                                  TSPL
                                                                                                                                                               37
                                                                                                                                                  TSPL
                                                                                                                                                               38
                                                                                                                                                  TSPL
                                                                                                                                                               39
                                                                                                                                                  TSPL
                                                                                                                                                               40
                                                                                                                                                  TSPL
                                                                                                                                                               41
                                                                                                                                                  TSPL
                                                                                                                                                               42
                                                                                                                                                  TSPL
                                                                                                                                                               43
                                                                                                                                                  ISPL
                                                                                                                                                               44
            IF (IOUT(1) *IOUT(2) . EQ. 1 . AND . IY(1) . EQ. (Y(2)) STRING(IY(1)) = SYMBOL (3T SPL
                                                                                                                                                               45
          (3
                                                                                                                                                  TSPL
                                                                                                                                                               46
           WRITE(6.6002)(STRING(K).K=1.101)
F(FMAI(T10.10141)
DO 4 K=1.NY
STRING(IY(K))=BLANK.
IXOLD=IX+1
FETURN
END
                                                                                                                                                  TSPL
                                                                                                                                                               47
  6002 FCPMAT(T10.10141)
                                                                                                                                                  TSPL
                                                                                                                                                               48
                                                                                                                                                  TSPL
                                                                                                                                                               49
         4 STRING(IY(K))=BLANK.
                                                                                                                                                  TSPL.
                                                                                                                                                               50
                                                                                                                                                  TSPL
                                                                                                                                                               51
                                                                                                                                                  TSPL
                                                                                                                                                               52
                                                                                                                                                  TSPL
                                                                                                                                                               53
```

```
SUPPOUTING X SEINV(T.B.N.NDIM.NCODE.D.DET.IDEXP.X)
                                                                                                                                                                              XSLI
 C CHCLESKY INVERSION AND SOLUTION.
 C
                                                                                                                                                                               CXSLI
                                                                                                                                                                               CXSLI
 C BASED ON VARIOUS INVERSION ROUTINES OF R. R. STELVES
                                                                                                                                                                               CXSLI
 C GIVES SOLUTION TO AX=8, WHILE LSUADJ REQUIRES SOLUTION TO AX=-8
                                                                                                                                                                               CXSLI
 C THEREFORE NEGATIVE VALUE OF B VECTOR ENTERED INTO ROUTINE
                                                                                                                                                                               CXSLI
                                                                                                                                                                                                    6
         NEUT PARAMETERS
T MATRIX TO BE INVERTED OR SOLVED
B CONSTANT VECTOR
N SIZE OF T , NPARAMETERS TO BE SOLVED
NDIM DIMENSIONED SIZE OF T.B.D.X. NDIM >= N
NCODE =1 GIVES INVERSE OF T
=2 GIVES SOLUTION VECTOR(X)
=3 GIVES SOLUTION AND INVERSE
D WORK VECTOR
UTPUT PARAMETERS
T INVERSE MATRIX TE NCODE-1 OD 7
 C INPUT PARAMETERS
                                                                                                                                                                               CASLI
                                                                                                                                                                                                   7
                                                                                                                                                                               CXSLI
                                                                                                                                                                                                   8
                                                                                                                                                                               CXSLI
                                                                                                                                                                                                   9
                                                                                                                                                                               CXSLI
                                                                                                                                                                                                 10
                                                                                                                                                                               CXSLI
                                                                                                                                                                                                 11
                                                                                                                                                                               CXSLI
                                                                                                                                                                                                 15
                                                                                                                                                                              CXSLI
                                                                                                                                                                                                 13
                                                                                                                                                                               CXSLI
                                                                                                                                                                                                 14
                                                                                                                                                                               CXSLI
                                                                                                                                                                                                 15
 C OUTPUT PARAMETERS
                                                                                                                                                                               CXSLI
     T INVERSE MATRIX IF NCODE={ OR 3

X SOLUTION VECTOR

DET.IDEXP DETERMINANT OF INPUT MATRIX T.GUTPUT AS (FLO.5.*D*.16)
                                                                                                                                                                                                 16
                                                                                                                                                                               CXSLI
                                                                                                                                                                                                 17
                                                                                                                                                                               CXSLI
                                                                                                                                                                                                 18
                                                                                                                                                                               CXSLI
                                                                                                                                                                                                 19
 C FNTRY INVERS INVERSE ONLY REQUIRED
C INVERT GIVES INVERTED T IF XSLINV PREVIOUSLY GAVE X
                                                                                                                                                                                CXSLI
                                                                                                                                                                                                 23
                                                                                                                                                                               CXSLI
                                                                                                                                                                                                 5 ;
C D. A. DAVIDSON MAY 198)

C D. A. DAVIDSON MAY 198)

IMPLICIT REAL*8(A-H,C-Z)

INTEGER NDIM

DIMFNSION T(NDIM,NDIM).D(NDIM).X(NDIM)

ENTRY INVERS(T.N.NDIM.NCODE.DET,IDEXP)

C FIND SQUARE RGOT

DET=C.DO

DO 4 J=1.N

GCG=T(J,J)

DO 4 I=1.J

IF(T.CQ.1) GO TO 2

M=1-1

SUM=3.0DO

DO 1 K=1,M

SUM=SUM+T(K.I)*T(K.J)

T(I.J)=T(I.J)-SUM

2 IF(I.CQ.J) GO TO 3

T(I.J)=T(I.J)/T(I.I)

GC TO 4

3 CONTINUE

GCOG=T(I,I)/GCOG

CXSLI

CXSLI

CXSLI

CXSLI

XSLI

XSLI
                       D. A. DAVIDSON MAY 1983
 C
                                                                                                                                                                                CXSLI
                                                                                                                                                                                                 24
                                                                                                                                                                                                 25
                                                                                                                                                                                                 26
                                                                                                                                                                                                 27
                                                                                                                                                                                                 28
                                                                                                                                                                                                 29
                                                                                                                                                                                                 30
                                                                                                                                                                                                 31
                                                                                                                                                                                                 32
                                                                                                                                                                                                 33
                                                                                                                                                                                                 34
                                                                                                                                                                                                 35
                                                                                                                                                                                                36
                                                                                                                                                                                                37
                                                                                                                                                                                                 38
                                                                                                                                                                              XSLI 39
                                                                                                                                                                              XSLI
                                                                                                                                                                                                40
                                                                                                                                                                              XSLI
                                                                                                                                                                                                41
                                                                                                                                                                                                42
```

```
IF (GCCG.LT.0.1D-3) WRITE(6.6000) I,GDOG XSL1
6000 FORMAT(1 *WARNING* GOOGE NUMBER FOR PARAMETER*, 16. * SIGNIFIES SINXSLI
                                                                                                                                                                   45
              &GULARITY: ", D16.6)
                                                                                                                                                       XSL1
                                                                                                                                                                    46
               DET=DET+DLOGIC(I.I))
T(I.I)=DSORT(T(I.I))
CONTINUE
IDEXP=DET
RPART=DET-IDEXP
APART=DABS(RPART)
IF (APART.GE.1.D-23)GO TO 9
DET=1.DC
                                                                                                                                                       XSLI
                                                                                                                                                                    47
                                                                                                                                                       X SL I
                                                                                                                                                                    48
                                                                                                                                                       XSLI
                                                                                                                                                                    49
                                                                                                                                                       XSLI
                                                                                                                                                                    50
                                                                                                                                                       XSLI
                                                                                                                                                                    51
                                                                                                                                                       XSLI
                                                                                                                                                                    52
     CONTINUE
IF (NCCDE.EQ.1) GO TO 10
FOWARD SUBSTITUTION...
D(1)=B(1)/T(1.1)
CO 6 I=2,N
SUM=0.0D0
K=I-1
DO 5 J=1.K
SUM=SUM+T(J.1)*D(J)
C(1)=(B(1)-SUM)/T(1.1)
EACK*ARD SUBSTITUTION...
X(N)=D(N)/T(N.N)
M=N-1
DO 8 I=1.M
SUM=0.0D0
J=N-I+1
L=N-I
DO 7 K=J.N
SUM=SUM+T(L.K)*X(K)
X(L)=(D(L)-SUM)/T(L.L)
IF (NCODE.EQ.2)GD TO 20
ENTRY INVERT(T)
DO 17 J=1.N
DO 17 I=1.J
IF (I.LT.J) GO TO 15
I(J.J)=1.0D0
                                                                                                                                                       XSLI
                                                                                                                                                                    53
                DET=1.DC
                                                                                                                                                       XSLI
                                                                                                                                                                    54
                                                                                                                                                       XSLI
                                                                                                                                                                    55
                                                                                                                                                       XSLI
                                                                                                                                                                    56
    21
                                                                                                                                                       XSLI
                                                                                                                                                                    57
                                                                                                                                                       XSLI
                                                                                                                                                                    58
    C
                                                                                                                                                       XSLI
                                                                                                                                                                    59
                                                                                                                                                       XSLI
                                                                                                                                                                    60
                                                                                                                                                       XSLI
                                                                                                                                                                    ól
                                                                                                                                                                    62
                                                                                                                                                       XSLI
                                                                                                                                                       XSLI
                                                                                                                                                                    63
                                                                                                                                                       XSLI
                                                                                                                                                                    64
    5
                                                                                                                                                       XSLI
                                                                                                                                                                    65
    6
                                                                                                                                                       XSLI
                                                                                                                                                                    66
                                                                                                                                                       XSLI
                                                                                                                                                                    67
                                                                                                                                                       XSLI
                                                                                                                                                                    68
                                                                                                                                                       XSLI
                                                                                                                                                                    69
                                                                                                                                                       XSLI
                                                                                                                                                                    70
                                                                                                                                                       XSLI
                                                                                                                                                                    71
                                                                                                                                                       XSLI
                                                                                                                                                                    72
                                                                                                                                                       XSLI
                                                                                                                                                                    7.3
                                                                                                                                                       XSLI
                                                                                                                                                                    74
    7
                                                                                                                                                       XSLI
                                                                                                                                                                    75
    8
                                                                                                                                                       XSLI
                                                                                                                                                                    76
                                                                                                                                                       XSLI
                                                                                                                                                                    77
             17 J=1.N
DO 17 I=1.J
IF(I.T.J) GO TO 15
T(J.J)=1.0D0/T(J.J)
GO TO 17
SUM=0.0D0
M=J-1
DO 16 K=I.M
SUM=SUM-T(I.K)*T(K.J)
                                                                                                                                                       XSLI
                                                                                                                                                                    78
    10
                                                                                                                                                       XSLI
                                                                                                                                                                    79
                                                                                                                                                       XSLI
                                                                                                                                                                    80
                                                                                                                                                       XSLI
                                                                                                                                                                    81
                                                                                                                                                       XSLI
                                                                                                                                                                    82
                                                                                                                                                       XSLI.
                                                                                                                                                                    83
    15
                                                                                                                                                       XSLI
                                                                                                                                                                    84
                                                                                                                                                       XSLI
                                                                                                                                                                    85
                                                                                                                                                       XSLI
                                                                                                                                                                    86
- 16
                                                                                                                                                       XSLI
                                                                                                                                                                    87
```

0

T(1.J)=SUM/T(J.J)
CONTINUE
DO 19 J=1.N
CONTINUE
SUM=0.000
DO 18 K=J.N
SUM=SUM+T(I.K)*T(J.K)
T(I.J)=SUM

1.3