A LEAST SQUARES ADJUSTMENT FOR LONG BASELINE INTERFEROMETRY

D. A. DAVIDSON

PREFACE

In order to make our extensive series of technical reports more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text.

A LEAST SQUARES ADJUSTMENT FOR
 LONG BASELINE INTERFEROMETRY

by

Derek A. Davidson
B.Sc. (Land Surveying Sciences)

North East London Polytechnic, 1978

Department of Surveying Engineering University of New Brunswick

Technical Report No. 71

June, 1980

Latest Reprinting Apri1 1990

ABSTRACT

Long baseline interferometry software and data, developed by the Canadian L.B.I. group at York University, has been combined with a least squares adjustment package. The options have been implemented to accept an input of both weighted parameters and functional parameter constraints. The results are then analysed statistically, including a chi-square goodness-of-fit test on the residuals, a rejection criteria for residual outliers, and a chi-square test on the variance factor.

The package has been developed with close regard to computer economy. Computer storage space has been reduced by 60% and processing time has been reduced by 96% compared with the previously used maximum likelihood adjustment routines. This increase in efficiency has resulted in an ability to input a large number of observations and, accordingly, in an improvement in accuracy.

TABLE OF CONTENTS

Page
ABSTRACT ii
LIST OF FIGURES vi.
LIST OF TABLES vii
ACKNOWLEDGEMENTS viii

1. INTRODUCTION 1.
2. A BRIEF INTRODUCTION TO L.B.I. 5
2.1 The Source of the Radio Signal 5
2.2 Definitions of Observations of Delay and Fringe Frequency 6
2.3 Resolvable Parameters 6
2.4 The L.B.I. Mode1s 9
2.5 The L.B.I. Observing and Correlation Process 13
3. LEAST SQUARES ADJUSTMENT 16
3.1 Derivation of the Least Squares Equations 16
3.1.1 Input for the adjustment 16
3.1.2 A Taylor's expansion of the models 17
3.1.3 The least squares solution by the Lagrange method 19
3.1.4 Solution simplification of a para- metric model 23
3.1.5 The residua1s 24
3.2 Covariance Matrix of Parameters 24
3.3 The Variance Factor 26

TABLE OF CONTENTS - Continued
Page
4. STATISTICAL ASSESSMENT OF RESULTS 28
4.1 Test for Normality of the Residuals . . . 28
4.2 Chi-square Test on the Variance Factor.. 32
4.3 Detection of Residual Outliers 33

5. PROGRAMMING APPLICATIONS 39
5.1 Compressing the First Design (A) Matrix . 39
5.2 Storing the A Matrix 40
5.3 Iteration Requirement for a Solution . . . 42
5.4 Station Positions used as Parameters
Instead of Baseline Components 43
5.5 Weighted Parameters and Functional
Parameter Constraints 45
5.6 The "Googe Number" as an Indicator of
Singularity 46
6. RESULTS . 52
7. CONCLUSIONS AND RECOMMENDATIONS 59
7.1 Analyse Full Sets of Observations 59
7.2 Consistency in Accuracy Throughout the
Model 59
7.3 Iterative Process Mode 60
7.4 Data Storage on Direct Access File 60
7.5 Permanent Storage of the A Matrix 61
7. 6 Comparison of Doppler Satellite and L.B.I.
Coordinate Systems 61
TABLE OF CONTENTS - Continued Page
7.7 L.B.I. Observing Programme for Geodetic Results 62
7.8 Spectral Analysis of Residuals 62
REFERENCES 64
APPENDIX 1 - JOB CONTROL FOR I.B.M. 370/3032 AT UNB 66
APPENDIX 2 - INPUT DATA 68
APPENDIX 3 - CANADIAN L.B.I. ANALYSIS PROGRAM (MAY 1980) 83

LIST OF FIGURES

Figure Page
2.1 L.B.I. Baseline Receiving Plane Wavefronts 7
2.2 Two L.B.I. Receivers Observing a Source . . 10
2.3 The L.B.I. Process 14
4.1 Test for Normality of the Residuals 31
4.2 A Normal Probability Distribution Function (p.d.f.) 34
4.3 Residual Plot 36
5.1 Compressed A Matrix 41

LIST OF TABLES

Table Page
6.1 Comparison of Computer Space and C.P.U.
Time 54
6.2 Baseline Component Comparison 55
6.3 Source Position Comparison 56
6.4 Clock Polynomial Coefficient Comparison 57

ACKNOWLEDGEMENTS

This thesis was supervised by Dr. P. Vanicek. It formed a continuation in studies on geodetic applications of L.B.I. being carried out at York University, Toronto, by Dr. W.H. Cannon, Dr. R.B. Langley, and W.T. Petrachenko. This group developed the software and together with astronomers at the Herzberg Institute of Astrophysics, Ottawa, undertook the observations which have been used by the author.

Continued assistance has been rendered by many individuals. Mrs. L. Mills has assisted as a computer consultant. T. Wray has given mathematical guidance. W.T. Petrachenko demonstrated the use of various packages. R.R. Steeves has given advice and allowed adaption of his programs. Dr. R.B. Langley has instigated advice and programs, all by correspondence. Fellow graduate students have also given assistance to this work.

Financial assistance to the author through this period of study has been made available through graduate teaching and research assistantships from the Surveying Engineering Department. The National Research Council forwarded funds towards L.B.I. research.

The typing was carried out by Mrs. S. Burgess.

The author extends his gratitude to these individuals and organisations, as well as to others who may have assisted, but space prohibits recognition.

CHAPTER 1

INTRODUCTION

This thesis describes a least squares adjustment package written for one specific geodetic method: long baseline interferometry (L.B.I.). The importance of L.B.I. to the determination of geophysical and geometrical properties of the earth has been extensively discussed by such authors as Jones [1969], Meeks [1976], Cannon [1978], and Shapiro [1978]. On1y a brief description is thus given of L.B.I. principles sufficient to outline the L.B.I. process and the specific computational problems. The main concern has been to produce an efficient adjustment and statistical testing package to process L.B.I. observations. The routines developed from this work form a contribution to the Canadian L.B.I. software system [Cannon, 1978; Langley, 1979].

The initials V.L.B.I. will be encountered in some literature, the V standing for "very". There is no implied difference between V.L.B.I. and L.B.I. except that L.B.I. tends to be used by the Canadian workers centred at York University in Toronto. The other main groups working on L.B.I. are the "East Coast Group" which includes the Massachusetts Institute of Technology, in

Cambridge, Massachusetts, the Haystack Observatory, Westford, Massachusetts, and Goddard Space Flight Center, Greenbelt, Maryland. The "West Coast Group" is based at the Jet Propulsion Laboratory, Pasadena, California. A European group is centred at Bonn, West Germany.

The historical background to the Canadian system is that radio astronomers at the Herzberg Institute of Astrophysics in Ottawa, the Appleton Laboratory in the United Kingdom, and the University of Toronto, have developed instrumentation to study compact extragalactic radio sources. These organisations are concerned mainly with astrophysics. Use of the Canadian observations as a geodetic tool was initiated by the Geodetic Survey of Canada [Jones, 1969], and was continued by a group at York University in Toronto.

The group at York University have developed software to determine parameters of geodetic interest that uses a maximum likelihood adjustment. The maximum likelihood routines were considered very expensive to use on the computer. The central processor unit (C.P.U.) requirement in time and immediate access store space were restrictively high to the extent that from an observation period involving 5,700 observations a sample of only 180 were processed to give results [Langley, 1979]. A more efficient adjustment package would allow the economical use of the full set of
observations, and correspondingly a decrease in the standard error of results, since accuracy of a set of independent observations is proportional to the squareroot of the number of observations.

The aim of this thesis has been to produce an efficient least squares adjustment package. The options have been implemented to accept an input of both weighted parameters, and functional parameter constraints. Statistical analysis used includes a chi-square goodness-of-fit test on the residuals, a rejection procedure for residual outliers, and a chi-square test on the variance factor.

A data set of 180 observations was processed at York University using the established computer package, including the maximum likelihood adjustment. This package, the data set of 180 observations, and the full data set of 5,700 observations were then transferred to the University of New Brunswick. The author reproduced the output computed at York with the maximum likelihood adjustment. A least squares adjustment was then used to produce the same results, but at a more economical level. As a result the immediate access store requirement was reduced by 60%, and C.P.U. time was reduced by 96%. The full data set of observations was then adjusted and standard errors were found to be reduced by a factor of
approximately five. The author's least squares adjustment routines were thus considered ready to be used in any subsequent L.B.I. observation set analysis.

Chapter 2 describes the basic principles of L.B.I., showing the mathematical models used in the adjustment, and summarising the observing process. Chapter 3 shows the derivation of the least squares adjustment equations, and Chapter 4 outlines the statistical tests available in the routines. Chapter 5 comments on some attributes of the author's computer subroutines, especially those which have allowed the reported savings in computer storage space and C.P.U. time. A comparison of results between the maximum likelihood and the least squares adjustment routines, including results from a full observation set, is given in Chapter 6. Chapter 7 concludes with recommendations for future work.

CHAPTER 2

A BRIEF INTRODUCTION TO L.B.I.

This chapter gives a summary of L.B.I. as used for geodesy. Some aspects of the radio sources are discussed. Definitions are given of the observables: delay and fringe frequency. Parameters which are typically resolved such as the baseline components, source directions, and clock polynomial coefficients are outlined. Simplified descriptions are given of the L.B.I. models used in the adjustment process, and also given is a limited description of the L.B.I. observing and processing sequences.
2.1 The Source of the Radio Signal

In L.B.I. observations are made of the signal emitted from compact extragalactic radio sources which, for astrophysical purposes, can be classified into quasars, Seyfert galaxies, and BL Lac type objects. Definitions of these source types are beyond the scope of this thesis. The sources are situated at extragalactic distances allowing an assumption of being at infinity. Angular size and proper motion are negligible to the extent that the sources may be considered as points fixed on the celestial sphere. These sources can thus be useful to define a stable celestial reference frame.

Since the radio signal received is weak directional antennae of dimensions between twenty and forty metres in diameter are commonly used for reception. The signal reaches the earth in the form of plane wave-fronts because of the sources being sited at such large distances. It is these plane wave-fronts which, on being received by pairs of antennae, give the L.B.I. observations.

2.2. Definitions of Observations of Delay and Fringe

Frequency
An L.B.I. baseline, shown in Figure 2.1, is defined as the vector between two antennae which record the plane wave-fronts from a source. Delay is the time taken for a particular wave-front to pass between the two antennae. Because the earth is rotating both antennae will be moving and introducing a Doppler shift to the recorded signal at each station. Fringe frequency is the difference in Doppler shifts of the recorded signal at each station. Delay and fringe frequency are the observations of interest to geodesy and for the respective instant of time express a relationship between the baseline vector and the direction to the source.

2.3 Resolvable Parameters

Parameters which may be deduced from L.B.I. include the three dimensional baseline vectors, and the directions to the sources. The absolute position of the baseline

Figure 2.1. L.B.I. Base1ine Receiving Plane Wave-fronts.
vector cannot be resolved from L.B.I., so baseline results are usually given as differences in three dimensional cartesian coordinates of the respective stations. Source directions are conveniently expressed in the form of right ascension and declination.

A third set of parameters are clock polynomial coefficients. A polynomial is used to model the difference in time as given by the clocks at each station. The incoming signal at each station is recorded on magnetic tape with precise time marks given by a clock. These clocks will have errors, and these errors will not be constant. Absolute error cannot be detected, only the difference between the two clocks affect L.B.I. observations. A polynomial in time is thus used to represent the error difference between the two clocks: an epoch difference gives a zero order polynomial, a rate difference implies a first order polynomial, and a difference in acceleration gives a second order polynomial. The order of the clock polynomial should represent the instability of the clock mechanisms, but the exact modelling is unknown and either an order is assumed, or a search is made with varying orders of polynomial. The polynomial fit which forms a minimum of the sum of the squares of the weighted residuals can be accepted as the best model.

Clock polynomial coefficients are not directly useful to geodesy, but their values do indicate the stabilities
of the clocks, and their correct modelling is important to yield parameters which are directly useful to geodesy. There are other parameters which can be determined by L.B.I. such as the earth's rotation, and polar motion, but these are held fixed in the model routines used by the author.
2.4 The L.B.I. Mode1s

Models are mathematical relationships between sets of parameters and observations. They are used to derive the solution equations for the parameters. In L.B.I. there are two classes of models: a non-linear parametric mode1 relating observations and parameters, and a linear model relating only parameters.

The non-linear parametric class of model can be derived from Figure 2.2, showing a baseline of length $|\ell|$ between stations 1 and 2. The source is essentially at infinity in the direction of unit vector \hat{s}. The angle θ is between the directions to the source and of the baseline vector.

In Figure 2.2 the wave path difference (ct) is the distance travelled by a wave-front between the two L.B.I. stations. This shows the delay observation. The speed of light is c and the value of delay is τ. The formula for the geometric value of delay can be deduced:

Figure 2.2. Two L.B.I. Receivers Observing a Source.

$$
\begin{align*}
& \cos ^{2} \theta=\frac{c \tau}{|\underline{l}|} \tag{2.1}\\
& \tau=\frac{|\underline{\ell}|}{c} \cos \theta \tag{2.2}
\end{align*}
$$

The observed value of delay is measured from the difference in the times, as given by the two clocks, that the wave-front is received at each antenna. The measured delay thus involves a polynomial to model the clock's error difference. The same symbol τ can be used for measured delay.

$$
\begin{equation*}
\left.\tau=\frac{\mid \ell}{c} \right\rvert\, \cos \theta+a_{0}+a_{1} t+a_{2} t^{2}+\ldots \tag{2.3}
\end{equation*}
$$

The argument of the polynomial is time (t), and the coefficients are $a_{i}, i=0,1,2, \ldots$

Fringe frequency has been defined as the difference in Doppler shift of the received signals at the two stations. This is equivalent to the rate of change of cycles of the received signal along the wave path difference. The number of cycles of the received frequency along the wave path difference equals frequency multipled by delay:

$$
\begin{equation*}
\text { cycles }=f \tau \tag{2.4}
\end{equation*}
$$

Measured fringe frequency (F) equals the rate of change of the number of these cycles.

$$
\begin{equation*}
F=f \frac{\partial \tau}{\partial t} \tag{2.5}
\end{equation*}
$$

Differentiating equation (2.3) with respect to time

$$
\begin{equation*}
F=-\frac{f}{c}|\underline{\ell}| \sin \theta \frac{d \theta}{d t}+f\left(a_{1}+2 a_{2} t+\ldots\right) \tag{2.6}
\end{equation*}
$$

The clock polynomial coefficients of the fringe frequency observation equation (2.6) are in theory functions of their respective coefficients in the delay observation equation (2.3). This could be implied as a constraint into the adjustment or could be allowed to vary, but subsequently checked to validify the adjustment.

When three stations simultaneously observe a single source further constraints may be imposed on the adjustment. The differences in clock errors around the three baselines sum to zero. This is implied by the summation around the three baselines of each respective order of polynomial coefficient to zero [Langley, 1979].

$$
\begin{equation*}
\sum_{j=1}^{3} a_{i}^{j}=0 \tag{2.7}
\end{equation*}
$$

The number of the baseline is j, and i the order of the polynomial.

Previous estimates of parameters can be introduced into the adjustment as parameter constraints. A source
position, for example, can be set equal to a pre-determined value with a weight representing the amount of confidence in the value. This is essentially an observation of a parameter.

There are two models in the L.B.I. adjustment. The first describes the expressions for the measured observations of delay and fringe frequency. The second describes the constraints which may be imposed on the parameters. A relationship between parameters which is known to be true is termed a functional parameter constraint, while an estimation of a parameter with a weight is termed a weighted parameter constraint [Mikhail, 1970]. In the author's adjustment the functional parameter constraints are not rigorously applied, but are included as observations of parameter relationships with high weights. This is further discussed in Chapter 5.

Equations (2.3) and (2.6) are simplifications of the equations used in the York L.B.I. software [Langley 1979; Cannon 1978]. The reduction phase of the process involves a tropospheric correction. The York software model includes the effects of the retarded baseline, precession, nutation, polar motion, solid earth tides and the variation of UTI-UTC.

The constraints on the clock polynomials are only correct with perfect instrumentation and a simplified
earth model. The delay clock polynomials are due to a combination of the atomic frequency standard and the clock, while the fringe frequency "clock" polynomials are due to a combination of the atomic frequency standard and the oscillator. The sum to zero around a threebaseline array is not always implied because of the effect of the retarded baseline.
2.5 The L.B.I. Observing and Correlation Process

An L.B.I. observation period may last for several days with perhaps an observation every minute. There is thus a large number of observations and computer control and magnetic tape storage is required to process the data. Two antennae simultaneously record the signal from the same source. The received signal band at each antenna is translated to a lower frequency band to allow recording on magnetic tape together with accurate timing records.

Figure 2.3. The L.B.I. Process.

At a later date two tapes for each baseline are played back at the correlator facility. Using the recorded time signals one tape is delayed with respect to the other until obtaining a maximum correspondence between the two signals. The observations of delay and fringe frequency for an instant of observation time are abstracted and recorded on magnetic tape. The final processing stage is an adjustment using the delay and fringe frequency observations to resolve the parameters of baseline vector, source direction, and clock polynomial coefficients.

CHAPTER 3

LEAST SQUARES ADJUSTMENT

In this chapter the least squares solution is derived from the two classes of L.B.I. models. The least squares solution gives estimates for the parameters which minimise the summation of the squares of the weighted residuals [Mikhail, 1976]. The true parameters cannot be deduced, but least squares gives a best estimate of parameters. The derivation uses the Lagrange method. The covariance matrix of the results is deduced, and the expression is given for the variance factor.

Symbols used in this chapter are underlined capital letters (e.g. A) for a matrix, and underlined lower case letters for a vector (e.g. $\underline{x}^{0}, \underline{\delta}$).

3.1 Derivation of the Least Squares Equations

3.1.1 Input for the adjustment

A major input into the adjustment is the vector of observations pertaining to the first model of Chapter 2 $(2,3),(2.6)$, and its covariance matrix $\left(\underline{C}_{\ell}\right)$. The second model outlined in Chapter 2 involves the constraint observation vector $\left(\underline{\ell}_{x}\right)$ and its covariance matrix ($\left.\underline{C}_{x}\right)$.

The two mathematical models for L. B.I. relate the parameters and the observations.

$$
\begin{align*}
& \underline{F}_{1}(\underline{x}, \underline{\ell})=\underline{0} \tag{3.1}\\
& \underline{F}_{2}\left(\underline{x}, \underline{l}_{x}\right)=\underline{0} \tag{3.2}
\end{align*}
$$

The observations will have errors, so the true observations $\left(\underline{\hat{l}}, \hat{\underline{l}}_{x}\right)$ are given as the observation plus the residual.

$$
\begin{align*}
\underline{\ell} & =\underline{\imath}+\underline{v} \tag{3.3}\\
\hat{\ell}_{-x} & =\ell_{x}+\underline{v}_{x} \tag{3.4}
\end{align*}
$$

The à priori parameter vector (\underline{x}°) is the initial guess of the parameters. Added to the parameter increments ($(\underline{)}$ gives the correct parameters.

$$
\begin{equation*}
\underline{x}=\underline{x}^{0}+\underline{\delta} \tag{3.5}
\end{equation*}
$$

The adjustment will give an estimation of the parameter increment vector.

3.1.2 A Taylor's expansion of the models

The models are currently in a form expressing the true parameters and true observations. The à priori parameters and observations, and the parameter increments and residuals, can be involved using a Taylor's expansion,
but neglecting second order terms.

$$
\begin{align*}
\underline{F}_{1}(\underline{x}, \underline{\ell})=\underline{F}_{1}\left(\underline{x}^{0}, \underline{\ell}\right) & +\left.\frac{\partial \underline{F}_{1}\left(\underline{x}^{0}, \underline{\ell}\right)}{\partial \underline{x}^{0}}\right|_{\underline{x}^{0}, \underline{l}} \underline{\delta} \\
& +\left.\frac{\partial \underline{F}_{1}\left(\underline{x}^{0}, \underline{\ell}\right)}{\partial \underline{\ell}}\right|_{\underline{x}^{0}, \ell} \cdot \underline{v} \tag{3.6}
\end{align*}
$$

The misclosure vector is

$$
\begin{equation*}
\underline{w}_{1}=F_{1}\left(\underline{x}^{o}, \underline{\ell}\right) \tag{3.7}
\end{equation*}
$$

The first design matrix, sometimes termed the A matrix is

$$
\begin{equation*}
\underline{A}_{1}=\frac{\partial \underline{F}_{1}\left(x^{0}, \underline{l}\right)}{\partial \underline{x}^{0}} \tag{3.8}
\end{equation*}
$$

The second design matrix, or B matrix is

$$
\begin{equation*}
\underline{B}_{1}=\frac{\partial \underline{F}_{1}\left(\underline{x}^{0}, \underline{\ell}\right)}{\partial \underline{\ell}} . \tag{3.9}
\end{equation*}
$$

The model can thus be expressed:

$$
\begin{equation*}
\underline{w}_{1}+\underline{A}_{1} \underline{\delta}+\underline{B}_{1} \underline{v}=\underline{0} . \tag{3.10}
\end{equation*}
$$

A similar expression can be derived for the second model.

$$
\begin{equation*}
\underline{w}_{2}+\underline{A}_{2} \underline{\delta}+\underline{B}_{2} \underline{\mathrm{v}}_{2}=\underline{0} . \tag{3.11}
\end{equation*}
$$

Neglecting the second order terms in the Taylor's expansion can falsify the derived equations. If the model is linear, then the second and higher order terms will be zero. With a non-1inear model, but with à priori parameters selected as close to the true parameters, then the second and higher order terms will approach zero. In general one would continue iterations of the adjustment using updated parameter values until the iterations cease to significantly change the results.
3.1.3 The least squares solution by the Lagrange method

The sum of the weighted squares of the residuals can be expressed in matrix form for the two models:

$$
\begin{align*}
& \underline{v}^{\mathrm{t}} \underline{\mathrm{P}}_{\ell} \underline{\mathrm{v}} \tag{3,12}\\
& \underline{v}_{\mathrm{x}}^{\mathrm{t}} \underline{\mathrm{P}}_{\mathrm{x}} \quad \underline{\mathrm{v}}_{\mathrm{x}} \tag{3.13}
\end{align*}
$$

where \underline{P}_{ℓ} and \underline{P}_{x} are the weights of the respective observations.

The variation function is formed:

$$
\begin{align*}
\phi=\underline{v}^{t} \underline{p}_{\ell} \underline{v} & +\underline{v}_{x}^{t} \underline{p}_{x} \underline{v}_{x} \\
& +2 \underline{k}_{1}^{t}\left(\underline{A}_{1} \underline{\delta}+\underline{B}_{1} \underline{v}+\underline{w}_{1}\right) \\
& +2 \underline{k}_{2}^{t}\left(\underline{A}_{2} \underline{\delta}+\underline{B}_{2} \underline{v}_{x}+\underline{w}_{2}\right) \tag{3.14}
\end{align*}
$$

k_{1} and k_{2} are column vectors of Lagrange correlates which will be determined. The extremal value of the variation function is found by differentiating with respect to the unknown ($\underline{v}, \underline{v}_{x}, \underline{\delta}, \underline{\mathrm{k}}_{1}$ and $\underline{\mathrm{k}}_{2}$) and equating each derivative to a zero vector.

$$
\begin{gather*}
\frac{\partial \phi}{\partial \underline{v}}=2 \underline{v}^{t} \underline{p}_{\ell}+2 \underline{k}_{1}^{t} \underline{B}_{1}=\underline{0} \\
\cdot \underline{p}_{\ell} \underline{v}+\underline{B}_{1}^{t} \underline{k}_{1}=\underline{0} \tag{3.15}\\
\frac{\partial \phi}{\partial \underline{v}_{x}}=2 \underline{v}_{x}^{t} \underline{p}_{x}+2 \underline{k}_{2}^{t} \underline{B}_{2}=\underline{0} \\
\cdot \underline{p}_{x} \underline{v}_{x}+\underline{B}_{2}^{t} \underline{k}_{2}=\underline{0} \tag{3.16}\\
\frac{\partial \phi}{\partial \underline{\delta}}=2 \underline{k}_{1}^{t} \underline{A}_{1}+2 \underline{k}_{2}^{t} \underline{A}_{2}=\underline{0} \\
\cdot \underline{A}_{1}^{t} \underline{k}_{1}+\underline{A}_{2}^{t} \underline{k}_{2}=\underline{0} \tag{3.17}\\
\frac{\partial \phi}{\partial \underline{k}_{1}}=\underline{A}_{1} \underline{\delta}+\underline{B}_{1} \underline{v}^{2}+\underline{w}_{1}=\underline{0} \tag{3.18}\\
\frac{\partial \phi}{\partial \underline{k}}=\underline{A}_{2} \underline{\delta}+\underline{B}_{2} \underline{v} \underline{x}_{x}+\underline{w}_{2}=\underline{0} \tag{3.19}
\end{gather*}
$$

Simultaneous solution to equations (3.15) through (3.19) is the least squares solution. The result gives the minimum of the sum of the squares of the weighted residuals since the second derivatives of (3.15) and (3.16) are positive through the definition of the weight matrices \underline{P}_{ℓ} and \underline{P}_{x} being positive definite.

A hypermatrix expression is formed for the simultaneous equations to be solved:

The method of partitioning of matrices is used where, given

$$
\left[\begin{array}{ll}
\underline{D}^{t} & \underline{E} \tag{3.21}\\
\underline{E}^{t} & \underline{F}
\end{array}\right]\left[\begin{array}{l}
\underline{x}_{1} \\
\underline{x}_{2}
\end{array}\right]+\left[\begin{array}{l}
\underline{d}_{1} \\
\underline{d}_{2}
\end{array}\right]=\underline{0}
$$

then

$$
\begin{equation*}
\underline{x}_{1}=-\underline{D}^{-1}\left(\underline{E}_{\underline{x}_{2}}+\underline{d}_{1}\right) \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\underline{F}-\underline{E}^{\mathrm{t}} \underline{D}^{-1} \underline{E}\right) \underline{x}_{2}-\underline{E}^{\mathrm{t}} \underline{D}^{-1} \underline{\mathrm{~d}}_{1}+\underline{\mathrm{d}}_{2}=\underline{0} \tag{3.23}
\end{equation*}
$$

where matrix \underline{D} is not singular. Equation (3.20) is solved:

$$
\begin{gather*}
{\left[\begin{array}{l}
\underline{\hat{v}} \\
\hat{\hat{v}}_{x}
\end{array}\right]=-\left[\begin{array}{ll}
\underline{p}_{\ell} & \underline{o}^{-1} \\
\underline{o}^{-1} & \underline{p}_{x}
\end{array}\right]^{-1}\left[\begin{array}{ll}
\underline{B}_{1}^{t} & \underline{k}_{1} \\
\underline{B}_{2}^{t} & \underline{k}_{2}
\end{array}\right]} \tag{3,24}\\
\therefore \hat{v}^{=}-\underline{p}_{2}^{-1} \underline{B}_{1}^{t} \underline{k}_{1} \tag{3.25}\\
\hat{v}_{x}=--_{x}^{-1} \underline{B}_{2}^{t} \underline{k}_{2} \tag{3,26}
\end{gather*}
$$

Further partitioning will result in expressions for all the variable parameters.

$$
\begin{equation*}
\underline{\hat{k}}_{1}=\underline{M}_{1}^{-1}\left(\underline{A}_{1} \hat{\hat{\delta}}+\underline{w}_{-1}\right) \tag{3.27}
\end{equation*}
$$

where

$$
\begin{gather*}
\underline{\mathrm{M}}_{1}=\underline{B}_{1} \underline{\mathrm{P}}_{\ell}^{-1} \underline{B}_{1}^{\mathrm{t}} \tag{3.28}\\
\underline{\hat{\mathrm{k}}}_{2}=\underline{\mathrm{M}}_{2}^{-1}\left(\underline{\mathrm{~A}}_{2} \underline{\hat{\delta}}+\underline{\mathrm{w}}_{2}\right) \tag{3.29}
\end{gather*}
$$

where

$$
\begin{equation*}
\underline{M}_{2}=\underline{B}_{2} \underline{\mathrm{P}}_{\mathrm{x}}^{-1} \underline{\mathrm{~B}}_{2}^{\mathrm{t}} \tag{3.30}
\end{equation*}
$$

$$
\begin{equation*}
\underline{\hat{\delta}}=-\left(\underline{A}_{1}^{t} \underline{M}_{1}^{-1} \underline{A}_{1}+\underline{A}_{2}^{t} \underline{M}_{2}^{-1} \underline{A}_{2}\right)^{-1}\left(\underline{A}_{1}^{t} \underline{M}_{1}^{-1} \underline{w}_{1}+\underline{A}_{2}^{t} \underline{M}_{2}^{-1} \underline{w}_{2}\right) \tag{3.31}
\end{equation*}
$$

The 'hat' symbol above the solution vectors signifies that these are only the best estimates as given by the least squares solution. Another defined solution might give
different results, and neither may be the true results. The normal equation matrix $\left(\underline{A}_{1}^{t} \underline{M}_{1}^{-1} \underline{A}_{1}+\underline{A}_{2}^{t} \underline{M}_{2}^{-1} \underline{A}_{2}\right)$ is seen to be the summation of normal equations due to the two respective models. The vector of constant terms $\left(\underline{A}_{1}^{\mathrm{t}} \underline{M}_{1}^{-1} \underline{W}_{1}+\underline{A}_{2}^{\mathrm{t}} \underline{M}_{2}^{-1} \underline{W}_{2}\right)$ is similarly the summation of the vectors due to the two models.
3.1.4 Solution simplification of a parametric model

Equation (3.31) is used in the author's adjustment routines, but with some simplification. Both \underline{B}_{1} and \underline{B}_{2} are negative unit matrices from their definitions of being the derivatives of the model with respect to the observations. The definition of a parametric model is that $\underline{B}=\underline{I}$ or $\underline{B}=-\underline{I}$.

$$
\begin{align*}
& \underline{B}_{1}=-\underline{I} \tag{3.32}\\
& \underline{B}_{2}=-\underline{I} \tag{3.33}
\end{align*}
$$

If the constraints are not used, or not all of the parameters are involved in the constraints, then there are some modifications to the contributions due to the second model. Without constraints, these contributions reduce to zero. When only certain parameters are involved then only additions corresponding to those parameters are added to the normal equation matrix and vector of constant
terms. Considering the addition of the second model in (3.31) and using $\underline{B}_{2}=-I$ and ${\underset{X}{X}}_{-1}=\underline{P}_{X}$, the additions become

$$
\underline{A}_{2}^{\mathrm{t}} \underline{-1}_{-x} \underline{-A}_{2}
$$

and

$$
\mathrm{A}_{-2}^{\mathrm{t}} \underline{\mathrm{P}}_{\mathrm{x}} \underline{\mathrm{w}}_{2}
$$

The problem of zero diagonal elements of \underline{P}_{x} is not encountered: terms are added to the normal matrix and the vector of constant terms as defined by the parameters used in the constraints.
3.1.5 The residuals

The equation for the residuals from the first model, from equations (3.25), (3.27) and (3.32) is

$$
\begin{equation*}
\underline{\hat{v}}=\underline{A}_{1} \underline{\hat{\delta}}+\underline{w}_{1} \tag{3.34}
\end{equation*}
$$

The residuals from the second model are derived from the computed value of the model misclosure:

$$
\begin{equation*}
\underline{\underline{v}}_{x}=\underline{F}_{2}\left(\underline{\hat{x}}_{x}, \underline{-}_{x}\right) \tag{3,35}
\end{equation*}
$$

3.2 Covariance Matrix of Parameters

The covariance matrix of the estimated parameters ($\underline{C}_{\hat{\delta}}$)
is deduced from the covariance matrix of the observations using the covariance law. The covariance law in matrix
form is given by

$$
\begin{equation*}
\underline{C}_{\hat{\delta}}=\underline{J}_{\ell} \underline{C}_{\ell} \underline{J}^{\mathrm{t}} \tag{3,36}
\end{equation*}
$$

where J is the Jacobian of transformation between the observations and the parameters.

$$
\begin{align*}
& \underline{\hat{\delta}}=\underline{F}(\underline{\ell}) \tag{3,37}\\
& \underline{J}=\frac{\partial \underline{F}(\underline{\ell})}{\partial \underline{l}} \tag{3.38}
\end{align*}
$$

It is convenient to use equation (3.31) which has the vectors of constant terms, \underline{W}_{1} and ${\underset{-}{2}}_{2}$, as the variables to be transformed. From equations (3.7) and (3.9)

$$
\begin{align*}
\underline{w}_{1} & =\underline{F}_{1}\left(\underline{x}^{o}, \underline{l}\right) \\
\underline{C}_{W_{1}} & =\frac{\partial \underline{w}_{1}}{\partial \underline{l}} \underline{C}_{l} \frac{\partial \underline{w}_{2}^{t}}{\partial l} \tag{3.39}\\
\therefore \underline{C}_{w_{1}} & =\underline{B}_{1} \underline{C}_{l} \underline{B}_{1}^{t}=\underline{M}_{1} \tag{3.40}\\
\underline{w}_{2} & =\underline{F}_{2}\left(\underline{x}^{o}, \underline{l}_{x}\right) \\
\underline{C}_{w_{2}} & =\frac{\partial \underline{w}_{2}}{\partial \underline{l}_{x}} \underline{C}_{x} \frac{\partial \underline{w}_{2}^{t}}{\partial \underline{l}_{x}} \tag{3.41}
\end{align*}
$$

$$
\begin{equation*}
\therefore \underline{C}_{W_{2}}=\underline{B}_{2} \underline{C}_{x} \quad \underline{B}_{2}^{t}=\underline{M}_{2} \tag{3.42}
\end{equation*}
$$

The covariance matrix of the parameters can be derived using equation (3.31) and the covariance matrices of the misclosure vectors (3.40) and (3.42).

$$
\begin{equation*}
\underline{C}_{\hat{\delta}}=\frac{\partial \delta}{\partial \underline{W}_{1}} \underline{M}_{1} \frac{\partial \delta^{t}}{\partial \underline{w}_{1}}+\frac{\partial \delta}{\partial \underline{W}_{2}} \underline{M}_{2} \frac{\partial \delta}{\partial \underline{w}_{2}} \tag{3.43}
\end{equation*}
$$

This assumes zero correlation between the two misclosure vectors. Matrix manipulation can be shown to give

$$
\begin{equation*}
\underline{C}_{\hat{\delta}}=\left(\underline{A}_{1}^{t} \underline{M}_{1}^{-1} \underline{A}_{1}+\underline{A}_{2}^{t} \underline{M}_{2}^{-1} \underline{A}_{2}\right)^{-1} \tag{3.44}
\end{equation*}
$$

Noting that a covariance matrix is the inverse of the corresponding weight matrix, equation (3.44) is the inverse of the normal equation matrix, as given in equation (3.31).

3.3 The Variance Factor

The standard error of observations (\underline{C}_{ℓ}) may not be known, but for a solution relative errors of observations $\left(\underline{P}_{\ell}^{-1}\right)$ must be known for substitution into equation (3.31). Then the covariance matrix is known only to a scale factor.

$$
\begin{equation*}
\underline{C}_{\ell}=\sigma_{0}^{2} \underline{P}_{\ell}^{-1} \tag{3.45}
\end{equation*}
$$

This scale factor is termed the variance factor, and gives the standard error of an observation of unit weight as given by the weight matrix $\underline{\mathrm{P}}_{\mathrm{l}}$ 。 The variance factor does not affect the estimation of the results for the parameters or the residuals, but it does scale the covariance matrices of the results.

It can be shown that the estimate of the variance factor equals [Mikhail, 1976]

$$
\begin{equation*}
\hat{\sigma}_{0}^{2}=\frac{\hat{\underline{v}} \underline{P}_{\ell} \frac{\hat{v}}{\text { degrees of }}+\frac{\hat{v}_{x}}{} \underline{P}_{x} \hat{\underline{v}}_{x}}{\text { freedom }} \tag{3.46}
\end{equation*}
$$

The standard errors are known with observation sets used by the author [Langley, 1979], and present use of the variance factor, which is discussed further in Chapter 4 has been to check the validity of these standard errors and of the L.B.I. models.

CHAPTER 4

STATISTICAL ASSESSMENT OF RESULTS

Methods of statistical analysis of results used with the least squares routines are described in this chapter. The tests are based on the works of Hamilton [1964], Mikhail [1976], and Vanicek and Krakiwsky [1980], and are based on the confidence interval method. In general an hypothesis is made about a population and from a sample of this population a statistic is calculated which is tested at a particular confidence level. The confidence level is defined as $(1-\alpha)$, where α is the significance level. The significance level is the probability of a type I error: the rejection of a true hypothesis.

The significance level can be varied, being an input value for a program run. The tests carried out by the program and described here are a test for normality of the residuals, a test on the variance factor, and a detection of outliers. The standard error of che unweighted delay and fringe frequency residuals, and the covariance between them are also evaluated by the program.

4.1 Test for Normality of the Residuals

The test for normality of the residuals is carried out because subsequent tests rely on the residuals being
normally distributed. Different residuals will in general have different standard errors, and cannot be described as from the same normal distribution. Standardization will imply that all residuals have the same distribution and is achieved by division by the respective residual's standard error. The standardized residual is defined by

$$
\begin{equation*}
\tilde{v}_{i}=\frac{v_{i}}{\sigma_{i}} \tag{4.1}
\end{equation*}
$$

where $\tilde{v}_{\mathrm{i}} \xrightarrow{\mathrm{d}} \mathrm{n}(0,1)$.
The standardized residuals are grouped into classes according to value. From the standardized normal probability distribution function (p.d.f.) can be estimated the number which should be in that class. The summation of the squares of the difference between these values, divided by the estimated value is defined as the chisquare statistic [Hamilton, 1964].

$$
\begin{equation*}
x^{2}=\sum_{i=1}^{n} \frac{\left(a_{i}-e_{i}\right)^{2}}{e_{i}} \tag{4.2}
\end{equation*}
$$

The observed number in the class is a_{i}, e_{i} is the expected number from the p.d.f., and n is the number of classes. The chi-square statistic is obtained at the α significance level with $(n-1)$ or ($n-2$) degrees of freedom. The degree of freedom is ($n-1$) if the computation results (\underline{x}) were
computed from the set of observations. A second degree of freedom is lost, giving ($n-2$) if the standard errors of observations are unknown. In this second case the variance factor has been estimated from the set of observations and used to scale the weight matrix (section 3.3). Hamilton [1964] writes that e_{i} should be at least five. The subroutines group the class intervals at the limits of the normal curve together until e_{i} is greater than five.

As a visual aid for checking the normality of the residuals the histogramsof the standardized residuals of both delay and fringe frequency are printed, overlaid with the standardized normal p.d.f. (Figure 4.1).

Vanicek and Krakiwsky [1980] write that the distribution of the residuals will depend on what components of that curve are estimated from the observations. If the results (\underline{x}) are estimated then the residuals have a t-distribution, while if also the variance factor $\left(\hat{\sigma}_{0}^{2}\right)$ is estimated then the residuals have a tau (τ) distribution. For large numbers of observations both these distributions approach a normal distribution. The author's routines thus compute the estimated numbers in each class from a normal p.d.f. This is considered acceptable because L.B.I. observation sets are usually in large numbers. The actual computation of the estimated standard error of a residual is computationally expensive, but Pope [1976] concludes

that for large numbers of observations it can be approximated by the standard error of the observation.

4.2 Chi-square Test on the Variance Factor

A check is made on the variance factor $\left(\hat{\sigma}_{0}^{2}\right.$, section 3.3), or as it is also termed, the quadratic form of the residuals. When the observation standard errors are considered known, then the à posteriori variance factor should equal one. Discussed as from the least squares equations in section 3.3, the variance factor can also be deduced from the definition of the chi-square statistic. Hamilton [1964] writes that the sum of the squares of random variables each having a standardized normal distribution has a chi-square distribution.

$$
\begin{equation*}
x_{d f}^{2}=\sum_{i=1}^{n} v_{i}^{2} p_{i}=\sum_{i=1}^{n}\left(\frac{v_{i}}{\sigma_{i}}\right)^{2} \tag{4.3}
\end{equation*}
$$

since $\frac{v_{i}}{\sigma_{i}} \xrightarrow{d} n(0,1)$.
The $i^{\text {th }}$ residual is v_{i} and its weight is P_{i}. The number of observations is n. Observations include those of constraints. The degrees of freedom (df) equal the total number of observations from both models, minus the number of estimated parameters. The expected value of this statistic is the degrees of freedom. Failure of this test
implies that the residuals do not have a normal distribution and can suggest that either the à priori standard errors of observations are incorrect, or that the L.B.I. models have errors.

At the $(1-\alpha)$ confidence level the à posteriori variance factor $\left(\hat{\sigma}_{0}^{2}\right)$ is compared with the à priori variance factor (σ_{0}^{2}) by the bounds given by Vanicek and Krakiwsky [1980]:

$$
\begin{equation*}
\frac{\mathrm{df} \hat{\sigma}_{o}^{2}}{\bar{\xi}_{\mathrm{Xf}, 1-\frac{\alpha}{2}}^{2}}<\sigma_{o}^{2}<\frac{\mathrm{df} \hat{\sigma}_{o}^{2}}{{ }^{\xi^{2}}{ }_{\mathrm{df}, \frac{\alpha}{2}}} \tag{4.4}
\end{equation*}
$$

$\xi^{\chi^{2}}$ is the abscissa value of the χ^{2} statistic corresponding to the degrees of freedom, and the respective probability.
4.3 Detection of Residual Outliers

A detection of residual outliers is carried out by the author's routines. The residuals are hypothesised to have a normal distribution and a residual not complying with a normal distribution can be rejected. The normal p.d.f. (Figure 4.2) shows that the probability of a residual plotting within the limits given by the critical values $(+c,-c)$ is $(1-\alpha)$. The probability is α of the residual lying outside this confidence region. Rejection of an observation whose residual plots outside the confidence region would only have an α probability of loosing

Figure 4.2. A Normal Probability Distribution Function (p.d.f.)
a good observation. At this expense, all gross errors should be eliminated.

In the test each residual is standardized by dividing by the standard error of the observation and compared with the critical value abstracted from a standardized normal p.d.f. at the α significance level. All residuals are plotted as a function of time of observation, and residuals that may be rejected are shown with an asterisk (Figure 4.3).

Outlying residuals may be specified within the context of the other residuals (max-test) or out of context [Krakiwsky, 1978; Vanicek and Krakiwsky, 1980]. The difference is outlined as the probability of one residual being within certain limits, compared with the probability of a large number of residuals being within the same limits. If the probability of one observation being within certain limits is the confidence level (1- α), then the simultaneous probability of n such occurrences equals

$$
\begin{equation*}
(1-\alpha)^{n} \simeq 1-n \alpha \tag{4.5}
\end{equation*}
$$

In the routines, if the probability of all n observations being within the confidence interval is required to be defined under the significance level then each residual is tested individually at a lower significance

FIGURE 4.3. Residual Plot.
level $\left(\frac{\alpha}{n}\right)$.
4.4 Standard Error, and Covariance Between, Unweighted Fringe Frequency and Delay Residuals
The standard errors of the unweighted delay and fringe frequency residuals are evaluated using the formula

$$
\begin{equation*}
\hat{\sigma}_{i}=\sqrt{\frac{\sum v_{i j}^{2}}{d f_{i}}} \tag{4.6}
\end{equation*}
$$

where $j=1,2, \ldots, n$
$n=$ number of the $i^{\text {th }}$ type of observation
$i=1,2$ (delay and fringe frequency observations)
$d f_{i}=$ degree of freedom of the $i^{\text {th }}$ type of observation.
The correlation between the two types of observation residual obtained for the same instant of time is calculated:

$$
\begin{equation*}
\hat{\sigma}_{i j}^{2}=\frac{\sum^{\sum v_{i 1}}{ }^{v} j 1}{k} \tag{4.7}
\end{equation*}
$$

where i, $j=$ delay, fringe frequency
$k=$ number of time points with delay and fringe frequency observations $1=1,2, \ldots, k$.

These statistics were evaluated in the maximum likelihood adjustment. The standard error of the residuals can be compared with the a priori standard errors, and the covariance should approach zero.

CHAPTER 5

PROGRAMMING APPLICATIONS

The aim of this chapter is to assist in an understanding of the author's routines so that future users may be able to adapt and improve the present adjustment. This is achieved by outlining some specific computing methods used by the author. Most are applied to increase efficiency of the routines: compressing the A matrix, storing the A matrix on a sequential file, the iteration requirements, the use of station coordinates as parameters, and the method of imposing parameter constraints. An efficient method of detecting singularities in the normal equation matrix is also described.
5.1 Compressing the First Design (A) Matrix

There are many zeros in the A matrix because the partial derivatives of the model with respect to some of the parameters will be zero. This means that full storage of the A matrix, and numerical manipulations on that matrix will be wasteful on two accounts: much of the computer space will be storing zero, and there will. be manipulations and additions involving zero. In the present form of the routines the maximum number of nonzero elements in one row of the A matrix is thirteen,
while the number of columns in the A matrix is typically greater than thirty. This assumes a fourth order clock polynomial, six parameters corresponding to the two station positions, and two source parameters. Storing only non-zero elements in each row of the A matrix, as done in the least squares routines, is thus given the phase "compressing the A matrix".

An integer value for each observation gives the number of non-zero elements in the row of A pertaining to the observation (Figure 5.1). An integer vector contains a number for each non-zero element corresponding to the correct position in the row if the zero elements had been stored. Additions and multiplications can then be carried out efficiently manipulating with only non-zero elements. The true array position of the results are indicated by the integer vector of element positions.

5.2 Storing the A matrix

For a large number of observations, a few thousand of which is possible after only a few days of observations, the storage of even the compressed A matrix would be prohibitively expensive. Thus the A matrix is not stored in immediate access computer store. At first, in the author's routines each time that a row of the A matrix was required the row was again computed. This was found to be expensive in time, as the routines used to evaluate

```
\(i^{\text {th }}\) observation, row of \(A\) matrix
\(\left[a_{i 1}, a_{i 2}, a_{i 3}, 0, \ldots 0, a_{i 7}, a_{i 8}, a_{i 9}, 0\right.\),
    \(\left.0, \ldots 0, a_{i 17}, a_{i 18}, 0, \ldots 0, a_{i 29}, a_{i 30}, 0,0\right]\)
```

Compressed row of A matrix
integer integer vector
$10 \quad[1,2,3,7,8,9,17,18,29,30]$

Compressed row
$\left[a_{i 1}, a_{i 2}, a_{i 3}, a_{i 7}, a_{i 8}, a_{i 9}, a_{i 17}, a_{i 18}, a_{i 29}, a_{i 30}\right]$

FIGURE 5.1. The Compressed A Matrix.
the partial derivatives and computed observations consume large amounts of time.

The final procedure adopted was to store the partial derivatives in the compressed form with the integer vector of positions, the computed observations, and other necessary logistic information on a sequential disc file. An iteration, of course, requires complete re-evaluation of the A matrix, but comments on this are given in section 5.3. The residuals however, are computed very efficiently using the formula (3.34):

$$
\hat{\underline{v}}=A_{1} \underline{\hat{\delta}}+\underline{w}_{1}
$$

5.3 Iteration Requirement for a Solution

The first mathematical model (equations $2.3,2.6$) is nonlinear, and iterations of the computation with updated parameter values should be required until the absolute values of the increments approach zero. The author found, however, that a second iteration was never required. (For the definition of the $i^{\text {th }}$ iteration it is considered that the first approximation (\underline{x}^{0}) on being updated by the first set of increments consistutes the first iteration.) The sensitivity of the model to à priori station coordinates and clock polynomial coefficients is low. The source positions are usually well known so often
one iteration will suffice.to give good results.
It is thus suggested that C.P.U. time can be economically decreased by using only one iteration. The ability for any defined number of iterations, or until the increments approach zero, is available in the author's routines.

5.4 Station Positions Used as Parameters Instead of Baseline Components

The maximum likelihood routines use the baseline components as parameters in the adjustment. The least squares adjustment uses the station coordinates, with one station fixed in space. This reduces the number of parameters, allowing savings in computer space and time, since for any number of baselines there is always an equal or lower number of adjustable stations. For exampie, with five stations, one is fixed giving four adjustable station sets of parameters. Using baselines, five stations would imply ten baseline sets of parameters. A set in each case would be the three-dimensional (X, Y, Z) coordinates.

The results are the same from either parameter definition used in the adjustment. L.B.I. can only detect coordinate differences, which are in effect the baseline components, so the least squares routines print out the differences in station coordinates for all
combinations of baselines.
The covariance matrices of all baselines are evaluated applying the covariance law to the parameter covariance matrix ($\underline{C}_{\hat{\delta}}$, equation 3.44).

The parameter covariance matrix can be considered as composed of sub-matrices corresponding to parameter types, and their covariance sub-matrices.

$$
\underline{C}_{\hat{\delta}}=\left[\begin{array}{lll}
\underline{C}_{s} & \underline{C}_{s, q} & \underline{C}_{s, c} \tag{5.1}\\
\underline{C}_{q}, s & \underline{C}_{q} & \underline{C}_{q, c} \\
\underline{C}_{-}, s & \underline{C}_{c}, q & \underline{C}_{c}
\end{array}\right]
$$

The parameter subsets:
s ... station coordinates
q ... source directions
c ... clock polynomial coefficients.
Baseline components can be deduced as a function of the station coordinates.

$$
\begin{equation*}
\underline{b}=\underline{F}(\underline{s}) \tag{5.2}
\end{equation*}
$$

where b ... vector of baseline components
s... vector of station coordinates.

The covariance law (equation (3.36) is applied as in section 3.2 to give the covariance matrix of the baseline components.
5.5 Weighted Parameters and Functional Parameter Constraints In section 2.4 are derived the two classes of constraint which may be imp1ied in an L.B.I. adjustment: functional parameter constraints, and weighted parameter constraints. Mikhail [1976] gives the standard method of rigorously imposing the former class, using the notation of Chapter 3:

$$
\begin{equation*}
\underline{\hat{\delta}}=\underline{\delta}^{1}-\underline{N}_{1}^{-1}\left[\underline{A}_{2}^{t}\left(\underline{A}_{2} \underline{N}_{1}^{-1} \underline{A}_{2}\right)^{-1}\left(\underline{W}_{2}+\underline{A}_{2} \underline{\delta}^{1}\right)\right] \tag{5,3}
\end{equation*}
$$

where $\underline{N}_{1}=\underline{A}_{1}^{t} \underline{P}_{\ell} \underline{A}_{1}$

$$
\underline{\delta}^{1}=-\underline{N}_{1}^{-1} \quad A_{1}^{t} \underline{M}_{1} \underline{W}_{1} .
$$

The standard method of imposing weighted parameter constraints is to use an observation:

$$
\begin{equation*}
\underline{x}=\underline{l} x \tag{5.4}
\end{equation*}
$$

A weight reflects the amount of confidence in these parameter observations.

The least squares routines impose the functional parameter constraints in a method similar to the weighted parameters, but with a high weight reflecting the fact that these constraints are known to be true. The observation is of the form

$$
\begin{equation*}
\underline{F}(\underline{x})=\underline{l}_{x} \tag{5.5}
\end{equation*}
$$

since these constraints involve more than one parameter. Both classes of constraint can thus be included in the second model (equation 3.2) in the least squares adjustinent.

The main reason for applying the constraints in the above manner is computer economy. Equation 5.3 is relatively uneconomic in the adjustment. Another reason is that the normal equation matrix (\underline{N}_{1} in equation 5.3) is inverted without the constraints. It is possible that the normal equation matrix is ill-conditioned without imposing the functional parameter constraints. When observing to a single source for a long period the clock polynomial coefficients become highly correlated with the other parameters. This is a consequence of the information content of the observables [Shapiro, 1978]. The functional parameter constraints may reduce these correlations.
5.6 The "Googe Number" as an Indicator of Singularity

The normal equation matrix used in L.B.I. can be ill-conditioned. The various parameters have different scales, in that unit changes in different parameters will not cause similar changes in the variation function [Adby and Dempster, 1974]. Computer round-off errors may then affect the result. There may also be high correlations between parameters as the observing programme may have been designed for astrophysics, which involves observations to a single source for long periods of time. This can
cause high correlations between parameters [Shapiro, 1978]. The problem of an ill-conditioned normal equation matrix may not be readily apparent, and computer round-off may even produce apparently good results.

The author has not completely resolved this problem, having experimented with scaling the matrix, and calculating the determinant, but an economical answer, giving directly the poorly determined parameter is the method of the Googe number [Schwarz, 1978]. This facility has been incorporated into the inversion routine.

The Googe number for each parameter expresses the dependence of that parameter with respect to the sub-space defined by the previously determined parameters. It is calculated by dividing the respective diagonal element of the normal matrix into the corresponding diagonal term of the Cholesky decomposed upper triangular matrix before this latter number has been square-rooted.

In the Cholesky inversion the normal matrix is decomposed into the upper triangular matrix \underline{U}, where

$$
\begin{equation*}
\underline{U}^{\mathrm{t}} \underline{U}=\underline{N} \tag{5.6}
\end{equation*}
$$

The Googe number for the $i^{\text {th }}$ parameter is defined as

$$
\begin{equation*}
g_{i}=\frac{u_{i i}^{2}}{n_{i i}} \tag{5.7}
\end{equation*}
$$

To appreciate the geometric evaluation of the Googe number of the $i^{\text {th }}$ parameter one considers the first design (A) matrix,

$$
\underline{A}=\left[\begin{array}{lll}
\underline{A}_{i}-1 & \underline{a}_{i} & \underline{A}_{u-i}
\end{array}\right]
$$

where $u=$ total number of parameters.
Since the sub-space corresponding to the u-i parameters beyond the $i^{\text {th }}$ are not involved, the normal matrix can be expressed, with convenient disregard of the weights:

$$
\underline{N}=\left[\begin{array}{llllll}
\underline{A}_{i-1}^{t} & \underline{A}_{i-1} & \underline{A}_{i-1}^{t} & \underline{a}_{i} & \underline{A}_{i-1}^{t} & \underline{A}_{u-i} \tag{5.9}\\
\underline{a}_{i}^{t} & \underline{A}_{i-1} & \underline{a}_{i}^{t} & \underline{a}_{i} & \underline{a}_{i}^{t} & \underline{A}_{u-i} \\
\underline{A}_{u-i} & A_{i-1} & \underline{A}_{u-i} & \underline{a}_{i} & \underline{A}_{u-i} & A_{u-i}
\end{array}\right]
$$

In the process of the Cholesky decomposition up to the $i^{\text {th }}$ column

$$
\begin{equation*}
\underline{U}_{i}=\left[\right] \tag{5.10}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{i i}^{2}=\underline{a}_{i}^{t} \underline{a}_{i}-\underline{a}_{i}^{t} \underline{-}_{i-1} \underline{U}_{i-1}^{-1}\left(\underline{U}_{i-1}^{t}\right)^{-1} \underline{A}_{i-1}^{t} \underline{a}_{i} \tag{5.11}
\end{equation*}
$$

since

$$
\begin{gather*}
\underline{N}_{i-1}^{-1}=\left(\underline{U}_{i-1}^{t} \underline{U}_{i-1}\right)^{-1}=\left(\underline{A}_{i-1}^{t} \underline{A}_{i-1}\right)^{-1} \tag{5.12}\\
\therefore u_{i i}^{2}=\underline{a}_{i}^{t}\left[\underline{I}-\underline{A}_{i-1}\left(\underline{A}_{i-1}^{t} \underline{A}_{i-1}\right)^{-1} \underline{A}_{i-1}^{t}\right] \underline{a}_{i} \tag{5.13}
\end{gather*}
$$

The matrix in the square brackets of equation (5.13) is recognised as idempotent. Where $\underline{S}_{\mathbf{i}-1}$ equals this idempotent matrix, multiplication will show

$$
\begin{equation*}
\underline{S}_{i-1}^{2}=\underline{s}_{i-1} \tag{5.14}
\end{equation*}
$$

\underline{S}_{i-1} is thus a projection operator. Some projection operators annihilate spaces [Jacobson, 1953]. Multiplication of

$$
\begin{equation*}
\underline{S}_{i-1} \underline{A}_{i-1}=0 \tag{5.15}
\end{equation*}
$$

shows that this projection operator annihilates, at least, the i-1 sub-space. Multiplication of any vector, for example ${\underset{-}{i}}_{i}$, by \underline{S}_{i-1}, would result in the component of \underline{a}_{i} which is the orthogonal complement to the i-1 sub-space. Thus

$$
\begin{gather*}
u_{i i}^{2}=\underline{a}_{i}^{t} S_{i-1} \underline{a}_{i} \tag{5.16}\\
u_{i i}^{2}=\underline{a}_{i}^{t} \underline{S}_{i-1}^{t} \underline{S}_{i-1} \underline{a}_{i} \tag{5,17}
\end{gather*}
$$

since \underline{S}_{i-1} is symmetric.

$$
\begin{equation*}
\therefore u_{i i}^{2}=\left(\underline{S}_{i-1} \underline{a}_{i}\right)^{t}\left(\underline{S}_{i-1} \underline{a}_{i}\right) \tag{5.18}
\end{equation*}
$$

Equation (5.18) is recognised as the dot product of the vector component of a $_{i}$ which is orthogonal to the i-1 sub-space. The square of the complete length of the a $_{\mathrm{i}}$ vector is given by

$$
\begin{equation*}
n_{i i}={\underset{-a}{t}}_{\mathrm{t}}^{\mathrm{a}} . \tag{5,19}
\end{equation*}
$$

The Googe number can thus be interpreted as the square of the sine of the angle of the $i^{\text {th }}$ parameter vector with the i-1 parameter sub-space.

The Googe number should ideally equal one. The $i^{\text {th }}$ parameter vector is then orthogonal to the i-1 sub-space. If equal to zero, then the $i^{\text {th }}$ parameter vector is dependent on some previously determined parameters. The author's routines compare each Googe number to a tolerance value, and prints a warning if the parameter is illdetermined. Schwarz [1978] uses a comparison with
0.1×10^{-5}, but the author found a value of 0.1×10^{-3} was required to detect an ill-conditioned L.B.I. adjustment.

CHAPTER 6

RESULTS

The objectives of this thesis have been achieved, and an economical least squares adjustment of L.B.I. observations, with statistical evaluation of the results, has been developed. This chapter gives results of computations involving a full data set, and a 180 observation sub-set of that set. The 180 observation subset had been selected from the full set by Langley [1979] previous to being supplied to the author, and all observations with large residuals had been deleted. The full data set was reduced by the author, and observations with residuals greater than three times the standard error have been rejected to leave 4,300 from the original 5,700 observations.

Results are given in tabular form. The 180 data sub-set results from both the maximum likelihood adjustment and the least squares adjustment are shown in each table. This shows that the same results are produced, but more efficiently, by the least squares adjustment. Each table also gives the results of using the 4,300 data set, showing the increased accuracy of results obtained economically. Table 6.1 gives the comparison of
computer space and C.P.U. time from the three adjustments. Table 6.2 shows the corresponding baseline results, Table 6.3 compares the source position results, and Table 6.4 gives the clock polynomial coefficients.

The parameters used in these adjustments are the same as used and described by Langley [1979]. The three antennae are at Algonquin Park (AR) Ontario, Owen's Valley (OV) California, and Chilbolton (CH) England. The baselines can thus be described by the initials AROV, ARCH, and OVCH. The sources are 1isted in Table 6.3, except 3C 273B which was held fixed. The fringe frequency clock polynomials were two first order on $A R O V$, one second and one first order on ARCH, and one first order on OVCH. The delay polynomials were the same in number and order as the fringe frequency polynomials. For the reasons described in 2.4 independent coefficients were used for delay and fringe frequency.

The standard errors as shown for the 4300 observation set are not correct. The author assumed that the standard errors of observations were correct, while they should have been scaled by the variance factor. Too many outlying observations were rejected thus giving standard errors of parameters which were too optimistic. The differences in results shown between the 180 and 4300 observation sets do, however, agree at the two sigma level.

Table 6.1

Comparison of Computer Space and C.P.U. Time

Adjustment Number of Observations	$\begin{gathered} \text { Maximum Likelihood } \\ 180 \end{gathered}$	Least Squares 180	Least Squares 4,300
Compiler	Fortran G	Fortran H	Fortran H
Link region	652 K	652 K	652 K
Link C.P.U. time	2.66 seconds	2.65 seconds	2.64 seconds
Go region	464 K	180 K	196 K
Go C.P.U. time	298.16 seconds	14.26 seconds	332.01 seconds

Computer: IBM $370 / 3032$ with the VS2 operating system using almost completely double precision.

Table 6.2

Baseline Component Comparison

Table 6.3

Source Position Comparison

Tab1e 6.4

Clock Polynomial Coefficient Comparison

Adjustment Number of Observations	Maximum Likelihood 180	Least Squares 180	Least Squares 4,300
Parameter No.			
AROV $a_{2}(F)$	$-(0.62 \pm 0.03) \times 10^{-8}$	$-(0.61 \pm 0.03) \times 10^{-8}$	$-(0.651 \pm 0.005) \times 10^{-8}$
a_{2} (F2nd)	$-(0.50 \pm 0.02) \times 10^{-8}$	$-(0.50 \pm 0.02) \times 10^{-8}$	$-(0.521 \pm 0.003) \times 10^{-8}$
ARCH $\mathrm{a}_{2}(\mathrm{~F})$	$-(0.38 \pm 0.05) \times 10^{-8}$	$-(0.38 \pm 0.05) \times 10^{-8}$	$-(0.445 \pm 0.009) \times 10^{-8}$
$\mathrm{a}_{3}(\mathrm{~F})$	$-(0.44 \pm 0.07) \times 10^{-10}$	$-(0.44 \pm 0.08) \times 10^{-10}$	$-(0.247 \pm 0.014) \times 10^{-10}$
$\mathrm{a}_{2}(\mathrm{~F} 2 \mathrm{nd})$	$-(0.51 \pm 0.02) \times 10^{-8}$	$-(0.51 \pm 0.02) \times 10^{-8}$	$-(0.499 \pm 0.004) \times 10^{-8}$
OVCH $\mathrm{a}_{2}(\mathrm{~F})$	$-(0.75 \pm 0.61) \times 10^{-9}$	$-(0.76 \pm 0.33) \times 10^{-9}$	$-(0.166 \pm 0.061) \times 10^{-9}$
AROV $\mathrm{a}_{1}(\tau)$	$(0.87 \pm 0.03) \times 10^{-6}$	$(0.87 \pm 0.03) \times 10^{-6}$	$(0.863 \pm 0.005) \times 10^{-6}$
$\mathrm{a}_{2}(\tau)$	$-(0.58 \pm 0.09) \times 10^{-8}$	$-(0.58 \pm 0.09) \times 10^{-8}$	$-(0.573 \pm 0.018) \times 10^{-8}$
$\mathrm{a}_{1}(\tau 2 \mathrm{nd})$	$(0.63 \pm 0.01) \times 10^{-6}$	$(0.63 \pm 0.01) \times 10^{-6}$	$(0.628 \pm 0.002) \times 10^{-6}$
$\mathrm{a}_{2}(\tau 2 n d)$	- $(0.54 \pm 0.02) \times 10^{-8}$	$-(0.54 \pm 0.02) \times 10^{-8}$	$-(0.552 \pm 0.004) \times 10^{-8}$
ARCH $\mathrm{a}_{1}(\tau)$	$-(0.44 \pm 0.05) \times 10^{-6}$	$-(0.44 \pm 0.05) \times 10^{-6}$	- $(0.342 \pm 0.010) \times 10^{-6}$

Table 6.4 - Continued

Adjustment Number of Observations	Maximum Likelihood	Least Squares	Least Squares

Parameter No.

$a_{2}(\tau)$	$-(0.82 \pm 4.05) \times 10^{-9}$	$-(0.83 \pm 3.95) \times 10^{-9}$	$-(0.906 \pm 0.079) \times 10^{-8}$
$a_{3}(\tau)$	$-(0.12 \pm 0.08) \times 10^{-9}$	$-(0.12 \pm 0.08) \times 10^{-9}$	$(0.558 \pm 0.152) \times 10^{-10}$
ARCH $a_{1}(\tau 2 \mathrm{nd})$	$-(0.65 \pm 0.01) \times 10^{-6}$	$-(0.65 \pm 0.01) \times 10^{-6}$	$-(0.644 \pm 0.002) \times 10^{-6}$.
$a_{2}(\tau 2 \mathrm{nd})$	$-(0.51 \pm 0.02) \times 10^{-8}$	$-(0.51 \pm 0.02) \times 10^{-8}$	$-(0.545 \pm 0.004) \times 10^{-8}$
OVCH $a_{1}(\tau)$	$-(1.18 \pm 0.01) \times 10^{-6}$	$-(1.18 \pm 0.01) \times 10^{-6}$	$-(1.178 \pm 0.002) \times 10^{-6}$
$a_{2}(\tau)$	$-(0.75 \pm 0.27) \times 10^{-9}$	$-(0.75 \pm 0.26) \times 10^{-9}$	$-(0.772 \pm 0.050) \times 10^{-9}$

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

An efficient least squares adjustment package has been produced and it is recommended that future analysis involves these routines. There are undoubtably changes that can be made to improve the routines and to suit specific customer requirements.
7.1 Analyse Full. Sets of Observations

It is suggested that previous data sets in which only a small proportion of available observations were processed should be re-analysed. The author has carried out some experimentation with the full data sets and has found that the standard errors of results has decreased in proportion to the increase in number of observations. Lack of time has limited these experiments, but initial results do give cause for optimism with respect to accuracies which can be obtained using the full data sets.
7.2 Consistency in Accuracy Throughout the Model
Improvements in accuracy from the adjustment may
cause some parts of the L.B.I. models to be deficient
in attaining these accuracies. Langley [1979] reports
the model to be accurate to the order of 10 centimetres. Polar motion is currently given a single set of values for a three or four day observation period. It is suggested that full sets of observations may cause such model parameter errors to be above the error level of the least squares adjustment. A thorough analysis of the model is thus required to ensure consistency in error level in the L.B.I. model.

7.3 Interactive Process Mode

The author's routines were processed in batch mode, but it might be more efficient to use a video display unit (V.D.U.), and possibly a fully interactive computation and storage process. While experimenting with data sets of 5,000 observations the author found the task of inspecting the residual plot and deleting outlying observations time consuming and prone to errors. To delete an observation cards had to be punched, and the reduced data set stored on disc. Problems were also found with the paper plot residual scale. Use of a V.D.U. should thus be able to improve efficiency in analysing data.

7.4 Data Storage on Direct Access File

The present use of a sequential file to store the data is a main cause for inefficiency in deleting outlying observations. A direct access file would allow an outlying observation to be marked while the residual is being
computed, or, in an interactive process, on deletion from the V.D.U. screen inspection. Possibly a value overprinted in a particular column would show deletion. This could be involved with an ability of subtracting the effect of that observation from the current adjustment. Subsequent adjustments would check the deletion column of the observation storage line. An original copy of the unedited data would, of course, be stored, probably on a tape.

7.5 Permanent Storage of the A Matrix

Permanent storage of the first design (A) matrix coefficients, with observations and logistic information, could be combined in an interactive process. The author's routines, having compressed the A matrix, could be adapted, and lead to even greater C.P.U. time efficiency. In an L.B.I. analysis many of the computer runs vary only in their use of different orders of clock polynomials. Time could be greatly reduced since this implies that exactly the same computations are carried out in each run to form most of the coefficients of the A matrix.
7.6 Comparison of Doppler Satellite and L.B.I. Coordinate Systems

Langley [1979] compared L.B.I. results with those of Doppler satellite and was able to deduce scale and
orientation differences between coordinate systems as defined by the Bureau International de $\ell^{\prime} H e u r e ~(B . I . H)$. and the United States Navy Navigation System. This comparison should be repeated with a re-evaluation of the L.B.I. observations using the least squares adjustment routines and the full set of observations.

7.7 L.B.I. Observing Programme for Geodetic Results

Observations used for L.B.I. using the Canadian observation system have been designed for the needs of astrophysics. This involves continued observations to a single source for many hours. This situation is not ideal for geodetic use of the observations, causing high correlations between parameters. Observations to sources in various positions on the celestial sphere for short periods provides better resolution for geodetic results. This is mainly a financial problem, but it is suggested that the full advantages of the whole L.B.I. system for geodesy can only be realised from a specifically geodetic observing programme.

7.8 Spectral Analysis of Residuals

Initial computations of full data sets shows the plots of residuals to display sinusoidal tendencies. It is suggested that a spectral analysis of the residuals might lead to an improvement of the L.B.I. model.

Atmospheric and oscillator effects in particular have possibilities for model improvements.

REFERENCES

Adby, P.R. and M.A.H. Dempster (1974). "Introduction to optimization methods", Chapman and Hall, London.

Cannon, W.H. (1978). "The classical analysis of the response of a long baseline radio interferometer", J.R. Astr. Soc. 53, 503-530.

Hamilton, W.C. (1964). "Statistics in physical science", Ronald Press, New York.

Jacobson, N. (1953). "Lectures in abstract algebra", Van Nostrand Co., New York.

Jones, H.E. (1969). "Geodetic ties between continents by means of radio telescopes', Canadian Surveyor 23, 377-388.

Krakiwsky, E.J. (1978). 'Statistical techniques and Doppler satellite positioning", Invited paper, The Roy. Soc., Satellite Doppler Tracking and Geodetic Applications, London, 10-11 Oct. 1978.

Langley, R.B. (1979). 'Precision geodesy and astrometry with a three station long baseline interferometer", Ph.D. Thesis, York University, Toronto.

Meeks, M.L., ed. (1976). "Methods of experimental physics", $12(c)$, Academic Press, New York.

Mikhail, E.M. (1970). 'Parameter constraints in least squares", Photogrammetric Engineering 36(12), 1277-1291.

Mikhail, E.M. (1976). "Observations and least squares", IEP, New York.

Pope, A.J. (1976). "The statistics of residuals and the detection of outliers", NOAA Tech. Rept. NOS 65 NGS-1, U.S. Dept. of Commerce.

Schwarz, C.R. (1978). "TRAV10 horizontal network adjustment program", NOAA Tech. Mem. NOS NGS-12, U.S. Dept. of Commerce.

Shapiro, I.I. (1978). "Principles of very-1ong-baseline interferometry", Proc". 9th GEOP Conf., 2-5 Oct. 1978, Columbus, Ohio.

Vanicek, P. and E.J. Krakiwsky (1980). "Geodesy: the Concepts", North-Holland (in preparation).

APPENDIX 1

JOB CONTROL FOR I.B.M. $370 / 3032$ AT U.N.B.

An example of the J.C.L. to run the least squares routines at U.N.B. The observations of delay and fringe frequency are stored on disc.
//LBIJOB , $\mathrm{S}=335, \mathrm{R}=704, \mathrm{~L}=13, \mathrm{LC}=0$, ANAME
/*SETUP DISK=SEGEOM
// EXEC FORTXCLG, RG=320K, RL=704K,
// PARM. LKED='LIST,MAP,LET,SIZE=($650 \mathrm{~K}, 128 \mathrm{~K})^{\prime}$
//FGRT.SYSIN DD *
MAIN ROUTINE
AND BLOCK DATA
/*
//LKED.SYSLIB DD DSN=DAVIDSON.LBI.X,DISP=SHR
// DD DSN=DAVIDSON.ETIDE. X,DISP=SHR
// DD DSN=SYS1.FORTXLIB,DISP=SHR
// DD DSN=UNB1.FORTLIB,DISP=SHR
// DD DSN=UNB1.IMSL.LOADGLIB,DISP=SHR
//LKED.SYSUT1 DD SPACE=(TRK, $(100,10))$
//GO.FT06F001 DD SYSOUT=S
//GO.FT11F001 DD DSN=६६TEMPA,DISP=(NEW,PASS), UNIT=SYSDA, // SPACE $=(\operatorname{TRK},(50,10)), D C B=(\operatorname{RECFM}=\mathrm{VBS}, \operatorname{LRECL}=140$, BLKSIZE=7004)
//GO.SYSIN DD *

> CONTROL DATA
/*
//GO.FT05F002 DD *

EARTH TIDE DATA

//GO.FT09F001 DD DSN=DAVIDSON.MAY77.REJ3P0,DISP=SHR
//

APPENDIX 2

INPUT DATA

Control data cards
The data cards and the variable names are described in the position order of the input pack.

1. Variables: MD, NPARAM, NUSED, NFIXED, NVARBL, NPLNS, MXEPOC, NCONS, INTS, NUPDT, NCDIM

Format: (26I3)
Definitions:
MD Model number. Used to reference the program run.

NPARAM Maximum parameter reference number.
Parameter reference numbers are allocated
according to parameter type.
1 - 30 station coordinates
31-50 source coordinates
51 - NPARAM clock polynomial coefficients.
NUSED Total number of fixed and variable parameters
used in the adjustment.
NFIXED Number of fixed parameters.
NVARBL Number of variable parameters.
NPLNS Number of clock polynomials
(Note: NPARAM $=50+($ NPLNS*5 $)$.

MXEPOC Maximum number of epochs in any baseline. An epoch is the start point of a clock polynomial.

NCONS Number of constraints
INTS Number of class intervals in histogram of residuals.

NUPDT Number of updated parameters.
NCDIM Dimension value for arrays used in connection with constraints.

Read in MAIN routine
Example card
001100036005031010003000020006020
2. Variables: ((IPARAM(K), ISTAT(IPARAM(K)), K=1, NUSED)

Format: (13(I4,I2))
Definitions:
IPARAM Vector of all used parameters. Values stored are the parameter reference numbers.

ISTAT Vector of status numbers for each parameter stored in reference value element, e.g., $1^{\text {st }}$ station coordinate status number in ISTAT (1)
$1^{\text {st }}$ source right ascension status number in ISTAT (31)

Status number 1 implies fixed parameter.
Status number 3 implies variable parameter.

Read in RDWRT
Example card
000101000201000301000403000503 . . .
004301004401004503004603 . . .
007703008103008203 . . . 009703
3. Variables: MTYPE, ITIDE, ISIGMA, IMAX, ISAME, ICORR

Format: (3(I1,1X),I2,1X,I1,IX,II)
Definitions:
MTYPE Model type, signifies types of observations used in adjustment.

3 .. fringe frequency and delay observations.
2 .. delay observations.
1 .. fringe frequency observations.
ITIDE Signifies use of earth tide corrections.
0 .. no earth tide corrections.
1 .. earth tide corrections are applied.
ISIGMA Indicates whether standard errors are used with observations.

0 .. no standard errors applied.
1 .. standard errors applied.
IMAX Number of iterations (update of à priori parameters constitutes first iteration).

0 .. any number, until increments approach zero.

1 .. one iteration on1y
n .. n iterations, or until increments approach zero.

ISAME Indicates whether delay clock polynomial coefficients are to be equal to their respective fringe frequency coefficients. 0 .. coefficients are equal. 1 .. coefficients are not equal.

ICORR Corrects time of observation by +1 second. 0 .. corrects by +1 second.
n .. any other number does not correct time.
Read in RDWRT
Example card
$\begin{array}{lllll}3 & 1 & 1 & 1 & 1\end{array}$
4. Variables: (XTRASM(K,1) $K=1,8)$ (XTRASM(K,2) $K=1,8)$

Format: $\quad 8$ F 10.5
This set of cards apply extra standard errors, according to baseline (K) and observation type (1 or 2), which have been estimated using the variance factor. If ISIGMA equals 0 , then these cards are omitted. Fringe frequency increases are given on the first card; delay increases are given on the second card. If only delay observations are used, then only the delay increases card is used.

Definition:
XTRASM Array of increases to standard errors of observations.

Read in RDWRT
Examp1e card
$\begin{array}{lll}0.0018 & 0.0016 \quad 0.0025\end{array}$
$\begin{array}{lll}0.01 & 0.01 & 0.01\end{array}$
5. Variable: SESION

Format: (2A8)
Definition:
SESION Observation session name, using up to
16 letters.
Read in RDWRT
Example card
MAY 1977
6. Variables: OBSFRQ, JDJAN0

Format: (F10.5, T15, I10)
Definitions:
OBSFRQ Observing frequency (MHz)
JDJAN0 Julian Day January 0 at beginning of the year of the observations.

Read in RDWRT
Example card
10680.02443144
7. Variab1e: TOBS1

Format: F15.5
Definition:
TOBS1 Day of year immediately prior to all observations. Used as epoch day for the first
clock polynornials of each baseline, and to initialise the earth tide routines.

Read in RDWRT
Example card
133.0
8. Variables: XPOLE, YPOLE, OMEGA, UTPOLY(K), $K=1,3)$

Format: (3D20.5/3D20.5)
Symbol / denotes card skip.
Definitions:
XPOLE X coordinate of polar motion, in seconds of arc.

YPOLE $\quad Y$ coordinate of polar motion, in seconds of arc.

OMEGA Rotation rate of earth, in radians per U.T. second.

UTPOLY UT1-UTC polynomial coefficients. These values are taken from external information, e.g., B.I.H. [Lang1ey, 1979].

Read in RDWRT
Example card
$-0.139 \quad 0.482 \quad 7.292114897 \mathrm{D}-05$

$$
2.330175 \mathrm{D}-04 \quad-1.557534 \mathrm{D}-06 \quad 2.738229 \mathrm{D}-
$$

9. Constraint cards. If NCONS equal 0 , then none of these cards are used as input.
A. Variables: (NCONP(I), $I=1$, NCONS)

Format:
(26I3)

Definition:
NCONP Vector of number of constrained parameters in each constraint.

Read in RDWR'T
Example card
$\begin{array}{lllll}3 & 3 & 3 & 1 & 1\end{array}$
B. Variables: ESTCON(I), SGMCON(I), (ICONS(I,J), J=1, NCONP (I))

Format: (D25.16, D10.3,915)
One card for each constraint equation.
Definitions:
ESTCON Estimation of constraint.
SGMCON Standard error of constraint.
ICONS Each row gives the defined parameter numbers, and signs, used in a constraint.

Read in WDWRT
Example cards

0.0		$0.1 D-8$	52	-62	72
-0.24096185	$D+0.4$	$0.5 D-4$	4		

10. A priori station coordinates.

Input in the form of ellipsoidal coordinates on a local geodetic datum. The first card gives the number of stations, followed by three cards for each station.
A. Variable: NSTNS

Format:

Definition:
NSTNS Number of stations
Read in STNGEO
Example card
3
B. Variables: STNAM(I), RSURF1(I), RSURF2(I), DELTX(I), DELTY(I), DELTZ(I)

Format: $\quad(1 \mathrm{X}, 2 \mathrm{~A} 8,3 \mathrm{X}, 4 \mathrm{~A} 8,3(2 \mathrm{X}, \mathrm{F} 7.2))$
Definitions:
STNAM Vector (COMPLEX*16) of station names.

Read in STNGEO
Example card
ARO 46 M CLARKE ELLIPSOID OF 1866 N.A.D. $-27.0+160.0+180.0$
C. Variables: EQTRAD(I), FLAT(I), SGN, IDLAT(I), IMLAT(I), RSLAT(I), IDLONG(I), IMLONG (I), RSLAT(I), HEIGHT(I)

Format: (1X,F11.6,5X,F10.6,5X,A1, I2, 1X, I2, 1X, F7.4, 5X,I3,1X,I2,1X,F7.4,5X,F8.3)

Definitions:

EQTRAD	Vector of equatorial radii of ellipsoids (Km)
FLAT	Vector of inverse of ellipsoidal flattenning
	$(1 / \mathrm{F})$
SGN	Sign of latitude (+ or -)
IDLAT	degrees
IMLAT	minutes vectors of latitude
RSLAT	seconds
IDLONG	degrees
IMLONG	minutes vectors of longitude
RSLONG	seconds
HEIGHT	Vector of heights above ellipsoid (m)
ead in STN	NGEO
Eample car	
6378.2064	294.978698 +45 $57 \quad 19.812$
	$2815537.055 \quad 260.42$

D. Variable: OFFSET(I)

Format: F8.2
Definition:
OFFSET Vector of offsets of antennae axes (m)
Example card
0.0
11. Variable: FOFSET(L)

Format: (F10.4)

Definition:
FOFSET Vector of frequency offsets for each baseIine (Hz). One card for each baseline.

Read in RDWRT
Example card
0.0
12. Clock polynomial data

A set of cards for each baseline gives the number of clock polynomials for that baseline and if the number is greater than 1 , the starting time epochs for the subsequent polynomials. The epoch of the first polynomial is TOBS1. The end card of this set gives the order of each polynomial. Polynomials are arranged first into fringe frequency and delay, then into baseline number, and finally into time of epoch.
A. Variable: NCP(L)

Format: (II)
Definition:
NCP Vector of number of clock polynomials in each baseline.

Read in RDWRT
Example card
2
B. If NCP for the baseline is 1 , there is not any following epoch card.

Variable: (EPOCHS (L, J), J=2, NCP(L))
Format: (4D20.10)
Definition:
EPOCHS Zero time for $J^{\text {th }}$ polynomial on $L^{\text {th }}$ baseline.
Read in RDWRT
Example card
134.7291666666667D00
C. Variables: (NPOLY(L), L=1), NPLNS)

Format: (26I3)
Definition:
NPOLY Vector of the order of the polynomial for each of the polynomials.

Read in RDWRT
Example card
$\begin{array}{llllllllll}1 & 1 & 2 & 1 & 1 & 1 & 1 & 2 & 1 & 1\end{array}$
13. A priori source positions.

First card gives the number of sources, followed by 1 card for each source. The maximum number is 10 sources. Not all input sources need be used in the adjustment: those used are defined as such by the input card of used parameters.
A. Variable: NSORCE

Format: (I2)
Definition:
NSORCE Total number of source positions.

Read in SOURCE
Example card
10
B. Variables: SCNAME (JSORCE), IHOURA, IMINRA, SECRA, SGN1, IDGDEC, IMNDEC, SECDEC

Format: (1X, A7,7X,I2,1X,I2,1X,F6.3,1X,A1,I2,1X, I2, 1X,F5.2)

Definitions:
SCNAME Vector of source names. $\left.\begin{array}{ll}\text { IHOURA } & \text { hours } \\ \text { IMINRA } & \text { minutes } \\ \text { SECRA } & \text { seconds }\end{array}\right\}$ Right ascension. SGN1 sign (+ or -) $\left.\begin{array}{ll}\text { IDGDEC } & \text { degrees } \\ \text { IMNDEC } & \text { minutes }\end{array}\right\}$ Declination. SECDEC seconds

Read in SOURCE
Example card
$0235+16 \quad 0235 \quad 52.634+16 \quad 24 \quad 4.01$
14. Variables: NSKIP, NOBS, (NOBSLN(K), K=1, NBASE)

Format: (8110)
Definitions:
NSKIP Number of observations at the beginning of data file to be skipped.

NOBS Number of observations to be used from the data set.

NOBSLN Vector of number of observations for each baseline.

Read in RDWRT
Example card
$4607 \quad 1770 \quad 1834 \quad 1003$
15. Update of parameters

If NUPDT=0, the following cards are not included.
An input card is used for each parameter updated.
Variables: K, X(K)
Format: (I5,5X, D25.16)
Definitions:
K Defined parameter number
e.g. $K=1-30$ station coordinates
$\mathrm{K}=31$ - 50 source coordinates
X Vector of parameter values.
Units X(1) - X(30) km
$X(31)-X(50)$ degrees
Read in RDWRT
Example card
$4 \quad-0.2409618078849968 \mathrm{D}+04$
16. Statistical information

A single input card with all variables as REAL*4. Variables: AMAX1, AMAX2, ALPHA, XFIRST, YFIRST, YINC, CRIT

Format: (2A4, F7.4, 6 F10.6)
Definitions:
AMAX1 Word definiting method of rejecting outliers.
AMAX2 i.e., DICTATED.. stated rejection criteria MAX .. max text NON-MAX .. non-max test.

ALPHA Probability of a type I error, i.e., significance level of all statistical tests.

XFIRST Addition to TOBSI, in hours, to give start time for each residual plot.

YFIRST Left-hand side of residual plot scale.
YINC Increment of residual scale per printer column.

CRIT Defined criteria for outlier rejection. This value is used if AMAXI = DICT, otherwise CRIT is statistically computed. Outlying residuals are denoted with an asterisk, but not subtracted from the solution.

Read in RDWRT
Example card
$\begin{array}{lllll}\text { MAX } & 0.01 & 12 . & -0.06 & 0.0012\end{array}$
17. Delay and fringe frequency observations Observations are inputted after the GO.FT09
J.C.L. card in the form of card images. A card, or
a line in the storage file, exists for each observation
time point.
Variables: IDYOBS, UTH, UTM, SNAME, BNAME, OBDLY, SGMDLY, OBFF, SGMFF

Format: (3X,I3,2F3.0,1X, A8,1X, A4, D18.10, F6.3, D18.10,F7.4)

Definitions:
IDYOBS Day of observation.
UTH Hour of observation.
UTM Minute of observation.
SNAME Source name.
BNAME Baseline name.
OBDLY Observed delay value (micro-seconds).
SGMDLY Standard error of delay (micro-seconds)
if equals 0.0 , denotes rejected delay observation.

OBFF Observed fringe frequency value (Hz).
SGMFF Standard error of fringe frequency (Hz)
if equals 0.0 , denotes rejected fringe frequency observation.

APPENDIX 3

CANADIAN L.B.I. ANALYSIS PROGRAM (MAY 1980)

A flow chart is shown of the fringe frequency and delay analysis program which uses the U.N.B. least squares adjustment. Card images are given of the routines which have been developed mainly at U.N.B. The remaining routines used in the Canadian L.B.I. analysis are the property of York University and are not produced in this appendix.

CANADIAN FRINGE FREQUENCY AND DELAY ANALYSIS PROGRAM
LEAST SQUARES ADJUSTMENT (MAY 1980)


```
            INTFG!R NOI?(?),NV_C(5.3).ITCTI(2).ITOTO(2).MTYPE.NY.INTS
            INTEGER NFR(?,&口),NHIST(2,40)
                    HIST
            COGICAL*I STRIPJG(1)I).VLINES(LO1),SV(34)
                    HLSI
```



```
            CATA NV&C/32*2.4*1.2.2.3.4.4.5,0.4.9.10.12.14.16.17.19.21.23.25.27HIS!
            &.?日,20.31,31,3*32.31/
C ZEFO TOTALS OF EXTFFNAL HISTOGRAM CLAGSESS WHICH ARE GROUPEO TO HAVE
WHICH ARE GROUPEO TO HAVE CHIST
A!.L EXPFCTED CL.AGS NUAQERS GREATER THAN 5 CHISI
                    ON 1 J=1,NY
ITחTI(J)=?
HIST
|TOTD(J)=0
C FIND OUTGIDE CLASS YO SUM TO> 5
I=?
    2 I=I + 1
            Y=-5. S+VAL*FLOAT(I)
            CAILL MDNDR(Y,D)
            ESTM(1)=P*FL\capAT(NOB(1))
            IF (ESTN{1),LT:5.0) GO TO 2
        HIST
                    CHIST
                    HIST
                            IF(NY.EQ.2} FSTN(?)=1%NOS{?)
                                    H.S%
                                    HIST
                                    HIST
                            HIST
                            HIS%
C HISTCGEAM CLASS HEIGHT OF OOUTER CLASSES AND GRUUPS THESE CLASSES FUNHIST
            O! 3.JJ=1.,
            ICJj =INTS-jJ+I
                                    HIST
                                    HIST
            DO ? J=1,NY
                                    HIST
            ANUM=FLUAT(NHTST(JOJJ)*SO)/FLOAT(NOB(J))/VAL
            NFRO J,JJ)=ANUAN+CO5
            IT(ITI(J)=ITOTI(J)+NHIST(J.JJ)
            AN:MM=F゙LOAT(NHIST(J.&OJJ)*&O)/FLOAT(NOB(J))/VAL
            NFQ(J.[OJJ)=ANUM&?.5
    IT\capTO(J)=1T(1TO(J)+NHIST(J.IOJJ)
    ACLASS=INTS-2*I+2
            DF=FLOAT(NCI.45S-1)
            IF{ISIGMA.NE.1) DF=DF-1.0
            IF(ISIGMA,NE:1) DF=DF-1.0
            IF (NF.LT.1.OJ GO TO }
            CRAFF=1.O-ALPHA
            GALL MDCHI(CONF,DF.CHI,IER)
            DO & J=1,NY
            CHISQ(J)=(ITOTI(J)-ESTN(J))**2&ESTN(J)
            CHISQ(J)=CHISO(J)+(ITOTO(J)-ESTN(J))**2/ESTN&\)
            CH{SQ(J)=CHISO(J) + (ITOTO(J)-ESTN(J))**(ESTN& \)
```

```
                                ESNN(J))*2/ESTN(J)
            * CLASSESO SUIMS CHI-SQUARE STATISTIC.
                H&S
C HISTOGRAM CLASS HT. OF OINNERO CLASSESO SUMS CHI-SQUARE STATISTICO CHIST

\section*{28
28}
```

30

34 34

34 35

```
35
36
36
37
37
CLASS TO SUM TO＞5
39
40
41
42
43
44
45
46
C CHI－S C COST COMPUTES CHI－SOUARE STATISTIG FOR D UF FREEOCMHIST
```



```
Dก \(3 \quad J=1, N Y\)
HIST
NFR（J，JJ）
H． HIST HIST HEST HIS
HIS HIS HIST HIST \(H I S\)
\(H 1 S T\) \(H 1 S T\)
\(H I S J\) HISJ MIST HdST HIST HdST HIS
CHI
```

```
        5 I= I +1
```



```
        Y=-5.C+VAL*FLOAT(I)
        FALL MONOF(Y,N)
        URT?=:R-UPTG
        OR G J=1.NY
        FST:(J)=UPTD*FLOAT(NCE(J))
        ANUM=FLOAT(NHIST(J,I)*83)/FLUAT(NUB(J))/VAL
        NFF2(J.l)=ANUM+0.5
        CHISO(J)=(HISO(J)+(NHISTRJ,I)-ESTN(J))**Z/ESTN(J)
        Ir(IOJJ.EQ.I) GO TO 6
        ANUA=FLCAT(NHISTRJ.IOJJ)*8O)/FLOAT(NOB(J))/VAL
        NFR(J,IDJJ)=AN!UM+O.S
        (HISU(J)=CHISQ(J)+(NHIST(J.IOJJ)-ESTN(J))**2/ESTN(J)
        E CONTINUE
C OLCTSS HISTOGRAM!, NORMAL CURVE, FRUM TOP DF PAGE. PRINTS STATS.
    A= -.4
    F=0.3
    C=2.O
    C=3:?
    III=1)O/INTS-2
    IFI=1)O/INTS-2
    IF(III!LT:IN
    NAX=5?
    KK=1
    NAXIM=0
    I=5!
    DO 20 JJ=1.101
    VLINES(JJ)=PLANK
    20 STFING(JJ)=ELANK
    WRITE(6,6)OC:
    FRFMAT(:1;)
    OO a jJ=1,INTS
    L=NFR(j,jjj)
    IF(L.LE.MAX) GO TO 8
    II=(jJ-1)*100/INTS+1
    VLINES(II)=VLINF
    VLINES(III+III+2)=VLINE
    8 IF(L.ST.MAXIM) MAXIM=L
    IF (a|AXIM.GE.MAX) GO TO 10
    IF(MAXIM.LT.32) MAXIM=32
    L=MAX-MAXIM
\begin{tabular}{|c|c|}
\hline HIST & 69 \\
\hline HIST & 7 C \\
\hline HIST & 71 \\
\hline HISt & 72 \\
\hline HIST & 73 \\
\hline Hist & 74 \\
\hline HIST & 75 \\
\hline HiSt & 76 \\
\hline HIST & 77 \\
\hline HIST & 78 \\
\hline HIST & 79 \\
\hline HIST & 8 C \\
\hline HIST & 81 \\
\hline HISt & 82 \\
\hline HLST & 33 \\
\hline HIST & 84 \\
\hline HIST & 85 \\
\hline CHIST & 80 \\
\hline HIST & 87 \\
\hline HIST & \& \({ }^{\text {c }}\) \\
\hline HIST & 89 \\
\hline HISt & 90 \\
\hline HISt & 98 \\
\hline HIST & 52 \\
\hline HISt & 93 \\
\hline HISt & 94 \\
\hline HIST & 95 \\
\hline HIST & 56 \\
\hline HIST & ¢ 7 \\
\hline HISt & 50 \\
\hline Hist & 59 \\
\hline HIST & 100 \\
\hline HISt & 101 \\
\hline HISt & 102 \\
\hline HIST & 103 \\
\hline HIST & 104 \\
\hline HIST & 105 \\
\hline HIST & 105 \\
\hline HIST & 107 \\
\hline HIST & 108 \\
\hline HIST & 109 \\
\hline Hist & 110 \\
\hline HAST & 111 \\
\hline
\end{tabular}
HIST
```

CR O $J=1, L \quad$ HIST 113
G KRPTE（G，O：C1）
FRFMAT（：）
HIST 115
$\sim \Delta X=M A X-1$
19 HRYTE（6， 2 ？C2）（VLIVES（JJ），JJ＝1．101） GOO？FOFMAT（： $6 \times 13141)$

Cn つ！JJ＝1．！！！
Hist 110

STHING（JJ）＝PLAN
HIST 118
（NAX（T） 2 IN
IF（NVEC（I）．NE．MAX）GOCTO 12
$11 K=1 ? 2-1$
STロING（I）＝OCT
STEING $(K)=$ DOT
$I=I-1$
IF（WVEC（I＋1）．FQ．NVEC（I）GO TO 1 1
12 CO $14 \mathrm{JJ=1}$ MNTS
IF（NFM（J，JJ）•NF。MAX）GO TO 14
$1 \mathrm{I}=(\mathrm{JJ}-1) * 100 /$ INTS +2
11P＝11＋111
Cก $131=11.110$
12 STFING（L）＝HL．INE
VLINES $(I I-I)=V L I N E$
$V L$ INS $(I I+I!I+1)=V L I N E$
14 CRNTINUF
IF（MAX．GT． 32. OR．MAX．LT．8）GO TU 15

6OO 3 FOFNAT $\left({ }^{\circ}+9,1 X, 41,4 X, 1 C 141\right)$
$K K=K K+1$
IF（NAX．EQ．32）WPITE 6.6004 ）A F（MAX．EQ．24）WRITE（6．6004）B IF（MAX．EQ．（6）WHITE（6，6．004）C IF（SAX．EQ．3）WRITE（6．5004） 0

G！TU 16

6905 FCFMAT（1＋1．6X，101A1）
$16 N A X=M A X-1$
IF（ $: 4 x \cdot G T \cdot 0)$ GO TO 10

WRITE（0．6）66）
HIST 119
HIST 29
HIST 120
HIST 121
HIST $1<2$
HIST 123
HIST 124
HIST 125
HIST 126
HIST 127
HIST 128
HIST 129
HIST 130
HiST 3
HIST 131
HIST 132
HIST 133
HIST 134
HIST 105
HiST d $3 t$
H\＆5t \＆37
Hist 138
HIST 139
HIST 140
HIST 141
HIST 142
HIST 142
HIST 143
HIST 144
HIST 145
HIST 146
HLST 147
HIST 148
HIST 149
HISJ 150
HIST 151
H\＆ST 152

IF（MTYPE\＃J／NY．GE．2）GO TO 17 HIST 155
WFITE（G． $\mathrm{GO} O 7$ ）
HIST 156

```
GOO7 FCRNAT (O'.21X.'HISTOGOAM OF STANOAKDILEU FRINGE FREQUENCY RESIDUAHIST IGT
```



```
            G\cap TO 18
                                    HIST ISE
    17 hFITE(G,()OO)
                                    HIST 159
    6) \7 WRITE(G:E)OR)
```



```
6)JE FRNMAT('O'2IX."HISTDGRAM OF STANOAROIZEO DELAY KESTDUALS'./O O. HIST IGI
    IS KPITE(G,GOOC)(RJJ,NHIST(J,JJ)),JJ=1,INTS)
I& KPITE(G,GOQC)(RJJ,NHIST(J&JJ)O,JJ=1,INTS)
        IF(1)FF.LT.1.O) GO TU 19
        HIST dO2
        IF(CHISQ(J).LE.CHI) WFITE(G.GO:O) CHISU(J).CHI,NCLASS.DF
HIST 163
        IF(CHISO(J).LE.CHI) WFITE(G.GO:O) CHISU(J),CHI,NCLASS.OF HUS
```



```
            IF(CHISQ(J).GT:CHI) WHITE(G,GOI:) CHISQ(J):CHIONCLASSODF
    HIST 168
            HIST
```



```
    GOTO,22, DRITE(6,6012) DF HIST
GO12 FOF:MT(GGCHI-SQUARE GUODNESS OF FIT TEST WAS NOT PERFORMED: OEGREHIST ITA
6012 FOF:AAT(G CHI-SQUARE GUODNESS OF FIT TEST WAS NOT PERFORMED: OEGREHIST ITL
    22 CCNTINUE
        FOTURIV
        FND
        HIST 176
    HIST l77
    HIST 1777,
            SURRUUTINE LSQAOJOX,ICOL, ISTATO
                NPAKAM: LSOA
            ? IPARAM.
            3 ICONS.NCONP. SGMCON,ESTCON.
        5 CLFOLY,NPOLY. NPLNS.
        5 CLFOLY.NPOLY. NPLNS. EPOCHS MXEPOC.
        * LSGA
LSSQA 
C LSGAOJ PERFORMS A LEAST SQUARES ADJUSTMENT OF LOB. IO OUSERVATIONSSO
C LSGADJ PFRFORMS A LEAST SQUARES ADJUSTMENT OF LOB. EO OUSERVATIONSO
C AND STATISTICAL ANALYSIS ARE PRINTED
C. CALLEDE BY OTICAL ANALYS
    NSTRAINTS GN PARAMETEKS. RESULTS: STANDARD EHRUKIS. CLSUA
C AN!D STATISTICAL ANALYSIS ARE PRINTED N
C AN!D STATISTICAL ANALYSIS ARE PRINTED N
CLSQA
```



```
C REFEFENCE DY D. A. DAVIDSON
1980
MAY 1980
    IMPLICIT REAL*R(A-H,O-Z)
    FEAL*& YSCALE(O),YFIRST,YINC,XFIRST,WK4(2)
    REAL.74 STD,VAL,CRIT,ALPHA,P,STATI,STGTZ
    INTEGER*2 SABPI,SABB?,SARB
GO1J FOFMAT(* CHI-SOUARE STATISTIC: J<**F7.3: <= %F9.3. PASSES. NUMBEHIST IG7
    HIST 168
                                    HIST
        SURROUTINE LSOADJRX,ICOL ISTAT, NPARAMO
        2 ANOFM, AT&V, DELTA.OACC,ANS.IVATHGLO
        l
        LSGA
    *
        SE
59
HIST 104
H!ST 104
HIST }16
```

\qquad
\qquad


```
66
```

```
8 70
CMPLICIT \(R E A L * R(A-H, O-Z)\)
```



```
INTEGER*2 SABPI,SABB2,SABB Cl.SUA
ClSOA Cl SUA CLSUA 11 a SuA 12 CLSUA CLSUA 14 \(\begin{array}{ll}C L S U A & 15 \\ \text { CLSU4 } & 16\end{array}\) Cl Sua LSUA \(\angle S U A\)
\(\angle S U A\) SUA
\(\angle\) SQA \(\begin{array}{ll}\text { LSQA } & 15 \\ \text { LSQA } & 20\end{array}\)
20
```

```
        LngICAL*1 FEJCT(2), FLGNK/0.
        LCOICAL#1 STAF/B#,/,FLAVK/0./
    CTMMNN/ALJUST/ FOFSET(10), OUSFKG.XTRASM(10.2).
    ESCNAME(10),VENANE(10).
    S XFIRST,YFIFST,YINC.
    S XFIRST,YFIFSTMYINC
    2 \becauseTYPE,ISIGMA,NYONSTNS.NSKIP.ICORR
    3.CABE(4C)
    CHANON/LEEVAR/
    IRA(10),DEC(10), XSASE(10),YRASE(10), ZBASE(10),OFFSET(5), HELGHT (5).
    ZUTOOLY(3), XPOLF,YPDLE,OMEGA, YOES1.
    Z N(P(IO), JDJAN?.NHASE,NSORCE.ITI DE, ISAME,NOES,IMAX
        COMM(jN/STNABR/SABHI,SABR?
    LSuA
    LSuA
    lsla
    l SuA
    lsua
    lscua
    LSca
    LSuA
    LSUA
    CRNMCN/STATSI CRIT, ALDHA
    sua
Lsqa
    CNTSTATS/ CRIT,ALPHA LSGA
    INTEGER NHIST(?,40), NOU(?)
    DINFNSIUN X(NOAFAM), CLPSLY(S,NPLNS), EPLCHS(1O,MXEPUC),NPOLY(NPLNS)LSGA
    1.I (NL (NPAFAM), ISTAT(NPARAM).
    3 ANחFM(NVAFETL,NVARBL), ATRW(NV
    A FO(13) LSF(Y; NVARBL):ATRW(NVAKEL), OELTA(NVARBL),PACC(NVAKBL), LSQA
    4 FR(13),PF(1?),NACOLD(13),NACOLF(:3).IFRUM(3),ITU(3),COVAR&3,3)
    5.ICUT(2),IY(2),S1GMB(3),SMUN(2).
    G ANG(NVAREL), IVARGL(NVARBL), IPAFAAA(NUSED),
    7 N(ONP(NCOIM).ICDNS(NCDIM.S),SCMCON(NCOIM),ESTCON&NCOIM)
    ECUIVALENCE (PNAME,SABEI)
    EATA RAJDEG /57.295779513082326
    ISIGN(I)=I/IABS!I!
    ICIGN(
    VAL=10.C/FLOAT(INTS)
    on iv i=1,6
1? YSCALE{IJ=YFIPST+YINC*20.*(I-1)
    AAXIS=MTYPE/2+2
    LCCP=3#NSTNS
    CO ?II=1.NVAFRL
    IK={VARRL\\I)
    PACC(II)=3.3707965150-10
    IF(IK.LE.30)PACC(II)=1.D-5
    IF(IK.GT.30.4ND.IK.LE.5))PACC(IIJ=2.8D-7
2 CONTINUE
2 CONYINUE
ITCHEK=0
    ITNN=I YNO+1
    ATHW(II)=0.00
    CO & J j=1,inop
4 AN(FM(III,jJ)=0.DO
    CN5 JJ=IIONVARBL
```

```
        E ANCRM(II.JJ)=0.OO
C
C INCREMENTS THE ACRMAL MATRIX AND CONSJANT VECTOK FGK PAFANETEK
C CGNSTRAINTS
    IF(NCONS.{O.?) GO rO 57
    CR K I=I,NCCNS
    KCCN=J.ODO
    NOARI=NCCINP!I)
    SICMSM=5G:1CON(1)**2
    OO I J=1,NPAO!
        II={CONS(I,J)
    1 KCCN:%CON+LFLTAT(ISIGN(II))*X(IABS(II))
        hrON=NCON-FESYCN(I)
            m! m J=1.NF.AFI
            jJ=ICCL(IAGS(ICONS(IOJ)))
            JJ=ICCL(IAGS(ICCNS(IOJ)))
            ATFW(JJ)=ATF.W(JJ)-DSGNJ*WCON/SSGMSO
            0! & lK=1,J
            II=ICUL(IARS(TCONS(I.IK)))
            CSGNI=DFLO4T(ISIGN(ICONS(I,IK)))
            n ANORM(1I,JJ)=ANRRM(II,JJ)%DSUNI*USGNJISIGMSO
    G7 IF(NSKIP.FQ.C)EO TO g
            CO a I=1:NSKIP
            A F:-AD(Y,5)\1) JUNK
C
PFRFCRNG A LOCP FOR EACH OBSERVATICN COMPRESSEU A MATRIX COMPUTED
C AND STORED. NORNAL MATHIX AND CONSTANT VECTOR INCKEMENTEO. 
C N!3. NFGATIVE VALUE OF CONSTANT VEGTUR FOR SULUTIUN IN XSLINV
C
    O OO 301 I=1 NOAS
    12 FEAI)(Y,5OQ&) IDYOBS.UTH.UTM.SNAME,BNAME,OBULY,SGMULY,OBFF.SGMFF
    5101 FCFMAT(3X,1Z.2F3.J.1X,43,1X,A&,U18.10.FG.3.U&8.10.F7.4)
c
    LTC=UTH+UTM/GO.DO
        CORHECTION FOR GOJUS TINING ERROR AT PLAYBACK
        UTC=UTC-6O3.D-K/3600.DO
        IF(ICORF.FO.)IUTC=UTC+1.DO/30J0.00
        DO l 3 j=i.NSORCF
    3 IF(SNAME EO.SCNAME(J))JSORCE=\
        CO 2S J=1,NSASE
    25 IF(GNAMEOEQOVENNAME( 1))IBASE=J
        JCASE=IEASF*100
        DO 26 J=1,NSTNS
        IF(SABE31.EQ.SAGR(8*J-7)) JBASE=JOASE*J* 20
        IF(SABB2.EO.SABB(B*J-7))JAASE=JOASE&」
\begin{tabular}{|c|c|}
\hline LSUA & 5 \\
\hline CLSUA & EE \\
\hline CLSUA & 67 \\
\hline CLSUA & 68 \\
\hline LSUA & 69 \\
\hline LSUA & 70 \\
\hline LSu4 & 71 \\
\hline LSCA & 72 \\
\hline LSUA & 73 \\
\hline LSUA & 74 \\
\hline LSUA & 75 \\
\hline LSua & 76 \\
\hline LSUA & 77 \\
\hline l SuA & 78 \\
\hline LSUA & 79 \\
\hline LSUA & 80 \\
\hline LSUA & 81 \\
\hline LSUA & 82 \\
\hline LSOA & 83 \\
\hline LSQA & 84 \\
\hline LSOA & 35 \\
\hline LSUA & 86 \\
\hline LSUA & 7 \\
\hline LSua & ¢8 \\
\hline CLSUA & 89 \\
\hline Cisua & 9 \\
\hline Cl SQA & 91 \\
\hline ClSOA & 92 \\
\hline CLSU4 & 93 \\
\hline LSUA & 94 \\
\hline LSUA & Y \\
\hline LSQA & 96 \\
\hline LSOA & 97 \\
\hline LSuA & 98 \\
\hline LSuA & 49 \\
\hline LSu4 & 100 \\
\hline LSUA & 101 \\
\hline LSUA & 1] 2 \\
\hline LSUA & 103 \\
\hline LSCA & 104 \\
\hline LSOA & 105 \\
\hline LSQA & 106 \\
\hline lsua & 237 \\
\hline LSQA & 108 \\
\hline
\end{tabular}
```

```
            CALL FFW[ILY(X,FPOCHS,CLPDLY,FOFSET(IGASE),OUSFRQ,UTC,NOOLYOICOLO LSUA
            I STAT,JSOKCE,JUASE.IOYOBS,NPAKAM,MTYNE,NPLNS,NAXISNMXEPOC,HRANGL,LSQA
            2 ISFAT,JSGR(E,JOASE,IOYOBS,NPAKAM,MTYNE.NPLINS,NAXISOMXEHOC,HRANGL OLSQA
```


LSca 112
IF MMYPE.EQ.?.NF.SGMFF.EQ.O.DE)GO YO 2\&1
HF=FFMCDL-GOFF
IF(ISSIGMA.EC.O)GO TO 2R
STMFF=OSORT(SGMFF**2+XTRASN(1BASE.1)**2)

```

```

 DO ?7 K=1,IAC\capLF
 27 PF (K)=PF(K)/SGMFF
 2O CGNTINUE
 DN 2G II=1.|ACOLF
 K=NACULF(I!)
 ATFiV:(K) =ATRK(K)-PF(II)*WF
 DR つG JJ=IIIIACCLF
 L=NACOLF(JJ)
 ANCFN(K,L)=AMORM(K,L) +PF(I&)*PF(JJ)
 2G CCNTINUE
 2R1 IF{,1TYPE.FQ.1.OF.SGMDLY.EQ.O.DOJGO TO 301,
V.\Gamma=OYMODL-COSDLY
IF{ISIGMA.EGON\GO TO 31
SG*OLY=DSURT(SGMULY**2+XTFASM\!EASE,NY%**2)
KD=WD/SGMDLY
Cr 3O K=1.IACOL
3) PO(K)=PU(K)/SGMDLY
31 CRNTINUF
OC 32 II=1,IACOL
K=A\COLD(II)
ATFW(K)=ATRW(K)-PO(II)*WD
DO 32 JJ=II, IACOL
L=NACOLD(JJ)
ANCTM(K,L)=ANORM(K,L)+PO(II)*PO\&JJ)
32 COATINUE
3.011 KFITE(11) IDYOBS,UTH.UTM.UTC.JSCRCE. IE3ASE.
I VFFSGMFF,IACCIF,({PF{J),NACOLF(JJj,J=\,IACOLF)*
2 MO,SGNDLY. IACCL. (PD(J),NACOLIS\J)J:J=1. WACOL)
301 RONTINUE
FEEVINO 9
CEV:INO 9
OT 45 II=1.LOOD
I\D\=\I +1
DO 45 JJ=IIP1,NVARGL
4E ANORM(II,JJ)=ANTRRM(II,JJ)\&ANORM\&JJ.I区%
LSUA 1114
2R1
LSua li4
LSUA 115
LSOA 116
LSUA 117
LSUA 118
LSQA 1!8
LSQA}11
LSUA
LSQA iL2l
LSGA l2?
LSQA 123
LSOA 123
LSQA 124
LSQA d25
LSQA 125
LSUA 127
LSuA l23
LSUA 128
LSUA 129
LSQA d30
LSGA 13S1
LSUA 132
LSQA 433
\&SGa 13a
LSuA 135
LSuA lje
LSQA ij3
LSUA 138
LSUA 138
LSOA 13%
LSQA 140
LSu4 141
LSUA 142
LSQA 143
LSQA 143
LSQA }144
LSQA 145
LSGA}14
LSUA 147

```
```

C FIIANATICNOF THE STIUTICN VECTOR ISLLTA, ISJ
FGIFNATICN OH THE SMLUTICN VECTOR (ULLTA)
N:C\capnE=2
CALL XSLIMVRANIFM, ATRW,NVAFHL.NVAKEY,NCOUE.ANS,NET,IUEXP,DELTA)
WQITE(O,GJCG)OFT,IDEXP
OOCEFOFMAT(IHC.OOFTFKMINANT=O,FIS.O.OD.|ISO/. INCREMENTS*
WQYTE゙(E,O?OZ)(DELTA(II),II=1,NVAKUL\


```
CN nG II=1,NVARHL
    L=YValRUL (II)
    X(L) =X (L) +OELTA(II)
    ANS(II)=X(L)
        Ir(חARS(DLLTA(I|)).GE.PACC(II))ITCHEK=ITCHEK+1
    4E CTNTINUE (ILLTA(II)).GEOPACC(II))ITCHEK=ITCHEK+I
    HDITE(5,6)O1)ITNO
6001 FOFMAT(IHO, ITEFATION',I5." PAKAMETERS* /)
    lo, PAKAME
    OR 47 J=1.NSOFCE
    K=31+2*(J-1
        RA(J)=x(K)
    47 DFF({ J)=x(k+1)
    &ITE(6.0:03)ITCHFK,IMAX
```



```
    IF(ITCHEK.GE:I.AN).(IMAX.EQ.O.OK.ITNO.LT.INAXIIGOTO S
    WEITE(6,60OCj
60)9 FOFMAT(1H1)
    CALL INVEFT(ANORM)
    WRITE(6,6O!T)
                                    LSUA 155
                                    LSUA 156
                                    LSOA 157
LSGA is7
LSuA 158
Sua is
Lsua 160
    =YVARSMENVARHL
    SGA let
    SGA 1E1
    SGA
        lt1
    SQA 163
    SQA lもa
    LSuA les
    SGA lEG
    FOHMAT(IHO,'ITEFATION',IS,' PAKAMETERS*, /)
    LSUA 1EO
    -sua de7
    -SQA 100
KRITE(0,ORO3)ITCHFK,INAX
    SuA 160
    LSUA dOS
    LSQA 1770
    LSGA 177%
    SOA 1773
    LOA 173
    LSUA 
    LSOA 175
    LSOA 176
    FCFME(K,GO!7)
    CNLY SINCEFIGORRELATION MATKIX OUPPER HALF OIAGONALLSUA IGI
    ENLY SINCE SYMMETRICN//ノ) LSUA &OZ
        DC 77 I=1.NVARQL
LSUA
    7ATRW(I)=DSORT(ANORM(I,I))
    DO 56 I =i,NVAPRL
LSUA 183
LSuA l84
    ON 7& J=I,NVARRL
LSua les
    LSuA leS
56 WRITE(G,6018) IVAKSLII). ANDFM\I,I):GANS(J),J=I,NVARBL)
LSQA &87
LSQA l甘B
```



```
    FCFMAT ('OVAFIANCE .15.D:5.6.10X. 'GURRELATIUNS:.0/6.0.2OF6.2)J
LSGA 18%
    SUNK=0.00
LSUA 190
    SSOF 1=0.DO
LSGA &GI
    SSQR2=0.00
    SQA &52
    LSQA 192
    SM\cup*'(1)=0.00
    SNUK(1)=0.00
    LSuA 194
    NC&(1)=0
LSUA
    NOP(2)=0
194
```

```
    InuT(1)=0 LSUA 197
        OU(2)=0
        LSQ4 ls 
            MOUT(?)=0
            MO
        5#NHIST(I,j)=0
        LSQA is%
        lsua 200
    LSuA 201
C
C CONFUTATION OF FESIDUALS. LOOP DEF BASELINE; INNER LOOP FCR EACH CLSGA 2O2
C DISEFVATION. FESIDUALS ARE PIOTTED. HISIOGNAM CLASS
C SUN WFIGHTFD FESIDUALS AND PLOT UEDO HISTGGFAM CLASSES ARE INCRENENTED
C
    IK=0
    IK=0
    N1=1K+1
    IK=IK+NOFSSLM(L)
    IK=(!TYPE.t(2.?) GU TO 60
    IF(OGYPE,F(2.?) GU TOGOO
    -LSUA 204
    CLSOA 205
```



```
        IA*STD. ERROR:/IJX,'TINE:OTIOG, SUURCE:/TXO:'##ORESIDUAL,GTOCRITERILSQA 2IS
```



```
            G7 TO 01
        LSua 2ly
    60 WFITE(6,6027) L,VI3NANF(L)
```



```
    (1 WF:ITEGG,5`)2)(YSCALE(I),I=1,0)
6012 FOFMATBSX:GFINGE FREQUENCY PLUT SCALE SMALLER BY TEN*/&X, LSOA 222
```



```
            CALL TSPLOT(YFIFST,YINCOMTYPE,NY)
            ON15 I=NI.IK
            RFAN(1:) IDYNRS,UTH,UTM,UTCOJSURCE, IBASE.
            1 HF,SGMFF,IACOLF.((PFF(J),NACOLF(J))&J=1.|ACOLF%,
            ?.WN.SGNDLY,IACTL.((PD(J),NACOLD(J)|,j=1,IACOL)
            On 1: JJ=1,NY
            |\cap:T(JJ)=0
            Ir(i, j)=0
            FFJCT(JJ)= BL ANK
            VR&(JJ)=C
C TO USE TIME INTERVAL DIFFERENT FRUM & MINUTE USE 60.18TIME INT8+1.5
C CHANGFS RROUINED IN TSPLOT TO HAVE 2 OR MORE OBS IN AN INTERVAL
            IX=((FLOAT(IDYORS)-TOBSI)*24.4UTC-XFIRST)*QU.+1.5
            Ir (1XOLTO1) IX=1
            IF(MTYPE.EO.2.OF.SGMFF.EQ.O.DO)GO TO }3
            NOP(!)=NOL(1)+&
            CN 7G J=1,IARCLF
```

```
7G KF=N'F+PF(J)*DFLTA(NACOLF(J)
    IF(ISI(SMA.[O.I) WF=WF*SGMFF
    Wu=WF%NF
    WDA(1)=SNGL(WF)
    SNUY(1)=SMUW(1)+:N
    II=(Wir4(1)-YFIRST)/YINC+1.5
    IF{MTYPE.NE.C. II= (WR4(1)*10.-YFINST)/YINC+1.5
    IF(II.LT.l) II=1
    IF(II.GT.IOI) II=10
    IV(1)=1Y
    I\capUT(i)=1
    IF(ISISMA.EO.O)GO TO 38
    STD=\}< (il)/SNGL(S;VFF)
    IF(A!3S(STD).GT.(FIT) REJCY(: )=ST AR
    IF(STU.LT.-5.n) SYO=-5.0
    IFF(STD.JE.5.0) STD=4.399
    IHIST=(5.5+STD)/VAL+1.0
    MHISI(I,IHIST)=HIHIST&I.IHISY)&&
    VF=WF/(SGMFF*SGNFF
    ww=wu/(SGOFF*SGMFF)
    SUP星=SUNAN+WF
SCOHI= SSQK1+WN
CNATINUF
IF(YTYTE.EQ.1.OF.SGMDLY.EQ.O.OD) GO TO 14
N\capr(NY)=NDH(NY)+1
CO RO J=1.IACOL
89 KD=:U+PD(J)*DELTA(NACOLD(J))
IT(ISIGMA.EC.I)WD=WD*SGMDLV
W=WL* ViO
WH&(NY)= SNGL(WD)
SMUV:(NY) = SM(IWI(NY) +WW
Cnv=COV+OMLE(WR4(1)*WR4(2))
II= (NH& (NY)-YFIPST\/YINC+1.5
IF(II.LT.I) II=1
IF(IIOGYO1C&) II=10:
IY(NY)=II
I\capUT(NY)=1
IF(ISIGMA.EE.O)GO TO 40
STD=WIR4(NY)/SNGL(STGMDLY)
IF(AHS(STD)。GT,CRIT) REJCT(NY)=STAR
IF(STU.LT•-5.0) STD=-5.0
IF(STD.GE.S.C) ST)=4.990
IHIST=(5.0&STD)/VAL+1.0
NHIST(NY:XHIST)=NHIST(NY,IHIST)+&
```



```
        KC=\mp@code{NO/(SGMDLY*SrM!)LY)}
        WW=WW/(SGMDLY*GGNOLY)
    4?
        SSOR2=SSOF 2+ww
    14
            cra!TINust
            CALL HSPLOT(IX,IY,IMUT)
```



```
0015 FRNMAT(1+0.13.2F3.0.T111.12.2(1PE9.2.A1))
            CIN,I INUE
            KFITE(0.6)&4) (YSC4LF(I),I=1.O&
```



```
    IY DLUT SCALE SMALLER BY TEN:), LSUA
    le CRNTINUE
        SSOWT=0.00
        IF(NCINS.EO.O) GO TO 49
        VHITE(G,GOD4)
GCO4 FCRMAT("OWEIGHTFO CONSTRAINTS RESIOUALS:%
            OO 48 I= L,NCONS
            k=3.05
            NOAOI=NCONP(I)
            SIGMSO=SGMCON(I)**2
            OO }7\textrm{J}=1\mathrm{ ,NPAFI
            II=ICONS(i,j)
```



```
        s=n-ESTCON(I)
        KDITE(6,62O5) W,(ICONS(I,J% & =& NPARI%
    6025
        FUPAMAT(T4;,DIG,6,T&,515)
        SUPAW=SUNW+W/S!GNSO
    48 SSGWT=SSUnT+W*W/SIGNSQ
C CHI-COUARE TEST ON VAR&ANCE FACTON PLUTS HISTOGKAN OF KESIUUALSO
C CHI-SJUAKE GOSDNETSOOF -FIT TEST
    4G DFNMM=DFLCAT(NOF(1) +NOE(2) &NCONS-NVARBL)
            SNACAH=(SSQFl+SSOR2 +SSQWT)/DENUM
            VFITE(O.6JOO:
            VFITE S,GOOT, SMACAP,DENCM
G)\T FGFMAT(OESTIMATEU VARIANCE FGCTUR: ,F17.7/# DEGKEES OF FREEOOM:
    E,F(n.l)
            STO=SNGL (DENOM)
            P=1.O-ALPHA/2.?
            CALL MDCHI(P,STD.STATI,IER)
            F=ALPHA/2.0
            CALL MDCHI\(P,STD.STAT2,IER)
            \subseteqTO=STD*SNGL (SMACAP)
            STATI=STD/STATI
LSQA 301
LSUA 302
LSuA 303
LSUA 304
LSQA 3C5
LSQA 30E
LSQA 306
LSCA 307
LSuA 30B
LSUA 3CG
LSOA 31J
&SOA 3il
LSUA 3:2
LSun 3:3
LSUA
Ci SUA 3!!6
LSUA 316
LSUA 31.7
LSUA 3.1
LSGA 318
LSQA 319
-LSuA 320
LSuA 3E1
LSQA シ22
lsuA 323
LSGA 324
LSOA 325
LSUA 326
LSUA 326
LSUA 327
```

```
            STAT2=STD/STAT?
            IF(STAT1.LT.1.J.AVU).STATZ.GT.&.0) GO TU 02
            WRITE\G,t:2&,J STATI,STAT2LSOA
```

LSUA
LSUA
LSUA LSU 3 3
lsea

$$
\varepsilon, F 16.6, \text { FAlLS:/ノ/ノ) }
$$

$\begin{array}{ll}\text { LSGA } & 334 \\ \text { LSUA } & 335\end{array}$
6？VFITE（G． G ？？己）STATL．STAT2
336
 E＇FFli．6．＇PASSES＇／／／／） LSNA 337
SMUW（I）＝DSQFT（SMUN（I）／（DFLOAT（NOB（！）＋NWTPRM＋NCUNS－NVARBL））） LSUA 339
CHV＝CいV／DFL AT（NDO（1）＋NWTPRM＋NCUBS NVAKBL）
CHV＝CいV／DFL AT（NDO（1）＋NWTPRM＋NCUBS NVAKBL） IF（MTYPF FO ？）ral 1 （ 1 ）＋NWTPRM＋NCHNS－NVAKBL LSuA 340
urite（G，GODG）

```
6O2Q FONMAT(IHO,27X. 'FIRINGE FREQUENCY..3OX. OELAY')
    co TO R&
    EE YRITF(6,EOBY)
    FE YRITF(6,EOBI)
    LSQ4 342
    W{ITE(0,602C)
    LSQA 343
    LSUA 344
```



```
            P 34\times.013.6) LSUA 35C
            IF{ISIGMA.EO.D.CFRONOES.LE.IL) GU IO SS
            LSOA 351
            CAII HISTGMIMTYPE,NY,NHIST,VAL INTS,NCB,ISIGMA, 4LPHA)
C TEANSFORMATIDN CF SUB-MATFIX OF COVARIANCE MATNIX FOR STATIONS INTU
C COVAFIGNCE MATFICFS OF BASELINES
    5G L=?
                C! 21 i=1.3
            DO 2 I J=1.1
    2) CNVAR(I,J)=C.!)O
    VRITE(6,6C13)
```



```
            O\cap 2.4 JJ=2.NSTNS
            IK=iJ-i
            0)24 II=1,IK
            L=L+1
            \cap7?3 IAXIS=1,NAXIS
            IFFOM(IAXIS)=II*3-(3-IAXIS)
            ITC(IAXIS)=JJ*3-(.3-IAXIS)
            crntlNuE
            CO }72J=1,NAXI
            IT j=ICOL(ITO(j))
            IFJ=ICOL(IFFOM(J):
            Co 72 I=1.J
```

```
    COv=C.0C
    ITI=ICOL(ITC(1))
    IFI=ICCL(IFFOM(I))
    IF(ITI.EO.O) GO TO 6%
    IF(ITJ.EQ:O) GO TO 2?
    IF(ITI.GT.ITJ) GO TO 7
    COV=CUV+ANOFM(ITI.ITJ)
    GO TO 22
    76 (OV=COV+ANOHM(ITJ.ITTI)
    22
    F(IFJ.LO.O) GO TO 6R
    IF(ITI.GT:IFJ) GO TO 67
    CRV=COV-AROORM(ITI,IFJ)
    G7 TO O& 
    6?
    &
    IF(ItI•EQ.0) GN TO }7
    IF(ITJ.EQ.O) GO TO }7
    IF(IFI.GT.ITJ) GC TO 69
    CNV=COV-ANCQM(IFI.ITJ)
    GO TO 70
    6g c~V=COV-nnornm(ITJ,IFI)
    O IF(IFJ.EQ.D) GO TO }7
    IF(IFI.GT.IFJ) GOTO TI
    COV=COV + ANOFM(IFI,IFJ)
    GOTE }7
    I COV=COV +ANOFM(IFJ,IFI)
72
    CNVAF(I.J)=COV GOTO 74
    CO(MTYPEONE.L
    COV3 I= 1, 2
    74 c) 75 1=1,NAX1S
    75 AN:S(1) = DSOFT (COVAR(1,1))
    MPITE(6,601G)L,(((COVAR(I,J),J=1,3),ANS(I)J,I=1,NAXIS)
```



```
        FASFI=DSQRT&XRASE(L)**2+YBASE(L)**2)
        SNLDNG=( YRASE(L)**2*COVAR(1,1) + XEASE(L)**2*COVAR82.2% - 2.DO *
    P XFASF(L)*YFASF(L)*COVAR(1,2;);
        SMLONG=KAODEG*OSRRT(SMLONG)*36J0.00/BASEL**2
        SMFQL=USOKT( ( XEAASE(L)*#2*CUVAR(1,1) + YUASE(L)**2*CUVAR(2.2) + LSUA 412
```



```
    FRITE(G,GO20) SMLUNG.SMEQL
6020 FRFMAT(IHO.2IX.'LJNGITUDE (SECONUS ARC) EQUATGRIAL LENGTH &KM) DLSUA 4,G
```



```
C
```



```
C CALLED aY
```



```
    2 MTYFE:OISIGMA,NY.NSTNS.NSKIP.dCO.EK
    3. SAFEl(4C)
    CrnMCN /laivara
    IFA(1O),DEC(10), XBASE(1O),YEASE(1)%),ZESASE(10),CFFSET(5),HEIGHT(5),
    ¿UTPOLY(3),XHCLF,YPCLE,OMEGA.TULSSI.
    3NCF(1)), JOJANO.NGASE,NSORCE. IT IDEE.ISAME.NOBS,IMAX
    CRMMCN/STNASE/GABRIOSABBZ
        CR*"ALN /STATS/ CSIT, ALDHA
        CINFNSIGN RLAT(E),RLONG(5).
    1 X (NPAFAM),(LPOLY(G,NPLNS): EPUCHS(1O,MXEPUC) &NOOLY(NPLNS). NU&K
    2 I CRL(NPAFAN),ISTAT(NPARAM).
    3 ANCRM(NVAKRL,NVARFBL),ATRW(NVAKBL), DELTA(NVAFBLI, PACC(NNVAFBLZ.
```



```
    7 N(OrP(NCOIM),ICONS(NCOIM,5;.SGMCON(NCUIM), ESTCON&NCDIM)
        DATA AMAX/GMAX //, AOICT/4DICJ!/
        WPITE(E.GOOR)
            KD由R
    CCNMAN/LGIVARI
    KOHK
    kUWr
    RObw
    HOWR
    RO#R
    RU*र
    mU#R
    FODN
    FOWh
    MU#K
```



```
        D? 1 K=1,NPARAM
        ISTAT(K)=C
        ISTAT(K)=C
        ICC\capL(K)=?
        FFAN(5:5001) ((IPARAM(K):ISTAT&IPARAN(K))).K=1.NUSED&
    5001 FORMAT(13(14.12))
C THIS IROD OFFIVES "COMORESSED A MATKIX" GOLUMN NUMEERS OF ALR
C VARIABIE PARAMETERS
            I=?
            ON 2 K=I, NUSED
            L=IOA:२AM(K)
            IF(ISTAT (L).LT.2)GO TO 2
            I=1+1
            ICRL(L)=I
    2 CRNTINUE
        IF(I ONE ONVARBL YGU TC SQ&
        IF(YNFIXED+NVARHL, NE.NUSEDS GO TO }99
        FFAD(S,5002)NTYPE.ITIDF.ISIGMA.IMAX.ISAME.ICOKR
    FCFMAT(3(11, iX),I2,1X,I1,1X,I&)
    AY=1+MTYPE/S
        IF (NY.EQ.1) ISAME=0
    FOUwR
    G ANG(NVAR[DL),IVARI?L(NVARRL), IPAKAMGNUSELD),
        KDAR
    FO&R
    FO%R
        KU&「
        KDWir
        3.VEMSIUN: U.N.B. MAY 1990./SUX.24('-'))
        KOWG
        KMONK
        kOHK
KU&R
        RU|f
FOU##
(ku)b
            CVARBL(II)=L
CKOwR
    CHOWR
    FOHK
    RO#R
    RONK
    Gu#H
    GUOHR
    GDNK
    KO出K
    KO为年
    FONM
    KU#R
    KOAR
    KD的冷
        ISAME
    MOWR
    INOUT
    KD#K
        INPUT SET SHCULD GE AFTER NBASE COMPUTED, THEN LOOP TO NEASE(8%
        IF(ISIGMA.EO.1) KEAD(5,5003)(XTFASMM(K,1),K=1,8)
        KD#K
        CRDsik
        IF (MTYPE.EEQ3.AND.ISIGMA,EGOI)RE4U(5,5003)(XTKASNGK, 2), K=1.8)
    KUWF
25
26
20
25
30
31
```



```
RU&i人
kUNG
ROw'r
```

```
5)\3 FOFMAT(BF10.5)
    F-^N(=, 50@4) SEG\!)
```



```
    FFAO(5,5CO5, חOSFRO.JDJANO
5005 FCFMAT(F10.S.T1F.IIJ)
    F=AD(5.5S:(%) THBS!
5006 F\capF:NAT (F15.5)
    FEA!(S,5UC7)XPMLE,YPCLE,CMEGA,(UTPCLY(K),K=1.3)
    FHfkAT (30?0.5/3n20.5)
KFTTE(G,G)OI)SESION.UESFGO,XHULE,YFCLE,OMEGA,(UUPULY(K).K=1,3)
    ROWR
    <OW%R
    RUH/
    ROw
    RU*R
    RUAK
    RU**
    ROWR
    <UNR
    KDwh
```



```
    3-:UTI-UTC POLYVOMIAL COEFFIClCNINS: *1P302S.16)
        IFINCUNSOEQ&?
6)\6 FOFMAT(IHO: PARANETER CCNSTRAINTS USED:*)
HAN NUMBER (0,I5**)!)
    NCNP(I),I=I NCONSJ
    NCENO(I):I=1,NCONS
    FOFMAT (26I3)
        DC O I=1,NCCNS
        =NCCNP(I)
        F=AD(S,SO11) ESTCON(I),SGMCON(i),(ICONS(I,J),J=1,K)
    G UR̈ITE(Ó.5011) ESTCONII):SGMCON(i): (ICONSGI,jJ,J=1,K%
5\1 FORMAT (D25.1E.010.3.9I5J
    10 CONTINUE
        CHSFFO=OESFFO*1.06
        CALL STNGEO(X,NPARAM.NSTNS.RLAT.RLONG.SABG.VENAME)
        .7 3 L=1.NRAS:
    3 FE\triangleD(5,50\8) FOFSET(L)
    FOHMAT(F10.4)
        CO 4 L=1.NBASE
        FFA)(5.5C.5G) NCPQL)
5??G FMRMAT(II)
        K=NrF(L)
        IF(K.GT.1)FEAS (5.5010)(EPOCHS(L., J), &=2,K)
5010 FRWMAT (4DOC.10)
    4 EtMCHS(L,1)= YORS
        FEA\(S.5COC)(NPOLY%L).L=1.NPLNS)
        OO }5\mathrm{ L=1,NPLNS
        J=NDCLY(L) +1
        CO 5 I I=1,J
    5 CLPNLY(II:L)=0.00
```

```
    CALL SIJUKCF(NDAFAM,SCNAME,KA,UEC,X,NSORCE) ROAK &&3
        WRITE(6.50C2)
    RDWR 1144
KCO2 FrFiNAT(:1:)
    I=?
    HO}~KK=1.N
    IF(NTYPE.NE.2.AND,KK.EQ.1)WRITE(O,6003)
    NOWス 115
    kUnG &ig
    RU的 117
```



```
        IF((MTYPE.EQ.?.AND.KK.EQ.1).UN.(MTYPE.EO.3.AND.KK.EEQ.2)J#RITE(6.GOKNWR ICO
        04)
6004 FCFMAT(:-.53X. DFLAY')
    MOHK &2!
    0004 FCFYAT(0-".53X. DFLAY`) & K2
```



```
        J=5!
    KUWR 125
    IF&KK.E゙Q.2.AND.ISAVE.EO.I:J=ち&+ち#NPLNSノZ
    BO G K=1,NBASE:
    LL=N(P(K)
    VRITE(6,0)00)VBNAME (K)
SCOS FOFFMAT (33x,A4)
    CO G L=&.LL
    I = I + I
    II=NPOLY(I)
    jj=J+II
    YRYTE(B,6)OT)L.FPDCHS(K,&),J,JJ
```



```
6 J=IJ+E-II 
6 J=IJ+E-II % VFITEKGGJOEIIIPARAM(K),K=1,NUSEU)
```



```
    IF(NTYHE OEO.1)VIRITEE(0.6JO9)
        IF (NTYHE OEO.1) WRITEE(6.6309)
        IF(NTYPE EQ:3)WPITE{G;GSII)
6)O FORNAT(:OFRINGE FREQUENCY DATA ONLYQ%
6O10 FOFRMAT "-": DFLAY OATA ONLY")
GO11 FORMAT(##:FRNGE FREQUENCY AND DELAY DATA:%
        IF(ISIGMA.NE.1)GOTOT
        IF(ISIGMAONE
    KOWH 127
    lown
    KUWR 12G
    RUWR & S% 
    KOWR 131 
    KOWR &S2
    KDNER 133
    RU*N 134
    rowir l方方
    GNH 130
```



```
ROWF
```



```
FOUWR &40
KOAR :4d
KOwR 1422
```



```
6912 FORMAT, 148
```



```
EO13 FOFNATICO/AIX.INPUT FRENGE FREUUENCY VAHIANCES FOR BASELINE O. FOWK, ISZ
```



```
    J=MTYPE-1 , NOWR IS4
```



```
    E|NAASE:
KDयF
```



```
    7 ECRIY (8,D15.7.1)#&20)) NUWR ISO
    7CNTINUF,
```



```
    FEAN(5,'5S1i)NSKIP.NOBS. (NORSLN(K),K=1.NGASL)
5911 FEFMAT(BILO)
    IF(NUPDT.EQ:O) GC TO 28
    KRITE(0,6O2%)
```



```
    C!J 27 J=1.NUPNT
    FrAG(5,5016) K.x(k)
    WOTTE(E.5016) K, K(k(k)
5016 FOFM4T(15,5x.0)?5.16)
    IF(K.LE.30.(R.K.GE.SI) GOTO 27
    JJ=(k-30)/2
    IF(K/2#2.NE,K) GO To 26
    CEC(Jj)=x(K)
    GO TO 27
    26 FAN(JJ+1)=x(K)
    27 CONTINUE
C CONPUTFS UUTLYING RESIOUAL CRITERI&.OECKIT
    2 FEAI)(5.5CIE)AMAXI,AMAX2,ALPMA.XFIKSTOYFINSTOYINC,CRIJ
    5)15 FOFMAT(2A4,F7.4.6F10.6)
        IF(AMAXI.EQ.ADICT)GC TD ?5
        K=ACUS-NVAFRL+NWTPRM+NCCNS
        IF(AMAXI.EO.AMAX)GO TO 23
        IF{ISIGMA.NE.1) GO TO 22
    P=1.0-4LPHA/2.?
    CALL. MDNKIS(P,CDIT,&ER)
    GO TC 25
    22 DALDHA=DRLE(ALPHA)
    CALL TAURE(I,K,DALPHA,DCRIT:
    CRIT=SNGL\DCRIT)
    GO TO 25
    23 ALFH=ALPHA/FLOAT(NOBS)
    IF(ISIGMA.NE.&) GO TO 24
    F=1.0-ALPH/2.0
        FALL MDNRIS(P.CRIT.IER)
        GO TO 25
    24 CALDHA=DBLE(ALPH)
        CALL TAUFE(I*K,DALPHA,DCRIT:
        CRIT=SNGL(DCPIT)
    25 KRITE(6.6027) ALPHA,AMAX:.ARAX2,CRI年
        RUWH }16
        KOWik lel
        KUKR lGZ
        ROWR 103
        KOWR 164
        ROMR 104
        RU的的 }16
        KU#R lEG
        HOWrs }16
    kuwir leg
    kunk 16%
    funk i>0
    &ukí 171
    GOWR $72
    ROWFR 173
    KDAR 174
    ROwR $75
    RUNR $75
    KU#R 175
    KOWK 177
    Chowie 178
    ROdiv 179
    HDWN & 80
    Fowir 18!
    KDivk 182
    NONR 183
    KUNFR 184
    RUWR I IS
    RUWK 180
    KDWK d80
    MuAR lE%
    Ruwr deठ
    KUWF l89
    kU的R IGS
    kU#R 19!
    kDwk is2
    ROWite 193
    RDWR IG&
    RO\AR & YS
    KDNR. IGE
    FOHK 197
    RDWN}19
    KOWHK IYG
    KUWK &Y%






















































```

 WFITE(E.6C23) STMER
 OO23 FCNAAT(*+',Y4E,FIIO.G." SECO)
GOTO 20
21 crivTINUE
CHEGG=NULL
FMINS=OABS(Y(L)-DFLOAT(IDEG))*00.00
1NINS=F2MINS
FSFX=(RMINS-UFLCAT(IMINS))*60.DC
WFITE(0.601O)L.IOEGOIMINS.FSEX

```

```

 IF(ISTAT(L).LT.P)(go TO 20
 IF(ISTAT(L).LT OP)GO TO 2O. NCLL(L)))*3600.00
 STREK=OSORT(GNOFM(ICCL(L).ICLL(L)))*3600.00
 0つ24 FCFMAT(%+0.T45,F1).S." SEC.)
 GCFMAT(%
 G WFITE(O,GO2O) L,X(L)
 602? FCFMAT(1H0,I5,5X,D\&7.7)
IF(ISTAT(L).LT.2)GO TO 20
STPrF=OSQRT(ANORM(ICCL(L), ICUL(L)):
YFITE(6:6025) STDER
6025 FCFMAT(E+',T4F.DIO.3)
cratTINUE
CALL BLNOUY
CALL BLNOUY
Gc \& HTITE(6.6992)
GCE WRITE{6,6992% FARAMETERS GIVEN AS VARIABLE STATUS DO NOT SUM TO NVANKUMR 2TS
GGG2 FORMATV OPARAMETERS GIVEN AS VAFIABLE STATUS DO NOT SUM TO NVANKUYR 2TJ
EPL')
FOFMAT, "- "NFIXED+NVARBL DOES NOT EQUAL NUSEDO:
cOATINUE
FETURN
FETURN

```

```

C COMFUTES THE REJECTION LEVEL FOR NORNALISED RESIOUALS FOR A GIVEN NUTAUK
NT - NUMGER CF OGSERVATIONS
NU - DEGREES OF FREEDCM

```

```

 HEFEFENCE: A JO POPE ($G7G) - TTHE STATISTICS UF RESIDUALS &ND THE TAUKKO WR
    ```
＊）K
```245
MUAKKu wh
KOHF 249KD かKRDAR
KUWR
KOHR
 F<Owti
 RDWH
 MDWF
HOWK
HOWK}225
Hurir 254
FUWR 260
RD&R
KDWR
kOwh
KUWK
RUWR
kU#F
RD凶K 2も5
KDoth 266
KDWR
KKOHR
KDMR
K唏R
KDMR
ROWR
KDWR
RD*
\(广 A \cup R\)
 PARAMETERS
 l uur
 AUk
$
 GO TC OO90
ROWR 275
Q (a)
73
74
276
276
245
 KO\mp@code{N}
KUWF
 251
C*)
```



```
4 7
 248
 249
 250
 < 250
 251
253
254
CDWFS 256
261
l}20
203
KOWR
267
68
69
56
57
58
59
54
C73
74
 3
```

[^0]$\square$


$F D=$ ? $1 P i$
$s=1$ 。
$W N U=N U$
$U=K N U-1$.
IF' U.EQ.C: , GN TO 72
IF (ALPH.FQ.? ) GO TO 72
IF (ALPH.EG.? ) GO TO $7 ?$
IF (ALPH.LT.1., SOTO 10
CDTAU $=0$.
$C$
c
FF TURN
$10 \mathrm{Q}=\mathrm{NT}$
IF (ALPH.GT.O.5 ) GC TO 19
$A A=A L P H / 0$
$C F L T=A A$
00 18 i $=1.100$
$\times \mathrm{I}=1$


$19 A A=A A+D E L T$
$194 A=10-(10-A L P H B * *(1.10)$
$2 C P=10-A A$

$F=1.3862943611199-2 . * D L O G \& A A)$
$G=$ OSQRT(F)
$X=G$ (2)
$X=G-\$ 2.515517+0.802853 * G+0.010328 * F 1$

$y=x * x$
$\hat{A}=X_{*}(10+Y) / 4$.

    \(\begin{aligned} A & =X *(10+Y) / 40 \\ R & =X *(30+Y *(160+50 * Y)) / 960\end{aligned}\)
    

$F=x *\left(-4450+Y * 1-19200+Y * 114820+Y *\left(776^{\circ}+790 * V 1\right) 181921630\right.$
$V=1 \cdot / U$
$T=x+V *(A+V *(B+V * \& C+E * V)))$
$s=T / D S Q F T(U+T * T)$
$U M=U-1$.
$D E L L=1$.
$O C 70 M=1.50$
$H=1 .-S * S$
$H=1.0^{-}$
$R=0.0$
taur
taur
TAUK
taur
TAUR
I AUR
TAUR
TAUK
TAUK
TAUK
TAuk
taur
CDTAU $=0$.
tAUK
TAURK
TAURE
TAUR
taur
TAUR
TAUR
TAUR
TAUR
t AUR
TAUR
TAUR
JAUR
TAUK
TAUR
TAUR
TAUR
TAUR
TAUR
TAUR
TAUR
TAUR
T \& UFR
TAUR 33
TAUR 35
TAUR 39
tavi
TAUR
TAUR al
TAUR 42
rAUK 43
\% AUK 43
raUK
tAUR
TAUR
$T A U R$
$G A U R$
TAUR
TAJR
TAUR
TAUK
t AUR
TAUR
tAUR
TAUR

```
 IF (DIACD(U.2.DN).EQ.0.0) GL TO &9
 CD = DSORT(H)
 N = 0.5*UM
 Cn 45 1= = N
 z=2*I
 F}=\textrm{K}+.0
 C=DD
 45 RO=.3D*H* (Z/(Z+1.))
 R=PO*(R*S + DARSIN(S))
 O}=PD*D*U
 GO TO El
 4G RD = 1.
 N=0.5*U
 On =5 I = 1.N
 z=2*1
 F=R+OD
 C=DD
 うE C! =)D*H*((2-1.)/2)
 F}=F%\mp@code{F
 C=O*UM
 el crinitiNuE
 CRL = (P-R)/D
 IF(D4BS(DELNDELL) .GT.O.5) GO TO 72
 CELL = DEL
 c=S + DEL
 IF(DABS(DEL, LT. &.D-8) GO JJ 72
 70 cONTINUE
 GO TR 72
 71 ¢ = NSIN(P/\nuD)
 72 CRTAU = S*DSQRTPANUS
 GETURN
 END
 SURPOUTINE TSPLOT|YFIRST,YINC,MTYPE,NY&
c
TSFLOT OLOTS DLY AND FF RESIDUALS AGAINST TIME FOR EACH BASELINE.
C TIMF SCALE IS DOWN THE PAGE:RESIDUAL SCALE ACROSS THE PAGEO
C IT IS RASED ON TSPLOT BY H.B.LANGLEY SCALE ACROSS THE NOMOUR IYTO.
C IT IS RASED ON TSPLDT GY H.BOLANGLEY &G NOVEMUER 1979.
C CALLID IN LSQADJ - TSPLGT INITIALIJES FOR A BASELINE
C CNOL
-ENTRY RSPLOT PLOTS RESIDUALS FOK EACH OBSN. TIME
C INFUT PAFAMETERS
 YFIRST EXTREME NEGATIVE VALUE GF RESIDUALS TO BE PLOTTEO
 YINC INCREMENT PERO PRINTER SPACE ACROSS PAGE
```



```
C IX LINE NUNARERRRON START TIME OF PLOT
ICUT DENTTES ORISNNCE OF DLY ANO FF RESIUUALS FOR TIME POINT
0.A. DAVIDSIN MAY ISOU
 FE AL*4 YFIFST,YINC
 LOGICAL#1 STRING(121)
 LSGICAL*I LINE/*|'/ORLANK/*!/
```



```
 INTFGER IOUT(2),IY(2).IXOLD.IYLERO.I
 I XOL:D=1
 IY7FFOO=1.S-YFIFST/YINC
 IF(MTYPE:EQ.2) SYABOL(1)=SYMBOL(2)
 FETUFN
 ENTRY RSPLOT(IX,IY,ICUT)
 fF(IX.LE.IXCLD) GU.TO 2
 IF{IX-IXOLV.LT.20)GGO TO 5
 IXPLD=IX-3
 HPITE(6,6003)
6003 FOFMAT(///////)
 IXM1=I X-1
 CO 1 K=I XCLD,IXMI
 1 WHITE(6,60O1; LINE
6001 FCRMAT (T10.41) ,INE
 CONTINUE
 STFING(1)=LINF
 STRING(101%=LINE
 STRING(IYZERO)=LINE
 OD 3 K=1,NY
 IF(IOUT(K).EQ.C: GO TO 3
 STFING(IY(K))=SYMEOL (K)
 ? CTNTINUE
```




```
 \varepsilon)
 KRITE(6,5)02)(STEING(K).K=1.101)
600? FCFMAT(TIO,1J:41)
 OO & K=1,NY
 4 STRING(IY{K):=BLANK
 I XCLD=1 X + 1
 FETURN
 END
CISPL
6003 FOFMAT(/1/1/)
2 CONTIN(10.41)
 ISPL
 TSPL
 r spi
 T SPL
 TSPL
TSPL
END SNOSL
TSPL
12
C
CiF COSGRVATION YYHOSS IF EIYHEK & UK 2
CISPL
CrsML
CTSPL
CtSNL
CTSOL
CTSPL
CTSPL
\cap\cap\cap\cap
 CTSPL
 TSPL
 TSMPL
 TSSPL
 TSPL
 TSME
 ISPL
 ISML
TSML
TSPL
TSPL
TSPL
TSPL
TSPL
12
13
14
10
18
19
20
21
23
l
24
26
 TSPL
6003 FOFM1AT(///////)
YSPL
YSPL
TSFL
TSPL
27
28
28
24
30
31
32
3.3
34
34
30
3%
38
38
39
40
41
42
43
44
45
45
46
48
48
49
50
```


## 

$\stackrel{C}{C}$

```
CHCLESKY INVERSION ANO SOLUTICN.
```


$C X \leq L$
CXSL
CXSL
CxSL
CXSLI
CXSLI
Cx CL
CXSLI
CXSL
CxSL
CxSL
CxSL.
CxSi
CXSL
CXSL
CXSL
CXSLI
CXSL
C×SL
$C X S L$
$C X S L$
CxSL
$C \times S L$
$\times S L$
$\times S L$
$\times$ SL
$\times 51$
$\times 51$
x らし
XSL
× SL
XSL
$\times$ SL
$x$
$\times S L$
$\times 5 L$
$\times$ XL
$\times 5 \mathrm{~L}$
×
$\times S L$
$\times$ SL
$\times$ SLI
$\times 51$
$\times$ SLI
$\times$ SLI
$\times$ SL
XSL



```
 NUMOER FOR PARA
 CFT=CET+DLOGIC(T(I,I))
 x >LI
 T(I,I)=0SORI(T(I.I))
 cENTINUE
 IDFXP=OET
 R\capART=DET-IDFXD
 AFART=DABS(RPART)
 IF(APART.GE.1.D-2j)GO TO Q
 DET=1.DC
 GOTC 2
 GOTC'21
 CET=13.00
 CNMNCDE EODII
 |EQ.11 GO TO 10
 OVARO SUBSTITUTIRN...
 D(1)=0(1)/T(1.1)
 CO 5 I =2,N
 SUN=0.000
 k=1-1
 CO 5 J=1.k
 SUM= SUM+T(J.I)*D(j)
 E(I)=(3(: %)-SUM)/T(I.Ig
 EACKKARD SUBSTITUTION..O
 x(N)=U(N)/T(N,N)
 N=N-1
 CN R I=1,M
 SUM=C.ODO
 j=N-I+1
 L=N-I
 DO 7 K=J.N
 SUM=SUM+T(L,K)#X(K)
8 X(L)={D(L)-SUM)/T(L.LD
 IF(NCODEOEO.2)GO TO 20
 IFINCODEOEQ:Z)G
 ON 17 j=1.N
 Cn 17 j=1,N
 DO i7 &=1;j
 IF(I-LT.J)GOTO 15
 G(J:J)=:0000/T(J.J)
 G% TO 17
 SUN=0.0DO
 M=j-1
 OO 16 K=8.M
16 SUM=SUM-T&I,K&*T&Kg&&
```

[^1]

```
N <ron
```


[^0]:[^1]:    のかローNMかにかっか
    

    」 J J J J J J J J J जn जn जninven ज $\times \times \times \times \times \times \times \times \times \times \times$

