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ABSTRACT 

Nany of today's engineering surveys require relative 

positional accuracies in the order of 1/100 000 or better. This means 

that positional observations must be very accurate, ancl that a rigor­

ous geodetic approach must be followed. 

This thesis is directed tov1ard the geodetic aspect. Chapter 

2 reviews the geodetic models and coordinate systems available. For 

an engineering survey requiring high relative positional accuracy a 

local p_lane coordinate system and a geodetic height system, both 

based on the classical geodetic model, is the appropriate choice. 

Chapter 3 reviews the well known geometric and gravimetric effects in 

a local coordinate system. 

Specia·l emphasis is placed on methods to determine deflections 

of the vertical in chapter 4. It was felt that a contribution could be 

made if a simple method could be developed to determine deflections, 

which describe variations in the gravity field. (Very often the 

effect of variations in the gravity field on survey observations are 

neglected only because they are difficult to determine,') Such a 

method was developed by the author by applying a difference method to 

the usual astrogeodetic deflection determination. The method is very 

simple and practical, and field test results indicate it is accurate 

i i 



to 1" to 2". Extensive field work associated with the use of 

trigonometric levelling to determine local deflections led to 

inconclusive results because the effect of vertical refraction 

could not be isolated. 

Chapter 5 shows the application of the material presented 

in the first four chapte"s, Nith emphasis on the effect of deflection 

of the vertical. The two problems considereu show that often, even 

for engineering surveys requiring high accuracy, the effect of 

variations in the earth•s gravity field can be safely neglected. This 

however can only be determined by analyzing each problem using 

accurate deflection components to estimate the effect in the horizontal 

and a small number of gravity values to estimate the effect on heights. 

Being able to easily-define the local gravity field a priori 

by the astrogeodetic difference method will probably have its best 

application in situations in which the local variations have their 

greatest effect, for example in the determination of heights in a three­

dimensional conrdinate system and in the determination of horizontal 

· positions with inertial surveying systems. 
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1. INTRODUCTION 

1.1 GenP.ral 

Throughout history there has been a nted for engineering 

surveys. The accuracy requirements of most were such that no special 

effort or knowledge was r~quired to execute them. There were some 

problems however. that taxed the best minds of the day; the setting 

out of a long tunnel is the classic example. Today this same 

problem would challenge the abilities of any.surveying engineer. Two 

other exam:-'les of modern day projects requiring engineering surveys 

of high accuracy are the setting out of nuclear accelerators and the 

alignment of a straight line in space for the positioning of the 

aerials of a radio telescope array. 

Today's demand for engineering surveys of high accuracy has 

been matched by advances in survey instrumentation. With the advent 

of EDM, angles and distances can be measured with comparable accuracy; 

with careful use of ro~tinely available equipment both can be measured 

with an accuracy greater than 1/100 000. Using proper methods of 

network design, measurement and adjustment, relative positional 

accuracies of the same order can be attained. 
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If relative positional accuracies of the order of l/100 000 

are actually to be atta ir.ed, a rigorous geodetic approach must be 

follm'led. This means that for even small project are·as the effect of 

the e 11 i psoi da 1 shape of the earth and the effect of the earth's 

gravity field must be accounted for. Although th~s-e two effects are 

inextricably linked, they are most often dealt with separately. In 

this thesis the same approach will be ;·allowed. 

Throughout this thesis reference to engineerin_g surveys 

requiring high accuracy will imply relative positional accuracies in 

the order of l/100 000 between locally stable points. Special 

eng-ineering surveys concerned with the movements of points will not 

be considered. 

1.2 Engin~ering Surveys and an Integrated S~rveying System· 

_Much work has been done in recent years to develop a workable 

survey control frc.mework for position - related information at a 

regional or national level. This survey control framework and the 

position related information tied to it is generally referred to as 

an integrated survey system. 

In order for int~grated systems to_ operate for maximum 

benefit all surveying and mapping activities should be tied.to them. 

For routine engineerins surveys requiring relative positional accuracies 

in the order of l/10 000, the survey control framework of integrated 

survey systems could be used directly as control. For engineering 

surveys requiring relative pGsitional accuracies in the order of l/100 000 

or better, the survey control framework of integrated survey systems 

might not be adequate. 
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One reason that control points of integrated surveying systems 

might not have relative positional accuracies in the order of l/100 000 

is that the expense of attaining these accuracies is not justified 

for tre vast majority of users of the system. Another p~ssiL·le 

reason is that integrated survey sys-tem networks may use a "higher 

order" network, for example the national geodetic network, as fixed 

and errorless in the adJustment of the integrated survey system· 

network and thus be distorted. 

Use of the first order national geodetic network directly 

may also not solve the problem. In North America readjustment of 

the national geodetic networks· is currently-underway. This readjust-

ment will remove distortions in the network, but according to 

proposed specifications [Surveys and Mapping Branch (EM~). 1973] 

first order networks will have relative positional accuracies of 

about l/50 000 in terms of thr. semi-majcr aYes of the relative error 

ellipse at the 95%. probability level. As stated by Linkwitz [1970], 

experience in Europe indicates that conventi0nal geodetic networks 

may not be suitable engineering projects: 

"Most conventional geodetic networks have been designed 
measured and adjusted with overall homogeneity in mind. 
Often this quality makes them unsuitable for controlling 
engineering projects 1'/here high local precision is required 11 • 

An alternative then, for engineering surveys requiring high 

accuracy, is to adopt an appr·opriate geodetic model and local coordinate 

system. The local system could be tied to an integrated survey · 

system if required but the observations used to make the tie would not 

be'used for positi~n determinations in the local system. A disadvantage 
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of this approach is that coordinates {and their accuracies) from 

another coordinate system could not be utilized as additional information 

for position determinations in the local system without a transfo~mation. 

The use of coordinates as observations {additional 1nformation) is 

discussed in ChrzanmoJski et al [1979] and Vanicek and Krakh-1sky [in 

prep]; 

In revie\Jing the literature on engineering surveys requiring 

high accuracy it was found that only rarely,outside of Europe, is this 

approach followed. Often it seemed that only the mystique surrounding 

geodesy prevented those responsible for the survey control from 

attaining better accuracies. 



2 .. A GEODETIC MODEL AND COORDINATE SYSTEM 

2.1 Choices of Geodetic Models 

A geodetic model of a set of points on the surface of the 

earth consists of a definition of a coordinate system and its location 

within the earth, and the coordinates of the points in this coordinate 

system •. 

Basically, there exist two different approaches to the 

problem of geodetic positioning. One approach regards the points on 

the surface of the earth as being perpetually in motion with respect 

to each other as well as with respect to th~ coordinate system. In 

this model the coordinates are therefore time varying and the model 

is four dimensional: three coordinates specifying position, and 

one coordinate specifying time. The other more conventional approach 

treats the positions of the points as permanent with respect to 

the coordinate system. 

2.1.1 Time Varying Model 

The ultimate goal in geodesy is to be able to provide 

instantaneous positions of ground points as they vary with time 

[Mather, 1974]. 

5 



6 

Ground, or more generally, surface movements can be due to 

three effects. These three effects are earth tides, sea tides loading, 

and aperiodic surface or crustal movements. 

(i) The earth tides. This is a global phenomenon. It changes the 

shape of the earth so that a point on the surface of the earth can 

oscillate as much as -15 em to +30 em with respect to the center 

of mass of the earth. 

There is also an annual distortion of the earth's surface 

caused partly by earth tides but mainly by atmospheriC variations. 

Very little is known about the geodetic effects of this distortion. 

(ii) Sea tides' loading. Sea tides are a more complex phenomenon 

than earth tides. Only at tidal stations can sea tides by directly 

measured, and in .order to predict the lJading at a point on the 

surface of the earth, the distribution of sea tides mu~t be known 

over a large area. In addition to this the elastic properties of 

the earth's crust must be well known. For these reasons, the degree 

of reliability in predicting distoritons caused by sea tides' loading 

is low. 

One sea tides loading prediciton gives a semi-diurnal (12 

hour) loading effect in the immediate vicinity of ti1e Bay of Fundy 

of several centimeters vertical. The associated grount tilt 

is ahout 0~1. both of these effects fade waay inland. It 

should also be noted that the sea tides' loading effect in this 
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area probably would be the largest experienced anywhere in the world 

since the Bay of Fundy experiences the world's highest tides. 

(iii) Aperiodic surface.or crustal movements. All other surface 

movements have .bren lumped together i11to this category only because 

they do not show a regular variation with time. These movements can 

be further divided into movements due to crustal loading (other ~han 

.sea tides' loading}, movements due to tectonic action, movements due 

to man's activities and movements due to other causes. 

Movements due to crustal loading are predominautly vertical 

movements. The loading (or unloading) causing this movement may be 

due to a large water reservoir, a large city, sediments depos.ited 

or material eroded by a major river, post glacial isostatic rebound, 

or other factors. Tectonic action refers to movements of large 

plates of the earth's crust on the upper mantle material. These 

movements have recently become the subject of vigorous resea~ch, 

for example the movements associated with the San Andreas fault in 

California. Movements due to man's activities could be ground 

consolidation due to withdrawal of fluids such as oil or water, or 

ground swelling due to fluid waste disposal. Man's activities 

.,.C.ould also cau·se landslides,and subsidences following mining exploitation. 

Movements due to other causes would include thermo-elastic deformations 

of the earth, about which very little is known quantitatively, and 

regional anomalous uplifts or subsidences of no immediately 

explainable origin. An example of the latter is the vertical 

movement in the Lac St. Jean area of Quebec [Vanicek and Hamilton, 1972]. 



Before concluding this discussion of surface movemerts, the. 

long term movement of mean sea level should be mentioned )ecause mean 

sea level is commonly used as a height datum. Studies have shown a 

eustatic (world mean sea level) rise of the order of 10 em per century 

[Holdahl, 1974]. 

2. 1.2 Contemporary Three-Dimensional Model 

In this model the coordinate system is three-dimensional and 

the positions of points are considered invariant ~ith time. This 

approach is not new - it was first suggested by Bruns in 1878. The 

formulae used in contemporary three-dimensional geodesy are generally 

those contained· in Wolf [1963], Hirvonen [1964] or Hotine [1969] and 

summarized in Heiskanen and Moritz [1967]. Many authors have refined 

these or similar formulae and applied them to simulated or actual 

networks. Examples are: Bacon [1966], Henderson [1968], Hradilek 

[1968; 1972], Fubara [1969], Stolz [1972], Vincenty [1973], Vincenty 

and Bowring [1978], Lehman [1979]. 

In recent years the three-dimensional approach has gained in 

popularity. There are several reasons for this. One reason is that 

surveying methods using photogrammetry, satellite receivers or inertial 

systems are inherently three-dimensional. Another reasons is that the 

computational requirements of simultaneously dea·ling with three 

coordinates are no longer a problem due to advances in computer tech­

nology. A third reason is that deflections of the vertical and geoid 
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heights, which can ~e used as input into the three-dimensional model 

to obtain the most accurate values for the coordinates, can now be 

better determined., (Deflections of the vertical and changes in geoid 

heights express the variation of the earth•s gravity field. They also 

affect the classical geodetic model, and this aspect is discussed in 

deta~l in chapter 3.) 

In the three-dimensional model the position of a point on tne 

terrain is given by the ellipsoidal coordinates (~. A, h) or by the 

geodetic cartesian coordinates (X6, v6, z6). ~ and A are taken as 

positive to the north and east respectively. The geometric relationship 

between these coordinates is indicated in Figure 2-1. 

The ellipsoid height h is obtained by adding together the 

orthometric height H and the geoid height N. A complete discussion 

of the relationship between ellipsoidal and cartesian coordinates, 

as well as other coordinate systems used in geodesy, is given in 

Krakiwsky and Wells [1971]. 

2.1.3 Classical Geodetic Model 

In th~ classical geodetic model, the triplet of coordinates 

used to define the position of a point on-the surface of the earth are 

separated into horizontal coordinates and a vertical coordinate. The 

horizontal coordinates may be geodetic latitude ~ and geodetic longitude 

A, or cartesian coordinates X and Y on a mapping plane. The vertical 

coordinate is a rigorous geodetic height such as dynamic height or. 

orthometric height. 



10 

Greenwich mean 
astronomic meridian 

terrain 

origin of 
geodetic A;---1-¥---.---+---------r---J- 7 Y G 
system / 

A. 

Figure 2-1 

z l 
G 

I / 
I / 

/ 
/ 

/ XG 

average terrestrial equator 

Ellipsoidal (~, A., h) and Geodetic Cartesian (XG' YG' ZG) Coordinates 



11 

The main reason for the separation of coordinates is purely 

practical. Horizontal geodetic stations, in order to be intervisible 

so that-the traditional surveying measurements can be made, are 

generally located on hilltops. Precise godet.c levelling between 

these stations is usually very difficult and is very seldom perform~d 

[Krakiwsky and Thomson; 1974]. Vertical control points, on the other 

hand, are generally located along roads to that the levelling route is 

easily accessible. 

2.1.4 The Choice of a Geodetic Model for an Engineering Survey 

The time-varying model would only be an appropriate choice 

~or special engineering surveys concerned with the movements of points. 

These types of surveys will not be considered in this thesis. 

Movements due to earth-tides and sea tides• loading can cause 

movements with respect to the center of mass of the earth in the order 

of centimeters, but the relative changes in angles and distances in 

the area covered by an engineering project are very small - of the order 

of 10-8 [~1elchior, 1966] and undetectable with present surv.:ying. instru­

ments. Relative movements due to crustal loading are of the same or~er. 

Movements due to some of the remaining causes, for example tectonic 

action and man•s activities, and anomalous movements could easily be 

large enough so that terrain points could not be used for local control 

purposes. In these cases terrain points would have to be carefully 

chosen so that they would be locally stable. 

The choice of a geodetic model for an engineering survey has 

been reduced to either a three-dimensional model or the classical model. 

The choice between thec;e two will take a little more consideration, for 
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each model has a number of distinct advantages and disadvantages. 

One of the advantages of a three-dimensional model is that 

observations do not have to be reduced to a reference surface. Only 

the usual atmospheric and irstr~:nental corrections are made to the 

observations. 

Another advantage of the three-dimensional model is that 

all three coordinates are determined for every point; however, for an­

engineering project this advantage might not be utilized. Just as 

design, measurement and adjustment of separate horizontal and vertical 

networks is a practical procedure, it is .also a practical procedure 

to set out heights from vertical control and horizontal positions from 

horizontul control. 

A third advantag~ of the three-dimensional model is that.it 

can fully utilize satellite data. The three-dimensional model can 

?lso utilize the output of other systems that operate ir. three~dimensional 

space, for example photogrammetric systems [El Hakim, 1979] and inertial 

survey systems. 

The fact that in a·thre~-dimensional·model the three 

coordinates are solved for simultaneously, leads to certain difficulties. 

The most obvious difficulty is that a larger system of equations must 

be solved. Another difficulty is that in a three-dimensional-model the 

formulation of observation equations must be done in the ellipsoidal 

coordinate system since horizontal directions (or angles) and zenith 

angles cannot be expressed completely in cartesian coordinates 

[Hotine, 1969; Chovitz, 1974]. 
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Neither of these difficulties however, should be considered as 

serious because of the computer facilities available today. 

The most serious difficulty with a three-dimensional model 

is that a height cooruinate is solved for at every point. This 

requires additional ob5ervations. Spatial distances, except where 

lines of sight are very steep, do little to accurately determine 

heights [Hradilek, 1968]. Measurement of tt-e spatial distance 

between two points together with the zenith angles corrected for 

deflections of the vertical allow·differences of ellipsoid heights 

to be calculated. These observations are essential for a three­

dimensional geodetic model but, by themselves, are not sufficient 

to determine the height coordinates as accurately as the horizontal 

coordinates. Observations of astronomic latitude and astronomic 

longitude and observations of differences in spirit levelled heights 

are necessary to increase the accuracy of thE. heig:1t coo··dinates 

[Fubara, 1969; Vincenty, 1973]. (These observations provide 

information on the variation of the earth's gravity field between 

points in the network. The role of astronomic observations and 

observation~ of changes in height are discussed in detail in chapters 

3 and 4}. Even with these additional observations the height coordin­

ates may not be of the same accuracy as the horizontal coordinates. 

This is because of the uncertainty associated with vertical refraction. 

For smaller scale three-dimensional networks, such as those used to 
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determine ground movements, the uncertainty associated with vertical 

refraction still has a significant effect [Dodson, 1978]. 

Vertical refraction can be treated as an unknown parameter 

in a three-dimensional adjustment [Hradil~k, 1J72; Ramsayer, 1978] 

but only with special observing methods, for example simultaneous 

reciprocal zenith angles, or under special conditions, for example 

lines high abrve the ground, can vertical refraction and heights be 

well determined. An alternative to treating vertical refroction as 

an unknown parameter is ta input it as a kno\'m quantity, but the 

difficulty of adequately modelling vertical refraction is \vell 

illustrated by the work of Angus-Leppan [1967; 1978], Brunner [1977] 

and others. 

Another alternative to treating vertical refr.action as an 

unknown parameter may be available in th~ future. Work is currently 

being carried cut by Tengs"':rcm [1977] at UppsalC~ University in Sweden 

and by ~!ill iams [1977] at the National Physical Laboratory in England -
I 

on instruments to determine refraction directly by measuring the 

· dispersion of two colours of 1 ight. (Vertical refraction is dealt­

with in more detail in chapter 4 in connection with determination of 

deflection of the vertical;) 

The disadvantages of the classical geodetic model, especially 

when applied to an engineering survey, are minor. 

One disadvantage is that observations have to be reduced from 

the terrain to the ellipsoid to the mapping plane. Since these 

reductions are performed together with the atmospheric and instrumental 
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corrections, most likely within a co~·puter program, it cau~es no real 

problem. The reductions due to gravity can be determined by a global 

geoid model or, with more accuracy, by any of the methods outlined in Chapter 4. 

Another disadvahtage of the classical geodetic model is that 

horizontal control points have accurate horizontal coordinates but 

only approximate heights, and vertical control points have accurate 

heights but only approximate horizontal coordinates. Again, this 

causes nc real problem. Just as design, measurement and a~justment of 

separate horizontal and vertical networks is a practical procedure, it 

is also a practical procedure tb set out heights from vertical control 

and horizontal positions from horizontal control. 

A third disadvantage of the classica 1 geodetic model is that 

it cannot fully utilize three-dimensional data such as satellite data. 

This is a very real disadvantage for national geodetic networks, but 

is not a mu.jor consideration for most· engineering surveys requiring high. 

accuracy. The reason for this is that in a small area, like that 

covering an engineering project, three-dimensional data (satellite, 

photogrammetric or inertial) is generally not sufficient to produce 

horizontal and vertical positional accuracies of l/100 000; this 

is especially true for the heights. For small areas the traditional 

surveying measurements still provide the highest positional 

accuracies. An except1on to this would be the positional accuracies. 

of some satellite solutions, for exam~le the short arc satellite 

solution in which accuracies of 0.25 m in all three coordinates 

are claimed [Brown, 1976]. If some of the control for an 

engineering survey were to be established by satellite methods, a datum 

shift would be required to make the satellite derived coordinates 
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compatible with the coordinates derived from the traditional surveying 

methods. (The reasons for the datum shift is explained in section 2.2.1.) 

In this case the datum shift could be performed by a method outlined by 

Merry and Vanicek [1974]. A few special engineering surveying problems 

would be very difficult without satellite position determinat~ons; 

Examples are the positioning and orientation of nuclear accelerators 

and radio telescopes in which "absclute" position and "absolute" orient­

ation (position with respect to the center of mass of the earth and 

orientation with respect to the best-fitting geocentric ellipsoid -

see section 2.2.1) are necessary. 

·The advantages of the classical geodetic model are due to practical 

considerations. The classical geodetic model minimizes the effect of 

atmospheric refraction by separating horizontal and vertical control. This 

enables positional accuracies of l/100,000 to be attained. As has been 

discussed previously, it is also very practical to deal with horizontal and 

vertical control networks separately, and to set out from these networks separately 

Another practical aspect of the classical. geodetic model is it height 

component. In the classical geodetic model, he_ights whether dynamic or 

orhtometric, have a definite physical meaning. Points having the same dynamic 

height lie on the same equipotential surface. ·Points having the same ortho­

metric·height are the.sa~e height above the geoid. ·(Heights will be discussed 

in more detail in. chapter 3.} In the three-dimensional geodetic model, the 

height ·component is either the local cartesian coordinate ZL or the ellipsoid 

height h. Figure 2-2 shows the position and orientation of a local three­

dimensional cartesian coordinate system. Given the parameters defining the shape 

and position of the reference ellipsoid, ZL can be transformed to h and vice versa. 

Ellipsoid height h is related to orthometric height H by the f6rnula h = H + N 

(see section 2.1.2) but it is difficu1t to obtain an accurate value for Nat 

a given point. 
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For engineering purposes neither ZL or hi~ very useful. If 

heights on a given project were defined by zL•s it would cause a great 

deal of confusion. By studying Figure 2-2, one can see that depending 

on the location of points with resper.t to the origin of the local three­

dimensional cartesian coordinate system a point with a larger ZL value 

than another point may or may not be higher than the other point! Use 

of ellipsoid heights would be bett2r but still not saiisfactory. 

Changes in ellipsoid heights approximate changes in dynamic or ortho­

metric heights but for engineering surveys requiring high accuracy, 

especially in areas where variations in the gravity field are large, 

use of ellipsoid heights would not be satisfactory. 

The classical geodetic model has been in use since man fil·st 

began to investigate the size and shape of the earth. It is still in 

use today in all the national geodetic netwat~ks of the world. Despite 

advances in all areas of surveying-new equipment and methods, more 

dense coverage of data, the ability to rigorously adjust networks- the 

classical geodetic model remains the most practical and useful. For 

these reasons the classical geodetic model should be used in preference 

to the three-dimensional geodetic model for·an engineer1ng survey 

requiring high accuracy. 

2.2. The Classical Geodetic Model.and a Local Coordinate System 

In this section well known features of ·-horizontal and vertical 

geodetic networks are reviewed. Definitions are kept to a minimum. 

No references are given to formulae as these are readily available from 
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any textbook on geodesy, for example Bamford [1975] and Vanicek and 

Krakiwsky [in prep]. 

In the classical geodetic model the horizontal position of a 

point is defined by geodetic latitude and long;tude on the surface of 

a reference ellipsoid or by cartesian coordinates X andY on a mapping 

plane. The vertical position in a classical geodetic model is defined 

by a rigorous geodetic height. 

For local control purposes two-dimensional· cartes-ian coordinates are 

preferable to geodetic coordinates. Cartesian coordinates are most easily obtainec 

by reducing horizontal position observations to the mapping plane and 

then adjusting the reduced observations on the mapping plane. Before 

this can be done however, a horizontal geodetic datum must be established. 

2.2.1 Establishment of a Horizontal Geodetic Datum 

A horizontal geodetic datum is simply the surface of the 

reference ellipsoid. There are several ways in which a datum can be 

defined. The classical approach is to determine a set of parameters 

which define the datum, by making measurements on the sur.face of the 

earth. This is the approach that will be followed here. 

A set of eight parameters which define a horizontal geodetic 

datum are: a, f, cp0 , J-0 , N0 , e0 , n0 , oa0 • 

·a and f define the size and shape of the reference ellipsoid. 

a is the dimension of the semi-major axis of the reference ellipsoid. 

f is the flattening of the reference ellipsoid, and f ~' ~ v1here 
a 

b is the dimension of the semi-minor axis of the reference ellipsoid. 
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The values of a and f have been refin~d by satellite data. Typical values 

for a best-fitting geocen~ric ellipsoid for the entire earth have a=6378.135 

km and f = 29~. 2~-ISeppelin, 1974]~ 
Before going further, geocentric and best-·fitting should be 

explained. Geocentric means that the center of the ellipsoid is 

located at the center of mass of the earth, and the semi-minor axis of 

the ellipsoid is coincident with the srin axis of the earth. Best­

fitting fJr the entire earth means that the ellipsoid apprLximates the 

geoid to within~ 100 m everywhere. (The geotd or figure of the earth 

would coincide with the surface of the oceans if they were not subject 

to external influences such as tides, prevailing winds, currents, 

differences in density, etc. The departure cf average sea level over 

a long period of time, or mean sea level, from the geoid is of the 

order of 1 m.) Figure 2-3 shoVJS the relationship between a best fitting 

geocentric ellipsoid for the entire earth and the geoid. Later it will 

be shown that a non-geocentric reference ellipsoid, approximating the 

geoid (or some other equipotential surface closer to the terrain) in 

the region of use, is satisfa.ctory. 

Returning to the parameters which define a horizontal geodetic 

datum, the remaining six parameters (4>0 , A0 , N0, ~0 ; n0 , oa0 ) all refer 

to the initial point of the network. 4>0 and A0 are the geodetic latitude 

and geodetic longitude respectively of the initial point. N is the 
0 

geoid height or geoid-ellipsoid separation at the initial point. ~ and 
0 

n0 are the components of the deflection of the vertical at the initial 

point. oa0 is the difference between the astronomic azimuth and the 
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geodetic azimuth between the initial point and another point. <h A 

and N have been defined previously; E,_ 11 and 8a are defined in the 

following paragraphs. 

Deflection of the vertical is the spatial angle between the 

plumbline and the normal to the r~ference ellipsoid. E and 11 are the 

orth0gonal components of the deflection of the vertical. E is the 

r10rth-south or meridian component; 11 is the east-west or prime vertical 

component. E and 11 are taken to be positive to the ·t,Jrth and east 

respectively in order to correspond to the sign convention for 4> and A. 

Since the plumbline is a spatial curve, the value of deflection of the 

vertical will depend on where the angle is measured. Many tasks in 

geodesy require the deflection of the vertical at the geoid, others 

require the deflection of the vertical at the earth's surface; the latter 

are called surface deflections. Differences in deflection o·f the 

vertical between the terrain and the geoid have been computed to be as 

high as 311 /1000 m in the Alps [Kobold and Hunziker, 1962]. If the 

earth had no terrain, the geoid coincided with the reference ellipsoid 

and the density distribution within the earth were unifo~m, deflections 

of the vertical would be zero everywhere. Because of the earth's 

terrain, the position of the reference ellipsoid within the earth and 

density variations near the surface of the earth, deflections.of the 

vertical of up to 01 1 can exist [Heiskanen and Vening Meinesz, 1958]. 

oa is expressed by the Laplace azimuth condition 
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oa =A- a= n tan ~ + (~sin a- n cos a) cot z (2-1) 

where ., E, n have been given previously 

and A = astronomic azimuth 

a = geodetic aziwuth 

z = zenith angle 

The Laplace azimuth condition is one of the three parallelity 

condition equations. The other two equations are 

(2-2) 

n = (A ~ A) cos • (2-3) 

where ., A, E and n were given previously 

and ¢ = astronomic latitide 

A = astronomic longitude 

Together the parallelity condition equations ensure that the semi-miner 

axis of the reference ellipsoid is parallel with the spin axis of the 

earth and the plane of the G~eenwich meridia~ is rarallPl. ~o the . 

zero meridian of the ellipsoid. 

~lith all of the parameters defining a horizontal geodetic 

datum explained, the problem of establishing a datum can be considered. 

Simply stated, the problem is to choose values for (a, f, $ , A , N , 
. 0 0 0 

E0 , n0 , oa0 ) such that the values of (E, n) or N elsewhere in the 

network are minimized. When this is done, it will result in a non­

geocentric reference ellipsoid which approximates the geoid in the 

region of the network. (See figure 2-4). 

The only practical problem of applying this to any network is 

to determine accurate (say! 1") values for E and n. (In any network 

~ and n are unlikely to vary by more than 2011 .) Traditionally E and n 
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have been determined by laborious 2nd order astronomic observations 

for ~ and A. More recently terrestrial gravity data has been used to 

improve the interpolation between astronomic stations, or satellite, 

astronomic and terrestrial data have been combined. 

In chapter 4 a. new very simple method to determine ~ and n is 

. given. This new method, which was deve 1 oped by the author, is based 

on astrcnomic difference· observations for I!? an·d A. It was field 

tested and shown to be accurate to about+ 1". 

The usual methods to determine deflections of the vertical ·and 

the new method are discussed in detail in chapter 4. 

2.2.2 A Plane Coordinate System 

A plane coordi~ate system can be obtained by the conformal 

mapping of the ellipsoid surface, along Hith coordinates of points on 

it, onto a flat two-dimensional plane. rf tilis approach is used the 

observations m~st fi:st be adjusted on the elli~soid. An equivalent 

alternative approach is to reduce the observations to a conformal 

mapping plane, using reduction formulae derived from the particular 

conformal mapping function, and adjust the observations on the conformal 

mapping plane. The second approach is generally used wh~n establishing 

a local horizontal control system since it is simpler: plane trigollometry 

is used as opposed to ellipsoidal geometry vthen work~ng on the ellipsoid. 

Mapping is a general term in mathematics. It means the 

transformation of information from one surface to another. For surveying 

purposes a conformal mapping is used because in this type of mapping 

angles are preserved and, as a result, linear scale is a function of 

position only. 



25 

By imposing different conditions various conformal map 

projections can be deduced. The more familiar conformal map projections 

are Hercator, Tra.nsverse· Mercator, Sten~ographic and Lambert Conformal 

Conic. The Tran::.vcrse ~1ercator map ~roje~tion is probably the most 

commonly used map projection in surveying; for this reason the 

corrections to observations in reducing from ellipsoid to a Transverse 

Mercator mapping plane will be given in detail in chapter ~. 

In a small area, sue~ as that covering an engineering project, 

no conformal mapping projection has a distinct advantage; however, 

corrections to observations in all ~onformal mapping projections can be 

minimized by choosing a reasonable origin for the conformal mapping 

projection and a reasonable scale factor at the origin. This aspect 

will also Le discussed in chapter 3, in reference to the.Transverse 

Mercator m?..p projection. 

A complete cove_rage of Transverse Mercator and other map 

projections can be obtained in references such as Maling [1973], 

Richardus and Adler [1974] and Krakiwsky [1973]. 

2.2.3 A Geodetic Height Datum 

A geodetic height.datum is a surface to which heights are 

referred. In national geodetic networks it is common to use height 

above the geoid, as approximated by mean sea level, as the height 

datum. The problems with this approach were mentioned in sections 2.1.1 

and 2.2.1. A more reasonable approach would be to use the equi­

potential surface:passing through a stable point in the height network 

as the height datum. The height bf this point would be arbitrarily 
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assigned its approximate elevation above mean sea level. 

In the classical geodetic model, heights are obtained from 

precise levelled height differences corrected_for differences in gravity 

along the levelling route. Details of the geometric and gravimetric 

effects on heights are discussed in chapter 3 .. 



3. GEOMETRIC AND GRAVIMETRIC EFFECTS IN A 

LOCAL COORDINATE SYSTH1 

In this chapter the grtvimetric and geometric effects on the 

traditional observations ~sed t~ obtain accurate heights and horizontal 

positions in a local coordinate system are discussed, and the corrections 

for these effects are given. No references are given for the correction 

formulae since they are well knmoJn and available from textbooks on 

geodesy, for example Bamford [1975], Vanicek and, Krakiwsky [in prep], 

or from other sources, for example; Department of the Army [1958], 

Krakiwsky [1973], Krakiwsky and Thomson [1974] and Thoms0n ct al [1978]. 

It should also be noted that the gravimetric and geometric 

effects on traditional surveying observations is just one small aspect 

of the overall problem. If an accurate local coordinate system were 

to be estab}ished it would invo.lve many other tasks- reconnaissance, 

preanalysis and design, performing field observations, and obtaining 

coordinrtes of control points together with their associated accuracies 

by adjusting the corrected observations. To discuss all these tasks 

is beyond the scope of this thesis; however, in chapter 5 preanalysis 

and adjustment are used to show the effect of neglecting the gravity 

field in a simulated tunnel survey. 

27 
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3.1 Heights 

Heights are obtained from measurements of height differences 

above or below the height datum.Using the well known procedures for . . ' 

precise spirit levelling, accuracies of height differences of the order 

of 2 mm/lkm of levelling route can be attained. 

The most important procedure in precise spirit levelling is 

the equalizing of backsight and foresight distances. By this procedure 

the geometric effect due to the curvature of the earth is eliminated. 

This procedure also eliminates the error due to the horizontal 

call imation error of the instrument and the error due to the refraction 

of the line of sight on the backsight and foresight, assuming that the 

refraction is the same in the backsight and foresight directions. 

If trigonometric levelling is carried out using equal 

oacksight and foresight distances, and if heights of targets at 

beginning and end, zenith angles and slope distances are measured with 

a comparable high accuracy, the accuracy of the height difference may 

approach that of spirit levelling. This method should be considered 

where accurate heights are required in rough terrain. Because of the 

problems discussed in section 2.1.4, single observation trigonometric 

levelling or even reciprocal trigonometric levelling may be an order 

ofmagnitude less accurate than precise spirit levelling or trigonometric 

levelling with equal backsight and foresight distances. 

The geometric effect on heights is removed by merely equalizing 

backsight and foresight distances. The gravimetric effect on heights 

however, cannot be eliminated, and can only be accounted for by making 
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gravity observations along the levelling route. The gravity values 

obtained are used to make corrections to the measured height differences. 

Gravity must be accounted fo~ in l~velling because equi­

potentials that is level, surfaces are not para1lel. Since differences 

in level are actually differences in vertical distances between 

equipotential surfaces, and since equipotential surfaces are not parallel, 

a sum of differences in level wiil be path dependent. In order to 

uniquely define heights of points the effect of gravity must be 

included in levelling. Mathematically, f dl t 0 indicates that 

observed level differences are path dependent; f gdl ~ 0 indicates 

that the product of observed level differences and corresponding 

gravity values are not path· dependent. (9 is the integration around a 

closed circuit.) 

There are several height systems which include the effect 

of gravity so that heights of points can be defined uniquely. The system 

of geopotential numbers uses the property 9 gdl = 0 directly. 

Geopotential numbers are seldom used in engineering work because 

numerically they depart from measured heights by about 2% even when 

units are chosen in the most convenient way, that is gravity is 

expressed in kgals so that g = 1. 

The system of dynamic heights and the system of orthometric 

heights are two other height systems which include the effect of 

·gravity by making a small correction to a measured height difference. 

In either system the difference in height between two points A and B 

is expressed as 
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where 

t.HAB = difference in dynamic or orthometric height 

t.H~B = mEJSUrtd difference in hei~ht 

( 3-1) 

AAB = dynamic or orthometric corrLction to the measured difference 

in height. 

In the dynamic height system 

D 
t.HAB = 

N D 
t.HAB + AAB 

and g.-G D 1 oL. t.AB = E -r i 1 

where 

gi = average value of gravity in a levelling section 

G = reference gravity for the area 

oli = measured difference in height in a levelling section. 

In the orthometric height system 

and 
M 98' -G 

H --
B G 

G '. G g '·-G = E gi- oL; + H t1 gA··:- .: H M_B_._ 
i G 1 A G B G 

where 

g;, G, ali were given previously 
t1 M HA , H8 = measured heights of points A and B 

(3-2) 

(3-3) 

(3-4) 

(3-5) 
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-' - ., 
gA ' gB = average va 1 ue of gravity on the plumb 1 i ne betv:een the 

terrain point and the geoid at point A and point B; 
_; 
gA = g + 0.0424 x HAM 

Aobs 

(HAM in meters for g and gA,, in milligalc; J; 
·· Aobs _, 

similarly for gB 

The physical interpretation of dynamic and orthometric heights 

is slightly different. Dynan.ic heights are closely rE~ated to the 

concept of equipotential surfaces. One may say that they reflect the 

geometry of the physical space surrounding us. As was stated previously, 

the points lying on one equipotential surface have the same dynamic 

height. Orthom~tric heights may be considered 11 Common sense heights ... 

Points having the same orthometric height are the same vertical distance 

from the geoid but do not lie on the same equipotential surface. 

The. size of the corrections to measured heights in the dynamic 

and orthometric height systems depend on tne differences in gravity 

values along the levelling route. Usually the corrections are smaller 

than the accuracy of the measured height differences. In many engineering 

surveys including some requiring high accuracy, gravity corrections are 

·not made. This was the case, for examp 1 e, in the Snowy Mountains 

Scheme in Australia which contained 90 miles of trans mountain tunnels 

and 80 miles of aqueducts [Wasserman, 1967]. In the Orange-Fish Tunnel 

in South Africa it was recommended that gravity corrections be made to 

measured height diffe~ences primarily due to a very large gravity anomaly 

in the area of the tunnel [Williams, 1969]. 
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In the simulated tunnel problem discussed in chapter 5, the 

effect of neglecting the gravity corrections to measured height differences 

is sho'fm. 

The effect o: gravity on heights is generally covered best 

by books on physical geodesy such as Heiskanen and Moritz [1967] and 

Vanicek [1976]. The subject is dealt with in detail in Krakiwsky 

[1966] and Nassar [1977]. 

3.2 Horizontal P-ositioning 

Unlike heights,generally more than one type of measurement is 

necessary to obtain accurate horizontal positions. The traditional 

surveying measurements used to determ·ine horizontal poshions are 

azimuths, directions, angles and distances. The corrections to these 

observations in reducing from terrain to ellipsoid and ellipsoid to 

Transverse Mercator conformal mapping plane are given in sections 3.2.1 

and 3.2.2. 

It will be seen in the reduction formulae that corrective 

terms are very often functions of the horizontal position (either grid 

coordinates X and Y or geodetic coordinates • an~ ~} of the point to 

which the observation is made. ·The easiest solutfon to this problem is 

to use the raw observations (except that all spatial distances are 

reduced to the horizontal and all azimuths are corrected for meridian 

convergence; approximate corrections for these are given in sections 

3.2.1.1 and 3.2.2.2) to get an approximate graphical solution for all 

the grid coordinates of the horizontal network. 
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Grid coordinates are coordinates on a mapping plane 

determined with respect to the coordinates of one point in the network 

being given arbitrary X and Y.values such that the X andY Vdlues of 

all other points are positive. The positive Y axis is directed 

north and the positive X axis is directed east. 

With the approximate geodetic coordinat~s (t;' li) of one 

point in the network known, the approxi.nate geodetic coordinates of all 

other points can be determined by the following formulae: 
. y .. - y . 

• . = •. + J 1 pll 
J 1 (R + Ho) 

' . ""j 

X. - X. 
= .:\. + --...:..1---'-1 --

1 (R + H ) cos t· 
·. 0 1 

pll 

·where 

(R + H0 ) =mean radius of the reference ellipsoid (see section 

3.2.1.1) 

p 11 = seconds of arc per radian = 206265 11 

(3-6) 

(3-7) 

Before the reductions from terrain to ellipsoid and ellipsoid 

to conformal mapp.ing plane are given, the relative positjons of the 

terrain, geoid or arbitrarily chosen equipotential surface, reference 

ellipsoid and conformal mapping plane should be showr.. Figure 3-1 shows 

the usual situation for a national geodetic network. The reference 

ellipsoid approximates the geoid but may be separated from it (as 

shown here) to get the best fit to the geoid for the entire country. 

For a national geodetic network the geoid level is the most convenient 
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location for a reference ellipsoid. The conformal mapping plane is 

usually a secant plane to the reference ellipsoid in order to minimize the 

ellipsoid to conformal mapping plane linear scale distortion over the 

area of the conformal mapping plane. 

For local control purposes a more convenient positioning of 

the surfaces is shown in Figure 3-2. The reference ellipsoid approximates 

an equipotential surface at the average elevation of the area. fhe 

conformal mapping plane is a tangent plane to the reference ellipsoid 

near the center of the area.· This positioning of the surfaces minimizes 

the reduction corr~ctions. 

3.2.1 Reduction of Observations from Terrain to Ellipsoid 
3.~.1.1 Reduction of Spatial Distances 

A terrain spatial distance is reduced to the ellipsoid by 

the following ~ormula {see Figure 3-3): 

S •. = 2 {R + H0 ) 
lJ . 

where 

-1 
sin 

2 2 r .. -l!h 
lJ 

h. 
{1 + l ){1 + 

(R+H0 ) 

Sij = ellipsoid distance between points i and j 

rij =terrain spatial distance between points i and j, corrected 

for instrumental effects and atmospheric refraction 

6h =difference in ellipsoid height of points i, j 

h.,h. =ellipsoid height of points i, j 
1 J 

1/~ 
(3-8) 
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R =mean radius of the ellipsoid which best fits the geoid or mean 

sea level locally 

l/2 
= a(l - 2f + f 2) · · and 

1 - (2f - f 2) sin2 ~m 
~ = m 

<P· .+q,. , .l 
2 

from values of. a= 6378.)35 km and 

f = - 1-- (see stction 2. 2.1) 
298.26 

R ~o = 6335.438 km 
<P -= \J 

R = 6356.715 km 
<P =. 45° 

R<P =: .. goo = 6378.135 km 

H0 =approximate elevation of the reference ellipsoid above the 

ellipsoid of mean radius R; if H0 is chosen to position the 

reference ellipsoid at the average elev~tion of the area, 

hi and hj may be positive or negative. 

For purposes of determining approximate coordinates on the 

mapping plane 

(3-9} 

where 

Sij and r;j were defined previously 

-~ij =distance on the mapping_ plane between points i and j 

z .. = zenith angle from point i to point j uncorrected for curvature 
lJ 

of the earth and refraction. 

This approximate reduction formula considers only the approximate slope 

correction which is generally much larger than the corrections included 
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in the rigorous reduction formula. 

3. 2.1. 2 Reduction of AstronomiC ·Azimuths 

An astronomic (observed) azimuth is reduced from the terrain 

to the ellipsoid by the following formula: 

a.... . = A. . - n . tan cp • + c1 + c2 + c3 lJ lJ 1 1 
(3-10) 

where 

a .. = geodetic azimuth from point ito point j 
lJ 

A .. = astronomic azimuth from point ito point j 
lJ 

. . 

ci = gravimetric correction; correction due to·the deflection of 

the vertical at the instrument staticn; 

c1 = (~~i sin ~ij + ni cos aij) cot zij (3-11) 

in which ~i' ni =components of the deflection of the vertical 

at point i 

aij and zij were defined previously; 

z,. uncorrected for the effects of the deflection of 
lJ 

the vertical is sufficient as a first approximation 

c2, .c3 = geometric corrections; corrections due to the positions of 

the instrument and target stations with respect to ·the reference 

ellipsoid; c2 = skew normal or height-of-target correction; 
- . 

c3 = normal section to geodesic correction 

h .. 
c = ---'J..__ 

2 (R + H0 ) 
(2f - f2) sin a .. cos a .. cos2 cp. 

lJ lJ J 
(3-12) 
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2 2 . 2 SiJ. cos ·~m s1n aij. 
c = -----'-><---------"---3 

.i 2 (R + H )2 
0 

where rll the terms were defined previously. 

3.2.1.3 Reduction of Horizontal Directions 

(3-13) 

A horizontal direction is reduced from the terrain to the 

ellipsoid by the following furmula: 

(3-14) 

where 
e dij =horizontal direction on the ellipsoid from point i to point j. 

d .. t =horizontal direction on the terrain from point ito point j 
lJ 

c1 , c2 , c3 w.ere defined previously. 

3.2.1.4 Reduction of Horizontal Angles 

A horizontal angle is reduced from the terrain to the ellipsoid 

by the following formula: 

e t 
~ijk = ~ijk + {cl + c2 + c3)ik -(cl + c2 + c3)ij 

{3-15) 

where 

a e.= Pijk . horizontal angle on the ellipsoid. at point i from points 

j to k 

Sijkt = horizontal angle on the terrain at point i from points j to k 

c1 , c2 , c3 were defined previously except that they n01-1 refer to the 

1 i nes i k or i j 
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3.2.1.5 Magnitude of the Corrections 

Figures 3-:-4 to 3-7 inclusive shm'l the magnitude of corrections 

to observations in reducing the observations from the terrain to the 

ellipsoid. 

Figure 3,4 shows the slope correction to a terrain spatial 

distence. This is generally the largest correction incorporated in 

the rigorous reduction formula. In this figure the api)roximate slop:~ 

of the line of observation is given by its un-corrected zenith angle, 

whereas in the rigorous reduction formula the quantities rij' hi' hj 

and (R + H0 ) determine the slope of the line of observation. 

Even without figure 3-4 it is obvious that a terrain spatial 

distance must be properly reduced to the ellipsoid. In the lowest 

order horizontal position computations the slope distance is 11 reduced 

to the horizontal", usually by formula {3-9). 

Figures 3-5, 3-6 and 3-7 show the corrections c1, c2 and c3 

respectively. 

c1, the gravimetric correction~can easily reach a magnitude 

of several seconds in rugged terrain. As noted in chapter 2 and 

discussed in detail in chapter 4 there are many methods, including a new 

very'simpie method, to determine~ and n so that the gravimetric 

correction can be applied. In chapter 5 the effects of negle~ting the 

gravimetric correction in two different engineering surveying problems 

is sho'r'm. 

c2 and c3, the geometric corrections, are very small. ln 

most cases they will be opposite in sign and of approximately equal 
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magnitude so that neglecting to make these corrections would have an 

almost negl.igible effect on the accuracy of the horizontal position 
• 

computations. 

3.2.2 Reduction of Observations from·Ellipsoid·to Transverse 

Mercator Conformal ·Mapping·Plane 

Before giving the corrections to observations, the Transverse 

Mercator projection should be briefly described and the geometry of 

curves projected from the ellipsoid onto the mapping plane should be 

shown. 

In the Transverse Mercator projection the scale is constant 

along an arbitrarily chosen central meridian. For local control 

purposes the central meridian should be chosen to pass near the center 

of the area so that reduction ~orrections are minimized. If the 

Transverse Mercator mapping plane is tangent to the reference 

ellipsoid along the central meridian, the scale is true at the central 

meridian and the scale factor at the central meridian, k0 , is equal to 

1. 

The origin of the Y-axis in the Transverse Mercator projection 
- -

is at the equator. In order to avoid Y-coordinate values in the 

millions of metres, the origin,can_be arbitrarily shifted to the north 

or south as required. The origin of the X-axis in the Transverse 

Mercator projection is at the central meridian. In order to avoid 

negative X-coordinate values the origin can be arbitrarily shifted to 

the west; X0 is then the x-coordinate-of any point on the central 

meridian. 
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Figure 3-8, ·i he Geometry of Projected Curves·, i 11 ustrates th~ 

line scale factor k, the meridian convergence y and the (T-t) correction. 

The line scale factor k is the ratio of the length of the projected 

curve connecting two points to the length of the chord connecting the 

same two points. The meridian convergence y at a point is the angle 

between the tangent to the projected meridian through the point, and 

the Y-axis. The (T-t) c~rrection is tre difference between the grid 

azimuth of the projected curve connecting two points and the grid 

azimuth of the chord connecting the same two points. 

3.2.2.1 Reduction of Ellipsoid Distances 

An ellipsoid distance is reduced to the Transverse Mercator 

conformal mapping plane by the follovJing formula, which is accurate to 

10-7 for lines up to 150 km in length and vtithin 3° of the central 

meridian: 

where 

£ •• = k .. s .. 
lJ lJ lJ 

s .. 
lJ 

and tij were defined previously 

k .. = 
lJ 

line scale factor for the line between points i and j 

and - x.,/ x./ 
k .. = k [1 + 2 (1 + :)] 
lJ 0 6(R + H ) 36(r + H )2 

0 0 

in which X 2 = {X.-X )2 + ( X.-X )( X.-X ) + 
·U :·1 0 1 0 J 0 

(X .-X )2 
J 0 

(3-16) 

(3-17) 

{3-18) 
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X, Y = grid coordinates 
S = length of projected curve 
d = c;JOrd 1ength 
k = line scale factor 
a = geodetic azimuth 
y = meridian convergence 
T = grid azimuth of projected curve 
t = grid azimuth of chord 

Figure 3-8 

Geometry of Projected Curves 
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3:2.2.2 Reduction of Geodetic Azimuths 

A geodetic azimuth is reduced to the conformal mapping plane 

by the following formula: 

t. ·=a .. - y· - {T-t) .. 1J 1J 1 1J 

where 

a .. was defined p\·eviously 
1J 

yi = meridian convergence at point i 

{T-t)ij = the {T-t) correction between points i and j 

(3-19) 

~1eri dian convergence for the Transverse Mercator projection 

is given by the following expression \'lhich is accurate to o~·o1 within 

3° of the central meridian: 
2 2 8A· cos $· 2 4 

~ . :: 8A . sin cp • [1 + 1 1 { 1 + 3n . + 2n . ) 
1 1 1 3 (p 11) 2 1 1 

4 4 8Ai cos $; 
+ {3-20) 

where 

8Ai = change in longitude from the central meridian; positive east and 

negative west to conform to the usual sign convention for 

longitude 

and 2 2f - f 2 2 ni = cos cpi 
{1 - f) 2 

{ 3-21) 

The (T-t) correction for the Transverse Mercator projection 

is given by the follm-Jing expression \'-lhich is accurate to 0~02 for 

lines up to 100 km in length within 3° of the central meridian: 
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(Y.-Y.) (X.+2X.-2X) 
(T -t) . . = J ~ J 1 o 

lJ 6(R+H )2 
0 

(Y .+2X. -2X. )2 
[1 - J 1 0 ] p" 

27 {R+H )2 
0 

(3-22) 

where all the terms have been defined previously. 

For purposes of determining approximate grid coordinates. 

tij ~ Aij ~ ~A; sin$; (3-23) 

where all the terms havP. been defined previously. This approximate 

reduction formula considers only the approximate meridian convrrgence 

which is generally much larger than the other corrections included 

in the complete reduction formula. 

3.2.2.3 Reduction of Horizontal Directions 

A horizontal direction is reduced from the ~llipsoid to the 

Transverse Mercator conformal mapping plane by the following formula: 

d .. P =d .. e- (T-t) .. 
1J 1J 1J 

(3-24) 

where 

d .. P = horizontal direction on the mapping plane from point i to 
1J 

point j 

dij e and (T-t)ij were defined pre,yiously_. 

3.2.2.4 Reduction of Horizontal Angles 

A horizontal angle is reduced from the ellipsoid to the 

Transverse Mercator conformal mapping plane by the following formula: 

p e ( 8··k = S· 'k + T-t) .. - (T-t).k 
lJ lJ lJ 1 

(3-25) 
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where 

sijkp = horizontal angle on the mapping plane at point i from points 

· j to k 

Sijkt was defined previously 

(T-t) was defined previously except that now one (T-t) term refers 

to line ij ari the other to line ik 

3.2.2.5. ~ag~itud~ Of the Corrections 

Figures 3-9 to 3-11 inclusive show the magnitude of corrections 

to observations in reducing from the ellipsoid to the Transverse 

Mercator conformal mapping plane. 

Figure 3-9 shows the scale factor correction for the 7ransverse 

Mercator projection. The correction is proportional to the length of 

the line and increases approximately as the square of the distance of . 
the line from the central meridian. At 10 km from the cent~al meridian 

the correction is about 2ppm, at 50 km about 44ppm · and at 100 km about 

175ppm. Neglecting this correction in horizontal position computations 

on a plane would obviously only be possible in a very small area. 

Figure 3-10 shows the meridian 

convergence correction for the Transverse Mercator projection. Like 

the slope correction to a spatial distance, this correction is so large 

that it i~ applied even.in the lowest order horizontal position 

computations.~ __ 

Figure 3-11 shows the (T-t) correction for the Transverse 

Mercator projection. This correction is larger than 111 only for very 

long lines having large north- south components. 
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4. DETERMINATION OF DEFLECTIONS OF THE VERTICAL 

In this chapter various methods of determining deflections of 

the vertical i~ the small area covered by an engineering survey will 

be considered. Unless noted otherwise, all deflections will be surface 

deflections rather than geoid deflections since it is the surface 

deflections that are required to make the gravimetric corrections to 

the traditional survey observations. 

A chapter is devoted to this topic because of all the 

corrections applied to the traditional survey observations only the 

gravimetric correction to horizontal position observations, being a 

function of deflection of the vertical, is difficult to determine. All 

other corrections are functions of the observations themselves, the 

approximate positions of the ends of the lines of observation, or 

quantities ~uch as the radius of the reference ellipsoid (R + H0 ), 

reference gravity G, etc.; all of which are readily available. These 

corrections can therefore be easily made if the accuracy of the survey 

requires it. The. gravimetric corrections on the other hand are often 

neglected for no better reason than the fact that deflections of the 

vertical are difficult to determine. Section 4.2 describing a new 

simple method to determine deflection of the vertical will show that 

this no longer has to be the case. 

54 
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Parameters describing the earth•s gravity field, one of 

which is deflection of the vertical, are most often used to determine 

the general shape of the geoid over a large area. Fo~ purposes of 

national geodetic control this is sufficient. However, for purpos~s 

of local geodetic control, for example engineering surveys requiring 

high accuracy, local variations in the earth•s gravity field may have 

to be considered. For this reason, in this chapter only methods 

having a resolution sufficient to determine a change in deflection of 

the vertical in the order of 211 in 5 km will be considered. 

In the following sections seven methods to determine deflection 

of the vertical, which meet the resolution criteria, will be discussed. 

The existing methods will be discussed only briefly. The astrogeodetic 

difference method wiil be discussed in detail, and field test results 

from the trigonometric method and the astrogeodetic difference method 

will be presented and evaluated. 

4.1 Review of Existing Methods 

4.1.1 Trigonometric Method 

This method through which change in deflection of the vertical 

is determined is well known, but it is·seldom used because the uncer­

tainty associated with vertical refraction makes it difficult to deter­

mine the accuracy of the result. Only in mountainous areas where 

atmospheric conditions are stable and lines of observation are high 

above the ground does the method appear to give satisfactory results 

[Hradilek, 1968]. 
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V.Jher. trigonometric levelling is used to determine change in 

deflection it is usually done within a three-dimensional adjustment in 

which c:, and n of each point are solved for as unknown parameters 

together with thr. three-dimensional roordinates of each point. The 

use of trigonometric levelling_data in a three-dimensional adjustment 

is in fact the only new development associated with this method ~ince 

problems with the method were outlined by Kobold [1956]. 

A unique solution f0r change in deflection of the vertical 

along the line connecting_ two points can be made if accurate trigonometric 

and spirit levelled heigpt differences are available and if the 

coefficient of refraction is assumed to be the same at each end of the 

line. 

From simultaneous reciprocal trigonometric levelling 

[Chrzanowski, 1978], z -z 
~hAB = Ss sin ~ 

where 

~hAB = difference in trigono~tric height between points A and B 

Ss = slope distance between points A and 8 

zA,zB = simultaneous reciprocal zenith angles at points A and B 

corrected for defiections of the vertical. 

(4-1) 

If ~HAB is the spirit levelled height difference between points .A and 
z -z 

8, then(Ss si.n ~- ~HAB) is the separation, at point B. of the 

reference ellipsoid passing through point A and th~ equipotential surface 

passing .through point A. 

This separation is related to the change in deflection of the 

vertical along the line between the two points by.[Vanicek and Krakiwsky. 

in prep] 
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2LlN 
!J.£ = -~ 

where 

tJ.c. = change in deflection of the vertical 

t:.N = difference in ellipsoid - equipoteAtial surface separation 

S0 = ellipsoid distance between the points. 

Substituting for N, and expressing ~c.-ln seconds, 
2(t~H - S sin -8-·~ ) AB s 2 

so 
• - ---------- pll "c.AB .- · 

(4-2) 

(4-3) 

where tJ.c. positive means that the change in deflection of the vertical 

is outward along the line joining the points. To determine tJ.c.AB from 

this formula iteration is required because llc.AB.appears on both sides 

of the equation: explicitly on the left hand side, and as a correction 

to observed zenith angles on the right hand side. 

f,s was noted previously,. when the difference in trigonometric 

and spirit levelled height differences is assumed to be due nnly to a 

change in the deflection it is necessary to assume that the coefficient 

or refraction is the same at each end of the line of observation. The 

coefficient of refraction kin this case is [Chrzanowski, 1978]. 

_R_ [180° - (zA + z8}] + 1 
s pll 

0 

where zA' zs-• S 0 and p 11 were defined previously and 

R = mean radius of the reference ellipsoid. 

(4-4) 

A completely different approach can be taken in which the 

difference in trigonometric and spirit levelled heights is assumed to 

be due to only a difference in coefficient of refraction at each end 

of the line of observation. The necessary assumption now is that there 

is no change in deflection from one point to another. The coefficient 

of refraction from point A to point B, kAB' in this case 



is [Brunner, 1977] 

( 4-5). 
S s . 2 
s s1n zAB 

A simil~r expression can be written for the coefficient of refraction 

from point B to point A, k8A. 

4.1.2. Astrogeodetic Method 

This method was mentioned previously in the context of 

establishment of a horizontal geodetic datum. (See section 2.2.1~) 

The formula for the components of the deflection of the 

vertical are 

\'lhere 

r; = q, - ~ 

n = (A - A) cos ~ 

(4-6) 

(4-7) 

{r;, n) =components of deflection of the vertical, north-south 

and east-west respectively 

(q,, A) = astronomic coordinates, latitude and longitude respectively 

(~, A) = geodetic coordinates, latitude and longitude respectively. 

This i~ the classical method of determining deflection of 

the vertical, and should provide the highest accuracy. (See Section 

4.3.2.) The only disadvantage of this method is that laborious and 

costly 2nd order astronomic observations are required. 

4.1.3 Gravimetric Method 

This method uses gravity anomalies to determine deflections 

of the vertical. The conversion of gravity anomalies to.def~ection of 

the vertical is by the well knovm Vening-fcleinesz formulae: 



where 

{cpA, A.ti) = point of interest 

(cp, A) = running or dummy point 
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dv (4-8) 

G =mean value of gravity on the surface of the refere~ce ellipsoid 

= 9.8 m;s 2 

Ag = gravity anomaly. 

a= geodetic azimuth between (cpA' AA) and (cp, A) 

d ~$1/1) = Vening-f1einesz funtion; a known function of spherical distance 

v = solid angle between (cpA, AA) and {cp, A) 

Often gravimetric deflections are only used to interpolate deflections 

between points at which astrogeodetic deflections have been determined. 

This approach is knm'in as the astrogravimetric method. 

Deflections from gravity anomalies are deflections at the geoid 

with respect to a geocentric reference ellipsoid. Small corrections 

would have to be made for curvature of the p1umbline (the difference 

between geoid and surface deflection- see section 2.2.1), the datum 

shift and what is known as the indirect effect (see Vanicek·and 

Krakiwsky [in prep]) to obtain surface d~flections with respect to a 

nongeocentric reference ellipsoid. In addition to this, the theoretical 

requirement of the Venin~-Meinesz formulae is that Ag must be given 

continuously over the entire earth. However, because the gravfmett"ic 
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deflection is often us~d only for interpolation, the Vening-f·1einesz integration 

can be carried out over a small area (say 100 km radius) in the region 

of intere~t to obtain incomplete gravimetric deflections. These 

;~complete gravimetrir. deflections {which are also uncorrected for 

curvature of the plumbline, datum shift and the indirect effect) 

differ from the correct ones by an almost constanc amount and thus are 

adequate to obtain accurate interpolated values of deflection between 

points of know~ astrogeodetic deflection • 

The interpolation between points of known astrogeodetic 

deflectioncan be linear U1olodenskii, et al , 1962] but this results 

in a loss of information since deflections are inherently two dimensional. 

The loss of information is overcome by a method developed at the 

University of New Brunswick [Merry, 1975] which uses a two dimensional 

surface to interpolate between points of known astrogeodetic deflection. 

One disadvantagE' of the ~ravimetr'ic or .astrogravimetric methods is that 

large amount of gravity data is required. A second disadvantage is the 

computational complexity of the method. Access to a large computer 

would be essential if these methods were to be used. 

· 4.1.4 ·Topographic Method 

Deflections, at a local level, are highly correlated with 

topograpny; as a result variations in deflections in rugged terrain are 

due almost entirely to the topography. 

The formulae for the deflection components in a rectangular 

coordinate system expressed as a function of adjacent masses is given 

by_ Fischer [1974]: 
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(4-9} 

wliere 

K = universal gravitational constant = 6.81 x 10-11. m3kg-ls-2 

G = mean value of gravity on the surface of the earth= 9.8 m/s2 

m = mass of an adjac{'nt unit of mass 

(Ym-YA), (Xm-XA} = horizontal distance f1om the centroid of the 

unit of mass to the point of interest. 

Numerical integration of the formulae is required but it can 

be readily seen that the effect of distant masses decreases rapidly 

because of the s3 term in the denominator. When used to determine 

deflections on an atoll in the Pacific Ocean [Fischer, 1974] an 

integration distance of several hundred kilometers proved to be 

adequate. The assumption of a flat earth, implicit in the formulae, 

was also adequate. ·If topographic deflections were used to interpolate 

between known astrogeodetic deflections, in the same way that incomplete 

gravimetric deflections are used in the astrogravimetric method, a 

much shorter integration distance would be satisfactory. 

The se~ious disadvantage of this method is that the density 

distribution of the earth in the vicinity of the point of interest should 

be known. In very rugged terrain however, where the topography itself 

rather than the density distribution within the topography has the 

predominant effect, the method produces accurate results. On the Pacific 

atoll referred to previously a standard deviation of the difference in 

deflection (between astrogeodetic deflections and topographic deflections 

based on a simple density distribution model) of 1~5 \'Jas obtained for 
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6?. 

23 deflections ranging from about -30 11 to +30 11 • In the horizontal 

control network for the 20 km long Simplon tunnel in Switzerland 

deflections were calculated by this method usin~ only the visible 

mountain masses. (Richardus, 1974]. 

As an illustration of the general effect of topography on 

deflection consider the follovling example. Figure 4-1 shows hills 

having slopes nf 5%, 10%, 50% and 100%; all 2 km long at the base. 

/ 

/ 
/ 100.% 

25~'6 

10% 
5% 

~------ -----·----;;.->-~1<<--------
km 1 km 

Figure 4-1 General Effect of Topography on 

Deflection of the Vertical 

~ 
---·--==-··---~ 
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The hills are also 2 km l:Jng in the plane of the page and have the 

same cross section from one end to the other. The material in the 

hills has a uniform dP.ns1ty of 2670 kg/m3• The deflection of a point 

half way up to the north side of each hill with respect to zero 

deflection at a point not on the hill or a point at the top of the 

hills is 1~'5 for th~ hill of 5% slope, 3~0 for-the hill of 10% slope, 

14~4 for the hill of 50% slope and 25~6 for the hill of lOG% slope. 

All. deflections are "downhill". 

4.1.5 Combined Method (Least Squares Collocation Method) 

A method of this type combines heterogenous data through 

least squares collocation to produce an optimal solution. By a 

combined method it is possible to compensate certain disadvantages 

in one type of data by advantages inherent in data of another type, 

and to interpolate numerically between discrete observations 

The method of Lachapelle [1975] which combines astrogeodetic 

deflections, gravity anomalies and low degree geopotential coefficients 

is a method of this type. The low degree geopotential coefficients 

provide the general features of the geoid and define a reference 

surface. The finer features are provided by astrogeodetic deflections 

which are accurate but widely spaced, and gravity anomalies which are 

usually abundant on land but sparse in the oceans. The solution for 

deflection at any point is given on the geoid with respect to a 

geocentric reference ellipsoid. The solution can be given with respect 

to any nongeocentric reference ellipsoid if its datum shift parameters 

are known. For a complete description of this method see Lachapelle [1975]. 
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The disadvantages of this method are the same as those for 

the astrogravimetric method, that is data and computational requireme·nts, 

only more so. 

4.1.6 Inertial Hethod 

An inertial survey system {ISS) has two types of main sensors, 

gyroscopes and accelerometers. The. gyroscopes maintain the alignment 

of the ISS, and from the accelerometers a change. in positlijon can be 

determined by double integration of acceleration over time. This is 

the basic concept on an ISS; an actual ISS. is a complex electromechanical 

device with many error sources. Adams [1979] describes the lor.al 

level ISS and simulates position errors of.the system caused by 

accelerometer bias and gyro drift. 

The primary use of an ISS has been to determine horizontal 

posi.tions between 2nd order points; Because of the sensors in an ISS, 

changes in deflection of the vertical can also be measured. Figure 4-2 

show~ the basic concept. In this figure, E is the deflection, g is the 

gravity vector andy is the vector normal to the_ reference ellipsoid. Accuracies 
.. 

of the order of 2" have been reported [Tod~ .. 19.78] but there are apparently 

systematic errors due to the filtering procedure [Schw~rz, 1978]. 

ISS's are very complex and barely beyond the prototype stage 

but the speed and ease with which changes in deflection can be determined 

may offer advantages in certain applications. The method, if not 
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reference ellipsoid 

Figure 4-2 

Basic Ccncept of Heasurement of Change 

in Deflection by an ISS 

frame transported 

2 

already economically competitive with other methods to determine 

changes in deflection, will certainly be so in the future as Iss•s 

become more generally available. 

4.2 Astrogeodetic Difference Method 

4.2.1 Description 

This method to determine change in deflection of the vertical 

has been developed by the author, and to his best knowledge, it has 

never before been used. 
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The method i~ based on relative rather than absolute astroncmic 

observatio1s; that is it is a difference method. Accuracies of the 

order of 1" appear to be attainable using two 1" Theodolites with 

automatic vertical circle compensators and two-way radio communication 

so that a timer can give a simultaneous read signal to both observers. 

The reason that the high accuracy is attainable is that, as with other 

difference methods, a difference of tvJO observabl es can be measured more 

accurately than either observable itself. by differencing, the effect 

of common systematic errors is eliminated. 

~ = ~ - ~ and n = (A - A.) cos ~ are the expressions for the 

meridian or north-south,and prime vertical or east-west deflections of 

the vertical respectively, where (~. A) are astronomic latitude and 

longitude and ($,A.) are geodetic latitude and longitude. After differ-

entiation, the expressions become 

and 

d~ = diP - dcj> 

dn = ·(dA - dA.) cos cp 

~ (dA - dA.) cos 4> 

(4-10) 

(A - A.) sin ~ dcp 
( 4-11) 

For sma 11 changes in t; and n,d' can be replaced by ¢. • It would also 

be permissible to. drop the term {A-A.) sin cpll.<f> for determinations of 

ll.n in which.ll.cp were small. 
. . . 

For example, with {A -.A) = ao", <j>=45°, 

llcp = 1000" (32 kn!:!:_), the error in neglecting the second term \</Ould be only +0~'1. 

To determine ~he differences llcp and ll.A. various. methods can be used. Fo1 

ll.<f> and ll.A. to be accurate to 0~1, ll.Y and ll.X have only to be accurate to 

about 3 m and 2 m respectively at 4> = 45°. ll.<f> and ll.A. can therefore 

be determined from a large scale map, if it is available, or from any 

horizontal position determination--giving a relative positional accuracy 

of about 2 m. 
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A~ and AA in the math models for A~ and An are determined 

by simultaneous astronomic zenith angles. 

·By applying spherical trigonometry to the astronomic triangle, 

or equivalently, by transforming between the horizon. and hour angle 

celestial coordinate systems through the use of rotation matrices the 

following expression can be obtained [~1ueller, 1969]: 

cos i = sin 8 sin ~ + cos 8 tJS h cos ~ 

where 

z = zenith angle to the star 

6 =declination of the star as tabulated by a star catalogue 

~ = astronomic latitude of the point of observation 

h = hour angle of the star 

(4-1!) 

After differentiation with respect to the observed quantities 

~ ~ and·h, and simplification (see Appendix I), the expression becomes 

~~ = - sec A AZ - cos ~ tan A Ah ( 4-13) 

This expression is used in Mueller [1969] to show the effect of small 

systemmatic errors in the measurements of zenith angle and hour angle 

on the determination of astronomic latitude. When the expression is 

used to determine M between two points at which simultaneous 

observations of zenith angle of the same star are made, then 

A~ = - sec A Az since Ah = 0. Further, if the star is chosen such 

that A - 0, then M = - A z. 

The ideal choice of a star for the determination of A~ in 

the Northern hemisphere is obviously Polaris (a Ursae Minoris) since 
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its azimuth at any time is very small. To illustrate this, consider 

the choice of Polaris for the determination of~~ at~= 45°. The 

azimuth of a star is maximum at elongation, and [Mueller, 1969] 

. -1 ( ) Aelongation = s1n cos o sc~ ~ . ( l- 14) 

For Polaris , 

0 = 89° 10 1 (1979), and 

Ael ongation = .:!:_ 1 ~2, sec A = 1. 0002 

Thtrefore, if.Polaris is chosen for the determination of ~~at 

~ = 45°, the math model ~~ =- ~z can be used in place of~~= 'sec A ~z 

with a maximum error of -0~2 in 1000. 11 

In order to determine ~A from simultaneous astronomic zenith 

angles, the expression for zenith angle, cos z = sin o sin ~ + cos o 

cos h cos ~, is again used except that astronomic longitude A is 

entered into the expression by making th~ substitution 

h=A-a.+T 

where 

h and A were defined previously 

a. = right ascension of the star as tabulated by a star catalogue 

T = time 

(4-15) 

After differentiation with respect to the observed quantities 

z, ~.A and T, and simplification (see Appendix I), the expression 

becomes 

~A= - sec ~cot A~~- sec~ cosec A ~z- ~T (4-16) 
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This expression is used in r~ueller [1969] to show _the effect of small 

systematic errors in the measurements of astronomic latitude, zenith 

angle and time on the determination of astronomic longitude. When 

the exr-ression is used to determine AA beb1een two points at '.-hich 

simultaneous observations of zenith angle of the same star are made, 

then bA= - sec 1 cot A bl - sec 1 cosec A bZ since bT = 0. 

The appropriate choice of a star for the determination of 

~A is one for which A=~ 90°, that is a star near east or west prime 

vertical crossing, since with A=~ 90°, cot A= 0, cosec A~ 1 and 

~A = - sec ~ ~z. The last expression shows only the predominant term 

in the determination of ~A; to avoid large errors the complete expression 

must be used in which ~~ was determinsd previously, ~ is the tpproximate 

astronomic latitude and [Mueller, 1969] 

A _ -1 (sin o - cos z s -; n tP 
- cos sin ~ cos 1 

where 

o and 1 were defined previously 

: zl + ':Z 
z = 2 2 + refraction correction 

) ( 4-17} 

In the actual determination of AA, the star chosen is one 

near -~ast or 'West prime vertical crossing at the time of observation. 

To positively identify the star, the approximate azimuth, zenith ans1e 

and time are used to compute the approximate declination o and right 

ascension a of the star. From [Mueller, 1969] 
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6 = sin-1 (cos A sin ~ cos 1 + cos t sin 1) (4-18) 

a = A _ h + UT + R; h·= cos-1 (cosz - sin o -sin 1) 
cos o COS I 

where (4-19) 

a, A, z, 1, a, A, and h were defined previously 

UT = universal time 

R = a - 12h m 
in which am = right ascension of the mean sun. 

R or am are tabulated in star catalogues. With the star identified, 

the tabulated value of o is used in the formula for azimuth. 

The description of the determination of ~~ and 8A is complete 

except for the application of the differential refraction correction. 

In order to make this correction pressure and temperature are measured 

at both points before and after each set of observations. The 

differential refraction correction is then applied to ~z by using 

refraction tables, for example those provided in Mueller [1969]. 

Summarizing the method of determining change in deflection of 

the vertical by the astrogeodetic difference method; 

(4-10 repeated) 

where 

·~~is determined approximately {to 0~1) by any suitable method, 

~~ (for Polaris)=- ~z + diff. refr. carr.; (4-20) 
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An = (AA - 41) cos ~ ( 4-11 repeated) 

where 

AA. is d·etermined approximately (to 0~1) by any suitable method, 

M = - sec ct> cot A M - sec ct> cosec A (t.Z + diff. refr. corr.), (4-21) 

in which M was determined previously a11d A is calculated 

from z, ct>, and 6 of the kncwn star near prime vertical 

crossing. 

An HP-29C program for the determination of M from 8.":!, is 

given in Appendix II. 

4.2.2 A Priori Error Analysis 

Applying the law of propagation of errors to the math model 

for M,, 
2 - 2 + 2 

a A~ - a A~ a A~ (4-22) 

If the error in M is assumed· to be-small in comparison to the error 

in -M , therr - . - - 2 2 
a A~ = a Act> (4-23) 

Applying the law of propagation of errors to A~ = - A~ + differential 

refraction correction, 
2 = a2 . + 2 

a M AZ cr Ar (4-24) 

where 

A r = differential reftaction correction 

and 2 . 2 + ~2 . 
a A~ = a AZ v Ar (4-25) 

In the measurement of zenith angles there are three errors; 

the error in reading the zenith ang1e in the readout system, the error 

in pointing the vertical crosshairs of the instrument at the target 

and the error in levelling of the vertical circle index. 
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The reading, pointing and levelling errors (crr' crp and cr1 

respectively) are determined by the types of instruments used to make 

the simultaneous zenith angle measurements. For example, if two -

28X, 111 theodolites with automatic vertical circle compensators and 

artificial light for the readout system were useQ, the errors would 

be: 

cr = 111 (from previous experience of the author) r 

cr = 0~5 (from Chrzanowski [1977]) p 

cr = 0~3 (from Cooper [1971]) 
1 

The error in the differential refraction correction {crAr) 

is estimated to be of the same order as the correction itself, and 

a value of 0~5 is u~ed. 

For each determination of Az, four measurements of zenith 

angle are taken (one measurement on each face of each instrument}. 

If the previous vaiues of crr, crp' a1 and cr6r are used, the standard 

deviation for each determination of A~ would be 

2 2 1/2 
0 6~ = (cr Az + 0 A r) · ' 

( 2 + 2 + 2) 2 112 
= [4 crr crp o1 + cr6r ] 

= 2~1 4 

crr, op' cr1 but not crAr can be reduced by ;n sets, therefore 

if, for example, 12 sets are taken 
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[ 4 (12 + ~.52 + 0.32) + 0.52}1/2 = 0~8 
12 

Applying the la1-1 of propagation of errors to the math model 

for ln1, 

2 2 2 + 2 ~ 2 cr &n = cos cp cr &A cos ~ cr &A (4-26) 

If the error in ~A is assumed to be small in comparison to the error 

in M, then 
2 2 2 

J &n=COS t/> a M (4-271. 

Assuming that &A is determined when the star is near prime vertical 

crossing, 

&A ~ sec ~ ( &z + &r) 

Applying the law of propagation of errors to this expression, 

2 - 2 .( 2 + 2 ) cr AA - sec ~ a &z cr &r 

Substituting into the expression abJve fo·~ o 2
6n .. 

cr2 = 2 + r/ 
lln cr Az llr 

which is the same as the expression for cr 2ll~· 

(4-28) 

(4-29) 

(4-30) 

In the determination of Az for An however, there is a simultan-

eous timing error in addition to the other errors. This error is 

negligible in the determination of A~ because for ll~ a star near the 

celestial pole is observed. The apparent motion of this star is vet·y 

slow. For.AA a star near prime vertical crossing is chosen. The 

apparent motion of a star, along its track, at prime vertical crossing 

equals the rotation rate of the earth, that is 360° per 24 hours or 
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15" arc per ls time, making the star more difficult to track and to 

point to at an instant of time. The vertical component of the apparent 

motion of~ star at prime vertical crossing is 15" cos cp per ls. 

Thr simultaneous timinr error {aAt) of two observers reacting to a 

read signal given by a third person is estimated to be 0~1. At 

cp = 45° this corresponds to an error in zenith angle of 1~0. If the 

previous values of ar• ap,a~ and aAt are used, the total standard 

deviation for each determination of An is 

a An = 
2 2 l/2 

(aAz + aAr ) 

[4 ( 2 + 2 + 2 + 2) 
2 l/2 

= ar ap a~ aAt + a Ar ] 

l/2 
= [4 (1 2 + 0.52 + 0.32 + 1.02) + 0.52] 

= 31:1 

ar' ap' a2 ~ aAt but not aAr can be reduced by In sets, 

therefore if,for example, 12 sP.ts are taken 

aAn = [4(12 + 0.52 ;20.32 + 1.02) + 0.52]1/2 = 1~0 

This error analysis for A~ and An assumes that there is no 

systematic shift between the two observers and instruments making the 

simultaneous observations. To check for this possibility, a set of 

simultaneous zenith angles on the same star near prime vertical crossing 

should be determined faY' the two observers and instruments side- by side. 

This procedure should be performed at the beginning and at the end of 

a night of observations. 
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In the field work which was done {see section 4.3) some 

practice time was required to eliminate this shift. It was noticed 

during these practice sessions that shifts as high as 10" could occur 

when one or more of the following condition~ existed: 

1. parallax betv-1een the instrument crosshairs and the star~ 

2. vibration of the vertical circle compensator causing vibration 

in the readout system because of an unstable instrument setup, 

3. ~oar lighting of the crosshairs and readout system. 

During the observations care must be taken to eliminate these conditions: 

crosshairs and star must be properly focussed, a stable instrument setup 

must be made and batteries for the lighting system must be changed as 

soon as the light begins to dim. 

4.3 Field Tests 

In order to determine whether the astrogeodeti c difference 

method was actually practical and produced results more or less consistent 

with other independent determinations, field tests were carried out in 

the Fredericton and Fundy Park areas. 

In the Fredericton area results from the astrogeodetic 

difference method were compared with results from the trigonometric 

. method and results provided by Dr. Lachapelle using his combined method. 

Dr. Lachapelle also provided results for the Fundy Park area and these 

were compared vii th results from the astrogeodeti c method and the astro­

geodet·ic difference method. 
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The astrogeodetic difference and trigonometric methods 

produce surface deflections of the vertical. The results which Dr. 

Lachapelle provided are geoid deflections. Section 2.2.1 gives the 

maximum curvature of the plumbline between the geoid and the terrain as 

311 /1000 m height above the terrain; therefore for both the Fredericton 

area (H ~ 10 m) and Fundy Park area (H ~ 350m) the geoid deflectiQnS 

provided by Dr. Lachape 11 e are essenti a·lly the same as the surface 

deflections. 

Dr. Lachapelle's results were determined from the Goddard 

Earth Model (GEM) lOB potential coefficients and adjacent gravity 

anomalies. No astrogeodetic deflection data was used in either the 

Fredericton or Fundy Park areas. 

4.3.1 Fredericton Area 

J:igu.re 4-3 shows the location of three points in the Fredericton 

area ("Pillar 11 , "~1aple 11 and "Minto") between which changes ir. deflection 

of the verti ca 1 were determined. 

The Fredericton area was chosen for convenience and, in order 

to utilize the terrain to make the changes in deflection as large as 

possible, the three points were located on opposite sides of the St. John 

and Nashwaak River valleys. "Pillar" is the East astro pillar located 

on the roof of the Eng·: neeri ng Building, University of New Brunswick .. 

11 Maple" is marked by an orang~· colored ,wooden stake on a slight rise in 

an open field. "Minto" is marked by a brass marker set in a rock outcrop. 

The line between 11 Pillar" and 11 Minto" is denoted as line 1, the line 
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Deflections of the Vertical in the Fredericton Area 

by the Astrogeodetic Difference Method 
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between 11 Pillar11 and 11 Maple 11 as line 2 and the line between 11 Maple" 

and "lvlinto11 as line 3. 

4.3. 1.1 Use of the Trigonometric Method 

The trigonometric method was used only on line 1. 

The slope distance (Ss) of line 1 was measured independently 

by four groups of students using microwave EDM equipment, and is 

believed to be accurate to+ 0.1 m. 

The difference in heigf)t (..~H) between "Pillar 11 and 11Minto 11 

{each end of line 1) was measured by two groups of students under the 

supervision of the writer. Precise levelling equipment was used and 

precise levelling procedures were rigorously followed. The levelling 

route was divided into short sections so that blunders.could be 

isolated. The misclosure in each section and for the entire levelling 

route was smaller than that required for special order levelling which 

has an allowable misclosure of~ 3 mmjlkm of levelling route [Surveys 

and Mapping Branch (EMR), 1973]. The total misclosure for the entire 

route was 0.00527 m. Based on 200 sightings and a standard deviation 

of 0.4 mm/sighting [Chrzanowski, 1978], the standard devaition of the 

height difference was estimated to be ~ 0.006 m. Because the forward 

and backward levellings were performed on essentially the same route,. 

the gravity correction was negligible. 

The standard deviations given for 6E, k, kAB and kBA were 

determined by applying the law of propagation of errors to the expressions 

for each of these terms. In each case, the contribution of the standard 
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deviation of 4H , Ss and S0 was negligible in ca.mparison to the contri- · 

bution to the standard deviation of z: 

( 4-31 ). 

(4-32) 

2 R 2 2 2 cr = (-s u) (cr ·z + <1z ) 
k oP A 'B 

(4-33) 

where 

cr 2 = {standard deviation )2 or variance 

The standa~~ deviation of each zenith angle was determined from a set 

of 12 zenith angles. Each. reciprocal zenith angle was measured 

simultaneously {by means of two-way radio communication)and in rapid 

succession. 

Line l is far from an ideal choice of a line on which to 

determine an accurate trigonometric height difference. According 

to Bamford [1975] there are several unfavorable situations·for the 

determination of accurate trigonometric height differences: 

1. great width of river crossing, 

2. low ground or water clearance, 

3. asyrrunetry of terrain profile, 

4. aymmmetry of ground and water, 

5. clear skies, 

6. great heat or cold, 

7. absense of wind. 
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Conditions 1, 3, and 4 exist for line 1, anJ obviously nothing could 

be done to reduce their effect. Meterological effects (5, 6 and 7) 

were minimized by making the observations gn afternoons of windy, 

cloudy days. 

In an attempt to reduce the uncertainty of the determination 

of change in deflection from trigonometric levelling, the vertical 

temperature gradient was measured at "Minto 11 .and at "Pillar11 for the 

zenith angle observations made on June 24. The vertical te~perature 

gradient at "Minto" was measured just before the zenith angles were 

observed, and the ver.tical temperature gradient at 11 Pillar" just after. 

The temperature gradient was measured by mounting three thermisters 

I m apart on a levelling rod. The lowest thermister was mounted 

0. l m below the telescope. The readout system gave difference in 

temperature between any two of the three thermisters. The results 

obtained are shown in the following table. 

Location 

Pillar 

Minto 

A 0.1 m below telescope 

Vertical 
A to B 

-0.306 

-0.639 

B 0.9 m above telescope 

C 1.9 m above telescope 

Table 4-1 

Temperature 
B to C 

-0.222 

-0.133 

Vertical Temperature Gradients on line 1 

Gradient ( 0 c/m) 
A to C 

-0.264 

-0.389 
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To min1mize the effect of heat from the Engineering Bu·ilding., zenith 

angles and vertical temperature gradients for"Pillar'' were measured 

close to the edge of the building. 

The results were not what had been expected. If the average 

value of vertical temperature gradient (A to C) is used to determine 

coefficient of refraction, 

from P dT k = 502 2 (0.0341 + dh) [Angus-Leppan, 1967] 
T 

(4-34) 

where 

P = atmospheric pressure in millibars 

T = temperature in °K 

dT temperature gradient in °C/m dh = 
kPillar = -1. 37 

k = -2 13 "Minto · 

An average value of vertical temper3ture ~radient of -0.009 °C/m had 

been expected, which would have produced k values of about 0.150. The 

conclusion that can be drawn is that vertical temperature gradients 

in the immediate vicinity of the instrument are not representative of 

the average vertical temperature gradient at one end of a line of 

observation, probably because of the rapid change in ~~ and k near the 

ground.· 

A solution to this problem might have been to measure the 

temperature gradient further away from the instrument but still along 

the line of observation. For line 1 this was not feasible: at the 
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"Pillar" end the instrument was already near the edge of a high 

building,.and at the "Minto" end the slope dropped off rapidly along 

the 1ine of observation. 

Table 4-2 shows the results of a difference in trigonometric 

and spirit levelled height differences interpreted a~ a change in 

deflection of the vertical (Approach 1) and as a difference in coefficient 

of refraction at each erd of the line of observation (Approach 2). 

For this particular line the difference in heights may have beln due . . 

just as much to one as the other, but the relative contribution of 

each could not be determined because of the unsuccessful attempt to 

make an independent determination of the coefficient of refraction 

at each end of the line of observation. 

4.3. 1.2 Use of the Astrogeodetic Difference Method 

The astrogeodetic difference method was used on lines 1, 2 

and 3 so that the misclosure in ~~ and ~A could be calculat~d to 

check for a possible systematic error in either of these quantities. 

"Pillar" was arbitrarily assigned a zero deflection of the 

vertical. The values of A~ and ~A were determined by measuring 

azimuths accurate to about + 10" and EDM distances accurate to about 

. 0.1 m, and applying Puissant's formula. Astronom~c coordinates 

accurate to about 0~1 had been previously determined for "Pillar" and 

these \'tere used in the computations, but approximate astronomic 

coordinates would have been just as good. 

In all the determinations of~~ and ~n , values f9r o, a, and 



Observers Date Time Weather *\(m) *t.H(m) Approach 1 
(Zenith 
Angle) M;(") 

I 
I 

,Lea 1 30% cloud 
41.739 .:. 0. 0061 _,_ 4 .:. 1. 0 lc!IC ~lay 17 3:30 pm cover ,1 i ght 4833.0 + 0.1 

ITeskey wind -
I 

!Lea 1 I 10n% cloud 
land May 20 112~30 pm cover,light 4833.8 + 0.1 41.732 ::t. 0.006! -ID.6.:t. 0.6 I 

Tes~ey 

I 
wind 

Leal 
,_ 

1 100% cloud 
jand June 24 4 pm r cover ,light 4832.5::!:. 0.1 41.695 + 0.006 -0.8.:. 0. 7 
ITeskey wind 

I 

Appl'Oach 1: Samek at each end of the line of observation assumed. 

Approach 2: No change in deflection of the vertical assumed. 

k 

0.136 + 0.005 -

0.139.:!: O.OG::i 

0.147.:. 0.004 

*Ss and ~H different for each set of observations bec~use ··nstrument and target setups different. 

Table 4-2 

Trigonometric Levelling on line 1 

Approach 2 I 
kAB 

. 
kBA ! 

i 
0.163 + 0.011 o.1o3 + o.oc6 I - - j 

I 
I I 

I 
0.150.:. 0.00510.128::!:. 0.004 

0.162.:. 0.00710.131::!:. 0.004 

I : o::> 
w 
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.. 
R for the stars observed were taken from 11 Ple Star Almanac for Land 

Surveyors for the Year 197911 (SALS, 1979} [Her Majesty•s Nautical 

Almanac Office, 1978]. 12 sets of observations were made. Values of 

6~ and 6n were determined twice for line l to check that time of 

observation and star observed did not have a significant effect. 

The check for the systematic shift between the two observers 

and instruments was performed before and after the observations for 

6~ and 6n on line l. The check was performed only after the observa­

tions for 6~ and 6n on line 2 because the results from line 1 had 

shown no significant _systematic shift. (The system.atic shifts for 

both determinations of A~ and 6n on line 1 were less than 111 and the 

standard deviations were about 211 .) The check was not performed 

after the observations for A~ and 6n on line 3 because no stars were 

visible at the time due to heavy cloud cover. 

One pair of.observers (Leal and Teskey) p.erformed the 

observations on lines 1 and 2. A different pair of observers (Sujanani 

and Teskey) performed the observations on line 3 •. This was done only 

because Leal.was not available for the observati~ns on line 3. 

Table 4-3 summarizes the determinations of 6~, AA, A~ and AA 

in the Fredericton area. When M and M were not corrected for 

differential refraction, the misclosures (about 111 for A~ and 2~·5 for AA) 

were about the same magnitude as the standard deviations of the mis-

closures. When M and .AA \</ere corrected for differential refraction, 

the misclosures (about 0~5 for A~ and 1~0 for AA) were about one-half 

the magnitude of the standard deviations of the misclosures. These 



Observers Date Line From To t~cp(ll) flA (II } M>(ll} M'(u) M(u) M(u) 
(uncorrected) (corrected) (uncorrected) (corrected) 

Leal 
and June 27 2 Pi 11 ar Maple 97.2 15.2 94.9 .:t. l. 1 94.4 + l. 1 17.3 + 1.5 16.6 + 1.5 
Teskey 

Sujanani 
co and July. 7 3 Maple Minto -85.9 208.5 -80.9 + 0. 8 -80.4 + 0.8. 205.6 + 2.1 205.5 .:t. 2.1 U"1 

Teskey & 8 - -

leal fay 22} {-13.0 + 0.8} rl3.3 .:t. 0.81t220.8 .:t_l.9lt221.5 .:t. 1.9~ 
and 23 1 Minto Pillar -11.3 -224· 7 -13.1 ~ 0.7 Teskey May1 ~7, 

-13.5 .:t. 0.7 -220.3 .:t. 1.3 -221.3 .:t. 1.3, 

Sum 0.0 0.0 D·o::1.6} {0.7:: l.j i2.1 :: 3.J (0.6 + 3.21 
0.9 + 1.5 a. 4 + 1. 2.5 + 2.9 (o.9 ~ 2!9] 

Table 4-3 

Differences in Astronomic and Geodetic Coordinates in the Fredericton Area 
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results indicate that a small systematic error may exist in the results 

and that the differential refraction correction may reduce the system­

atic error. Table 4-3 also shows that the time o~ observation and 

the star observed probably do not have a significant effect on the 

determination of M and tJ.A since the two detenninations of M and 

~A on line 1 are the same at the lcr level. 

The final results, t; and n of "Maple 11• and 11 ~1into 11 with respect 

to 1;_ = n = 0 at the pillar, are shown on Figure 4-3. The standard 

deviations of the results compare well with those calculated from 

an a priori error analysis. The t; and n values for "Maple" are those 

determined from the astronomic observations at "Pillar11 and "Maple .. , 

and the t; and n va 1 ues for ur~i nto 11 are those dete.rmi ned from the 

astronomic observations at 11 Pillar11 and 11Minto", that is neither 

set of deflection components were adjusted for the small misclosure 

around the triangl~. 

Figure 4-3 also shows the deflection of the vertical as a 

vector. When shown this way it appears that.the deflection is affected 

by the topography in the general area of the station. This may be 

by chance considering the magnitude of the deflection components and 

their standard deviations, or it may be due to a small systematic 

shift betwe~n ~bservers and instruments during the observations. It 

may also be that the deflection components are substantially correct, 

and that they exist because of the high correlation between topography 

and deflection of the vertical. This correlation between topography and 

deflection was discussed in sectipn 4.1.4. 



Point 

Maple 

Minto 

1Deflection 
Component 

E; (II ) 

n (II) 

E;.(ll} 

n(ll) 

87 

Astrogeudetic 
Difference Trigonometric 2combined· 

-2.8+1.1 -o.n- + 1.4 

+0.4 + 1.1 -0.02 + 1.3 

{+2.3 ~ 0.7:} -0.05 + 1.4 
+1.6 + 0.8 

t2.2 ~ l.3l 3 fi .4:!:. 1.0} +0.34 + 1.3 
-2.4 ~ 0.9] 0.6 + 0.6 

0.8 + 0.7 - -

Notes: 1. Determined with respect to f;, = n = 0 at· 11 Pi 11ar 11 • 

2. Provided by Dr. Lachapelle using GEM10B potential 
ceofficients and aJjace;lt gra·iity anomalies only. 

3. Determined only along line of observation which is 
predominantly east and west. 

Table 4-4 

Deflections of the Vet·tical in the Fredericton Area 
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4.3. 1.3 Comparison of the Results 

Table 4-4 shows a compar.ison of deflection components in the 

Fredericton area. 

Because the deflection components determined by each 

independent method are roughly the same magnitude as their standard 

deviations, no conclusions can be drawn regarding the correctness of 

one method versus another. Certain observations concr:ning the 

methods however, can be ~ade. The trigonometric determination is 

probably the weakest due to the effect of vertical refraction on a 

line of observation near the ground. The astrogeodetic difference 

determinations could easily be affected by a small systematic shift 

between instruments and observers during the observations. The 

resolution of the combined determinations may not be-as high as the 

astronomic or trigonometric determinations because point gravity 

anomalies used are an average distance of 10 km apart. 

4.3.2 Fundy. Park Area 

Figure 4-4 shows the location of two 1st order geodetic control 

points in the Fundy National Park area. Also shown on Figure 4-4 are 

the deflections of the vertical (with respect to NAD 27) that were 

determined for these points by the observation of astronomic latitude 

and astronomic longitude. At 11 Alma 11 (station No. 14103) astronomic· 

coordinates were observed in 1914, 1929 and 1964. At 11 Church11 

(station No. 641007) astronomic coordinates were observed in 1964. 

The standard deviations of the deflection components are estimated to 
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be .:!:_ 0~1 3 for both no.rth-south components and .:!:_ 0~1 5 for both east­

west components [Robbins, 1977], since the standard deviation of a 

north-south comp.onent is about the same as the standard deviation of 

astronomic latitude and the standard deviation of an east-west 

component is about the same as the standard deviation of (astronom1c 

longitude) x cos (astronomic latitude). M~ by this determination i~ 

12~1 with crM; = o•:3 x 12 = o~·4 becaus.= each deflection component was 

determined independently. An by the same determination is 8~3 with 

crA~ = 0~5 x /2 = 0~7, again because each deflection component was 

determined independently. 

In addition to the astrogeodetic determination of the 

deflection components, a combined determination was provided by 

Dr. Lachapelle. M; by this determination is 11 ~·3 .:!:_ 1•:4, and An is 

4~8 + 1 ~·4. 

Because both of these determinations of deflection components 

are independent of one another, it is almost certain that the differences 

in deflection components, which are large in comparison with their 

standard deviations, do exist between "Alma" and "Church". The 

reason for the large differencesin deflection components is due mostly 

to the fact that 11 Alma 11 is located at a point where the highlands of 
- . 

the Caledonia Hills begin to slope steep.ly toward tne Bay of Fundy. 

Large differences in deflection components could have been found in 

other coastal areas or in the Rocky Mountains but the close proximity 

of the Fundy Park.area to Fredericton made it the obvious choice. 
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The field procedures followed in the Fundy Park area were 

essentially the same as those follo~ted in the Fredericton area. 

Geodetic coordinates of "Alma 11 and "Church 11 were provided by the 

Geodetic Survey of Canada. !lei> and Mt were each determi n~d by 12 sets 

of observations. Davidson and Teskey performed the observations. 

Because the two-:-way radios used i r1 the Fredericton area did not have 

sufficient range, previous arrangements had been made for the Fundy 

Park two-way radio system to be used. 

After the observations had been completed, the check for a 

systematic shift was performed. The magnitude of the shift (0~8) 

was again smaller than its standard deviation {±. l~·s), and no 

correction was applied to the observations. Small eccentric LO~rections were 

app 1 i ed to M and M because both instruments had to be set up a short 

distance away from the stations in order to get a reasonable field of 

view. 

Table 4-5 shows a comparison of the deflection components 

determined by the astrogeodetic, combined and astrogeodetic difference 

methods. The agreement of the results of the three methods is 

remarkably good. The results of the astrogeodetic difference method 

agree more closely with those of the astrogeodetic method than the 

combined method possibly because- the astronomic methods are conceptually 

the same while the combined method is based on a completely different 

concept. 

These field results, together with those obtained in the 

Fredericton area, indicate wi.th some certainty that changes in 



Point Deflection Astrogeodetic *Combined Astrogeodetic Difference Difference 
Component .. 

·:!" ·; Without !:J.r With !:J.r (Astra - Astra Diff) ~.. : 

(NAD 27) Without !:J.r With !:J.r 
--

Church ~(11) +0.9 + 0.3 1.9 + 1.4 

n(u) -4.2 + 0.5 -3.4 + 1.4 
---------------- ---~---~-~ --------- - ~-- ---

ll~(ll) -12.1 + 0.4 -11.4 + 2.0 . -·11.0.::: 1.3 -12.7 + 1.3 - l. 1 + 0.6 

!:J.nc·) +8.4 + 0.7 +4.8 + 2.0 +8. 3 + l. 8 +10.6 + 1.8 + 0.1 - 2.2 

--
Alma E;,(ll) -11.2 + 0.3 -9.5 + 1.4 

n ( .. ) +4.2 + 0.5 +1.4 + 1.4 

* provid~d by Dr. Lachapelle using GEM lOB potential coefficients and adjacent gravity 
anomalies only 

Table 4-5 

Deflections of the Vertical in the Fundy Park Area 

~0 
rv 
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deflections of the vertical can be determined by the astrogeodetic 

difference method with an accuracy of 111 to 2". The weakness of 

the methop is the possibility of an undetected systematic shift 

b-~tween observers and instruments during the observations. 



5 APPLICATION TO ENGINEERING ~URVEYS 

In this chapter the application of the materi~l presented 

in chapters 1 to 4 will be shown. Two different engineerin9:- surveying 

problems will be considered: a simulated. tunnel survey and alignment 

of a straight line in space. The emphasis in both problems will be 

on the effect of the gravity field. 

5.1 A Simulated Tunnel Survey 

A tun,·,el st..rvey is an .~xcellent probler:~ to inv·estigate when 

considering high accuracy requirements in an engineering survey. The 

critical problem in a tunnel survey_ is to minimize the breakthrough 

error of headings driven from opposite ends of the tunnel. This is 

difficult to do since the lateral breakthrough is determined by an open 

traverse and the vertical breakthrough by an open levelling line. 

For short tunnels the portals are commonly -:onnected on the 

surface by a traverse; for longer tunnels the portals are connected by 

a trigonometric network [Wassermann, 1967]. In either case the only 

alternative for horizontal control in the tunnel itself is a traverse. 

For vertical control precise ~pirit levelling is used. The portals may 

94 
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be connected by a sing.le precise levelling l-ine or by a network of 

such lines [Wassermann, 1967]. Vertical control in the tunnel itself 

is extended by a precise levelling line. 

The problem that will be considered is the error which will 

occur at the breakthrough of a tunnel in a mo~ntainous area if the 

effect of the gravity field is neglected. It \'lill be 

assumed that Jll systematic errors (ot!-Jer than those due to neglecting 

th~ gravity fi~ld) have been eliminated by proper survey procedures, 

and that the only errors which remain are random errors. The lateral 

and vertical breakthrough errors will be considered separately. 

5. 1.1 Lateral Breakthrough Error 

For horizontal control various network and traverse configur­

ations have been considered. The configurations are shown on Figure 

5-l. Table 5-l show approximate plane coordinates; heights and 

deflection components of each point in a local coordinate system. 

For sake of convenience the X-axis has been aligned along the tunnel. 

Heights of the points were estimated assuming that the 

tunnel passes beneath q high mountain in a range which runs generally 

north and south. Deflections were assumed to be dependent largely on 

. topog.raphy and thus all de.flections are 11 downhil1 1'~ Differences 

in deflection were estimated to be larger across the mountain range, that 

is east-west, than along it, that is north-south. The maximum difference 

in east-west deflection was estimated to be 2011 ; the maximum difference 

in north-south deflection, 1011 • Both the magnitude of the deflection 



3500 

Height(m) 2500 

1500 
j 
Y(km) 

6l 
5 

1 

3 

2 

4 
~ 

approximate 
centerline 
profile 

0 , 7X( km) 

0 1 2 3 

Configuration 
1 
2 
3 
4 
5 
6 
7 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Observations between Portals 
all distances 
all directions with 2 distances 
all distances and directions 
South side traverse (1-11-10-9-7) 
North side traverse (1-3-4-5-6-7) 
South and North side traverses 
Zig-zag traverse (1-11-4-10-5-9-7) 

Figure 5-l 

Hortzontal Control for a Simulated Tunnel Survey 

1..0 
0"1 



97 

Point X(m) Y(m) Ht (m) E;(ll) T) (II ) 

1 4000 3000 1500 0 0 
2 2000 2500 2000 -5 +5 

3 3000 5000 2500 +5 +5 

4 7000 550G 3000 +5 -10 
5 11500 5500 3250 +5 +10 
6 16000 4500 2000 +5 -5 
7 14000 40C.J 1500 J 0 
8 15000 3000 2250 -5 -5 
9 12000 1500 2500 -5 10 
10 9000 1500 3500 -5 0 
11 4500 2500 2500 -5 -5 
12 5000 1500 1500 0 -2.5 
13 6000 3000 1500 0 -5.0 
14 7000 3000 1500 0 -2.5 
15 8000 3000 1500 0 0 
16 9000 3000 1500 0 0 
17 10000 3000 1500 0 +2.5 
18 10000 3000 1500 0 +2.5 
19 11000 3000 1500 0 +5.0 
20 12000 3000 1500 0 +5.0 
21 13000 3000 1500 0 +2.5 

Table 5-l 
Horizontal Control Data for Simulated Tunnel Survey 
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differences and the directic~ of the deflections is in general agreement 

with those reported for mountainous terrain in Wassermann [1967], 

Ri.chardus [1974] and ~1aclean [1977]. (In a real p.roblem deflections 

could be determined by any of the methods discussed in chapter 4. 

Probably the easiest and most convenient method would be the astra­

geodetic difference method.) 

Directions, angles and distances were used to determine 

horizontal positions. The estimated standard deviation of each of these 

observations was obtained by referring to Chrzanowski [1977], 

considering that directions and angles were measured with a 111 

theodolite and distances were measured with commonly available 

electro-optical EDM equiQment. The estimated standard deviations 

were: 

directions: + 1~5 

angl~s: + 2~0 

distances: ~ (5 mm + 4 ppm) 

No azimuths were included since the standard deviation of an azimuth 

determined with a 111 theodolite is 511 to 1011 [Robbins, 1976] and this 

would do very little to improve the horizontal position determinations 

in a small area considering the much smaller standard deviations of 

directions, angle~ and distances. {In a real problem, a low. order 

azimuth would be required to approximately orient the Y-axis to 

north so that geometric and gravimetric corrections could be applied 

to the observations.) 
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The random lateral breakthrough error for each configuration 

was determined by the method proposed by Chrzanowski [1978]. In 

this method the random lateral break-throug.h_ error (at the 1 cr level) 

is the error in the direction perpendicular to the tunnel centerline 

of the error (pedal) curve described on the standard relative error 

ellipse between two points very close to the bre~kthrough point. 

The breakthrough point must be considered as two separate points in 

this method so that a relative error ellipse can be obtained. 

The relative error ellipse is usually interpreted as depicting 

a region which defines. the relative positional accuracy of two points 

whose positions were determined from observations having only random 

errors. The parameters defining a relative error elliose are a, the dimension 

of its semi-major axis; b, the dimension of its semi-minor axis; and 

~. the azimuth of the semi-major axis. These parameters are determined 

from the estimated variances of the set of observations for a particular 

configuration of points, by parametric least squares preanalysis. 

Parametric least squares preanalysis for horizontal geodetic 

networks is described in many references, for example Krakiwsky and 

Thomson [1978] and Chrzanowski [1977]. 

The error in any direction between two points is obtained from 

. the relative error ellipse between the two points by [Chrzanowski, 1977]: 

2 2 2 2 1/2 cra = ( a cos a+ b sin a) (5-l) 
\'Jhere a= clock\'lise angle from the semi-major axis to the desired direction 

For this problem a = (180° - $) (5-2) 
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therefore (J :::: e {5-3) 

The systematic lateral breakthrough error for each configur­

ation was determined by calculating errorless observations and then 

adjusting these by the corrections which should have been applied fo~ 

deflections o·.~ the vertical. Using th; errorless observations adjusted 

for the deflections, the misclosure in theY direction at the break­

through is the systematic lateral error. 

The corrections applied to the directions and angles were the 

c1 corrections described in section 3.2.1. The corrections for 

directions varied from -3~0 to +4~0, and for angles from ~4~2 to +6~2. 

The corrections applied to the distances were obtained by 

differentiating, with respect to the zenith angle, the expression for 

the reduction of slope distance to the horizontal: 

L. 
lJ 

:::: r .. 
lJ 

sin z .. 
lJ (5-4) 

and 
dR.ij = r .. 

lJ 
cos z .. 

lJ dZ .. 
lJ 

(5-5) 

The correction for a zenith angle is [Thomson et a 1 , 1978] 

,t:,z • . = ( t;.. cos a. .• + n. sin a.. ) 
lJ 1 lJ 1 lJ 

(5-6) 

It was assumed that to obtain the highest accuracy in the reduction 

of.sp1tial distancesto the mapping plane simultaneous reciprocal 

zenith angles were observed, therefore t:,zij for a given distance 
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would be the sum of llz .. •s at .·each end of the line. The corrections for 
lJ 

distances varied from -0.033m to +0.090 m. 

Several. things can be noticed about the-corrections to the 

observations: 

1. There are no corrections to the observations for the underground 

traverse since it is horizontal. 

2. The corrections to directions and angles are proportional to th~ 

component of the deflection perpendicular to the line(s) and the 

slope of the line(s); the corrections to distaoces are proportional 

to the sum of the components along the line at each end of the line, 

and the slope of the line. 

3. Because of the orientation of the deflection components, the 

corrections for distances are largest for steep lines running 

generally e.ast and west or north and south; the corrections for 

directions are largest for lines running gQnerally northeast and 

southwest or northwest and. southeast. 

4. The corrections in most cases are withiR the 2o level and appear 

to be random. 

Calculation of the misclosures at the breakthrough was done 

by parametric least squares adjustment which is just an extention of 

parametric least square~ preanalysis. In preanalysis of horizontal 

geodetic networks variances of observations yield variances and 

covari ances of coordinates. In adjustment of horizontal geodetic 

networks observations with variances yield adjusted coordinates with 

variances and covariances. Any reference which describes preanalysis 
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of horizontal geodetic networks, such as those referred to previously, 

would .also describe adjustment. 

-To perform the calculations for the random and"systematic 

;ateral breakthrough errors the program GEOPAN (Geodetic Plane 

Adjustment and Analysis) [Steeves, 1978] was used. With the program 

used in the adjustment mode only one run was required for each patt­

icular configuration and set of observatior.s since the adjusted 

coordinates of the two points at the breakthrough provide the 

systematic error,and the relative error ellipse between the two points 

at the breakthrough, ca 1 cul a ted from the variances of and the covari ances 

beb1een these points, provides the random error. 

Table 5-2 shows the random and systematic lateral break­

through errors associated with each configuration connecting the 

portals. The random error is about 0.120 m (1 cr) for all configurations, 

and is little affected by the degrees of fre.2dom. In ft·.ct, the lowest 

random error is a combination of two traverses having only three 

degrees of freedom. The systematic error due to neglecting.the 

gravity field,on the other hand,can be reduced to less than the 1 cr 

random error by only a few degrees of freedom. With zero degrees 

of freedom or a uniqut determination (all the single traverses) 

the-systematic error can be larger than the 2o random error­

unquestionably large enough that it should be eliminated. 

5. 1.2 Vertical Breakthrough Error 

The random vertical breakthrough error and systematic 



Observations Minimum Constraints Degrees of Lateral Errbr (m) 
Con fi g_u ra:t ion between Point Azimuth Freedom Random *Systematic 

Portals 

1 all 5 5-4 3 + 0.126 -0.079 
distances 

2 all 5 5-4 16 + 0. 125 +0;059 
directions 
with 
2 distances 

3 all distances 5 5-4 36 + 0.114 +0. 001 
and directions 

4 south side 
traverse 10 10-11 0 + 0.122 -'0.093 _. 

0 
w 

5 north side 5 5-4 0 + 0.144 +0.210 
traverse 

6 south and 5 5-4 3 + 0. 107 +0.076 
North side 
traverses 

7 zig-zag 10 10-4 0 + 0.129 -0.293 
traverse 

* + indicates heading from east is to the riorth of heading from West at breakthrough 

Table 5-2 

Lateral Breakthrough Errors of Simulated Tunnel Su~vey 
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vertical. breakthrough error will be discussed separately. For both 

the random and systematic errors it will be assumed that a single 

precise levelling line is used. 

The estimate for the random vertical breakthrough error, 

based on a standard. devjation of 0.4 mm/sighting [Chrzanowski, 1973] 

and an average sighting distance of 25 m, is + 0.00283 m/lkm of 

levelling rOI!te. Considering the rug9ed terrain, the length of the 

lEvelling route would be several times .longer than the stl~aight line 

distance. With the levelling route 50 km long the random vertical 

breakthrough error would be + 0.020 m. 

The systematic vertical breakthrough error was estimated by 

using estimated values of gravity along the route 17-1-3-4-5-6-7-17 

shown in Figure 5-l. Heights of these points are shown in Table 5-l 

although in an actual levelling line thr height of the 1-3-4-5-6-7 

portion of the line would be at a slightly lower elevation. The 

length of each levelling section with a gr~vity correction varied 

from about 2 km to 6 km,since according to Ramsayer [Heiskanen and 

Moritz, 1967] gravity values 5 km apart are sufficient in mountainous 

areas. 

Values of gravity along the 1-3-4-5-6-7 portion of the lihe 
. . 
were estimatedvusing the Bouquer vertical gradient cf gravity 

(= -0.2 mg~l/m height) since this ~radient is the best estimate for 

the surface of the earth [Vanicek and Krakiwsky, in Rrep]. Along this 

same portion of the line the values of gravity \'/ere also adjusted 

for the effect of the mountainous terrain. This effect was assumed 
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to vary uniformly from - 50 mgal at H = 1500 m to -100 mgal at H = 3500 m. 

This estimate of the effect of the terrain was obtained by referring 

to Vanicek an~Krakiwskj [in prep.]. In the tunnel (sections 17-1 

and 7-17) values of gravity were estimated using the Poi11carr-Prey 

vertical gradient of gravity c~ -0.1 mgal/m height) from the surface 

downward to the level of the tunn~l. The Poincare-Prey vertical 

gradient of gravity is the average value of the gradient in the 

surface layer of the earth [Vanicek and Krakiwsky, in prep]. As a 

starting point for the calculation of gravity values along the route, 

the gravity values at the points land 7 were estimated to be 981 000 

mga 1. 

A second set of gravity values was also calculated a~suming 

a gradient of the refined Bouguer anomaly (the Bouguer anomaly corrected 

for the terrain effect) of about 20 mgal/10 km distance caused by a 

mass anomc.ly. This value of t:he gradient o-f the refined Bouguer 

anomaly is believed to be a reasonable estimate of its maximum value. 

The maximum value of the gradient was assumed to be parallel to the 

tunnel centerline so that is had its largest effect. 

For sake of simplicity the gravity corrections for a dynamic 

height system are calculated. In this system the gravity correction 

to a height difference is 

where 

g. - G 
1 

G 
oL. 

1 

g. = averag~ value of gravity in a levelling section 
1 

G = arbitrarily chosen reference gravity for an area 

(5-7) 
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6Li = change in height. in a levelling section 

Since the levelling line 17-1-3-4-5-6-7-17 is a closed loop the 

gravity corrections represent the systematic vertical breakthrough error. 

Table 5-3 summarizes the vertical control data for this 

simulated tunnel survey. Using this data and formula (5-7) with 

G = 980 500 mgal the systematic vertical breakthrougl: error is -O.C0382 

m without the mass anor1.aly and +0.0629 m with the mass anomaly. The 

positive sign indicates that the heading from the east is below the 

heading from the west at the breakthrough. 

The very small systematic vertical breakthrough error for no 

mass anomaly is to be expected since the gravity correctior.s up the 

mountain will almost completely cancel those down the mountain. There 

is no gravity correction in the tunnel since 6L. = 0. The systematic 
1 

vertical breakthrough error with the mass anomaly is several times 

the random vertical breakthrough error but it may be unrealistically 

high because tbe value used for the gradient of the Bouguer anomaly 

is unrealistically high. 

5.1.3 The Effect of Neglecting the Gravity Field 

Baseo on the results of this simulated tunnel survey and the 

results of actua~ tunnel surveys in rugged terrain [Wassermann, 1967; 

R~chardus,l974; Maclean, 1977] the following conclusions have been 

reached regarding the effect of neglecting the gravity field: 

1. Because changes i,n deflection may be largely determined by topography, 

these changes will generally·be largest parallel to rather than 
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. Section eLi {m) gavg without anomaly g . with anomaly avg 
{mgal) (mgal) 

17-1 0 980810 980816 

1-3 1000 980835 980833 

3-4 500 980665 980867 

4-5 250 980580 980590 

5-6 -1250 980695 980715 

6-7 -500 980895 980917 

7-17 0 980805 980820 

Table 5-3 

Vertical Control Data for Simulated Tunnel Survey 
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perpendicular to the tunnel. These large deflection differences 

will most affect distances parallel to the tunnel and di-rections 

perpendicular to the tuQnel, both of which have little effect on the 

lateral bre~kthi·ough error. Thus, if changes in deflection are 

determined mainly by topography, by the nature of 

direction and distance observations for horizontal control of a 

tunnel, the effect of the gravity field is minimized. If however, 

changes in deflection are determined by mass anomalies near. the 

surface of the earth, this argument is no longer valid. 

2. For the simulated tunnel survey which had. deflections estimated 

on the basis of topography only, the systematic lateral error due to 

neglecting the gravity field was reduced to less than the la random 

error by simply increasing the degrees of freedom. Further simulations 

would have to be carried out to determine if the same \'ioul d be true 

for deflections due to a mass anomaly n€ar the surface of t...,e earth. 

3. The effect of the gravity field on the lateral breakthrough error 

might be safely neglected but this can only be determined by analyzing 

the specific problem. Good estimates of deflection components at 

main points in the horizontal control network would be necessary for 

this analysis. 

4. The effect of the ~ravity Held on the vertical breakthrough error 

might also be safely neglected. Again, this can only be determined by 

analyzing the specific problem. For this analysis gravity values at 

a spacing of about 5 km would be adequate. These could be estimated 

from a detailed gravity anomaly map of the area, if it is available, 
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or ob·..:ained by actual gravhy measurements in the field. Field 

gravity measurements are easily made with a portable gravimeter. 

5.2 Alignment of a Straight Line in Space 

This is a very specialized engineering surveying pr"~blem 

which illustrates w~ll several points: 

1. the advantages of using a local coordinate system, 

2. the advantage of using the astrogeodetic difference method rather 

than the astrogeodetic method to determine deflections of the 

vertical, 

3. the significant effect of deflection of the vertical. 

Discussion of this problem will be based on Preiss [1971] 

which describes the alignment in space of a 5 km radio telescope 

aerial array for the Cavendish Laboratory, Cambridge. An accurate 

alignment was required because the performance of the telescope is 

dependent on how accurately t~e intersection of the polar and 

declination aAes of eight dish aerials fits a straight line in space. 

The end result of t_he alignment survey were three orthogonal 

corrections to a preliminary reference line defined by stable ground 

marks. 

The corrections to the ground marks in the direction parallel 

to the line o-f ground marks were determined by measurements with a 

Mekometer, the most accurate short range EOM instrument available. 

The corrections to ground marks in the horizontal direction perpendicular 

to line of ground marks were determined by the usual optical 

alignment method except that the best available equipment was used 
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(a lOOX Fennel alignment te-lescope mounted on a massive concrete 

pillar and targets specially designed for the long distances), and 

a large number of observations were made with experienced personnel. 

The corrections to the ground ~arks in the vertica 1 direction were 

made by combining the results of precise spirit levelling along the 

lin2 of ground marks and determinations of deflection of the vertical, 

by the astrogeodetic method, at four of the ground marks. 

The alignment parallel to the line of ground marks and the 

alignment in the horizontal direction perpendicular to the line of 

ground marks will not be discussed further. Only the alignment in 

the vertical direction will be examined in more detail since the 

alignme~t in this direction is most affected by the shape of the 

earth and the variations in its gravity field. The method used for 

the Cambridge radio teiescope will be briefly described and suggestions 

\'li 11 be given as to how the same or better accuracy mi ']ht have been 

attained in a much shorter time. 

Basically, the problem of determining corrections to the 

ground marks in the vertical direction consists of locating, along 

the line of ground marks, the equipotential surface passing through 

an arbitrarily chosen ground mark by precise spirit levelling; and 

then determining the shape of the equipotential surface, .wit-h .respect 

to the ellipsoid surface, along this line by deflections of the 

vertical .. When this has been done corrections can easily be 

calculated. 
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Figure 5-2 shows the correction a;plied along the vertical 

at one ground mark to obtain a straight line in space. The corrections 

along the vertical at all other ground marks would be obtained in a 

similar manner. The straight line in space in this example is the 

straight line, in the tangent plane to the equipotential surface at 

A, along the line of ground marks. The terms in Figure 5-2 are defined 

as fo 11 c..ws: 

~HAB = precise levelled height difference between points A and B 

~hAB = height difference between tangent plane to equipotential 

surface at point A, and at point B, measured along the 

vertical at point B 
2 

S AB 
= -2R 

~NAB = change in separation between ellipsoid and equipotential 

surface from point A to poi11t B 

.£ AB 5AB = --=-:::=--..:...::=.. 

2 

Consider a typical example: 

t:.N = 

0.3129 m 
2 3 S AB 

2R= 2000 . = 0.3146 m 
2 X 6375 X 103 

0.2 X 2000 11 2 . 2 k ) = 2 x 206265 (~tAB at Cambridge was about 0. 1n m 

= 0.0010 m 

(5-8) 

(5-9) 
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To dete·.·mine corrections to the ground marks in the vertical 

direction for the Cambridge radio telescope geodetic levell~ng was 

first perfor~ along the line of ground marks. The national geodetic 

network in the area of the project was then reobserved. \'lith 

connections to the ground marks, and readjusted to obtain geodetic 

coordinates for the ground marks. 1st order astronomic observations 

for latitude and longitude were observed at four of the ground marks. 

Combining the results of the astronomic and geodetic position 

determinations, deflections of the vertical were obtained. 

f~uch of this work was not necessary. If a local geodetic 

coordinate system such as that described in chapter 4 for the deter­

mination of changes of deflection in the Fredericton area ha:l bee1 

used, all of the work associated with the determination of geodetic 

coordinates could have been reduced to a single determination of 

second order astronomic azimuth (cr = 511 ) and a few distances accurate 

to about 0.1 m.(A 1st order azimuth of the line was required however 

for other purposes.) 

Field and computation work could have·been further reduced by 

using the astr\ogeodetic difference method rather than the usual astro­

geooetic method to determine deflections. Standard deviations of 

deflection changes for the astrogeodetic difference method quoted in 

chapter 4 could be substantially reduced by using two 1st order 
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instruments (for example two- Wild T-4's), each with an impersonal 

micrometer and a chronocord. The tracking record from each instrument 

with simultaneous timing marks would provide a very accurate 

measure of difference in zenith angle from which a difft::renc~ in 

deflection is calculated. To ensure the hig~est accuracy a correction 

for the systematic shift between the two observers and instruments 

would be applied. Standard deviations of.about 0~1 were quoted for 

the astronomic lutitude and longitude determinations for the Cambridge 

radio telescope. If the same equipment and observers were used to 

determine M and !lA~ the standard deviation could be 0~1 x 12 = 0~'14 

or better with much less observation time. 

The alignment of a straight line in space for the Camb-ridge 

radio telescope was performed by considering the align,nent in the 

horizontal and vertical separately. For this particuhr problem it 

might have been more appropriate to use ~ three-dimensional gtodetic 

model. A three-dimensional geodetic model was used for a similar 

alignment of a series of baselines connected to the National 

Aeronautics and Space Administration/Jet Prop.ulsion Laboratory 

(NASA/JPL) MARS Deep Sapce Station located at the Goldstone Deep 

Space ConmlUnication Complex in California [Carter and Pettey, 1978]. 



6. CONCLUSIONS AND RECOMMENDATIONS 

Many of today's engineering surveys require relative posi­

tional accuracies in the order of 1/100 000 or better. Advances in 

survey instrumentation and development of a methodology to eliminate 

systematic ·errors from the survey observations themse 1 ves has generally 

kept pace with the demand for higher and higher accuracies. However, 

in order to obtain the full benefit of these higher measuring 

accuracies and actually attain the high relative positional accuracies, 

a rigorous geodetic approach has to be followed. 

Against this bac~ground the followirg rer.ommendat;ons are 

made for engineering surveys requiring high accuracy: 

1. A local coordinate system should be used to avoid propagating errors 

from other coordinate systems. The local system could be tied to an 

integrated survey system if required but the observations used to make 

the tie would not be used for position determinations in the local 

system. A disadvantage of this ·approach·· is that coordinates (and ·their 

accuracies) from another coordinate system could not be utilized without 

a transformation. The advantages of a local coordinate system are well 

illustrated by the two problems considered in chapter 5, especially by 

the method used for the vertical component of the alignment of a 

115 
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straight line in space. 

2. The local coordinate system should be based on the classical geodetic 

model. Thi.s involves the separation of horizontal and vertical posi- . 

tioning but allows relative positional accurac" in the height component 

to be determinP.d with about the same acc·uracy as relative positional 

accuracy of the hori zonta 1 components. Because of variations in the 

gravity field and the uncertainty associated with vertical refraction 

the relative positional accuracy in the height component of a three­

dimensional coordinate system determined only by trigonometric measurements 

i! at least one order 6f magnitude greater than the relative positional 

accuracy of the horizontal components. 

3. Gravity corrections may have to be applied to precise levelling 

lines in engineering surveys requiring high accuracy. The error due 

to not making this correction can be estimated by using a detailed 

gravity anomal•t map or by making small number of gravity measurements. 

If gravity corrections are required, gravity values can easily be 

measured with a portable gravimeter. 

4. Horizontal position observations should be rigorously reduced to a 

mapping plane. In certain applications some of the reduction corrections 

can be omitted without adversely affecting the relative horizontal 

~ositional accuracy,.but this should first be shown by analysis of the 

particular problem. This is especially true of the gravimetric reduc­

tion correction which is often omitted only because it is difficult to 

determine. 

In this thesis special emphasis was placed on methods to 
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determine deflection of the vertical. It was felt that a contribution 

could be made if a sim~le m~thod could be developed to determine 

deflections in the small area covered by an engineering_ survey. 

Application of a iifference method tc the usual astrogeodetic deflection 

determination proved to be completely successful. Deflection changes 

accurate to 111 to 2" were determined on five different nights artd in 

two different locations using only two 111 theodolites and two-way 

radio communication. Attempts to use trigonometric levelling to 

determine deflection changes led to inconclusive results because of 

the uncerta·inty associated with vertical refraction. 

Concerning the astrogeodetic difference method to determine 

deflections, the following recommendations are made: 

1. The method should be tested with more sets of observers to 1earn 

more about the systematic shift between instruments and observers, 

since this is the only real weakness of t~e method. 

2. The method should be tested with 1st order astronomic equipment to 

determine the saving in time over the astrog_eodetic method. This 

could be an important application since geodetic astronomy still 

provides the most accurate deflection determinations [Robbins, 1977]. 

3. In a three-dimensional coordinate system unknown deflection 

components have a large effect on height determinations. The astra­

geodetic difference method could be used to provide these components 

(in the form of a priori astronomic latitudes and longitudes) and 

reduce the standard deviations of the heights. 

4. Variations in the local gravity field have a large effect on ISS 
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position determinations. This is an area in which more research is 

required [Adams, 1979]. A possible' application of the astroReodetic 

difference method· is the definition of the local gravity field so 

that this information can be provided a priori, although an ·;,,ter­

polation method such as the as~rogravimetric method would probably 

be more useful since by this method the gravity field can be 

determined at any point. 



119 

REFERENCES 

Adams, J.R. "Description of the Local Level Inertial Survey System and 
·its Simulation", M.Sc. ThP.sis, Department of Surveying 
Engineering, University of New Brunswick, Fredericton, 
Canada, 197~. 

Angus-Leppan, P.V. "D·iurnal and Seasonal Variations in the Coefficient 
of Refraction", The Canadian Surveyor, Volume 21, Number 2, 
June 1967. 

Angus-Leppan, P.V. "Use of ~1eterological Me.asurements for Comp11ting 
Refraction Effects", IAU International Symposium on Refractional 
Influences in Astrometry and Geodesy, Uppsala, Sweden, August 
1978. 

Department.of the Army. "Universal Transverse Mercator Grid", Department 
of the Army Technical Manual TMS-241-9, Washington, D.C., U.S.A., 
1958. 

Bacon, C.J. "Deflections of the Vertical from Nountain Net AdjustmenC, 
~1.Sc. Thesis, Department of Surveying Engineering, University 
of New Brunswick, Fredericton, Canada, 1966. 

Bamford, G. Geodesy (third edition), Oxford University Press, Oxford 
England, 1975. 

Brmm, D. C. "Doppler Positioning by the Short Arc f·1ethod", Proceedings 
of the International Geodetic Symposium on Satellite Doppler 
Positioning , DMA and NOS of the NOAA, Physical Science 
laboratory of the New Mexico State University, las Cruces, 
U.S .A., 1976. 

Brunner, F.K. "Experimental Determination of the Coefficients of 
Refraction from Heat Flux Measurements", Proceedings of the 

· IAG Symposium on EDM and the Influence of Atmospheric 
Refraction, Wageningen, The Netherlands, 1977. 

Carter, l~.E. and Pettey, J.E. "Goldstone Validation Survey-Phase I", 
NOAA Technical t1emorandum NOS NGS-13; r~atiorial Geodetic Survey, 
Rockville, U.S.A., 1978. 

Chovitz, B. "Three Dimensional Model Based on Hotine's '~1athematical 
Geodesy"', The Canadian Surveyor, Volume 28, 1'4umber 5, 
December 1974. 

Chrzanowski, A., "Design and Error.Analysis of Surveying Projects", 
Department of Surveying Engineering, University of New Brunswick, 
Fredericton, 1977. 



120 

·Chrzanowski, A. Unpublished lecture notes, 1978. 

Chrzanowski, A. et al. Urban Surveying and Mapping, Springer-Verlag, 
New York, 1979 . 

Cooper, M.A.R .. Modern Theodolites and levels~. Crosby lockwood and Son 
limited, London, England, 1971. 

Dodson, A.H. "The Role of Refraction in the ~1easurement of Three­
Dimension a 1 Movements by Geodetic Methods", IAU Internatiuna 1 
Symposium on Refraction Influences in Astr-ometry and Geodesy, 
Uppsala, Sweden, August, 1978. 

El Hakim, S.f.A. "Potentials and Limitations of Photogrammetry for 
Urban Surveying", Ph. D. thesis, Department of S(.!rveying 
Engineering, University of New Brunswick, Fredericton, Canada, 
1979. 

Fischer, I. "Deflections at Sea", Journal of Geophysical Research, 
Volume 79, Number 14, May 1974. 

Fubara, D.~1.J. "Three-Dimensional Geodesy Applied to Terrestrial 
Networks", Ph.D. Thesis, Department of Sur.veying Engineering, 
University of New Brunswick, Fredericton, Canada, 1969. 

Heiskanen, W .. A. and Moritz, H. Physica·i Geodesy, W.H. Freeman and 
Company, San Francisco, U.S.A., 1967. 

Heiskanen, W. and Vening-~-1einesz, F.A. The Earth and Its Gravity 
Field, McGraw-HLl Book Company, New York, U.S.A., 1958. 

Henderson, J.P. "Three~Dimensional Adjustment of Geodetic Triangulation", 
~-1.Sc. Thesis, Department of Surveying Engineering, University 
of New Brunswick, Fredericton, Canada, 1968. 

Her Majesty's Nautical Almanac Office. "The Star Almanac for Land 
Surveyors for the Year 1979" ~ Her Majesty's Stationery 
Office, london, England, 1978. 



121 

Hirvonen, R.A. "Praktische Rechenformeln fur die dreidimensionale 
Geodasie", Zeitschrift fur Vermessungswesen, Volume 89, 
Number 5, 1964. 

Holdahl, S.R. "Time and Heights", The Canadian Surveyor, Volume 28, 
Number 5, December 1974. 

Hotine, M. Mathematical Geodesy, Environmental Science S~rvi~es 
Administration, United States Department of Commerce_, 
Washington, D.C., U.S.A., 1969. 

Hradilek, L. "Trigonometric Levelling and Spatial Triangulation in 
Mountain Regions", Bulletin Geodesigue, Volume 87, Mar~h, 
1968. 

Hradilek, L. "Refraction in Trigonometric and Three-Dimensional 
Terrestrial Networks", The Canadian Surveyor, Volume 26, 
Number 1, March, 1972. 

Kobold, F. ·"Report of Study Group No. 13, Determination of the Geoid 
from the Zenith Distance Measurements", Bulletin Geodesique, 
Number 42, December 1956. 

Kobold, F. and Hunziker, E. "Communication sur la Courbure de ia 
Verticale 11, Bulletin Geodesigue, Volume 65, September, 
1962. 

Krakiwsky, E.J. "Heights", M.Sc. Thesis, Department of Geodetic Science, 
The Ohio State University, Columbus, U.S.A., i965. 

Krakiwsky, E.J. "Conformal Map Projections in Geodesy", Department of 
Surveying Engineering, University of New Brunswick, Fredericton! 
Canada, 1973. 

Kraki\'Jsky, E.J. and Thomson, D.B. "Geodetic Position Computations", 
Department of Surveying Engineering, University of New 
Brunswick, Fredericton, Canada, 1974. 

Krakiwsky, E.J. and Thomson, D.B. "Mathematical Models for Horizontal 
Geodetic Networks", Department of Surveying Engineering, 
Univer~ity of New Brunswick, Fredericton, Canada, 1978. 

Krakiwsky, E.J. and Wells, D.E. "Coordinate Systems in Geodesy", 
Department of Surveying Engineering, University of New Brunswick, 
Frederi ctor1, Canada, 1971. 



122 

Lachapelle, G. "Determination of the Geoid Using Heterogeneous Data", 
Ph.D. Thesis, Institute of Physical Geodesy, The Technical 
University at Graz, Graz, Austria, 1975. 

Lehman, O.J. "Three-Dimensional Positioning for Micro Geodetic 
Networks", M.Eng. Report, Department of Surveying Engineerfng, 
University of New Brunswick, Fredericton, Canada, 1q79. 

linkwitz, K. "Geodetic Survey Control Networks for Engineering Surveys", 
The Canadian Surveyor, Volume 24, Number 5, Decemb~r 1970. 

Maling, D.H. Coordinate Systems and Map Projections, George Philip 
and Son Limited, London, England, 1973. 

Mather, R.S. "Geodetic Coordinates in Four Dimensions", The Canadian 
Surveyor, Volume 28, Number 5, December 1974. 

Mclean, R.F. "Surveys for Alignment of the ~1oawhange and Kaimai 
Tunnels, New Zealand", XV International Congress of Surveyors, 
Stockholm, Sweden, June 1977. 

Melchior, P. Jhe Earth Tides, Pergamon Press, New York, 1966. 

Merry, C.L. "Astrogravimetric Geoid Determination", Ph.D. Thesis, 
Department of Surveying Engineering, University of New 
Brunswick, Fredericton, Canada, 1975. 

Merry, C.L. and. Vanicek, P. "The Geoid and Datum Trans:ation Components", 
Jhe Canadian Surveyo~, Volume 28, Number 5, December. 1974. 

Molodenskii, M.S. et al. "Methods for Study of the External Gravitational 
Field and Figure of the Earth", translated from Russian (1960) 
by the Israel Program for Scientific Translations for the 
Office of Technical Services, Department of Commerce, 
Washington, U.S.A., 1962. 

Mueller, I.I. Spherical and Practical Astronomy as Applied to Geodesy, 
Frederick Ungar Publishing Company, New York, U.S.A., 1977. 

Nassar, M.M. "Gravity Field and Levelled Heights in Canada", Ph.D. 
Thes i.s, Department of Surveying Engi neeri.ng, University of 
New Brunswick, Fredericton, Canada, 1977. 

Preiss, W.J. "The Precise Alignment of a 5 km Radio Telescope Aerial 
Array for the Cavendish Laboratory, Cambridge University, 
Proceedings of the Conference of Commonwealth Surveyors, 
Cambridge, England, August 1971. 



123 

Ramsayer, K. 11 The Accuracy of the Determination of Terrestrial 
Refraction from Reciprocal Zenith Angles 11 , IAU Symposium 
Number 89 on Refractional Influences in Astronomy and 
Geodesy, Uppsala, Sweden, Augu~t 1978. 

Richardus, P. Project Surveying, North-Holland Publishing Company, 
Amsterdam, The Netherlands, 1974. 

Richardus, P. and Ad~er, R.K. Map Projections, North-Holland Publishing 
Company, Amsterdam, The Netherlands, 1974. 

Robbins, A.R. 11 Mili-::ary:· Engineering, Volume XIII, Part IX, Field and 
Geodetic Astronomy 11 , School of Military Survey, Hermitage, 
England, 1976. 

Robbins, A.R. 11 Geodetic Astronomy in the Next Decade 11 , Survey Review 
Volume XXIV, Number 185, July 1977. 

Seppelin, T.O. 11 The Department of Defence World Geodetic System 1972 11 , 

The Canadian Surveyor, Volume 28, Number 5, DecembPr 1974. 

Steeves, R.R. 11 A Users• Manual for the Program GEOPAN 11 , Department of 
Surveying Engineering, University of New Brunswick, Fredericton, 
Canada, 1978. 

Stolz, A. 11 The Computatio;l of Three-Dimensional Cartesian Coordinates 
of Terrestrial Networks by the Use of Local Astronomic Vector 
Sy.:.tems 11 , UNISURV Report No. 18, University of New South 
Wales, Kensington, Australia, 1970. 

Surveys and Mapping Branch, Department of Energy, Mines and Resources. 
11 Specifications and Recommendations for Control Surveys and 
Survey Markers 11 , Ottawa, Canada, 1973. 

Schwarz, K. P·~ 11 Accuracy of Deflection Determination~:by Present-Day 
Inertial Instrumentation 11 , Proceedings of the 9th GEOP 
Conference, Department of Geodetic Science Report No. 280, 
The Ohio State University,· Columbus, U.S.A~, 1978. 

Tengstrom, E. 11 Some 1\bsol ute Tests of the Results of EDM in the Field 
with a Description of Formulas used in the Tests 11 ,·Proceedings 
of the IJ\.G Sympos i urn on Em1 and the· Influence' of Atmosphertc 
Refraction, Wageningen, The Netherlands, 1977. 

Thomson, D.B. et al. 11A Nanual for Geodetic Position Computations in 
The t1aritime Provinces 11 , Department of Surveying Engineering, 
University of New Brunswick, Fredericton, Canada, 1978. · 



124 

Todd, M.S. 11 The Development of the Inertial Rapid Geodetic Survey 
Sys~2m at USAETL 11 , The Canadian Surveyor, Volume 32, 
Number 4, December 1978 • 

Vanicek, P. and Krakiwsky, E.J. 11 Concepts in Geodesy (_in prep)_. 

Vanicek, P. 11 Physical Geodesy", Department of Surveying Engineering, 
University of New Brunswick, Fredericton, Canada, 1976. 

Vanicek, P. and Hamilton, A.C. "Further t.naly~is of Vertical Crus;;al 
Movement Observations in the Lac St. Jean Area, Quebec", 
The Canadian Journal of Earth Science, Volume 9, Number 9, 
September 1972. 

Vincenty, T. "Three Dimensional Adjustment of Geodetic Networks", 
DMAfC Geodetic Survey Squadron, F.E. Warren AFa, Wyoming, 
u.s.A., 1973. 

Vincenty, T. and Bowring, B.R. "Application of Three-Dimensional 
Geodesy to Adjustments of Horizontal Networks", NOAA Technical 
Memorandum NOS NGS-13, National Geodetic Survey, Rockville, 
U.S.A., 1978. 

Wassermann, W. "Underground Survey Procedures 11 , The New Zealand 
Surveyor, March 1967. 

~Jassermann, W. 11 Control Surveys for the Construction of the Snowy 
Mountains Scheme", Proceedings of the Conference of Commonwealth 
Surveyors, Cambridge, Englan~, August 1967. 

Williams, D.C. 11 First Field Tests of an Angular Dual Wavelength 
Instrl.lment'•, Pror:eE:dings of the IAG·Sy~posium on EDM and the 
Influence of Atmospheric Refraction, Wageningen, The 
Netherlands, 1977. 

Williams, H.S. 11 Gravity and Gradients of Long Tunnels", Journal of 
the Surveying and Mapping Division, American Society of 
Civil Engineers, Volume 96, Number SUl, October 1969. 

Wolf, H. 11 Die Grundgleichungen der Dreidimensionalen Geodasie in 
elementarer Darstellung", Zeitschrift fur Vermessungswesen, 
Volume 88, Number 6, 1963. 



APPENDIX I 



125 

Derivation of ~~ = - sec A~z - cos ~ tan AAh 

All the terms given in the deviation are ~efined_ in section 4.7. 

From the astronomic triangle, or equival~ntly, by transforming 

between the horizon and hour angle celestial coordinate systems 

cos z = sin o sin ~ + cos o cos h cos ~ (I-1) 

Differentiating with respect to the abserved quantities z, ~ and h 

- sin zdz = (sin o cos ~ - cos o cos h sin ~) d~ 

7 cos ~ cos o sin h dh 

or ~fter replacing d with fl and rearranging the terms. 
s-in z 

fl~ = - sin o cos ~ - cos o cos h sin ~ flz 

cos ~ cos o sin h 
+ sin o cos ~ - cos o c6s h sin ~ Ah (I-2) 

Applying the five consecutive parts rule to the astronomic triangle 

= sin o cos ~ sin ~ cos o cos h (I-3) 

Applying the sine law to the astronomic triangle 

sin h _ -sin A = -sin A 
sin z - sin ( 90° -ol cos o {I-4) 
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Substituting cos A sin z for (sin o cos ~ - sin ~ cos o cos h) from 

(I-3) and- sin A sin z for sin h from (I-4) into (I-2), and cos 0 

simplifying yields 

~~ = - sec A ~z - cos ~ tan A ~h (I-5) 

Derivation of ~A = - sec ~ cot A ~~ - sec ~ cosec A ~z + ~T 

All the terms given in the derivation are defined in Section 

4.7. 

From the astronomic triangle, or equivalently, by transforming 

between the horizon and hour angle coordinate systems 

A =a.+h-T (I-6) 

Differentiating with respect to the observed quantities ~. h and T 

di\ = dh - dT (I-7) 

Replacing d with i1 and substituting (M· + 6T} for h from (I-7) it.to 

'(·1-:-5}. and si.mplifying yields 

~A = -.sec ~ cot A~~ - sec ~cosec A ~z + ~T (I-8) 
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HP-29C Program for ~A 

The appropriate formula, in whch all terms are defined in 

section 4.7, is 

where 

and 

~A = - sec ~ cot A ~~ - sec ~ esc A ~z 

A= cos-1 (sin o - cos z sin ~ ) 
sin z cos ~ 

z + z 
z = 1 2 2 + refraction correction 

~ (0 I II)' o( 0 • 11 ), ~~( 11 ) and the refraction correction 

(II) are stored as shown in the program listing. 

The step by step program listing follows. 

+~nter z( 11 ), z1( 0 I 11), z2(o I II) 

[1] LBLl [21] RCL4 (o) [41] RCL6 
[2] -+H [22] sin [42] X 
[3] ST05·; [23] + [43] CHS 
[4] R+ [24] RCLO [44] RCL7 (M) 
[5] -+H [25] ·cos [45] RCL8 
[6] RCL5:; [26] RCL5 [46] tan 
[7] + [27] sin [47] 1/x 
[8] 2. [28] X [48] X 
[9] ..:. [29] . [49] RCLO -
[10] RCL9_ (refr. carr.) [30] cos-1 [50] cos 
[11 J + [31] CHS / [51] 1/x 
[12] STC5 [32] 360 ( for WPVC only [52] X 
[13] R+ [33] + ~ [53] CHS 
[14] ST06·· · [34] s"ro8 [54] + 
[15] RCLO (~) [35] sin [55] RTN + displays ~A 
[16] sin [36] 1/x 
[17] RCL5 [37] RCLO 
[18] cos [38] cos 
[19] }( [39] 1/x 
[20] CHS [40] X 
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