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ABSTRACT

Many of today's engineering surveys require relative
positional accuracies in the order of 1/100 000 or better. This means
that positional observations must be very accurate, and that a rigor-
ous geodetic approach must be followed. -

This thesis is directed toward the geodetic aspect. Chapter
2 reviews the geodetié models and coordinate systems available. For
an engineering survey requiring high relative positional accuracy a
local plane coordinate system and a geodetic height system, both
based on the classical geodetic model, is the appropriate choice.
Chapter 3 reviews the well known geometric and gravimetric effects in
a local coordinate system.

Special emphasis is placed on methods to determine deflections
of the vertical in chapter 4. It was felt that a contribution could be
made if a simple method could be developed to determine deflections,
which describe variations in the gravity field. (Very often the
effect of variations in the gravity field on survey observations are
neg]écted only because they are difficult to determine:;) Such a
method was developed by the author by applying a difference method to
the usual astrogeodetic deflection determination. The method is very

simple and practical, and field test results indicate it is accurate

ii



to 1" to 2". Extensive field work associated with the use of
trigonometric levelling to determine local def]ecfions led to
inconclusive results because the effect of vertical refraction
could not be isolated.
Chapter 5 shows the application of the material presented
in the first four chaptes, with emphasis on the effect of deflection
of the vertical. The two problems considereu show that often, even
for engineering'surveys requiring high accuracy, the effect of
variations in the earth's gravity field can be safely neglected. This
however can only be determined by analyzing egch problem using
accurate deflection components to estimate the effect in the horizontal
and a small number of gravity values to estimate the effect on heights.
Being able to easily.define the local gravity field a priori
by the astrogeodetic difference method will probably have its best
application in situations in which the local variations have their
greatest effect, for examp]e.in the detérmination of heights in a three-
dimensional conrdinate system and in the determination of horizontal

“positions with inertial surveying systems.
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1. INTRODUCTION

1.1 General

Throughout history there has been a need for engineering
surveys. The accuracy requirements of most were such that no special
effort or knowledge was required to execute them. There were some
problems however. that taxed the best minds of the day; the éetting
out of a long tunnel is the classic example. Today this same
problem would challenge the abilities of any surveying engineer. Two
other examples of modern day projects requiring engineering surveys
of high accuracy are the setting out of nuclear accelerators and the
alignment of a straight 1ine in space for thé positioning of the
aerials of a radio telescope array.

Today's demand for engineering surVeys of high accuracy has
been matched by advances in survey instrumentation. With the advent
.of EDM, angles and distances can be measured with comparable accuracy;
with careful use of routinely available equipment both can be measured
with an accuracy greater than 1/100 000. Using proper methods of

network design, measurement and adjustment, relative positional

accuracies of the same order can be attained.



If relative positional accuracies of the order of 1/100 000
are actually to be attained, a rigorous geodetic approach must be
followed. This means that for even small project areas the effect of
the ellipsoidal shape of the earth and the effect of the earth's
gravity field must be accounted for. Although these two effects are
inextricably linked, they are most often dealt with separately. In
this thesis the same approach will be iollowed.

Throughout this thesis reference to engineering surveys
requiring high accuracy will imply relative positional accuracies in
the order of 1/100 000 between locally stable points. Special
engineering surveys concerned with the movements of points will not

be considered.

1.2 Enginzering Surveys and an Integrated Surveying System-

Much work has been done in recent years to develop a workable
‘survey control fremework for position - related information at a
regional or national level. This suﬁvey control framework and the
position related information tied to it is generally referred to as
an integrated survey system.

In orde} for integrated systems to operéte for maximum
benefit all surveying and mapping activities should be tied to them.
For routine engineerinc surveys requiring relative pasitional accuracies
in the order of 1/10 000, the survey control framework of integrated
survey systems could be used directly as control. For engineering
surveys requiring relative pesitional accuracies in the order of 1/100 000
or better, the survey control framework of integrated survey systems

might not be adequate.



One reason that control points of integrated surveying systems
might not have relative positional accuracies in the order of 1/100 00C
is that the expense of attaining these accuracies is not justified
for the vast majority of users of the system. Another passil-le
reason is that integrated survey system networks may use a "higher
order" network, for example the national geodetic network, as fixed
and errorless in the adjustment of the integrated survey system-
network and thus be distorted.

Use of the first order national geodetic network directly
may also not solve the problem. In North America readjustment of
the national geodetic networks is currently -underway. This readjust-
ment will remove distortions in the network, but according to |
proposed specifications [Surveys and Mapping.Branch (EMR), 1973]
first order nefworks will have relative poéitiona] accuracies of
about 1/50 000 in terms of the semi-majcr ares of the relative error
ellipse at the 95% probability level. As stated by Linkwitz [1970],
experience in Europe indicates that conventiunal geodetic networks
may not be suitable engineering projects:

"Most conventional geodetic networks have.been designed
measured and adjusted with overall homogeneity in mind.

Often this quality makes them unsuitable for controlling
engineering projects where high local precision is required".

An alternative then, for engineering surveys requiring high
accuracy, is to adopt an appropriate geodetic model and local coordinate
system. The local system could be tied to an integrated survey

system if required but the observations used to make the tie would not

be'used for position determinations in the local system.- A disadvantage



of this approach is that coordinates (and their accuracies) from

another coordinate system could not be utilized as additional information
for position determinations in the local system without a transformation.
The use of coordinates as observations (additional information) is
discussed in Chrzanowski et al [1979] and Vanicek and Krakiwsky [in
prep].

In revieuing the literature on engineering surveys requiring
high accuracy it was found that only rarely,outside of Europe, is this
approach followed. Often it seemed that only the mystique surrounding
geodesy prevented those responsible for the survey control from

attaining better accuracies.



2. A GEODETIC MODEL AND COORDINATE SYSTEM

2.1 Choices of Geodetic Models

A geodetic model of a set of points on the surface of the
earth consists of a definition of a coordinate system and its location
within the earth, and the coordinates of the poihts in this coordinate
system. .

Basically, there exist two different approaches to the
problem of geodetic positioning. One approach regards the'points on
the surface of ihe earth as Being perpetually in motion with respect
to each other as well as with respect to the coordinate system. In
this model the coordinates are therefore time varying and the model
is four dimensional: three coordinates specifying position, and
one coordinate specifying time. The other more conventional approach
treats the positions of the points as permanent with respecf to

the coordinate system.

2.1.1 Time Varying Model

The ultimate goal in gecdesy is to be able to provide
instantaneous positions of ground points as they vary with time

[Mather, 1974].



Ground, or moré generally, surface movements can be due to
three effects. These three effects are earth tides, sea tides loading,
and aperiodic surface or crustal movements.

(i) The earth tides. This is a global phenomenon. It changeé the
shape of the earth so that a point on the surface of the earth can
oscillate as much as -15 cm to +30 cm with respect to the center

of mass of the earth.

There is also an annual distortion of the earth's surface
caused partly by earth tides but mainly by atmospheric variations.
Very little is known about the geodetic effects of this distortion.
(i1) Sea tides' loading. Sea tides are a more complex phenomenon
. than earth tides. Only at tidal stations can sea tides by directly
measured, and in order to predict the loading at a point on the
surface of the earth, the distribution of sea tides must be known
over a large area. In addition to this the elastic properties of
the earth's crust must be well known. For these reasons, the degree
of reliability in predicting distoritons caused by sea tides' loading
is low.

One sea tides loading prediciton gives a semi-diurnal (12
hour) loading effect in the immediate vicinity of tie Bay of Fundy
of several centimeters vertical. The associated grount tilt
is about 0Y1. both of these effects fade waay inland. It

should also be noted that the sea tides' loading effect in this



area probably would be the largest experienced anywhere in the world
since the Bay of Fundy experiences the world's highest tides.
(iii) Aperiodic surface or crustal movements. All other surface
movements have beénllumped together into this category only because
they do not show a regular variation with time. These movements can
Be further divided into movemenfs due to crustal loading (other than
“sea tides' loading), movements due to tectonic action, movements due
to man's activities and movements due to other causes.

Movements due to crustal loading are predominaiitly vertical
movements. The loading (or unloading) causing this movement may be
due to a large water reservoir, a large city, sediments deposited
or material eroded by a major river, post glacial isostatic rebound,
or other factors. Tectonic action refers to movements of large
plates of the earth's crust on the upper manf]e material. These
movements have recént]y become the subject of yigorous research,
for .example the movements associated with the San Andreas fault in
California. Movements due to man's activities could be ground
conso]idatioh due to withdrawal of fluids such as oil or water, or
gfound swelling due to fluid waste disposal. Man's activities

“gould also cause ]ands]ide§,and subsidences following mining exploitation.
Movements due to other causes would include thermo-elastic deformations
of the earth, about which very ]itt]é is known quantitatively, and
regional anomalous uplifts or subsidences of no immediately
explainable origin. An example of the latter is thé vertical

movement in the Lac St. Jean area of Quebec [Vanicek and Hamilton, 1972].



Before concluding this discussion of surface movements, the
long term movement of mean sea 1éve1 should be mentioned beca;se mean
sea 1evef is commonly used as a height datum. Studies have shown a

eustatic (world mean sea level) rise of the order of 10 cm per century

[Holdah1, 1974].

2.1.2 Contemporary Three-Dimensional Model

In this model the coordinate system is three-dimensional and
the positions of points are considered invariant with time. This |
approach is not new - it was first suggested by Bruns in 1878. The
formulae used in contemporary three-dimensional geodesy are generally
those contained in Wolf [1963], Hirvonen [1964] or Hotine [1969] and
summarized in Heiskanen and Moritz [1967]. Many authors have refined
these or similar formulae and applied them to simulated or actual
networks. Examples are: Bacon [1966], Henderson [1968], Hradilek
[1968; 1972], Fubara [1969], Stolz [1972], Vincenty [1973], Vincenty
and Bowring [1978], Lehman [1979]. ‘

In recent years the three-dimensional approach has gained in
popularity. There are several reasons for this. One reason is that
surveying methods using photogrammetry, satellite receivers or inertial
systems are inherently three-dimensional. Another reasons is that the
combutationa] requirements of simultaneously dealing with three
coordinates are no longer a problem due to advances in computer tech-

nology. A third reason is that deflections of the vertical and geoid



heights, which can be used as input into the three-dimensional model
to obtain the moét accurate values for the coordinates, can now be
better determined. (Deflections of the.vertical and changes in geoid
heights express the variation of‘the earth's gravityv field. They also
affect the classical geodetic model, and this aspect is discussed in
detail in chapter 3.)

In the three-dimensional model the position of a point on the
terrain is given by the ellipsoidal coordinates (¢, A, h) or by the
geodetic cartesian coordinates (XG’ YG’ ZG)’ ¢ and )\ are taken as
positive to the north and east respectivg]y. The geometric relationship
between these coordinates is indicated in Figure 2-1.

The ellipsoid height h is obtained by adding together the
orthometric height H and the geoid height N. A complete discussion
of the relationship between ellipsoidal and cartesian coordihates,
as well as other coordinate systems used in geodesy, is given in

Krakiwsky and Wells [1971].

2.1.3 Classical Geodetic Model

In the classical geodetic model, the triplet of coordinates
used to define the position of a point on-the surface of the earth are
separated into horizontal coordinates and a vertical coordinate. The
horizontal coordinates may be geodetic latitude ¢ and geodetié longitude
X, or cartesian coordinates X and Y on a mapping plane. The vertical
coordinate is a rigorous geodetic height such as dynamic height or

orthometric height.
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The main reason for the separation of coordinates is purely
practical. Horizontal geodetic stations, in order to be intervisible
so that-the traditional surveying measurements can be made, are
generally located on hilltops. Precise geadet.c levelling between
these stations is usually very difficult and is very seldom performed
[Krakiwsky and Thomson, 1974]. Vertical control points, on the other
hand, are generally located along roads to that the levelling route is

easily accessible.

2.1.4 The Choice of a Geodetic Model for an Engineering Survey

The time-varying model would only be an apprépriate choice
Jor special engineering surveys concerned with the movements of points.
These types of surveys will not be considered in this thesis.

Movements due to earth-tides and sea tides' Toading can cause
movements with respect to the center of mass of the earth in the order
of centimeters, but the relative changes in angles and distances in
the area covered by an engineering project are very small - of the order
of 10'8 [Melchior, 1966] and undefectab]e with present surveying . instru-
ﬁents. Relative movements due to crustal loading are of the same order.
Movements due to some of the remaining causes, for example tectonic
action and man's activities, and anomalous movements could easily be
large enough so that terrain points could not be used for local control
purposes. In these cases terrain points would have to be carefully
chosen so that they would be locally stable.

The choice of a geodetic model for an engineering survey has
been reduced to either a three-dimensional model or the classical model.

The choice between these two will take a 1ittle more consideration, for
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each model has a number of distinct advantages and disadvantages.

One of the advantages of d three-dimensional model is that
observations do not have to be reduced to a reference surface. Only
the usual atmospheric and irstrunental corrections are made to the
observations.

Another.advantage of the three-dimensional model is that
all three coordinates are determined for every point; however, for an -
engineering project this advantage might not be utilized. Just as
design, measurement and adjustment of separate horizontal and vertical
networks is a practical procedure, it is also a practical procedure
to set out heights from vertical control and horizontal positions from
horizontal control.

A thifd advantag? of the three-dimensional model is that it
can fully utilize satellite data. The three-dimensional modél can
A1so utilize the output of other systems that operate ir three-dimensional
space, for example photogrammetric systems [E1 Hakim, 1979] and inertial
survey systems.

The fact that in a three-dimensional model the three
coordinates are'solved for simu]taneous]y? leads to certain difficulties.
The most obvious difffcu]ty is that a Tlarger system of equations must
be solved. Another difficulty is that in a three-dimensional model the
formulation of observation equation§ must be done in the ellipsoidal
coordinate system since horizontal directions (or angles) and zenith
angles cannot be expressed completely in cartesian coordinates

[Hotine, 1969; Chovitz, 1974].
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Neither of these difficulties however, should be considered as
serious because of the computer facilities available today.

- The most serious difficulty with a threé-dimensiona] model
is that a height/cooruinate is solved for at eVery point. This
requires additiona] observations. Spatial distanées, except where
lines of sight are very steep, do little to accurately determine
heights [Hradilek, 1968]. Measurement of tre spatial distance
between two pcints together with the zenith angles corrected for
deflections of the vertical allow differences of ellipsoid heights
to be.calculated. These observations are essential for a three-
dimensional geodetic model but, by themselves, are not sufficient
to determine the height coordinates as accurately as the horizonta]
coordinates. Observations of astronomic latitude and astronomic
Tongitude and observations of differences in spirit levelled heights
are necessary to increase the accuracy of the height coo-dinates
[Fubara, 1969; Vincenty, 1973]. (These observations provide
information on the variation of the earth's gravity field between
points in the network. The role of astronomic observations gnd
observations of changes in height are discussed in detail in chapters
3 and 4). Even with these additional observations the height coofdin—
ates may not be of the same accuracy as the horizontal coordinates.
This is because of the uncertainty associated with vertical refraction.

For smaller scale three-dimensiona]‘networks, such as those used to
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determine ground movements, the uncertainty associated with vertical
refraction still has a significant effect [Dodson, 1978].

Vertical refraction can be treated as an unknown parameter
in a three—dimehﬁiona] adjustment [Hradilek, 1.,72; Ramsayer, 1978]
but only with special observing methods, for example simultaneous
reciprocal zenith angles, or under special conditions, for exémp]e
Tines high abrve the ground, can vertical refraction and heights be
well determined. An alternative to treating vertical refraction as
an unknown parameter is to input it as a known quantity, but the
difficulty of adequately modelling vertical refréction is well
illustrated by the work of Angus-Leppan [1967; 1978], Brunner [1977]
and others.

Another alternative to treating vertical refraction as an
unknown parameter may be available in the future. Work is currently
being carried cut by Tengstrcm [1977] at Uppsale University in Sweden
and by Williams [1977] at the Natjona1 Physical Laboratory in England -
on instruments to determine refraction directly by measuring the
" dispersion of two colours of 1ight. (Vertical refraction is dealt
with in more detail in chapter 4 in connection with determination of
deflection of the vertical,)

The disad?antages of the classical geodetic model, especially
when applied to an engineering survey, are minor.

One disadvantage is that observations have to be reduced from
the terrain to the ellipsoid to the mapping plane. Since these

reductions are perfcrmed together with the atmospheric and instrumental
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corrections, most likely within a co~puter program, it causes no real
problem. The reductiens due to gravity can be determined by a global

geoid model or, with more accuracy, by any of the methods outlined in Chapter 4.

Another disadvantage of the classical geodetic model is that
horizontal control points have accurate horizontal coordinates but
only approximate heights, and vertical control points have accurate
heights but only approximate horizontal coordinates. Again, this
causes nc real problem. Just as design, measurement and acjustment of
separate horizontal and vertical networks is a practical procedure, it
is also a practical procedure to set out heights from vertical control
and horizontal positions from horizontal control.

A third disadvantage of the classica’ geodetic model is that
it cannot fully utilize three-dimensional data such as satellite data.
This is a very real disadvantage for national geodetic networks, but
is not a mujor consideration for most engineering surveyg'requiring high
accuracy. The reason for this is that in a small area, like that
covering.an engineering project, three-dimensional data (satellite,
photogrammetric or inertial) is generally not sufficient to produce
horizontal and vertical positional accuracies of 1/100 000; this
is especially true for the heights. For small areas the traditional
surveying measurements still provide the highest positional
accuracies. An exception to this would be the‘positibnal accuracies .
of some satellite solutions, for example the short arc satellite
solution in which accuracies of 0.25 m in all three coordinates
are claimed [Brown, 1976]. If some of the control for an
engineering survey were to be established by satellite methods, a datum

shift would be required to make the satellite derived coordinates
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compatible with the coordinates derived from the traditional surveying
methods. (The reasons for the datum shift is explained in section 2.2.1.)
In this case the datum shift could be performed by a method outlined by
Merry and Vanicek [1974]. A few special engineering surveying problems
would be very difficult without satellite position determinations.
Examples are the positioning and orientation of nuclear accelerators
‘and radio telescopes in which "absclute" position and "absolute" orient-
ation (position with respect to the center of mass of the earth and
orientation with respect to the best-fitting geocentric ellipsoid -
see section 2.2.1) are necessary;

‘The advantages of the classical geodetic model ére due to practical
considerations. The classical geodetic model minimizes the effect of
atmospheric refraction by separating horizontal and vertical control. This
enables positional accuracies of 1/100,000 to be attained. As has been
discussed previously, it is also very practical to deal with horizontal and
vertical control networks separately, and to set out from these networks separately

Another practical aspect of the classical geodetic model is it height
component. In the classical geodetic model, heights whether dynamic or
orhtometric, have a definite physical meaning. Points having the same dynamic
height 1ie on the same equipotential surface. Points having the same ortho-
metric~height are the same height above the geoid. ‘(Heights will be discussed
in more detail in chapter 3.) In the three-dimensional geodetic model, the
height component is either the local cértesian coordinate ZL or the ellipsoid
height h. Figure 2-2 shows the position and orientation of a local three-
dimensional cartesian coordinate system. Given the parameters defining the shape
and posftion of the reference ellipsoid, ZL can be transformed to h and vice versa.
E11ipsoid height h is related to orthometric height H by the formula h = H + N
(see section 2.1.2) but it is difficult to obtain an accurate value for N at

a given point.
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For engineering purposes neither ZL or h is very useful. If
heights on a given project were defined by ZL'S it would cause a great
deal of confusion. By studying Figure 2-2, one can see that depending
on the location of points with respect to the origin of the local three-
dimensional cartesian coordinate system a point with a larger ZL value
than another point may or may not be highér than the other point! Use
of ellipsoid heights would be better but still not satisfactory.
Changes 1in e11ip$oid heights approximate changes in dynamic or ortho-
metric heights but for engineering surveys requiring high accuracy,
especially in areas where variations in the gravity field are large,
use of ellipsoid heights would not be safisfactory.

The elassical geodetic model has been in use since man first
began to investigate the size and shape of the earth. It is still in
use today in all the national geodetic netwarks of the world. Despite
advances in all areas of surveying-new equipment and methods, more
dense coverage of data, the ability to rigorously adjust networks- the
classical geodetic model remains the most practical and useful. For
these reasons the classical geodetic model should be used in preference
to the three-dimensional geodetic model for an engineering.gurvey

requiring high accuracy.

2.2 The Classical Geodetic Model.gnd a Local Coordinate System

In this section well known features of ‘horizontal and vertical
geodetic networks are reviewed. Definitions are kept to a minimum.

No references are given to formulae as these are readily available from
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any textbook on geodesy, for example Bomford [1975] and Vanicek and
Krakiwsky [in prepl.

In the classical geodetic model the horizontal position of a
point is defined by geodetic latitude and longitude on the surface of
a reference ellipsoid or by cartesian coordinates X and Y on a mapping
plane. The vertical position in a classical geodetic model is defined
by a rigorous geodetic height.

For local control purposes two-dimensional cartesian coordinates are
preferable to geodetic coordinates. Cartesian coordinates are most easily obtainec
by reducing horizontal position observations to the mapping plane and
then adjusting the reduced observations on the mapping plane. Before

this can be done however, a horizontal geodetic datum must be established.

2.2.1 Establishment of a Horizontal Geodetic Datum
A horizontal geodetic datum is simply the surface of the
reference ellipsoid. There are several ways in which a datum can be
defined. The classical approach is to determine a set of parameters
which define the datum, by making measurements on the surface of the
earth. This is the approach that will be followed here.
A set of eight parameters which define a horizontal geodetic

datum are: a, f, 992 Ao N s Gao.

0’ £09 nO
-a and f define the size and shape of the reference ellipsoid.

a is the dimension of the semi-major axis of the reference ellipsoid.
a-b
a

f is the flattening of the reference ellipsoid, and f < where

b is the dimension of the semi-minor axis of the reference ellipsoid.
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The values of a and ¥ have been refinud by satellite data. Typical values
for a best-fitting geocentric ellipsoid for the entire earth have a=6378.135
km and f = igéjﬁg;[Seppe1in, 1974].

‘ Before going further, geocentric and best-fitting should be
explained. Geocentric means that the center of the ellipsoid is
located at the center of mass of the earth, and the semi-minor axis of
the ellipsoid is coincident with the spin axis o the earth. Best -
fitting for the entire earth means that the ellipsoid épprcximates the
geoid to within + 100 m everywhere. (The geoid or figure of the earth
would coincide with the surface of the oceans if they were not subject
to external influences such as tides, prevailing winds, currents,
differences in density, etc. The departure cf average sea level over
a long period of time, or mean sea level, from the geoid is of the
order of 1 m.) Figure 2-3 shows the relationship between a best fitting
geocentric ellipsoid for the entire earth and the geoid. Later it will
be shown that a non-geocentric reference ellipsoid, approximating the
geoid (or some other equipotential surface closer to the terrain) in
the region of use, is satisfactory.

Returning to the parameters which défine a horizontal geodetic

datum, the remaining six parameters (¢o, A

s Nd’ Eys Ngs Gao) all refer

0
to the initial point of the network. ¢0 and Ao are the geodetic latitude

0

and geodetic longitude respectively of the initial point. N0 is the
geoid height or geoid-ellipsoid separation at the initial point. £, and
n, are the components of the deflection of the vertical at the initial

point. Gao'is the'dffference between the astronomic azimuth and the
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geodetic azimuth between the initial point and another point. ¢, A
and N have been defined previously; &, n and s are defined in the
following paragraphs.

Deflection of the vertical is fhe spatial angle between the
p]umblfne and the normal to fhe réference el]ipsoid; £ and n are the
orthogonal components of the deflection of the vertical. £ is the
north-South or meridian component; n is the east-wyest or prime vertical
component. £ and n are taken to be positive to the north and east
respectively in order to correspond to the sign convention for ¢ and A.
Since the plumbline is a spatial curve, the value of deflection of the
vertical will depend on where fhe angle fs measured. Many tasks in
geodesy require the deflection of the vertical at the geoid, others
require the deflection of the vertical at the earth's surface; the latter
are called surface deflections. Differences in deflection of the
vertical between the terrain and the geoid have been computed to be as
high as 3"/1000 m in the Alps [Kobold énd Hunziker, 1962]. If the
earth had no terrain,  the geoid coincided with the reference ellipsoid
and the density‘aistribution within the earth were uniform, deflections
of the vertical would be zero everywhere. Because of the earth's
terrain, the positioh of the reference e]iipsoid within the earth and
density variations near the surface of the earth, deflections.of the
vertical of up to 01' can exist [Heiskanen and Vening Meinesz, 1958].

Sa is expressed by the Lapiace azimuth condition»
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6o = A -o=ntan ¢ + (& sina - ncos o) cot z (2-1)

where ¢, £, n have been given previously

and A = astronomic azimuth
o« = geodetic azimuth
z = zenith angle

The Laplace azimuth condition is one of the three parallelity
condition equations. The other two equations are
£E=0-4 (2-2)
n=(L -21)cos ¢ (2-3)
where ¢, X, £ and n were given previously

astronomic latitide

and o

A = astronomic Tongitude
Together the parallelity cond?tion equations ensure that the semi-mincr
axis of the reference ellipsoid is parallel with the spin axis of the
earth and the plané of the Greénwich meridian is parallel Lo the
zero meridian of the ellipsoid.

With all of the parameters defining a horizontal geodetic
datum explained, the problem of establishing a datum can be considered.
Simply stated, the problem is to choose values for (a, f, 9o Ay No’
Eys Ngs 6a0) such that the values of (£, n) or N elsewhere in the
network are minimized. When this is done, it will }esu]t in a non-
geocentric reference e!]ipsoid‘which approximates the geoid in the
region of the network. (See figure 2-4).

The only practical problem of applying this to any network is

to determine accurate (say + 1") values for £ and n. (In any network

£ and n are unlikely to vary by more than 20".) Traditionally é and n
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have been determined by laborious 2nd order astronomic observations
for & and A. More recently terrestrial gravity data has been used to
improve the interpolation between astronomic stations, or satellite,
astronomic ahdAtérrestrial data have been combined. |

In chapter 4 a new very sihp]e method to deterhine £ and n is
~given. This new method, which was developed by the authbr, is based
on astrcnomic difference observations for @‘ahd A. It was field
tested and shown to be‘acchate to about + 1".

The usual methods to determine deflections of the vertical and

the new method are discussed in detail in chapter 4.

2.2.2 A Plane Coordinate System

A plane coordinate system can be obtained by the conformal
mapping of the ellipsoid surface, along with coordinates of points on
it, onto a flat two-dimensional plane. Tf this approach is used the
observations must fi~st be acdjusted on the ellipsoid. An equivalent
alternative approach is to reduce the observations to a conformal
mapping plane, using reduction formulae derived from the particular
“conformal mapping function, and adjust the observations on the conformal
mapping plane. The second approach is generally used when establishing
a local horizontal control system since it is simpler: plane trigonometry
is used as opposed to ellipsoidal geometry when working on the ellipsoid.

Mapping is a general term in mathematics. It means the
transformation of information from one surface to another. For surveying
purposes a conformal mapping is used because in this type of mapping
angles are preserved and, as a re§u1t, linear scale is a function of

posifion bn]y.
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By imposing different conditions various conformal map
projections can be deduced. The more familiar conformal map projections
are Mercator, Transverse Mercator, Stereographic and Lambert Conformal
Conic. The Transverse Mercator map projection is probably the most
commonly used map projection in surveying; for this reason the
corrections to observations in reducing from ellipsoid to a Transverse
Mercator mapping plane will be given in detail in chapter 2.

In a small area, such as that covering an engineering project,
no conformal mapping projection has a distinct advantage; however,
corrections to observations in all conformal mapping projections can be
minimized by choosing a reasonable origin for the conformal mapping
projection and a reasonable scale factor at the origin. This aspect
will also Le discussed in chapter 3, in reference to the.Transverse
Mercator map projection.

A complete coverage of Transverse Mercator and other map
projections can be obtained in references such as Maling [1973],

Richardus and Adler [1974] and Krakiwsky [1973].

2.2.3 A Geodetic Height Datum

A geodetic height datum is a surface to which heights are
referredf In national geodetic networks it i;,common to use height
above the geoid, as approximated by mean sea level, as the height
datum. The problems with this approach were mentioned in sections 2.1.1
and 2.2.1. A more reasonable approach would be to use the equi-
potential surface:passing through a stable point in the height network

as the height datum. The height of this point would be arbitrarily
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assigned its approximate elevation above mean sea level.

In the classical geodetic model, heights are obtained from
precise levelled height differences corrected for differences in gravity
along the levelling route. Details of the geometric and gravimetric

effects on heights are discussed in chapter 3.



3. GEOMETRIC AND GRAVIMETRIC EFFECTS IN A
LOCAL COORDINATE SYSTEM

In this chapter the gravimetric_and geometric effects on the
traditional observations used to obtain accurate heights and horizontal
positions in a local coordinate system are discussed, and the corrections
for these effects are given. No references are given for the correction
formulae since they are well known and available from textbooks on
geodesy, for example Bomford [1975], Vanicek and, Krakiwsky [in prep],
orbfrom other sources, for example; Department of the Army [1958],
Krakiwsky [1973], Krakiwsky and Thomson [1974] and Thomsen et al [1978].

It should also be noted that the gravimetric and geometric
effects on traditional surveying observations is just one small aspect
of the overall problem. If an accurate local coordinate system were
to bé established it would involve many other tasks - reconnaissance,
preanalysis and design, performing field observations, and obtaining
coordinztes of control points together with their associated accuracies
by adjusting the corrected observations. To discuss all these tasks
is beyond the scope of this thesis; however, in chapter 5 preana]ysis
and adjustment are used to show the effect of neglecting the gravity

field in a simulated tunnel survey.

27
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3.1 Heights

Heights are obtained from measurements of height differences
above or be]qw the height‘datum.Using the well known procedures for
precise spirit levelling, accuracies of height differenﬁes of the order
of 2 mm/v/km of levelling route can be attained.

The most important procedure in precise spirit levelling is
the equalizing of backsight and foresight distances. By this procedure
the geometric effect due to the curvature of the earth is eliminated.
This procedure also eliminates the error due to the horizontal
collimation error of the instrument and the error due to the refraction
of the.line of sight on the backsight and foresight, assﬁming that the
refraction is the same in the backsight and foresight directions.

If trigonometric levelling is carried out using equal

backsight and foresight distances, and if heights of targets at
| beginning and end, =zenith angles and slope distances are measured with
a comparable high accuracy, the accuracy of the height difference may
approach that of spirit levelling. This method should be considered
where accurate heights are required in rough terrain. Because of the
problems discussed in section 2.1.4, single observation trigonometric
lTevelling 6r even reciprocal trigonometric levelling may be an order
of magnitude less accurate than precise spirit levelling or trigonometric
levelling with equal backsight and foresight distances.

The geometric effect on heights is removed by mere]y‘equa1izing
backéight and foresight distances. The gravimetric effect on heights

however, cannot be eliminated, and can only be accounted for by making
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gravity observations along the lTevelling route. The gravity values
obtained are used to make corrections to the measured height differences.

Gravity must be accounted for in levelling because equi-
potential, that is level, surfaces are not parallel. Since differences
in Tevel are actually differences in vertical distances between |
equipotential surfaces, and since equipotential surfaces are not parallel,
a sum of differences in level wiil be path dependent. In order to
uniquely define heights of points the effect of gravity must be
included in levelling. Mathematically, ¢‘dL # 0 1indicates that
observed Tevel differences arevpath dependent; ¢ gdL = 0 indicates
that the product of observed level differences and corresponding
~gravity values are not path dependent. kQ is the integration around a
closed circuit.)

There are several height systems which include the effect
of gravity so that heights of points can be defined uniquely. The system
of geopotential numbers uses the property ¢ gdL = 0 directly.
Geopotential numbers are seldom used in engineering work because
numerically they depart from measured heights by about 2% even when
units are chosen in the most convenient>way, that is gravity is
expressed in kga]sved that g = 1. .

The system of dynamic heights and the system of orthometric
heights are two other height systems Which include the effect of
“gravity by making a small correction to a measured height difference.

In either system the difference in height between two points A and B

is expressed as
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M

AHpp = MHpp + 4App (3-1)
where
AHAB,= difference in dynamic or orthometric height
AHXB = measured difference in height

Ang = dynamic or orthometric corrcction to the measured difference
in height.

In the dynamic height system

AHRB = AHXB + ARB (3-2)
and 5 g;-6
Mg = ? — oL, | (3-3)
where
g; = average value of gravity in a levelling section
G = reference gravity for the area
sL. = measured difference in height in a levelling section.

i
In the orthometric height system

0o _ .M .0 i}
AHpg = AHAB * &g (3-4)
and -, s
-G g, -G
0 _ D M 9 M 98
A = Bpp t My - Hg —— (3-5)
G G
9;6 oy -G. y9g-6
= sl Hy e Hy
i G 1 G G
where

9> G, 6Li were given previously

M

HA s HBM = measured heights of points A and B
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gy > 9p = average value of gravity on the plumbline betveen the
terrain point and the geoid at point A and point B;
— M
da = ¢ + 0.0424 x H
A Aobs A -
. - ,I - - .
(H M in meters for g and g, in m1111ga1%;);
A . Aobs A '

similarly for §é’

The physical interpretation of dynamic and orthometric heights
is slightly different. Dynanic heights are closely related to the
concept of equipotential surfaces. One may say that they reflect the
geometry of the physical space surrounding us. As was stated previously,
the points lying on one equipotential surface have the same dynamic
height. Orthom>tric heights may be considered "common sense heights".
Points having the same orthometric height are the same vertical distance
from the geoid but do not 1ie on the same equipotential surface.

The size of the corrections to measured heights in the dynamic
and orthometric height systems depend on tne differences in gravity
values along the levelling route. Usually the corrections are smaller
than the accuracy of the measured height differences. In many engineering
surveys including some requiring high accuracy, gravity corrections are
- -not made. This was the case, for example, in the Snowy Mountains
Scheme in Australia which contained 90 miles of trans mountain tunnels
and 80 miles of aqueducts [Wassérman, 1967]. In the Orange-Fish Tunné]
in South Afriéa it was recommended that gravity corrections be made to
 measured height differences primarily due to a very large gravity anomaly

in the area of the tunnel [Williams, 1969].
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In the simulated tunnel problem discussed in chapter 5, the
effect of nég]ecting the gravity corrections to measured height differences
is shown. .

The effect o gravity on heights is generally covered best
by books on physical geadesy such as Heiskaner and Moritz [1967] and
Vanicek [1976]. The subject is dealt with in detail in Krakiwsky
[1966] and Nassar.[1977].

3.2 Horizontal Positioning

Unlike heights,generally more than one type of measurement is -
necessary to obtain accurate horizontal.positidhs. The traditional
surveying measurements used to determine horizontal positions are
azimuths, directions, angles and distances. The corrections to these
observations in reducing from terrain to ellipsoid and ellipsoid to
Transverse Mercator conformal mapping plane are given in sections 3.2.1
and 3.2.2,

It will be seen in the reduction formulae that corrective
terms are very often functions of the horizontal position (either grid
coordinates X and Y or geodetic coordinates ¢ and x) of the point to
which the observation is made. The easiest solution to this problem is
to use the raw obsefvations (except that all spatial distances are
reduced to the horizonta] and all azimuths are corrected for meridian
cbhvergence; approximate corrections for these are givén in sections
3.2.1.1 and 3.2.2.2) to get an approximate graphical solution for all

the grid coordinates of the horizontal network.
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Grid coordinates are coordinates on a mapping plane
determined with respect to the coordinates of one point in the network
being given arbitrary X and Y .values such that the X and Y values of
all other points are positive. The positive Y axis is directed
north and the positive X axis is directed east.

With the approximate geodetic coordinates (¢i’ Ai) of one
pdint in the network known, the approxinate geodetic coordinates of all

other points can be determined by the following formulae:

6 = ¢ + L—T1 "
i , (3-6)
(R + HO)
X. - X.
gE gt et 0" (3-7)
(R + Ho) cos ¢,
where
R+ Ho) = mean radius of the reference ellipsoid (see section

3.2.1.1)

seconds of arc per radian = 206265"

©
1]

Before the reductions from terrain to ellipsoid and ellipsoid
to conformal mapping plane are given, the relative positions of the
terrain, geoid or arbitrarily chosen equipotential surface, reference
' ei]ipsoid and conformal mapping plane should be showr. Figure 3-1 shows
the usual situation for a national geodetic network. The reference
ellipsoid approximates the geoid but may be separated from it (as
shown here) to get the best fit to the geoid for the entire country.

For a national geodetic network the geoid level is the most convenient
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location for a reference ellipsoid. The conformal mapping plane is
usually a secant plane to the reference ellipsoid in order to minimize the
ellipsoid to conformal mapping plane linear scale distortion over the
area of the conformal mapping plane.

For local control purposes a more convenient positioning of
the surfaces is shown in Figure 3-2. The reference ellipsoid approximates
an equipotential surface at the average elevation of the area. The
conformal mapping plane is a tangent plane to the reference ellipsoid
near the center of the area. This positioning of the surfaces minimizes

the reduction corrections.

3.2.1 Reduction of Observations from Terrain to E1lipsoid
3.7.1.1 Reduction of Spatial Distances

A terrain spatial distance is reduced to the ellipsoid by

the following formula (see Figure 3-3):

2 2 1/2
(1+ )1+ —l—=) [ (3-8)
: (ReHy)  (ReH,)
Sij = 2 (R + Ho) sin
2 (R+ HO)
where
Sij = ellipsoid distance between points i and j
rij = terrain spatial distance between points i and j, corrected
for instrumental effects and atmospheric refraction
ah = difference in ellipsoid height of points i, j
h.,h. = ellipsoid height of points i, j



Figure 3-3

Spatial Distance Reduction
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R = mean radius of the ellipsoid which best fits the geoid or mean

sea level locally

, 1/2
2y ' Y R
_a(l - 2f + £9) S N T
= and Sy = 55

1 - (2f - £2) sin ¢

from values of a = 6378.135 km and

f = 1 (see section 2.2.1)
298.26
R¢ =4G = 6335.438 km
R¢ - 45 = 6356.715 km»
R¢ 900 " 6378.135 km
Ho = approximate elevation of the reference ellipsoid above the

ellipsoid of mean radius R; if H0 is chosen to position the
reference ellipsoid at the average elevetion of the area,
hi and hj may be positive or negative.
For purposes of determining approximate coordinates on the
mapping plane
243 é_Sij 2 rij sin 235 (3-9)
where

Sij and rij were defined previously

1}

pA

distance on the mapping plane between points i and j

il

i zenith angle from point i to point j uncorrected for curvature
of the earth and refraction.
This approximate reduction formula considers only the approximate slope

correction which is generally much larger than the corrections included
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in the rigorous reduction formula.

3.2.1.2 Reduction of Astronomic¢ Azimuths

An astronomic (observed) azimuth is reduced from the terrain

to the ellipsoid by the following formula:

T Aij - tan P (3-10)
where
® 43 = geodetic azimuth from point i to point j
i = astronomic azimuth from point i to point j
c, = gravimetric correction; correction due to the deflection of
the vertical at the instrument staticn;

in which Ejo My = componenfs of the deflection of the vertical

at point i

a;: and z;; were defined previously;

iJ J
z.. uncorrected for the effects of the deflection of

1
the vertical is sufficient as a first approximation
Cps Cg = geometric corrections; corrections due to the positions of
the instrument and target stations with respect to the reference
ellipsoid; c, = skew normal or height—pf—target correction;
é3 = normal section to geodesic correctfon | .

h. . '
c, = —d (2f - fz) sin o, cos @ cos? b, (3-12)
(R + Ho) J J J



and
2 2 2 .
(f°-2f) Sij cos” ¢, sin 204

= LN (3-13)
i2 (R + Ho)2

3
where 211 the terms were defined previously.

3.2.1.3 Reduction of Horizontal Directions

A horizontal direction is reduced from the terrain to the

ellipsoid by the following furmula:

4y = A5t et oyt g (3-14)
where
d].je = horizontal direction on the ellipsoid from point i to point j.
dijt = horizontal direction on the terrain from point i to point j

Cys Cps Cg Were defined previously.

3.2.1.4 Reduction of Horizontal Angles

A horizontal angle is reduced from the terrain to the ellipsoid

by the following formula:

Bijke = Bijkt t ey +ep +egdy mleg + ey +cglyy
(3-15) _
where
Bijke = horizontal angle on the ellipsoid at point i from points
J to k |
Bijkt = horizontal angle on the terrain at point i from points j to k

Cys Cps Cg Were defined previously except that they now refer to the

lines ik or ij
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3.2.1.5 Magnitude of the Corréctions

Figures 3-4 to 3-7 inclusive show the magnitude of corrections
to observations in reducing the observations from the terrain to the
ellipsoid. |

Figure 3-4 shows the slope correction to a terrain spatial
distance. This is generally the largest correction incorporated in
the rigorous reduction formula. In this figure the approximate slop=2
of the line of observation is given by its uncorrected zenith angle,

whereas in the rigorous reduction formula the quantities r; h:, hj

j? 1
and (R + Ho)’determine the slope of the 1ine of observation.

Even without figure 3-4 it is abvioué fhat a terrain spatial
distance must be properly reduced to the ellipsoid. In the lowest
order horizontal position computations the slope distance is "reduced
to the horizontal", usually by formula (3-9).

Figures 3-5, 3-6 and 3-7 show the corrections Cys Sy and <3
respectively.

Cys the gravimetric correction,can easily reach a magnitude
of several seconds in rugged terrain. As ncted in chapter 2 and
discussed in detail in chapter 4 there are many methods, including a new
very simple method, to determine £ and n So that the gravimetric
correciion can be applied. In chapter 5 the effects of neg]e¢ting the
gravimetric correction in twg different engineering surveying problems
is shown. |

<y and C3s the geometric corrections, are very small. 1In

most cases they will be opposite in sign and of approximately equal
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magnitude so that neglecting to make these corrections would have an
almost negligible effect on the accuracy of the horizontal position

»

computations.

3.2.2 Reduction of Observations from Ellipsoid to Transverse

Mercator Confoémal'Mapping'P1ane

Before giving the corrections to observations, the Transverse
Mercator projection should be briefly described and the geometry of
curves projected from the ellipsoid onto the mapping plane should be
shown.

In the Transverse Mercator projection the scale is constant
along an arbitrarily chosen central meridian. For local control
purposes the central meridian should be chosen to pass near the center
of the area so that reduction corrections are minimized. If the
Transverse Mercator mapping plane is tangent to the reference
ellipsoid along the central meridian, the scale is true at the central
meridian and the scale factor at the central meridian, ko’ is equal to
1.

The origin of the Y-axis in the Transverse Mercator projection
is at the'eduator. In order to avoid Y-coordinate values in the |
millions of metres, the origin can be arbitrarily shifted to the north
or south as required. The origin of the X-axis in the Transverse
Mércator projecfion is at the central meridian. In order to avoid
negafive X-coordinate values the origin can be arbitrarily shifted to
the west; Xo is then the x-coordinate-of any point on the central

meridian.



Figure'3—8, ‘the Geometry of Projected Curves, illustrates thc
line scale factor k, the meridian convergence y and the (T-t) correction.
The line scale factor k is the ratio of the length of the projected
curve connecting two points to the length of the chord connecting the
same two points. The meridian convergence vy at a point is the angle
between the tangent to the projected meridian through the point, and
the Y-axis. The (T-t) c~rrection is the difference between the grid
azimuth of the projected curve connecting two points and the grid

* azimuth of the chord connecting the same two points.

3.2.2.1 Reduction of Ellipsoid Distances
An ellipsoid distance is reduced to the Transverse Mercator

conformal mapping plane by the following formula, which is accurate to
-7

10 ° for Tines up to 150 km in length and within 3° of the central
meridian:
where
Sij and zij were defined previously
E}j = line scale factor for the line between points i and j
kKeo =k [1+ 1+ —)] (3-17)
W eR+ M) 36(r o+ H )2

2 iy g2 e Y :
in which X ° = ’.);.(1- Xo) + (X Xo)(xj Xo) + (XJ- X,) (3-18)
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3.2.2.2 Reduction oi Geodetic Azimuths

A geodetic azimuth is reduced to the conformal mapping plane
by the following formu1a£

t_ij = U.,ij - 'Y.i - (T‘t)]-j (3"]9)

where

o4 was defined previously

Y = meridian convergence at point i

(T—t)].j = the (T-t) correction between points i and j
Meridian convergence for the Transverse Mercator projection
is given by the fo]]owing‘expression which fs accurate to 0Y01 within

3° of the central meridian:

Aliz cosz¢i 2
(1 + 3ng" +

3(e")

AA.4 cos4¢i

P T (22 tan 4.)] (3-20)

15(0")% !

2n.4)

Y. = ar. si +
4 = My sin g, [1 ;

1

where
Ar; = change in longitude from the central meridian; positive east and
negative west to conform to the usual sign convention for

longitude

and 2
: niz =2 o 62 ¢ : , (3-21)
(1 -2
The (T-t) correction for the Transverse Mercator projection
is given by the following expression which is accurate to 0Y02 for

lines up to 100 km in length within 3° of the central meridian:
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2
'."I.’ X.l;.)(o"zx > <y'|2X°"2X>
(I t)-- - ( . ( ]

- o" (3-22)
i 6(R+H0)2 27 (R+Ho)2

where all the terms have been defined previously.

For purposes of determining approximate grid coordinates.

tig = Ay = Ay singg (3-23)
where all the terms have been defined previously. This approximate
reduction formula considers only the approximate meridian convergence
which is generally much larger than the other corrections included

in the complete reduction formula.

3.2.2.3 Reduction of Horizontal Directions

A horizontal direction is reduced from the ellipsoid to the
Transverse Mercator conformal mapping plane by the following formula:
dijp = dije - (T-t)y5 (3-24)
where
dijp = horizontal direction on the mapping plane from point i to
point j

dije and (T't)ij were defined preyiously.

3.2.2.4 Reduction of Horizontal Angles
A horizontal angle is reduced from the ellipsoid to the

Transverse Mercator conformal mapping plane by the following formula:

p _ e
B’ = Big *+ (T-t)yy - (T-1)y, (3-25)
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where
‘Bijkp = horizontal angle on the mapping plane at point i from points
- j tok
Lt . .
Bijk was defined previously

(T-t) was defined previously except that now one (T-t) term refers

to 1ine ij ard the other to line ik

3.2.2.5 Magnitude of the Corrections

Figures 3-9 to 3-11 inclusive shew the magnitude of cdrrections
to observations in reducing from the ellipsoid to the Transverse
" Mercator conformal mapping plane.

Figure 3-9 shows the scale factor correction for the Transverse
Mercator projection. The correction is broportiona] to the length of
the 1ine and increases approxiﬁate]y as the square of the distance of
the Tine from the &entra] meridian. At 10 km from the centval meridian
the correction is about 2ppm, at 50 km about 44ppm and at 100 km about
175ppm. Neglecting this correction in horizontal position computations
on a plane would obviously only be possible in a very small area.

Figure 3-10 shows the meridian
cénvergence.cbffection for the Transverse Mercator projection. Like
the slope correction to a spatial distance, this correction is so large
that it is applied even_in the lowest order horizontal position
computations. .

Figure 3-11 shows the (T-t) correction for the Transverse
Mercator projection. This correction is larger than 1" only for very

long Tines having large north - south components.
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4. DETERMINATION OF DEFLECTIONS OF THE VERTICAL

In this chapter various methods of determining deflections 6f
the vertical in the small area covered by an engineering survey will
be considered. Unless npted otherwise, all deflections wi]] be surface
deflections rather than geoid deflections since it is the surface
deflections that are required to make the gravimetric corrections to
the traditional survey observations.

A chapter is devoted to this topic because of all the
corrections applied to theAtréditional survey observations only the
gravimetric correction to horizontal position observations, being a
function of deflection of the vertical, is difficult to determine. All
other corrections are functions of the observations themselves, the
approximate positions of the ends of the 1ines of observation, or
quantities such as the radius of the reference ellipsoid (R + HO),
reference gfévity G, etc.; all of Which are readily available. These
corrections can therefore be easily made if the acéuracy of the survey
requires it. The gravimetric corrections on the other hand are often
neglected for no better reason than the fact that deflections of the
vertical are difficult to determine. Section 4.2 describing a new
simple method to determine deflection of the vertical will show that

this no Tonger has to be the case.

54
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Parameters describing the earth's gravity field, one of
which is deflection of the vertical, are most often used to determine
the general shape of the geoid over a large area. For purposes of
national geodetic control this is sufficient. However, for purpos=s
of local geodetic control, for example engineering surveys requiring
high accuracy, local variations in the earth's gravity field may have
to be considered. For this reason, in this chapter only methods
having a resolution sufficient to determine a change in deflection of
the vertical in the order of 2" in 5 km will be considered.

In the following sections seven methods to determine deflection
of the vertical, which meet the resolution criteria, will be discussed.
The existing methods will be discussed only briafly. The astrogeodetic
difference method will be discussed in detai]? and field test results
-from the trigonometric method and the astrogeodeticvdifference method

will be presented and evaluated.

4.1 Review of Existing Methods

4.1.1 Trigonometric Method

This method. through which change in deflection of the vertical
is determined is well known, but it is seldom used because the -uncer-
tainty associated with vertical refraction makes it difficult to deter-
mfne the accuracy of the result. Only in mountainous areas where
atmospheric conditions are stable and lines of observation are high
above the ground does the method appear to give satisfactory results

[Hradilek, 1968].
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When trigonometric levelling is used to determine change in
deflection it is usually done within a three-dimensional adjustment in
which ¢ and , of each point.are solved for as unknown parameters
together with the three-dimensional coordinates of each point. The
use of trigonometric levelling data in a three-dimensional adjustment
is in fact the only new development associated with this method .ince
problems with the method were outlined by Kobold [1956].

A unique solution for change in deflection of the vertical
along the line connecting two points can be made if accurate trigonometric
and spirit levelled height differences are available and if the
coefficient of refraction is assumed to be the same at each end of the
line. |

From simultaneous reciprocal trigorometric levelling

[Chrzanowski, 1978],
- . ZBTEA
AhAB = SS sin = (4-1)

where

AhAB = difference in trigonometric height between points A and B

S

S slope distance between points A and B

Zp.2p = simultaneous reciprocal zenith angles at points A and B
corrected for defiections of the vertical.

If AH,, is the spirit levelled height difference between points A and

AB
B, then(SS sin fﬁ%fﬁ - AHAB) is the separation, at point B, of the
reference e]1ipsofd passing through poknt A and the equipotential surface
passing through point A.
This separation is related to the change in deflection of the

vertical along the line between the two points by [Vanicek and Krakiwsky,

in prep]
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Ae = - _?i; (4-2)
where
Ae = change in deflection of the vertical
AN = difference in ellipsoid - equipotential surface separation
So = ellipsoid distance between the points. |

Substituting for N, and expressing %s_gn seconds,
2

. B
2(AHAB - SS s1n. 5

AEAB‘.-= A . S D" (4-3)

(s}

-

where Ae positiVe means that the change in deflection of the vertical
: is outward along the line joining the points. To determine AeAB from

this formula iteration is required because Ac,, appears on both sides

AB.
of the equation: explicitly on the left hand side, and és a correction
to observed zenith angles on the right hand side.

As was noted previously, when the d%fference in trigonometric
and spirit levelled height differences is assumed to be due nnly to a
change in the deflection it is necessary to assume that the coefficient
or refraction is the same at each end of the line of observation. The
coefficient of refraction k in this case is [Chrzanowski, 1978].

—R—" [180° - (z, + z5)1 + 1 (4-4)
o°
where Zps ZB’»So and p" were defined previously and
R = mean radius of the reference el]ipsoid.

A completely different approach can be taken in which the
difference in trigonometric and spirit levelled heights is assumed to
be due to only a difference in coefficient of refraction at each end
of the Tine of observation. The necessary assumption now is that there

is no change in deflection from one point to another. The coefficient

of refraction from point A to point B, kAB’ in this case
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is [Brunner, 1977]
2R (SS COS Zyp - AHAB) .

1 (4-5).

S 2

S sin zAB

S
A similar expression can be written for the coefficient of refraction

from point B to point A, kBA‘

4.1.2. Astrogeodetic Method

This method was mentioned previously in the context of
establishment of a horizontal geodetic datum. (See section 2.2.1.)
The formula for the components of the deflection of the

vertical are

E=% -4 (4-6)
n=(A-21) cos ¢ (4-7)
where
(£, n) = components of deflection of the vertical, north-south

and east-west respectively
- (#, A) = astronomic coordinates, latitude and Tongitude respectively

geodetic coordinates, latitude and longitude respectively.

(¢, 2)

" This is the classical method of determining deflection of

fhe vertical, and should provide the highest accuracy. (See Section
4.3.2,) The only disadvantage of this method is that laborjous and

costly 2nd order astronomic observations are required.

4.1.3 Gravimetric Method

This method uses gravity anomalies to determine deflections
of .the vertical. The conversion of gravity anomalies to defiection of

the vertical is by the well known Vening-Meinesz formulae:
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E"(¢A’ AA) COS a ' .
- 5% @E sgle, 1)) p43led g (4-8)
U(¢As )\A) sin 0‘) dy
where

(64> Ay) = point of interest
(¢5 A) = running or dummy point
G = mean value of gravity on the surface of the reference ellipsoid

= 9.8 m/s?

Ag = gravity anomaly

o = geodetic azimuth between (¢A, AA) and (¢, A)

Q_%éil.= Vening-Meinasz funtion; a known function of spherical distance
v = solid angle between (¢A, AA) and (¢, A)

Often gravimetric deflections are only used to interpolate deflections
between points at which astrogeodetic deflections have been determined.
This approach is known as the astrogravimetric method.

Def]ectibns from gravity anomalies are deflections at the geoid
with respect to a geocentric reference ellipsoid. Small corrections
would have to be made for curvature of the plumbline (the difference
beiween geoid and surface deflection - see section 2.2.1), the datum
shift and what is known as the indirect effect (see Vanicek and
Krakiwsky [in prep]) to obtain surface deflections with rgspect to a
nongeocentric reference ellipsoid. In addition to this, the theoretical
requirement of the Vening-Meinesz formulae is that Ag must be given

continuously over the entire earth. However, because the gravimetric
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deflection is often used only for interpolation, the Vening-Meinesz integration
can Be carried out over a small area (say 100 km radius) in the region
of interest to obtain incomplete gravimetric deflections. These
ircomplete gravimetric deflections (which are also uncorrected for
curvature of the plumbline, datum shift and the indirect effect)
differ from the correct ones by an almost constani amount and thus are
adequate to obtain accurate interpolated values qf deflection between
points of known astrogeodetic deflection .
The interpolation between points of known astrogeodetic
deflection can be linear [Molodenskii, et al , 1962] but this results
in a loss of information since deflections are inherently two dimensional.
The loss of information is overcome by a method develcned at the
University of New Brunswick [Merry, 1975] which uses a two dimensional
surface to interpolate between'points of known astrogeodetic deflection.
One disadvantage of the gravimetric or astrogravimetric methods is that
large amount of gravity data is required. A second disadvantage is the
computational complexity of the method. Access to a large computer

would be essential if these methods were to be used.

-4.1.4 -Topographic Method

Deflections, at a local level, are highly correlated with
topograpny; as a result Qariations in deflections in rugged terrain are
~ due almost entirely to the topography.

The formulae for the deflection components in a rectangular
coordinate system expressed as a function of adjacent masses is given

by Fischer [1974]:
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wlere
. s _ -11 3, -1_-2
K = universal gravitational constant = 6.81 x 10 mkg 's
G = mean value of gravity on the surface of the earth = 9.8 m/s2
m = mass of an adjacent unit of mass

(Ym-YA), (Xm-XA) = horizontal distance fiom the centroid of the
unit of mass to the point of interest.
Numerical integration of the formulae is required but it can
be readily seen that the effect of distant masses decreases rapidly

3 term in the denominator. When used to determine

because of the s
deflections on an atoll in the Pacific Ocean [Fischer, 1974] an
integration distance of several hundred kilometers proved to be

adequate. The assumption of a flat earth, implicit in the formulae,

was also adequate. ~ If topographic deflections were used to interpolate
between known astrogeodetic deflections, in the same way that incomplete
gravimetric deflections are used in the astrogravimetric method, a

much shorter integration distance would be satisfactory.

The serious disadvantage of this method is that the density
distribution of the earth in the vicinity of the point of interest should
be known. In very rugged terr&fn however, where the topography itself
rather than the density distribution within the topography has the
predominant effect; fhe method produces accurate results. On the Pacific
atoll referred to previously a standard deviation of the difference in
deflection (between astrogeodetic deflections and topographic deflections

based on a simple density distribution model) of 1'5 was obtained for
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23 deflections ranging from about -30" to +30". In the horizontal
control network for the 20 km Tong Simplon tunnel in Switzerland
def]ectfons were calculated by this method using only the visible
mountain masses. [Richardus, 1974].

As an illustration of the general effect of topography on
deflection consider the following example. Figure 4-1 shows hills

having slopes nf 5%, 10%, 50% and 100%; all 2 km long at the base.

Figure 4-1 General Effect of Topography on

Deflection of the Vertical
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The hills are also 2 km lang in the plane of the page and have the
same cross section from one end to the other. The material in the
hills has a uniform density of 2670 kg/m3. The detlection of a pofnt
half way up to the north side of each hill with respect to zero
deflection at a point not on the hill or a point at the tob of the
hills is 1Y5 for tha hill of 5% slope, 3V0 for the hill of 10% slope,
1474 for the hill of 50% slope and 25Y6 for the hill of 100% slope.

A1l deflections are “downhill".

4.1.5 Combined Method (Least Squares Collocation Method)

A method of this type combines heterogencus data through
least squares collocation to produce an optimal solution. By a
combined method it is possible to compensate certain disadvantages
in one type of data by advantages inherent in data of another type,
and to interpolate numerically between discrete observations

The method of Lachapelle [1975] which combines astrogeodetic
deflections, gravity anomalies and low degree geopotential coefficients
is a method of this type. The low degree geopotential coefficients
provide the general features of the geoid and define a reference
surfa&e. The finer features are provided by astrogeodetic deflections
which are accurate but widely spaced, and gravity anomalies which are
usually abundant on land but sparse in the oceans. The solution for
deflection at any point is given on the geoid with respect to a
geocentric reference ellipsoid. The sclution can be given with respect
to any nongeocentric reference ellipsoid if its datum shift parameters

are known. For a complete description of this method see Lachapelle [1975].
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The disadvantages of this method are the same as those for
the astrogravimetric method, that is data and computational requirements,

only more so.

4.1.6 Inertial Method

An inertial survey system (ISS) has two types of main sensors,
gyroscopes and accelerometers. The gyroscopes maintain the alignment
of the ISS, and from the accelerometers a change in position can be
determined by double integration of acceleration over time. This is
the basic concépt on an ISS; an actual ISS is a complex electromechanical
device with many error sources. Adams [1979] describes the local
level ISS and simulates bosition errors of. the system caused by
écce]erometer bias and gyro drift.

The primary use of an ISS has been to determine horizontal
positions between 2nd order points. Because of the sensors in an ISS,
cﬁanges in deflection of the vertical can also be measured. Figure 4-2
shows the basic concept. In this figure, ¢ is the deflection, g is the
gravity vector and y is the vector normal to the reference ellipsoid. Accuracies
of the order of 2" haQe.been }epbrted [Todd. 1978] but fhere are apparently
systematic errors due to the filtering procedure [Schwarz, 1978].

ISS's are very comp]éx and barely beyond the prototype stage
but the speed and ease with which changes in deflection can be determined

may offer advantages in certain applications. The method, if not
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equipotential surface

frame transported

Figure 4-2
Basic Ccncept of Measurement of Change

in Deflection by an ISS

already economically competitive with other methods to determine
changes in deflection, will certainly be so in the future as ISS's

become more generally available.

4.2 Astrogeodetié Difference Method

4.2.1 Description

This method to determine change in deflection of the vertical
has been developed by the author, and to his best knowledge, it has

never before been used.
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The method is based on relative rather than absolute astroncmic
observations; that is it is a difference method. Accuracies of the
order of 1" appear to be attainable using two 1" Theodolites with
automatic vertical circle compensatcrs and two-way radio communication
so that a timer can give a simultaneous read signal to both observers.
The reason that the high accuracy is attainable is that, as with other
difference methods, a difference of twn observables can be measured more
accurately than either observable itself. by differencing, the effect
of common systematic errors is eliminated. '

g=@ - ¢and n= (A - 1) cos ¢ are the expressions for the
meridian or north-south,and prime vertical or east-west deflections of
the vertical respectively, where (%, A) are astronomic latitude and
Tongitude and (¢,1) are geodetic latitude and longitude. After differ-

entiation, the expressions become

dg = do - d¢ (4-10)

and dn = (dh - dx) cos ¢ - (A - 1) sin ¢ d¢

(4-11)

fle

(dA - dx) cos ¢

For small changes in ¢ and j,d'can be replaced by a. it would also

be permissible to drop the tefm (A-1) sin ¢A¢ for determinations of

An in which a¢ were small. For example, with (A -A) = 20", ¢=45°,

A¢ = 1000" (32 kmt), the error in neglecting the second term would be only +0"1.
To determine the differences A¢ and Ax various.methods can be used. Fo

A¢ and AX  to be accurate to 0Y1, AY and AX have only to be accurate to

about 3 m and 2 m respectively at ¢ = 45°. ¢ and Ax can therefore

be determined from a large scale map, if it is available, or from any

horizontal position determination’giving a relative positional accuracy

of about 2 m.
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A% and AA in the math models for A¢ and An are determined
by simultaneous astronomic zenith angles.

-By applying spherical trigonometry to the astronomic triangle,
or equiva]ent]y,.by transforming between the horizon. and hour angle
celestial coordinate systems through the use of rotation matrices the

following expression can be obtained [Mueller, 1969]:

cos z = sin 6 sin @ + cos & ¢>s h cos @ (4-12)
where
z = zenith angle to the star
§ = declination of the star as tabulated by a star catalogue
¢ = astronomic latitude of the point of observation
h = hour angle of the star

After differentiation with respect to the observed quantities

z, ¢ and h, and simplification (see Appendix I), the expression becomes

A6 = - sec A AZ - cos & tan A Ah (4-13)

This expression is used in Mueller [1969] to show the effect of small
systemmatic errors in the measurements of zenith angle and hour angle
on the determination of astronomic latitude. When the expression is
used to determine A¢ between two points at which simultaneous
observations of zenith angle of the same star are made, then
A® = - sec A Az since Ah = 0. Further, if the star is chosen such
that A = 0, then A0 = - Az

The ideal choice of a star for the determination of A¢ in

the Northern hemisphere is obviously Polaris (a Ursae Minoris) since
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its azimuth at any time is very small. To illustrate this, consider
the choice of Polaris for the determination of A¢ at ¢ = 45°. The

azimuth of a star is maximum at elongation, and [Mueller, 1969]

= ein-] . (1=
Ae]ongation = sin”' (cos & sez @) (1-14)
For Polaris,
s = 89° 10" (1979), and
Ae]ongation =+ 1°2, sec A = 1.0002

Therefore, if.Polaris is chosen for the determination of A% at
¢ = 45°, the math model A¢ = - Az can be used in place of A = = sec A Az
with a maximum error of -8Y2 in 1000."

In order to determine AA from simultaneous astronomic zenith
angles, the expression for zenith angle, cos z = sin § sin @ + cos §
cos h cos ¢, is again used except that astronomic longitude A is

entered into the expression by making the substitution

h=A-a+T (4-15)
where

h and A were defined previously

[t}

a = right ascension of the star as tabulated by a star catalogue

T = time

After differentiation with respect to the observed quantities
z, ¢, A and T, and simplification (see Appendix I), the expression
becomes

AN = - sec & cot A A® - sec & cosec A Az - AT (4-16)
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This expression is used in Mueller [1969] to show .the effect of small
systematic errors in the measurements of astronomic latitude, zenith
angle and time on the determination of astronomic longitude. When
the expression is used to determine AN between two points at thich
simultaneous observations of zenith angle of the same star are made,
then AA= - sec @ cot A A¢ - sec & cosec A Az since AT = O.

The appropriate choice of a star for the determination of
AA is one for which A = + 90°, that is a star near east or west prime
vertical crossing, since with A = + 90°, cot A = 0, cosec A = 1 and
AN = - sec & AZ. The last expression shows only the predominant term
in the determination of AA; to avoid large errors the complete expression
must be used in which A® was determinsd previousiy, ¢ is the epproximate

astronomic latitude and [Mueller, 1969] .

-1 ,siné- cos z sin & 5
( sin z cos & ) (4-17)

A = cos
where
6§ and ¢ were defined previously
o Hty
zZ-= — + refraction correction
In the actual determination of AA, the star chosen is one
near -éast or ‘west prime vertical crossing at the time of observation.
T0>positive1y idéntify the star, the approximate azimuth, zenith angle

and time are used to compute the approximate declination § and right

ascension o of the star. From [Mueller, 1969]
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§ = sin'] (cos A sin z cos & + cos Z sin ¢)  (4-18)

A-h+UT+R; h= Cos—]‘(COsz'- sin §-sin 2,

R
1]

cosS & cos ¢
where (4-19)

§, A, 2, &, a, A, and h were defined previously

ut

universal time
h

R @ - 12
in which an = right ascension of the mean sun.

R or o are tabulated in star catalogues. With the star identified,

the tabulated value of § is used in the formula for azimuth.

The description of the determination of A¢ and AA is compiete
except for the application of the differential refraction correction.
In order to make this correction pressure and temperature are measured
at both points before and after each set of observations. The
differential refraction correction is then applied to AZ by using
refraction tables, for example these provided in Mueller [1969].

Summarizing the method of determiring change in deflection of

the vertical by the astrogeodetic difference method;

AE = A® - A (4-10 repeated)
~ where
“A¢ is determined approximately (to 0Y1) by any suitable method,

Ad (for Polaris) = - Az + diff. refr. corr.; (4-20)
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An = (AL - AX) coOs ¢ (4-11 repeated)
where
AX is determined approximately (to 0?1) by any suitable method,
Ar = - sec & cot A A® - sec & cosec A (Az + diff. refr. corr.), (4-21)
in which A? was determined previously and A is calculated
from z, @, and 8§ of the kncwn star near prime vertical
crossing.
An HP-29C program for thc determination of AA from AZ is

given in Appendix II.

4.2.2 A Priori Error Analysis

Applying the law of propagation of errors to the math model

for Ag, 2 2

_ 2
g pe O ") to AD (4-22)

If the error in A¢ is assumed- to be-small in comparisen to the error

e S 2 . 2 _
in A, then - - - - o pE I (4-23)
Applying the law of propagation of errors to A® = - AZ + differential
refraction correction, 2 2 . 2
a0 T %4z % ar o (424
where

Ar = differential refraction correction

o 2 2 2 . .
and o he = 9 Az + o, (4-25)

In the measurement of zenith angles there are three errors;
the error in reading the zenith angle in the readout system, the error
in pointing the vertical crosshairs of the instrument at the target

and the error in levelling of the vertical circle index.
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The reading, pointing and levelling errors (Gr’ % and o,

respectively) are determined by the types of instruments used to make
the simultaneous zenith angle measurements. For example, if two -
28X, 1" theodolites with automatic vertical circle compensators and

artificial Tight for the readout system were used, the errors would

be:
o = 1" (from previous experience of the author)
op = 025 (from Chrzanowski [1977])
o, = 0'3 (from Cooper [1971])

The error in the differential refraction correction (GAY)
is estimated to be of the same order as the correction itself, and
a value of 05 is used.

For each determination of Az, four measurements of zenith
angle are taken (one measurement on each face of each instrument).

If the previous values of Tps Ty @ and 9,p are used, the standard

p’ "%
deviation for each determination of Af would be
' 1/2
_ .2 2 )
GAg—(oAz+°Ar ’
1/2
_ 2 2 2 2
= [4 (Or + op + o, ) + Tpr ]

i}

[4 (12 + 0.5% + 0.3%) + 0.5271/2

= 204
Tps Ops Oy but not o,y can be reduced by /n sets, therefore
if, for example, 12 sets are taken
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2 2 2 1/2
o - [ 4 (] + 0.5 + 0.3 ) + 0.521 = 01.18
A 12

Applying the law of propagation of errors to the math model
for An,
2

_ 2 2 2 2 4-26
I + cos® ¢ o, ( )

If the error in Ax is assumed to be small in comparison to the error
in AA, then

2 2 2 4-27
S (4-27)

Assuming that AA is determined when the star is near prime vertical
crossing,
AL = sec @ ( AZ + Ar) (4-28)

Applying the law of propagation of errors to this expression,

2 2 42 2 -
"y = sec” o {0, + 0%, ) (4-29)
Substituting into the expression above fo- ozAn’
2 _ 2 2 -
S an T % az T O ar (4-30)
which is the same as the expression for °2Ag'

In the determination of Az for An however, there is a simultan-
eous timing error in addition to the other errors. This error is
negligible in the determination of A¢ because for A% a star near the
ce]estia]Apole is observed. The apparent motion of‘this gtar is very
slow. For AA a star near prime vertical crossing is chosen. The
apparent motion of a star, along its track, at prime vertical crossing

equals the rotation rate of the earth, that is 360° per 24 hours or
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15" arc per 15 time, making the star more difficult to track and to
point to at an instant of time. The vertical component of the apparent
motion of a star at prime vertical crossing is 15" cos ¢ per 13.

The simultaneous timinc error (cAt) of two observers reacting to a

read signal given by a third person is estimated to be 031. At

¢'= 45° this corresponds to an error in zenith angie of 1Y0. If the

previous values of o, o_,o, and o,, are used, the total standard

r’ p’e At
deviation for each determination of An is
) 1/2
_ 2 2
%%n - (OAZ * o)
: 1/2
_ 2 2 2 2 2
= [4 (Or + o to," to, ) + S ]

1/2
(4 (12 + 0.52 + 0.3% + 1.0%) + 0.52]

= 3V1

s Op> Tgs Opg but not O, Can be reduced by vn sets,

therefore if,for example, 12 sets are taken

£4(]2 2 2 1/2

+ ].02) + 0.52] = 1"0

+ 0.3
12

+ 0.5

oAn =

This error analysis for At and An assumes that there is no
systematic shift between the two observers and instruments making the
simultaneous observations. To check for this possibility, a set of
simultaneous zenith aﬁg]es on thé same star neaf prime vertical crossing'
should be determined for the two observers and instruments side by side.
This procedure should be performed at the beginning and at the end of

a night of observations.
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In the field work which was done (seé section 4.3) some
practice time was required to eliminate this shift. It was noticed
during these practice sessions that shifts as high as 10" could occur
when one or more of the following conditions existed:

1. parallax between the instrument crosshairs and the star,
2. vibration of the vertical circle compensator causing vibration

in the readout system because of an unstable instrument setup,
3. noor lighting of the crosshairs and readout system.
During the observations caré must be taken to eliminate these conditions:
crosshairs and star must be properly focussed, a stable instrument setup
must be made and batteries for the lighting system must be changed as

soon as the light begins to dim.

4.3' Field Tests

In order to determine whether ithe astrogeodetic difference
method was actually practical and produced results more or less consistent
with other independent determinations, field tests were carried out in
the Fredericton and Fundy Park areas.

In the Fredericton area results from the astrogeodetic
difference method were compared with results from the trigonometric
method and results provided by Dr. Lachapelle using his combined method.
Dr. Lachapelle also proQided results for the Fundy Park area and these
vere compared with results from the astrogeodetic method and the astro-

geodetic difference method.
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The astrogeodetic difference and trigonometric methods
produce surface deflections of the vertical. The results which Dr.
Lachapelle provided are geoid def]ections. Section 2.2.1 gives the
maximum curvature of the ﬁ]umb]ine between the geoid and the terrain as
3"/1000 m height above the terrain; therefore for both the Fredericton
area (H = 10 m) and Fundy Park area (H = 350m) the geoid deflections
provided by Dr. Lachapelle are essentiaily the same as the surface
deflections.

Dr. Lachapelle's results were determined from the Goddard
Earth Model (GEM) 10B potential coefficients and adjacent‘gravity ’
anomalies. No astrogeodetic deflection data was used in either the

Fredericton or Fundy Park areas.

4.3.1 Fredericton Area

Figure 4-3 shows the location of three points in the Fredericton

area ("Pillar", "Maple" and "Minto") between which changes ir deflection
of the vertical were determined.

| The Fredericton area was chosen for convenience and, in order
to utilize the terrainvto make the changes in deflection as large as
possible, the three points were located on opposite sides of the St. John
and Nashwaak River valleys. "Pillar" is the East astro pillar located -
on the roof of the Engineering Bui1ding,'Univérsity of New Brunswick..
fMap]e” is marked by an orange colored wooden Stake on a slight rise in
an opén field. fMinto“ is marked by a bra§s marker set in a.rock outcrop.

The Tine between "Pillar" and "Minto" is denoted as line 1, the line
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between "Pillar" and "Maple" as line 2 and the line between "Maple"

and "Minto" as line 3.

4.3.1.1 Use of the Trigonometric Method

The trigonometric method was used only on line 1.

The slope distance (SS) of iine 1 was measured independently
by four groups of students using microwave EDM equipment, and is
believed to be accurate to + 0.1 m.

The difference in height (aH) between "Pillar" and "Minto"
(each end of line 1) was measured by two groups of students under the
supervision of the writer. Precise levelling equipment was used and
precise Tevelling procedures were rigorously followed. The levelling
route was divided into short sections so that blunders.could be
isolated. The misclosure in each section and for the entire 1eve11ing
route was smaller than that required for special order levelling which
has an allowable misclosure of + 3 mm/vkm of levelling route [Surveys
and Mapping Branch (EMR), 1973]. The total misclosure for the entire
route was 0.00527 m. Based on 200 sightings and a standard deviation
of 0.4 mm/sighting [Chrzanowski, 1978], the standard devaition of the
height difference was estimated to be + 0.006 m. Because the forward
and backward levellings were performed on essentially the same route,
the gravity correction was negligible.

The standard deviations given for Ae, k, kAB and kBA were
determined by applying the Taw of propagation of errors to the expressions

for each of these terms. In each case, the contribution of the standard
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deviation of AH , SS and S0 was negligible in comparison to the contri--

bution to the standard deviation of z:

2 .2
o, . g% +0°. (4-31)
2 2R 2
o 2 (=) o (4-32)
Kap ~ 3ep %
2 . R 2,2 2
a2 (e=u)" (67, + o5 ) (4-33)
ko 540 i
where
02 = (standard deviation )2 or variance

The standard deviation of each zenith angle was determined from a setb
of 12 zenith angles. Each reciprocal zenith angle was measured
simultaneously (by means of two-way radio communication)and in rapid
succession.

Line 1 is far from an ideal choice of a line on which to

determine an accurate trigonometric height difference. According
to Bomford [1975] there are several unfavorable situations  for the
determination of accurate trigonometric height differences:
1. great width of river crossing,

2. low ground or water clearance,
3. asymnetry of terrain profi]é;

4. aymmmetry of ground and water,
5. clear skies,

great heat or cold,

7. absense of wind.
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Conditions 1, 3, and 4 exist for line 1, and obviously nothing could
be done to reduce their effect. Meterological effects (5, 6 and 7)
were minimized by making the observations on afternoons of windy,
cloudy days.

In an attempt to reduce the uncertainty of the determination
of change in deflection from trigonometric levelling, the vertical
temperature gradient was measured at "Minto" and at "Pillar" for the
zenith angle observations made on June 24. The vertical temperature
gradient at "Minto" was measured just before the zenith angles were
observed, and the vertical temperature gradient at "Pillar" just after.
The temperature gradient was measured by mounting three thermisters
I m apart on a levelling rod. The lowest thermister was mounted
0.1 m below the telescope. The readout‘system gavé difference in
temperature between any two of the three thermisters. The results

obtained are shown in the following table.

Location Vertical Temperature Gradient (°c/m)
AtoB B to C AtoC

Pillar - -0.306 -0.222 -0.264

Minto . -0.639 -0.133 -0.389

A 0.1 m below telescope
' B 0.9 m above telescope

C 1.9 m above telescope

Table 4-1

Vertical Temperature Gradients on line 1



81

To minimize the effect of heat from the Engineering Building, zenith
angles and vertical temperature gradients for"Pillar” were measured
close to the edge of the building.

The results were not what Had been expécted. If the averégé
value of vertical temperature gradient (A to C) is used to determine

coefficient of refraction,

from p dT
k = 602 =5 (0.0341 + ) [Angus-Leppan, 1967] (4-34)
T

where

P = atmospheric pressure in millibars

T = temperature in °K

dT _ . .o

an temperature gradient in °c/m
Koi11ar = 71-37
Kinto = "2-13

An average value of vertical temperature qradient of -0.009 °C/m had
been expected, which would have produced k values of about 0.150. The
conclusion that can be drawn is that vertical temperature gradients

in the immediate vicinity of the instrument are not representative of
the average vertical temperature gradient at one end of a line of
observation, probably because of the rapid change in g%‘and k near the
ground. - ) |

A so]ution‘to this prob]ém might have been to measure the

temperature gradient further away ffom the instrument but still along

the 1line of observation. For line 1 this was not feasible: at the
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"Pillar" end the instrument was already near the edge of a high
building, and at the "Minto" end the slope dropped off rapidly along
the Tine of observation.

Table 4-2 shows the results of a difference in trigonometric
and spirit ]evé]]ed height differences interpreted as a change in
deflection of the vertical (Approach 1) and as a difference in coefficient
of refraction at each erd of the line of observation (Approach 2).
For this particular Tine the difference in heights may have been due
just as much to one as the other, but the relative contribution of
each could not be determined because of the unsuccessful attempt to
make an independent determination of the coefficient of refraction

at each end of the line of observation.

4.3.1.2 Use of the Astrogeodetic Difference Method

The astrogeodetic difference method was used on lines 1, 2
and 3 so that the misclosure in A% and AA could be calculatad to
check for a possible systematic  error in either of these quantities.

“Pillar" was arbitrarily assigned a zero deflection of the
vertical. The values of A¢ and AX were determined by measuring
azimuths accurate to about + 10" and EDM distances accurate to about

vOL] m, and applying Puissant's formula. Astronomic coofdinates
accurate to about 0Y1 had been previously determined for "Pillar" and
these were used in the computations, but approximate astronomic
coofdinates would have been just as good.

In all the determinations of A¢ and An , values for §, o, and



Observers| Date Time Weather *S (m) *aH(m) Approach 1 Approach 2

(Zenith s » . . X
Angle) ag(") K AB BA

Leal : 30% cloud

and May 17 | 3:30 pm | cover light | 4833.0 + 0.1 41.739 + 0.006| -1.4 + 1.0} 0.136 + 0.005 0.163 * 0.0110.108 *+ 0.006
Teskey wind : :

Leal ! _ 100% cloud

and May 20 {12:30 pm | cover light | 4833.8 + 0.1]41.732 + 0.006{ -0.6+ 0.6 0.139 + 0.005| 0.150 + 0.005;0.128 + 0.004
Teskey wind

Leal 100% cloud :

and June 24| 4 pm cover , light { 4832.5 + 0.1 | 41.695 + 0.006| -0.8+ 0.7} 0.147 + 0.004| 0.162 + 0.007|0.131 + 0.004

iTeskey wind :

Approach 1:

Approach 2:

Same k at each end of the line of observation assumed.

No change in deflection of the vertical assumed.

*SS and aH different for each set of observations because “nstrument

Table 4-2

and target setups different.

Trigonometric Levelling on line 1

€8
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R for the stars observed were taken from "The Star Almanac for Land
Surveyors for the Year 1979f (SALS, 1979) [Her Majesty's Nautical
Almanac Office, 1978]. 12 sets of observations were made. Values of
Ag and An were determined twice fdr line 1 to check tHat‘time of
ebservation and star observed did not have a significant effect.

The check for the systematic shift between the two observers
and instruments was performed before and after the observations for
Ag and An on line 1. The check was performed only after the observa-
tions for Az and An on line 2 because the results from line 1 had
shown no significant systematic shift. (The systematic shifts for
both determinations of AZ and An on Tine 1 were less than 1" and the
standard deviations were about 2".) The check was not performed
after the observations for At and An on line 3 because no stars were
visible at the time due to heavy c]odd cover.

One pair of. observers (Leal and Teskey) performed the
observations on lines 1 and 2. A different pair of observers (Sujanani
and Teskey) performed the observations on line 3. This was done only
because‘Leal.was not available for the observations on line 3.

Table 4-3 summarizes the determinations of Ad¢, AA, A® and AA
in the Fredericton afea. When A% and AA were not corrected for
differential refraction, the misclosures (about 1" for a¢ and 2!5 for AA)
were about the same magnitude as the standard deviations of the mis-
closures. When A¢ and AA were corrected for differential refraction,
the misclosures (about 0'5 for aA¢ and 1'0 for AA) were about one-half

the magnitude of the standard deviations of the misclosures. These



Observers Date Line From To a¢(") ax(") A (") 2o (") an(") an(")
‘ (uncorrected) (corrected) (uncorrected) (corrected)

Leal
and June 27 2 Pillar Maple 97.2 16.2 94.9 + 1.1 94.4 + 1.1 17.3+ 1.5  16.6 + 1.5
Teskey
Sujanani 4
and July 7 3 Maple Minto -85.9 208.5 -80.9 + 0.8 -80.4 + 0.8. 205.6 + 2.1  205.5 + 2.1
Teskey & 8
Leal May 22, {-13.0 + 0.87K {-13.3 + o.a}éfzzo.s 1’1.9WK {-221.5 + 1.9%
and 23 1 Minto Pillar -11.3 -224.7
Teskey ) May 17, -13.1 + 0.7 -13.6 + 0.7) (-220.3 + 1.3} (-221.3 + 1.3
18
Sum 0.0 0.0 1.0 + 1.6 {0.7 + 1.2} [2.1+3.2) (0.6 +3.2]
0.9 + 1.5 0.4 + 1. iz.siz.gj 10.912,9;’
Table 4-3

Differences in Astronomic and Geodetic Coordinates in the Fredericton Area
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results indicate that a small systematic error may exist in the results
and that the differential refraction correction may reduce the system-
atic error. Table 4-3 also shows that the time of observation and

the star observed probably do not have a significant effect on the
detefmination of A6 and AA  Since tiie two determinations of aA¢ and

Ap on Tine 1 are the same at the lo level.

The final results, £ and n of "Maple" and "Minto" with respect
to £ = n = 0 at the pillar, are shown on Figure 4-3. The standard
deviations of the results compare well with those calculated from
an a priori error analysis. The & and n values for "Maple" are those
determined from the astronomic observations at “Pillar" and "Maple",
and the ¢ and n values for "Minto" are those determined from the
astronomic observations at "Pillar" and "Minto", that is neither
set of deflection components were adjusted for the small misclosure
around the triangla.

Figure 4-3 also shows the deflection of the vertical as a
vector. When shown this way it appears that the deflection is affected
by the topography in the general area of the station. This may be
by chance considering the magnitude of the deflection components and
their standard deviations, or it may be due to a small systematic
shift between observers and instruments during.the observations. It
may also be that the deflection components are substantially correct,

and that they exist because of the high correlation between topography

and deflection 0f the vertical. This correlation between topography and

deflection was discussed in section 4.1.4.
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Point ]Deflection Astrogeoudetic 5
Component Difference Trigonometric  “Combined.
Maple g(") -2.8 + 1.1 -0.77 + 1.4
n(") +0.4 + 1.1 -0.02 + 1.3
~ Minto g(") (+2.3 + 0.7 -0.05 + 1.4
+1.6 + 0.8
n(") 2.2+1.3) 3/1.4+1.0)  +0.38 + 1.3
-2.4%0.9] {-0.6F0.67
-0.8 ¥ 0.7
Notes: 1. Determined with respect to £ = n =0 at "Pillar".

2. Provided by Dr. Lachapelle using GEMIOB potential
ceofficients and adjaceat gravity anomalies only.

3. Determined only along line of observation which is
predominantly east and west.

Table 4-4

Deflections of the Vertical in the Fredericton Area
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4.3.1.3 Comparison of the Results

Table 4-4 shows a comparison of deflection components in the
Fredericton area.

Because the deflection componehts determined by each
independent method are roughly the same magnitude as their standard
deviations, no conclusions can be drawn regarding the correctness of
one method versus another. Certain observations concerning the
methods however, can be made. The trigonometric determination is
probably the weakest due to the effect of verticai refraction on a
line of observation near the ground. The astrogeodetic difference
determinations could easily be affected by a small systematic shift
between instruments and observers during the observations. The
resolution of the combined determinations may not be.as high as the
astronomic or trigonometric determinations because point gravity

anomalies used are an average distance of 10 km apart.

4.3.2 Fundy Park Area

' Figure 4-4 shows the Tocation of two 1st order geodetic control
points in the Fundy National Park area. Also shown on Figure 4-4 are
the deflections of the vertical (with respect to NAD 27) that were
determined for these points by the observation of astronomic latitude
and astronomic longitude. At "Alma" (station No. 14103) astronomic
coordinates were observed in 1914, 1929 and ]964. At "Church"
(station No. 641007) astronomic coordinates were observed in 1964.

The standard deviations of the deflection components are estimated to
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be + 0Y3 for both north-south components and + 0'5 for both east-
wast components [Robbins, 1977], since the standard deviation of a
North-South componeht is about the same as the standaid deviation of
astronomic latitude and the standard deviation of an east-west
component is about the same as the standard deviation of (astronomic
]ongitude) x cos (astronomic latitude). Ag by thisldetermination is

12971 with Opp = 0"3 x V2 = 04 becaus2 each deflection component was

€
determined independently. An by the same determination is 8!3 with

Opg = 0Y6 x v2 = 07, again because each deflection component was
determined independently.

In addition to the astrogeodetic determination of the
deflection components, a combined determination was provided by
Dr. Lachapelle. Ag by this determination is 11Y3 + 1!4, and an is
48 + 1V4.

Because both of ihese determinations ot deflection components
are independent of one another, it is almost certain that the differences
in deflection components, which are large in comparison with their
standard deviations, do exist between "Alma" and "Church“. The
reason for the large differencesin deflection components is due mostly
to the fact that "Alma" is located at a point where the highlands of
fhe Caledonia Hi]1§ begin to slbpe'steeply ‘toward tne Bay of Fundy.
Large differences in deflection components could have been found in

other coastal areas or in the Rocky Mountains but the close proximity

of the Fundy Park area to Fredericton made it the obvious choice.
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The fie]dlprocedures followed in the Fundy ?ark area were
essentially the same as those followed in the Fredericton area.
Geodetic coordinates of "Alma" and "Church" were provided by the
Geodetic Survey of Canada. A® and AA were each determined by 12 sets
of observations. Davidson and Teskey performed the observations.
Because the two-way radios used in the Fredericton area did not have
sufficient range, previous arrangements had‘been made for the Fundy
Park th-way radio system to be used.

Aftef the ob;ervations had been cbmpfeted, the check for a
systematic shift was performed. The magnitude of the shift (0'8) |
was again smaller than its standard deviation (+ 1Y5), and no
correction was applied to the observations. Small eccentric corrections were
applied to A% and AA because both instruments had to be set up a short
distance away from the stations in order to get a reasonable field of
view.

Table 4-5 shows a comparison of the deflection components
determined by the astrogeodetic, combined and astrogeodetic difference
methods. The agreement of the results of the three methods is
remarkably good. The results of the astrogeodetic difference method
agree more closely with those of the astrogeodetic method than the
combined method possibly because- the astronomic methods are conceptually
the same while the combined method is based on a completely different
concept.

These field results, together with those obtained in the

Fredericton area, indicate with some certainty that changes in



Point Deflection Astrogeodetic *Combined Astrogeodetic Difference Difference

Component .7 -+ Without Ar With ar (Astro - Astro Diff)

(NAD 27) Without ar With ar
Church (") +0.9 + 0.3 1.9+ 1.4 - -
n(") -4.2+0.5 -3.4+1.4 : - -

| 2

se(") “12.1+ 0.4 -11.4+2.0 1.0+ 1.3 -12.7 +1.3 - 1.1 + 0.6

an(") +8.4 + 0.7 +4.8+2.0 +8.3+ 1.8 +10.6 + 1.8  + 0.1 - 2.2
Mma  £(")  -11.2+0.3 -9.5+ 1.4 ' - -
(") +4.2 + 0.5 +1.4 + 1.4 - -

* provided by Dr. Lachapelle using GEM 10B potential coefficients and adjacent gravity
anomalies only

Table 4-5

Deflections of the Vertical in the Fundy Park Area
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deflections of the vertical can be determined by the astrogeodetic
difference method with an accuracy of 1" to 2". The weakness of
the method is the possibility of an undetected systematic shift

b.tween observers and instruments during the observations.



5 APPLICATION TO ENGINEERING SQURVEYS

In this chapter the application of the material presented
in chapters 1 to 4 will be shown. Two different engineering surveying
problems will be considered: a simulated.tunnel survey and alignment
of a straight 1ine in space. The emphasis in both problems will be

on the effect of the gravity field.

5.1 A Simulated Tunnel Survey

A tuniiel survey is-an.excellent problem to investigate when
considering high accuracy requirements in an engineering survey. The
critical problem in a tunnel survey is to minimize the breakthrough
error of headings driven from opposite ends of the tunnel. This is
difficult to do since the lateral breakthrough is determined by an open
traverse and the vertical breakthrough by an open levelling Tine.

" For short tunnels the portals are commonly -onnected on the
surface by a traverse; for longer tunnels the portals are connected by
a trigonometric network [Wassermann, 1967]. In either case the only
alternative for horizontal control in the tunnel itself is a traverse.

>For vertical control precise spirit levelling is used. The portals may
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be connected by a single precise levelling line or by a network of
such lines [Wassermann, 1967]. Vertical control in the tunnel itself
is extended by a pkeciée’]evel]ing line.

The problem that will be considered is the error which will
occur at the breakthrough of a tunnei in a mountainous area if the
effect of the gravity field is neglected. It will be
assumed that all systematic errors (other than those due to neglecting
the gravity field) have been eliminated by proper survey procedures,
and that the only errors which remain are random errors. The lateral

and vertical hreakthrough errors will be considered separately.

5.1.1 LateraT Breakthrough Error

For horizontal control various network and traverse configur-
ations have been considered. The configurations are shown on Figure
5-1. Table 5-1 show approximate plane coordinates; heights and
deflection components of each point in a local coordinate system.
For sake of convenience the X-axis has been aligned along the tunnel.
Heights of the points were estimated assuming that the
tunnel passes beneath a high mountain in a range which runs generally
north and south. Deflections were assumed to be dependent largely on
~topography and thus all deflections are "downhill". Differences
in deflection were estimated to be larger across the mountain range, that
is east-west, than along it, that is north-south. The maximum difference
in east-west deflection was estimated to be 20"; the maximum difference

in north-south deflection, 10". Both the magnitude of the deflection
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Point X(m) Y(m) Ht (m) g(") n(")
1 4000 3000 1500 0 0
2 2000 2500 2000 -5 +5
3 3000 5000 2500 +5 +5
4 7000 5500 3000 +5 -10
5 11500 5500 3250 +5 +10
6 16000 4500 2000 +5 -5
7 14000 4009 1500 J 0
8 15000 3000 2250 -5 -5
9 12000 1500 2500 -5 10
10 9000 1500 3500 -5 0
11 4500 2500 2500 -5 -5
12 5000 1500 1500 0 -2.5
13 6000 3000 1500 0 -5.0
14 7000 3000 1500 0 -2.5
15 8000 3000 1500 0 0
16 9000 3000 1500 0
17 10000 3000 1500 0 +2.5
18 10000 3000 1500 0 +2.5
19 11000 3000 1500 0 +5.0
20 12000 3000 1500 0 +5.0
21 13000 3000 1500 0 +2.5

Table 5-1

" Horizontal Control Data for Simulated Tunnel Survey
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differences and the directicn of the deflections is in general agreement
with those reported for mountainous terfain in Wassermann [1967],
Richardus [1974] and Maclean [1977]. (In a real problem deflections
could be determined by any of the methods discussed in chapter 4.
Probably the easiést and most convenient method would be the astro-
geocdetic difference method.)

Directions, angles and distances were used to determine
horizontal positions. The estimated standard deviation of each of these
observations was obtained by referring to Chrzanowski [1977],
considering that directions and angles were measured with a 1"
theodolite and distances were measured with commonly available
electro-optical EDM equigment. The estimated standard deviations
were:

directions: + 105

angles: + 240

distances: + (5 mm + 4 ppm)
No azimuths were included since the standard deviation of an azimuth
determined with a 1" theodolite is 5" to 10" [Robbins, 1976] and this
would do very little to improve the horizontal position determinations
in a small area considering the much smaller standard deviations of
directions, angles and distances. (In a real problem, a ]ow,order
azimuth would be required to approximateTy orient the Y-axis to
north so that geometric and gravimetric corrections could be applied

to the observations.)
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The random lateral breakthrough error for each,configufation
was determined by the method proposed by Chrzanowski [1978]. In
this method the random lateral break-through error (at the 1 ¢ level)
is the error in the direction perpendicular to the tunnel centerline
of the error (pedal) curve described on the standard relative error
ellipse between two points very close to the breckthrough point.
The breakthrough point must be considered as two separate points in
this method so that a relative error ellipse can be obtained.

The relative error ellipse is usually interpreted as depicting
a region which defines the relative positional accuracy of two points
whose positions were determined from observations having only random
errors. The parameters defining a relative error ellipse are a, the dimension
of its semi-major axis; b, the dimension of its semi-minor axis; and
¢, the azimuth of the semi-major axis. These parameters are determined
from the estimated variances of the set of observations for a particular
configuratibn of points, by parametric least squares preanalysis.
Parametric least squares preanalysis for horizontal geodetic
networks is described in many references, for example Krakiwsky and
Thomson [1978] and Chrzanowski [1977].

The error in any direction between two points is obtained from

_the relatiye error ellipse between the two points by [Chrzanowski, 1977]:

1/2
2 4 b2 sin? o)/ (5-1)

where 6 = clockwise angle from the semi-major axis to the desired direction

_ 2
oy = ( a“ cos

For this problem 6 = (180° - ¢) (5-2)



1/2

therefore g, = (a2 cos2 ¢ + b2 sin2 $) (5-3)

¢

The systematic lateral breakthrough error for each configur-
ation was determined by calculating errorless observations and then
adjusting these by the corrections which should have been applied for
deflections o7 the vertical. Using th» errorless observations adjusted
for the def]ectidns, the misclosure in the Y direction at the break-
through is the systematic lateral error.

The corrections applied to the directions and angles were the
o corrections described in section 3.2.1. The corrections for
directions varied from -3'0 to +4'0, and for angles from -4.2 to +6'2.

The corréct{ons applied to the distanceswere obtained by
differentiating, with respect to the zenith angle, the expression for

the reduction of slope disiance to the horizontal:

"

2 r.. sin Zss (5-4)

ij ij J

and

dlij rij €0S Zj5 dzij (5-5)

The correction for a zenith angle is [Thomson et al, 1978]

..o= (g, .+ 7. sin a. -
‘AZTJ (g] €os ag; * ny sin u]J) (5-6)

It was assumed that to obtain the highest accuracy in the reduction
of spatial distances to the mapping plane simultaneous reciprocal

zenith angles were observed, therefore Azij for a given distance



101

would be the sum of Azij's at eachendof the line. The corrections for
distances varied from -0.033m to +0.090 m.

Several. things can be noticed aboutvthe<corrections to the
observations: .

1. There are no corrections to the observations for the underground
traverse since it is horizontal.

2. The corrections to directions and angles are proportional to tha
component of the deflection perpendicular to the line(s) and the
sTope of the line(s); the corrections to distances are proportional
to the sum of the components along the line at each end of the line,
and the slope of the line.

3. Because of the orientation of the deflection components, the
corrections for distances are largest for steep lines running
generally east and west or north and south; the corrections for
directions are largest for lines running generally northeast and
southwest or northwest and. southeast.

4. The corrections in most cases are within the 20 Tevel and appear
to be random.

Calculation of the misclosures at the breakthrough was done
by parametric least squares adjustment which is just an extention of
parametric least squares preanalysis. In preanalysis of horizontal
geodetic networks variances of observations yield variances and
covariances of coordinates. In adjustment of horizontal geodetic
networks observations with variances yield adjusted coordinates with

variances and covariances. Any reference which describes preanalysis
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of horizontal geodetic networks, such as those referred to previously,
would also describe adjustment.

_-To perform the calculations for the random and systematic
ateral breakthrough errors the program GEOPAN (Geodetic Plane
Adjustment and Analysis) [Steeves, 1978] was used. With the program
used in the adjustment mode only one run was required for each part-
icular configuration and set of observatiors since the adjusted
coordinates of the two points at the breakthrough provide the
systematic error,and the relative error ellipse between the two points
at the breakthrough, calculated from the variances of and the covariances
between these points, provides the random error.

Table 5-2 shows the random and systematic lateral break-
- through errors associated with each configuration connecting the
portals. The random error is about 0.120 m (1 o) for all configurations,
and is little affected by the degrees of freadom. In frct, the Towest
random error is a combination of two traverses having only three
degrees of freedom. The systematic error due to neglecting the
gravity field,on the other hand, can be reduced to less than the 1 ¢
random error by only a few degrees of freedom. With zero degrees
of freedom or a unique determination (al1l the single traverses)
the ‘systematic error can be ]a%ger than the 26 random error -

unquestionably large enough that it should be eliminated.

5.1.2 Vertical Breakthrough Error

The random vertical breakthrough error and systematic



: Observations Minimum Constraints Degrees of ‘Lateral Error (m)
Configuration between Point Azimuth Freedom Random . *Systematic
Portals

1 all 5 5-4 3 + 0.126 -0.079
distances :

2 all 5 5-4 16 + 0.125 +0.059
directions
with
2 distances

3 all distances 5 5-4 36 + 0.114 +0.001
and directions

4 south side
traverse 10 10-11 0 + 0.122 -0.093

5 north side 5 5-4 0 + 0.144 +0.210
traverse : .

6 south and 5 5-4 3 + 0.107 +0.076
North side
traverses

7 zig-zag 10 10-4 0 +0.129  -0.293
traverse :

* + indicates heading from €ast is to the north of heading from West at breakthrough

Table 5-2
Lateral Breakthrough Errors of Simulated Tunnel Suvvey

€olL
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vertical breakthrough error will be discussed separately. For both
the random and systematic errors it will be assumed that a single
precise levelling line is used.

| The esfimate for the random vertical breakthrough error,
based on a standard deviation of 0.4 mm/sighting [Chrzanowski, 1973]
and an average sighting distance of 25 m, is + 0.00283 m/vkm of
levelling roite. Considering the rugoed terrain, the length of the
levelling route would be several times .longer than the straight 1line
distance. With the levelling route 50 km long the random vertical
breakthrough error would be + 0.020 m.

The systematic vertical breakthrough error was estimated by
using estimated values of gravity along the route 17-1-3-4-5-6-7-17
shown in Figure 5-1. Heights of these points are shown in Table 5-1
although in an actual levelling line thr height of the 1-3-4-5-6-7
portion of the Tine would be at a slightly lower elevation. The
length of each levelling section with a gravity correétion varied
from about 2 km to 6 km,since according to Ramsayer [Heiskanen and
Moritz, 1967] gravity values 5 km apart are sufficient in mountainous
areas.

Values of gravity along the 1-3-4-5-6-7 portion of the line
were estimated-using the Bouguer vertical gradient cf gravity
(2 -0.2 mgal/m height) since this gradient is the best estimate for
the surface of the earth [Vanicek and Krakiwsky, in prep]. Along this
same portion of the line the values of gravity were also adjusted

for the effect of the mountainous terrain. This effect was assumed
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to vary uniformly from - 50 mgal at H = 1500 m to -100 mgal at H = 3500 m.
This estimate of the effect of the terrain was obtained by referring
to Vanicek and Krakiwsky [in prep. ]. 1In the tunnel (sections 17-1
and 7-17) values of gravity were estimated using the Poincarc-Prey
vertical gradient of gravity (= -0.1 mgal/m height) from the surface
downward to the level of the tunncl. The Pdincare-Prey vertical
gradient of gravity is the average value of the gradient in the
surface layer of the earth [Vanicek and Krakiwsky, in prep]. As a
starting point for the caiculation of gravity values along the route,
the gravity values at the points land 7 were estimated to be 981 000
mgal.

A second set of gravity values was also calculated assuming
a gradient of the refined Bouguer anomaly (the Bouguer anomaly corrected
for the terrain effect) of about 20 mgal/10 km distance caused by a
mass anomely. This value of the gradient of the refined Bouguer
anomaly is believed to be a reasonable estimate of its maximum value.
The maximum value of the gradient was assumed to be parallel to the
tunnel centerline so that is had its largest effect.

For sake of simplicity the gravity corrections for a dynamic
height system are calculated. In this system the gravity correction

to a height difference is

g.i'G '
oF G éLi (5-7)
where
g; = average value of gravity in a levelling section
G = arbitrarily chosen reference gravity for an area
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éLi = change in height in a levellirg section
Since the levelling line 17-1-3-4-5-6-7-17 is a closed loop the
Qravity corrections represent the systematic vertical breakthrouéh error.

Table 5-3 summarizes the vertical control data for this
simulated tunnel survey. Using this data and formula (5-7) with
G = 980 500 mgal the systematic vertical breakthrougl: error is -0.00382
m without the mass anowaly and +0.0629 m with the mass anomaly. The
positive sign indicates that the heading from the east is below the
heading from the west at the breakthrough.

The very small systematic vertical breakthrough error for no
mass anomaly is to be expected since the gravity corrections up the
mountain will almqst completely cancel those down the mountain. There
is no gravity correction in the tunnel since GLT = 0. The systematic
vertical breakthrough error with the mass anomaly is several times
the random vertical breakthrough error but it may be unrealistically
high because the value used for the gradient of the Bouguer anomaly

is unrealistically high.

5.1.3 The Effect of Neglecting the Gravity Field

Based on the results of this simulated tunnel survey and the
results of actual tunnel surveys in rugged terrain [Wassermann, 1967;
Richardus,1974; Maclean, 1977] the fo]]pwing conclusions have been
réached regarding the effect of neglecting the gravity field:
1. Because change§ in deflection may be largely determined by topography,

these changes will generally be largest parallel to rather than
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- Section sLi(m) gavg without anomaly gavg with anomaly
(mgal) (mgat)
17-1 0 980810 980816
1-3 1000 980835 980833
3-4 /500 980665 980867
4-5 250 980580 980590
5-6 -1250 980695 980715
6-7 -500 980895 980917
7-17 0 980605 980820
Table 5-3

Vertical Control Data for Simulated Tunnel Survey
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perpendicular to the tunnel. These large deflection differences.

will most affect distances parallel to the tunnel and directions
perpendicular to the tunnel, both of which have little effect on the
lateral breakthiough error. Thus, if changes in deflection are
determined mainly by topography, by the nature of

direction and distance observations for horizontal control of a
tunnel, the effect of the gravity field is minimized. If however,
changes in deflection are determined by mass annmalies near. the
surface of the earth, this argument is no longer valid.

2. For the simulated tunnel survey which had deflections estimated

on the basis of topography only, the systematic lateral error due to
neglecting the gravity field was reduced to Tess than the lo random
error by simply increasing the degrees of freedom. Further simulations
would have to be carried out to determine if the same would be true
for deflections dhe to a mass anomaly near the surface of the earth.
3. The effeﬁt of the gravity field on the lateral breakthrough error
might be safely neglected but this can only be determined by analyzing
the specific problem. Good estimates of deflection components at

main points in the horizontal control network would be necessary for
this analysis.

4. The effect of the gravity field on the vertical breakthrough error
might also be safely neglected. Again, this can only be determined by
analyzing the specific problem. For this analysis gravity values at

a spacing of about 5 km would be adequate. These could be estimated

from a detailed gravity anomaly map of the area, if it is available,
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or obuained by actual graviiy measurements in the field. Field

gravity measurements are easily made with a portable gravimeter.

5.2 Alignment of a Straight Line in Space

This is a very specialized engineering surveying prablem
which illustrates well several points:

1. the advantages of using a local coordinate system,

2. the advantage of using the astrogeodetic difference method rather
than the astrogeodetic method to determine deflections of the
vertical,

3. the significant effect of deflection of the vertical.

Discussion of this problem will be based on Preiss [1971]
which describes the alignment in spacc of a 5 km radio telescope
aerial array for the Cavendish Laboratory, Cambridge. An accurate
alignment was required because the performance of the telescope is
dependent on how éccurate]y the intersection of the polar and
declination axes of eight dish aerié]s fits a straight line in space.
The end result of the alignment survey were three orthogonal
corrections to a preliminary reference line defined by stable ground
marks. |

The corrections to the ground marks in fhe direction parallel
to the line of ground marks were determined by measurements with a
Mekometer, the most accurate short range EDM instrument available.
The corrections to ground marks in the horizontal direction perpendicular
to Tine of ground marks were determined by the usual optical

alignment method except that the best available equipment was used
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(a 100X Fennel a]ignméht teiescope mounted on a massive concrete
pillar and targets specially designed for the long distances), and

a large number of observations were made with experienced personnel.
The corrections to the ground marks in the vertica! direction were
made by combining the results of precise spirit levelling along the
line of ground marks and determinations of deflection of the vertical,
by the astrogeodetic method, at four of the ground marks.

The alignment parallel to the line of ground marks and the
alignment in the horizontal direction perpendicular to the line of
ground marks will not be discussed further. Only the alignment in
the vertical direction will be examined in more detail since the
alignment in this direction is most affected by the shape of the
earth and the variations in its gravity field. The method used for
the Cambridge radio telescope will be briefly described and suggestions
will be given as to how the same or better accuracy might have been
attained in a much shorter time.

Basiba]]y, the problem of determining corrections to the
ground marks in the vertical direction consists of locating, along
the 1ine of ground marks, the equipotential surface passing through
an arbitrarily chosen ground mark by precise spirit levelling; and
then determining the shape of the equipotential surface, with respect
to the ellipsoid surface, along this line by deflections of the
vertical.. When this has been done corrections can easily be

calculated.
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Figure 5-2 shows the correction applied along the vertical
at one ground mark to obtain a straight 1ine in space. The corrections
along the vertical at all other ground marks would be obtained in a
similar manner. The straight line in space in this egémple is the
straight line, in the tangent plane to the equipotential surface at

A, along the 1ine of ground marks. The terms in Figure 5-2 are defined

as follows:
AHAB = precise levelled height difference between points A and B
AhAB = height difference between tangent plane to equipotential
surface at point A, and at point B, measured along the
vertical at point B
2
S
= ~ (5-8)
ANAB = change in separation between ellipsoid and equipotential
surface from point A to point B
€. S
- A82 AB (5-9)

Consider a typical example:

AHpg = 0.3129m
SZAB 20003
Bhyg = RS = = 0.3146 m
2 x 6375 x 10
Ao S
W AB2 AB

- g'i ;0%%%%; (AgAB at Cambridge was about 0'2 in 2 km)

0.0010 m

i
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and correction

Ah + AN - AH

+ 0.0027 m
To determine corrections to the ground marks in the vertical
direction for the Cambridge radio telescope geodetic levelling was
first parformed along the line of ground marks. The national geodetic
network in the area of the project was then reobserved, with
connections to the ground marks, and readjusted to obtain geodetic
coordinates for the ground marks. 1st order astronomic observations
for latitude -and Tongitude were observed at four of the ground marks.
Combining the results of the astrénomic and geodetic position
determinations, deflections of the vertical were obtained.

Much of thfs work was not necessary. If a local geodetic
coordinate system such as that described in chapter 4 for the deter-
mination of changes of deflection in the Fredericton area hei been
used, all of the work associated with the determination of geodetic
coordinates could have been reduced to a single determination of
second order astronomic azimuth (o = 5") and a few distances accurate
to about 0.1 m.(A ist order azimuth of the line was required however
for other purposes.)

Field and compdtation work could have been further reduced by
using the astriogeodetic difference method rather than the usual astro-
geodetic method to determine deflections. Standard deviations of
deflection changes for the astrogeodetic difference method quoted in

chapter 4 could be substantially reduced by using two 1st order
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instruments (for example two- Wild T-4fs), each with an impersonal
micrometer and a chronocord. The tracking record from each instrument
with simultaneous timing marks would provide a very accurate
measure of difference in zenith angle from which a diffecrence in
deflection is ca]cu]éted.( To ensure the highest accuracy a correction
for the systematic shift between the two observers and instruments
would be applied. Standard deviations of about 0Y1 were quoted for
the astronomic latitude and longitude determinations’for the Cambridge
radio telescope. If the same equipment and observers were used to
determine.AQ and AA, the standard deviation could be 0Y1 x v2 = 0'14
or better with much less observation time.

The alignment of a straight line in space for the Cambridge
radio telescope was performed by considering the aligninent in the
horizontal and vertical separately. For this particulr problem iﬁ
might have been more appropriate to use a three-dimensional geodetic
model. A three-dimensional geodetic model was used for a similar
a]ignment of a series of baselines connected to thé National
Aeronautics and Space Administration/aet Propulsion Laboratory
(HASA/JPL) MARS Deep Sapce Station located at the Goldstone Deep

Space Communication Complex in California [Carter and Pettey, 1978].



6. CONCLUSIONS AND RECOMMENDATIONS

Many of today's engineering surveys require relative posi-
tional accuracies in the order of 1/100 000 or better. Advances in
survey instrumentation and development of a methodology to eliminate
systematic errors from the survey observations themselves has generally
kept pace with the demand for higher and higher accuracfes. However,
in order to obtain the full benefit of these higher measuring
accuracies and actually attain the high relative positional accuracies,
a rigorous geodetic approach has to be followed.

Against this background the followirg recommendations are
made for engineering surveys requiring high accuracy:

1. A local coordinate system should be used to avoid bropagating errors
from other coordinate syétems. The local system could be tied to an
integrated survey system if required but the observations used to make
the tie would not be used for position determinations in the local
system. A disadvantage of this ‘approach’is that coordinates (and their
accuracies) from another coordinate system could not be utilized without
a transformation. The advantages of a local coordinate system are well
illustrated by the two problems considered in chapter 5, especially by

- the method used for the vertical component of the alignment of a
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straight line in space.

2. The local coordinate system should be based on the classical geodetic
model. This involves the separation of horizontal anq vertical posi-
tioning but allows relative positional accuracv in the height component

‘to be determined with about the same accuracy as relative positional
accuracy of the horizontal components. Because of variations in the
gravity field and the uncertainty associated with vertical refraction

the relative positional accuracy in the height component of a three-
dimensionai coordinate system determined only by trigonometric measurements
is at least one order of magnitude greater than the relative positional

accuracy of the horizontal components.

3. Gravity corrections may have to be applied to precise levelling
]1nes in engineering surveys requiring high accuracy. The error due
to not making this correction can be estimated by using a detailed
gravity anomalv map or by making small number of gravity measurements.
If gravity corrections are required, gravity values can easily be
measured with a portable gravimeter.

4. Horizontal position observations should be rigorously reduced to a
mapping plane. In certain applications some of the reduction corrections
can be omitted without adversely affecting the relative horizontal
positional accuracy,-but this should first be shown by analysis of the
particular problem. This is especially true of the gravimetric reduc-
tion correction which is often omitted only because it is difficult to
determine.

In this thesis special emphasis was placed on methods to
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determine deflection of the vertical. It was felt that a contribution
could be made if a simple method could be developed to determine
deflections in the small area covered by an engineering survey.
Application of a difference method tc the usual astrogeodetic deflection
determination proved to be completely successful. Deflection changes
accurate to 1" to 2" were determined on five different nights and in
two different locations using only twé 1" theodolites and two-way
radio cohmunication. Attempts to use trigonometric levelling to
determine deflection changes led to inconclusive results because of
the uncertainty associated with vertical refraction.

Concerning the astrogeodetic difference method to determine
deflections, the following recommendations are made:
1. The method should be tested with more sets of observers to learn
more about the systematic shift between instruments and observers,
since this is the only real weakness of the method.
2. The method should be tested with 1st order astronomic equipment to
determine the saving in time over the astrogeodetic method. This
could be an important application since geodetic astronomy still
provides the most accurate deflection determinations [Robbins, 1977].
3. In a three-dimensional coordinate system unknowh deflection
components have a large effect on height determinations. The astro-
geodetic difference method could be used to provide these components
(in the form of a priori astronomic latitudes and longitudes) and
reduce the standard deviations of the heights.

4. Variations in the local gravity field have a large effect on ISS
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position determinations. This is an area in which more research is
required [Adams, 1979]. A possible* application of the astrogeodetic
difference method is the definition of the local gravity field so
that this information can be provided a priori, although an iater-
polatior method such és the astrogravimetric method would probably

be more useful since by this methoa the gravity field can be

determined at any point.
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Derivation of A¢ = - sec AAz - cos & tan Aah

A1l the terms given in the deviation are defined in section 4.7.
From the astronomic triangle, or equivalently, by transforming

between the horizon and hour angle celestial coordinate systems

cos z = sin & sin & + cos § cos h cos ¢ (1-1)

Differentiating with respect to the abserved quantities z, ¢ and h

- sin zdz = (sin 6 cos & - cos § cos h sin @) dé

- coSs & cos § sin hdh

or after replacing d with A and rearranging the terms

_ sin z
e sin 8§ cos & - cos & cos h sin ¢ Az

cos & cos § sin h
Ah (1-2)

¥ sin § cos ¢ - cos & cos h sin ¢
Applying the five consecutive parts rule to the astronomic triangle

cos (90°-8) sin (90°-¢) - cos (90°-¢) sin (90° -§) cos (360°-h)

cos A sin z

sin 6 cos ¢ - sin @ cos & cos h (1-3)
Applying the sine law to the astronomic triangle

sin h _ -sin A - =-sin A (1-4)
sin z  sin (90° -§) cos §
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Substituting cos A sin z for (sin 6 cos ¢ - sin & cos § cos h) from

(1-3) and - 51%6§_§in_z_ for sin h from (I-4) into (I-2), and

simplifying yields

A® = - sec A Az - cos @ tan A Ah (1-5)

Derivation of AA = - sec & cot A A® - sec & cosec A Az + AT

A11 the terms given in the derivation are defined in Section
4.7.
From the astronomic triangle, or equivalently, by transforming

between the horizon and hour angle coordinate systems

A =ath-T (1-6)

Differentiating with respect to the observed quantities A, hand T

dir = dh - dT (1-7)

Replacing d with A and substituting (aA"+ &T) for h from (I-7) into

+(I-5) and simplifying yields

AL = -.sec & cot A A9 - sec & cosec A Az + AT (1-8)
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HP-29C Program for AA

The appropriate formula, in whch all terms are defined in

section 4.7, is

oA = - sec & cot A A® - sec & csc A Az
where
21 s _ .
A= cos| (&in § - cos z sin ¢
sin z cos ¢
and z] + z,
zZ = 5 + refraction correction

e (° "), &(°"' "), ane(") and the refraction correction
(") are stored as shown in the program listing.
The step by step program listing follows.

*—enter Z("), Z_l(o ] u)’ 22(0 1 u)

[1] LBL1 [21] RCL4 (s) [41] RCL6

(2] -H [22] sin [42] x

[3] STO5-. 23] + [43] CHS

(4] R+ _ [24] RCLO [44] RCL7 (a¢)
[5] -H [25] -cos [45] RCL8

(6] RCL5: A [26] RCLS [46] tan

) + [27] sin [47] 1/x

(8] 2 [28] x - (48] x

[9] = [29] = [49] RCLO

[10] RCL9. (refr. corr.) [30] cos™! [50] cos

[11] + [31] CHS O [51] 1/x

[12] STC5 [32] 360 7 for WPVC only [52] x

[13] R+ _ [33] + - [53] CHS

(14] sST06. - [34] STO08 : [54] + -
[15] RCLO (@) [35] sin [55] RTN - displays aA
[16] sin [36] 1/x

[17] RCL5 [37] RCLO

[18] cos [38] cos

[19] x [39] 1/x

[20] cHs [40]
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