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ABSTRACT 

The availability of relatively inexpensive and powerful 

computer graphics terminals has inspired their application to hori­

zontal survey network design. This thesis develops the naturally 

applicable sequential adjustment model for horizontal network design. 

The mathematical models for network observables, statistical consid­

erations for error ellipse computation, and a comparison of directions 

and angles from the network design viewpoint are presented. An example 

using program NETDESIGN, which was developed to test the feasibility 

of interactive network design, is outlined. Examples using most of the 

ma t"hema tical models developed herein are given in the Appendices. 

The interactive design of horizontal networks is concluded to be an indis­

pensible tool for surveying engineers, and it is recommended that it 

be fully developed and utilized. 
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1. INTRODUCTION 

1.1 Background and Motivation 

The design of horizontal networks in the past has been done 

mainly by batch methods. The main drawback to these procedures is 

that the results of a design are not immediately available. If the 

desired accuracy is not attained, then a new design is prepared and 

th~ batch program is executed again. The lack of continuity in this 

design process is the basic stumbling block for its effectual use. 

The motivation for this thesis stems from the lack of 

dynamic interaction in network design. The advent of computer graphics 

terminals, which can plot diagrams very rapidly, has made the dynamic 

interactive design procedure possible. Besides being used solely for 

network design, this process can adapt itself readily to the task of 

maintenance of survey methods, i.e. the design of replacement procedures 

for destroyed monuments. 

1 
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1. 2 Hethodology 

The rigorous design of survey networks originates from the 

theory of least squares adjustment. From sources such as Mikhail 

[1976] or Krakiwsky [1975], the variance covariance matrix (accuracy 

estimate) of the parameters - specifically the coordinates of points 

in a survey network - is known to be 

(1-1) 

where A = design matrix for the network evaluated at the approximate 

0 values of the parameters X , 

CL = variance covariance matrix of the observations. 

If some of the parameters have already been determined to a certain 

accuracy, and it is desired to include these existing accuracy estimates 

in the present adjustment, then these so-called weighted parameters 

can be considered to have observation equations 

with the corresponding variance-covariance matrix of these observations 

L being the accuracy estimates of the weighted parameters. This 
X 

then changes the CL matrix in equation (1-1) to 

and the design matrix to 
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Thus, the variance covariance matrix of the parameters is 

, 

or, realizing that e~1 = Px (i.e. inverse of the variance-covariance 
X 

matrix equals the weight matrix, which is the normal equations matrix per-

taining to the weighted parameters) 
e = [ATe-l A+ P ]-l 

X L X 
(1-2) 

The above exercise also indicates why the degrees of freedom of a 

network with weighted parameters is computed as 

df = r - u + u 
X 

where df = degrees of freedom, 

r = number of equations, 

u = total number of parameters, 

ux = number of weighted parameters. 

(1-3) 

From equation (1-2) it is apparent that the accuracy estimate 

of the parameters ex can be computed without making any actual obser­

vations. ·The A matrix is constructed knmiing the approximate coordinates 

of the unknown points X0 along with some proposed observations (observables) 

among them. e1 is also part of the a priori knowledge of an adjustment; 

it simply represents the accuracies of the proposed observations. 

Finally, Px is known from some previous accuracy estimate of the 

parameters. The computation of ex based on this a priori knowledge is 

the essence of network design. 
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The nature of the design process (i.e. changing and 

rearranging the proposed observations, their weights and the network 

geometry until the desired C is achieved) points to the use of some 
X 

sort of step by step procedure which utilizes the already existing C • 
X 

Any changes in the design are treated as additional information to 

be added to (or deleted from) the design as it existed in the previous 

step. Methods which perform this task for adjustments are known as 

sequentialadjustment techniques, and they are readily adapted to net-

work design. 

Sequential adjustment techniques such as Kalman filtering, 

Bayes filtering, Tienstra phase, summation of normal equations, 

sequential, and phase all possess the capability of utilizing previous 

computations (notably the matrix inverse) to compute C for the present 
X 

step. From the comparisons made amongst these techniques in Krakiwsky 

[1975], the sequential and Tienstra phase methods are shown to be compu-

tationally efficient when the number of new observables added is less 

than the total number of parameters. This is usually the case when 

dealing with network design as the number of observables added (deleted) 

when refining a design is usually much less than the total number of 

parameters in the network. Even if this is not the case, the observables 

can be further broken down into smaller sets such that this argument is 

still valid (see Chapter 3). Neither Kalman or Bayes filtering are 

considered as they are concerned with time varying parameters, which 

is not the case for network points in the scope of this work. 

Because both the phase and summation of normal equations methods 
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require an inversion of a matrix the size of the number of parameters 

(instead of the number of new observables), it is the sequential or 

Tienstra phase method which is used as the basic mathematical model 

for the network design procedure. 



2. THE SEQUENTIAL ADJUSTMENT 

The notion of computing an adjustment in steps or phases 

was introduced by Tienstra [1956]. Schmid and Schmid [1965] 

extended the sequential adjustment procedure into a generalised 

notation. Other authors [e.g. Krakiwsky, 1968; Kouba, 1970] have 

expanded the basic sequential model to include different types of 

observables and parameters. A synthesis of least squares methods 

done by Krakiwsky [1975] includes comparisons amongst the various 

step by step procedures mentioned in Chapter 1. 

2.1 Original Model 

The original sequential model (e.g. Schmid and Schmid [1965]) 

has the following form: 

F1 (X, 11) = 0 

F2 (X, 1 2) = 0 

(2-1) 

(2-2) 

where F1 is the original mathematical model relating some parameters 

X and observations 11 , and F2 is the new or additional model used to 

link the new observations 12 to the solution for the parameters X. 

The observations 11 and 12 are considered to be independent, and have 

6 
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weight matrices P1 and P2 , respectively. The parameters X have the 

weight matrix Px (see section 1.2). Although the original model is 

well known, its derivation is reviewed here to set the foundation 

for the notation and methods which are employed in other sections 

of this chapter. 

The linearization of equations (2-1) and (2-2) by means of 

a linear Taylor series expansion gives 

where 

v1 , V2 = residuals corresponding to L1 , L2 , 

(n1 , l)(n2, 1) 

Wl = Fl (Xo, Ll) , 
(r1 , 1) 

W2 = F2 (Xo, L2) 
(r2 , 1) 

(2-3) 

(2-4) 
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The above elements of equations (2-3) and (2-4) are matrices of 

dimension as indicated in brackets 

dimensions are defined as 

rl = number of equations in 

u = number of parameters, 

nl = number of observations 

r2 = number of equations in 

n2 = number of observations 

The variation function 

$ = [V~ v;xT] P1 o 

0 p2 0 

0 0 p 

beneath them. The row and column 

Fl' 

in F1 , 

Fz, 

in F2• 

[[~] X+ [:1 ~J [::] + [:j] 
(2-5) 

where K1 and K2 are the vectors of Lagrange correlates, is the 

function to be minimized. The differentiation of equation (2-5) 

for the least squares minimum condition yields 

11._ = T T 
= a, T T 

0 av1 
2V1P1 + 2K1B1 or VlPl + KlBl .= (2-6) 

11_ = T T 0 av2 V2P2 + K2B2 (2-7) 

11 XTP + K~~ T 
= 0 = + K2A2 ax X 

(2-8) 

The transpose of the above three equations plus the constraint equations 

(2-3) and (2-4) make up the least squares normal equations system. In 

its most expanded form, it is 
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pl 0 BT 
1 

0 0 vl 0 

0 P2 0 BT 
2 0 vz 0 

Bl 0 0 0 Al Kl + wl = 0. (2-9) 

0 B2 0 0 Az Kz w2 

0 0 ~ AT p X 0 2 X 

The next steps in the derivation are devoted to finding a 

solution for X based on the information contained in equation (2-9). 

To find a solution for X, the unknowns v1 , v2 , K1 and Kz 
are eliminated algebraically by using the following technique [e.g. 

Thompson, 1969]. Given a matrix equation system 

[: :] [:] + 0 ' (2-10) 

then the Z vector is eliminated by forming the following system: 

(2-11) 

where A must be non-singular. 

This technique is first applied to equation (2-9) to eliminate 

Vl; i.e. 

P2 0 BT 0 0 p-1[0 BT 0 0] vz 0 0 
-1 

0 2 1 1 pl 

0 0 0 Ar - B 1 Kl + wl - Bl = o. 

Bz 0 0 A2 0 K2 w2 0 

0 AT AT p 0 X 0 0 (2-12) 1 2 X 

J 
Equation (2-12) reduces to 
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p2 0 BT 
2 0 v2 0 

0 
-1 T 

0 -BlPl Bl Al Kl + wl = 0. (2-13) 

B2 0 0 ~ K2 w2 

0 AT AT p X 0 1 2 X 

The same technique is again applied to equation (2-13) to 

eliminate v2 and give 

-~T 
-BlPl 1 0 Al Kl wl 

0 -~T 
-B2P2 2 A2 K2 + w2 0. (2-14) 

AT ~ p X 0 
1 X 

leave 

(2-15) 

Finally, after elininating K2 , the expression for X is 

(2-16) 

If all of the matrices referring to the F2 model are 

omitted, equation (2-16) reverts to the usual least squares expression 

for the parameters, i.e. 

(2-17) 

It is readily seen from equation (2-16) that the normal equations matrix 

(the coefficient matrix of X) is updated by adding the normal equations 

T -1 resulting from F2 (i.e. A2N2 A2). The same holds for the constant 
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T -1 vector A2 M2 w2. It is clear that if the information in F2 was to 

be subtracted, then the matrix terms resulting from F2 would be sub­

tracted instead of being added. This leads to the expression 

(2-18) 

T -1 T -1 __ 
where (A1 M1 ~ + Px) has been replaced by N1 and AI M1-w1 by u1 • 

It now remains to form the sequential expression for equation 

(2-18). Equation (2-18) is the summation of normal equations approach, 

and it is clear that the entire normal equations would have to be 

inverted each time new information is added. This is a costly process, 

and the sequential expressions below bypass this large inversion. 

The first step in deriving the sequential expressions is the 

expansion of equation (2-18), which gives 

T -1 -1 T -1 -1 T -~ X= -[Nl + A2M2 A2] u1 + [N1 ± A2M2 A2] A2M2-w2 (2-19) 

where the top signs refer to the addition, and the bottom signs the 

deletion of the information from F2 • Two matrix identity equations [e.g. 

Morrison, 1969; Mikhail, 1976] are now introduced which make the 

sequential expressions readily apparent. They are 

[S-l ± TTR-lT]-l = S + STT [R + TSTT]-lTS , 

and 

(2-20) 

(2-21) 

where it is assumed that the matrices are conformable for multiplication, 

and that the required inverses exist. The application of equation (2-20) 

to the first part of equation (2-19) gives 
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(2-22) 

Equation (2-21) is applied to the second part of equation (2-19) to 

give 

(2-23) 

Substituting equations (2-22) and (2-23) back into equation (2-19) 

leads to 

-1 
Realizing that -N1 U1 is the solution for the parameters X' resulting 

from the F1 model, the final sequential expression for the parameters 

is 

(2-25) 

or, 

(2-26) 

Equation (2-26) is the final sequential expression for the 

parameters X. It is evident that only one inversion of· the size of 

the number of new observations 12 is required. As has already been 

stated i~ section 1.2, the number of new observations is. usually much 

smaller than the number of parameters, and thus equation (2-26) requires 

less computations than equation (2-18). 

From e.g. Mikhail [1976], it is known that the variance 

covariance matrix of the parameters is given by 
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-1 C = N , (2-27) 
X 

where N is the normal equations matrix for the parameters X. Applying 

this result to equation (2-18) (or, equivalently, equation (2-22)) it 

is seen that 

(2-28) 

This equation is the basic mathematical model for horizontal network 

design. 

In this section, the basic and rather simple sequential 

adjustment expressio~where there are no eliminated nuisance parameters 

or common nuisance parameters between step~has been derived. In the 

following sections, the models for more complex situations are developed. 

2.2 Addition (Deletion) of Parameters 

The addition or deletion of parameters to a solution is very 

useful, especially at the network design stage where n~w unknown 

points can be added or subtracted to optimise the design. This 

situation is characterized by the following two models: 

(2-29) 

(2-30) 

The first model is exactly the same as that in section 2.1 (cf. eq. 

(2-1)), but F2 now contains new parameters x2• 

Linearization of equations (2-29) and (2-30) leads to 
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(2-31) 

3F2 
and Az 

3F2 
After setting up the variation function where A21 = ax =-- . 

1 ax2 
and taking the partials derivatives of it» as done for the original 

model in section 2.1» the system of normal equations becomes 

pl 0 
T 0 0 0 vl 0 Bl 

0 p2 0 BT 
2 0 0 v2 0 

Bl 0 0 0 Al 0 Kl + wl = 0 • (2-32) 

0 B2 0 0 A21 Az K2 w2 

0 0 ~ A 'f. p 0 ~ 0 21 xl 
0 0 0 AT 0 p x2 0 2 x2 

Again, the observations L1 and L2 are assumed to be uncorrelated, and 

the parameters xl and x2 both have weight matrices p and p ' 
xl x2 

respectively. The algebraic elimination equations (2-10) and (2-11) 

are again employed here to algebraically eliminate all but the desired 

parameters. After v1 and v2 have been eliminated» the expression 

remains as 

-M 1 
0 Al 0 Kl wl 

0 -M 2 A21 A2 K2 + w2 = 0. (2-33) 

AT T p 0 xl 0 1 A21 xl 
0 AT 0 p x2 0 2 x2 

where M1 
-1 T and M2 

-1 T Elimination of K1 leaves B1P1 B1 = B2P2 B2. 
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-M 2 A21 A2 K2 w2 

T T -1 + p 0 + T ~ . o. (2-34) A21 AlMl Al xl AlMl 1 = 
xl 

AT 0 p xz 
0 

2 xz 

Finally, elimination of Ki leaves the desired expression for the 

parameters as 

T -1 
Nl + AZ1M2 A21 

T -1 
A21M2 A2 xl 

T -~ 
Ul + A21M2 2 

+ = 0, (2-35) 
T -1 T -1 T-~ 

A2M2 A21 p + A2M2 A2 xz A2M2 2 xz 

where N1 Solving for the parameters 

gives 

(2-36) 

where the following substitutions have been made to simplify the 

notation: 

- T -1 
Nl = Nl + A21 M2 A21 ' 

N12 
T -1 

A21 M2 A2 

N2 = p +AT ~1 Az 
x2 2 

ul 
T -1 = ul + A21 Mz w2 ' 

uz 
T -1 

= A2 M2 W2 . 
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The development of equation (2-36) into the sequential 

expressions is enabled by the inversion by partitioning process 

[Fadeev and Fadeeva, 1963]. The first step is to make the following 

substitution for the normal equations of equation (2-36): 

Therefore 

(2-37) 

where 11 and 12 are identity matrices of the same size as the number 

of para~eters in ~ and x2, respectively. Performing the multiplica­

tion in equation (2-37), the following four relationships are arrived 

at: 

(2-38) 

N1Q12 + N12Q12 = O ' (2-39) 

T T 
Nl2Ql + N2Q12 = O ' (2-40) 

(2-41) 

From equation (2-39), the expression for Q12 is 

(2-42) 

and upon substitution of this into equation (2-41) the result is 
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or 

and 

(2-43) 

T Solving for Q12 from equation (2-40) leaves 

T -1 T 
Q12 = -N2 N12 Ql • 

The substitution of this into equation (2-38) yields 

and 

(2-44) 

Application of the matrix identity given by equation (2-20) to equation 

(2-44) yields 

or, noting equation (2-43), 

(2-45) 

As well, from equations (2-35) and (2-36), the expression for N1 is 

(2-46) 

Again employing the identity equation (2-20) to equation (2-46) yields 

(2-47) 
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All of the expressions necessary for the sequential evaluation 

of the normal equations inverse in equation (2-36) are now available. 

There are, however, two distinct situations for this case. When 

adding parameters, the size of the vectors and matrices increases, 

but when deleting them, the vector and matrix sizes decrease. It is 

not a simple matter of plus or minus signs as it was in section 2.1. 

The two different cases are dealt with separately. 

2.2.1 Addition of New Parameters 

For only the addition of new parameters, the equations 

developed in the preceding section are directly applied. There 

-1 already exists N1 , or the old normal equations inverse, as well as 

the present design matrices A21 , A2 and B2 and the weight matrices 

P2 and P 
x2 

~-1 
The first step is to form N1 from equation (2-47). 

N12 is evaluated next along with N2 so that Q2 can be computed using 

equation (2-43). Equations (2-42) and (2-45) are next employed to 

obtain Q12 and Q1 respectively. This now completes formation of the 

normal equations inverse. The constant vector is evaluated using 

equation (2-35), and the resultant parameter vector X is obtained by 

direct matrix multiplication as in equation (2-36). This method has 

the usual advantages of the sequential expressions. From equations 

(2-47) and (2-43) it is seen that only two matrix inverses, the first 

of the size of the number of additional observables, and the second of 

size equal to the number of additional parameters, are required. This 
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method is particularly advantageous for adding small numbers of new 

parameters to a solution already containing many parameters. 

2. 2. 2 Deletion of P arame..ters 

The deletion of parameters is dealt with separately from 

the addition case because the matrix and vector sizes decrease. This 

case can be thought of as the reverse of addition of parameters; the 

new inverse of the normals N-l (consisting of Q1 ~ Q12 and Q2) and 

constant vector U already exist, and the desired quantities are the 

-1 old inverse N1 and constant vector u1 . 

From equation (2-46), the expression for N1 is 

-1 Applying identity equation (2-20) again yields the expression for N1 

as 

(2-48) 

-Taking the inverse of equation (2-44) yields the expression for N1 as 

The use of identity equation (2-20) again results in 

(2-49) 

For the constant vector u1 , equation (2-35) immediately yields 
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(2-50) 

Thus, the original (in this case desired) parameters x1 are now given 

by 

-1 
with N1 being computed using equation (2-48) and u1 coming from 

equation (2-50). 
--1 

It should be noted that when computing N1 from 

equation (2-49), the Q1 matrix is not always the upper left block 

of the full normal equations inverse. It must be understood that it is 

the sub-matrix of the normal equations inverse corresponding to the 

parameters which are not being deleted. 

The above expressions for the addition and deletion of desired 

parameters efficiently utilize the already computed matrices from 

previous steps. The greatest saving computationally is in the size 

of matrix inversions necessary. As can be seen in equations (2-44), 

(2-47), (2-48) and (2-49), the only two inversions necessary {one of 

size r 2 (the number of new (old) equations to be added (deleted)), the 

other of size u2 (the number of parameters to be added (deleted))} are 

usually of considerably smaller size than that of full normal equations 

matrix, especially when designing a network. 
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2.3 Addition (Deletion) of Nuisance Parameters 

It may be desirable to eliminate some parameters introduced 

in the F2 model as nuisance parameters. One such instance of this 

situation is when adding a set of directions. The introduction of an 

orientation unknown (see section 3.3.1) means another parameter to be 

solved for unnecessarily if it is not eliminated. One can think of 

this situation as an expansion of the model treated in section 2.2. 

The parameter vector is now a hypervector containing two types of new 

parameters; the desired parameters x2 and the nuisance parameters Y. 

This results in the functional relationships 

(2-51) 

(2-52) 

The resulting system of normal equations is identical to those of 

section 2.2, except for the matrices A2 and P 
x2 

These become hyper-

matrices c_orresponding to the hypervector of parameters. 

Specifically, the A2 matrix in equation (2-31) is partitioned 

to arrive at the hypermatrix 

A*= 2 

and similarly for P to give 
x2 

(2-53) 
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I p I 0 
x2 I 

I 
I 
I 

P* 
I 

(2-54) = ----.---
x2 I 

0 I p 
I 

Y2 I 
I 

where it .is assumed that the weights for the two different parameter 

types are uncorrelated. For the case of network design, P is 
y2 

generally zero, but for other sequential adjustment types, it may be 

desirable to weight the nuisance parameters. One such instance is 

the adjustment of Doppler satellite observations. The satellite 

position vector, even though it is a nuisance parameter, is sometimes 

weighted [cf., e.g. Wells, 1974]. 

The reduction of the normal equations system up to equation 

(2~35) is exactly the same here as for the case of no nuisance para-

meters in section 2.2. At equation (2-35), the derivation is easily 

adapted to this situation. Substituting the expressions (2-53) and 

(2-54) in place of A2 and P respectively, as well as performing 
x2 

simple row and column transformations leaves 

y AT 
2 M;~2 
y 

x2 + AT 
2 

X 

-------
xl u1+A~·lM;~ 

(2-55) 

This arrangement facilitates the elimination of the nuisance parameters 

Y ~y means of equations (2-10) and (2-11). First, carrying out the 

mu~tiplications implied in (2-55) yields 

o. 
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T -1 T -1 T -1 y T -~ p +A2M2A2 A2 M2 A2 Az M2 A21 A2 M2 2 
Y2 Y Y y X y y 

~ M-lA T -1 T -1 
x2 + ~ M;~2 o. px2+A2 M2 A2 A2 M2 A21 = 2 2 

X y X X X X 

T -1 
A21M2 A2 

T -1 
A21M2 A2 

T -1 
Nl+AZ1M2 Azl ~ 

T -~ 
Ul+A21M2 2 

y X 

(2-56) 

To simplify the notation, (2-56) is rewritten as 

N N N y u 
Y2 yx2 yxl Yz 

NT N2 
T Xz + u2 = 0 ' (2-57) 

yx2 N12 

NT 
N12 Nl xl ul yxl 

where it is noted that the lower right 2x2 submatrix is exactly the 

same as in equation (2-36). The elimination of Y by use of equations 

(2-10) and (2-11) leaves 

N -NT N-lN 
2 yx2 y2 yx2 

NT -NT N-~ 
12 yx2 y2 yx1 x2 U -NT N-lU 

2 yx2 Y2 Y2 
+ = o, 

N -NT N-lN 
12 yx1 y2 yx2 

N -NT N-1N 
1 yxl Y2 yxl ~ 

U -NT N-lU 
1 yxl Y2 Y2 

(2-58) 

or, transforming rows and columns and again simplifying the notation, 

(2-59) 

After solving for the desired parameters xl and x2, the expression (2-59) 

is of the same form as equation (2-36); thus, similar steps are necessary 
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to arrive at the sequential solution. The solution for q2 as given 

by equation (2-43) is 

(2-60) 

and 

(2-61) 

with 

(2-62) 

The main difference between this notation and that of section 2.2 is 

· h · of N:-11 J."nstead of N--11 • J.n t e computatJ.on The expression for '&1 from 

equation (2-58) is 

and the application of equation (2-20) yields the sequential expression 

as 

(2-63) 

--1 
The expression for N1 is given by equation (2-47). -Once N12 , 

- --1 N2 and N1 are computed, the normal equations inverse matrix is solved 

by the successive application of equations (2-63), (2-60), (2-61) and 

(2-62). The computation of the elements of the constant vector in 

equation (2-58) is straightforward and needs'no further elaboration. 

The desired parameters are given by 
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[!:] . (2-64). 

It is interesting to compare the expressions developed here 

with those of Krakiwsky [1968]. The case of adding nuisance parameters 

only is considered, which in this instance would be the situation 

where there are no desired parameters x2 . The matrices A2 
X 

and P 
x2 

are null matrices. This leads to the matrices Q12 and Q2 

being zero as well, and the parameters x1 are given by 

or 

=-1 :: x1 = -N1 u1 (2-65) 

=-1 
Equation (2-63) gives th~ expression for N1 • Noting that 

for 

and 

the expression from equation (2-63) under the inverse sign becomes 
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--1 
where N1 has been replaced by its non-sequential form (see equation 

(2-46)). By inspection it is seen that the inner term of equation 

(2-66) in square brackets is nothing but the sequential expression for 

-1 S . Thus, 

The --1 T term N1 N 
yxl 

--1 T 
N N 1 yx1 

is given by 

or, applying equation (2-21), 

--1 T 
N N 1 yx1 

(2-67) 

(2-68) 

Substituting equations (2-67) and (2-68) back into equation (2-63) 

yields 

(2-69) 

which is identical to the expression derived by Krakiwsky [1968] for 

the new normal equations inverse (equation 2.1- 36), except for the 

difference in notation. The total expression for x1 is not derived 

=-1 here, but the development is similar to that for the N1 term. 

Returning to the problem of deletion of nuisance parameters, 

the desired expression is again 

(2-70) 
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N~1 is computed from equation (2-48) as 

-1 --1 --1 T --1 T -1 --1 
Nl = Nl +Nl A21 (M2-A21Nl A2l] A21Nl ' 

--1 and similarly N1 is calculated from equation (2-58) and the identity 

equation (2-20) as 

Using the same strategy as in section 2.2.2, the expression for ~~1 is 

computed as 

(2-71) 

where again Ql is the portion of the normal equations inverse corres-

ponding to the parameters x1 . The computation of the constant vector 

u1 comes from equations (2-56) and (2-58). From equation (2-58), 

the expression for u1 is 

(2-72) 

and 

(2-73) 

x1 is now computed using equation (2-70). 

In the event that there are no desired parameters Xz' then 

again A2 and P 
X X2 

are null matrices as are N2 and N12 • 

given by equation (2-70), but in the computation of 
:::-1 
Nl , 

is 

the equation 

(2-74) 



28 

with the second term in equation (2-71) being zero. 

The expressions derived in this section have covered the 

cases of addition and deletion of both desired and/or nuisance 

parameters. This situation arises frequently when stations are added 

to a network design with a set of directions, or when a station is 

subtracted from the design, having previously been linked to the 

network by a single set of directions. Section 3.4 deals more fully 

with the problem of directions. 

2.4 Addition (Deletio~ of Parameters with Common Nuisance Parameters 

between Steps 

This section deals with the situation where certain nuisance 

parameters Y are common to two successive steps in the sequential 

adjustment. This condition is characterized by 

(2-75) 

and 

(2-76) 

This corresponds to the case where one direction is to be added to or 

subtracted from a set of directions in the previous step. The common 

nuisance parameter is the orientation unknown for that set of direc­

tions. The inclusion of new parameters x2 makes the model more 

general and thus allows the addition (deletion) of new (old) points 

(along with the directions). 
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The linearization of equations (2-75) and (2-76) yields 

aF1 aF1 
0 y 

aF1 
0 

[::] [::] aY ax1 aL1 ,. = 0, 
xl + + 

3F2 <lF2 <lF2 aF2 

aY ax1 ax2 
x2 0 

<lL2 (2-77) 

or, denoting the partial derivatives in their usual matrix notation, 

[~y A 

~XJ 
y 

rl 0 J [::] [::] 
lx1 

+ + 0. (2-78) 

A2y A xl 0 B2 2x1 

Xz 

The variation function which is to be minimized has the form 

+ 

+ 2[KT KT] [~y A 

~J 
y 

["1 o ] [V1] [::] 
1 2 lx1 

+ + 
Azy A xl o B2 v2 2x1 

x2 (2-79) 

where the weight matrices P1 , P2 correspond to the observables Ll' L2 

and P , P are a priori weight matrices for the desired parameters 
xl x2 

x1 and x2 . The differentiation of equation (2-79) with respect to the 

variables leads to five equations, ~.;hich, when combined with equation 

(2-78) make up the most expanded form of the normal equations, i.e. 
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0 0 0 0 

0 0 0 0 

0 Aly Alxl 0 

A2y A2xl A2x2 K2 + W2 = o. (2-80) 

0 0 0 y 0 

0 0 0 0 0 

0 0 0 0 0 

Proceeding in the same fashion as in previous sections, 

equations (2-10) and (2-11) are employed to first eliminate v1 and 

v2 ; this yields 

-M 
1 

0 

0 

0 Aly Alxl 0 

A2y A2xl A2x2 K2 

0 0 y 

0 

0 

+ 0 0 , (2-81) 

0 

0 

-1 T T where M1 = B1P1 B1 and M2 = B2P2B2 as before. The elimination of K1 

from equation (2-81) results in 

-M2 A2y A A K2 w2 2xl 2x2 
AT 

Nly N 0 y uly 0, (2-82) 2y yxl + 
AT NT Nlx 0 xl ulx 2x1 ykl 1 1 

T 
0 0 xz 0 A p 

2x2 x2 
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where the newly introduced quantities are defined as follows: 

T -1 (2-83) Nly = Aly Ml Aly 

AT -1 . 
(2-84) N Ml Alxl yxl ly 

N p +AT -1 (2-85) = Ml Alxl , lx1 xl lx1 

uly 
T -1 (2-86) = Aly Ml Wl , 

u AT -1 (2-87) = ~ wl lx1 lx1 

Before eliminating K2 and Y, equation (2-82) is first rearranged so 

that the nuisance parameters Y are eliminated before the correlates 

resulting from the F2 model (i.e. K2). This arrangement facilitates 

the grouping of the resulting matrix expressions into meaningful 

subsets. Exchanging K2 with Y, as well as their corresponding rows 

and columns, gives 

Nly 
AT 

2y N 
ykl 

0 y 
uly 

A2y -M 2 A 2x1 
A 2x2 K2 + \-12 0 . (2-88) 

NT 
ykl 

AT 
2x1 

N lx1 
0 xl u lx1 

0 AT 0 p x2 0 2x2 x2 

The nuisance parameters y are now eliminated, yielding 
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+ 

0 

where the newly introduced notation is denoted by 

and 

M2 = M2 + A N-l AT 
2y ly 2y 

A = A - A N-l N 
2x1 2x1 2y ly yx1 ' 

N = N - NT N~1 N 
lx1 lx1 yx1 ly yx1 

-1 
w2 = w2 - A2y Nly uly ' 

U = U - NT N-l U 
lx1 lx1 yx1 ly ly 

0 ' (2-89) 

(2-90) 

(2-91) 

(2-92) 

(2-93) 

(2-94) 

Finally, the elimination of K2 leaves the normal equations 

expression for the desired parameters as 

[" :121 [:] 
u 

xl 
+ 

xl 
0 ' 

Nl2 u 
x2 x2 

(2-95) 

where 

N - -T --1 -
N +A-2 M2 A2xl xl lx1 x1 

(2-96) 

-T --1 
N12 = A M2 A2x2 2x1 

{2-97) 

N p +AT --1 
x2 x2 2x2 M2 A2x2 (2-98) 



33 

+ AT --1 -
u = u M2 w2 ' xl lx1 2x1 

(2-99) 

and 

u AT --1 -
= M2 w2 x2 2x2 

(2-100) 

Now, the solution for the desired parameters resulting from additional 

parameters x2 and observable L2 is 

[::] = [:::] (2-101) 

and the sequential solution is found as in previous sections; i.e., 

the normal equations inverse or variance covariance matrix Cx of the 

pa~ameters is first written as 

N N12 
-1 

Ql Ql2 xl 

c = (2-102) 
X T T 

N12 N Ql2 Q2 x2 

where the elements Q1 , Q12 and Q2 are of the same form as equations 

(2-45), (2-42) and (2-43), respectively. Thus, 

and 

[N 
x2 

-1 -1 T -1 
N + N Nl2Q2 Nl2N 
xl xl xl 

From equation (2-96), the expression for N is 
xl 

(2-103) 

(2-104) 

(2-105) 
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and applying the matrix identity equation (2-20) to it yields 

--1 
N lx1 

Equation (2-92) gives the expression for N-l as 
lx1 

N-l = [N - NT N-l N ]-l 
lx1 lx1 yx1 ly yx1 

(2-106) 

This expression for N-l is identically the resulting normal equations 
lx1 

inverse for the case where only F1 is considered and the nuisance 

parameters Y are eliminated from F1 . Thus, when adding desired para-

meters x2 and nuisance parameters Y which have already been eliminated 

--1 
in the previous step, N1 is the old normal equations inverse or C 

x1 x 

matrix existing before consideration of F2 . It (N-11 ) is used in eval­
xl 

in equation (2-106), which in turn is used to compute Q2, 

via equations (2-103), (2-104) and (2-105), respectively. 

Appendix III contains a further illustration of addition of unknowns 

with common nuisance parameters between steps. 

For the constant vector U, the sequential expression is 

and U is the constant vector resulting from F1 . lx1 

(2-107) 

It is worth noting that if any of the parameters are missing 

from the F1 and F2 models, then their respective matrices are null, and 

their contributions to the desired parameters disappear. For instance, 

considering that in equation (2-75), Y did not exist in F1 , then Aly 

is null, and the expressions for the desired parameters revert to 

those of section 2.3. 



35 

2.4.1 Detailed Deletion o.f Parameters 

As for the two previous sections, it is worth describing 

in detail the deletion of parameters due to the elimination of certain 

observables. The covariance matrix of the parameters C composed of 
X 

matrices Q1 , Q12 , and Q2 already exists along with the constant 

vectors U 
xl 

and U 
x2 

It is required to find N-11 
xl 

-and U which 
xl 

correspond to the equations F1 only, i.e. considering the elimination 

of x2 and L2 and accounting for the common nuisance parameters Y. 

From equation (2-96), the 

or, applying the identity equation (2-20), 

Using 

or 

--1 
N 
lx1 

the same approach as 

-1 
Ql 

N 
xl 

in section 2.2, equation 

[N 
-1 T 

Nl2Nx2Nl2] , 
xl 

-1 
Ql 

-1 T 
+ N12 Nxz N12 • 

(2-108) 

(2-109) 

(2-44) yields 

(2-110) 

(2-111) 

Identity equation (2-20) is used on equation (2-111) to leave 

(2-112) 

-The constant vector U is immediately given by equation (2-107) as 
lx1 

(2-113) 
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Finally, the parameters x1 are computed from 

{2-114) 

--1 
N lx1 

-1 
is computed from equation {2-109), with N coming from equation 

xl 
{2-112), and u1 

xl 
is computed via equation (2-113). Equation (2-114) 

expresses the solution for the parameters x1 after observables t 2 and 

parameters Xz have been eliminated subject to the common nuisance 

parameters Y. 

Again it must be noted that Q1 is the submatrix of the entire 

Q matrix (see equation (2-102)) corresponding to the desired parameters 

x1 which are not being deleted. Details of the actual computations 

involved with some of these foregone expressions are explained in the 

appendices. 

It is beyond the scope of this work to treat subjects such 

as sequential statistical testing or problems encountered with iteration 

of nonlinear models. The equations derived here are primarily for 

use in the interactive design of networks, and their application to 

this end is discussed in the next chapter. 



3. APPLICATION OF THE SEQUENTIAL MODEL 

TO HORIZONTAL NETWORK DESIGN 

This chapter deals with the application of the mathematical 

models developed in Chapter 2. As already discussed in section 1.2, 

only the expressions for the variance-covariance matrix of the desired 

parameters C (i.e. normal equations inverse) is needed when designing 
X 

networks. The constant vector U is not needed because no observations 

are made to obtain the misclosure vector W. 

The models are applied to the different types of obser-

vables usually considered in horizontal networks, i.e. distances, 

azimuths and directions or angles. For each type of observable, the 

most general model is considered, and other models are treated as 

special cases of this general model. As well, some simple numerical 

examples are given to further illustrate the procedures involved for 

different types of observables. 

Once the methods for arriving at the variance covariance 

matrix ex of the desired parameters have been discussed for the various 

observable types, the procedure for extracting the confidence ellipses, 

which characterize the accuracy attained from a design, is described. 

Both the point and relative ellipses are discussed, as well as the 

37 
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method for increasing the confidence level of the ellipses from stan-

dard (e.g. 39.4%) to a higher confidence level (e.g. 95%). Finally, 

the notion of changing the weight of an observable is discussed 

briefly. 

Before beginning any practical considerations, it is neces-

sary to mention a few general facts which are common to all of the 

observable types. First, there is the point about the B design matrix. 

Because each of the observable types being considered can be expressed 

as a function of the parameters (i.e. L = F(X), cf. equation (3-1), 

then B (3F/3L) is always a negative identity matrix -I. This leads 

-1 T -1 -1 -1 to the M matrix (M = BP B ) being equal to P , and M = P = CL. 

T -1 Anywhere an expression similar to A M appears, it is therefore, 

T replaced by A PA. Note that this simplification only occurs when 

L = F(X), and for different types of observables or adjustments, the B 

matrix may not be -I. The only necessary elements of the various 

expressions derived in Chapter 2 for C are the different A design 
X 

matrices and the P or weight matrices. Thus, once these are deter-

mined, all that remains to determine C is the correct multiplication 
X 

and inversion of matrices. 
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3.1 Distances 

The mathematical model for a distanceS .. from ito jon 
l.] 

a plane (in the form of equation 

2 
= [(x.-x.) + 

J l. 

(2-1)) is well known to be 

2 1/2 
(y.-yi) ] - s .. = 0, 

J l.J 
(3-1) 

where the coordinates af the respective points i and j are as in 

Figure 3.1. 

Y(North) 

~ ------------------------- j (xj'~) 

y.l ------- I i (X.,y~) 
I I I 
I 
X. 

I 
x. 
J 

Figure 3.1. Distance on the Mapping Plane 

X(East) 

The most general model which is applicable to the sequential 

addition {deletion) of distance observables is that of section 2.2. 

There are-no nuisance parameters in the model (3-1), and the possi-

bility exists that either point i or point j may be a new point 

(i.e. x2) in the network. 

Considering first the case of addition of parameters, the 

assumption is that a design has already been made (for details of 
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initial design procedures see Appendix I) for which there exists 

an old normal equations inverse N~1 (cf. eq. (2-35)). The new 

normal equations inverse resulting from addition of parameters x2 

(3-2) 

where 

(cf. eq. (2-43)) , 

(cf. eq. (2-42)) 

in which 

T = A21 P2 A2 (cf. eq. (2-36)) 

-1 
Besides the already existing normal equations inverse N1 , the elements 

necessary to evaluate this expression are the design matrices A21 and 

-1 A2 , as well as the weight matrices P2(cL ) and P 
2 xz 

The general form for one row of the A design matrix is 

ClF ClF 

A 
s .. 

l.J 

~- -----.:u.. 
[ax. ' ay. , 

l. l. 

ClF 
sij 

---· ax t 

j 

aF 
s .. 

____!..1] 
ay. 

J 

or, evaluating the partial derivatives from equation (3-1) at the 

approximate coordinates X0 
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-(x~-x~) -(y~-y~) (x~-x~) (y~-y~) 
A = J ~ . J ~ • J ~ . 

' 
J ~ ] • (3-3) ' ' sij s~. s~. s~. Sj_j 

~J ~J ~J 

It must be remembered that the coordinates x and y in equation (3-3) 

are approximate coordinates (represented by superscript 0 ) of the 

unknown points and that S~. is the distance computed from these approx­
~J 

imate coordinates. If either point i or point j is considered fixed, 

then its known coordinates are used. 

From equation (2-31), the A design matrices are given as 

and 

Considering an already existing design for five points (Ni1 = lOxlO), 

and that a sixth point is to be added by means of a distance obser-

vation from an "old" point i to the new point j, then A21 is of size 

1 x 10 (with zeroes everywhere except in the two columns for point i) 

and A2 is lx2. The non-zero elements of A21 are the first two elements 

of A (eq. (3-3)), and A2 contains the second two elements. If F2 
sij 

contains r 2 observations, then both A21 and A2 have r 2 rows. 

The weight matrix P2 

where o2 is the variance of 
sij 

discussed above, P2 is of size 

parameters p takes the form 
x2 

o2 
x. 

p J 
x2 

0 
x.y. 

J J 

0 

is diagonal with l/o2 on the diagonal, 
sij 

the distanceS... For the example 
~J 

lxl. The weight matrix for the new 

-1 

x.y. 
J J 

02 
yj 
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for a single point j. This is the configuration of P for the above 
x2 

example of one distance and one new point j in F2• For more than 

one new point in F2 , P is of size u2xu2 where u2 is twice the number xz 
of new points. The elements of P are assumed to come from so.me 

xz 
independent source (e.g. a previous adjustment) and are extracted 

from the inverse C-l of the variance covariance matrix of this previous 
X 

solution. If there is no previous solution or a priori knowledge of 

x2, then P is assumed to be zero. 
x2 
Now that all the necessary matrices are available, the eva!-

uation of the new variance covariance matrix C can proceed as out­
x 

lined above. If there are no new parameters x2 , then A2 , Px2 ' N2 , 

N12 , Q12 and Q2 are all zero, and the new variance covariance matrix 

C is given simply by equation (2-47). A numerical example of this 
X 

case is presented in Appendix I. 

When the parameters x2 and observables L2 are deleted from 

the existing design, then the c 
X 

matrix composed of Ql' Q12 and Q2 

already exists, and it is required -1 
corresponding to compute N1 to 

the parameters not being deleted. As outlined in section 2.2.2, the 

expressions are 

where 
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in which 

T = A21 P2 A2 (see eq. (2-36)), 

As was the case for addition of a new station by a distance observation, 

the A21 , A2 , P2 and Px2 matrices are first computed to enable the 

-1 -1 
evaluation of N2 , N12 , and N and N1 above. It is important that the 

same weight matrices P2 and P used to add the distance originally are xz 
used when subtracting it. Continuing with the "addition of distance" 

example, if station j is deleted by subtracting a distance from i to j, 

then A21 is of size lxlO, A2 is lx2 and P2 is lxl with l/cr2 on the 
sij 

diagonal, exactly as in the case of addition. The desired variance 

-1 
covariance matrix N1 corresponding to all points except j is, however, 

lOxlO, with the two rows and columns corresponding to point j elim-

inated. 

3.2 Azimuths 

The mathematical model for an azimuth observable a .. from 
1J 

point i to point j as depicted in Figure 3.2 is given as 

F 
a .. 

l.J 

x.-x. 
arc tan [ J 1 ] - o. •• 

yj-yi l.J 
0. (3-4) 
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j (x.,y.) 
J J 

X. 
J 

Figure 3.2. Azimuth on the Mapping Plane 

X 

The azimuth is an angle measured at point i from grid north clockwise 

to the desired point j. It is assumed that proper reductions are made 

so that the azimuth is measured from grid north, or parallel to the 

y-axis of the mapping plane. Proper reduction procedures for all 

types of observables are covered, for example, in Bomford [1975]. 

Since the azimuth observable does not contain any nuisance 

parameters, the mathematical models of section 2.2 are applicable 

here exactly as they were for the distance observable in section 3.1. 

The only differences are in the elements of the A and P matrices. 

One row of the A design matrix for an azimuth observable takes the 

form 

ClF 
-(y~-y.) (x~-x~) (y~-y~) -(x~-x':") a .. 

A ___2:J_ [ J l. • J l. • J l. • J l. ] 

aij ax xo (S~ .)2' (S~ .)2' 2' 2 ' 
X (Sfj) (Sfj) (3-5) l.J l.J 
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where the elements occupy their respective column positions for 

the from and to stations i and j. This form applies to both the A21 

and~ design matrices. Diagonal elements l/cr2 are used in forming 
aij 

the P2 (and CL ) matrices. 
2 

matrix has the same form as that 

discussed for distances in section 3.1. 

Both addition and deletion of azimuths are carried out 

exactly as in section 3.1 for distances. An example of addition of 

azimuths along with a new station is contained in Appendix II. 

3.3 Directions or Angles 

The question of whether to use angles or directions when 

adjusting observations made with a theodolite has been debated 

for quite some time. Some authors [e.g. Bomford, 1975 and 

Ra~nsford, 1966] maintain that angles are preferrable for adjustment 

whereas others [e.g. Allman and Bennett, 1966] would opt for directions. 

Reasons for these differeing opinions are discussed in section 3.3.3 

below. 

"This section covers the general adjustment procedures for 

both angles and directions as well as some of the reasons 

for conflicting conclusions about the subject. The final part of 

the section compares the two observable types from a network design 

point of view. 
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3.3.1 Directions 

The general mathematical model for an observed direction is 

given as 

d •. 
1] 

x.-x. 
arctan (---1-.2:.) 

yj-yi 
(3-6) 

where Z. =orientation unknown at station i (see Figure 3.3). The 
1 

direction model is similar to that of the azimuth, except for the 

appearance of the orientation unknown which is the azimuth of the 

y 

Y~ ---------
J 

y. --------
1 

/
O!QQ!.QQ" 

IIY 

/ z.y 
-----~~~------------

/ ctr 
/ 

/ 

X. 
I 

j(x.,y.) 
J J 

x. 
J 

Figure 3.3. Direction on the Mapping Plane 

X 

zero reading on the horizontal circle of the theodolite. Zi is 

common to all directions at station i which have this azimuth of the 

zero reading (commonly called a set of directions). Since the azimuth 

o.f the zero reading is unknown, Z. is introduced to the design as a 
l. 
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nuisance parameter Y, and the models developed in sections 2.3 and 

2.4 are applicable in this case. The form of the design matrices 

A_ , A2 and A2 (cf. eqs. (2-77) and (2-78)) is identical to 
-~xl xl x2 

that for azimuths; i.e. 

aFd .. -(y~-y~) (x~-x~) (y~-y~) -(x~-x~) 
A =_..ll [ J 1 • J 1 • J 1 • J 1 ] . 

d .. ax (S~ .)2' (S~ .)2' (S~.)2' (S~.)2 1] X = xo 
(3-1) 1] 1] 1J 1] 

The design matrices Aly and A2y corresponding to the orientation 

unknowns consist of -l's in the appropriate positions to correspond 

to the sets of directions being added or deleted. Once P2 (diagonal 

with 1/cr~ .. on the diagonal) and P are computed, th~n the addition 
1] x2 

or deletion of observables and stations proceeds as outlined in 

sections 2.3 and 2.4. A detailed illustrative example of addition 

of directions with common nuisance parameters between steps is 

contained in Appendix III. 

3.3.2 Angles 

The general equation for an angle observation is given as 

arctan - arctan 
x.-x. 

(__.1_2:) 
yj-yi 

(3-8) 

As can be seen from Figure 3.4, an angle is essentially the difference 

between the two azimuths aik and a ..• 
1] 
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X. 
J 

Figure 3.4. Angle on the Mapping Plane 

X 

The angle model has one notable difference from the other 

three observable types in that it involves the coordinates of three 

stations i, j and k instead of i, j as before. Because of this, the 

row of the A design matrix corresponding to an angle observation takes 

the following shape: 

-(yko-yl.~) (y~-y~) 
[ + J l. . 

so2 so~ ..• 
ik l.J 

(X~-~) -(Y.~-Y~) 
J l.. "] l. 

s~~ ' s~~ 
l.J l.J 

(3-9) 

where the above columns are for xi, yi, xj' yj' xk and yk, respectively. 
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Since there are no nuisance parameters in this case, the 

model developed in section 2.2 will suffice. The appropriate design 

(A21 and A2) and weight (P2 and Px2) matrices are formed and 

combined to give the new or updated variance covariance matrix of 

the parameters C , exactly as was done for distances in section 3.1. 
X 

The example in Appendix IV serves as an illustration of the details 

behind subtracting angles from an already existing solution. 

3.3.3 Comparison of Angles and Directions 

At first sight, it seems as though an angle is merely the 

difference between two directions in a set of directions. One would 

have 

arctan - arctan 

x.-xi 
Z . - arc tan ( J ) + Z • 

1 y,-y, i 

x.-x. 
(__L_2:.) 
yj-yi 

J 1 

which is identical to the expression given for angles in section 3.3.2. 

This is indeed the case when only one angle (i.e. two directions) 

is considered; however, complications arise as soon as angles 

are taken as the difference between successive directions in a set 

containing more than two directions. The successive angles then are 

dependent as each angle depends on one of the previous angles included 

directions. For instance, consider the situation depicted in Figure 3.5. 
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k 

Figure 3.5. Angles and Directions 

If the angles aijk and aik~ are derived from a set of directions in 

the following fashion: 

(3-10) 

then the propagation of errors in the directions into the errors in the 

angles follows the basic covariance law; i.e. 

c BCd BT , (3-11) a 

where a2 0 0 
d·. 

a a 
1] 

B =ad and cd 0 02 0 
dik 

0 0 02 
dH 

It must be noted that the directions in a set are considered 

uncorrelated or independent as is indicated by a diagonal Cd matrix. In 

situations where all of the directions of a set were measured at the same 
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time and there are no missing directions, the Cd matrix is indeed 

diagonal as in this case. For inconsistent sets where directions measured 

at many separate times are combined into one set, Cd is usually not 

diagonal and there will exist covariance terms in Cd. This topic is 

more fully discussed in Mepham [1976]. The case considered here, then, 

assumes that the direction sets have no missing paintings. 

Returning to the derivation of c·, the partial derivative a 

matrix B is given by 

aa. "k 
~ 

aa. "k 
_2:,L. 

aa. "k 
_2]_ 

adij adik adu (-: 1 :] B = = 

aaik.R. aaik.R. aaik.2. 
-1 

(3-12) 

--- --- ---
ad .. adik adu 

1] 

Applying the covariance law (3-11), the final result is 

(3-13) 

This is the variance covariance matrix of successive angles derived from 

a complete set of three directions. If C is for more than two angles, a 

then only adjacent angles are correlated. 

The above Ca (eq. (3-13)) must be used to get results identi-

cal to those given by directions. If, however, one considers the angles 

as being independent, then a different result is obtained .. It is 

shown in Appendix V that the variance covariance matrix of a network 
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design by independent angles is significantly larger than that computed 

by the direction or correlated angle method. Thus, from the preanalysis 

point of view, the direction or correlated angle method seems more 

expedient. 

The discussion of which method should be used in an adjustment 

is worth considering briefly. Rainsford [1954] comes up with a 

coefficient of correlation y between real errors and least squares 

corrections which is computed as 

(3-14) 

where r number of conditions in the condition adjustment (represented 

as F(L) = 0 [e.g. Mikhail, 1976; Krakiwsky, 1975]), 

n = number of observations L in the condition adjustment. 

Using some hypothesized examples with known observational errors and 

adjusting them by both the angle and direction methods, he arrives at 

a fairly good agreement between the estimated correlation coefficient 

(eq. (3-14)) and the true correlation coefficient. Since y is always 

less for directions than for angles (because n is always greater), 

Rainsford concludes that the angles are better suited for adjustment 

as the computed least squares corrections are more highly correlated 

with the real errors. 

Also basing their work on the condition adjustment, Allman 

and Bennett [1966] use the minimum sum of weighted squared residuals 

(VTPV) as the testing criteria. Their numerical example shows that 

directions and correlated angles give a smaller VTPV than do uncorrelated 
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angles. Thus, they conclude that directions are more correct as they 

fulfill the least squares condition (i.e. VTPV = minimum) better. 

It is the author's opinion that any least squares adjustment 

procedure must try to interpret the actual observation procedure 

correctly so that the adjustment corresponds to what has been done in 

the field. If theodolite observations are made by measuring two directions 

per set and choosing a new zero setting for each set, then use of the 

un~orrelated angle method is justified. If, however, the same zero 

setting is used for observing three or more directions in the same 

set, then the direction or correlated angle method corresponds closer 

to the observing procedure than does the uncorrelated angle method. 

As well, for three or more d.irections per set, the results of Appendix 

V indicate that directions are preferrable to uncorrelated angles from 

the preanalysis point of view. 

3.4 Confidence Ellipses 

The main objective of a preanalysis is to determine the 

accuracy obtained from a proposed network and. its observables. This 

accuracy is best characterized by confidence regions called confidence 

ellipses. It is the purpose of this section to outline the pro­

ceduresused to obtain both the point and relative ellipses as well 

as the methods of increasing the confidence level from standard (about 

39%) to a higher level (e.g. 95%). 
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3.4.1 Computation of the Standard Ellipse 

The standard error ellipse is obtained directly from the 

variance covariance matrix C of the unknown points being considered. 
X 

As explained below, this procedure is based on the theory of multi-

variate statistics, and is an important part of the method of 

preanalysis. 

From Hogg and Craig T1970], it is known that the quadratic 

form for the parameters (which have a multivariate normal distribution) 

is given as 

x2 
q, 1-a. (3-15) 

where q = the degrees of freedom for the x2 distribution, which in 

this case may be interpreted as the dimension of the 

parameter space, 

X vector of n parameters, 

~x vector of n constants, 

C variance covariance matrix of X, 
X 

1-a. = probability associated with the x2 distribution. 

·For the two dimensional case being considered here, X is the 

true value of the parameters (x, y), ~ is the estimated (from the 
X 

adjustment) values of the parameters, and C is the variance covariance 
X 

matrix coming from the adjustment or preanalysis. Assuming now that 

the ~ vector has been subtracted from the true values, equation (3-15) 
X 

becomes 
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[x y] = x2 
2,1-a (3-16) 

Through the process of diagonalization of the variance covariance 

matrix in (3-16), a new system is obtained whereby the transformed 

·variables (x', y') are uncorrelated, and C is diagonal. This process 
X 

is called the eigenvalue problem [see e.g. Kreyszig, 1972], and when 

applied to the problem at hand yields 

[x' y'] = x2 (3-17) 
2, 1-a 

This. process is interpreted in two dimensional space as being the 

rotation of the axes of the coordinate system (x, y) into a system 

(x', y') which corresponds to the direction of maximum and minimum 

variance in the coordinate space (see Figure 3.6). 
'i' y 

Figure 3.6. Relationship of Grid and Confidence 

Ellipse Coordinate Frames. 

X 

Following the development of Krakiwsky and Thomson [1978], the expan-

sion of equation (3-17) leads to 



,2 
X 

2 + 
X2 C1 

2, 1-a x' 

,2 
y 

2 
X2 1-a , 
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1 , (3-18) 

which is obviously the equation of an ellipse with semimajor and semi-

minor axes of /x22 cr2, and lx22 1 cr2, respectively. Taking 
, 1-a x , -a y 

x22 1 = 1, it is seen that the ellipse which results directly from 
, -a 

the C matrix corresponds to an a of 0.6065, or a probability level of 
X 

1-a = 0.3935. Thus, the standard ellipse (ellipse resulting directly 

from ex with x~, l-a = 1) is associated with a confidence level of 

39.35%. Increasing this confidence to a higher level depends on various 

assumptions, and is not simply a case of choosing a X~ value for a 

higher probability level. This problem is further discussed in section 

3.4.2. 

3.4.1.1 Point Ellipses 

The accuracy of each station in a horizontal network is usually 

depicted by the so-called point ellipse. This ellipse is character-

ized by its semimajor and semiminor axes as well as its orientation 

in the (x, y) plane. As already discussed in section 3.4.1, the semi-

major and semiminor axes of the standard error ellipse are the square 

roots of the eigenvalues of the variance covariance matrix for the par-

ticular station. This station variance covariance matrix C is a 
X s 

two by two submatrix of the variance covariance matrix C for all of 
X 

the stations in the network; i.e. 
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:;] 
Performing an eigenvalue problem on C yields the eigenvalues 

X 
s 

(3-19) 

(3-20) 

In accordance with equation (3-18), the semimajor and semiminor axes 

of the standard station ellipse (see also Figure 3.6) are the square 

roots of the above eigenvalues. 

The orientation of the axes of the station ellipse is found 

by determining the orthogonal rotation matrix R which produces the 

diagonalized variance covariance matrix in the following relationship: 

(3-21) 

The columns of R are the normalized eigenvectors corresponding to the 

eigenvalues in equation (3-20) [Mikhail, 1976]. Computing th~ normal-

ized eigenvectors (see e.g. Kreysig, 1972) and substituting them for 

the columns of R yields 
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a a 
xy X~ 

(a2 + ( a2~-a2 )2)1/2 (a2 + (a2-a2 )2)1/2 
xy X X xy y I X I 

R= (3-22) 
(a21_ a2) 

X X 
(a21_ 02 ) 

y X 

(a2 + (a2-a2 
xy x1 x 

) 2) 1/2 (a2 + (a2ra2 
xy y- X 

)2) 1/2 

. Regarding R as an orthogonal rotation matrix of the form 

[
cos a 

R= 
sin a 

-sin aa] 
cos 

(3-23) 

then the orientation angle a (measured positive counterclockwise from 

the +x axis (see Figure 3.7)) of the semimajor axis of the standard 

error ellipse at a station is 

e = sign (sin 6) • arccos (3-24) 

where sign (sin 6) 

X 

Figure 3.7. The Standard Error Ellipse. 
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The usual expression for the orientation [e.g. Mikhail, 

1976; Richardus, 1974] is 

tan 26 
2a xy (3-25) 

Equivalence of the two formulae for orientation e (i.e. eqs. (3-24) 

and (3-25)) is proved as follows. Writing tan 6 from equations (3-23) 

and (3-22) as 

sin 8 tan e- ---­- cos 8 -

and using the identity tan 28 2 tan 8 , yields 
l-tan28 

tan 28 

Substituting cr~, from equation (3-20) gives 

(cr2-crz) + /ccrz-crz) z + 4crz 
y .x x y xy 

2 

and 

(3-26) 

(3-27) 

(3-28) 

(3-29) 

Substitution of equations (3-28) and (3-29) into equation (3-27) results 

in 

(3-30) 

or 
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tan 26 (3-31) 

Thus the usual formula (eq. (3-25)) is equivalent to equation (3-24). 

3.4.1.2 Relative Ellipses 

Whereas the station ellipses represent the error in an unknown 

station with respect to the fixed stations, relative ellipses are 

necessary to determine the accuracy of one unknown station with respect 

to another unknown station. This is expressed as in Krakiwsky 

and Thomson [1978], where the relative ellipses are taken to represent 

the coordinate differences 

f.x .. 
l.J 

X. - X. 
J l. 

Application of the covariance law to equation (3-32) yields 

c 

where 

t.x, t>.y 
BC x, y 

aF 
B =-­

a:x,y 

and F is given as equations (3-32). 

Expansion of equation (3-33) yields 

(3-32) 

(3-33) 
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[-: 
a 1 

:] 
cr2 cr cr cr -1 0 x. xiyi x.x. x.y. 

c ~ ~ J ~ J = t.x, !J.y 
-1 0 cr cr2 cr cr 

0 -1 xiyi yi Y·~ yiyj ~ . 
cr cr cr2 cr 1 0 x.x. y.x. x. x.y. 

~ J ~ J J J J 
cr cr cr cr2 

0 1 XiYj yiyj x.y. yj J J 

(3-34) 
or 

cr2 -2cr +cr2 
a -a -a ~ ] x. x.x. x. xiyi yixj xiyj xjyj 

ctJ.xt.y 
].. ].. J J (3-35) 

ia -a -o +cr cr2 -2cr +cr2 x.y. y.x. x.y. x.y. yi yiyj yj ~ ~ ~ J l. J J J 

To compute the standard relative error ellipse, the formulae developed 

in section 3.4.1.1 (i.e. eqs. (3-20) and (3-24)) are used directly with 

the substitutions 

cr2 cr2 2cr + cr~ X xi x.x. J ].. J 

cr = cr cr - cr + cr (3-36) xy xiyi y.x. x.y. x.y. 
~ J ].. J J J 

cr2 a2 - 2cr + a2 
y yi yiyj yj 

The resulting ellipse represents the relative precision of two unknown 

points. 

One other point which should be mentioned is that the matrix 

C in equations (3-33) and (3-34) is a submatrix of the C matrix 
X, Y X 

for the whole network. One must ensure that the correct elements of 

C are used in formulae (3-36). 
X 
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3. 4. 2 Increasing the. Confidence Level 

As previously discussed in section 3.4.1, the above expressions 

are for the standard confidence ellipse at a 39.35% confidence level. 

The semimajor and semiminor axes of an ellipse of any other confidence 

level are usually denoted as 

a = Ccr 1 , 
X 

and (3-37) 

b = Ccr , 
y 

respectively. The so-called "C factor" in (3-37) is detennined depend-

ing on various circumstances. 

One of the circumstances is whether or not the a priori 

variance factor cr2 is assumed· to be known or unknown. Although not 
0 

previously mentioned, this factor is a scalar number which is used to 

obtain the weight matrix P of the observables if the variance covariance 

matrix CL is known only on a relative basis. The a priori variance 

factor is then multiplied into CL before inverting it to determine P. 

This is expressed as 

Even though in most instances of horizontal network computa-

tion cr 2 is assumed to be 1, it is the assumption as to whether this 
0 

factor is known or is to be estimated from the adjustment which affects 

computations of the C factor. If cr£ is assumed known (i.e. the scale 
0 

of the observables is known), then the C factor is computed as outlined 

in section 3.4.1; i.e. 
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c = lx2 
2, 1-a. • (3-38) 

If the a priori variance factor is to be estimated from the 

adjustment, then its estimate is called the a posteriori variance factor 

and is denoted as &2. This results in the variance covariance matrix . 
0 

of the parameters being estimated as 

A 

c 
X 

(3-39) 

It is shown in Hamilton [1964] that in this case the quadratic form of 

the parameters is distributed as 

( X - 11 )T C-l (X - 11 ) = rF 
~x x ~x r,n-u,l-a. ' (3-40) 

where r = dimensionality of the coordinate space, 

n-u degrees of freedom of the adjustment or preanalysis, and 

F Fischer distribution. 

Following the same procedure as outlined in section 3.4.1, the C factor 

is computed as 

C = 12F (3-41) 2,n-u,l-a. 

for the case where cr2 is assumed unknown. The C factor computed by 
0 

equation (3-41) is always larger than those from equation (3-38) (for 

the same network preanalysis), but for large degrees of freedom n-u, 

they are practically identical. 

One other point to be made, if cr2 is assumed unknown,is that the 
0 

standard confidence ellipse resulting from a C factor of 1 is not at a 

0.3935 probability level, but depends on the degrees of freedom n-u. 

From equation (3-41), it is seen that for C = 1 and n-u = 5, 1-a. is 
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0.3661, and thus the standard ellipse has an associated confidence 

level of 36.6% instead of 39.35%. Again, for large degrees of freedom 

n-u, the standard ellipse confidence level approaches 39.35%. 

The C factor for the point error ellipses already considered 

characterize the error of an unknown station with respect to the fixed 

stations. If all that is required is that the confidence ellipse of 

this one station be at the desired probability level of 1- a, then the 

C factors derived so far are sufficient. If, however, it is required 

that all of the unknown station confidence ellipses be at a probability 

level of 1- a simultaneously, then, as detailed in Vanicek and Krakiwsky 

[in prep.], the probability level of the individual station ellipses 

must be increased. This result stems from the so-called Bonferroni's 

in-equality, which is stated as 

N T 1 
Pr { TI (X-~ ) C- (X-~ ) < x2 } > 1 -

k=l X Xk X - Cl. -q, l""N 

where Pr probability, and 

N number of stations in the network. 

N 
I: ~ = 1-a , 

k=l N 
(3-42) 

This shows that the C factor required to compute simultaneous confidence 

ellipses is 

c (3-43) 

where the a in the nonsimultaneous C factor formula (eq. (3-38)) has 

Cl. 
been replaced by N" Note that the probability is at least 1-a (by 

virtue of the> sign in equation (3-42)). This inequality is a result 

of ommission of the cross covariance terms of C in equation (3-42) 
X 

[Vanicek and Krakiwsky, in prep.; Krakiwsky, 1978]. 
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The above argument also holds for simultaneous ellipses when 

o2 is assumed unknown, and the C factor becomes 
0 

C = f2F2 , n-u, 1-~ 
N 

(3-44) 

Formulae (3-43) and (3-44) are the most general for computation of the 

C factor. For nonsimultaneous confidence ellipses, N is simply assumed 

to be 1. 

The above considerations concerning simultaneous probability 

of 1-a for the point ellipses are also applicable to the relative 

error ellipses. If it is required that N relative confidence ellipses have 

the probability 1-a simultaneously, then the simultaneous C factors 

(eqs. (3-43) and (3-44)) should be used. Since, however, relative confidence 

ellipses are concerned with only two points at once, the occurrence 

of nonsimultaneous relative error ellipses is most frequent. 

3.5 Changing the Weight of an Observable 

The facility to change the weight of an existing observable in 

the design is useful in many circumstances. This is accomplished simply 

by subtrac~ing the observable with the old or previous weight, and adding 

it back again with the required new weight. For example, if for a design 

of six points which includes an azimuth with a standard deviation of 

3'.'0, it is required to change the standard deviation to 2':0, then the 

following steps are performed. 
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1. Compute the design and weight matrices for deletion. Since no 

parameters or nuisance parameters between steps are involved, 

equation (2-28) is directly applicable, and the Az matrix is a 

(lxl2) matrix with the four nonzero elements of equation (3-5) in 

the appropriate columns. The matrix M2 is simply a (lxl) matrix. 

of the variance; i.e. (9~0) 2 • 

2. Equation (2-28) is evaluated using the -ve sign for deletion of 

an observable, the Az and Hz matrices above, and the existing 

1 . . N-1 norma equat1ons 1nverse 1 . 

3. The A2 and M2 matrices are formed for addition of the azimuth. 

The A2 matrix is exactly the same as in step 1 above, but Hz is 

now (4~0) 2 reflecting the required new standard deviation of 2~0. 

4. Equation (2-28) is again evaluated using A2 and M2 from step 3, 

the normal equations inverse C resulting from step 2, and the +ve 
X 

sign to add the azimuth back again. 

The procedure is identical (except for the different A2 

elements) for all other observable types except directions. To change 

the weight of a direction, the models of section 2.4 are employed with 

all matrices referring to x2 being zero. Appendix III contains a 

detailed explanation of the formation of the appropriate matrices. 



4. COMPUTER IMPLEMENTATION OF NETWORK DESIGN MODELS 

An interactive program to implement the mathematical models 

of chapters 2 and 3 has been developed at U.N.B. It was designed for 

use both by students of the Department of Surveying Engineering and 

practicing surveying engineers and land surveyors. It is presently 

limited to the addition and deletion of only observables; no parameter 

addition or deletion is possible with the present version. The math­

ematical model for these more complex cases have been developed in 

chapter 2. 

4.1 Basic Program Features 

This section describes the main features of program NETDESIGN 

as well as the hardware used to implement it. A more detailed documen­

tation of the program is contained in Crawford [1978]. 

4.1.1 Hardware 

The hardware configuration is shown in Figure 4.1. The basic 

elements are a Tektronix 4015-1 graphics terminal which is interfaced 

as an APL terminal to an IBM 370/3032 general purpose computer. The 

disk shown in Figure 4.1 is used to store parts of the program so that 

67 
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Tektronix '015 -1 

Figure 4.1 Hardware Configuration 

IBM 
370/3032 

the limited workspace size of 128 Kilobytes available at U.N.B. is 

efficiently utilized. 

The Tektronix 4015 is the terminal where all input and output 

is performed. The terminal screen is the face of a storage type CRT 

and has a viewable screen size of about 38 by 28 em with a resolution 

of 1024 by 780 addressable points. This makes for a reasonably good 

resolution as can be seen in the example shown in section 4.2. All 

input is presently done by means of the keyboard attached to the 4015. 

A Tektronix 4631 hard copy unit is used to make prints of information 

contained on the screen of the 4015. Hard copies can be made at any 

time during the design session. Figure 4.2 shows the 4015-1 and the 

4631 hard copy unit. 
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4 .1. 2 Software 

The programming language used by NETDESIGN is APL (A ~rogram­

ming ~anguage; see e.g. Polivka and Pakin [1975]). The primary reason 

for using APL was that it was the only available programming language 

at the U.N.B. Computing Centre which supported the interactive 

plotting facilities of the Tektronix 4015. As well, APL is a good 

language for computing in an interactive faJ1on (i.e. prompting for 

and accepting input from a keyboard or other input device in real 

time). One minor disadvantage to this system was that the limited 

workspace size necessitated the storing of functions (subroutines) 

used in different parts of the program on disk, and calling them from 

disk when needed. This process is, however transparent to the user. 

Files of known or fixed points are also kept on disk so that one may 

search for known points within a given area (see section 4.2). 

Figure 4.3 gives an overall description of the flow of 

the program which involves 3 basic steps: 

1. Input initial data (limits of region where the network is to exist, 

known and unknown point coordinates and desired accuracy), 

2. Input initial observables (as many directions, distances and azimuths 

as are needed to at least uniquely define the network), 

3. Input update observables (if not satisfied with the present design, 

then add (subtract) new (old) observables in order to optimize). 

These basic steps are better illustrated in the following 

example. 



Retrieve files, 

Input 
initial observables 

Choose 
confidence level 

Stop 
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No Input 
update observables 

Figure 4.3. Basic Flowchart of NETDESIGN 
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4.2 Example 

The following example depicts the establishment of 3 unknown 

points in the form of a traverse. After typing in the word NETDESIGN, 

the initial stages of retrieving both program and data files begins, 

as well as the input of the initial data. As can be seen from 

Figure 4.4, this initial data includes the area in which the design 

is to be carried out (i.e. the design region), the approximate coor-

dinates, desired accuracy and station numbers of the unknown points, 

and finally the coordinates and station numbers of the fixed or 

known points. The option also exists for the user not to define the 

known points, but to let the program search a file of known points 

to find those which are inside the design region. 
FILE OPENED IR DSH•5J51 APL~NOUH.DISP•OLD.RECFH•F.BLKSI=E•2320 
FILE OPENED IR DSN•4919 NETFUNCS.DISP•OLD 
fHS FE>~D 

~EFINE A S~ REGION 
NAXItiU/1 X >l"'D Y?295330 226500 
11ININUN X ~ND Y?2930DO 224200 
ALI'IEADY HAVE UI>II\'HQI.IN Cf)ORDS. ASSIGNED FOR THIS REGIOH?N 
TO EHI> INPUT n·p£ • / • 

ALL INPUT IS TO BE IN HETERS 
RANGE OF STATION .~BER$•1 TO 96 
UNKNOUH P"'rS: X l" DESIRED ACCURACY ST~TION NUNBER?293692 
POINT W~S 293662 225233 O.a5 1 OK?Y 
UHKIVOI-IH PiS: X Y DESIRED ACCURf'ICY STATivN NUNB£R?293976 
POINT UAS 293976 225607 O.DS 2 OK?Y 
U"KNOUN PTS: .\ Y DESIRED f'ICCIJR~O ST.::tT ICIN NUNBER?29442l 
POINT :JI'IS 23442! 225264 0. C5 3 Olc"1Y 
UNKNOWN PT5: ~ Y DESIRE~ ACCURACY ST~TIOH NUHBERl/ 
X Y ACC. ST"TIOHS APE AS FOLLOUS: 

225293 ().05 

225607 0.05 2 

22s2e4 o.o5 3 

2.93682003~£5 2.252930000£5 
2.93976003~£5 2.25607CCOOE5 
2.3442100JJ£5 2.252840000£5 

1. OOOOOOOOOEil 
2.000000000£0 
3.000000000EO 

TICK lNTER\'~LS lC AXIS?SOO 
TICK lNTEP.t•~t.S r AXIS ?Sl'O 
DO YOU iJlSH T•::O GIVE THE 1\NOUH STATlL'NSH" 
TO END INPur hPE '·" 
Ai.l INF'UT IS TO BE IN NETEI<S 
R4NGE OF 5TATivH NUNEERS•lJu TO 95999 

'It Y STATION lvi.'MBER?233054.171 225214.674 11n 
POINT wAS ~930'54.17! 2.2521-1.574 11C2 01\H 

X Y STAT!OH NGNBER?233~7!.111 225598.373 1116 
POINT wAS 2~3571.(1! 225~9~.~73 1116 OK?Y 

X Y STATION lvu~BER~295267.29~ 225~19.706 l1JS 
POINT wAS 23526?.231 2254!9.7C5 tiCS O~?Y 

X Y SiiH!CN ~•:J"1Bf.'i'?23'5CC4 .. J16 22!;95!.144 1105 
POINT UAS 235004.C36 2~~951.144 1106 vK?Y 

X Y STATION N~NBEP?/ 

Figure 4.4. Input Initial Data 
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After this initial data has been entered, then as shown in 

Figure 4.5, the initial data is plotted. The known points are marked 

with ~'s, and the unknown points are plotted as o's. The circles 

around the unknowns stations are the design circles representing the 

desired accuracy, which, in this case, have a radius of 5 em. and a prob-

ability level of 0.99. It is these design circles which enable the user 

to see if his confidence ellipses meet the design criteria. 

226200 

225700 

22o4700 

2'33500 

.,11. G 
0 

ELLIPSE SC>~LE 

o o.0726 o.t4S o.21e o.2s 

G 

291sgg 29SOO 

Figure 4.5. Plot of Initial Data 

t. !OS 
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Figures 4.6 and 4.7 indicate the next step of the process; 

i.e. the input and plot of the initial observables. As can be seen 

in Figure 4.6, the observables are defined by their from station 

number, to station number, observables type and standard deviation. 

The observables are plotted as they are entered and are indicated on 

the plot by. different symbols (see Figure 4.7). Enough observables 

must be given at this stage to at least uniquely define every unknown 

point. Once the initial observables have been defined, the user then 

chooses the confidence level desired (i.e. standard (- 39%), 95% or 99%), 

and whether or not the a priori variance factor a2 is assumed known (see 
0 

section 3.4.2). The option to choose simultaneous confidence ellipses 

does not yet exist. 

FNS I<EIIID 
riDJuSTNENT OR FRE"'~YSIS?P 
~Lt INPUT IS TO BE IN NETE~S AHD SECONDS 

INPUT OBSERU~TIONS: 
fl1 END hPE I / ' 

OBSERVATION TYPES ARE: 
1 FOR DIRECTION 
2 FOR DIST"'NCE 
3 FOR ~:?I11UTH 

FPQH STATlvN ti!:I.J TO STATION NO.: 
t1BSERV"'Tlo)N TYPE; STANDARD DEV. 
F~ON TO 11.2.31 SIG?1116 1102 1 3 
!NP!JT IJAS 111& 1102 1 3 OK?'f 
FROM TO 11.2.11 5IG11116 1 1 3 
INPUT UAS 111o 1 1 3 OK?Y 
FPON TO 1!.2.31 SIG?1116 1 2 0.02 
!NPLIT UAS 1116 1 2 0.02 01<1Y 
F~ON TO (1,2.31 SIG?1 1116 1 2 
INPUT UAS 1 1116 1 2 OK?Y 
FRON TO (1,2.31 S!G?1 2 1 2 
INPUT UAS 1 2 1 2 OK?Y 
FRON TO 11.2.~1 SIG?2 1 2 
INPUT I.JA5 2 1 1 2 OK1Y 
FRON TO 11•2•11 SIG?2 3 2 
INPUT UAS 2 3 1 2 OK?Y 
F~ON TO [1,2.31 SIG?2 1 2 0.02 
INPUT UAS 2 1 2 0.02 OK?Y 
FROH TO ll.2.11 SIG22 3 2 o.a2 
IJ'iPUT UAS 2 3 2 0.02 OK?Y 
FR•.'I'I TO I 1.2.31 SIG?I 
Fr6 READ 
ST~~DARD ERR~R ELLIPSES?N 
~-CWFI!'EI'iCE LEVEL • 95 tlf< 93?99 
~PP!ORI •.'C.P!~N·:E FACTOR "NOtoiHl~ 

Figure 4.6. Input Initial Observables 
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Figure 4.7. Plot of Initial Observables 

The program now takes over and computes the C matrix from 
X 

the given observables. Figure 4.8 shows the 99% confidence ellipses 

resulting from the initial observables of Figure 4.6. The figure 

clearly shows that all three points fail to meet the design circle 

accuracy of 5 em. The relative confidence ellipses appear between the 

unknmvn stations. 
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Figure 4.8. Confidence Ellipses from Initial Observables 

Because the design criteria have not been met, the so-called 

update observables in Figure 4-9 are added. These observables amount 

to essentially typing the traverse to the known points 1105 and 1106. 

Figure 4.10 demonstrates the 99% confidence ellipses resulting from 

the addition of these update observables. This time the confidence ellipses 

do meet the design criteria of 5 em radius error circles and the design 

is essentially complete. One could at this point further optimize 

the design by trying to get all of the station ellipses to take the 
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wt.L. INPliT IS TO BE IN NETERS AND SECOHl.'IS 
!NPUT OBSERVATIONS: 
ro END TYPE '"' 
~BSER~TION TYPES ~RE: 

1 FOR DIRECTION 
2 f(IR MSTANCE 
3 FOR AZINUTH 

FRON ST~TION NO.: TO STATION NO.: 
OBSERV~T10N TYPEJ ST~DARD DEV. 
HDD OBSER~ATIONS•1. SUBTRACT•O 
FRO~ TO 11.2.31 SIG [1,0113 2 1 1.5 1 
INPUT w:!S J 2 1 1.5 1 01<. ?Y 
FRL'n TO 11.2.31 SIG 11.01?3 1105 1 1.5 1 
INPUT UAS J 1105 1 1.5 1 OK?Y 
FRon TO 11.2.31 SIG [1,0171105 3 1 1.5 1 
INPUT IJRS 1105 3 1 1.5 1 OIOY 
FRON TO (1.2.31 SIG 11.0171105 1106 1 1.5 1 
INPUT UAS 1105 1106 1 1.5 1 OK1Y 
FRan TO 11.2.31 5IG 11.01?1105 3 2 0.02 1 
INPUT UA5 1105 3 2 0.02 1 OK?Y 
FROM TO (1,2.31 SIG 11.011/ 
FNS READ 
STAN~RD ERROR EL.L.IPSES?H 
CONFIDENCE L.EUEL - 9S OR 99?99 
APRIORI VHRIANCE F~CTOR kNO~H1Y 
Figure 4.9. Update Observab1es 

ELLIPSE SCHL.E 

0 0.06BS 0.137 0.206 0.274 

29400~ 

Figure 4.10. Updated Design 
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optimum shape of that at station 2. This would involve subtracting 

observables and adding others at different standard deviations. One 

can see by the shape of the relative error ellipses that the distances 

are less accurate than the directions (in a relative sense). 

Assuming that the user is now satisfied with the deisgn, 

he indicates this to the program, and the final step is to produce 

a summary of the design as shown in Figure 4.11. The summary includes 

the coordinates of both the known and unknown points, all observations 

that have been made, and the final confidence ellipses. 

FIXED ST~TlOHSI 
ST~TlOH X COORD. 

1102 
111& 
1105 
1106 

29305-4.171 
2935?1.011 
295~7.293 
29500-4.036 

OBSERU~TIONS N~DE: 
1116 1102 1 3.0000 
1116 1 1 3.0000 
1116 1 2 .0200 
1105 3 1 1.5000 
1105 1106 1 1.5000 
1105 3 2 .0200 

1 1116 1 2.0000 
1 2 1 2.0000 
2 1 1 2.0000 
2 3 1 2.0000 
2 1 2 • 0200 
2 32 .0200 
3 2 1 1.5000 
3 1105 1 1.5000 

UNI<NOIJH POINTS: 
Y COORD. ST~TIOH X COORD. 

22521<4.674 
225598.373 
225419.706 
225951.144 

1 
2 
3 

293&62.000 
293976.000 
2944.21.000 

RfSULTS ACHIEVED AT 99 PERCENT CONFIDENCE LEVELl 
STATION ELLIPS£51 
ST~TION SENI-NAJOR SENI -NINOR THET~ 
NUNBER AXIS 

1 .0-47 
2 .041 
3 .045 

RELATIVE ELLIPSES: 
STATION STATION 
HUNBER NUNBER 

2 1 
3 2 

AXIS 
• 014 
.040 
.022 

65.7 
39-1 
s.o 

SENI-N!+JOR 
4XI5 

.046 

.047 

SENI-NINOR 
AXIS 

.018 

.019 

THETA 

36.9 
30.7 

Figure 4.11. Summary of the Design 

Y COORD. DES.HCC. 

225293.000 
22'3607.000 
2252fH,OOO 

.050 

.DSO 

.oso 
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4.3 Results 

The example shown in section 4.2 is a simple case of three 

unknown points tied to four known points in a traverse fashion. Other 

examples (see Nickerson et al. [1978]) have been done in order to 

illustrate the application of the network design ideas to other 

common networks encountered by surveying engineers. These examples 

have been investigated as to their actual cost at U.N.B., and as 

Table 4.1 shows, the approximate cost for designing a network is 

about $3.50 per unknown point at the U.N.B. Computing Centre. This is 

a reasonable cost considering it may save time in the field where the 

establishment of stations is very costly, especially if unnecessary 

measurements are made. 

No. of No. of Total CPU Total Cost @ 
Example unknown known used connect U.N.B. 

points points (sec) time (min.) 

1 3 4 50.3 20.8 $11.85 

2 5 2 67.6 24.7 $15.47 

3 10 6 165.6 47.0 $36.08 

Table 4.1. Results of Three Different Design Examples 
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The results have shown that the present program NETDESIGN 

is an economical method by which to design horizontal survey networks. 

It is also instructive for students to use this program in order to 

understand how different survey network geometries and observables 

affect the precision of their surveys. Although the program is by no 

means at the production stage, it has developed the simpler models to 

a workable level. At present, one drawback is that the Tektronix 

terminal must share the IBM 370 resources with all other APL users who 

happen to be signed on at the same time. At times, this causes con­

siderable delays and the turnaround time (i.e. time for the computer 

to respond) is quite long. This problem is brought up again in Chapter 5. 



5. CONCLUSIONS AND RECOMMENDATIONS 

The following conclusions result from the research performed 

on the integration of the method of preanalysis of survey networks 

and interactive computer graphics. 

1. The sequential model is most suitable for survey network design 

as it utilizes the already existing C matrix, which means that 
X 

less computations are required than for designs done in a batch 

mode. 

2. Directions more closely represent the usual observing procedure 

for theodolite observations and give a smaller variance covariance matrix 

for the unknown stations than do.similarly weighted uncorrelated angles. 

3. Interactive computer graphics is well suited for the process of 

preanalysis of survey networks. The near real time response and 

graphics capabilities result in a useful design tool which is 

also economically viable. 

4. The present design system at U.N.B. has some limitations. The 128 

Kbyte workspace size limits the number of unknown stations which 

can be dealt with at one time to about 20. The response or turn-

around time of the system is sometimes inadequate due to a large 

user load on the IBM 370 computer system. Entering the data (i.e. 

by typing on the keyboard) is tedious when many points and 

observables are entered. If more that about 15 points are displayed 

81 
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at once along with their associated station and relative confidence 

ellipses, the screen tends to be too cluttered to clearly see 

the detail of the design. 

In light of these conclusions, and in looking ahead at 

future possibilities, the following are the main recommendations 

that can be made. 

1. The present program NETDESIGN should be expanded to include all 

of the mathematical models developed herein which have not yet 

been implemented. These include allowing the known stations to 

have weights (section 1.2), permitting the addition or deletion 

of unknown points during the design (section 2.2), allowing the use 

of angles as observables, and incorporating the models for common 

nuisance parameters between steps (section 2.4). This would make 

the program better able to respond to the dynamic requirements of 

network design. 

2. The possibility to design a survey network to a specified relative 

accuracy should be included. Since relative accuracy is usually 

the yardstick used to measure the precision of networks, this 

would give. the program a greater degree of reality. 

3. The ability to input both known and unknown points by means of a 

light pen or some such similar device would speed the data entry. 

This technique could also be used to enter observables by indicat­

ing the from and to stations with the light pen. 



83 

4. The addition of some local processing power to the graphics terminal 

(e.g. Tektronix OPTION 40, an 8 bit microprocessor and up to 32 K bytes 

RAM memory board combination) would decrease the turnaround time 

significantly. 

5. Large networks could be designed by the use of "windows" on the 

display screen. This would entail defining regions within large 

networks and then plotting this desired region at a larger scale. 

One could then optimize the design in regions of a manageable (i.e. 

screen not cluttered) size. 

6. The capability to perform adjustments as well as designs is a 

desirable capability. The graphics terminal would plot the adjusted 

network with its confidence ellipses as well as draw bar graphs or 

other graphical interpretations of the statistical analysis of the 

network. 

Clearly, interactive computer graphics is a powerful tool and 

its use in surveying engineering can only continue to grow as people 

become aware of its immense potential. 



84 

REFERENCES 

Allman, J.S. and G.G. Bennett (1966). Angles and Directions. Survey 
Review, Vol. 18, No. 139. 

Bamford, G. (1975). Geodesy. London, Oxford University Press, 3rd ed. 

Crawford, J.M. (1978). Documentation of the Software for the Inter­
active Survey Network Design System. Dept. of Surveying 
Engineering, Technical Report No. 50, University of New 
Brunswick, Fredericton. 

Fadeev, D.K. and V.N. Fadeeva (1963). Computational Methods of Linear 
Algebra. San Francisco, W.H. Freeman and Co~pany. 

Hamilton, W.C. (1964). Statistics in Physical Science. New York, 
Ronald Press Co. 

Hogg, R.V. and A.T. Craig (1970). Introduction to Mathematical 
Statistics. New York, Macmillan, 3rd ed. 

Kouba, J. (1970). Generalized Sequential Least Squares Expressions 
and Matlan Programming. M.Sc.Eng. Thesis, Dept. of 
Surveying Engineering, University of New Brunswick, 
Fredericton. 

Krakiwsky, E.J. (1968). Sequential Least Squares Adjustment of Satel­
lite Triangulation and Trilateration in Combination with 
Terrestrial Data. Report No. 114, Department of Geodetic 
Science, Ohio State University, Columbus. 

Krakiwsky, E.J. (1975). A Synthesis of Recent Advances in the 
Method of Least Squares. Dept. of Surveying Engineering, 
Lecture notes No. 42, University of New Brunswick, 
Fredericton. 

Krakiwsky, E.J. (1978). Statistical Techniques and Doppler Satellite 
Positioning. Invited paper to the Royal Society Discussion 
Meeting on Satellite Doppler Tracking and Geodetic Applica­
tions, London, England. 

Krakiwsky, E.J. and D.B. Thomson (1978). Mathematical Models for 
Horizontal Geodetic Networks. Dept. of Surveying Engineering, 
Lecture notes No. 48, University of New Brunswick, Fredericton. 

Krakiwsky, E.J. and P. Vanicek (in prep.). Concepts of Geodesy. 
Amsterdam, North-Holland. 



85 

Kreyszig, E. (1972). Advanced Engineering Mathematics. New York, 
John Wiley and Sons. 

McLellan, C.D. (1971). Computer Program GALS. The Canadian Surveyor, 
Vol. 25, No. 2. 

Mepham, M.P. (1976). A Rigorous Derivation of Station Adjustment 
Formulae for Complete and Incomplete Sets. Dept. of 
Surveying Engineering, Senior Report, University of New 
Brunswick, Fredericton. 

Mikhail, E.M. (1976). Observations and Least Squares. New York, IEP 
Series in Civil Engineering. 

Morrison, N. (1969). Introduction to Sequential Smoothing and Prediction. 
New York, McGraw-Hill. 

Nickerson, B.G., E.J. Krakiwsky, D.B. Thomson, M.L. Syverson, J.M. 
Crawford (1978). Design of Survey Networks Using Interactive 
Computer Graphics. Proceedings of the American Congress on 
Surveying and Mapping, Washington. 

Polivka, R.P. and S. Pakin (1975). APL: The Language and its Usa~e. 
Englewood Cliffs, Prentice-Hall. 

Rainsford, H.F. (1954). Least Squares Solutions: Are They Good Approxi­
mations to the Truth? Empire Survey Review, Vol. 12, No. 93. 

Rainsford, H.F. (1966). Triangulation Adjustment- Angles or Directions. 
Survey Review, Vol. 18, No. 141. 

Schmid, H.H. and E. Schmid (1965). A Generalized Least Squares Solution 
for Hybrid Measuring Systems. The Canadian Surveyor, Vol. 9, 
No. 1. 

Steeves, R.R. (1978). A Users' Manual for Program GEOPAN Geodetic Plane 
Adjustment and Analysis. Dept. of Surveying Engineering, Technical 
Report No. 54, University of New Brunswick, Fredericton. 

Tektronix (1978). OPTION 40 Programmable Keyboard Capability. Adver­
tisement Flyer. 

Thompson, E.H. (1969). An Introduction to the the Algebra of Matrices 
with Some Applications. London, Hilger. 

Tienstra, J .M. (1956). Theory of __ t:_!~e Adjustment of Normally Distributed 
Observations. New York, American Elsevier. 

Wells, D.E. (1974). Doppler Satellite Control. Dept. of Surveying 
Engineering, Technical Report No. 29, University of New 
Brunswick. 



86 

INTRODUCTION TO APPENDICES 

The following appendices are included to illustrate the 

various models developed in this thesis. The program used to compute 

these examples is not the program discussed in Chapter 4. Rather, it 

is a development program used by the author to implement the models in 

APL before transferring them to be compatible with the Tektronix 4015. 

This is the reason why the computer generated graphics is not identical 

to the example in Chapter 4. The precision of the results included 

here is 5 significant figures. The reason for this is to enable the 

inclusion of matrices which would be too large if printed with greater 

precision. One should note that all of the computations have been 

carried out in double precision (approximately 16 significant digits), 

and that the 5 significant digits are used only for printing purposes. 

The results presented here have all been checked by doing a 

preanalysis as if the observables and stations of the final iteration 

or design were the initial case. As well, the results were compared to 

answers obtained from a program for nonsequential batch preanalysis 

[Steeves, 1978] and the results compare identically. 
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APPENDIX I. Example of Addition of Distances 

The small network depicted in Figure AI.l has been used to 

do a preanalysis. The points are actually representative of part of 

a network measured in Fredericton during 1975. The P or weight 
X 

information is taken from an actual adjustment of data measured at 

that time. As can be seen from Figure AI.l, points 50 and 70 are 

weighted, there are no fixed points, and the observables considered at 

the initial stage are shown. The approximate coordinates of the 

points are listed in Table AI.l. 

y 

245100 

245000 

244900 

244700 

0= Unknown Station 

0 =Weighted Station 

80 

244600------~----~------~----~----~~----~----~x 
291100 291200 291300 291400 291500 291600 291700 

Figure AI.l. Example Network for Distance Addition 



STATION 

50 

60 

70 

80 

88 

X COORD. 

291603.473 

291212.951 

291374.683 

291684.665 

Y COORD. 

244665.211 

245022.422 

244972.597 

245091.121 

Table AI.l. Approximate Coordinates of Points for Appendix I-IV 

Examples. 

At the initial stage, the observables are added sequentially 

to build up the normal equations matrix N. The orientation unknowns 

are not eliminated as discussed in section 2.3 because we are not dealing 

with the sequential formation of C , but with N. The procedure 
X 

required to eliminate Z's when forming N has been developed in Steeves 

[1974], and essentially involves transforming the P or weight matrix 

for the set of directions into a matrix S defined as 

s = 

where 

P1P2C •••...•• PlPnC 

2 
P2+P2C ••••••. P2PnC 

symmetric 

c -1 
n 
E P. 

i=l 1 

(AI-l) 

and P. =diagonal elements of the weight matrix P. Expression (AI-l) 
1 

results from considering the model F(X1 , x2 , L) = 0, where x2 are the 

nuisance parameters, solving for X2 and substituting the result back 

in to solve for xl. 
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Considering.the sequential formation of the normal equations 

for Figure AI.l, the N matrix starts out as an 8x8 null matrix. The 

first set of directions added are those at station 50, which are to 

stations 50 and 80 with standard deviations of 2':0 and 1~'0 respectively. 

The partial A matrix resulting from this set of directions is 

50 60 80 

A d50,60 [-263.04 -287.57 263.04 287.57. 0 

-89~08J d50,80 -467.31 89.084 0 0 467.31 

and the S matrix resulting from equation (AI-l) is 

s [ 
0.2 

-0.2 

-0. 2] . 
0.2 

Note that each element of A is multiplied by p" (206264.8062) to make 

it compatible with the units of P. The matrix ATSA is formed, and 

because the N matrix has rows and columns corresponding to the station 

sequence (50, 60, 70, 80), ATSA is added to rows and columns (1, 2, 

3, 4, 7, 8) of the normal equations matrix N to result in 

8345 -15388 10746 11748 0 0 -19091 3639.4 

28374 -19815 -21663 0 0 35203 -6710.8 

13838 15129 0 0 -24584 4686.6 

N = 16540 0 0 -26877 5123.6 

0 0 0 0 

symmetric 0 0 0 

43676 -8326.0 

1587.2 
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after adding the first set of directions (to 5 significant figures). 

The other sets of directions, as well as the two distances shown in 

Figure AI.l and listed in Table AI.4 (excepting the two distances from 

station 60) are added to N. After the observables have been added, 

the normal equations (again to 5 significant digits) is: 

93197 10052 25059 66482 -80272 -889.75 -37984 -75644 

90545 -8673.8 23549 -40025 -62966 38647 -51128 

35809 89461 -29646 -102830 -31222 22047 

N 285420 -107520 -370440 -48423 61474 

161910 119140 -51988 28400 

symmetric 601750 -15422 -168350 

121190 25198 

158000 

After computing N, the weights for points 50 and 70 must now 

be added. As mentioned before, these weights were extracted from a 

previous adjustment, and the P matrix takes the form 
~--~----so x 70----~~--~ 

T 
50 

p + X 

70 

l_ 

0.20406xl06 -0.20588x105 

0.14289xl06 

symmetric 

-0.78524xl05 

-0.38114xl05 

0.39262xl06 

0.47842xl04 

-0.56763xl05 

0.56543x105 

0.64855xl05 

The zeroes for stations 60 and 80 have been omitted, and thus the above 

P matrix is added to the (1, 2, 5, 6) rows and columns of the N matrix 
X 

to give 
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297260 -10536 25059 66482 -158800 3894.5 -37984 -75644 

233440 -8673.8 23549 -78139 -119730 38647 -51128 

35809 89461 -29646 -102830 -31222 22047 

(N+P ) = 285420 -107520 -370440 -48423 61474 
X 

554530 175690 -51988 28400 

synnnetric 666610 -15422 -168350 

121190 25198 

158000 

The inverse of (N+P ) is taken to give the first C matrix, and from 
X X 

this C matrix the confidence ellipses are computed as discussed in 
X 

section 3.4. The resulting error ellipses are listed in Table AI.2 and 

plotted in Figure AI.2, and arise from assuming that the confidence level 

is 95%, the a priori variance factor is known, and the station ellipses 

are of the nonsimultaneous type. This implies, then, that the C factor 

for the confidence ellipses is 

15.99 = 2.45 . c = lx~ l-a , 1xto.95 
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Figure AI.2. Plot of Initial 95% Confidence Ellipses for Distance 

Addition Example 

STATION ELLIPSES 

STATION SEMI-MAJOR SEMI-MINOR THETA 
NUMBER AXIS AXIS 

50 .0081 .0057 81.552 
60 .0394 .0128 -21.046 
70 .0112 .0041 -84.672 
80 .0129 .0097 -60.855 

RELATIVE ELLIPSES 

STATION STATION SEMI-MAJOR SEMI-MINOR THETA 
NUMBER NUMBER AXIS AXIS 

50 60 .0396 .0121 -19.301 
50 80 .0126 .0081 -24.784 
50 70 .0085 .0057 83.930 
60 70 .0378 .0058 -16.186 
70 80 .0115 .0069 -39.128 

Table AI.2. 95% Confidence Ellipses from Initial Design of Distance 
Addition Example 
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The next step is to update the above results, in this case 

by adding two distances, both from station 60 to stations 50 and 70 

with standard deviations of 0.006 and 0.002 metres respectively. These 

2 distances yield the partial A matrix 

~-----60--------r------50------~~----70----~~ 

[
-0.73788 

-0.95568 

0.67494 

0.29442 

0.73788 -0.67494 0 

0 0 0.95568 

Each row of A2 is computed exactly as in equation (3-2), with the 

approximate coordinates given by Table AI.l. The sequential addition 

consists only of observables, and equation (3-2) reduces to equation 

(2-28) which is 

The distances are to be added, and thus the + sign applies 

above. M2 is given as 

0 J -6 
4.0xl0 

or simply the variance covariance matrix of the observables. The final 

C matrix obtained after computing the above expression is 
X 

c -X 

5.4486xl0-6 8.289lxl0-7 8.7902xl0-7 -3.4502x10-6 1.4512xl0-6 -1.4864xl0-6 2.6523xl0-7 2.2096xl0-6 

1.0884xl0-S -4.2034xlo-7 9.2547x10-& -2.2212xl0-7 9.8590xl0-6 -7 .58llxl0-7 1.1042xl0-S 

6.7433xl0-6 9.0540xl0-l 2.7824xl0-6 -1.4603xl0-7 4.1676xl0-6 -2.3288xl0-6 

2.733lxl0-S -8.4996xl0-7 2.0274xl0-S 7.0034xl0-6 l.l220xl0-S 

2.7861xl0-& -1.1469xl0-6 2.2679xl0-6 -1.519lxl0-6 

1.8354xl0-S 3.4219xl0-6 l.3B27xl0-S 

aynnetric 1.4372xl0-S -2.4784xl0-6 

2.2320xl0-5 
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Again, the 95% confidence ellipses are extracted from C according to 
X 

section 3.4 to give the results displayed in Table AI.3. Figure AI.3 

shows a plot of these error ellipses. The a priori variance factor was 

again assumed known and nonsimultaneous ellipses were computed. It is 

obvious from Figure AI.4 that station 60 has benefitted the most from 

the additional distances, which is to be expected as stations 50 and 

70 have a fairly large weight matrix on them which contributes to their 

stability. 

STATION ELLIPSES 

STATION SE~U-MAJOR SEMI-MINOR THETA 
NUMBER AXIS AXIS 

50 .0081 .0057 81.519 

60 .0128 .0063 87.487 

70 .0105 .0040 -85.809 

80 .0118 .0091 -74.026 

RELATIVE ELLIPSES 

STATION STATION SEMI-MAJOR S~U-MINOR THETA 
NUMBER NUMBER AXIS AXIS 

50 60 .0116 .0068 64.798 

50 80 .0110 .0078 -18.602 

50 70 .0077 .0054 73.205 

60 70 .0057 .0046 63.919 

70 80 .0105 .0066 -46.032 

Table AI.3. 95% Confidence Ellipses After Addition of Distance Obser­

vables 

As a final su.nnnary, Table AI. 4 (which is of the same format as 

the example in Chapter 4) lists all of the observables that were con-

sidered in this design. Although this example has been very simple, it 
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serves as a good check for someone considering the application of the 

models developed in this thesis. 

OBSERVATIONS MADE: 

1 50 60 2.000 
1 50 80 1.000 
1 60 70 3.000 
1 60 50 3.000 
2 60 50 .006 
2 60 70 .002 
1 70 50 2.000 
1 70 60 2.000 
1 70 80 2.000 
2 70 80 .004 
1 80 50 1.500 
1 80 70 1.500 
2 80 50 .005 

Table AI.4. Summary of Observables Used in Distance Addition Example 
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Figure AI.4. Comparison Plot of Initial and Final 95% Confidence Ellipses 
for Distance Addition Example 
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APPENDIX II. Simple Addition of Parameters 

This appendix illustrates the procedure for the addition of new 

unknowns (i.e. point coordinates) when there are no nuisance parameters 

involved (cf. section 2.2). The network considered is the same as in 

Appendix I, except that for the initial case, only three points, as shown 

in Figure AII.l, are considered. Points 50, 70 and 80 are first considered 

y 

B~o '-­' --', ~-245000 

' ' ' ' ' ' ' 244900 
' 

244800 

244700 

244600 

' ' ' ' ' ' ' ' ' ' ' ' ' 
~' 

80 

' 

244SOOL-----~----~------L-----~-----L----~~--~x 

291100 291200 291300 291400 291500 291600 291700 

Figure AII.l. Example Network for Addition of Parameters by Azimuth 
Observables 
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with points 50 and 70 having the same weights as in Appendix I. The initial 

set of observables is as shown in Figure AII.l and their standard devia-

tions are listed in Table AII.l. The normal equations inverse or C matrix 
X 

OBSERVATIONS MADE 

~ Froni To a 

1 50 70 2.0 
1 50 80 1.0 
1 70 so 2.0 
1 70 80 2.0 
2 70 80 0.004 
1 80 so l.S 
1 80 70 l.S 
2 80 so 0.005 

Table AII.l. Initial Observables Used for Simple Addition of Parameters 

Example 

resulting from this initial setup is 

S.4S99E-6 8.2476E-7 1.4184E-6 -1.34S4E-6 2.8716E-7 2.2932E-6 

8.2476E-7 1.0886E-S -2.1003E-7 9.8071E-6 -7.6618E-7 l.lOllE-S 

C = 1.4184E-6 -2.1003E-7 2.8816E-6 -l.SS70E-6 2.2042E-6 -1. 7620E-6 
X 

~.34S4E-6 9.8071E-6 -1.5S70E-6 

2.8716E-7 -7.6618E-7 2.2042E-6 

2.0116E-S 3.6958E-6 1.4870E-S 

3.69S8E-6 1.3367E-5 -1.70S4E-6 

2.2932E-6 l.lOllE-5 -1.7620E-6 1.4870E-S -1.70S4E-6 2.2720E-5 

and the resulting 9S% nonsimultaneous confidence ellipses, assuming the 

a priori variance factor is unknown, are listed in Table AII.2 and 

plotted in Figure AII.2. The C factor for extracting the 95% confidence 

ellipses in this case is 

C = 12Fz,n-u,l-a' or C = 12Fz,J,0. 9S = 4.37 • 



l 

~2.451()£5 

2.450CE5 

2.449GES 

2.4460£5 

2.4470£5 

2.4460£5 

99 

~ 
I 
f 
\ 
I 

0 1 2 3 4 5 
Ellipse Scale (em) 

2.S12QE5 .. 2.9130£5 2.9140£5 2.915·)£5 2.9160£5 2.9170f5 

Figure AII.2. Plot of 95% Confidence Ellipses Resulting from the Initial 

Design of Simple Addition of Parameters Example 



100 

STATION ELLIPSES 

STATION SEMI-MAJOR SEMI-MINOR THETA 
NUMBER AXIS AXIS 

50 .0145 .0101 81.545 

70 .0197 .0072 -84.879 

80 .0210 .0158 -79.982 

RELATIVE ELLIPSES 

STATION STATION SEMI-MAJOR SEMI-MINOR THETA 
NUMBER NUMBER AXIS AXIS 

50 70 .0148 .0101 82.183 

50 80 .0191 .0144 -17.912 

70 80 .0184 .0118 48.441 

Table AII.2. 95% Confidence Ellipses Resulting from Initial Design 
of Simple Addition of Parameters Example 

The next step is to add the station number 60 to the existing 

Cx by means of two azimuth observations. For this case, the models 

developed in sections 2.2 and 3.2 are directly applicable. Considering. 

that the first observable to be added is an azimuth from 50 to 60 with 
aF2 

a standard deviation of 10", the A21 matrix, or ax is 
1 

p [ 

The A2 matrix 

A2 
aF2 

= -- = ax2 

-(y6o-Yso> 
2 

850,60 

is similarly 

<Y6o-Y5o> 
p [ 2 

850,60 

[ -263.04 -287.57]. 

given as 

-(x60-x50) 
[263.04 287.57] 2 ] ' 

850,60 

where p = 206264.8062. The constant p is used to make the units of 

A correspond to the units of the weight matrix for the observables CL 

which are in units of (") 2 • In this case, CL = (lxl) = 100"2 , and 

therefore H2 = 100"2. 
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--1 
Following the procedure outlined in section 2.2.1, N1 is 

first formed by equation (2-47), which is 

Considering first the expression inside the square brackets yields 

-1 T M2+A21N1 A21 = 100 + [-263.04 -287.57] [5.4599E-6 8.2476E-~ 
8.2476E-7 1.0886E-~ 

[-263.04] , 
-287.57 

-1 where N1 is taken to be the portion of the previous Cx matrix corres-

ponding to point 50. Evaluation of this expression leads to 

Evaluation of A21N~1 yields a matrix of size (lx6) which is 

A21N~l = [-0.0016734-0.0033473-0.0003127-0.0024664 0.0001448-0.0037698]. 

-1 T -1 T -1 -1 Computing N1 A2l [M2 + A21 N1 A21 J A21N1 and subtracting it from 

-1 --1 
N1 yields N1 as 

5.4323E-6 7.6952E-7 1.4132E-6 -1.3861E-6 2.8955E-7 2.2310E-6 

7.6952E-7 1.0775E-5 -2.2036E-7 9.7257E-6 -7.6140E-7 1.0887E-5 

N~1 = 1. 4132E-6 -2. 2036E-7 2. 8806E-6 -1. 5646E-6 

-1.3861E-6 9.7257E-6 -1.5646E-6 2.0056E-5 

2.2046E-6 -1.7736E-6 

3.6993E-6 1.4779E-5 

2.8955E-7 -7.6140E-7 2.2046E-6 

2.2310E-6 1.0887E-5 -1.7736E-6 

3.6993E-6 1.3367E-5 -1.7000E-6 

1.4779E-5 -1.7000E-6 2.2579E-5 

Following the procedure of section 2.21, N12 and N2 are next 

computed. Firstly, 

T .:.1 
N12 = A21H2 A2 = [-263.04] [0.01) [263.04 287.57] 

-287.57 

Now, N2 is computed as 

[
-691.91 -756.44]· 

-756.44 -826.98 
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Px +A~M;1A2 = [0.29513£6 0.28418E5l + [263.04] [0.01] [263.04 287 .57] , 
2 0.28418£5 0.37081E~ 287.57 

N2 = [2. 9582E5 

2.9174£4 

2. 9174E4] 

3.7164£5 

This now enables us to compute Q2 which, according to equation (2-43), 

is 

Carrying out the necessary computations, Q2 is found to be 

Q2 =[ 3.4069£-6 
-2.6736£-7 

-2.6736£-7] 

2.7119£-6 

Equation (2-42) is now employed to compute Q12 as 

--1 
At this point, it should be mentioned that N1 and N12 do not seem to 

be conformable for multiplication. The main reason for this is that 
aF2 

= ax should really be of 
1 

dimension (lx6) instead of (lx2). A21 
• ClF2 aF2 aF2 

was given as (lx2) because the other four elements (~ e -- -- -­
•• ax7o' ay7o' axao' aF2 

-- ) are all zero. a y80 
It now becomes necessary to insert these zeroes 

in their proper positions to compute Q12 . Carrying out the matrix 

multiplications yields 

1.3520£-8 1.1709£-8 

2.7044£-8 2.3422£-8 

Ql2 2.5264£-9 2.1880£-9 

1.9927£-8 1. 7257E-8 

-1.1699£-9 -1.0132£-9 

3.0457E-8 2.6378£-8 
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The next step is to compute Q1 according to equation (2-45) 

as 

and upon computing this 

5.4324E-6 7.6975E-7 1.4133E-6 -1.3859E-6 2.8954E-7 2.2312E-6 

7.6975E-7 1.0776E-5 -2.2031E-7 9.7260E-6 -7.6142E-7 1.0888E-5 

Q1 = 1.4133E-6 -2.2031E-7 2.8806E-6 -1.5646E-6 

-1.3859E-6 9.7260E-6 -1.5646E-6 2.0056E-5 

2.2046E-6 -1.7736E-6 

3.6993E-6 1.4779E-5 

This 

ered 

80. 

2.8954E-7 -7.6142E-7 2.2046E-6 3.6993E-6 1.3367E-5 -1.7000E-6 

2.2312E-6 l.OBBBE-5 -1.7736E-6 1.4779E-5 -1.7000E-6 2.2580E-5 

matrix Ql is now the C matrix for the "old" or previously consid-
X 

' 
points in the network, which, in this case, are points 50, 70 and 

Appending the Q12 and Q2 matrices onto Q1 results in the final C 
X 

matrix for all of the points, which is of size (8x8). It is given as 

c -X 

c = 
X 

T 
Ql2 

(2x6) 

Ql2 
(6x2) 

Q 
(2~2) 

, 

S.4324E-6 7.6975E-7 1.4133E-6 -1.3859E-6 2.8954E-7 2.2312E-6 1.3520E-8 1.1709E-8 

1.0776E-7 -2.2031E-7 9.7260E-6 -7.6142E-7 1.0888E-6 2.7044E-8 2.3422E•8 

symmetric 

2.8806E-6 -1.5646E-6 2.2046E-6 -1.7736E-6 2.5264E-9 2.1880E-9 

2.0056E-5 3.6993E-6 1.4779E-S 1.99272-8 1.7257E-8 

1.3367E-5 -1.7000E-6 -1.1699E-9 -1.0132E-9 

2.2580E-5 3.0457E-8 2.6378E-8 

3.4069E-6 -2.6736E-7 

2.7119E-6 
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The final step in this example is to add the azimuth from 70 

to 60 which also has a standard deviation of 10". This observable is 

between two stations which are now already included in the C matrix, 
X 

and therefore its addition is identical to that of Appendix I, except for 

the elements of Az, which are 

(x70-x60) 
2 . 

s60,70 

(y70-y60) 
2 

s60,70 

A2 = [-358.84 -1164.8 358.84 1164.8] • 

After adding the contribution of this azimuth to the above C matrix, the 
X 

95% nonsimultaneous ellipses assuming cr6 unknown are-again extracted, and 

are tabulated in Table AIL 3 below as well_ as plotted in Figure AIL 3. The C 

RESULTS ACHIEVED AT 95 PERCENT CONFIDENCE LEVEL. 

STATION ELLIPSES 

STATION SEMI-MAJOR SEMI-MINOR THETA 
NUMBER AXIS AXIS 

50 .0107 .0078 79.218 
70 .0137 .0056 -83.902 
80 .0157 .0120 -73.641 
60 .0064 .0054 -18.582 

RELATIVE ELLIPSES 

STATION STATION SEMI-MAJOR SEMI-MINOR THETA 
NUMBER NUMBER AXIS AXIS 

50 70 .0110 . .0079 81.095 
50 80 .0148 .0110 -19.494 
50 60 .0118 .0101 81.144 
70 80 .0141 .0091 -48.507 
70 60 .0144 .0083 -80.852 

Table AII.3. 95% Confidence Ellipses After Addition of Parameters 
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factor used in this case is 

C = lzF2,5,0.95 hx5.79 = 3.40 

Figure AII.4 shows the decrease in confidence ellipse size resulting 

from the addition of the two azimuth observables along with the new 

station. 
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APPENDIX III. Addition of Parameters by Directions 

Appendix III illustrates the models developed in Section 2.4 

for the addition of parameters with common nuisance parameters (i.e. 

orientation unknowns) between steps. The example network this time 

includes the same stations as in Appendices I and II, but they are con-

figured as shown in Figure AIII.l below. Again, the dashed lines stand 

for observables added after the initial observable stage. 
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Figure AIII.l. Example Network for Addition of Parameters by 
Directions 
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Initially, stations 50, 60 and 70 are considered, with 

station 60 having a weight matrix of 

p 
X 

60 
[
0.29513E6 

0.28418E5 
0.28418E5] 
0.37081E6 

The C matrix for stations 50, 60 and 70 is formed considering the 
X 

initial observables depicted by the solid lines in Figure AIII.l. 

These observables are added in the manner outlined in Appendix I, and 

result in the following C matrix: 
X 

1.5983E-4 7.2146E-6 3.4135E-6 -2.6160E-7 5.3314E-5 1.8774E-5 

7.2146E-6 1.6047E-4 -2.6160E-7 2.7168E-6 -2.4906E-5 5.3470E-5 

C = 3.4135E-6 -2.6160E-7 3.4135E-6 -2.6160E-7 3.4135E-6 -2.6160E-7 
X 

The 

-2.6160E-7 2.7163E-6 -2.6160E-7 2.7168E-6 -2.6160E-7 2.7168E-6 

5.3314E-5 -2.4906E-5 3.4135E-6 -2.6160E-7 5.3973E-5 -1.7810E-5 

1.8774E-5 5.3470E-5 -2.6160E-7 2.7168E-6 -1.7810E-5 3.1832E-5 

observables used to obtain this initial solution are outlined in 

Table AII I.l below. 

~ From To C1 

1 50 60 3.0 

1 50 70 3.0 

1 70 50 2.0 

1 70 60 2.0 

2 70 60 0.008 

2 70 50 0.010 

3 60 50 5.0 

Table AIII.l. Initial Observables Used for Addition of Parameters by 

Directions Example 
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Assuming that simultaneous error ellipses are required at the 

standard (- 39%) confidence level, and that the a priori variance factor 

is known, the C factor is 

c = fx2 
2 1-0.6065 

• 3 

'x2 = 1:3_.197 = 1 79 
V' 2,0.7978 • • 

Note that only the station error ellipses are multiplied by this factor, 

as simultaneous relative error ellipses are not required in this case. 

Using the methods of section 3.4, the error ellipses are computed as shown 

in Table AIII.2. 

RESULTS ACHIEVED AT 39.35 PERCENT CONFIDENCE LEVEL 

STATION ELLIPSES 

STATION 
NUMBER 

SEMI-MAJOR 
AXIS 

SEMI-MINOR THETA 

50 

60 

70 

RELATIVE ELLIPSES 

STATION 
NUMBER 

50 

STATION 
NUMBER 

60 

.0231 

.0034 

.0143 

SEMI-MAJOR 
AXIS 

.0128 

50 70 .0104 

60 70 .0078 

AXIS 

.0222 

.0029 

.0084 

Table AIII.2. Initial Confidence Ellipses for 
Direction Example 

These ellipses are plotted in Figure AIII.2. 

46.266 
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.0122 47.551 

.0092 -11.127 

.0044 -29.287 
Addition of Parameters by 

The next step is to add station 80 by means of the two direc-

tions depicted by dashed lines in Figure AIII.l. This involves the use 

of the models developed in section 2.4. Considering first that the 

direction from station 70 to station 80 is to be added, the model for 
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sequential addition of this direction to the set of directions already 

existing at station 70 unfolds as follows. 

First~ the formulae for computation of the new C for all 
X 

stations including station 80 are reviewed. The basic form of the 

expanded 

where 

Equation 

N 
-1 
xl 

where 

C is given by equation (2-102) as 
X 

(2-106) 

--1 
= N 

lx1 

Ql Q12] 
c , X T 

Ql2 Q2 

Q2 = [N - NT N-1 Nl2]-l 
x2 12 x1 

gives 

--1 
N. 

l.Xl 

. --1 
N lx1 

-1 
-Nxl N12 Q2 

the equation -1 for N as 
xl 

-T - --1 -T -1 -
A [M2 + A2 N A2x ] A . 2x1 xl lx1 1 

existing or old C matrix, 
X 

2x1 
N-1 
lx1 

As can be seen from the above formulae, the procedure for 

computing the new C is not a simple one. The steps involved in 
X 

accomplishing this are outlined in point form below, and are then applied 

to the particular problem at hand. 



1. Compute A2 • 
xl 

where 

and 

Matrix Aly is given as 

UJ 
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considering that there are 3 directions previously measured in this 

set. 
-1 

As well, M1 = P1 is the weight matrix for the previous set of 

directions. Thus, this results in 

-2 
n 

-2 
Nly [-1 -1 -1] (J' 0 0 -1 = I: (J 

dij 
-2 t=1 dit 

0 a 0 -1 
dik 

-2 0 0 (J -1 
dH 

and therefore 

1 

-2 
E cr d 

t=l it 

n 

where n = number of previous directions in the set, 

i from station for the previous set of directions, and 

j, k and £ = to stations for the previous set of directions. 



Turning now to the computation of Nyx , A is given as 
1 1xi 

[: 
b -a -b 0 0 0 

_:] A 
aF1 

d 0 0 -c -d 0 = -- = 
lx1 ax1 

f 0 0 0 0 -e 

where 

-(y.-y.) (xj-xi) 
a = J ~ b = 2 2 s .. s .. 

~J ~J 

-(y -y ) (x.-x.) k i d J ~ c = 2 2 
8ik s .. 

~J 

-(y 9.,-yi) 
f 

(xt-xi) 
e = 2 2 

SH SH 

It is obvious that A1 is the A design matrix for the set of directions 
xl 

as they were in the F1 model. Consequently, N is given as 
yx1 

-2 
(y t -y i) 

-2 
n ad n ad (xt-x.) 

N (1,1) E it N (1,2) -E 
it ~ 

2 2 yxl t=l 8it 
yx1 t=1 s:i.t 

-2 
(y t -y i) 

-2 
(xt -xi) -a a 

dit dit 
N (l,u) = 2 N (l,v) 

yxl yxl 2 
sit sit 

where u (2x(t+l)) -1 and v = 2x(t+l) for t = 1, n. 

Assuming that only 1 direction is being added, 

-1 , 



and, letting B 

B(l, 1) 

B(l, 2) 

-A N-l N 
2y 1y yx1 • 

1 

n -2 
E a 

t=l dit 

-1 

n -2 
E ad 

t=l it 

n 
E 

t=l 
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this results in 
-2 

ad (y t -yi) 
it 

-2 -2 
(xt -xi) -ad (yt-y.) a 

it l. dit 
B(l, u) = B(l, v) "" 

2 
n 

-2 2 
n 

-2 
sit E a sit E a 

t=l dit t=l dit 

where u, v and t are as before. 

Finally, A 2x1 
is given as 

aF2 -(y -y .) (x -x.) 
A [ m l. m l. 

0 0 0 0 0 = -- = 
2x1 ax1 s: s: J.m J.m 

-for m being the new to station, and A is given as 2x1 
-2 

(y t-y i) -(y -y.) 1 n ad 
A (1, 1) m l. + E 

it 

s: 
2 2x1 n -2 t=l sit J.m E a 

t=1 dit 
-2 

(xt-xi) (x -x.) a 
1 

n dit 
A (1, 2) m l. 

E 2x1 2 n 2 
s. 

E 
-2 t=1 sit J.m a 

t=l dit 

0] 

-2 
(y t-y i) 

-2 
(xt-xi) -a (J 

dit dit 
A (1, u) A (1, v) 2x1 2 n -2 2x1 2 n 

-2 
sit E (J sit E a 

t=l dit t=1 dit 

' 

(AIII-1) 



115 

2. Compute :M2• 

From equation (2-90), the expression for M2 is 

- -1 T 
M2 M2 + A2y N1y A2y 

-1 
From the computation of A2x1 ' A2y and N1y are known, and thus 

M2 a2 + 
1 

= 
d. n 

-2 J.m 
E a 

t=1 dit 

(AIII-2) 

is the required expression for M2. 

3. Compute N12 • 

From equation (2-47), N12 is given as 

= AT --1 A 
2x1 M2 2x2 

A and M2 are both known from the previous computations, and A is 
2x1 2x2 

given as 

-(x -x.) 
m l. ] 

2 . • 
8im 

Thus, N12 is of dimension ((2xn)+2) by 2. 

4. Compute N which, according to equation (2-98), is given as 
x2 

N is of size (2x2) for one station being added. xz 

(AIII-3) 
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-1 
5. Compute N which has already been given as 

xl 

--1 -
where N1 is the already existing C matrix and A and M2 are given x1 x 2x1 
above. 

6. Compute Q2 , Q12 and Q1 according to formulae (2-103), (2-104) and 

(2-105), and form the new C matrix for all of the points as shown 
X 

in equation (2-102). 

To add the direction from station 70 to station 80 (a = 2~0) 

requires the use of all 6 of the steps outlined above. First, formulae 

(AIII-1) are utilized in order to compute A2 • The previous set of 
xl 

directions at station 70 includes one to station 50 and one to station 

60, both with a standard·deviation of 2 arcsec. Thus, 

J..2 (1, 1) 
xl 

-258.46, 

(x70-x70) . 1 0.25(x50-x70) 0.25(x60-x70) 
p"[---,2::---~.-- 0.5 { 2 + 2 }] 1002.2 , 

870,80 850,70 860,70 

-
A (1, 3) 2x1 

A2 (1, 4) 
x1 

- 0 · 25 (y50-y70) 
p II [----:2::-=--.:'--...;....;..-J = 

0 •5 850,70 

215.9 , 

160.7, 
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A (1, 5) 2x1 

-0. 2S(y60-y70) 
p" [ 2 ] 

0 •5 8 60,70 

-179.42 , 

-A (1, 6) 2x1 
p" [ = -582.4. 

- -
Having computed A2 , M2 is now found to be 

x1 

as 

Therefore 

N12 

+--1--= 
n -2 
E a 

t=1 dit 

1 4+-· =6. 0.5 

In order to compute N12 , A is first needed and is computed 2x2 

-(x80-x70) 
2 ]= [221.97 -580.54] . 

s7o,so 

-9561.7 25007 

37078 -96972 

(6x2) -T --1 7987.5 -20890 A M2 A2x2 2x1 
5945.1 -15549 

-6637.7 17360 

-21546 56351 

N is the next matrix to be computed, and, considering the 
x2 

weight for station 80 as 

p _ [0.15031E6 
x80 0.19647E5 

0.19647E5] 
0.15906E6 



118 

-1. 830 2E3] • 

2.1523E5 

-1 -
Equation (2-106) is now used to compute N from the old ex' A and x1 2x1 -M2 , and it is 

1.4004E-4 -3.5009E-5 3.8610E-6 -1.0660E-6 6.5489E-5 -4.6489-E-6 

-3.5009E-5 7.0415E-5 6.9270E-7 l.OOllE-6 1.0624E-6 3.5122E-6 
-1 N = 3.8610E-6 6.9270E--7 3.4034E-6 -2.4342E-7 3.1384E-6 2. 6778E-7 
xl 

-1.0660E-6 1.0011E~6 -2.4342E-7 2.6842E-6 2.3312E-7 1. 7651E-6 

6.5489E-5 1.0624E-6 3 .1384E-6 2.3312E-7 4.6486E-5 -3.4043E-6 

-4.6489E-6 3.5122E-6 2. 6778E-7 1. 7651E-6 -3.4043E-6 4.1183E-6 

Finally, Q2 , Q12 and Q1 are calculated to give the new ex for 

all four stations. The final ex after adding the direction from 70 to 

80 to the already existing set of directions at 70 is 

c -X 

1.4067E-4 -3.3660E-5 3.8467E-6 -1.0403E-6 6.5100E-5 -3.9001!•6 -9.4565E-7 1.8548E-6 

7.3294E-5 6.6219E-7 1.0560E-6 2.3222E-7 5.1094E-6 -2.0169E-6 3.9560E-6 

3.4037E-6 -2.4401E-7 3.1472E-6 2.5086E-7 2.1373E-8 -4.1920E-8 

2.6852E-6 2.1730E-7 1.7955E-6 -3.8425E-8 7.5366E-8 

4.6725E-5 -3.8648E-6 5.8158E-7 -1.1407E-6 

S.0044E-6 -1.1189E-6 2.1945E-6 

6.7154E-6 -7.4373!-7 

6.2106E-6 

-The next observable to be added is a direction from station 

50 to station 80 with a standard deviation of 3.0 arcsec. The procedure 

for adding this direction to the already existing set at station 50 is 

similar to that already discussed, except that station 80 is now no 

longer a new station, and the C matrix remains the same size. When 
X 

-computing A2 , A contains station 80 as well as stations 50, 60 and 
xl .LXl 

-70, and thus A2 is of size (lx8) instead of (lx6) as before. A is x1 2x1 
given as 
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[-119.88 393.57 -131.52 -143.79 -215.9 -160.7 467.31 -89.084] ' 

where the first 6 elements are computed according to formulae (AIII-1), 

and the last 2 arise from the fact that A 2x1 
now contains columns for 

station 80. Az is given as 
xl 

A 
()F2 -<Yao-y5o> (x80-x5o> 

0 0 0 0 
(y80-y5o> -(x80-x50) 

= -- = [ 2 2 ], 2x1 ()Xl 2 2 
850,80 850,80 850,80 850,80 

and thus the last 2 elements of A are those that appear in columns 7 2x1 

and 8 of A2 • 
xl 

Formula (AIII-2) for M2 yields 

1 
9 + 0.22222 13.5 • 

Because there is no x2 is this case, A2x2 is zero, and thus 

matrices N12 , Nx2 , Q12 and Q2 do not exist. The updated or new ex 

matrix is given by equation (2-106) as 

--1 and after carrying out the computations (where N is the just computed 1x1 
ex matrix above) 

c • 
X 

8.5176!-S 4.3434!-6 2.2017&-6 -1.2570!-6 4.3587!-5 -2.0306!-6 2.2727£~6 2.2564E-6 

4.7269£-5 1.7887&-6 1.2044!-6 1.4964E-5 3.8292!-6 -4.2209£-6 3.6809!-6 

3.3550!-6 -2.5043E-7 2.5095!-6 3.0627E-7 1.1677£-1 -3.0015E-8 

sy~~~~~~etric 

2.6844!-6 1.3328£-7 1.8028E-6 -2.5856£-8 7.6934E-8 

3.8386£-5 -3.1401£-6 1.8292£-6 -9.8501£-7 

4.9414£-6 -1.2273£-6 2.1810E-6 

6.5288E-6 -7.6702E-7 

6.2077E-6 
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Assuming again that simultaneous confidence ellipses are 

required at the standard confidence level and that the a priori variance 

factor is known, the C factor for the confidence ellipses is 

c = lx2 0 _6065 = lx~. 08484 = 13.773 = 1.94 • 
2, 1 - 4 

Thus the standard point confidence ellipses derived directly from c must 
X 

be multiplied by 1.94 so that the probability of all station ellipses 

occurring simultaneously at 39.35% confidence is given by these ellipses. 

The relative error ellipses are again assumed to be nonsimultaneous. 

The final confidence ellipses are given in Table AIII.3. 

STATION ELLIPSES 

STATION 
NUMBER 

50 

60 

70 

80 

RELATIVE ELLIPSES 

SEMI-MAJOR 
AXIS 

0.0181 

0.0037 

0.0120 

0.0052 

STATION 
NilllBER 

STATION 
NilllBER 

50 60 

50 70 

50 80 

60 70 

70 80 

SEMI-MAJOR 
AXIS 

0.0092 

0.0073 

0.0094 

0.0061 

0.0064 

SEMI-MINOR THETA 
AXIS 

0.0132 6.454 

0.0031 -18.377 

0.0043 -5.318 

0.0047 -39.089 

SEMI-MINOR THETA 
AXIS 

0.0069 5.509 

0.0053 -54.595 

0.0067 7.555 

0.0019 -6.592 

0.0026 -2.808 

Table Alii. 3. Final Standard Confidence Ellipses for Addition of 
Parameters by Direction Example. 

These standard confidence ellipses are plotted in Figure AIII.3. 



I 
l 

2.4510£5 

2.450]£5 

2.4<19JE5 

2 ..... 70£5 

L~. -44f.OES 
I 

; 
i 

2.912DES 

121 

0 1 2 3 4 5 
Ellipse Scale (em) 

2.9130ES 2.91o40E5 2.9150E5 2.9160£5 2.917CE5 
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Parameters by Directions 

The comparison plot in Figure AII.4 shows that even though 

the C-factor for the point ellipses is larger, the point confidence 

ellipses are smaller because of the addition of the new station and 

direction observables. 
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APPENDIX IV. Subtraction of Parameters 

This appendix illustrates the model developed in section 2.2 

for the deletion of unknown parameters. The network for this illustra-

tion is depicted in Figure AIV .1 below. The stat ions have the same 

coordinates as they do in the first appendix, but this time stations 

60 and 80 are weighted. The dotted lines in this case represent the 

angle observable at point 60 from 80 to 50. In the initial case, 

y 

245100 80 

245000 

244900 

244800 

244700 

244600 

244500,~~--~----~~----~----~------~----~----~x 
291100 291200 291300 291400 291500 291600 291700 

Figure AIV .1. Example Network for Subtraction of Parameters by an Angle 

Observable 
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it is included, but for the update or new situation, it is deleted, 

and, it being the only observable connecting station 60 with the rest 

of the network, causes station 60 to be eliminated. 

To begin with, then, the initial observables are shown in 

Table AIV.l. In this case, the simultaenous ellipses are computed 

Type At From To a 

1 70 80 2.5 

1 70 50 2.5 

1 50 70 2.0 

1 50 80 2.0 

2 70 80 0.010 

2 70 50 0.012 

3 80 50 5.0 

4 60 80 50 3.0 
Table AIV.l. Initial Observables Used for Subtraction of Parameters Example 

at the standard confidence level, and the a priori variance factor is 

assumed unknown, which leads to the C factor being computed according 

to equation (3-48) as 

111.19 C = v'2F2 1 a lzF 2, 2,0. 8484 3.35. 
,n-u, N 

This factor applies to the station ellipses; however, the relative 

ellipses are not required to be simultaneous, and thus their C factor 

is 

c 12F2, 2, 0 •3935 = 11.30 = 1.14. 

With this in mind, the confidence ellipses shown in Table AIV.2 and 

plotted in Figure AIV.2 result from the initial observables in Table 

AIV.l. It is interesting to note that the weighted points have 
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STATION ELLIPSES 

STATION SEMI-MAJOR SEMI-}I1NOR THETA 
NUMBER AXIS AXIS 

50 0.0361 0.0224 -45.240 

60 0.0064 0.0054 -18.195 

70 0.0368 0.0191 88.701 

80 0.0090 0.0080 -40.682 

RELATIVE ELLIPSES 

STATION STATION SEMI-MAJOR SEMI-MINOR THETA 
NUMBER NUMBER AXIS AXIS 

50 70 0.0108 0.0090 29.539 

50 80 0.0120 0.0074 -42.100 

50 60 0.0125 0.0077 -46.415 

60 80 0.0036 0.0033 -33.918 

70 80 0.0122 0.0063 89.034 

Table AIV.2. Standard Confidence Ellipses Resulting from Initial 

Design for Subtraction of Parameters Example 

significantly smaller confidence ellipses than do the fully unknown 

points. This indicates that the error resulting from the actual obser-

vables is quite a bit larger than that of the weighted points. The 

weights used for station 60 and 80 are 

p 
x60,80 

0.29513E6 0.28418E5 0 0 

0.37081E6 0 0 

0.15031E6 0.19647E5 

symmetric 0.15906E6 

The next step is to subtract the angle observed at station 60, 

and in so doing, delete station 60 from the design as well. Following 

the development of section 2. 2. 2, ••e wish to compute the C rna trix 
X 

existing before the addition of station 60 and its angle observable. 

-1 
Equation (2-48) expresses this previous ex matrix N1 as 
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where 

--1 T -1 T 
N1 = Q1 - Q1N12 [N2 + N12Q1N12] N12Q1 ' 

T -1 
A21 M2 A2 

and 

The matrix Q1 is the portion of the nonexisting ex matrix which corres­

ponds to stations 50, 70 and 80; i.e. rows and columns (1, 2, 5, 6, 7, 8) 

at the present C • Following the development of the angle model in 
X 

section 3.3.2, the matrices A21 and A2 are given as 

aF2 aF2 aF2 aF2 
[--- -] 

ax80 ay80 ax50 ay50 

A21 = [-62.36 428.18 -263.04 -287.57] 

-(y50-y60) 
p" [ 2 

8so,6o 

= [325.4 -140.61]. 

The matrix P is the weight matrix for point 60, which has already been xz 
defined, and M2 is the inverse of the weight of the angle observable, 

which in this case is 
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Thus, N12 and N2 are now computed as 

-9510.5 

N12 = -10397 

-2254.7 

15481 

4109.7 

4492.9 

974.28 

-6689.8 

l3.0690E5 

2.3334E4 

2. 3334E41· 

3.7301E5 

--1 To now compute N1 , first the expression under the inverse 

sign in equation (2-49) is found. To do this, considering that Q1 is 

the old or previous inverse, N12 is multiplied onto rows and columns 

(7, 8, 1, 2) of Q1 (i.e. those rows and columns corresponding to 

stations 80 and 50). When computing Q1 N12 , rows (1, 2, 5, 6, 7, 8) 

and columns (7, 8, 1, 2) are chosen from the old ex matrix Q1 for multi­

plication onto N12 . This results in 

--1 N = 
1 

8.0256E-5 -3.6496E-5 1.3335E-6 -5.4284E-7 1.4205E;-5 -6.6583E-5 4.0240E-6 5.4729E-7 

8.0910E-5 1.2732E-6 -5.1828E-7 2.0143E-5 6.6377E-5 -3.4495E-6 7.7101E-6 

3.3645E-6 -2.4166E-7 1.2064E-6 -1.4210E-7 9.8983E-8 -4.9978E-8 

2.7087E-6 -4.9109E-7 5.7848£-8 -4.0294E-8 2.0345E-8 

3.2325E-5 2.0564E-6 4.2850E-6 4.1548E-7 

symmetric 1.2089E-4 -5.4346E-7 6.2428E-6 

6.5588E-6 -7.3.263E-7 

6.338.3E-6 

-1 Again when computing N 1 , 
--1 

rows and columns (7, 8, 1, 2) of N1 are used 

to compute A21 
--1 T 
N1 A21 , and rows (7, 8, 1, 2) and columns (1, 2, 5, 6, 

--1 --1 
7, 8) of N1 are required to compute A21 N1 • After carrying this out, 

-1 and deleting the rows and columns for station 60, the final N1 is 
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1.1714E-4 -1.2776E-6 4.7576E-5 -7.0514E-5 6.7621E-6 -8.3525E-7 

-1.2776E-6 1.1454E-4 5.2004E-5 6.2623E-5 -8.3525E-7 6.3901E-6 

N~l = 4.7576E-5 5.2004E-5 6.2515E-5 -1.4997E-6 6.7621E-6 -8.3525E-7 

-7.0514E-5 6.2623E-5 -1.4997E-6 1.2131E-4 -8.3525E-7 6.3901E-6 

6.7621E-6 -8.3525E-7 6.7621E-6 -8.3525E-7 6.7621E-6 -8.3525E-7 

-8.3525E-7 6.3901E-6 -8.3525E-7 6.3901E-6 -8.3525E-7 6.3901E-6 

For the computation of confidence ellipses, the simultaneous 

standard station ellipses are again required assuming the a priori 

variance factor unknown. Because there are now only 3 points. instead 

of 4, and the degrees of freedom is reduced to 1, the C factor is 

C = 12FZ,l,l 0.6~65 = 12FZ,l,0. 7978 = 123.46 =4.84. 

The C factor for the relative ellipses also changes as the degrees of 

freedom change, and results in 

C = IZF2,1,0.3935 11.719 = 1.311 • 

Taking these into account, the final resulting standard confidence 

ellipses are given in Table AIV.3 and plotted in Figure AIV.3. The 

comparison plot in Figure AIV.4 clearly shows the difference before and 

after subtraction of station 60. 



STATION ELLIPSES 

STATION 
NUMBER 

50 

70 

80 

SEMI-MAJOR 
AXIS 

0.0523 

0.0533 

0.0131 

RELATIVE ELLIPSES 

STATION 
NUMBER 

50 

50 

70 

STATION 
NUMBER 

70 

80 

. 80 
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SEMI-MINOR 
AXIS 

0.0518 

0.0383 

0.0116 

THETA 

-22.207 

-88.540 

-38.723 

SEMI-MAJOR 
AXIS 

SEMI-MINOR 
AXIS 

THETA 

0.0143 

0.0138 

0.0140 

0.0115 

0.0136 

0.0098 

64.834 

-10.793 

-89.357 

Table AIV.3. Standard Confidence Ellipses After Subtraction of 

Parameters. 
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APPENDIX V. Illustration of Angle and Direction Comparison 

In this appendix the five point network depicted in Figu.re AV.l 

below has been used to perform three different preanalyses. This network 

is similar to one used in a paper by Allman and Bennett [1966) in their 

y 

104000 

103000 

102000 

3 
99ooo~------._------~------~~--~~------~--~x 

100000 101000 102000 103000 104000 105000 

Figure AV.l. Example Network for Comparison of Angles and Directions 
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comparison of directions and angles by the condition adjustment. 

Points 4 and 5 are considered as fixed points and points 1, 2 and 3 

are unknown. The coordinates of the points are listed in Table AV.l. 

FIXED STATIONS: UNKNOWN STATIONS : 

STATION X COORD. Y COORD. STATION X COORD. Y COORD .. 

4 100100.000 100100.000 1 102368.134 100987.503 

5 102000.000 103500.000 2 104679.915 101954.045 

3 105016.967 99244.124 

Table AV.l. Point Coordinates for Angle and Direction Comparison 

Examples 

The three separate preanalyses include one using directions 

only, one using correlated angles and one using independent angles. 

These three preanalyses are presented below. 

1. Directions 

In this case, all of the possible directions are measured in 

the network, which brings the total to 16 measured directions. Each 

direction was assumed to have a standard deviation of 1.9997", and thus 

the P or weight matrix for this case is a (16xl6) diagonal matrix with 

0.2501 on the diagonal. 

There are 3 unknown points and 5 sets of directions which 

lead to 6 unknown coordinates and 5 orientation unknowns for a total 

of 11 parameters. This produces an A design matrix as follows: 
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x1 y1 x2 y2 x3 y3 z1 z2 z3 z4 z5 

d4,5 0 0 0 0 0 0 0 0 0 -1 0 

d4,1 a4 1 -b4,1 0 0 0 0 0 0 0 -1 0 
' 

d4,3 0 0 0 0 a4,3 -b4 3 0 0 0 -1 0 
' 

d5,2 0 0 a5,2 -b5 2 0 0 0 0 0 0 -1 
' 

d5,1 a5,1 -b5,1 0 0 0 0 0 0 0 0 -1 

d5 4 0 0 0 0 0 0 0 0 0 0 -1 
' 

d1,5 -a1 5 b1 5 0 0 0 0 -1 0 0 0 0 
' ' 

d1,2 -a1,2 b1,2 a1,2 -b1 2 0 0 -1 0 0 0 0 
A= ' 

(16,11) d1,3 -a1,3 b1 3 0 0 a1,3 -b1 3 -1 0 0 0 0 
' ' 

d1,4 -a1,4 b1 4 0 0 0 0 -1 0 0 0 0 
' 

d2,3 0 0 -a2 3 b2,3 a2,3 -b2 3 0 -1 0 0 0 
' ' 

d2,1 a2,1 -b2,1 -a2 1 b2 1 0 0 0 -1 0 0 0 
' ' 

d2 5 0 0 -a2,5 b2 5 0 0 0 -1 0 0 0 
' ' 

d3,4 0 0 0 0 -a3,4 b3 4 0 0 -1 0 0 
' 

d3,1 a3,1 -b3,1 0 0 -a3,1 b3,1 0 0 -1 0 0 

d3,2 0 0 a3,2 -b3,2 -a3,2 b3,2 0 0 -1 0 0 

where 

(yj-yi) (x. -x.) 
a .. and b. J l. 

J.,] 2 J.,j 2 s .. s .. 
l.J l.J 

The A matrix appears here as it would if formed for the whole 

network at once. In the program which actually performs the preanalysis, 

the A design matrix is formed only in parts, generally being able to 

avoid the many unnecessary zero elements. As well, the method 
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discussed in Appendix I (cf. eq. (AI-l) is applied in order to eliminate 

the orientation unknowns. The results obtained after the preanalysis 

with directions are listed in Table AV.2 and plotted in Figure AV.2 

assuming nonsimultaneou.s ellipses with the a priori variance factor 

known. 

RESULTS ACHIEVED AT 39.35 PERCENT CONFIDENCE LEVEL 

STATION ELLIPSES 

STATION SEMI-MAJOR SEMI-MINOR THETA 
NUMBER AXIS AXIS 

1 .0281 .0173 56.238 

2 .0413 .0338 -45.628 

3 .0590 .0459 -67.498 

RELATIVE ELLIPSES 

STATION STATION SEMI-MAJOR SEMI-MINOR THETA 
NUMBER NUMBER AXIS AXIS 

1 2 .0396 .0242 -1.488 

2 3 .0456 .0338 -78.162 

1 3 .0508 .0314 -41.586 

Table AV.2. Standard Confidence Ellipses Using Directions 

2. Correlated Angles. 

The preanalysis was repeated using angles which were correlated 

in the manner described in section 3.3.3 Although it looks as if there 

are 12 possible angles in Figure AV.l, in fact there are only 3 angles 

at station 1 resulting from the 4 measured directions. Thus, there 

are 11 measured angles and 6 unknown coordinates involved. 
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Figure AV.2. Plot of Standard Error Ellipses Resulting from 

Design by Directions or Correlated Angles 
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The P or weight matrix in this case is (llxll) and block 

diagonal. Assuming that the angles have been derived from the 

directions in the previous example, the standard deviation of one 

measured angle is 2.828". Thus, the ca matrix takes the form 

8 4,5,1 7.9976 -3.9988 0 0 0 0 0 0 0 0 0 

8 4,1,3 -3.9988 7.9976 0 0 0 0 0 0 0 0 0 

•5,2.1 0 0 7.9976 -3.9988 0 0 0 0 0 0 0 

45.1,4 0 0 -3.9988 7.9976 0 0 0 0 0 0 0 

8 1.5.2 0 0 o· 0 7.9976 -3.9988 0 0 0 0 0 

c. - (llxl1) - 8 1.2.3 0 0 0 0 -3.9988 7.9988 -3.9988 0 0 0 0 

8 1,3,4. 0 0 0 0 0 -3.9988 7.9976 0 0 0 0 

8 2.3,1 0 0 0 0 0 0 0 7.9976 -3.9988 0 0 

8 2,1.5 0 0 0 0 0 0 0 -3.9988 7.9976 !) 0 

8 3,4,1 0 0 0 0 0 0 0 0 0 7.9976 -3.9988 

8 3,1,2 0 0 0 0 0 0 0 0 0 -3.9988 7.9976 

and the weight matrix P is the inverse of c . a 

TheA design matrix in this case is 

~ yl ~ y2 .~ y3 

8 4,5,1 c4,1 -b4· 1 0 0 0 0 .. 
8 4,1,3 -c4,1 b4,1 0 0 c:4,3 -b4,3 

8 5,2,1 c5,1 -b5,1 -c5,2 b5,2 0 0 

8 5,1,4 -c5,1 b5,1 0 0 0 0 

8 1,5,2 e1,5,2 f 1,5,2 c1,2 -b1,2 0 0 

A{11x6) • 8 1,2,3 e1,2,3 f 1,2,3 -c1,2 b1,2 c1,2 .:..bl,2 

8 1,3,4 e1,3,4 ·f 
1,3,4 0 0 -c1,3 bl,J 

8 2,3,1 c2,1 -b . 2,1 e2,3,1 f 2,3,1 -c2,3 b2,3 

8 2,1,5 -c2,1 b2,1 e2,1,5 f 2,1,5 0 0 

8 3,4,1 c3,1 -bJ,l 0 0 e3,4,1 f 3,4,1 

8 3,1,2 -c3,1 b3,1 c3,2 ;-b3,2 '3,1,2 
f . 
3,1,2 



where 

c .. 
1,] 

and 

b .. 
1,] 

f .. k 
1,], 
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(x.-x.) 
J 1 

2 
sij 

Again, this matrix is never formed entirely by the program which performs 

the preanalysis, but it produces the same normal equations matrix in 

the end. 

By looking at Table AV.3, one can see that the resulting 

confidence ellipses are identical to those of the preanalysis with 

directions. One can conclude from this, then, that both the method 

of correlated angles and that of directions give identical variance 

covariance matrices for the unknown stations. 

RESULTS ACHIEVED AT 39.35 PERCENT CONFIDENCE LEVEL 

STATION ELLIPSES 

STATION SEMI-MAJOR SEMI-MINOR THETA 
NUMBER AXIS AXIS 

1 .0281 .0173 56.238 

2 .0413 .0338 -45.628 

3 .0590 .0459 -67.498 

RELATIVE ELLIPSES 

STATION STATION SEMI-MAJOR SEMI-MINOR THETA 
NUMBER NUMBER AXIS AXIS 

1 2 .0396 .0242 -1.488 

2 3 .0456 .0338 -78.162 

1 3 .0508 .0314 -41.586 

Table AV.3. Standard Confidence Ellipses Using Correlated 
Angles. 
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3. Uncorrelated Angles. 

The uncorrelated angles method of preanalysis differs from 

the correlated angles method only in the formation of the P matrix. 

It is now diagonal with 0.1250 (aa = 2~828) on the diagonal instead of 

being the inverse of the nondiagonal Ca as in the previous· preanalysis. 

The A design matrix is identical to the correlated angles example. 

The results using this method are given in Table AV.4 and 

plotted in Figure AV.3 below. It can be seen from the comparison 

plot in Figure AV.4 that this method gives significantly different 

results. The size of all of the ellipses is larger and the orientation 

is slightly different. Thus, it can be concluded that at least in 

this case, the method of directions or correlated angles is preferrable 

for net\..rork design and adjustment. 

RESULTS ACHIEVED AT 39.35 PERCENT CONFIDENCE LEVEL 

STATION ELLIPSES 

STATION SEMI-MAJOR SEMI-MINOR THETA 
NUMBER AXIS AXIS 

1 .0337 .0218 57.757 

2 .0484 .0449 -72.163 

3 .0794 .0562 -71.221 

RELATIVE ELLIPSES 

STATION STATION SEMI-MAJOR SEMI-MINOR THETA 
NUMBER NUMBER AXIS AXIS 

1 2 .0436 .0297 3.028 

2 3 .0593 .0424 -81.413 

1 3 .0623 .0364 -49.798 

Table AV.4. Standard Confidence Ellipses Using Uncorrelated 
Angles 
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