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ABSTRACT 

The error behaviour of inertial survey systems can best 

be described by a system of differential equations. Its solution 

in analytical form, by way of a transition matrix, is discussed 

in this report. 

After a review of the methods available to solve systems 

of differential equations, the dynamics matrix of the local-level 

system operating in three dimensions is treated in detail. Two 

methods are used to derive the analytical form of the transition 

matrix: the inverse Laplace transform technique and the series 

expansion of the matrix eA~onential. Analytical and numerical compari

sons show that the two derived solutions are not completely equiva

lent but agree very well for time intervals up to 1000 seconds. 

For large time spans the inverse Laplace transform solution is more 

accurate. The report concludes with a brief discussion of the 

effects which the ~ariation of certain parameters has on the 

error behaviour. 
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1. INTRODUCTION 

During the last four years inertial survey systems have been 

routinely used to establish second-order control and a recent analysis 

of extensive test data indicates that first order accuracy may be 

achievable (Schwarz, 1979a)". Considering the amount of information 

generated by these systems, the integration of this new data type into 

existing control is a task of growing importance. Its solution requires 

error propagation models ,.,hich take into account the time dependence of 

all quantities involved. Thus, the basic mathematical model is a 

system of differential equations. 

The solution of such systems is usually done today by numerical 

integration procedures. The methods are well developed mathematically 

and excellent program packages have become available, in recent years. 

A review of the state of the art is given in Lambert (1977). 

The advantage of this approach is that it is almost universally 

applicable, i.e. inhomogeneo~s and nonlinear systems can be treated as 

well as the homogeneous case. However, it is very time consuming 

computerwise and it does not allow general statements about the stability 

of the system and its characteristical features. Thus, analytical 

solutions, besides requiring less computer time, can be of great value 

to study the general behaviour of a specific system. Generally, such 
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solutions can only be obtained for a more restricted class of problems 

and even then the amount of formal manipula~ions can be exasperating. 

It vas felt, however, that this effort would be well spent for the 

study of the error propagation in inertial survey systems. The 

following report documents how far this attempt has been successful. 

It should be noted at this point that the accuracy of the 

final coordinates produced by an inertial survey system is a mixture 

of continuous error propagation through a system of differential equations 

and update procedures at discrete instants in time which basically are 

discontinuous. Here, only the first part is treated. Its solution 

sets the scene for the filtering and smoothing procedures which are 

used when discrete control measurements become available. The application 

of such methods to the error propagation in inertial positioning has 

been treated in Schwarz (1979b). 

The report has been organized in such a way that a brief 

review on the solution of systems of differential equations is given 

first. Then~ the system of error equations used in inertial geodesy 

is described. Its solution is obtained in two ways, by using the 

inverse Laplace transform and by a series expansion of the matrix 

exponential. Comparison of results and some numerical studies conclude 

the report. 



2. SOLUTION OF SYSTEMS OF DIFFERENTIAL EQUATIONS 

The inhomogeneous linear system of vector differential equations 

x(t) = F(t) x(t) + G(t) u(t) (2-1) 

with initial conditions 

~(o) = ~ 

is used as a model for the errors in an inertial survey system. In 

this equation vectors are denoted by an arrow and matrices by capital 

-+ 
let~ers. Let us first discuss the homogeneous case u(t) = 0 

:ic(t) = F(t) x(t) 

with 

~(0) = -; 

(2-2) 

It describes a physical system whose state at any time t is completely 

. -+T . T 
defined by the N functi.ons xi (t) contained ~n x = {x1 , x2 .•. ~} 

and whose rate of change at a given time tk depends only on the values 

of the functions ~ ( t) at tk. This means that in a: formal way the 

solution can be written as 

where ~(t, t ) is as yet undetermined. 
0 

(2-3) 

-+ 
We will call x(t) the state 

vector, F(t) the dynamics matrix, and ~(t, t ) the transition matrix. 
0 

3 
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These names are often used in optimal estimation literature. 4>(t, t ) is 
0 

-+ 
a square matrix which in general is nonsymmetric. The vector c • 

-+ 
represents the initial state of the system. If the elements of c 

are such that equation (2-2) beco~s zero, we speak of an equilibrium 

state. The behaviour of the system in the neighbourhood of such 

equilibrium states is of special interest because it determines the 

stability of the system. A system is called stable if after perturb-

ations it returns to the equilibrium state; otherwise, we speak of an 

unstable system. 

In our case the functions x.(t) describes the error charac
~ 

teristics of an inertial survey system. It is obvious that in such a 

case equation (2-2) can only be an approximation. It is dependent on 

the current knowledge of the error sources and on the requirement that 

they can be modelled in the form (2-2). Errors of this type are e.g. 

the position, velocity and misalignment errors at the start of the 

measurement, gyro drifts and accelerometer biases. If any of these 

error sources produce an unbounded error growth, we have an unstable 

system. It is well-known (see e.g. Britting, 1971) that this is the 

case for the general inertial navigation problem in three dimensions 

when no outside information is provided for the altitude channel. The 

formulation of the dynamics matrix has therefore been done in such a 

way as to exclude this instability. 

So far only the homogeneous system has been discussed. The 

solution of the more"general system (2-1) can be written in the form 

-+ 
x(t) = 4>(t, t ) 

0 

t 
-+ 
c + J 

t 
0 

4>(t, t ) 4>-1 (s, t ) G(s) ~(s) ds 
0 0 

(2-4) 
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where s is a time variable. A comparison with equation (2-3) shows 

that the solution obtained from the homogeneous system is changed by 

adding an integral containing the transition matrix and the functions 

-+-
G(t) • u(t). Since the homogeneous equation describes the unforced 

motion of the system, the functions u .. {t)are often called the forcing 
1. 

functions. They can be either deterministic or random. In the first 

case, equation (2-1) is said to define a control problem, in the second 

an estimation problem. A combination of both types of problems is 

obviously possible. In the applications discussed here the gravity 

vector can be considered as a control function while acceler-

ometer noise represents a random forcing function. 

In order to obtain a solution of type (2-3) or (2-4) the 

transition matrix must be determined. The remainder of this section 

will therefore discuss methods to obtain ~(t, t ) in analytical form. 
0 

The inhomogeneous part of the solution (2-4) will not be treated in 

detail. In the problems discussed in this report, the forcing functions 

are always considered as random functions with mean zero, and are 

therefore handled as part of the optimal estimation procedure. 

Equation (2-2) has a unique solution if F(t) is continuous 

fort > 0. This solution can be written in the form (2-3) where ~(t, t ) 
0 

is the unique matrix satisfying the matrix differential equation 

~(t, t ) = F(t) t(t, t ) 
0 0 

with initial conditions 

t(t , t ) = I 
0 0 

(2-5) 
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Among the continuous matrices those with constant coefficients represent 

the simplest case. For such a matrix the solution of (2-2) can be 

formally written as a matrix exponential 

~( ) F(t-t ) ~ x t = e o c (2-6) 

Comparison with equation (2-3) results in 

"'( t .) = eF(t-to) 
.'i' t. 

0 
(2-7) 

The matrix exponential can be expanded into an infinite series 

F(t-t ) 
00 (t-t )i Fi 
1: 

0 ( 2-8) e o = 
i=O • I 1. 

which in conjunction with equation (2-7) gives the first method to 

compute an analytical form of the transition matrix. Using the Cayley-

Hamilton theorem the infinite series expansion can be replaced by a 

finite series of order N where N is the rank of F. A discussion of 

this case and its usefulness in applications is given in Bierman (1971). 

The meaning of the formal solutien (2-6) becomes clearer 

when considering the special case F = AI 

~(t) AI(t-t ) x = e o 
-+ 
d (2-9) 

-+ 
where A is an unknown scalar and d an unr~own vector. When this solution 

is introduced into equation (2-2), we obtain fort • 0 
0 

and thus 

(F - U) d = 0 (2-11) 

~ 

If d is not a zero vector, equation (2-2) will only have a solution if 

IF- nl = o (2-12) 



This equation represents a standard eigenvalue problem where A is the 
~ 

eigenvalue and d the eigenvector. If all A· are distinct then we can 
1 

transform equation (2-9) into 

~ 

x(t) = 
N 
E 

i=l 
e 

A. t 
1 + 

d. 
1 

(2-12) 

where N is again the rank of F. This equation shows that a second method 

to obtain an analytical solution is by way of the eigenvalue problem. 

If instead of the special case leading to equation (2-9), a full matrix 

F with distinct eigenvalues has to be treated, the canonical matrix A 

can always be obtained by the transformation 

T-l F T = A (2-13) 

~here A is the diagonal matrix of eigenvalues and the columns of T are 

the eigenvectors. The transition matrix is then of the simple form 

~(t, t ) =TeAt T-l 
0 

At where e can be written as a diagonal matrix of the form 

Alt 
e 

A2t 0 

e 

At 
e = 

0 

(2-14) 

(2-15) 

In case of multiple eigenvalues the situation is more complicated and 

reference is made·to textbooks as Gantmacher (1959) and Hochstadt 

(1975). 
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A third way to arrive at an analytical form for t(t, t ) is 
0 

-1 by use of the inverse Laplace transform L • Again it is only appli-

cable to differential equations with constant coefficients. The Laplace 

transform L of a function x(t ) is defined as 

y(s) = L x(t) 

.., 
= f e -S.t x( t) dt 

0 

and equivalently for the vector ~(t) of functions xi(t) 

;.(s) = L ~(t) 

co 

= f e-st ~(t) dt 
0 

-+ where the operation (2-16) is performed on each element of x(t). 

(2-16) 

(2-17) 

The Laplace transform of ~(t) can be found by integrating by parts 

(X) 

-st -+ -+ ~ 
f e x( t) dt = s y( s) - x( o) (2-18) 
0 

Using equations (2-17) and (2-18) the homogeneous equation (2-2) can 

be transformed to 

or 

s-;<s) -
-+ 
c = 

-+ 
F y( s) 

(si - F) Y<s) 
-+ = c 

(2-19) 

(2-20) 

Thus, the system of differential equations bas been converted into a 

system of algebraic equations. If the inverse of (si -F) exists we 
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have 

y(s) = (si - F)g ~ (2-21) 

where the index g denotes some suitably defined generalized inverse. 

For the Cayley inverse, which is the only one considered hereafter, 

equation (2-21) reads 

;(s) = (si - F)-l ~ (2-22) 

~ -1 
Once y(s) has been found the inverse Laplace transform L can be 

applied to obtain ~(t) 

x(t) 

1 = --2trj 

a +iw 
0 + st f y( s) e ds 

a -iw 
0 

(2-23) 

where a0 > a1 and a1 is some allowable region of convergence. Thus, an 

i(t) must be found whose transform is y(s). Usually the individual 

function y.(s) can be brought into a form which is listed in one of 
~ 

the extensive tables of Laplace transforms. By using equation (2-3), 

(2-22) and (2-23) we obtain 

which is the desired expression for the transition matrix. Applications 

of this technique will be given in chapter 4. 

So far only a matrix F with constant coefficients has been 

treated. Homogeneous equations with variable coefficients are not 

so tractable. In general, it is not possible to derive closed form 

solutions. In certain cases, series solutions can be obtained. This 
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applies for instance to systems where F can be expanded into a series 

with analytic coefficients. But usually the increase in complexity 

is considerable. In many cases the solution from a constant coefficient 

matrix represents a good first approximation and is sufficient for 

applications. When modelling errors of an inertial system, a constant 

F-matrix corresponds to a system without vehicle accelerations. Such 

a system reflects all the long term error frequencies. If necessary, the 

neglected accelerations can be modelled in a Taylor expansion about the 

first approximation as discussed by Lyon (1977) for the two-dimensional 

inertial navigation problem. This report treats only the case of 

constant coefficients. 



3. DYNAMICS !•1ATRIX 

3.1 Notation 

A number of symbols have been introduced in the last chapter. 

To simplify the reference they are listed below together with some. 

notations used later on. 

(.)-first derivative with respect to time 

( )-1- inverse 

F - dynamics matrix 

~ - transition matrix 

R - distance from earth centre to platform 

~ - geodetic latitude 

X - geodetic longitude 

h - height above the reference ellipsoid 

g - gravity 

~ - Schuler frequence (lg/R) 

i - celestial longitude rate (i = ~ + w. ) 
~e 

wie- earth rate (7.202115 x 10-5 rad/s) 

E - attitude errors 

o - coordinate and velocity errors 

K1 , K2 - damping loop gains 

t - time 

11 



3.2 DescriPtion of the Pynamics Matrix 

It has been mentioned in section 2 that the dynamics matrix 

F should model all time dependent errors of the inertial survey system. 

As equation (2-3) shows they can be presented as modulations of the 

-+ 
error vector c at the initial point. Britting [1971] has proposed to 

formulate a unified error theory by using a nine state vector of three 

initial errors for position, velocity and attitude. This approach is 

followed here. The much larger state vectors used in the Kalman 

filters of inertial survey systems are obtained by splitting the above 

errors into physically meaningful components. Thus, the attitude errors 

may consists of a misalignment and drift part, t3e velocity errors of 

an accelerometer bias and a scale factor. The separation of different 

components is in general done by a priori weighting and belongs there-

fore to the estimation part of the problem. A thorough treatment of this 

matter would have to include the observability conditions of the 

dynamic system as discussed for instance in Fossard [1977] and KortUm 

[1974]. 

The nine state error vector considered in our investigation 

is given by 

(3-1) 

where e:N, e:E, e:D are the attitude errors, cScp, cS:>.., and cSh are the latitude, 

longitude, and height errors, and cScj>, cS:>.., and cSh are velocity errors 

in latitude, longitude and height. 

/1'., 
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The dynamics matrix F associated with the state vector may 

be derived from the specific force equations and the misorientation 

error equation given e.g. in Britting [1971] and Adam [1979]. The F

matrix for a local level system that employs a barometric damping 

second-order loop (as shown in Figure 3-1) can be found in Schmidt 

[1978]. By neglecting the time dependent elements and the products 

of velocities, the dynamics matrix can be reduced to the form shown 

in Figure 3~2. In the aircraft mode, such a system can utilze the 

height difference information from the altimeter to dampen the 

exponential growth of errors in the height channel and its effect 

on the horizontal channels. In theterrestialmode no altimeter data 

are available, but the errors are controlled by the information 

obtained at every zero velocity update (ZUPT). Thus, the gain 

factors K1 and K2 , although derived from a different set of measure

ments, can formally be used in exactly the same way in the F-matrix. 

The final expression for the system of differential equation is 

given by the matrix in Figure ( 3-2) and the state vector-(~-1). 



to 

K2 
! 

-. 
J 

. 
h 

. + + 

GRAVITY 
CALCULATION 

-------

where 

fo • specific force in "DOWN" direction 

K1, K2 • damping lool» gaIns 

J 

Figure 3-1 Barometric damping loop 

Kl 

h + 
.... 
"'" 



0 -R. sin ~ 0 - sin 4> 0 0 cos ~ 0 0 

R. sin ~ 0 R, cos ~ 0 0 -1 0 0 0 

0 -R. cos ~ 0 - cos 4> 0 0 sin ~ 0 0 

0 0 0 0 0 1 0 0 0 

F= I 0 0 0 0 0 0 1 0 0 

0 
2 0 0 0 0 -R. sin 2~ 0 

-2t I ...... 

lJ R 
\.n 

2 
sec ~ 0 2R. tan ~ 0 0 

-2R. 
-lJ 0 0 0 R 

0 0 0 0 0 0 0 -K 
1 

1 

0 0 0 0 2Rij> 
2 2 0 0 2RR. cos ~ 2lJ -K2 

Figu'lie 3-2 Dynamics Matrix ( 3-2) 



4. INVERSE LAPLACE TRANSFOR.l.! SOLUTION 

The inverse Laplace tran~form is one of the techniques 

used in solving for th~ transition matrix ~(t) of the system of 

differential equations described in the last chapter. Here as in 

the following t = 0 has been assumed. The purpose of this chapter 
0 

is to show how the matrix is derived and to list its fi::1al form. 

B.r.substituting the dynamics matrix F into equation (2-24), 

the system of differential equation may be rewritten in the form shown 

in ¥igure 4-1. The most difficult task in deriving the transition 

matrix using the inverse Laplace transform is the inversion of the 

matrix. 

Q = (s:r - F) (4-1) 

4.1 Matrix Inversion by Partitionin~ Method 

The matrix partitioning method for inverting a matrix 

described by Faddeev and Faddeeva [1963] can be used for solving 

this problem. 

To apply the method, the matrix Q in Figti.Te 4-:l·may be 

parti tione·d as follows : 

I 
---~--- (4-2) 

16 
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and the inverse is given as 

32 
I ' 01 I Ll 

-1 I Q = 12 
-..- _, ______ (4-3} 

where 

N. = (Di - CiAi-~i) 
1 

(4-4) 

L. = -A.-~.N. 1 1 1 1 
(4-5) 

M. N.C.A. -1 = -1 1 1 1 
(4-6) 

and 
~1 -~ -1 0. = A. +A. .N.C.A 

1 1 1 1 1 1 
( 4-7) 

In this case, the_ method has to be applied twice for inverting 

the whole matrix in Figure 4-1. First, the 7 x 7 portion on the top 

left hand corner is inver..ted and the partitioning is done as indicated 

by the dotted lines. The whole matrix is then partitioned and inverted 

according to the solid lines using the inverted 7 x 7 portion as the 

-1 new A2 • The inverted top left hand 7 x 7 portion of Figure 4-1 is 

shown in Appendix I and the N2-matrix which was derived from standard 

co-factor techniques is 

s 1 

(s-a}{ s-b) (s-a) ( s-b) 

N2 = (4-8) 
2 (21l -K2 ) s + ~ 

(s-a)(s-b) (s-a) (~-b) 
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wher·e a = -K + I r~ + 
1 

b = -K1- I [K2 + 
1 

and s is the Laplace operator. More details on the derivation of N2 

are shown in Appendix I. 

4:2 Inverse Laplace Transform Technique 

After completing the inversion of the Q-matrix, the inverse 

Laplace transform of each individual element in Q-l is taken to yield 

the final form of the transition matrix shown in section 4.3. -1 The Q-

matrix contains expressions which are divisions of high degree polynomials 

of s. Taking the inverse Laplace transform of these expression can be a 

very lengthy process. The convolution theorem 

t 

0J F1(t- x) F2(x) dx (4-9) 

is used to simplify the computations. The expressions are reduced to 

the product of two or more lower degree ploynomials whose inverse 

Laplace transform F. can be found in tables [as e.g. in Spiegel, 1968; 
l. 

McCullum/Brown, 1965]. Integration of the right-hand side of equation 

(4-9) then results in the individual elements of the transition matrix 

~(t·) given in section 4.3. 

Two elements of the transition matrix are derived in detail 

to demonstrate the basic technique. In the first case it is shown how 

in certain cases approximations can be made which, without appreciable 

loss in accuracy, result in much simpler expressions. In the second 

case an example for the use of the convolutd.on theorem is given. It 

·should be noted that the arguments of~. e.g. ~ (6.1), now denote a 

matrix position rather than a time interval. 
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The element ~(6, 1) of the transition matrix is given as 

~(6, 1) 

Taking the inverse Laplace transform of (4-10), we get 

~( 6 , l) = u2 ~ sin p(cos tt-cos ut) + tu2 t sin p 
,2 + t2 .. .u 

and using the assumption that 

1J2 » R.2 

(4-11) may be reduced to 

~(6, 1) = R. sin ~(cos tt - cos ut + ut sin ut) 

(4-10) 

(4-11) 

( 4-12) 

Another more involved element ~(6, 8) is given as 

~(6, 8) -1 2 5~ = L { -2(2u-K2 )( 2 2 ~---
(s +1J )(s-a )(s -b) 

Using the convolution theorem, equation (4-13) may be reduced to 

t ( a(t-r) b(t-r)) cos l.:f ~(6, 8) = -2(2u-K2 )[~ f e -e df 
0 (a-- b) 

- t 2 sin 2~ 
t r(aea(t-r)_bea(t-r)) sin uf 

! df] . ( 4-14) 
0 2u (a - b) 

which when integrated yields the final form· 
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[~ (u sin J..lt - a(cos )Jt-eat) 

( a 2 +)J 2 ) ( a-b ) 

u sin J..lt - b(cos J..lt - ebt) 

( b 2 +)J 2 ) ( a-b ) 

+ R. 2 sin cp 

21J (a-b) 

a (t(a sin \.It- \.!COS \.It) 

(a2 + \.12) 

b (t (b sin \.It - ll cos llt) 

(b2 + \.12) 

( (b2_, 2) ( bt) .. sin \.It + 2b\.l cos llt-e ) ] 
(b2 + \.12) 

( 4-15) 

In the first example, the final form of the element (6, 1) 

can be simplified considerably if the assumption \.1 2 >> t 2 holds. The 

accuracy.lost, numerically, is less than 1% of the value computed 

from equations (4-21). The last example shows how the convolution 

theorem can be applied to find the inverse Laplace transform of an 

expression. 

4.3 Final Expressions 

Figure 4-1 shows the matrix Q as defined by equation (4-1). 

The elements of the transition matrix obtained by forming 

~(t) = L-l {Q-l (s)} 

are listed below. 



s R. sin ~ 0 R. sin ~ 0 I 0 -cos ~ 0 0 

I 
I 

-R. sin f s -R. cos ~ 0 0 I 1 0 0 0 

I 
I 

0 R. cos ~ s R. cos ~ 0 I 0 sin ~ 0 0 

I 

0 0 
I 

-1 0 0 0 s 0 . 0 

Q = I 0 0 0 0 s 0 -1 0 0 

----------- I 
I e --------,---------

0 -\.1 2 0 0 0 I s -R. sin 2~ 0 ~ 

I 
R 

2 
I n 

\.1 sec ~ 0 0 0 0 I 2R. tan ~ s 0 R 
I 

0 0 0 0 0 0 0 ~ +K1 -·1 

. 2 I 2 
0 0 0 0 0 - 2R~ -2RR. cos ~ -2\.1 + K2 s 

Figure 4-1 Q matrix before inversion 
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~(1, 1) = cos ~t 

~(1, 2) =-it sin ~ cos ~t - 4~i~2 (ss3 + K1ss2 ) 

~(1' 3) 

~(1, 4) 

~(1, 5) 

~(1, 6) 

~(1, 7) 

c)l(1, 8) 

:4>(1, 9) 

~(2, 1) 

4>(2, 2) 

c)l( 2' 3) 

¢(2, 4) 

1 i 2 + i 2t sin yt = - 2 sin 2~ (:2 (cos ~t-cos it) u 

i =-

= 0 

it = 

cos = 

~ 

! sin it - sin ~t) 
~ 

sin <P sin l-It 
4~i 

~ 

cj> sin ut 
~ 

sin ~ 

cos ~(su2 + K1 Su1 ) 

0 -
2 . 

( 2~ -K2 )( 4¢£ sincp Su1 + 2£ cos cp EU0 ) 
= 

R 

0 - (4¢i sin ~ (SU2+K1su1 ) + 2i cos~ (EU1+K1Eu0 )) 
= 

R 

= it sin cp cos ~t ~ . 4~i~2 (SU1 + K1SU0 ) 

= cos ~t 

i 
ct>(sin ~t 

t it) = - cos --sin 
ll ).J 

i2 
2~( cos it) -= 2 cos ~t - cos 

£2t . 2~ s1.n sin itt 
ll 

).J 

~(2, 5) = 0 

4>(2, 6) -sin ~t 
=......:::..;~...::;:..::.. 
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~(2, 7) R.t Sin 2~ Sin ~t + 4~1 2 
= cos ' (su2 + Klsu1 ) 

2~ 

2 • . 
t 2sin 2q, su1 ) 2(2~ -K2)(q, EU0 .-

~(2, 8) = R 

2( ~(EUtiS_ EU0) - R.2 sin 2cp (SU2+K1su1 ) 
~(2, 9) = R 

~(3, 1) =tan cp(cos R.t - cos ~t) 

~(3, 2) = 0- sec cp(sin tt - R.t sin2$ cos ~t) 

~(3, 3) =cos cpt 

~(3, 4) = sec cp(! sin2$ 
~ 

sin ~t - sin R.t) 

~(3, 5) = 0 

lt sin2<P sin~t 
tP(3, 6) = 4~1 sin <P(su2+rs_su1 ) 

J.J cos $ 

'P(3, 7) - sin cp sin ~t = 
J.J 

~ 
-2 (4~1 (2~ -K2 ) tan cp sin cp SU1+2t cos<jl EU0 ) 

~(3, 8) = 

~(3, 9) = 

R 

(2u2-K2)tan cp(4~t sin cp(SU2+K1su1 )+2i coscp(EU1+K1EU0)) 

R 

~(4, 1) = sin cp(sin it - it cos ut) 

~(4, 2) = cos ~t - cos ~t 

~(4, 3) = cos cp(sin it -!sin ut) 
~ 

( 4 4) 12 ( ) 12t sin2p sin ut 
~ , = 1 - ~ cos 2$ cos ~t - cos it + J.J 

J.l 
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41(4, 5) = 0 

~(4, 6) = sin )Jt 
l.l 

R.t sin2~ sin l.lt • 2 
~(4, 7) = 0- 2l.l- - 4~t cos ~ (su2 + K1su1 ) 

2 • 2 
2(2l.l -K2 )(~EU0 - i sin 2~ su1 ) 

~(4, 8) = 0 - R 

~(4, 9) 

41(5, 1) = sec ~(cos ~t - cos2~ - sin2~ cos it) 

~(5, 2) = tan ~(sin it - ~t cos ~t) 

i 2 t 2t . t 
~(5, 3) = sin ~(1 - cos it --- (cos l.lt - 1) - s~n ~ ) 

2 l.l 
l.l 

41(5, 4) =tan ¢ (sinit-! sin l.lt) 
l.l 

~(5, 5) = 1 

~(5, 7) = sin ].lt 
l.l . 2 

(4~1 tan ~ SU1+2i~ EU0 )(K2 - 21-! ) 
41(5, 8) = 

R 
. 

-[4~1 tan ~(SU2+~SU1 ) + 21 (EU1 + K1EUO)] 
~( 5' 9) = 

R 

41(6, 1) = i sin ~(cos it - cos l.lt + l.lt sin l.lt) 

~(6, 2) = 1l sin l.lt + isin2 ~(sin it -!sin llt) 
1l 
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( 6 ) ( lJt ) 2. 2 n 2 . 2 A. A. UL 
~ , 3 = 1 cos $ cos it - cos - " ~ s~n ~ cos ~ 2 

~(6, 5) = 0 

~(6, T) 

~(6, 8) 

~(6, 9) 

i sin 2~ (sin 1.1t + 1.1t cos JJt) 2 
[ + 4~1 cos q, (su3 + K1su2 )] 

21.1 

= 
2(2i-K2 )(t2 sin2cp (SU2 - +ru1) 

R 

= 2(t2 sin 2q, (su3+~1su2 ) -q, (EU2+K1EU1 )J 

R 

~(T,l) =-sec ¢[1.1 sinut + 1 sin2~ (sin tt- ~sin ut)] 
lJ 

~(7, 2) =1 tan q,(cos it- cos JJt + 1.1t sin JJt) 

~(7, 3) =~sin q,(sin it- it cos ut) 

~(7, 4) = i tan q,(cos it- cos ut-

~(7' 5) = 0 

~(7, 7) =cos [l(u2+4t2 sin2 q,)]- 4!2 cos2q,(su3+K1su2) 

2 (K2-2JJ2 ) i(EU0+2; tan q, su2 ) 
~(7, 8) = 

R 
. 

~(7, 9) 
=-2(t(EU + K2EUll) + 2q,1 tan ~(SUtiS_SU2 )] 

R 
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2 [ ., 2 . 2 ) 2 . ( )] ~(8, 2) = R~ 2~ EL2 - i s~n ~ su0 + i s~n 2~ EL1 + 2SU1 

~(8, 5) = 0 

. 2 
~(8, 6) = 2R (~ .EU1 + i sin 2~ su2 ) 

2 • 
~(8, 7) = 2RR. (cos ~ EU1 -~sin 2~ su2 ) 

at b bt ae - e 
a - b 

~(8, 8) = 

at bt 
~(8, 9) = e - e 

a - b 

. 
+ 2(Ss 3 + Klss2)- 2~ tan ~(ss2 + K1ss1 )]} 
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~(9,5)=0 

~(9, 7) 2 = 2i[cos ~(EU2 + K1EU1 ) 

~(9, 8) = 
(2~- K2)(eat_ebt) 

a - b 

~(9, 9) = 
[ at( ) bt e a+~ - e (b+K1 )J 

a - b 

where 

_ ! (sin ut - sin JJt 
UL2 - 4 

JJ( lJ + i)2 

( at· EU = _!_ [~sin \.It - a cosJJt-e ) 
1 a-b a2 + 1J2 

sin 11t - sin Q.t ) , 

ll(~- t) 2 

JJSinJJt- b(cosJJt-ebt)] 

b 2 + l 

2 bt 
bJJsinJJt- b (cosHt-e )] 

2 2 ' 
b + ~ 

at t a . t at a e -cosit - - sinit e -cosll - - s~nll 

2 2 
a + ~ 

+ 
a2 + 12 

1J ) ' 

(4-21) 

(4-22) 

(4-24) 

(4-25) 

(4-26) 
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. bt 
_....;;1;.__ (f.!Sin t - b( COSf,lt-e ) 

ELl = 2 2 2 
f.! (a-b) b + f.! 

bt 
~ sinit - b(cosit-e ) 

b2 + R.2 

at isin it - a(cosit-ebt} 
f.! sin llt - a( cOSllt-e ) + ----------

a2 + ll2 a2 + 12 

2 bt 
- --=1=--- [llb sinllt + ll (cosllt-e ) EL = 

2 f.l2(a-b) b2 + ll2 

tb sinit + t 2 (costt-ebt) 

b2 + 12 

2 at) sin1t + 12( cos eat) -- ll a sin f,lt + ll (cOSllt - e + 1 a R..t -
a2 + ll2. a2 + R.2 

(4-27) 

(4-28) 

2 bt 2 bt 
EL = 1 {b[llb sinlJt:+ (cosllt-e ) 1b sin1t + 1 (cos1t-e )] 

3 2 b2 + 2 b2 + 12 l.l (a-b) ll 

(4-29) 

SU = ---1-{(t(bCOS}Jt + ll sinllt) 
2 2 bt 

+ (b -ll )(coslJt - e ) - 2b llsinllt 
(b2 + ll2)2 0 2ll2 (a-b) b2 + f.l 2 

t(a cosllt - f.! sin J.lt) 
2 2 a + l.l 

(a2-ll2 )(cosl.lt-eat)-2al.l sinl.lt 

(a2 + l>2 
] 

-b sinllt + ll(cos f,lt - ebt) 

ll(b2 + i> 
a sin f.lt + ll(cos llt - eat) 

+ ------~---~-------
ll(a2 + i> 

( 4-30) 

} 

( 4-31) 
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+[~t(b cos ~t - usin ~t) + b sin ~t + ~cos ut 

(b2 + ~2) 

( 2 2) 2 _ 2b2 "e-bt + 1.1 b -1.1 cos ut + 2bu sinut .. ] } 
2 2 2 b ' 

-t(b sinut + ucos ~t) 

(b 2H 2 ) (b2+i) 

9b + ~ ) 

+ 1 . [t sin (~t-e) t sin (~t + e) 

4~1 1[(2~2-K2+12 ) 2 + 1~2 ] u + t u- t 

+ cos (yt - e) - cos(tt +e) 

(u + t) 2 
cos(yt +a) - cos (tt + e) 

(u - t) 2 

( 4-33) 

( 4-34) 
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+ 1 [t sin(~t - £) t sin (~t + 8) 

4~ 1[(2~2-K2+t2 ) 2 + t2~2 ) ~ + i ~ - i 

+ cos (~t - 8) - cos (it + 8) 

(~ - i)2 

-b2 [t(b sin ~t + ~cos~t) 

(b2+i2 )(b2 +i) 

cos (~t + 8)- cos (it+ 8)], (4-35) 

(~ - i)2 

t [t sin (~t -e') t sin (~t + 6) 

2~ l[(i2+a2 )(i2+b2 ] u + i u- i 

+ cos ( ~t - B) - cos (it + 6 ) 

(~ + i)2 

' 

cos (~t + 8)- cos (it +6) ' (4-36) 
(~ - 1)2 

( 4-37) 

(4-38) 
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4.4 Discussion of the Solution 

Difficulties in finding the inverse Laplace transform of 

an expression are usually related to the degree and complexity of the 

polynomial in its denominator. In our case the denominator is 

basically given by the analytical expression for the determinant of 

the Q-matrix. Therefore the order of the dynamics matrix F and the 

complexity of its elements will to a large extent determine if the 

use of this technique is advisable. 

When using the expressions in section 4.3 it should be 

realized that: 

a) some of the elements in ~(t) become undefined if 

(4-l6) 

b) the elements in column 9 of the transition matrix, except ~(8, g), 

approach zero as 

K2 + ~2 ( 4:-17) 

c) if an element in column 8 is f8 
c' then 

f9 
f' 8 + K f 8 

= c 1 c 
c 2 

2ll -K 2 

(4-18) 

except ~(8, 8), 

d) if an element in row 8 is f8 
r' then 

( 4-19) 

except ~ ( 8, 8) , 

e) the elements in row 4 and row 5, except the diagonal elements, are 

the integrals of row 6 and 7 evaluated between intervals of zero 
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and t. 

In an undamped system the values of K1 and K2 are zero. The 

inverse Laplace transform of the matrix N2 (4-8) becomes 

cosh ~ sinh ~ 
c 

L-lN = (4-20) 2 
~2 sinh ~ cosh /8; 

c 

The values of the elements in ~(t) which are associated with 

the height channel increase exponentially as t increases. The increases 

in these elements are propagated to each element in the transition 

matrix, as indicated by equation (4-5), (4-6) and (4-7) and contaminate 

the sinusoidal behaviour of the elements associated with the horizontal 

channels when the value of t becomes very large. 



5. S::ERIES SOLuriON 

The series expansion approach is another way to find the 

solution of the transition matrix of equation (2-2). The dynamics 

matrix F can be substituted into equation ( 2-8) to form an 

infinite series representation for the transition matrix t(t) which 

converges for all values oft. Each element in the matrix is expressed 

in form of a Taylor series expanding around the point where time t is 

zero. By examining and regrouping the corresponding variables in each 

series, the elements in the transition matrix may be expressed as sums 

of several less complicated Taylor series of co~n functions. The 

analytical expressions for the elements in the transition matrix may then 

be derived from these series. However, this approach for the solution 

of the transition matrix can be a very lengthy and difficult process. 

The matrix t·{ t) has to be expanded analytically to the 

sixth, or perhaps the seventh term of the series to include all the 

essential components required to form the simpler series of 

common functions. Regrouping the series is another difficult task. 

Some of the series may not be easily rearranged to become sums of 

common functions. The final analytical expression for the matrix t(t) 

derived in the series expansion approach are listed in section 5.2 .. 
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5.1 Basic Technique 

Two of the series approximations of elements of ~(t ) are 

derived here to show how the series were rearranged to get the final 

expressions. 

The series expansion of element ~(1, 1) is 

~(1, 1) t 2 2 . 2 2 t 4 4 2 4 2 2 = 1- ~ (i s~n ~ + ~) + 24 (i sin~+~ + ~ i) ••. 

= r 
n=O 

Using the assumption that 

(5.1) may be reduced to 

~(1, 1) = cos ~t + sin2~ (1 - cos it) . 

Another element ~(2, 9) can be represented by the series 

4 2 • 
• 3 2 t ( K2-~ ) <I> tel> t i sin 2p + ~ ( 2 ' 9) = R - -=--~3R~=-~ --1.::.2R..,....__ 

t5 2 12 t6 (K -~2)2~ (K2-4~ ) sin 2~ 2 + + 
R 360R 

7 2 5~2) 12 t ['tK2-~ )Kl sin 2~ 
+ . . . . 

5040R 

It can be rearranged and yields 

(5-1) 

(5-2) 

(5-3) 

(5-4) 
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( 2' 9) I: 
n=O 

(~l)n+l[I(K2-~2)t]n+2 ~ 
----------+ t 2 sin 2cp I: 

where 

for 

and 

(n + 2) ! n=O 

[(-l)n+l t (~)n+2 + (..;.1 )n·('llt)n+3 

(n + 2)! 3(n+3)! 

~ (-l)n+l t5 (K2-'Il2)(Kl t)n 
+ R. 2 sin 2cp I: 

n=O (n + 5)! 

.2 t (cos 'llt-1) = ~ sin 2cp [ 2 (sin 'llt - 'llt) + (K -'112) • EK5 ] 
'113 2 

- 2~ 

'll 

cos [I(K2-'Il2 )t] -1 

2 
R(K2 - 'll ) 

-kt 4 
e 

(-l)n (K t)n 
1 ) EK5 = --- I: 

K 5 n=O 
l 

K - '11 2 > 0 2 

K 5 n' l . 

(5-5) 

(5-6) 

(5-7) 

~( 2' 9) 
(sin 'llt - 'llt) 2 ~;.;;;;;....,~---'"'"""'- + ( K2 - 'll ) EK5 ] 

'll3 

(5-8) 

if 

5.2 Final Expressions 

The elements in the transition matrix derived from their 

series representations are: 

~(1, l) = cos 'llt + sin2cp (1 - cos R.t) 
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. 2 
~(1, 2) = -1t sin <1> cos lJt - 4<1>1JJ cos <f> cu4 

· 2.~, i t 12 .sin·JJt ~( 1, 3) = -Sl.~ 'f' [ 2 (COS ~t - COS R.t) + ---.;~=;;o...:....;;. 
1J J.l 

~(1, 4) = - ~(1, 2) 

~(1, 5) = 0 

~(1, 6) R.t sin p sin )Jt 
+ 4¢R. cos <I> SUE = )J 

~(1, 7) cos 4> sin )Jt = 1J 

~(]., 9) = 2: [cos <1> (CUE - IS_ l; EK4 ) + 21$ sin<l> SUE] 

~(2, 1) 
. 2 

= t sin <1> cos JJt - 4<t>iJJ cos <1> cu4 

~(2, 3) [ sin )Jt 12 
= R. cos <f> + 2 (sin lJt - lJt) ] 

lJ lJ 

12 t 12 sin2 <1> sin )Jt ~ ( 2' 4) = 2 cos 2<1> (cos )Jt - cos 1t) - ""'-""'--..;;;;.;)J--.... _______ ___ 
)J 

~(2, 5) = 0 

~(2, 6) -sin J.lt = )J 

~( 2 , 7 ) = R.t sin 24> sin )Jt _ 4~ 1 cos2<1> CUE 

2)J 
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~(3, 1) =tan ~(1 -cos ~t) - sin~ cos ~ (cos it-1) , 

~(3, 2) = sec ~(it sin2~ cos ~t - sin it) 

~(3, 3) = cos2~ sin2~ cos it , 

~( 3, 4) 
n • 2 .1. • t = sec ~ ( .:;:.~v.....:S:..:J.:::n~r~;.....;::.s.::.:J.n::.....::~:.::.. - sin it ) 

~ 

~(3, 5) = 0 

~(3, 6) = -tan ~ ~(1, 6) 

~(3, 7) =-tan cp ~(1, 7) 

~(3, 8) = -tan ~ ~(1, 8) 

¢(3, 9) = -tanq, 1> (1, 9) 

~(4, 1) = sin~ (sin it - it cos~t) 

~(4, 2) = 1 - cos ut , 

~(4, 3) = i cos p( ut - sin ~t) 

~ 

~(4, 4) = 1 

~(4, 5) = 0 

~(4, 6) = ~(2, 6) ' 

~(4, 7) = -~(2, 7) 

~ ( 4 ' 8) = -~ ( 2 ' 8) 



~(4, 9) = - ~(2, 9) 

~(5, 1) = sin ~(cos ~t - 1) 

~(5, 2) = sec ~ t(4, 1) 

~ ( 5' 3) [1 - cos 
.12 

cos ~t) 
t = sin ~ 1t + 2 (1-

~ 

~(5, 4) = 
R. tan ~( ~t - sin lit) 

~ 

~(5, 5) = 1 

~(5, 6) = sec $ ~(1, 6) 

~(5, 7) = sec ~ ~(1, 7) 

~(5, 8) = sec ~ ~(1, 8) 

~ ( 5, 9) = sec ~ ~ ( 1, 8) , 

~(6, 1) = R. sin ~(cos tt - cos ~t + ~t sin ~t) , 

2 
~(6, 2) = ~ sin ~t +!_(sin ~t - ~t) 

~ 

~ ( 6 , 3) = R.. COS ~ ( 1 - COS ~ ) 

t 2 2 2 

12 sin~t ] 
~ 

~(6, 4) =-- (sin ~t - ~t) + 1 sin ~ (t cos ~t - sin vt ) 
\J 'I' ~ ' 

~(6, 5) = 0 

' 

~(6, 7 ) = -4~R. cos2$[t sin JJt + ~ EK) 1 sin 2$ (sin ~t + ~t cos ~t)~ 
2~ 3 - 2~ 



( . · 2 . 2 sin ut - ut 
~(7, 1) = - sec ~ u nn lJt + R. s~n ~ .=;.......:;;;.;;_-....:;;~ 

lJ 

~(7, 2) = R. tan ~(cos R.t- cos ut + lJt sin lJt) 

~(7, 3) = R. sin ~(sin lJt- tt cos lJt) 

t t 2 sin gt 
~(7, 4) = R. tan ~(cos R.t- cos u + 2u ) 

~{7,5)=0, 

~(7, 6) =; tan ~(sin ut + ut cos ut) - 4~t (0.5 SH2 - K1~ EK4) 

~tB, 1) = 2Rtu2 [cos ~(SUE+ KIEK3) + 2~ sin ~(cs2+1.5KIEK4+1.5~EK5 )] , 

2 . 2 2 ) . 2 ~(8, 2) = Rt s~n ~ [3u (KlEK4 + ~EK5 + 2CS2] - 2R~u (SUE + KlEK3) , 

• 2 2 2 2 
~(8, 3) = R1(2~u cos ~(~EK4 + CUE) + t sin ~ cos $(CS3-3Klll EK5 

+ ict 7 } 1 
1863 

( 2 2 • 2 
~ 8, 4) = Rt u (sin 2~ {CUE + K1EK4) + 2~(1 + 2 sin $) EK4] , 



~u 

~( 8' 5) = 0 

~(8, 6) = 2R <P.[K EK -CUE- K (K -l) EK4)J- 2Ri sin2 q,(CS1+ EK4 1 2 1 2 

( 8 8) . -K t [ ( ) ( ) ] ~ , = e 1 + CHE - 1 - ~ l;; t EK1 + z;EK3 + EK2 + 2r;;EK4 

~(9, 1) = 2Rt~2 {cos $CUE+ ~sin q,(t( 1 -2co~ ~t) - 3l;; EK4]} 
~ 

~( 9 , 2) = 2R~2 [¢ (1 - cos~t + r;;EK ) + i2 sin 2$( t- t cos~t 
2 3 2 

~ 2~ 

~(9, 3) = 2Rt~2 [¢ cos cp(~t - ;in ~t - r;EK4) + 3t2 sin q, cos2cp 

2 
cvt - t sin~t )] 

4~3 + r;;EK5 

~(9, 5) = 0 

( ) 2 ) • t sin ~t ~ 9, 7 = 2Rt [cos q, (SN1 - ~ r;;EK3 - ¢ sin 24>( 2~ + l;;EK3)] 



<11(9, 8) = ?; ¢(8, 9) 

where 

2 
I;; = 2JJ - K 

2 

-K1t 1 (-K1t)n 
EK = _e __ - E 

1 K~2 n=O K 2 n! 
1 1 

-K t 
1 

EK = _e __ -
2 K 3 

1 

-K_t n 
-~ 3 ( -K1t) 

EK = .::;.e~-- E 
3 K 4 4 

1 n=O K1 n! 

-K t 
1 e 

EK4 = --
K 5 

1 

4 
E 

n=O 

sin pt - pt 
3 

SUE= 
/ -t3 p 

~ n:- sinh ot 
3 

p 

2 when K2 > )J , 

2 = lJ 

2 when K2 < ll 

(5-10) 

(5-11) 

(5-12) 

(5-13) 

(5-15) 

(5-16) 

(5-17) 

( 5-17) 

(5-18) 

(5-19) 

(5-20) 



sin pt /p 
su1 = -t 

""sinh pt p 
p = I IK2 - ~PI 

cos nt - 1 
2 I K2 - " 

-t2 
CUE=--

2 

\COSh Et - 1 
2 

K2 - \.1 

cu4 = CUE+ G.5 t 2 

K -
2 

2 \.1 

.,., sin qt 
SHE = 

"'-... sinh.qt 

CHE = 
/cos qt 

"-.....cosb qt 

q = 112i - K2j 

cs = t (cos \.1t - 1) 
1 2 

\.1 

42 

when K2 > \.1 
2 

when K2 = 2 \.1 

when K2 < 
2 

\.1 

when K2 > 

when K2 = 

when K2 < 

2 when K2 .::_ 21.1 

\.1 

\.1 

2 when K2 < 21.1 , 

2 when K2 .::_ 2\.1 , 

2 when K2 < 2\.1 , 

2 
\.1 

2 

2 

(5-21) 

(5-22) 

( 5-23) 

(5-24) 

(5-25) 

(5-26) 

(5-27) 

(5-28) 

(5-29) 

( 5-30) 

( 5-31) 

( 5-32) 

(5-33) 
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[t(sin )lt- lJt) 2(cos ut - 1 
2 2 

cs2 = 0.5 + +0.5ut 1 
3 

u )l 
(5-34) 

t(cos )lt - 1 + 0.5 
2 2 2(sin lJt -)ld t3 

cs 3 
u t = 2 3 3 )l 1J 

(5-35) 

and 

t sin 1 + 2 
-CHE SH2 

ut 0. 5r,:t = • 1J 1;; 
(5-36) 

5.3 Discussion of the Solution 

The elements of the matrix given in section 5.2 were derived 

from the first six terms of the series expansion of the transition 

matrix ~(t). It was assumed that inferences on the high order terms 

could be made from the first six terms. The other assumptions made in 

deriving these expressions were the same as those made in the inverse 

Laplace Transform approach. The expressions in the last two rows and 

columns of the matrix are different from those derived in chapter 4 

but they are numerically close. 

The equations (5-17) to (5-32) indicate that for 

2 
K2 < ll 

the expressions for elements associated with the height channel are 

(5-39) 

functions of hyperbolic functions which grow exponentially as t becomes 

larger. Such growth can affect the other elements, espPcially those 

associated with the velocity corrections, when t becomes very large. 

Generally, the analytical expressions for the matrix ~(t) 

derived in this chapter are shorter and less complicated than those 

derived in chapter 4. However, it can be shown that many of the 

expressions associated with the elements in the horizontal channels 

are identical for both solutions. In most cases a series expansion 
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of the matrix elements given in section 4.3 will show this. The expressions 

associated with the height channel are more complicated and their 

agreement can only be shown by numerical comparison. The series 

representation of the matrix exponential is less accurate because the 

slimmation vas done on the basis of the first six terms only. 

A~parently, theeff~ctsof some high order terms have been omitted by 

this procedure. 



6. TESTS AND NUMERICAL RESULTS 

Two transition matrices have been derived in the last two 

chapters. As has been pointed out in section 5.3 the equivalence of 

the two solutions could not be shown analytically for each individual 

element. Numerical tests were therefore performed for varying values 

oft, $, K1 , and K2 in order to find out how closely the solutions 

agreed numerically and how close they came to the exact solution. This 

'exact' solution was computed by a numerical method given i:1 section 6.1 

and it will be treated as the most accurate approximation to the actual 

transition matrix. The differences between this matrix and the other 

two matrices computed by using the analytical expressions of sections 

4.3 and 5.2 will be regarded as the approximate errors of these 

expressions. 

6.1 The Numerical Method 

The numerical method is basically the series expansion 

solution. It generates the transition matrix ~(t ) by premultiplying 
n 

a transition matrix for a small time interval t.t by itself for n times 

t = n • t.t, 
n 

(6-1) 

where n is greater than zero. The matrix ~(t.t) can be computed by using 

equation (2-8) truncated at a finite number of terms. The truncation 

45 
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error is negligible if t:.t is very small. In our case t.t was equal 

to 1 second and the matrix was truncated after the sixth term. 

l'he Aolut.ton of the equation ( 2-2) for time t 1 may be vri tten as 

~(tl) = 4>(t:.t, 0) . x(O) (6-2) 

whe_re t, = t:.t ' 
( 6-3) 

-'-

and the solution for t is given by 
n 

~(t ) = 4>(t ' tn-1) • ~(t ) 
n n n-1 

4>(t ' tn-1) 4>(t t 2) ~(t = . 
n-1' 

. 
n n- n-2 

4>(tl, 
n + ( 6-4) = 0) • x(O) 

for t = 0 (6-5) 
0 

Generating the solution with equation (6-4) is usually very time 

consuming when the value of t becomes large. If the value of n is, 
n 

however, a power of 2 

k 
n = 2 , (6-6) 

then the number of multiplications reduces from n to k. Formula ( 6-4) 

is then replaced by 

step 1 4>( t2) = ~(t:.t, 0)2 

step 2 4>(t4) = ~(t2)2 = ~(t:.t, 0)4 
• .. • • • 0 0 ..... ...... 

step k ~(t ) 
n = 4J(t )2 = ~(t.t, O)n (6-7) 

n 
2 

Since we are usually free to choose t:.t the condition (6-6) can always be 

satisfied. The major error in applying this method is the truncation 

error occuring during the matrix multiplications. 

\ 

) 



6.2 Testing the Inverse Laplace Transform Solution 

The solution for the transition matrix computed from the 

analytical expressions given in chapter 4 was compared to the numerical 

solution of the last section, for 

25°~ ~ ~ 85° (6-8) 

0 ~ Kl < f.! (6-9) 

0 ~ K2 < 
2 

2].1 ' (6-10) 

0 ~t <1000 seconds, ( 6-ll) 

0 ~<P ~ 1. 31 X l0-5 rad/second (6-12) 

and 0 ~>.. < l, 31 X l0-5 rad/second (6-13) 

The results are given in the table below: 

t)me (sec) max. percentage error 

128 0.48 

256 0.49 

512 0.54 

1024 1.13 

Table 6-2 Error of Inverse Laplace Transform Solution 

The inverse Laplace transform solution of the transition matrix 

for the values of t between 1000 and 3000 seconds iras also computed to 

show the effect of the damping loop gains K1 and K2 . The change of the 

matrix elements ~(8, 8) and ~(9, 9) with respect to changes of K1 

and K2 are tabulated in Table 6-2. 

The results indicate that the values of ~(8, 8) and ~(9, 9) 

increase rapidly for an undamped system. 

The value of ~(8, 8) approaches e-Klt and the val~e of ~(9, 9) 

becomes l. 0 as 

(6-14) 

and ~(8, 9) approaches t as 

(6-15) 



- -

time( sec.) 10000 1500 2000 

K1 K2 t(8,B) t(9,9) t(8,8) 4>(9,9) 4>(8,8) 4>(9,9) 

0 0 2.98 2.98 6.99 6.99 16.73 16.13 

0. 211 o.4l 2.06 2.38 4.10 4.79 8.40 9.82 

0. 4JJ o. 8\l 2 
l. 39 1.91 2.29 3.26 3.98 5.70 

0. 6ll l. 2ll 2 0.90 1.53 1.19 2.21 l. 71 3.27 

o. 8ll l. 6ll 2 0.54 1.23 0.54 1.49 0.60 1.83 

ll 2/ 0.29 1.00 0.155 1.00 0.08 1.00 

lE-6 2ll 2 0.99 1.00 0.99 1.00 0.99 1.00 
-

Table 6-2 Effect of Damping 

2500 

4>(8,8) 4>(9.9) 

40.21 40.21 

l7. 31 20.27 

6.98 10.04 

2.52 4.86 

0.71 2.27 

0.05 1.00 

0.99 1.000 

3000 

4>(8,8) 

96.69 

35-73 

12.30 

3.74 

0.86 

0.02 

0.99 

4>(9,9) 

96.69 

41.84 

17.60 

7.23 

2.81 

1.00 

1.00 

I 
I 

I .t:'" 
co 



The values of other elements associated with the height channel also 

decrease under the conditions (6-14) and (6-15). The numerical 

method is generally a more time consuming way for generating a transition 

matrix. In our case, the method required 10 times as much computation 

time as the inverse Laplace transform solution to Dbtain the matrix 

~(t) when t is larger than 128 seconds. 

6.3 Testing the Series Solution 

The series solution described in chapter 5 was tested in a 

similar manner and under the same conditions mentioned in the last 

section. The series solution was compared to the numerical solution 

and the results are summarized in Table 6-3. 

Time (sec.) Max. percentage error 

128 0.80 

256 0.81 

512 0.88 

1024 1.45 

Table 6-3 Error of the Series Solution 

The results also indicate that the analytical expressions can 

generate the transition matrix ~(t) 14 to 15 times faster than the 

numerical method for t larger than 128 seconds. However, the accuracy 

of the series solution decreases very rapidly as t increases beyond 1000 

seconds. This is mainly becaU?e the solution was derived from the truncated 

series expansion. The analytical expression are not be accurate enough 

to give a close approximation to the actual solution when t becomes 

very large. 
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The series solution was also compared with the inverse Laplace 

transform solution for different values oft. The maximum differences 

between them are expressed as percentage of the values of their 

corresponding elements in the inverse Laplace transform solution 

Table 6-4. 

maximum Average CPU time 
t(sec.) percentage differences L (sec.) S(sec.) 

128 0.88 0.0050 0.0034 

200 0.88 0.0050 0.0034 

4oo 0.89 0.0051 0.0036 

6oo 0.92 0.0051 0.0036 

Boo 0.95 0.0049 0.0035 

1000 1.40 0.0050 0.0037 

Table 6-4 Differences between Series and Inverse 

Laplace Transform Solutions 

in 

The quantities listed in Table 6-4 show that the two solutions 

are in good agreement for time intervals up to 1000 seconds. The 

time needed to compute the transition matrix by way of the inverse Laplace 

transform solution is about 1.4 times larger than that required 

by the series solution. 



7. CONCLUSIONS 

The analytical form of the transition matrix for the local

level case of inertial navigation has been derived in two different ways: 

by using the inverse Laplace transform technique and by expanding the 

matrix exponential into a series. The equivalence of the two solutions 

can be shown for most matrix elements. Where it is not possible, 

numerical comparisons have been made. The ~greement is always better 

than 1.5% of the respective value for time intervals up to 1000 seconds. 

Comparisons with an accurate nume~ical solution show agreement en the 

same level of accuracy. For time intervals larger than 1000 seconds 

the inverse Laplace transform solution is more accurate than the 

series solution. Both analytical solutions are superior to the 

numerical solution with respect to computer time by a factor of 

10 to 15. 

The analytical solutions can be used to discuss the 

behaviour of individual errors in a very general manner and to spot 

instabilities of the system. The best example is the instability 

of the height channel. The expressions show that, in an undamped 

system, the elements associated with the height channel contain 

hyperbolic functions of the Schuler frequency and gro~ in exponenti~l. 

manner when t becomes large. The damping loop gains, if properly 

chosen, can reduce these errors. 

51 
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The analJ~ical expressions were developed from a constant 

dynamics matrix, i.e. by neglecting the time dependent components. 

They can therefore only be treated as a first approximation to the 

elements of the actual transition matrix of the system of error 

equations. For further investigations, these time dependent 

components may be included in the dynamics matrix. A better 

approximation can then be obtained by using the inverse Laplace 

transform solution as a first approximation and by deriving the 

time dependent terms by a series expansion. 



APPENDIX I 

The purpose of this appendix is to show the elements of E2-l 

in Chapter h and the detailed derivation of the matrix N2 described 

in the same chapter. 

Let us label E2 -l as U(Shhen the element in it are: 

U(l, 1) 

U( l, 2) ~ sin cp u 2 t sin<P ( 1 2 ) = + 
(8 2+t2) (82+ \l2) (S2H2) (S2+\l2) ' 

t 2 sin <P 
1 2 1 2S ) ] U(1,3) ct>[ 

].L = cos + (- + 
S(S2H 2 ) (S2H2) (S2H.2) s (S2+l) 

U( l, 4) = -s2 t sin cp 

(S2H2)(S2+J.l2) 

U(l, 5) = 0 

U( 1, 6) = 
2SR. sin cp 

(s2 + u2)2 

U(l, 7) = 
cos cp 

(S2 + J.l2) 

U( 2, 1) 
-R. sin cp + it sin <P ( 1 1 

2 ) = + 
(S2 + 12) 2 2 (82 + t2) (S2 + (s + J.l ) ].l ) 
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U( 2, 2) 
s3 

= 
(S2+12)(S2+1J2) 

2 
U(2, 3) = 8 1 cos ~ 

(S2+12)(82+l) 

U( 2, 4) 
-12 /12 cl + 2S sin2¢) = + 

8(82+12 ) (82H2) (82+12) s (82+i) 

U(2, 5) = 0 

U(2, 6) 
-1 

= 
82 + 2 

lJ 

U( 2, 7) = 
SR. sin ~ 

(82 + i)2 

U( 3, 1) = tan ¢ ( 8 s 

(82+£2) ( 82+1J2) 

2 
J.! 2£ sin2¢ 1 2 U( 3, 2) = sec ¢ [-1 cos ¢ (22 + 22")] 

S2H2 82+1J2 s +£ 8 +lJ 

U(3, 3) s IJ2i2 sin2¢ (l + _g§__) 
= 

82H2 (S2+£2)(S2+1J2) 8 82+lJ2 

U( 3, 4) 
£ cos <P + 112£ sin ¢ tan ~ = 
82 + 12 ( 8 2 H 2 ) ( 8 2 +IJ 2 ) 

U( 3, 5) = 0 

U(3, 6) = -28£ sin2~ sec~ 

(82+i)2 

u( 3, 7) = -sin <P 

82 2 + l1 
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u(4, 1) 

U(4, 2) = 

U(4, 3) 
2 = '.li cos 1> 

(S2+.1'.2)(S2+'>l2) 

U( 4, 5) = 0 

U( 4, 6) = 1 

82 + '>l2 

U(4, 7) = SR. sin 2<j> 

(S2 + u2)2 

U(5, 1) = 

2 
U( 5, 2) = ];! i tan <j> 

(S2+'>l2) 

2£2 . 
U( 5, 3) = u s~n <j> 

(s 2+t2 )(s2+·l) 

2 
U( 5, 4) = u II- tan <P 

(S2+.1'.2)(S2+i) 

U(5, 5) = s 

U( 5, 6) = 2Si tan .p 

(S2+ ll2)2 

(1 -

( l 2 --+--) 
32+.1'.2 S2+'>l2 

(l+~) 
s 82 2 +'..! 

2 
(l - 2L-) 

82+'..12 
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l 
U( 5, 7) = --=---

82 + i 

U(6, l) 

U(6, 2) 

U(6, 3) = 

U(6, 4) = 

U( 6, 5) = 0 

s 
U(6, 6) = -------

82 + ~ 2 +41 2 sin2 ¢ 

U(7, l) = 

U(7, 2) 

U( 7, 3) 

U( 7, 5) = 0 , 

U(7, 6) 

and 

= 281. tan <P 

(S2 + ~2)2 

(AI-l) 
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Substituting the above matrices, A2 and c2 , into equation ( 4-4) 

results in 

. S+K. -1 
I 

= (D2-C2A2-~2) 
s + 4s(~2H2 2 

K -21-1 2 

Using the assumption that 

l-12 » 9..2 

and 

2 ~2 
ll >> ¢ 

(AI-2) may be reduced to 

and its determinant is given by 

where 

and 

= (S - a)(S -b) 

I(K1
2 - 4K2 + 8}) 

(S2 + l-12) 

2 cos p) (AI-2) 

(AI-3) 

(AI-4) 

(AI-5) 

(AI-6) 

(AI-7) 

(AI-8) 

5 
The matrix N2 may be derived by using standard co-factor techniques 

s 1 

( -1 ) -1 
(s-aHS-b) (s-a)(s-b) 

D2-C2A2 B2 = (AI-9) 
2 

21-1 -K2 S + K 
. .1 

(S-a)(S-b) (S-a) (S-b) 
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