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1. INTRODUCTION

Observational. accuracy in contemporary surveying practice 1is
characterized by the standard derivation or variance of individual obser-
vations. In order that useful statistical propagation of this error
can occur, these variances are assumed to have a normal distribution with
zero mean. This implies that the variances must be composed of random
errors, and that anv error or inaccuracy which is systematic in nature has
already been accounted for and removed, either by solving for the systematic
component through an adjustment process, eliminating it through appropriate
observation procedures, or eliminating it by other empirical techniques.

This report is intended to provide an analysis of the random
errors inherent in observations encountered in surveying, which are
used to estimate the variances of these observations. It must be made
clear from the outset that the systematic errors encountered in surveying’
measurements are not considered directly. They are, however, given the
attention necessary to evaluate the effect of errors made in eliminating
or minimizing these systematic biases. This is necessary to compute
realistic variances for the indi<¥idual observations.

With this in mind, the errors are split into 2 distinct sections.
The first covers random errors encountered when making angular measurements.
The accuracy of directions, vertical and horizontal angles, and azimuths
are all examined, although, as one would expect, they are verv much
interrelated. The second section deals with the random errors encountered
when measuring distances. The accuracy of various electromagnetic distance
measuring (EDM) equipment as well mechanical (e.g. chain) and optical

methods are treated.



Only these basic surveying observables are analysed, and
obsarvations such as inertial, Doppler or hydrographic (e.g. range-range)

measurements are not covered.



2. ANGULAR MEASUREMENTS

The term angular accuracy, in this report, refers to the
accuracy of making measurements with a modern theodolite such as a Wild T2
or Kern DKM2. Various types of theodolites are available, and Table 2, [Cooper
1971] gives an excellent summary of the major features of some of
the theodolites in use today.

This work does not intend to describe or assess the mechanical
or optical components of theodolites. It is assumed that either the
theodolite is in correct adjustment, or that any misalignment or other error
can be eliminated by suitable observation procedures (e.g. mean of face
left and face right readings corrects for line of collimation
not being perpendicular to the axis of the theodolite). For those who
are interested in theodolite construction, and its detailed analysis, an
excellent reference is Cooper {[1971]. Instead, the topics dealt with are
concerned with random errors which are unavoidable in the everyday use of

theodolites, and with obtaining reasonable estimates for them.

2.1 'Internal
Internal errors are those which are caused by the actual equipment
and/or observer using it. Errors considered under this heading include

pointing, reading and levelling errors.

2.1.1 Pointing Error

The pointing error Op is directly related to the telescope magnification
of the individual theodolite. Chrzanowski [1977] states that the maximum

accuracy of pointing is 10"/M, where M is the telescope magnification. He



Telescope H. Circle ¥. Circle Reading Spirit Levels Value of 2 mm
INSTRUMENT. | MANUFACTURER | COUNTRY Magni- Objective| Length| Shortest | Field of | Diam.| Gradu-| Diam.| Gradu~| Direct| System Plate | Altitude | Spherical | Weight
. fication | diam(mm) (mer Focus (m) | View (°) | (mm) | ation | (mm) | ation to (") (") (") {kg)
FTIA Fennel H. Germany 30 40 175 1.2 1.6 90 1° 70 1° 1! Opt. Scale 40 auto. 8 4.0
pKre-1 Kern Switzerland | 20 30 120 0.9 1.7 50 20! 50 20' 10" | Opt. micro 30 30 - 1.8
Kl-A Kern Switzerland | 28 45 155 1.8 1.5 89 1° 70 1° 20" | Opt. micro 40 auto. - 4.2
Te-E6 Mom Hungary 20 28 123 1.3 2.0 80 20" 40 20" 10" | Opt. micro 50 auto. 6 2.6
Microptic 1] Rank U.K. 25 38 146 1.5 1.5 89 20' 64 20! 20" | Opt. micro 40 30 - 4.5
4143-A Salmoiraghi | Italy 30 36 172 2.0 1.4 90 30" 90 " 30" | Direct 30 auto. 10 4.7
vz22 Vickers U.K. 25 3 137 1.8 2.0 78 1° 63 1¢ 20" | Opt. scale 45 90 17 5.2
Ti6 Wild Switzerland | 28 40 150 1.4 1.6 79 1° 79 1° 1! Opt. scale 30 30 8 4.5
TIA Wild Switzerland | 28 40 150 1.4 1.6 73 1° 65 1° 20" | Opt. micro 30 auto. 8 5.0
Theo 020 |Ziess{Jena) | E. Germany | 25 35 195 2.1 1.6 96 1° 74 1° 1 Opt. scale 30 auto. 8 4.3
Th 3 Zeiss Ober.; W. Germany 25 35 150 1.2 1.7 78 1° 70 1° 30" | Opt. micro 30 auto. 15 3.5
Th 4 Zeiss(Ober.) | W. Germany 25 35 150 1.2 1.7 98 1° 85 1° 1! Opt. scale 30 auto 10 4.5
Tu Askania W. Germany 30 45 165 1.5 1.6 90 20°' 70 20' ™" Coinc. micro 20 auto 10 4.5
FT 2 Fennel W. Germany 30 45 174 2.0 1.6 93. 20" 60 20" ™ Coinc. micro 20 20 6 ! 5.5
oK 2 Kern Switzerland | 30 45 170 1.7 1.3 75 10! 70 10' ™ Coinc. micro 20 20 - i 3.6
oIt 2-A Kern Switzerland | 30 45 170 1.7 1.3 75 10' 70 10' " Coinc. micro 20 auto - : 6.8
5 -1 Hash- USSR 26 40 180 1.2 1.3 85 20" 75 20° 1 Coinc. micro 20 25 12 5.1
priboritorg ’
Te-83 Hom Hungary 30 40 175 2.5 1.5 78 20" 66 20' 1" Coinc. micro 20 auto 6 5.5
icroptic 2j Rank U.K. 28 4 165 1.8 1.5 98 10 76 10! 1 Coinc. micro 20 20 - 6.3
4200-A Salmoiraghi | Italy 30 40 172 2.5 1.5 40 10' 90 10" i Coinc. micro 20 auto 10 . 6.1
Tavistock 2| Vickers U.K. 25 38 159 1.8 2.0 85 20° 70 20° 1" Coinc. micro 20 20 20 . 4.8
T2 wild Switzerland | 28 40 150 1.5 1.6 90 20° 70 20' 1™ Coinc. micro 20 30 8 1 5.6
‘Theo 010 Zeiss(Jena) |E. Germany 31 53 135 2.0 1.2 84 20° 60 20! ™ Coinc. micro 20 20 8 1 5.3
iTh2 Zeiss (Ober.)| W. Germany 30 40 155 1.6 1.3 100 10! 85 10' 1" Coinc. micro 20 auto 10 5.2
jolaek’ Kern Switzerland | 27,45 72 140 19 1.6 100 10° 100 10° 05 Coinc. micro 10 10 - 112.2
i07-02 Mash- USSR 24,30, 60 265 5.0 1.6 135 4’ 90 8! 02 Coinc. micro 7 12 - 11.0
| priboritorg 40
{*icroptic 3| Pank U.K. 40 50 170 1.8 1.0 98 5' 76 5' 02 Coinc. micro 10 20 - ! 8.0
ifend. Tavi.|Vickers U.K. 20,30 60 225 5.0 1.3 127 20’ 70 20' 10Y5&1" | Coinc. micro 20 10 - 1 9.8
T3 Wild Switzerland | 24,30 60 265 3.6 1.6 135 4' 90 8* 02 Coinc. micro 7 30 - 1.2
; 40 .
iT4 Wild Switzerland | 70 60 - 100 - 240 2* 135 4 0%1/0%2 | Coinc. micro 1 2 8 60
!
1
Table 2.1 Major Features of Some Modern Theodolites




further sfates that this minimum error is increased by improper target
design, imperfect atmospheric conditions and focussing error. In average
visibility and thermal turbulance conditions with a well designed target,
one can expect a pointing error of

30" 60"
cp = up to cp Y (2-1)

for a single pointing at distances larger than a few hundred meters.
Roelofs [1950] is in substantial agreement as he concludes that the accuracy
of pointing on a star is up = 70" /M for either the horizontal or vertical
crosshair. This seems reasonable considering that pointing on a moving
star is not as accurate as pointing on a stationary target.

One can expect, then, to obtain the above error due to pointing
in average conditions. The pointing error is partially due to personal
error, and procedures outlined in section 2.1.4 enable one to determine
the pointing errcr as well as the other internal =rrors discussed here.

One can expect the pointing error to be larger when poor visibility or

large thermal turbulence (e.g. scintillation) occur.

2.1.2 Reading Error
Reading error Ur is primarily a function of the least count or
smallest angular division of the theodolite. Error is also introduced
if there are graduation errors in either the horizontal circle er the
micrometer scale (for those theodolites which have micrometers). These
graduation errors are assumed to be negligible due to observation

procedures designed to



minimize them (i.e. taking the mean of many evenly spaced "zeros" between
0° and 180° for the horizontal circle, and using the full range of the

micrometer scale for measurement of an individual set of directions (for
instance)). Chrzanowski [1977] gives the following breakdown of reading

exrors for various types of readout systems:

1) theodolites with optical micrometers and with smallest division & of

1" ¢cxr 0.5" o, = 2.5d". (2-2)

2) theodolites with a microscope to estimate the fraction of the zmallest
division (typically 4 = 10" to 1') : o, = 0.34" . (2-3)
3) vernier theodolites with 2 verniers: cr = 0.3d", where 4@" is the
angular value of the vernier division.
The reason for Gr being 2.5d for the optical micrometer as compared to 0.3d
for direct reading instruments is because of inherent inaccuracies in
operation of the optical micrometer. Cooper [1971] quotes an investigation
which showed reading differences up to 10" over the 10°' range of the
micrometer of a 1" theodolite. Robbins [1976] states the reading error of
a WILD T4 as 0Y3 (its least count is 0Y1l) and that of the T3 as being
0Y6, so this is in essential agreement with the findings of Chrzanowski.
It should be realized that the above estimates are based on the
average ability to read these various readout systems. Personal error may
affect this error significantly, and should be determined individually as

discussed in section 2.1.4.

2.1.3 Levelling Error

The principal sourxce »f inaccuracy in levelling the instrument

stems from the insensitivity of the spiri% levels. The sensitivity of



spirit levels is characterized by their bubble value, which is the angular
value necessary to displace the bubble through 1 of the divisions marked
on the top of the spirit level. These divisions are usually placed 2

mm apart [Cooper, 1971]. Both Chrzanowski [1977] and Cooper [1971] state
that it is possible to center the bubble to an accuracy of about 1/5

of one division. Thus, for a bubble value v", the accuracy that can be

expected for levelling the spirit level is

g_ = 0.2 v" . (2-4)

This value is, of course, only valid for good conditions (i.e. one side of
the theodolite not heated more than the other side, stable tripod, spirit
level correctly adjusted, etc.). The bubble values of various theodolites
are listed in Table 2.1.

A spirit level which is centered by a coincidence reading
system (i.e. split bubble) is, according to Coorver [1971], able to be
centered ten times as accurately as by viewing the bubble directly. Thus,

a split bubble centering system, which is used by many manufacturers

on the vertical circle bubble, has a levelling accuracy of
o = 0.02 v", (2-5)
v

Many present day theodolites have autcmatic compensators for the
vertical circle. Cooper [1971] states that most 20" instruments claim an
accuracy Uv = 1V0 and that the Kern DKM2-A haé cv = 0V3. One method of
determining the accuracy of compensation is to take various readings of
the vertical angle On a fixed target, each timé moving one of the footscrews
in order to take the compensator through its full working range. After
removing the effects of reading and pointing exrors, the resulting spread

of readings will be due to the automatic compensation.



The above discussion of the error in levelling has been

concerned with the accuracy levelling the instrument itself. What is
of real concern is how this inaccuracy affects the actual énqular accuracy
of one pointing of the theodolite. Cooper [1971] and Chrzanowski ({1977]
both concur that the levelling inaccuracy has an effect of

oL" = ov" cot h (2-6)
on a measured direction, where

h =  zenith angle to target.

Thus, for small vertical angles, OL is negligible, but for steep lines

of sight, OL is an increasing source of error.

2.1.4 Summary of Internal Accuracy

In concluding this section, the internal accuracy is given as

g, =0 + O + g . (2-7)

for one‘pointing of the telescope, and this figure 1is dependent on the
instrument being used as well as the personal liiases of the individual
user.

The method used in the Ncerth American Readjustment [Pfeifer, 1975]
as well as in the Maritime Provinces Second Order Readjustment [Chamberlain,

1977] is to compute the internal error for each mean direction in the sets



of directions at each st;tion by means of a staticn adjustment [Mepham,
1976]. This analytical method gives a good estimate of the internal
accuracy achieved for each individual direction, but is still composed

of the 3 elements discussed above. Some default values of internal accuracy
for typical types of surveys are given by Pfeifer [1975], and are listed

here in table 2.2.

Order of Class of Nominal Relative Internal Accuracy
Survey Survey Accuracy Oi

1 1:100 000 ov33

2 1 1:50 000 0733

2 2 1:20 000 0v47

3 1 1:10 000 0v69

3 2 1:5 000 1Y39

Table 2.2 Internal Accuracy Default Values

The final part of this section will describe a method which
enables one to compute the expected reading, pointing and levelling errors
for a particular then~dolite and observer. The procedure is essentially
the same as that carried out in a lab for course SE 3022.taught by
Dr. Chrzanowski at the University of New Brunswick. fhe initial steps are
to set up the instrument and tripod in normal conditions (e.g. outside on
a cool day on a grassy slope) and center it over some point. The following
steps then enable one to determine the reading, pointing and levelling

accuracy :



1)

2)

4)

10

Take 20 different readings of the same pointing. All that this
involves 1s the setting of the coincidence of the vernier or micro-
meter hairs, and reading the setting 20 sgparate times. By taking the
mean of the 20 readings and computing the standard deviation, one
arrives at the reéding error sr;

Take 20 different pointings and readings combined. This involves
pointing the cross hairs on a stationary target, making a reading,
moving the cross hairs off the target, pointing and reading again,
etc. The standard deviation of these will give the combined pointing

and reading error Yo 2 + 52 and by the law of propagation of errors, the
r P

pointing error is computed as

o 2 = (o 2 + 0 2) - 02 . (2-8)
P r P r

The same pointingsand readings are made as in step 2, except that now
the instrument is thrown off level between each pointing and reading,
and relevelled before each one. As already mentioned, this error
should be negligible for small vertical angles, and the instrument

in correct adjustment, but it would serve to estimate the levelling
error if one was expecting to measure steep lines of sight. This
standard deviation of these readings will yield the combined reading,

pointing and levelling error, and oL is computed as
o] = (o + 0 + 0 ) - (o + 0 ) . (2-9)

The centering error, which is discussed in section 2.2, can also be
determined in this procedure. The same steps as carried out in step 3)

are performed for each reading, except that now, the instrument and
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tribrach together are turned through 120° and recentered between each -
reading. This set of readingé will yield the combined centering,

reading, pointing and levelling error, and by subtracting the variance
obtained from 3) from the variance of the readings of 4), the accuracy

of centering can be determined.

2.2 External

External inaccuracies stem from uncertainties in the determination
of environmental factors such as refraction. As well, inaccuracies which
are proportional to the distance between stations, although not strictly envi-
ronmentally dependent, are included here. As can be expected, zenith
angles are affected differently by the environment than are horizontal

angles; thus, this section is divided into these two categories.

2.2.1 Zenith Angles

The primary cause of random error in =zenith angles is the
inaccuracy in determination of the vertical refraction. As indicated in
Figure 2.1, refraction causes the ray of light between two stations to be

curved, thus causing the desired zenith angle z to be in error

i direction of vertical E = measured zenith angle

refraction angle

= required zenith angle

it

height of instrument

1

height of target

Figure 2.1 Zenith Angle Measurement
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by €. The random error in the zenith angle z is

o] =0 t o ’ (2-10)

assuming no correlation between E and ¢. The inaccuracies involved in

determining E have already been discussed in the previous section, so

the problem remains to determine céz. This will depend on the method used

to determine or eliminate the refraction angle €. The 3 basic methods

presently used to handle vertical refraction are

1) Add the empirically determined refraction anole to the observed zenith
angle E.

2) Measure simultaneous reciprocal zenith angles to eliminate the effect
of the refractizcn angle.

3) Model the vertical refraction into an adjustment including measured

zenith angles to determine ¢« analytically.

2.2.1.1 Empirically Determined Refraction Angle

If the vertical or zenith angle is measured from only one end of
the observing line, the refraction angle must be determined by empirical
methods. This is usually accomplished by use of the _oefficient of refraction

k in the relationship [e.g. Faiaq, 1972]

€ = = (2-11)

where K coefficient cf refraction,

distance between the 2 stations,

O]
il

R

it

mean radius of curvature of the earth between the 2 stations.
The primary inaccuracy in (2-11) stems from inadequate knowledge of k,

and thus
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2 S, 2 2
= (== . (2-12)
Oe (2R) ck

The coefficient of refraction can be computed as [Angus-Leppan, 1971]

dT
k = 502 2=  (0.0341 + =) , (2-13)
2 . oh
T
where P = air pressure in millibars,
T = temperature in degrees Kelvin,
g%— = temperature gradient in degrees Celcius per meter.

The temperature gradient in (2-13) is the most difficult item to ascertain.
Angus-Leppan [1971] quotes valuss of -4°C/m for heights of 1 cm to 1 m
above ground, -0.8° C/m from one metre to 2 metwes above the surface, and
~0.03° C/m from 2 to 100 m above around for the temperature aradient

on a clear summer day over grassland. The temperature gradient is

a function of many things including density of the air, temperature, soil
characteristics under the sight line, wind speed, etc. (see Angus-Leppan
[19711), but when observing lines are high above the ground at mid-day
or afternoon, the values of 3T/ 2h approaches -0.0055, which corresponds
to a value for k ¢f 0.13. Investigations carried out by Angus-Leppan
[1961] to determine an empirical formula for e by measuring temperature
gradients along lines of sight close to the ground (i.e. 5 feet to 30 feet)
resulted in an accuracy of no better than g = 5" for a sight line 3600
feet long, which is an accuracy of about 4V5/km. It is apparent that the
empirical method of determination of k is not accurate (using present
instrumentation) even in the best of situations. Work is presently being
carried out [Bomford, 1975] to determine the refraction directly by
measuring the dispersion of two different coloured light beams, but it is

still in the development stages.
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2.2.1.2 Simultaneous Reciprocal Zenith Angles

This method of accounting for refraction is depicted in Figure

Figure 2.2 Reciprocal Zenith Angles

The basic assumption is that the refraction angle € will be the same at

both ends of the line ij, and thus

Ei + Ej + 2& = 180° (2~14a)

2

and 180° - (Ei+E.)

- J . -14b
€ 5 (2-14b)

The accuracy here depends on the wvalidity of the assumption that the
directions of the verticals at i and j are jarallel in the plane of the line
of observation between i and j. This assumption is valid for lines which
are not too long ( e.g. <10 km) and which are not in a gravity disturbed
area. Ramsayer [1978] reports =n accuracy of 0.9" when measuring
reciprocal zenith - angles in 6 sets and accounting for the deflection of
the vertical at each station. Thus, for 3 sets of zenith angles as

each end, and assuming deflections of the vertical differences insignificant,
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one yould expect o = 2",

Another slightly different approach to sirmultaneous reciprocal
zenith  angles is using only one theodolite, measure the zenith angle at
one end, move the instrument to the other end of the line and observe the
zenith angle at that end. This results in a time lag of about 10 min
(depending on the distance between staticns) between =zenith angle
measurements. A study done by Mepham [1977] of 278 lines of average length
250 m gives a standard deviation for the coefficient of refraction k of

Ok = 1.86, which results in o€ = 7V5,

2.2.1.3 BAnalytically Determined Refraction

This method involves solving directly for the coefficient of
refraction in an adjustment. Zenith angle observations are usually
only considered directly in a three dimensional adjustment, and thus
this procedure is usually only employed there. Vincenty [1973] introduces

the term

-S

(2-15)
10

where s = distance from i to j,

and € refraction angle in arcsecs per kilometer,

into the observation equation for vertical angles in orxder to account for
vertical refraction. Assuming an accuracy of 2" for =zenith angle
measurement and 0V7 for astronomic latitude and longitude in a ficticious
network he arrives at an accuracy of 0V06 per km for £ . As already
mentioned in 2.2.1.2, Ramsayer [1978] calculates an accuracy Oe of 0V9

independent of the length of the line in an actually measured network

of 5 stations. This implies that the accuracy of the coefficient of
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fefraction is increasing with the length of the line, and Ramsaycer [1978]
gives the accuracy as ak = 0.055 /s (km).

It seems that this method gives the best estimate for the
refraction angle as it is determined by the least squares adjustment process

itself.

2.2.1.4 Height of Target

The uncertainty in the height of target S affects the
variance of a zenith angle observation, depending on the distance between

stations. It is analagous to the centering error discussed in the next

section. The angle § contributed by the height of target to the zenith

angle 1is .
HT sin E
§ = 222 (2-16)
where HT = height of target,
E = measured zenith angle,
and S = spatial distance between the 2 stations.

Thus, an error UHT in the height of target produces an error in § of

g, = SIME For of 1 i th = 900
5 - . OHT E cm, a zeni angle of 90° and
a distance s of 1 km, o. = 2V06.

$

2.2.2. Horizontal Angles

External effects considered for horizontal angles include lateral
refraction, centering error and tripod twist. Of these, the only one which
can be accounted for with any degree of accuracy is the centering error.

Lateral or horizontal refraction affects horizontal angles when
the iines of sight pass close to objects which are significantly different

in temperature than the surrounding air. Figure 2.3 [Kukkamaki, 1949] shows
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the deflection of a 5.2 km line of sight which passed at 20 m height along

a sideward slope. The line of sight passes about 3" closer to the ground

A

.

. 2?“

Y

V“V‘t@\A ‘l Mf\ﬂ AlR ,4(7”?

1N .
22 -

Ao
W\/

GROUND
Figure 2.3  Effect of Lateral Refraction

during the day and 3" away from the ground at night. By
taking temperature measurements along the line of sight, Kukkamaki was
able to determine that the observed deflections were almost fully
correlated with the horizontal temperature gradient. The only way to
determine the horizontal temperature gradient is to observe the temperature
along the line of sight, as Kukkamaki did. As this is not usually
feasible in ordinary survey practice, the only recourse is to avoid
situations where the line of sight passes close to a temperature anomaly,
such as the wall of a building or a steep side slope.

From Chrzanowski [1977], the influence of centering error on an

angle is given as

2 2 2

O 9 9

2 2 1 2 3 2 2

g = + + - c

c P {D 3 > > > 2D 5 (Dl + D2 2D1D2 cos a)}

1 2 1 72
(2-17)
where Oc and Gc = centering errors of the targets,
1 2
Dl and D2 = distances to the targets,
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o, = centering error of the theodolite,

w

[l

a angle being measured,

206265 .

it

p
For the case where the centering error of targets and instruments are about

the same, and the distances are about equal, this reduces to

6 = —" , (2-18)

It should be noted that these expressions are for angles; for directions

(2-18) becomes

o = : (2-19)

As can be seen from the above expressions, the centering erwvor's
effect is largely dependent on tlie distance between target and instrument.
For O, = 1 mm at a distance of 100 m, o, = 8Y51.

‘ d
The expected centerinag errors for different types of centering

equipment (from Chrzanowski [1977] and Cooper [1977]) are listed in Table

2.3. This table assumes good conditions for centering (i.e. no wind for

Method of Centering Expected Error (OC)
String plumb-bob 1 mm/m
optical plummet 0.5 mm/m
plumbing rods 0.5 mm/m
forced or self-centering 0.1 mm

Table 2.3 Expected Centering Error
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the string plumb-bob and equipment in correct adjustment). These values
are, of course, only approximate, and are also dependent on the particular
equipment and the conditions under which they are used. For particular

equipment and observers, the method for determining centering error outlined

in section 2.1.4 should be used. Self centering refers to the method
frequently used in traversing, i.e. leaving the tribrachs attached to

the tripods and exchanging only the instrument and targets.

Tripod twist usually occurs when one side of the tripod is heated
more than the other side. This twist can introduce a significant systematic
error, especially for metal tripods (up to several arcsecs), and for precise

work both the instrument and tripod should be shaded from direct sunlight.

2.3 Other Error Sources Encountered for Azimuths

When determining azimuths, either by gyro-theodolite or astronomical
observations, other sources of error besides those alrecady mentioned will
affect the observations. These include timing inaccuracies, errors in
star positions, and latitude dependent errors.

One must be careful when assessing the a priori accuracy of
astronomic azimuths determined by star observations. Carter et al [1978]
report that personal biases up to 1'1 have occured during astronomic
azimuth determination in the United States. Thus, methods such as those
outlined in section 2.1.4 must be used to ascertain these biases and

eliminate them.

2.3.1 Gyro Azimuths

The azimuth as computed by a gyro-theodolite is given as

A=M=-NS+E (2-20)

4
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Z
o
~
0
>
i

astronomic azimuth,
M = horizontal circle reading for reference mark,
N = horizontal circle reading for north as determined
by the gyro,
E = calibration value = difference between gyro determinec

astronomic north and true astronomic north.

The error in a gyro azimuth is

. . 2 .
assuming no correlation between M, N and E. The element 2, 18

Y

composed of reading, pointing, centering, c¢tc. errors which have already

-
£S

been discussed. °y and GEZ are dependent on the iﬁaccuracies
resulting from determination of north by a gyro apparatus. Gregerson
[1974] reports that these inaccuracies include mislevelment of the gyro,
drift effects, changes in band torque equilibrium position, changes in
angular momentum of the gyro, changes in the angle between the optical
axis of the theodolite and axis of the gyro reading system, and changes

in latitude ¢. To characterize all these error sources and combine them

into a single UNZ or UEZ would be a very large task, and when accomplished

may not yield an accurate result. The most dependable way in
which to determine the internal variance of a gyro azimuth is by calculating
the variance of the mean of repeated determinations of the azimuth.

Some empirical accuracy estimates should, however, be mentioned.
The éxpected accuracy for a gyro attachment such as the Wild GAKIL is
about 20" to 30" ([Bomford, 1975] in latitude§ below 60°. Gyro-theodolites
with automated recording of transit times (e.g. MOM Gi~B2 ox GYMO~-GI-Bl/A)

have an expected accuracy of about 3" for a single determination of azimuth
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[Halmos, 1977].
If a gyro azimuth is to be used in an adjustment which is
not 3 dimensional, it must be reduced by the truncated Laplace equation

(assume Eij Z 90°) to a geodetic azimuth és follows:

a=A - n tan ¢, (2-22)
where o = geodetic azimuth,
A = astronomic azimuth,
n = prime vertical component of the deflection of the
vertical,
¢ = latitude of the point.
The variance of the geodetic azimuth o« must reflect the inaccuracies in n

and ¢ as well as the computed oAz (cf. section 2.4.5).

2.3.2 Azimuths Determined from Star Observaticns

These azimuths are usually determined by the hour angle or altitude

methods. The azimuth by hour angle is

tan A = sin h , (2-23)

sin ® cos h - cos ¢ tan §

where A = astronomic azimuth,

f

h = measured hour angle of star,
$ = astronémic latitude of station,
§ = declination of star.

The expression for the variance of the astronomic azimuth based on the

above equation,derived by Roelofs [1950],15
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1 1 2
e T — + (2_
o n Fct + n (cp oc Yy (2-24)

where n = number of pointings on the star,

2 . . . :
ot = variance of the observation of time in arcseconds (1" = 0.067 s),
cpz = variance ef a single pointing on the star,
0c2 = combined variance of 2 readings of the horizontal circle and

pointing on the reference mark,
2 2 2 2
F = cos ¢ (tan ¢ - cos A cot Z) + m(2 tan ¢ + cot” Z - 2 tan ¢

cos A cot Z),

N
I

zenith angle of star,
m = (czp + c72v)/cr2t '
sz = variance of levelling the spirit level.
The reading, pointing and levelling errors have all beer discussed previously
in section 2.1. The pointing error in this case is 70"/m because the
star is a moving object. The only new source of inaccuracy here is the
timing error. Mueller [1969] estimates O, = 0Y5 with a chronograph and
o, = 1Y5 without a chronograph.
The determination of azimuth by star altitude does not require a

precise knowledge of time. Here, both the horizontal and vertical circles

are used, and the azimuth is computed as

cos A = sin § = sin ¢ sin a , (2-25)
cos P cos a

where a = measured ettitude corrected for refractien.
Roelof's [1950] equation icr variance of the azimuth when using this method

is
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2 :
o = 1 {(o 2 + O 2) tan2a + (tan & - cos A tan a)2
A n p v
2 2 2 2 2 2 2
s P Y ot -
(o, + Op ) cosec” A + 0, cos b} + (CP +C )Y, (2-26)
2 . . . . .
where Ove = combined variance of levelling vertical circle bubble and
reading vertical circle,
Utrz = variance of tracking (ceasing to turn the telescope at the

instant the star's image arrives at the intersection of the
cross hairs) for simultaneous horizontal and vertical
pointing on a star.

. . . . 2
The variance of tracking is given by Mueller [1969] as Otr = 1.02, and

OV:Z will be the combination of the levelling and reading error for the
vertical circle of the theodolite as discussed in section 2.1.

It should be noted that these variances characterize the random
error of the internal accuracies of the azimuth determination. They do
not account for the external errors such as refraction and centering
error, which must also be accounted for when computing the final accuracy
estimate.

The astronomic refraction will affect the altitude observation

depending on the zenith angle of the star. Roelofs [1950] wgives the

refraction angle e as

= 2 270 " _An a3 "
£ 760 ° 290+t {60"1 tan 2 0Y072 tan” 2z}, (2-27)

where p = pressure of the air (mm mercury) at the station,

t

temperature of the air (° Celcius) at the station.

Z zenith angle of the star.
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The corrected altitude a is then computed as

a=a'- ¢, (2-28)
where a' = measured altitude.
Thus, the external error resulting from refraction will be a result of
inaccuracies in determination of temperature and pressure. Ignoring the

last term in equation (2-27), their effect will be [Roelofs, 1950]

ozrf =:{i3- OP2 + ;;;;l:—zjg (ot2 + cf2)§ (7§0 . 27372 t 601 tan Z)2 ,
(2~29)
where o = = variance of reading the barcmeter,
ot2 =_variance of reading the thermometer,
and Og = mean short period fluctuation in temperature.
The mean short period fluctuation. in temperature is taken as o_. = 0.2°C,

£

Equation (2-29) assumes that (2-27) is the exact model for the refraction
angle €. Although this is obviously not the case, Roelofs [1950] states
that for zenith angles less than 75°, it will be sufficiently accurate.

It must be remembered that these are astronomic azimuths, and for
obtaining geodetic azimuths o, equation (2-22) must be used. As well,
for precise work, the gravimetric, skew-normal, and normal section to
geodesic corrections must also be applied [e.g. Thomson et al., 1978]. Dracup

[1975] uses the variance

2 2 tan ¢, 2 , L2
Oa = OA + 5.5 )" + (0.4 sin 9) (2-30)

where UAZ includes both internal and external errors, and the last two
terms are generated by the corrective terms applied to the astronomic

azimuth to get a geodetic azimuth. Equation (2-30) is also being used
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in the 1978/79 readjustment of the maritime second order control networks for
a priori geodetic azimuth weights [Chamberlain, 1978].
When working on a plane, the geodetic azimuth must be reduced
to the mapping plane azimuth t by subtracting meridian convergence 7y and
(T -~ t) corrections [e.g. Thomson et al, 1978]. Thus, any inaccuracies in y or

(T - t) must also propogate into the variance of t, i.e.

2 2 2 2
= + 0+ 0 . -
oL o y (T-t) (2-31)
2.4 Summary
This section summarizes the findings of the first 3 sectians.
The subsections are grouped under individual observation types, and
each observation type is composed of both internal and external random

error sources. Redundant observations are also accounted for.

2.4.1 Directions

The internal variance for a single direction is

o} =g + C + o ’ (2-32)

where the pointing, reading, and levelling error are computed by equations

(2-1) to (2-6). From (2-19) the external error is
o 2 G 2 p: 2002
d T e N — .
2
e d D

2 2, 2 2, 2 7¢ (2-33)

For n observations of the same direction, the variance

changesaccording to the observing procedure used. If, as is usually done,



26

the zero setting is changed between "sets" of directians, with no relevelling

or recentering of the instrument between sets, the final variance is

2 2 2
(o + a0 ) ; 20
1ol 2 = B X . o 2+ 2 ¢ (2-34)
d n L> P Dz' )

If, however, the instrument is relevelled and recentered (after turning
instrument and targets through a 120° rotation) between sets, the final

variance is

2 2 2, 2
o) + 0. 5 p 2¢C
(B 4 g s
5 2 L 52
Od = n ’ (2"35)
2

as there are 2 pointings and readings of the same direction within each

set.

2.4.2 Horizontal Angles

Horizontal angles are essentially the difference of 2 directicns.

Thus, the variance of a sincle angle derived from 2 single directions is

where the final term could be replaced by eguaticn (2-17) if it is expected
that the centering error will be an important factor.
If, as is usually done, the angles are derived from direction

observations, then n observations of an angle correspond to n observations

of 2 directions, and the nsual equation for the variance of angles
is
; 02+0”2 , p2272
o “=2{-FuE 1oy — 1 (2-37)
a n L 2
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corresponding to the same observation procedure that led to equation
(2-34).

One nmust be careful about the covariance between angles which
are derived from a set of more than 2 directions. If the situation

exists az in Figure 2.4, then the angles a, are usually

L5k and ai

kl

derived as

ijk ik ij
(2-38)

ikl il ik °

Figures 2.4 Angles and Directions

The propagation of errors from the directions into the angles by the

covariance law yields the variance covariance matrix of the angles as

o2, 2 2
“ - d .
dij dik ik

-

a . (2-39)

-0 B +
| ik ik il
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One can see that because of the common direction di between the 2 angles,

k

. 2 .
the covariance = cd occurs. Thus, if angles are computed as above,
ik
the a priori variance covariance matrix is not diagonal, but
has the off diagonal covariance terms of minus the variance of the common
direction between individual angles.

Of course, it is possible to measure angles independently, and

in this case no covariance terms will appear in Ca.

2.4.3 Zenith anales

Zenith angles can be considered the difference of 2 directions
as well, one being defined by the vertical axis of the theodolite, the
other by the optical axis of the telescope pointed at the target.

The internal variance of a zenith angle is
o) = + 0 + ’ (2-40)

2, - . . .
where o, is now the levelling error corresponding to the vertical circle
index.

The external error 1is

o) = g + C , (2-41)
2, . .
where 0. is given by equation (2-12), and

o = g , (2-42)

. 2 . .
for a variance OHT of height of target and measured zenith angle E. Combining

equations (2-40) and (2-41), and accounting for n Zenith angle observations,
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(2-43)

if the vertical circle index is relevelled for each observation. In most

cases, the greatest source of inaccuracy .is o

2.4.4 Astronomic Azimuths.

As already discussed, astrcnomic azimuths can be split by
method of determination into 2 groups. For gyro azimuths, the internal
variance is best calculated as the variance of the mean of repeated
determihations, and for azimuths determined by star observations, they
are given by equations (2-24) and (2—26),respectiyely. The external
error 1is composed of centering error and, for azimuth determination
by altitude of stars, the error in determination of astronomic refraction

(equation (2-29)). Thus
o " =0 + o + . (2-44)

2 . .
where S = 0 for gyro azimuths and azimuth by hour angle of stars. The
accuracy increase for n observations is accounted for in the internal

accuracy component.

2.4.5 GCeodetic Azimutlic

The geodetic azimuth o has further inaccuracies resulting
primarily from the random error in the prime vertical component of the
deflection of the vertical n (see equation (2-22)). 2An expression

such as equation (2-30) must be employed to account for these inaccuracies.
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2.4.6 "Grid" Azimuths

For grid or p%@ne azimuths, equation (2-31) should be employed,
2 -2 . . . 2
but OY and O(T—t) are usually very small in comparison with ca . In

all practical cases, the variance of the grid azimuth can be assumed

identical to that of the geodetic azimuth, namely

o = g (2-45)
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3. DISTANCE MEASUREMENTS

The accuracy of dirstance measurements is also divided into an
internal and external component. Most distances are now observed with
EDM, and the so-called zero and parts per million error are essentially
internal and ext=zrnal errors, respectively. DBoth mechanical and optical
methods of distance measurement are also considered as they are still

widely used for distance observation.

3.1 EDM
Electromagnetic distance measuring (ZDM) equipment utilize

the following general equation for measured distance S:

S = Ao{m o+ 8/2?)' (3-1)

N

where S = measured distance,

A = modulation wavelength of frequency being used,
m = integer number of wavelengths in twice the distance,
® = phase difference between transmitted and reflect wave

in radians.
Thus, the variance of the measured distance for EDM is primarily a function

of the variance of A and ¢ (m is considered known), namely:
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2 1 2 2 1 A2 2
- = / FA -
ag {2 (m + 98,/27)} o, "t {2 21r} P (3-2)
From equation (3-2), it is seen that the variance of determining the

modulation wavelength A contributes to the external -rariance (distance

dependent), and the phase difference uncertainty o_ contributes to the

internal variance. Other sources of inaccucacy such as zero error,
error in zenith angle determination, and earth curvature determination
error affect the final distance measurement, but the variance of the

observed distance is basically characterized hv eguation (2-2).

3.1.1 Internal

~ 1is primarily a function of the method used

The magnitude of 9,
to determine the phase difference 8. In older EDM instruments, a phase
discriminator circuit or CRT was used to indicate directly the difference
in phase of the transmitted and received waves. In this case, & resolution
of 0.01 of a cycle is possible [Burnside, 1971]. Instruments using null
point methods of phase comparison [e.g. Geodimeter Model 6) can, as a general
rule, detect a phase change of 0.001 of a cycle. The more recent digital
method of phase detection, which is used largely in the modern infra-red
equipment, gives a resolution from 0.001 up to 0.0003 of a cycle [Deumlich,
‘1974]° Table 3.1, from Deumlich [1974] ,points out the major features of
some of the available modern EDM equipment.

The second term in equation (3-2) 1% due to

inaccuracy in phase determination, and is rewritten as:

2 1 2 2
Soh = {5 A} g . (3-3)

for 94 in fractions of a cycle (i.e. parts of one wavelength) .



Method of

Model Manufacturer Radiation Modulation Frequency Modulator | Power Phase Range (Km) Standard
Source Base (MH,] [Total # Consumed (W) | Measurement Day  Night Deviation
Geodimeter AGA Smil He-Ne 30 4 KDP Crystal 75 null meter 30 60 + (5m+ 1. 10°&5)
Model 8 Sweden Laser - -6
Geodnlite 3 G | Spectra-Physics | 5mid He-Ne 49 5 - 400 digital 60 80 +1.1¢ s or 1 ma
U.S.A. Laser whichever greater
Geodimeter AGA 30 W 30 3 Kerr Cell 70 resolver 3 15 +(1 cm + 2.107%s)
Model 6 Sweden Hercury Lamp 300 null meter 5 25 -6
Geodimeter 76 | AGA 2mW 2 Kerr Cell 3 +#(1 cm + 1.107s)
Sweden Laser (3 prisms)
DM 1000 Kern GaAs-Diode 15 2 - 11 digital 2.5 +1cm
900 nm (3 Refl.) -6
Mekometer Kern Xenon-flash 500 5 ADP Crystal 18 optomechanical 3 #(0.2 ma + 1.1077s)
ME 3000 (100 Hz) null meter (3 prisms)
D4 500 Yern GaAs Diode 15 2 - 1 digital 8.5 +1em
875 nm (3 prisms)
s Zeiss GaAs Diode 15 2 - 12 automatic 2 + 5 to 10 mm
Oberkochen 910 nm digital (19 prisms)
ELDI 2 Zeiss 4 5 + 5 mm
Oberkochen -6
MA 100 Tellurometer Gahs Diode 75 4 - 14 digital 2 +(1.5 mm + 2.10 s)
930 nm
o 6 Tellurometer | GaAs Diode digital 2 +(5 @ + 5.107%)
SDM-3 Sokkisha Ltd, Rahs Diode 15 2 - 10 digital i tlcm
Tokyo 200 nm (3 prisms -6
DI 3 Yild Heerbrugg | GaPs Diode 7.5 2 - 14 digital 0.6 +{(5 m + 5.10 s)
875 nm (3 prisms) -
D160 Cunic Ind. RaAs Diode 75 3 - 15 automatic 2 +{5 mm + 1.107%)
Cubitape Co., USA 900 nm digital - 5
3300 8 Hewiett- GaAs 15 4 - 12 digital 3 +#(5mm + 1.107 s}
Packard, USA Diode null meter (3 prisms) -5
Ranger 11 Laser Syst. & 3mi He-Ne 15 4 K0P Crystal automatic 6 +(5mm + 2.10 7s)
Electronics USA | Laser digital -

Table 3.1 EDM Instruments

7c



Antenna

Model Manufacturer Carrier Measurin Diameter; Divergence gngCmed Readout Measuring Standard Deviation
Frequency (GHZ) Frequency ?MHZ) - (cm) (°§ (w) Range (Km)

MRA 101 Tellurometer Ltd. 10.05 to 10.45 7.5 33 6 38 digital 0.1 to 50 +(1.5¢cm + 3.i0'65)

¥RA 3 Tellurometer Ltd. | 10.025 to 10.45 7.5 33 3 digital 0.1 to 50 +(1.5 cm + 3.10'65X

MRA 4 Tellurometer Ltd. 34.5 to 35.1 75 33 2 digital 0.05 to 60 +(3 mm + 3.]0'65)

CA 1000 Tellurometer Ltd. 10.1 to 10.45 19 to 25 digital 0.05 to 30 +{1.5 cm + 5.10-65)

Electrotape DM20 | Cubic Corp. U.S.A.| 10.5 to 10.5 7.5 33 6 digital 0.05 to 50 +(1 cm + 3.10-55)
iaistomat DI50 Yild Heerbruqg 10.2 to 10.5 15 36 6 50 | digital 0.1 to 50 +(2 cm + 5.!0’65)
2D‘Zstomat DIeo Siemens-Albiswerk 1C.3 150 35 6 38 i digital - 0.02 to 150 { #(1 cm + 3.]0-65)

Table 3.1 continued

€€
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For an instrument with modulation frequency 15 MHZ (A = 20 m), and a resolution

2 -4 2
06 = 0.001 of a cycle, Gph = 1.10 m-, or Uph = 1 cm.

Some instruments (e.g. the Wild DI-3) take the mean of a great

many determinations of 6 before employing equation (3-~1) to determine the

distance. In this instance, equatisn (3-3) reduces to.

o]

it
S
N |

>

4

(3-4)

where m is the number of de“erminations of the phase difference &.
From the above discussicn, it is seen that it is important

2 . . 2
to know the value of 09 to obtain a reasonable estimate for Oph . A

more accurate figure for ¢ than that which can be glzaned from the

i)
explanation above and Table 3.1 should be available (for a swecific
instrument) from the manufacturer's specifications.
One other source of internal error which must be considered
is the uncertainty in the zero error o, which results from inaccurate knowledge of the
difference between the electrical centre of the instrument and the
point used to center the instrument over the station. For instruments
using light waves, this value is usually neagligible, but for microwave
devices, the value can be quite significant. The zero error is dependent
on the carrier frequency used; for instance in the MRA4 which has a
carrier wavelength of 8 mm, o, is estimated at 3 mm, but for the MRA 101
(carrier wavelength of 3 cm), o, is thought to be closer to 15 mm

[Burnside, 1971]. One method for determining the zero error on a calibrated

baseline is given in Chrzanowski [1977].
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3.1.2 External
The first term in equation (3-2) is due to the uncertainty in .the
determination of the modulation wavelength A. Difficulties arise here
primarily due to the index of refraction n, which affects the wavelength
as
A==, (3-5)

where Ao is the wavelength resulting from

= < -
Xo =F (3-6)
for ¢ = speed of light in a vacuum = 299792458 m/csec [Laurila, 1976],
and f = modulation frequency being used.

Assuming Ao to be errorless; the variance of A 1is then given as
o, = {= o 7. (3-7)

Substituting this result back into the first terxrm of egquation (3-2)

yields
%-Ao (m + 6/2w) On2
2 “'5 ’ (3-8)
n n

{%-(m + 6/2n)}2 OAZ = |

where S is the distance being observed.

The refractive index n depends on the type of carrier wave-
length used by the instrument. The two kasic carrier wavelengths used
by EDM are lightwaves (infra-red is also included here) and microwaves,
and thus n and an are computed differently for these two cases.

For lightwaves, the formula of Barell and Sears is usually

used as follows [Burnside, 1971]:
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273.15 P 15.02 e -6
(n-1) = (nG 1). T " 780 T . 10 ’ « (3-9)

where T = temperature in degrees Kelvin (t°C + 273.15)’

P = pressure of the air in mm Hg,
e = water vapour pressure in mm Hg,
n. = refractive index for the group velocity defined as

8 . .
(n.-1) . 10° = 28760.4 » 488:64 , 6.80 (3-10)

G X2 V4
c e

where X = carrier frequency wavelength. For computation of e, one is
c

referred to Bomford [1975 , p. 54}.Laurila [1976] arrives at the simplication

NP - 41.8 e
N = —= , (3-11)
3.709 T

6 . . .
for N = (n-1) . 106, NG = (nG-l).lO , and P and e in millibars. When

evaluated for the effects of P, e and t, eguation (3-11) gives

-N .
2 1 G 2 2 G 2 2 11.27, 2 2
o < {Tz (3gs P+ 1127 el ot v {gggt 7 o H T o
(3-12)
2.
Thus, On is computed as
o =% . 1072 . (3-13)
n N

For microwaves, the group velocity is essentially egual to the carrier
velocity, and the Essen and Froome formula is usually employed as follows:

4
. 2. .19
N = 77.62 P - (l 92  37.19°10 ye | (3-14)
T T T2
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where T is in degrees Kelvin, P and e are in units of millibars, and
N = (n-1) . 106. The propogation of variance through equation (3-14) yields

4 2 4

-77.62 . ,12.92 _ 74.38-10 2 77.62 -12. 37.19-
o = { + _ J4.3 ) e} 2 62 4 } g 2 4(zl2:92  37.19-107,2 2
N 2 2 3 T T P T 2 e

(3-15)

Equation (3-15) is also due to Laurila [1976].

Table 3.2 from Kukkamaki [1967] summarizes the effects of errors

METEOROLOGICAL ERROR EFFECT ON DISTANCE
Light Waves Microwaves
+ 1 mm Hg in air pressure 0.3 ppm 0.3 ppm
+ 1°C in temperature 1.0 ppm 1.6 ppm
+ 1°C in the difference 0.05 ppm 8.0 ppm
between dry and wet bulbs

Table 3.2 Effect of Meteorological Exrrors on Measured

Distances

in meteorological measurements on the measured distance. For light waves,
the most important is temperature and air pressure, but for microwaves, the
difference between wet and dry bulb temperatures, which is used to compute
e, must be determined accurately.

Another external effect which cannot be overlooked is the error caused
by reducing the measured slope Jistance S (already corrected for index of
refraction and zero error) to either i) a horizontal distance Sh at the

average height of the two stations (usually the procedure for localized

surveys), or 1i) the geodesic distance on a reference ellipsoid So'
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Figure 3.1 [Chrzanowski, 1977] illustrates the indiwvidual steps in the

reduction process.

Figure 3.1 Reduction of Distances

There are essentially five séparate corrections which must be
considered in orxrder to understand the errors resulting from them, and they
are defined as follows ([Bomford, 19751]:

1. The correction for the effect of curvature of the path of the ray and
earth on the computation of the index of refraction. This correction

is given as

(K - XK7) , (3-16)

where R = mean radius of the earth = 6370 kmn,

and K = R/K,where K is the radius of curvature of the path of the ray
from A to B.

Under average conditions, w=7R for lightwaves (K=1/7=0.143) and «= 4R

for microwaves (K=1/4=0.25).
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2. Reduce the path distance Sm to the chord or spatial distance Ss. The latter
would be the distance required for a three dimensional adjustmeént,

and the correction is

AS, =8 =S =~ —7 K . (3-17)

3. The correction AS3 reduces the spatial distance SS to the level distance

Sh at the average height of the two points. The correction is

2 4
h A
AS, =8, - S =~ --———AS - —-—h3 ' (3-18)
m 8S
where Ah = (hB - hA) = difference in height between tne two points.

4. The level distance Sh is reduced to the chord distance Sc at the ellipsoid

by the correction

5. h
As4:sc-sh=—~3-"3- ,
(R +h )
o ' m
where hm x-% (hA + hB) = average height of the two points above the
ellipsoid,
Ru = Euler radius of curvature Tor the line.

5. The final reduction of SC to the geodesic distance SO is via the correction

3
sm
AS. = 8§ =-S5 = (3-20)
2
5 o c 24R
Thus, the reduced level distance Sh is
= S = AS + , -
Sh A 1t AS2 AS3 (3-21)
and the final geodesic distance on the ellipsoid is
S0 = Sh + As4 + AS5 . (3-22)
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The effect of inaccuracies in the corrections AS propogate directly

into the reduced distance Sh or SO. By calculating a few examples, it can be

seen that for distances under 50 km, the combined correction Asl + A52 is
less than 1 ppm, and thus any inaccuracies in K, R, or S will not affect

the reduced distance significanﬁly. However, the correction AS3 is directly
linked to the difference in height, and any uncertainty in Ah will affect
the correction AS3 in the following way:

5

Ah ' (3-23)

2 _ ,Ah, 2
JA;S = {é"’} o]
3 m

ignoring the small contributicn of the second term (see equation (3-18)).

For instance, for a distance Sm = 2000m, Ah = 100 m, and qdh = 0,5 m,

S - o .

determine Ah. One of the usual methods emploved is the measurement of

the vertical or zenith angles to determine Ah as
Ah = SS cos E , (3-24)

where E is the measured zenith distance. An error o_ in the zenith

distance (see section 2.2.1) propagates as

2 , 2 2
OAh = (Ss sin E) GE ’ (3-25)
which for a distance of 2000 m, E = 85°, and UE = 20" gives OAh = 0.2 m.
The correction AS4 will contribute an error of
S 2
2 _ b 2 o
GA S {R } Ch ’ (3-26)

4 m
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where (R + hm) in equation (3-19) has been replaced by R. The height
above the ellipsoid hm is usually not well known due to inaccurate
knowledge of the geoid height N. As can be verified from formula (3—26),
each 6 m of error in hm will contribute 1 ppm error to the reduced

distance S .
o)

3.1.3 Summary of Variance for EDM

The variance of the final reduced distance Sr is summarized as

2
' og = G;h + ozz +s? i% + ol (3-27)
x n
The value to be used for JA§ depends on the type of reduced distance
desired. For the level distance Sh' OAS is equal to QAS32' and for
the ellipsoidal distance SO, OAi = OA§3 + OAS4 (see equations (3-23) and

(3-26)). Distances to be used in a three dimensional adjustment will not

require a o term unless they are exceptionally long (see secticn 3.2).

2
AS
To understand how the variance is affected for more than one
determinaticn of the distance, one must first consider the normal observing
procedure. Usually, the instrument is set up, the zenith angle is
observed to determine Ah, the meteorological readings are taken, the distance
is observed my times, meteorological readings are taken again, the zenith

angle is reobserved, and the procedure is complete. In this case, the variance

2 -2 2 2

of the reduced distance is G 57 ¢ C
ph 2 n As
o = + 0 ° + + . {3-28)
S m, z 2 2
X - 2n

Thus, the repeatedly observed distance serves only to reduce the variance

: . . 2 , .
of phase difference determination gph - The uncertainty in the zero error is ner*

2 2
affected and On and OAS are dependent on their individual measurement

procedures. In general, for m, observations ¢f phase difference, m, sets
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of meteorological readings and m, determinations of the height differences,

3
02 SZ . 2 02
S
G2 _ph, 2, n o, CAS (3-29)
S m z 2 m
r 1 m2n 3

Most instrument manufacturers state their instrument's

accuracy as

o =+ (a+b.5) , (3-30)

where a and b are the internal and external standard deviations

. / 2
respectively. 1In the present context, a = U;h + oz and b = on/n. One

can see that equation (3-30) is not valid, as
Og = /052 = a2 + b252 # a + bsS .

Equation (3-27) properly accounts for error propagation whereas equation

(3-30) does not.

3.2 Mechanical Distance Measurement

Steel surveying tapes or chains as well as invar wires and
tapes are considered here aS$ the instruments used to measure distances
mechanically. The errors in these measurements are all dependent on the
distance measured, and thus are regarded as external errors.

For graduated steel tapes used with plumb bobs to determine the
vertical, Kissam [1971] reports an expected accuracy of 1:2500 with no
corrections applied, 1:3000 when using a spring balance to obtain the
correct tension, and 1:5000 when the temperature correction is also applied.

Higher accuracy measurements are usually made with the tape

suspended in catenary (see Figure 3.2). The ends of the tape are
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Figure 3.2 Tape in Catenary

supported firmly and precisely (usually by means of tripods designed for
this purpose) at A and B, and a tension T (é.g. 10 Kg) is applied at A.
The tape will then "sag" by a predictable amount (proportional to its
weight per unit length, the distance between A and B, and the tension T)
and the spatial distance SS can be computed. A detailed analysis is
contained in Bomford [1975].

Clark [1969] considers an accuracy of 1:20000 easily achievable
with steel tapes in catenary which have been standardized (compared with
an accurately known length) and which are used with applicable corrections
(i.e. temperature, tension, sag and slope).

Invar wires or tapes in catenary can be used to ~btain accuracies
up to 1 to 2 ppm [Bomford, 1975). Corrections considered necessary to
achieve this accuracy (besicdes those mentioned above) include pulley friction,
the weight of dirt or moisture on the wire or tape, the effect of wind,
and the change in gravity between the standardisation site and measurement
site. These high accuracy measurements with invar wires were primarily
used to measure baselines to introduce scale to geodetic networks before

the advent of modern EDM.
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3.3 Optical Distance Measurement

Optical distance measurement is still an inexpensive and useful
method of distance determination, even though it has beep largely replaced
by EDM. One reason for this is that the accuracy of optical distance
measurement deteriorates quickly with increasing distance, even though
relative accuracies up to 1:20000 are achievable for distances under about
500 m.

This section is based entirely on the comprehensive text "Optical
Distance Measurement" by Smith [1970}, and, as such, will summarize the
main points pertaining to determination of the variance of the reduced
distance. Of the nine separate types of optical distance measuring
equipment covered by Smith [1970], only stadia tacheometry and subtense
bars are considered here. As can be expected, errors here are related
to those of Chapter 2 as these optical methods of distance measurement

require theodolite observations.

3.3.1 Stadia Tacheometry

This method can be used on any theodolite which has stadia

hairs. The reduced distance ST is computed as (Figure 3.3)
1
§;, = Cb cos 0 cos y, (3-31)
where C = instrument constant for stadia hairs (ususally 100),

b = difference in reading between upper and lower stadia
hairs,

8 = observed vertical angle,

Y = angle between normal to line of sight and the

vertical rod.
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ah

o o
\/:/-d

Figure 3.3 Stadia Measurements

The angle { is not taken equal to 6 as the error ow in holding the rod

vertically is not the same as the error o,

in the observed vertical

angle. The error in the reduced distance is thus

2
og = Ah {06 + OW Po+ A 5 ' (3-32)

where 9 and g are in radians and Ah is the difference in height between

v

the centre rod reading and the instrument statiosn. The error in reading
the rod % is dependent on the pointinag error (see section 2.1.1) and on the
distance of the rod from the instrument. Ffor example, given Ah = 8.7 m,

s, =100m, o, = 1', o, = 1°, and g_ = 0.7 mm, then ¢ = £.167 m, which
h S} b Sy,
is a relative precision of 1:600.

The inaccuracy of vertical angle determination o_ has already

6

been discussed in section 2.2.1, but it is obvious that ow will generally
be the largest contributing factor. It is difficult to manually hold the

rod vertically in error less than 1°, but if it could be aligned to 1',

then the relative precision for the above example would be 1:1400.



3.3.2 Subtense Bar

The subtense bar method does not regquire a vertical angle

observation; the horizontal distance is immediately available as (Figure 3.4)

S, = %-cot , (3-33)

h

N

whore b = length of the subtense bar,
a = neasured horizontal angle subtended by the
subtense har.
The length of the bar b is w&ll known (e.g.'Jb = 0.00005 m), and the primary
source of error is caz, the variance of the measured angle. The evaluation
of 0a2 is covered in section 2.4.2. The variance of the computed

distance is

Gck = 4L b } I (3_34)

//W/
s..\

Figure 3.4 Bar at End

for I, in units of radians.

o —l

]

Differently configured setups yield different values for 0:
3
If the subtense bar is set in the middle of the line as depicted in FPigure

3.5, then the variance for Sh is
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Figure 3.5 Bar in the Middle

2
S, C
2 h "a.2
o = {—1"

S (3-35)
h 2/2 b

which is 2.8 times better than for the bar at the end of the line.

Equation (3-35) assumes al = a2 and ca = oL - In general, for n equal
1 2
segments of shape as in Figure 3.4, the error is
2
S, ©
2 h
o " = {_——Eéﬁ} 2, (3-36)
h b n

For an auxiliary base at the end of a line, as depicted in

Figure 3.6, the error in distance is

(3-37)

for 9, in radians. The optimum condition (least ervror in Sh) occurs when

wn
-2
Y

=

N\
le— b —+

Figure 3.6 Auxiliary Base at End
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y = a (see Figure 3.6), and in this case

g , (3-38)

for Oa in radians.

When the auxiliary base is placed in the middle of the line

R >h ]

Figure 3.7 Auxiliary Base in the Middle of the Line
as in Figure 3.7, then
+ =i ’ (3-39)

again for o, in radians. Optimal conditions occur here for the ratio

ar ¥, v, = V2 : 1 : 1, ~hich yields

0t = —= 3 (3-40)

Figure 3.8 [Smith, 1970] shows the relative precision expected for the

four cases discussed above assuming a subtense bar of length b = 2 m.

3.4 Summary

This section summarizes the variance of the three tvpes of
distance measurement discussed above. Each method is treated independently
of the others because of the unique nature of the individual distance

determination procedures.
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For EDM distances, the final variance is given by equation

(3-29) as

where dAS2 depends on the type of reduced distance required (see section
3.1.3), on2 is computed by equation (3-12) or (3-15) depending on the carrier

2, . . .
frequency wavelength, Uz is either given by the manufacturer or determined

. . 2
through a calibration procedure, ©

oh is determined from equation (3-3)

cr (3-4), and m,, m, and m

1 5 3 are as explained in section 3.1.3.

The variance of mechanical methods of distance observation is
characterized by

(3-39)

where og is the relative precision of the method being used (see section
3.2). FZr example, consider taping carried out with plumb bobs and no
corrections applied for tension or temperature; then Os 2 (1/2500)2,
m

and for a measured distance of 500 m, Gs = 0.2 m.

Optically determined distances have a variance which is
highly dependent on the individual method used. For stadia tacheometry,
equation (3-32) characterizes the variance, and for subtense bar measurements,
equations (3-34), (3-35), (3-38) and (3-40) define the variances depending

on the specific subtense method used. Each of these formulae depend on 0a2

(the variance of angle determination) which is given by equation (2-37).
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