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1. INTRODUCTION 

Observational~accuracy in contemporary surveying practice is 

characterized by the standard derivation or variance of individual obser­

vations. In order that useful statistical propagation of this error 

can occur, these variances are assumed to have a normal,distribution with 

zero mean. This implies that the variances must be composed of random 

errors, and that any error or inaccuracy which is systematic in nature has 

already been accounted for and removed, either by solving for the systematic 

component through an adjustment process, eliminating it through appropriate 

observation procedures, or eliminating it by other empirical techniques. 

This report is intended to provide an analysis of the random 

errors inherent in observations encountered in surveying, which are 

used to estimate the variances of these observations. It must be made 

clear from the outset that the systematic errors encountered in surveying· 

measurements are not considered directly. They are, however, given the 

attention necessary to evaluate the effect of errors made in eliminating 

or minimizing these systematic biases. This is necessary to compute 

realistic variances for the indi~ldual observations. 

With this in mind, the errors are split into 2 distinct sections. 

The first covers random errors encountered when making angular ~easurements. 

The accuracy of directions, vertical and horizontal angles, and azimuths 

are all examined, although, as one would expect, they are very much 

interrelated. The second sect~on deals with the random errors encountered 

when measuring distances. The accuracy of various electromagnetic distance 

measuring (EDM) equipment as well mechanical (e.g. chain) and optical 

methods are treated. 

1 
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Only these basic surveying observables are analysed, and 

obs·~rvations such as inertial, Doppler or hydrographic (e.g. range-range) 

measurements are not covered. 
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2. ANGULAR MEASUREMENTS 

The term angular accuracy, in this report, refers to the 

accuracy of making measurements with a modern theodolite such as a Wild T2 

or Kern DKM2. Various types of theodolites are available, and Tabl,e 2, [Cooper 

1971) gives an excellent summary of the major features of some of 

the theodolites in use today. 

This work does not intend to describe or assess the mechanical 

or optical components of theodolites. It is assumed that either the 

theodolite is in correct adjustment, or that ~ny misalignment or other error 

can be eliminated by suitable observation procedures (e.g. mean of face 

left and face right readings corrects for line of collimation 

not being perpendicular to the axis of the theodolite). For those who 

are interested in theodolite construction, and its detailed analysis, an 

excellent reference is Cooper [1971]. Instead, tr.e topics dealt with are 

concerned with random errors which arP unavoidable in the everyday use of 

theodolites, and with obtaining reasonable estimates for them. 

2.1 Internal 

Internal errors are those which are caused by the actual equipment 

and/or observer using it. Errors considered under this heading include 

pointing, reading and levelling errors. 

2.1.1 Pointing Error 

The pointing error a is di:!:ectly related to the telescope magnification 
p 

of the individual theodolite. Chrzanowski [1977] states that the maximum 

accuracy of pointing is 10"/H, where M is the telescope magnification. He 
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further states that this minimum error is increased by improper target 

design, imperfect atmospheric conditions and focussing error. In average 

visibility and thermal turbulanc.,; conditions with a well designed target, 

one can expect a pointing error of 

30" 
cr = 

p 11 
up to cr 

p 
60" 

~1 
( 2-1) 

for a single pointing at distances larger than a few hundred meters. 

Roelofs [1950] is in substantial agreement as he concludes that the accuracy 

of pointing on a star is IJ, = 70" /M for either the horizontal or vertical 
p 

crosshair. This seems ~easonable considering that pointing on a moving 

star is not as accurate as pointing on a stationary target. 

One can expect, then, to obtain the above error due to pointing 

in average conditions. The pointing error is partially due to personal 

error, and procedures outlined in section 2.1.4 el:able one to determine 

the pointing errcr as well as the other internal errors discussed here. 

One can expect the pointing error to be larger when poor visibility or 

large thermal turbulence (e.g. scintillation) occur. 

2.1.2 Reading Error 

Reading error cr is prir:tarily a function of the least count or 
r 

smallest angular division of the theodolite. Error is also introduced 

if there are graduation errors in either the horizontal circle or the 

micrometer scale (for those theodolites which have micrometers). These 

graduation errors are assumed to be negligible due to observation 

procedures designed to 
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minimize them (i.e. taking the mean of many evenly sp~ced "zeros" between 

0° and 180° for the horizontal circle, and using the full range of the 

micrometer 3cale for measurement of an individual set of directions {for 

instance)). Chrzanowski [1977] gives the following breakdown of reading 

errors for various types of readout systems: 

1) theodolites with optical micrometers and with smallest division c of 

1" cr 0.5" a = 2. Sd". 
r 

(2-2) 

2) theodolites with a microscope to estimate the fraction of the smallest 

3) 

division (typically d = 10" to 1') (J = 0.3d" 
r 

(2-3} 

vernier theodolites with 2 verniers: a = 0.3d", where d" is the 
r 

angular value of the vernier division. 

The reason for o being 2.5d for the optical 1\'\icrometer as compared to 0.3d 
r 

for direct reading instruments is because of inherent inaccuracies in 

operation of the optical micromet~r. Cooper [1971] quotes an investigation 

which showed reading differences up to 10" over the 10' range of the 

micrometer of a 1" theodolite. Robbins {1976] states the reading error of 

a WILD T4 as 0~3 (its least count is 0~1) and that of the T3 as being 

0~6, so this is in essential agr6ement with the findings of Chrzanowski. 

It should be realized that the above estimates are based on the 

average ability to read these various readout systems. Personal error may 

affect this error significantly, and should be determined individually as 

discussed in section 2.1.4. 

2.1.3 Levelling Error 

The principal source •."lf inaccuracy in levelling the instrument 

stems from the insensitivity of the spirit levels. The sensitivity of 
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spirit levels is characterized by their bubble value, which is the angular 

value.necessary to displace the bubble through 1 of the divisions marked 

on the top of the spirit level. 'J'hese divisions are usually placed 2 

mm apart [Cooper, .1971]. Both Chrzanowski [1977] and Cooper [1971] state 

that it is possible to center the bubble to an accuracy or. about 1/5 

of one division. Thus, for a bubble value v", the accuracy that can be 

expected for levelling the spirit level is 

ov = 0.2 v" . (2-4) 

This value is, of course, only valid for good conditions (i.e. one side of 

thetheodolite not heated more than the other side, stable tripod, spirit 

level correctly adjusted, etc.). The bubble values of various theodolites 

are listed in Table 2.1. 

A spirit level which is centered by a coincidence reading 

system (i.e. split bubble) is, according to Coo~er (1971], able to be 

centered ten times as accurately as by viewing the bubble directly. Thus, 

a split bubble centering system, which is used by many manufacturers 

on the vertical circle bubble, has 

0 
v 

0. 02 v". 

a levelling accuracy of 

(2-5) 

Hany present day theodolites have automatic compensators for the 

vertical circle. Cooper [1971] states that most 20" instruments claim an 

accuracy o = 1~0 and that the Kern DKM2-A has o = 0~3. One method of 
v v 

determining the accuracy of compensation is to take various readings of 

the vertical angle on a fixed target, each time moving one of the footscrews 

i.n order to take the compensator through its full working range. After 

removing the effects of reading and pointing errors, the resulting spread 

of readings will be due to the automatic compensation. 
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The. above discussion of the error in levelling has been 

concerned with the accuracy levelling the instrument itself. What is 

of real concern is how this inaccuracy affects the actual angular accuracy 

of one pointing of the theodolite. Cooper [1971] and Chrzanowski [1977] 

both concur that the levelling inaccuracy has an eff~ct of 

a " = a " cot h 
L v 

(2-6) 

on a measured direction, where 

h = zenith angle to target. 

Thus, for small vertical angles, crL is negligible, but for steep lines 

of sight, aL is an increasing source of error. 

2.1. 4 Summar~ Internal Accuracy 

In concluding this section, the internal accuracy is given as 

2 
a. 
~ 

= a 
2 

p + a 
r 

2 2 
+ a 

L 
(2-7) 

for one pointing of the telescope, and this figure ~s dependent on the 

instrument being used as well as the personal Liases of the individual 

user. 

The rr.ethod used in the North American Readjustment [Pfeifer, 1975) 

as well as in the Maritime Provinces Second Order Readjustment [Chamberlain, 

1977) is to compute the internal error for each mean direction in the sets 



9 

of directions at each station by means of a station adjustment [Mepham, 

1976]. This analytical method qives a good estimate of the internal 

accuracy achieved for each individual direction, but is still composed 

of the 3 elements discussed above. Some default values of internal accuracy 

for typical types of surveys are given by Pfeifer [1975], and are listed 

here in table 2.2. 

Order of Class of Nominal Relative Internal Accuracy 
Survey Survey Accuracy a. 

~ 

l 1:100 000 0~33 

2 l 1:50 000 0~33 

2 2 1:20 000 0~47 

3 l 1:10 000 0~69 

3 2 1:5 000 1~39 

Table 2.2 Internal Accuracy Defawlt Values 

The final part of this section will describe a method which 

enables one to compute the expected reading, pointing and levelling errors 

for a particular the~dolite and observer. The procedure is essentially 

the same as that carried out in a lab for course SE 3022.taught by 

Dr. Chrzanowski at the University of New Brunswick. The initial steps are 

to set up the instrument and tripod in normal conditions (e.g. outside on 

a cool day on a grassy slope) and center it over some point. The following 

steps then enable one to determine the reading, pointing and levelling 

accuracy: 
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1) Take 20 different readings of the same pointing. All that this 

involves is the setting of the coincidence of the vernier or micro-

meter hairs, and reaqing the setting 20 s~parate times. By taking the 

mean of the 20 readings and computing the standard deviation, one 

arrives at the reading error a ~ 
r 

2) Take 20 different pointings and readings combined. This involves 

pointing the cross hairs on a stationary target, making a reading, 

moving the cross hairs off the target, pointinq and reading again, 

etc. The s~andard deviation of these will give the combined pointing 

and reading error ~ 2 + cr 2 and by the law of propagation of errors, the 
r P 

pointing error is computed as 

2 
a 

p 
= (a 2 + a 2) 

r P 
2 

- a 
r 

(2-8) 

3) The same pointingsand readings are made as in step 2, except that now 

the instrument is thrown off level between each pointing and reading, 

and relevelled before each one. As already mentioned, this error 

should be negli~ible for small vertical angles, and the instrument 

in correct adjustment, but it would serve to estimate the levelling 

error if one was expecting to measure steep lines of sight. This 

standard deviation of these readings will yield the combined reading, 

pointing and levelling error, and aL is co~puted as 

2 2 2 
= (a + a + aL ) 

r P 
(0 2 

r 
(2-9) 

4) The centering error, which is discussed in section 2.2, can also be 

determined in this procedure. The same steps as carried out in step 3) 

are performed for each reading, except that now, the instrument and 
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tribrach together are turned through 120° and recentered between each 

reading. This set of readings will yield the combined centering, 

reading, pointing and levelling error, and by subtracting the variance 

obtained from 3} from the variance of the readings of 4}, the accuracy 

of centering can be determined. 

2.2 External 

External inaccuracies stem from uncertainties in the determination 

of environmental factors such as refraction. As well, inaccuracies which 

are proportional to the distance between stations, although not strictly envi­

ro~~entally dependent, are included here. As can be expected, zenith 

angles are affected differently by the environment than are horizontal 

angles; thus, this section is divided into these two categories. 

2.2.1 Zenith Angles 

The primary cause of random error in zenith angles is the 

inaccuracy in determination of the vertical refraction. As indicated in 

Figure 2.1, refraction causes the ray of light between two stations to be 

curved, thus causing the desired zenith angle z to be in error 

direction of vertical E = measured zenith angle 

refraction angle 

- required zenith angle 

= height of instrument 

= height of target 

Figure 2.1 .Zenith Angle Measurement 
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by e:. The random error in the zenith angle z is 

0 z 
2 2 

+ 0 (2-10) 

assuming no correlation between E and E:. The inaccuracies involved in 

determining E have already been discussed in the pn:!vious section, so 

the problem remains to determine a_ 2• This will depend on the method used 
t. 

to determine or eliminate the refraction angle s. The 3 basic methods 

presently used to handle vertical refraction are 

l) Add the empirically determined refraction angle to the observed zenith 

angle E. 

2) Measure simultaneous reciproc:1l zenith angles to eliminat.e the effect 

of the refracti~n angle. 

3) ~1odel the vertical refractL..,n into an adjustment includinc:r neasured 

zenith angles to determine ' analytically. 

2.2.1.1 Empirically Determined ~efraction Angle 

If the vertical or zenith angle is measured from only one end of 

the observing line, the refraction angle must be determined by empirical 

methods. This is usually accomplished by use of the ;oefficient of refraction 

k in the relationship (e.g. Faic:r, 1972] 

where k 

E: = ks 
2R 

coefficient cf refraction, 

s = distance between the 2 stations, 

( 2-11) 

R = mean radius of curvature of the earth between the· 2 ·stations. 

The primary inaccuracy in (2-11) stems from inadequate knowledge of k, 

and thus 
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(2-12) 

The coefficient of refraction can ,be computed as [Angus-Leppan, 1971] 

where P 

aT 
ah 

T 

k 
()'I' 

(0.0341 + {lh ) , 

air pressure in millibars, 

tempe~:ature in degreElS Kelvin, 

temperature gradient ~Ln degrees Celcius per meter. 

(2-13) 

'I'he tempera·ture gradient in (2-13) is the most difficult item to ascertain. 

Angus-I..eppan (1971.] quotes valtE:S of -4°C/m for hEdght.s of l em to 1 m 

above ground, -0.8" Cjm from one metre to 2 met;:es above t.he surface, and 

····0. 03" :=;rn from 2 to 100 m above ,Jround for the temperature orad.ient 

a function of many things including dens.i ty o:: the air, temperature, soil 

characterist.ics under the sight line, wind speed, etc. (see A:.i.gus···Leppan 

[1971]), but when observing lines are high above the ground at mid-day 

or afternoo:J., t.he values of {l'r/ ?h approaches -0.0055, which corresponds 

t.o a value for k cf 0.13. Invest:Lgat.ions carried out by Angus-It::ppan 

[1961] to determine~ an empirical formula for E by measuring temperature 

gradients along lines of sight close to the ground (i.e. 5 feet to 30 feet) 

resulted in an accuracy of no better ·than cr ""' 5" for a sight line 3600 
E: 

feet long, which is an accuracy of about 4~5/km. It is apparent that the 

empirical. met.hod of det.ermination of k is not accurat.e (using pre.sen·t 

inst.rumentat:ion) even in the best. of situations. Work is presently being 

carried out [Bamford, 1975] to det:ermine the refraction directly by 

mec-,suring the dispf;rsi.on of two differf.mt coloured lig·ht. beams, but it. is 

still in the development stages. 



14 

2. 2. L 2 Simultaneous Reciprocal Zenith Angles 

This method of accounting for refraction is depicted in Figure 

2. 2. 

Figure 2. 2 Reciprocal Zenith £\ngle"; 

'l'he basic assumption is that the refraction angle E will be the same at 

both ends of the line ij, and thus 

and 

E. + E. + 2£ = 180 ° , 
~ J 

e: = 
lf:tO o - I!'; i J. E . ) 

2 

(2-14a) 

(2-14b) 

The accuracy here depends on the ?alidity of the assumption t:12t the 

directions of the verticals at i and j are :;:arallel in the plane of the line 

of observation between i and j. ·rhis assumpt.ion is valid for lines which 

are not too long ( e.g. <10 km) and which are not in a gravity disturbed 

area. Ramsayer [1978] reports o:;_n accuracy of 0. 9" when measuring 

reciprocal zenith - angles in 6 sets and accounting for the deflection of 

the vertical at each station. Thus, for 3 sets of zenith angles as 

each end, and assuming deflections of the vertical differences insignificant, 
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one would expect a = 2". 
E: 

Another slightly different approach to simultaneous reciprocal 

zenith angles is using only one theodolite, measure the zenith angle at 

one end, move the instrument to the other end of the line and observe the 

zenith angle at that end. This n~sults in a time lag of about 10 min 

(depending on the distance beb1een staticns) between zenith angle 

measurements. A study done by i·!epham [1977] of 278 lines of average length 

250 m gives a standard deviation for the coefficient ,)f refraction k of 

ok = 1.86, which results in oe: = 7~5. 

2.2.1.3 Analytically Determined Refraction 

This method involves solving directly for the coefficient of 

refraction in an adjustment. Zenith angle observations are usually 

only considered directly in a three dimensional adjustment, and thus 

this procedure is usually only employed there. Vincenty [1973] introduces 

the term 

(2-15) 

where s =distance from ito j, 

and € = refraction angle in arcsecs per kilometer, 

into the observation equation for vertical angles in order to account for 

vertical refraction. Assuming an accuracy of 2" for zenith angle 

measurement and 0~7 for astronomic latitude and longitude in a ficticious 

network he arrives at an accuracy of 0~06 per km for £ . As already 

mentioned in 2.2.1.2, Ramsayer [1978] calculates an accuracy a of 0~9 
E: 

independent of the length of the line in an actually measured network 

of 5 stations. This implies that the accuracy of the coefficient of 
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refraction is increasing with the lenqth C)f the line, and Ram~~ayer [1978] 

gives the accuracy as nk = 0.055 /s (km). 

It seems that this method gives the best estimate for the 

refraction angle as it is determined by the least~ squares adjustment process 

itself. 

2.2.1.4 Hei~ht of Tar~e~ 

The uncertainty in the height of target oHT affects the 

variance of a zenith angle observat:ion, depending on the distance between 

stations. It is analagous to the centering error discussed in the next 

section. The angle o contributed by the height of target to the zenith 

angle is 

8 
HT sin E 

( 2-16) 

where HT height of target, 

E measured zenith angle, 

and s = spatial distance between the 2 stations. 

Thus, an error a in t.he height of target produces an error in 8 of 
H'l' 

sin E 
0 :5 = ----;;--· 0 HT F~r oHT of 1 em, a zenith angle of 90° and 

a distance s of 1 krn, a6 = 2~06. 

2. 2. 2. Horizontal Angle~. 

External effects considered for horizontal angles include lateral 

refraction, centering error and tripod twist. Of these, the only one which 

can be accounted for with any degree of accuracy is the centering error. 

Lateral or ho~~izontal refraction affects horizontal angles when 

the lines of sight pass close to objects which are significantly different 

in temperature than the surrounding air. Figure 2.3 [Kukkamaki, 19491 shows 
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the deflection of a 5.2 km line of sight which passed at 20 m height along 

a sideward slope. The line of sight passes about 3" closer to the ground 

GROUND 

Figure 2.3 Effect of Lateral Refraction 

during the day and 3" away from the ground at night. By 

taking temperature measurements along the line of sight, Kukkarnaki was 

able to determine that the observed deflections were almost fully 

correlated with the horizontal temperature gradient. The only way to 

determine the horizontal temperature gradient is to observe the temperature 

along the line of sight, as Kukkarnaki did. As this is not usually 

feasible in ordinary survey practice, the only recourse is to avoid 

situations where the line of sight passes close to a temperature anomaly, 

such as the wall of a building or a steep side slope. 

angle is 

where a 
cl 

From Chrzanowski [1977], the influence of centering error on an 

given as 
2 2 2 a a a 

2 2 
c c2 c3 

a = p {_1_ + --+ (D 2 + o/ - 2D1D2 cos a)} c D 2 D 2 2 2 1 
1 2 Dl 02 

(2-17) 

= centering errors of the targets, 

o1 and o2 = distances to the targets, 
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a = centering error of the theodolite, 
c3 

a = angle being measured, 

p = 206265 • 

For the case where the centering error of targets and instruments are about 

the same, and the distances are about equal, this reduces to 

C1 
c a 

2 (2-18) 

It should be noted that these expressions are for angles; for directions 

(2-18) becomes 

2 
22 2 p C1 

c (2-19) 

As can be seen from the abo'!e expressions, the centering er::c-or' s 

effect is largely dependent on tile distance between target and instrument. 

F'or cr = 1 mm at a distance of 100 m, a 
c cd 

8~'51. 

The expected centering errors for different types of centering 

equipment (from Chrzanowski [1977] and Cooper [1977]) are listed in Table 

2.3. This table assumes good conditions for centering (i.e. no wind for 

Hethod of Centering Expected Error (o ) 
c 

String pJ.umb-bob 1 mm/m 

optical plummet 0.5 mm/m 

plumbing rods 0.5 mm/m 

forced or self-centering 0.1 mm _j 
Table 2.3 Expected Centering Error 
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the string plumb-bob and equipment in correct adjustment). These values 

are, of course, only approximate, and are also dependent on the particular 

equipment and the conditions under which they are used. For particular 

equipment and observers, the method for determining centering error outlined 

in section 2.1.4 should be used. Self centering refers to the method 

frequently used in traversing. i.e. leaving the tribrachs attached to 

the tripods and exchanging only the instrument and targets. 

Tripod twist usually occurs when one side of the tripod is heated 

more than the other side. This twist can introduce a significant systematic 

error, especially for metal tripods (up to several arcsecs), and for precise 

work both the instrument and tripod should be shaded from direct sunlight. 

2. 3 Other Error Sources Enco·,mtered for Azimuths 

When determining azimuths, either by gyro-theodolite or astronomical 

observations, other sources of error besides those already mentioned will 

affect the observations. These include timing inaccuracies, errors in 

star positions, and latitude dependent errors. 

One must be careful when assessing the a priori accuracy of 

astronomic azimuths determined by star· observations. Carter et al (1978] 

report that personal biases up to 1~1 have occured during astronomic 

azimuth determination in the United States. Thus, methods such as those 

outlined in section 2.1.4 must be used to ascertain these biases and 

eliminate them. 

2.3.1 Gyro Azimuths 

The azimuth as computed by a gyro-theodolite is given as 

A = M - N + E , (2-20) 
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where A = astronomic azimuth, 

N = horizontal circle reading for reference mark, 

N = horizontal circle reading for north as determined 

by the qy ro. 

E = calibration value == difference between gyro detel·minec 

astronomic north and truo astronomic north. 

The error in a gyro azimuth is 

2 
+ G 

E 

asswning no correlation between M, N and F.. T!le element '-'. 2 is 
~1 

(~-21) 

composed of reading, pointing, centering, c:tc. errors whic~ have already 

been discussed. 2 2 
oN and crE are dependent on the inaccuracies 

resulting from determination of north by a gyro apparatus. Gregerson 

[1974} reports that these inaccuracies include mislevelment of the gyro, 

drift effects, changes in band torque equilibrium position, changes in 

angular momentum of the gyro, changes in the angle between the optical 

axis of the theodolite and axis of the gyro reading syste:m, and changes 

in latitude ~. To characterize all these error sources and combine them 

2 2 
into a single 0N or oE would be a very large task, and when accomplished 

may not yield an accurate result. The Most dependable way in 

which to determine the internal variance of a gyro azimuth is by calculating 

the variance of the mean of rdpeated determinations of the azimuth. 

Some empirical accUl:acy esti.r.lates should, however, be Mentioned. 

The expected accuracy for a gyro attachment such as t~e l•lild GAK1 is 

about 20" to 30" [Bom'ford, 1975) in latitudes below 60°. Gyro-theodolites 

with automated recording of transit times (e.g. M~~ Gi-B2 or GYMQ-GI-Bl/A) 

have an expected accuracy of about 3" for a siugle determination of azimuth 
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[Halmos, 1977]. 

If a gyro azimuth is to be used in an agjustment which is 

not 3 dimensional, it must be reduced by the truncated Laplace equation 

(assume E .. : 90°) to a geodetic azimuth as follows: 
l.J 

a= A- n tari cp, 

where a~ geodetic azimuth, 

A = astronomic azimuth, 

( 2-2 2) 

n = prime vertical component of the deflection of the 

vertical, 

cp = latitude of the point. 

The variance of the geodetic azimuth ~ must reflect the inaccuracies in 1 

and cp 
2 

as well as the computed aA (cf. section 2.4.5}. 

2.3.2 Azimuths Determined from Star Observaticns 

These azimuths are usually determined by the hour angle or altitude 

methods. The azimuth by hour angle is 

tan A 
sin h 

( 2-23) 
sin ~ cos h - cos <jJ tan fJ 

where A = astronomic azimuth, 

h = measured hour angle of star, 

c!> = astronomic latitude of station, 

0 = declination of star. 

The expression for the variance of the astronomic azimuth based on the 

above equation,derived by Roelofs [1950],is 
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= l Fa 2 + 1 (cr 2 + a 2) 
n t P p c 

!2-24) 

where n = number of paintings on the star, 

v~iance of the observation of time in arcseconds (1" = 0.067 s), 

=variance of a single pointing on the star, 

cr 
c 

combined variance of 2 readings of the horizontal circle and 

pointing on the reference mark, 

F 
2 2 2 2 

cos ¢ (tan ¢ - cos A cot Z) + m(2 tan ¢ + cot Z - 2 tan ¢ 

cos A cot Z), 

Z = zenith angle of star, 

2 2 2 
m = (o p + a v)/cr t 

a 2 = variance of levelling the spirit level. 
v 

The reading, pointing and levelling erro~have all been discussed previously 

in section 2 .1. The pointing error in this case is 70" /m because the 

star is a moving object. The only new source of inaccuracy here is the 

timing error. Mueller [1969] estimates crt = 0~'5 with a chronograph and 

o = 1~5 without a chronograph. 
t 

The determination of azimuth by star altitude does not require a 

precise knowledge of time. Here, both the horizontal and vertic"'l circles 

are used, and the azimuth is computed as 

sin 6 - sin ~ sin a 
cos A= 

cos ·11 cos a 

where a = measured attitude corrected for refracticn. 

(2-25) 

Roelof' s [1950] equation for variance of the azimuth wl~en using this method 

is 



2 
= 

1 
n 
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{ (cr 2 + a 2 ) tan2a + (tan cp - cos A' tan a) 2 
p v 

+ a 2 ) cosec 2 A + a 2 cos 2 ~J + (a 2 + 
p tr p 

2 c ) } 
c 

(2-26) 

where 
2 

ovc = combined variance of levelling vertical circle bubble and 

reading vertical circle, 

variance of tracking (ceasing to turn the telescope at the 

instant the star's image arrives at the intersection of the 

cross hairs) for simultaneous horizontal and vertical 

pointing on a star. 

2 2 The variance of tracking is given by Mueller [1969] as a = 1~0 , and 
tr 

a 2 will be the combination of the levelling and reading error for the 
V;; 

vertical circle of the theodolite as discussed in section 2.1. 

It should be noted that these variances characterize the ra.ndom 

error of the internal accuracies of the azir.tUth determination. They do 

not account for the external errors such as refraction and centering 

error, which must also be accounted for when computing the final accuracy 

estimate. 

The astronomic refraction will affect the altitude observation 

depending on the zenith angle of the star. Roelofs [1950) gives the 

refraction angle E as 

E = 

where p 

t 

z 

...£._ 
760 

270 {60~1 tan z- 0~072 tan3 Z}, 270+t 

pressure of t!.e air (mm rnercu.::-y) at the station, 

temperature of the air (° Celcius) at the station. 

zenith angle of the star. 

(2-27) 
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The corrected altitude a is then computed as 

a=a'-E:, (2-28) 

where a' =measured altitude. 

Thus, the external error resul tir.g from refraction will be a result of 

inaccuracies in determination of temperature and pressure. Ignoring the 

last term in equation (2-27), their effect will be [Roelofs, 1950] 

2 
a + p <?fo 270 60"1 tan Z) 2 , 270 4- t . 

where 2 
a =variance of reading the barometer, 

p 
2 

ot = variance of reading the thermometer, 

and of = mean short period fluctuation in t~~perature. 

(2-29) 

The mean short period fluctuation-in temperature is taken as of= 0.2°C. 

Equation (2-29) assumes that (2-27) is the exact model for the refraction 

angle e. Although this is obviously not the case, Roelofs [1950] states 

that for zenith angles less than 75°, it will be sufficiently accurate. 

It must be remembered that these are astronomic azimuths, and for 

obtaining geodetic azimuths a, equation (2-22) must be used. As well, 

for precise work, the gravimetric, skew-normal, and normal section to 

geodesic corrections must also be applied [e.g. Thomson et al., 1978]. Dracup 

[1975] uses the variance 

2 _ 2 (tan ¢1 ) 2 ( 0 4 a - a + o 8 + . a A • 
. ') 2 

s~n o (2-30) 

where o 2 includes both internal and external errors, and the last two 
A 

terms are generated by the corrective terms applied to the astronomic 

a~imuth to get a geodetic azimuth. Equation (2-30) is also being used 
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in the 1978/79 readjustment of the maritime second order control networks for 

a priori geodetic azimuth weights [Chamberlain, 1978). 

When working on a plane, the geodetic azimuth must be reduced 

to the mapping plane azimuth t by subt:::acting meridian convergence y and 

(T- t) corrections [e.g. Thomson et al, 1978]. Thus, any inaccuracies in y or 

(T - t) must also propagate into the variance of t, i.e. 

2 
cr t = 2 2 2 

o a+ ay + a(T-t). (2-31) 

2. 4 Summary 

This section summarizes the findings of the first 3 sections. 

The subsections are grouped under individual observation types, and 

each observation type is composed of both internal and external random 

error sources. Redundant observations are also accounted for. 

2.4.1 Directions 

The internal va~iance for a single direction is 

2 
0 d. 

~ 

= 0 p 
2 + (J 

r 
(2-32) 

where the pointin~, reading, and levelling error are computed by equations 

(2-1) to (2-6). From (2-19) the external error is 

2 2 

The variance of a single direction observation is 

20 
2 

2 2 2 2 2 c (2-33) od = Cf + ,. + 0 + p -- . 
p r L 02 

For n observations o= the same direction, the variance 

changeSdccording to the observing procedure used. If, as is usually done, 
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the zero setting is changed between "sets" of directi.:ms, with no relevelling 

or recentering of the instrument between sets, the final variance is 

= 
(a 2 + a 2) 

p r 
n 

2 2 
+ 0 + p 

L 

2a 2 
c 

-y-
o 

(2-34) 

If, however, the instrument is relevelled and recentered (after turning 

instrument and targets through a 120° rotation) between sets, the final 

variance is 

2 2 2 2 
a + 0 

2 
p 2c 

p r 
( ) + OL + 

2 
2 02 

ad = (2-35) 
n 
2 

as there are 2 paintings and reading:> of the same direction within each 

set. 

2.4.2 Horizontal Angles 

Ho:;:izontal angles are essent.ially the difference of 2 directio:ms. 

Thus, the variance of a single angle derived from 2 single directions is 

~ 2 
2 2 2 2 2 

.::l - 4o· 

2ad 2(cr c a = = + a + r< ) + 
a p r ._,L 

02 
( 2-36) 

where the final term could be replaced by equatL>n (2-17) if it is expected 

that the centering error will be an important factor. 

If, as is usually done, the angles are derived from direction 

observations, then n observations of an angle correspond to n observations 

of 2 directions, and 

is 

a 2 
a 

the 11sual equation for the variance of angles 

a 2 + a 2 

2 { ....E___.E_ + a 2 + 
n L 

2 2 '1 2 
p c } 

02 
(2-37) 

( 
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corresponding to the same observation procedure that led to equation 

(2-34). 

One must be careful about the covariance between angles which 

are derived from a set of more than 2 directions. If the situation 

exists as in Figure 2.4, then t"he angles aijk and aikl are usually 

derived as 

= dl..l - d. 1 
.lK 

Figures 2.4 Angles and Directions 

(2-38) 

The propagation of errors fron, the directions into the angles by the 

covariance law yields the variance covariance natrix of the angles as 

2 2 2 

1 
(J + c -o dik d .. d.k l.J L 

c = 

dil
2 j 

a (2-39) 
2 2 

-a '"' + ,. 
dik djk 
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One can see that because of the common directi.,n dik between the 2 angles, 

the covariance -
2 Thus, if angles are computed above, a occurs. as 

dik 
the a priori variance covariance matrix is not diagonal, but 

has the off diagonal covariance terms of minus the variance of the common 

direction between individual angles. 

Of course, it is possible to measure angles independently, and 

in this case no covariance terms will appear in C • 
a 

2.4.3 Zenith an?les 

Zenith angles can be considered the difference of 2 directions 

as well, one being defined by the vertical axis of the theodolite, the 

other by the optical axis of the telescope pointed at the target. 

The internal variance of a zenith angle is 

2 2 2 2 
a = ~ + a + a 

z. v p r 
l. 

(2-40) 

2 where a is now the levellin<J error corresp01,ding to the vertical circle 
v 

index. 

The external error is 

2 2 2 
a 

z 
e 

=a + c;, 
e: ') 

2 
where a is given by equation (2-12}, and 

e: 

= 
. 2 

Sl.n E 
2 

s· 

(2-41) 

(2-42) 

for a variance aHT2 of height of target and measured zenith angle E; Combining 

equations (2-40) and (2-41), and accounting for n zenith angle observations, 
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2 2 2 
2 

a + a + a = __ v ____ ~P~----~r--
n 

(2-43) 
Cf Z: • 

if the vertical circle index is relevelled for e~ch observation. In most 

2 
cases, the greatest source of inaccuracy , i.s o r: 

2.4.4 Astronomic Azimuths 

As already discussed, astronomic azimuths can be split by 

method of determination into 2 groups. F01~ gyro azimuths, the internal 

variance is best calculated as the variance of the mean of repeated 

determinations, arid for azimuths dr.:!termined by star observations, they 

are given by equations (2-24) and (2-26),respectively. The external 

error is composed of centering error and, for azimuth determination 

by altitude of stars, the errc'r in determination of astronomic refraction 

(equation (2-29)). Thus 

= a A. 
~ 

2 
+ c 

rf 
2 

(2-44) 

2 
where crrf = 0 for gyro- azimuths and azimuth by hour angle of stars. The 

accuracy increase for n observations is accounted for in the internal 

accuracy component. 

2.4.5 Geodetic Azinutl:~-

The geodetic azimuth a has further inaccuracies rr;;sulting 

primarily from the random error in the prime vertical component of the 

deflection of the vertical n (see equation (2-22)). An expression 

such as equation (2-30) must be employed to account for these inaccuracies. 
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2.4.6 "Grid" Azimuths 

For grid or plane azimuths, equation (2-31) should be employed, 
I 

2 . 2 2 
but oy and o(T-t) are usually very small in comparison with oa In 

all practical cases, the variance of the grid azimuth can be assumed 

identical to that of the geodetic azimuth, namely 

2 2 
0 = 0 

t a 
(2-45) 
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3. DISTANCE MEASUREMENTS 

The accuracy of diftance measurements is also divided into an 

internal and external compone11t. Most distances are now observed with 

EDM, and the so-called zero and parts per million error are essentially 

internal and external errors, respectively. Both mechanical and optical 

methods of distance measurement are also considered as they are still 

widely used for distance observation. 

3.1 EDM 

Electromagnetic distance measuring (~DM) equipment utilize 

the following general equation for measured distanceS: 

1 
S = ~ ~ (ru + 8/2~) , (3-1) 

where s == measured distance, 

A modulation wavelength of frequency being used, 

m = integer number of wavelengths in twice the distance, 

e = phase difference between transmitted and reflect wave 

in radians. 

Thus, the variance of the measured distance for EDH is primarily a function 

of the variance of A and 8 (m is considered known), namely: 
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= (3-2) 

From equation (3-2), it is seen that the variance of determining the 

modulation wavelength A contributes to the external 7ariance (distance 

dependent) , and the phase difference uncertainty a:-. contributes to the 

internal variance. Other sou:r:·ces of iJ.aCCUL'lc:y auch as zc.:ro error, 

error in zenith angle determination, and earth curvature determination 

error affect the final distance measurement, but the variance of the 

observed distance is basically characterized hy equation 1"3-2). 

3. 1.1 Internal 

The magnitude of a~ is primarily a function of the method used 
·: 

to determine the phase difference 8. In older EDM instruments, a phase 

discriminator circuit or CRT was used to indicate directly the difference 

in phase of the transmitted and received waves. In this case, a resolution 

of 0.01 of a cycle is possible [Burnside, 1971]. Instruments using null 

point methods of phase comparison [e.g. Geodimeter Model 6) cw1, as a general 

rule, detect a phase change of 0.001 of a cycle. The more recent digital 

method of phase detection, which is used largely in the modern infra-red 

equipment, gives a resolution from 0.001 up to 0.0003 of a cycle [Deumlich, 

1974]. Table 3.l,from Deumlich [1974] ,points out the major features of 

some of the available modern EDM equipment. 

The second term in equation (3-2) i:·, due to 

inaccuracy in phase determination, and is rewritten as: 

2 1 2 2 
crph = {2 A} oe ( 3-3) 

for o 8 in fract.ions of a cycle (i.e. parts of one wavelength) . 



Model 
I 
I Manufacturer Radiation 

I Source 

I 

Geodimeter AGA 1
sm\l He-NP. 

~ode1 8 S1·1eden Laser 
Georln 1 ite 3 G Spectra-Physics I 5n;:·! He-Ne 

U.S.A. j Laser 
Geodimeter AGA 130 H 
fl.ode 1 6 Sweden i:!ercury Lamp 
Geodimeter 76 AGA i 2mW 

Sweden I Laser 
OM 1000 I Kern 1 GaAs-Oi ode 

.. , . I " I ?,00- ~m ~,_ - L 

ME 3000 
o:·i soo 

Si1 11 

ELOI 2 

~ 100 

CD 6 
smi-3 

Oi 3 

D:1-60 
r.!•hi tape 
3800 13 

Ran~er I I 

I 
: Y.e~n 
I 
I Zeiss 

I Oberkochen 
Zeiss 

1 Ob crkochen I Te11urometer 
l 

Tell urometer 
Sokl:isila Ltd, 
Tokyo 
'4i 1 d Heerbrugg 

( 100 Hz) 
G.1As Oi ode 
875 nm 
GaAs Diode 
910 nm 

Gal',s Diode 
930 nm 
GaAs Diode 
r.a!ls !Ji oc!e 
900 nm 
Gal's Diode 
875 nm 

I \.11hic !nd. I SaAs Diode 
I r.o. , l!SA i 900 nrr: 

Hewlett- GaAs 
I Pad:ard, t.:SA Diode 

I laser Syst. & 3m!-l He-Ne 
Electronics USA Laser 

I ' 1 " I ~Cth~' of I ""'' ( Kml I Stoodud I I Modulation Frequency I ~1odu1ator I r-ower I rlia~c I - i 

Consumed (W) Measurement Day Night I Deviation 
Base (I~H~) I Total # I 

I [._ I I 

I 
I 
I 

! 
I 

I 

30 

49 

30 

15 

rroro 

15 

15 

75 

15 

7.5 

75 

15 

15 

I 
I 
I 
I 
' 

I 

4 

5 

3 

2 

2 

!" 

2 

2 

4 

2 

2 

3 

4 

4 

I 
I 

l 
I 
I 
I 
! 

KDP Crystal 

Kerr Cell 

Kerr Cell 

I - I 
1\nn ,.. ............. 1 I 

I 

KOP Crys ta 1! 

I 

75 

. 400 

70 
300 

11 

10 

i1 

12 

4 

14 

10 

, " ,., 

15 

12 

Table 3.1 EDM Instruments 

' I null meter 

I digital 

j reso 1 ver I null meter 

I 
I 
I 

digital 

"n.+r.m.o.l'"h:::.n.;r::.l 

nu11 meter 
digita1 

automatic 
digital 

digital 

digital 
digital 

digital 

automatic 
diqital 
digital 
null meter 
automatic 
digital 

I 

( 3 prisms) 
0.5 

(3 prisms) 
2 

( 19 prisms) 
5 

2 

2 
1 

( 3 prisms 
0.6 

(3 prisms} 
2 

3 
(3 prisms) 

6 

:!:_ (5 rrrn + 1 • 10-6·J;) 

+1.10-6s or 1 mm 
whichever greater 
:!:_(1 em+ 2.lo-6s) 

-6 } :!:_(1 em+ 1.10 s 

+ 1 em 

-6 ' :!:_(0.2 ~~ + 1.10 s, 

+ 1 cr:: 

+ 5 to 10 11111 

+ 5 !1111 

-6 
~(1.5 mm + 2.10 s) 

•(r. r.;~ · ~ '0-6s' . ;J ..... .,... ..J. l I 

+ l Cf.1 

!(5 rnP + 5.1o-6s) 

,_ + , ,0-:) ) 
.'!:_P r..rn '. • s, 

( 1 -5 \ ::_5m.+1.0 S; 

( -5 :!:_ 5mm + 2.10 s) 

I 

c.. 
"-



Antenna 

14ode 1 IY1e1nufacturer Carrier Measurin~ Diameter DiverJence 
Frequency (GHz) Frequency MHZ) · (em) (0 

MRA 101 Tellurometer Ltd. 10.05 to 10.45 7.5 33 6 

MRA 3 Tellurometer Ltd. 10.025 to 10.45 7.5 33 I 9 

MRA 4 Tellurometer Ltd. 34.5 to 35.1 75 33 I 2 
' 

CA 1000 Tellurometer Ltd. 10.1 to 10.45 19 to 25 

E1ectrotape Dl-:20 Cubic Corp. U.S.A. 10.5 to 10.5 7.5 33 6 
I 
I 
I 

I i Distorr.at DI50 ~Ji 1 d Heerbrugg 10.2 to 10.5 ! 15 36 6 I , I 

l 0~' toooa ~ D IEO __ j S; omeo,-A 16 i '"''' I 
' I 

I L_ 
! 

10.3 150 35 __ j_ 6 

Table 3.1 continued 

Power 
l 

Consumed Readout Measuring 
(w) ~ange ( Km) 

38 digital 0.1 to 50 

digital 0.1 to 50 

digital 0.05 to 60 

digital .0.05 to 30 

digital 0.05 to 50 

I I I 
50 digital 0.1 to 50 

I 
I ! 

! 

I digi~- 0.02 to 150 I 38 

! 

Standard Deviation 

. 6 
~(1.5 em+ 3.10- s) 

~(1.5 em+ 3.10-65} 

~(3 mm + 3.10-65) 

I 
-6 

~(1.5 em+ 5.10 s) 

I ~(1 em+ 3.10-6s) 

-6 ~(2 em+ 5.10 s) 

-6 
~(1 em+ 3.10 s) 

! 
I 

I 

I 
I 
! 
I 

I 
l 
I 

w 
w 
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l''or an instrument with modulation frequency 15 MHZ (A ::. 20 m) , and a resolution 

2 -4 2 
o6 = 0.001 of a cycle, oph = l.lO m , or oph = 1 em. 

Some instruments (e. g. the vlild DI-3) take the mean of a great 

many determinations of a before employing equation (3-1) to determine the 

distance. In this instance, equation (3-3) reduces to 

2 1 
0 = ph n 

( 3-4) 

where m is the number of de~erminations of the phase difference e. 

From the above discussicn, it is seen that it is important 

to know the value of o6
2 to obtain a reasonable estimate for oph2 . A 

2 
more accurate figure for o6 than that which can be g:2aned from the 

explanation above and Table 3.1 should be available (for a s~ccific 

instrument) from the manufacturer's specifications. 

One other source of internal error which must be considered 

is the uncertainty in the zero error cr which results from inaccurate knowledge of the z 

difference between the electrical centre of the instrument and the 

point used to center the instrument over the statL;n. For instruments 

using light waves, this value is usually negligible, but for micro\·rave 

devices, the value can be quit8 significant. The zero error is dependent 

on the carrier frequency used: for instance in the MRA4 which has a 

carrier wavelength of 8 rnrn, o is estimated at 3 mm, but for the MRA 101 z 

(carrier wavelength of 3 ern) , cr is thought to be closer to 15 rnrn 
z 

[Burnside, 1971]. One method for determining the zero error on a calibrated 

baseline is given in Chrzanowski [1977]. 
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3.1.2 External 

The first term in equation (3-2) is due to the uncertainty in .the 

determination of tThe modulation wavelength A· Difficulties·ari~e here 

primarily due to the index of refraction n, which affects the wavelength 

as 

= 
A 

0 

n 

where A is the wavelength resulting from 
0 

A 
0 

c 
f 

(3-5) 

(3-6) 

for c =speed of light in a vacuum= 299792458 m/sec [Laurila, 1976], 

and f modulation frequency being used. 

Assuming A to be errorless; the variance of A is then given as 
0 

2 
0:\ C1 

r. 

2 
(3-7) 

Substituting this result back into the first term of equation (3-2) 

yields 
1 A (m + G/21T) 2 0 0 

{--·---::-----} 0 2 = S 2 n 
2 2 n 

2 

(3-8) 

n n 

where S is the distance being observed. 

The refractive index n depends on the type of carrier wave-

length used by the instrument. The two casic carrier wavelengths used 

by EDM are lightwaves (infra-red is also included here) and microwaves, 

2 
and thus n and a are 

n computed differently for these two cases. 

For lightwaves, the formula of Barell and Sears is usually 

used as follows [Burnside, 1971]: 



where 

(n-1) 
273.15 

= (nG-1). T 
p 

760 

36 

15.02 e 
T 

10-6 , 

T temperature in degrees Kelvin (t°C + 273.15), 

P pressure of the air in mm Hg, 

e = water vapour pressure in ~n Hg, 

nG refractive index for the group velocity defined as 

= 28760.4 ~ 488.64 + 6.80 
A 2 >. 4 

c c 

where A = carrier frequency wavelength. For computation of e, one is 
c 

(3-9) 

(3-10) 

referred to Bamford {1975 , p. 54}.Laurila [1~76] arrives at the simplication 

N,.P - 41.8 e 
N = ... 7 

(3-ll) 

3.709 T 

for N = (n-1) 
6 

NG = (nG-1).10 , and P ~nd e in millibars. When 

evaluated for the effects of P, e and t, equation (3-11) gives 

-N 
= {.!__ ( G P + 11. 27 e)} 2 

T2 3.709 
2 {11.27} 2 

Gp + T 
2 

0 
e 

2 Thus, 0 is computed as 
n 

(3-12) 

( 3-13) 

For microwaves, the group velocity is essentially equal to the car!:ier 

velocity, and the Essen and Froome formula is usually employed as follows: 

N = 77.62 p (12.92 
T - T (3-14) 
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where T is in degrees Kelvin, P and e are in units of millibars, and 

6 
N = (n-1) . 10 . The propogation of variance through equation (3-14) yields 

{-77.62 + (12.92 
T2 T2 

4 2 
74.38·10 ) e} 2 crT2 +{77.62} 

T3 T 

4 
2 +{-12.92 37.19·10 }2 2 

crp + 2 cr • 
T T e~ 

(3-15) 

Equation (3-15) is also due to Laurila [1976]. 

Table 3.2 from Kukkamaki [1967] summarizes the effects of errors 

METEOROLOGICAL ERROR 

+ 1 mm Hg in air pressure 

+ l°C in temperature 

+ l°C in the difference 
between dry and wet bulbs 

EFFECT ON 

Light Waves 

0.3 ppm 

1.0 ppm 

0.05 ppm 

DISTANCE 

Microwaves 

0.3 ppm 

1.6 ppm 

8.0 ppm 

Table 3. 2 Effect of Meteorological Errors on r1easured 

Distances 

in meteorological measurements on the measured distance. For light ~;aves, 

the most important is temperatur~ and air pressure, but for microwaves, the 

difference between wet and dry bulb temperatures, which is used to compute 

e, must be determined accurately. 

Another external effect which cannot be overlooked is the error caused 

by reducing the measured slope J.istance s (already corrected for index of 

refraction and zero error) to either i) a horizontal distance Sh at the 

average height of the two stations (usually the procedure for localized 

surveys), or ii) the geodesic distance on a reference ellipsoidS. 
0 
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Figure 3.1 [Chrzanowski, 1977) illustrates the indi•.ridual steps in the 

reduction process. 

Figure 3.1 Reduction of Distances 

There are essentially five separate corrections which must be 

considered in order to understand the errors resulting from them, and they 

are defined as follows [Bom.ford, 1975) : 

1. The correction for the effect of curvature of the path of the ray and 

earth on the computation of the index of refraction. This correction 

is given as 

s 
m 

- s = -s 3 2 
(K - K ) , 

l2R2 

where R = mean radius of the earth = 6370 km, 

( 3-16) 

and K = R/K,where K is the radius of curvature of the path of the ray 

from A to B. 

Under average conditions, f;=7P. for lighh;av,?s (K=l/7=0.143} and K'-= 4R 

for microwaves (K=l/4=0.25}. 
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2. Reduce the path distance S to the chord or spatial distance S • The latter 
m s 

3. 

would be the distance required for a three dimensional adjustment, 

and the correction is 

6S 2 = S - S 
s r.\ 

s 3 
__ m_ K2 • 

24R2 
( 3-17) 

The correction 6S 3 reduces the spatial distance Ss to the level distance 

Sh at the average height of the two points. The correction is 

s 
m 

( 3-18) 

where i.\h = (hB - hA) ::: difference in height between the two points. 

4. The level distance Sh is reduced to the chord distance Sc at the ellipsoid 

by the correction 

s - s = 
c h 

where h 
m 

average height of the two points above the 

ellipsoid, 

R = Euler radius of curvature for the line. 
a 

5. The final reduction of s to the geodesic distance S is via the correction 
c 0 

6S =s -s 
5 0 c 

s 3 
m 

24R2 

Thus, the reduced level distance sh is 

and the final geodesic distance on the ellipsoid is 

(3-20) 

( 3-21) 

( 3-2 2) 
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The effect of inaccuracies in the corrections As propagate directly 

into the reduced distance sh or s 0 • By calculating a few examples, it can be 

seen that for distances under 50 km, the combined correction ~s 1 + ~s 2 is 

less than 1 ppm, and thus any inaccuracies in K, R, or S will not affect 

the reduced distance significantly. However, the correction ~s 3 is directly 

linked to the difference in height, and any uncertainty in Ah will affect 

the correction L'ls 3 in the following way: 

2 {L'Ih} 2 
~; tS = S 

3 m 
(3-23) 

ignoring the small contribution of the second tern (see equation (3-18)). 

For instance, for a distance S = 2000m, L'lh 
m 

100 m, and 0 6h = 0.5 m, 

nt,.S 
3 

2.5 em. 

An important consideration here, then, is the method used to 

determine t.h. One of the usual methods employed is the measurement of 

the vertical or zenith angles to determine t.h as 

6h = S cos E , 
s 

where E is the measured zenith distance. An error oE in the zenith 

distance (see section 2.2.11 propagates as 

2 
0 llh = (S sin E) 2 oE 2 

s . 

(3-24) 

(3-25) 

which for a distance of 2000 m, E = 85°, and a = 20" gives cr ::. 0.2 m. 'E t.h 

The correction L'ls4 will contribute an error of 

2 s 2 
cr = {_h } 

[), s 4 R 
(3-26) 
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where (R + h ) in equation (3-19) has been replaced by R. 
m 

The height 

above the ellipsoid h is usually not well known due to inaccurate 
rn 

knowledge of the geoid height N. As can be verified from formula {3-26) 1 

each 6 m of error in h will contribute 1 ppm error to the reduced 
m 

distance S . 
0 

3.1.3 Summary of Variance for EDM 

The variance of the final r~duced distance s is summarized as 
r 

2 
(j 

2 2 2 + s2 n 
crs = crph + a?. 2 

r n 

2 The value to be used for cr~ 5 depends on the type of reduced distance 

2 
desired. For the level distance Sh' cr 65 is equal to a6s 2 , and for 

(3-27) 

the ellipsoidal distance S0 , a,~ = cr 2 
u b.S 3 

2 3 
+ o65 {see equations (3-23) and 

4 
{3-26)). Distances to be used in a three dimensional adjustment will not 

2 
require a cr 65 term unless they are exceptionally long {see secticn 3.2). 

To understand how the variance is affected for more than one 

determination of the distance, one must first consider the normal observing 

procedure. Usually, the inst~ument is set up, the zenith angle is 

observed to determine 6h, the meteorological readings are taken, the distance 

is observed m1 times, meteorological readings are taken again, the zenith 

angle is reobserved, and the procedure is complete. In this case, the variance 

of the reduced distance ~s 

as 
r 

+ cr z 
2 

2. 
ellS • 

+ 2 (3-28) 

Thus, the repeatedly observed distance serves only to reduce the variance 

2 
of phase difference determination a ph • 'I'he uncertainty in the zero error. is qr" 

7 2 
affected and on~ and otis are dependent on their individual measurement 

procedures. In general., for m1 observatio:~s cf phase difference, m2 sets 
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of meteorological readings and m3 determinations of the height differences, 

accuracy as 

r 
cr z 

2 
+ + 

Most instrument manufacturers state their instrument's 

cr = + (a + b.S) 
s 

(3-29) 

(3-30) 

where a and b are the internal and external standard deviations 

respectively. In the present context, a=/ cr~h + oz2 and b = on/n. One 

can see that equation (3-30) is not valid, as 

Equation (3-27) properly accounts for error propagation whereas equation 

(3-30) does not. 

3.2 Mechanical Distance Measurement 

Steel surveying tapes or chains as well as invar wires and 

tapes are considered here as the instr.uments used to measure distances 

mechanically. The errors in these measurements are all dependent on the 

distance measured, and thus are regarded as external errors. 

For graduated steel tapes used with plumb bobs to determine the 

vertical, Kissam [1971] reports an expected accuracy of 1:2500 with no 

corrections applied, 1:3000 when using a spring balance to obtain the 

corr~ct tension, and 1:5000 when the teMperature correction is also applied. 

Higher accuracy measurements are usually made with the tape 

suspended in catenary (see Figure 3.2). The ends of the tape are 
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T 

Figure 3.2 Tape in Catenary 

supported firmly and precisely (usually by means of tripods designed for 

this purpose) at A and B, and a tension T (e.g. 10 Kg) is applied at A. 

The tape will then "sag" by a predictable amount (proportional to its 

weight per unit length, the distance between A and B, and the tension T) 

and the spatial distance S ca11 be computed. .7!;. det"iled analysis is 
s 

contained in Bamford [1975]. 

Clark [1969] considers an accuracy of 1:20000 easily achievable 

with steel tapes in catenary which have been standardized (compared with 

an accurately known length) and which are used with applicable corrections 

(i.e. temperature, tension, sag and slope). 

Invar wires or tapes in catenary can be used to :)btain accuracies 

up to 1 to 2 ppm [Bomford, 1975]. Corrections considered necessary to 

achieve this accuracy (besi~e~ those mentioned ubove) include pulley friction, 

the weight of dirt or moisture on the wire or tape, the effect of wind, 

and the change in gravity between the standardisation site and measurement 

site. These high accuracy measurements with invar wires were primarily 

used to measure baselines to introduce scale to geodetic networks before 

the advent of modern EDM. 
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3.3 Optical Distance Measurement 

Optical distance measurement is still an inexpensive and useful 

method of distance determination, even though it has been largely replaced 

by EDM. One reason for this is that the accuracy of optical distance 

measurement deteriorates quickly with increasing distance, even though 

relative accuracies up to 1:20000 are achievable for distances under about 

500 m. 

This section is based entirely on the comprehensive text "Optical 

Distance Measurement" by Smith [1970], and, as such, will summarize the 

main points pertaining to determination of the variance of the reduced 

distance. Of the nine separat~ types of optical distance measuring 

equipment covered by Smith {1970], only stadia tacheometry and subtense 

bars are considered here. As can be expected, errors here are related 

to those of Chapter 2 as these optical methods of distance measurement 

require theodolite observations. 

3.3.1 Stadia Tacheometry 

This method can be used on any theodolite which has stadia 

hairs. 'fhe reduced distance s1 is computed as (Figure 3. 3) 
"t 

sh = cb cos 8 cos ~. (3-31) 

where C = instrument constant for stadia hairs (ususally 100) , 

b = difference in reading between upper and lower stadia 

hairs, 

8 = observed vertical angle, 

~ = angle between normal to line of sight and the 

vertical rod. 
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Figure 3.3 Stadia ~easureMents 

The angle 1jJ is not taken equal to 8 as the error a 1)1 in l1olding the rod 

vertically is not the same as t-he error c',} in thP. observed vertical 

angle. The error i'n the reduced distance is thus 

(3-32) 

where o 8 and oW are in radians and ~h is the difference in height between 

the centre rod reading and the instrument stati·.J!l. The error in reading 

the rod obis dependent on the pointing error (see section 2.1.1) and on the 

distance of the rod from the instrument. For example, given 6h 8. 7 m, 

= 100 m, o6 = 1', a,,,= lu, and ab = 0.7 mm, then a = 0.167 m, which 
'f' sh 

is a relative precision of 1:600. 

The inaccuracy of vertical angle determination a 8 has already 

been discussed in section 2.2.1, but it is obvious that ow will generally 

be the largest contributing factor. It is difficult to manually hold the 

rod vertically in error less than 1°, but if it could be aligned to 1', 

then the relative precision for the above example would be 1:1400. 
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3.3.2 Subtense Bar 

The subtense bar method does not require a vertical angle 

observation; the horizontal distance is immediately available as (Figure 3.4) 

b a = 2 cot 2 , (3-33} 

wl1ore b len<_rth of the subtcnsr bar, 

a ~ neasured horizontal angle subtended by the 

sub tense bar. 

The length of the barb is •,4:!11 known (e.g. ab = 0.00005 m), and the primary 

source of error is cra 2 ' the variance of the measured angle. The evaluation 

of cr 2 is covered in section 2.4.2. The variance of the computed 
a 

distance is 

fbr a in units of radians. 
a 

1+------Sh---- ------
Figure 3.4 Bar at End 

(3-34) 

Differently configured setups yield different values for o1 . 
s. 

J 
If the subtense bar is set in the middle of the line as depicted in Figure 

3.5, then the variance for Sh is 
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Figure 3.5 Bar in the Middle 

s 20" 
= { h a}2 , 

212b 
( 3-35) 

which is 2.8 times better than for the bar at the end of the line. 

Equation (3-35) assumes al = a2 and cr = a In general, for n equal 
al a2 

segments of shape as in Figure 3.4, the error is 
2 

2 sh cra 2 
crs = { 3/2} (3-36) 

h b n 

For an auxiliary base at the end of a line,as depicted in 

Figure 3.6, the error in distance is 

2 2 b' 2 
crs = sh {- + 

h b 2 
(3-37) 

for cra in radians. The optimum condition (least error in Sh) occurs when 

Figure 3.6 Auxiliary Base at End 
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y = a (see Figure 3. 6) , and in this case 

3 
2 2 sh 2 

(3-38) 0 
sh b 

0 
a 

for o in radians. 
a 

When the auxiliary base is placed in the middle of the line 

l.-b ... j 

Figure 3.7 Auxiliary Base in the Middle of the Line 

as in Figure 3.7, then 

b'2 [ __ + 
c 2 
b 

s 2 
h ' ---) 

8b' 2 

2 
a 

again for o in radians. Optintal conditions occur here for the ratio 
a 

Y 2 = 12 : 1 : 1, • ··hich yields 

= 
25 3 

h 
2.8b 

(3-39) 

(3-40) 

Figure 3.8 [Smith, 1970] shows the relative precision expected for the 

four cases discussed above assuming a subtense bar of length b = 2 m. 

3. 4 Sununary 

This section SUiiliTiarizes the variance of the three types of 

distance measurement discussed above. Each method is treated independently 

of the others because of the unique nature of t!:c individual distance 

determination procedures. 
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500 500 

400 400 

loo · 300 

2.00 2.00 

100 100 

L----4----~----~---+----~--~s~ 
0 1~2.000 it4000 1t6000 1:1000 1:10000 ~ 

Be1se o.t End 
1:2.000 1:4000 

Bttse in 
1:6000 1:6000 

Middle 
1:10000 

600 

+OO 

2.00 

<rs 
1:+000 UOOO }:J?.OOO 1:16000 {:2.0000 _h 

Auxilia.r~ Ba.se in Mfddle Sh 

Figure .3.8. Expected Relative Precision of Subtense 

Bar Measurements 



(3-29) as 

so 

For ED.M distances, the fina-l variance is given by equation 

= a 
z 

2 
+ 

2 
where a65 depends on the type of reduced distance required (see section 

3.1.3), o 2 is computed by equation (3-12) or (3-15) depending on the carrier 
n 

frequency wavelength, o 2 is either given by the manufacturer or determined z 

through a calibration procedure, o~h is determined from equation (3-3) 

•-:r (3-4), and rn1 , m2 and m3 are as explained in section 3.1. 3. 

The variance of mechanical methods of distance observation is 

characterized by 
(3-39) 

where o5 is the relative pre,-:ision of the method heing used (see section 
m 

3.2). For example, consider taping carried out with plumb bobs and no 

corn~ctions applied for tension or temperature; 

and for a measured distance of 500 m, os = 0.2 m. 

then cr 2 = (1/2500) 2 , 
s 

m 

Optically determined distances have a variance whict. is 

highly dependent on the individual method used. For stadia tacheometry, 

equation (3-32) characterizes the variance, and for subtense bar measurements, 

equations (3-34), (3-35), (3-38) and (3-40) define the variances depending 

on the specific subtense method used. 2 Each of these formulae depend on cr 
a 

(the variance of angle determinatim:) which is given by equation (2-37). 
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