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PREFACE

This “manual" is the second of three being written to cover the
correct and practical use of the geodetic information of the redefined
Maritime Geodetic Network. While the first manual dealt with a single
terrain point, this involves two points and the observations between
them. The third manual will centre on terrestrial networks (many
terrain ‘points and observations amongst ﬁhem).

This.manugl was written as’ a guide to the use and interpretation
of geodetic information for two terrain points. It is to serve mainly
as a surveyors handbook for Geodetic Position Computations in the
three-dimensional, ellipsoidal, and conformal mapping plane environments
in the maritime provinces. o derivations or extensive explanations of
the mathematical formulae are given. The equations fequired to solve
the position and associated error transformaéion problems are stated,
the notation used is explained, and a numerical example is presented.

A reader desiring extensive background information as to the relevance

of this manual, and a detailed explanation of the origins of the
mathematical formulae, is referred to the reference material. It should
be noted that the material presented in this manual has been rigorously
developed. Approximations made, and their affects are clearly indicated.
Further approximations, for whatever reasons, are left to the professional
judgement of the surveyor.

-This "Manual" was written in partial fulfillment of a contract
(U.N.B. Contract No. 132 730) with the Land Registration and Informatién

Service, Surveys and Mapping Branch, Summerside, P.E.I.
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1. INTRODUCTION

In “A Manual for Geodetic Coordinate Transformations in the
Maritime Provinces" [Krakiwsky et al, 1977], it was shown that a terrain
point i could be described mathematically by any one of three different
sets of coordinates (thréeedimensional (Xi; Yi' zi),ellipsoidal
(¢i, Ai?, conformal mapping plane.(xi. Yi)) and their associated
accuracies (variance-covariance matrices). Furthermore, it was shown,
by rigorous coordinate and variance-covariance matrix transformations,
that the coordinates and associated acéuracies in all three systems
were equivalent. In this second handbook, we introduce a second point
j, and treat two different problems involving i and j simultaneously
in each of thé three-dimensional, ellipsoida{, and conformal mapping

plane environments.

One of the problems - the so-called inverse problem - involves

the computation of the azimuths, distance , and associated accuracies
between the two points. A rigorous procedure for each of the three
environments is given, and it is shown, via appropriate “reductions",
that the solutions are equivalent.

The other problem - the so-called direct problem - involves

the computation of the coordinates and associated variance-covariance
matrix of the second point j using observaﬁions made from i to j.

Again, solutions are given for the three-dimensional, ellipsoidal, and
conformai mapping plane environments and, using appropriate "redﬁctions"

of observed and computed data and coordinate transformations, it is

shown that the solutions are equivalent.



Since this is the first time we introduce observed quantities -

directions, angles, azimuths, and distances, some special attention is
given to the reduction of obse;vations. We begin with terrain angular
and distance measurements as a result of our terrestrial observing
procedures. After correcting for atmospheric and instrumental effects,
;e are left with measurements that can be used directly in three-
dimensional position computations (Chapter 2). To express the computed
coordinates of the new point in other than a topocentric coordinate
system, say geodetic Cartesian coordinates (Xj, Yj, Zj), certain
coordinate transformations are required. If geodetic curvilinear
(ellipsoidal) or conformal mapping plane coordinates are desired, the
coordinate transformations outlined in'A Manual for Geodetic Coordinates
Transformations in the Maritime Provinces '([Krakiwsky et al, 1977] are
used. In most instances, however, the practicing surveyor £finds it
desirable to carry out position computations in the environment in which
the coordinates of point j must be expressed, usually the surface of

a reference ellipsoid or a conformal mapping plane. In this case,
observations must be "reduced" to the appropriate surface prior to
positioh computation. For ellipsoidal computations, the corrected
terrain measurements must be reduced to the surface of the reference
ellipsoid (Chapter 3), while for conformal mapping plane computations,
one must first "reduce" measurements to the reference ellipsoid, thence
make further "reductions" to express the measurements correctly on

the confé;mal mapping plane (Chapter 4). This entire process - terrain
to‘ellipsoid to conformal mapping plane - is depicted, for a distance

measurement, in Figure 1-1. This manual treats all of the reduction
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processes required for position computations in the maritime provinces.
In closing, the reader should take special note of the fact

that the measurement reduction'processes are reversible; that is, one

may compute a distance on a conformal mapping plane and "reduce" it

up to the terrain. This is an important point for surveyors who are

often faced with the need for terrain values for computed distances

and azimuths. This inverse reduction process is covered in Chapters

3 and 4.



2. COMPUTATIONS IN THREE DIMENSIONS

2.1 Notation
Before giving the general concepts and various formulae,
éhe notation used in this chapter is listed.
n;s prime vertical deflection component at point i

£;= meridian deflection component at point i

Aaz;= difference between astronomic and geodetic azimuth from point i to point j

rij = spatial distance from point i to point j (ri = I

. r..|)
J 1J|
¢i.ki = geodetic latitude and longitude of a point i

Qi;Ai S astronomic latitude and longitude of a point i

= zenith angle in the local astronomic system (measured from 2

ij
axis)

15 = astronomic azimuth in the astronomic system of line ij
(;ij)G = position vector in Geodetic coﬁrdinate system
(;ij)LG S position vector in Local Geodetic coordinate ;ystem

hi = ellipsoidal height of a point i
(;ij)LA = position vector in Local Aétronomic coordinates

0 = 6.48 x 10°/1 = 206264.8....

2.2 General Concepts

In chapter 5 of "Geodetic Coordinate Transformations
in the Maritimes",we saw that geodetic positions may be defined by a

triplet of Cartesian coordinates (x,Y,Z%;or by the triplet (¢, A, h%;



referred to the reference ellipsoid. Computations of geodetic positions
in three dimensions, for which formulae are given in this chapter,
are based on three dimensional Euclidean geometry and employ vector
and matrix algebra. Since distances, zenith angles and azimuths of
lines are actually observed in three dimensional space, they require
no "reduction" to some surface and need only be corrected for refraction
effects and instrumental corrections such as heights of instrument
above the actual terrain point or zero error for electromagnetic
distance measurements.

Readers not familiar with the Awverage Terrestrial, G=odetic,
Local Geodetic and Local Astronomic coordinate systems are referred
to, for example, Krakiwsky and Wells [1971].

It should be mentioned here that we present only one
method for solving the direct and inverse problems in the 3-D environment.
There are other methods and the interested reader is referred to, for
example, Krakiwsky and Thomson[1974]..If the reader is unfamiliar with

rotation matrices please review Appendix I before continuing.

2.2.1 The Direct Problem

The direct problem may be stated as; given the coordinates
(xi, Yi, Zi%;of point i, the terrestrial spatial distance rijlastronomic azimut
’Aij’ and zenith angle Zij from i to a second point j, compute the coordinates
(Xj' Yj’ Zj%;of point j. We note here that if we are given (¢i, Xi, hiE
of poinf i a coordinate transformation [Krakiwsky et al.,1977] yields

i i P ).
the Cartesian coordinates (Xl, i Zlé



To solve the direct problem we must know the relationship
between the Local Geodetic coordinate system and Geodetic system, and
between the Locai Astronomic system, where we observe, and the Local
Geodetic system in which we compute. If we know.these relationships the
observed quantities of azimuth, zenith angle and distance can be used
to determine.the coordinates of a second point.

The relationship between the Local Geodetic and Geodetic
system is examined first. From Figure 2-1 we can rétate the vector

>

LFELe

and Wells, 1971].

from the Local Gesodetic to the Geodetic system using [Krakiwsky

>

- - - < -
(rij)G = R3 (180 Xi) R2 (90 ¢i) P2 . (rij)LG . (2-1)
We can then obtain the ('fj)G using ]
> > -
(rj)G (ri)G +-(rij)G . (2-2)

Expanding (2-1) and substituting into (2-2) yields

(xX.). = (Xi)G - [sin ¢i cos ki (x.)

6 i 1c + sin Ai (Y.)

1 LG

- cos ¢i cos Xi (Zi) ] ’ (2-3)

LG

(x.)

(¥,) . = (Yi)G - ([sin ¢i sin A i1

ey - cos Ai (Y.)

i i'LG

- cos ¢, sin Ay (z) 1, (2-4)
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and (Zj)G = (2,), + [cos ¢, (X)) .+ sin ¢, (2))

i LG] . (2-5)

LG
-Continuing and referring to Figure 2.2, the position vector

(?ij)LA can be written as a function of the observables, namely

o - . -

(X.) ¥.. sin 2., cos A, .

i ij ij ij
-» -> o o
= (¥,) = .. sin 2., sin A, (2-6)

i3 a i Fij ij ij | -

(z.) Z.. cos Z,,

|1 Jra | T3 ij i

The relationship between the vector (;ij)

given by [Krakiwsky and Wells, 1971].

(rz..). . =R (baz, )R, (-€;) R

>
ij'LG 3 ij 1 Gny) () . (2-7)

j LA
gi and ny are the meridian and prime vertical Eomponents
of the deflection of the vertical at the terrain point i. Aazijis

the difference between the geodetic and astronomic azimuths of the

terrain point i and is given by [Krakiwsky and Wells, 1971]

= - i A - A . -
Aazij u tan ¢i (Ei sin 15 ni cos ij) cot Zij (2-8)

Now (2-7) is expanded with (2-6) substituted in it. We are
going to assume that the deflection components and Aaz are all less
than 3070 of arc in the maritimes which allows us to write with better

than .01 m accuracy that

‘r, . (sin 2,. cos A, + 8az, . sin 2., sin A,, + £, cos Z..)W
ij ij ij i3 ij ij i ij

. .
r =|r -Aaz, .si . .. + si .. Si ..+ n, -
( ij)LG ij (-a lJSJ.n zi) cos ij sin Z13 sin Alj n; cos ZlJ)

r -£.sin 2,, cos A,. - n,sin 2,. sin A,. + cos Z, .
L ij ( El ij 77 i) nl i) 1) 13) d

(2-9)
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Figure 2-2

Local Astronomic Observations



i1

The quantities Aazij,ni, Ei are all expressed in radians units.
Substituting (2-9) into (2-3)(2-4),and (2-5) the final solution for the

geodetic coordinates of point j are

(Xj)G = (xi)G - rij [sin ¢i cos Ai (sin Zij cos Aij +

Aaz,. si .. Si .. + &, .
ij sin le sin Alj El cos ZlJ)

+ sin A, (-Aaz,.sin'Z,, cos A,. +
i ij ij ij

sin Z,. sin A,. + n, cos Z,.)
i) ij i 1]

- cos ¢, cos A, (-§, sin 2., cos A,. -
i i i ij ij

. sin 2. sin A_  + -
n; sin le sin Al] cos le)] , (2-10)

(¥.) .= (¥.)
B i'G j

r.. [sin ¢, sin A, (sin.Z,, cos A,. + i
ij s ¢1 i i3 i3 Aazij51n Zi
sin A, . + § cos Z..)

ij i ij
cos A, {-daz,.sin Z,. cos A,, + sin Z,. sin A, .
i i3 ij ij ij ij

+ .
rLlcos Zl )

3 .
- cos ¢i sin Ai (-%_sin zij cos Aij - nisin Zij
sin Aij + cos Zi.)l ' (2-11)
and .
(Zj)G = (zi)G + rij [cos ¢, (sin Zij cos Aij+Aazijsin Zij sin Aij
+ £icos Zij)

+ si . (=% .sin 2z, A, - in Z, .
sin ¢l ( 5151n JJ’cas i3 ni sin 15
sin A,, + cos Z,.)] . (2-12)
1] 1]

This completes the direct problem.



12

2.2.2 The Inverse Problem

The inverse proble@ may be stated as: given the coordinates
v . . . .
(Xi, ' Zi)G of a point i and (Xj, Yj' Zj{;of a point j, compute the
spatial distance rij' the direct astronomic azimuth Ai" and
the direct zenith angle Zij'

We begin by computing

AX, XjT xij

->

r = |ay,, = || -|v, . -

( ij)G A i 3 i ,(2 13)
14255 6 1%5)e L% e

Taking the inverse of (2-1) yields [Krakiwsky and Wells,

1971].

. (2-14)

- — - °
(r..) = P_ R (¢i 90°) R c

- ° >
ij'LG 2 2 (A - 180 )(rij)

3

Substituting (2-13) into (2-14) and expanding gives

(Axij)LG = - (Axij)G sin ¢i cos Ai - (AYij)G sin ¢i sin Ai
+ (Azij)G,cos ¢i, (2-15)
(AYij)LG = - (Axij)G sin Ai + (A Yij)G cos Ai, (2-16)
and
(Azij)LG = (Axij)G cos ¢i cos Ai + (A Yij)G cos ¢i sin Ai
) + (A-.zij)G sin ¢.. (2-17)

We must now rotate the Local Geodetic vector into the Local Astronomic

system. This is accomplished by taking the inverse of (2-7) which is
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(§;) R, (-daz, ) (T, .) ) (2-18)

->
( ) =R (—ni) R ij ij°LG

Tis'ea T R 2
Making the same assumptions for small angles as mentioned in deriving

(2-9) we can write

= - pAaz . (AY - -
(Axij)LA (Axij)LG A iJ(A ij)LG Ei(AZij)LG , (2-19)
= az + - -
(AYij)LA A ij(AXij)LG (AYij)LG ny (‘Azij)nG ’ (2-20)
and
= + -
(AZij)LA Ei (Axij)LG n, (AYij)LG + (AZij)LG ' (2-21)
where (Axij)LG; (AYij)LG' (Azij)LG come from equations (2-15), (2-16)
and (2-17) respectively and Aazij,ni, Ei are expressed in radians.

Having obtained the Local Astronomic vector, the equations

for the distance,azimuth,and zenith angle are given as

- 2 2 2 .1/2
T35 [(Axij) ¢t (AYij) et (Azij) G ' (2-22)
1 (AYij)LA
Ai. = tan {',Ax ) } [ ’ (2-23)
J V855 1a
and
(AZ. )
- 13 LA
Zij = cos ~ { T }. (2-24)
1]

This completes the inverse problem.



14

2.3 Error Propagation

It should be noted tﬁat the error propagation given here
does not include any propagation through the various rotation matrices.
That is ni, Ei, azij, ¢i and li rotations are assumed errorless in
equations (2-10) to (2-12) and (2-19) to (2-21). If the user is
measuring azimuths with a standard deviation of less than 5 arc seconds

then a more rigorous error propagation is advisable.

2.3.1 Error Propagation in the Direct Problem

Given the covariance matrix for the initial point i and the
variances of the spatial distance, astronomic azimuth, and zenith distance,
the covariance matrix is computed as follows for the second point
j.

The covariance matrix of the initial point i and the observations

is given bv
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g 2 a cx | 0 0] 0
Xg o XYy *y¥y : ‘
9 l
cr.x g o, 5 { (o] 0 0
i Yy Yi% )
2 {
o] o g 0 0 0
X.Z, Y.Z2. Z, (
i1 i“i i A
C1= ----—---—-—I-t—nu--—-—--’-' (2—25)
0 0 0 { Qr? 0 0
I i3
| ) 2
0 0 0 0 o5 0
| ij
(
2
0 o 0 ) 0 o o,
N ! ' ij |
in units of
2 2 2
m m m |
2 2 2 !
m m m ‘
2 2 2,
S m :
— —-— - —-— —'— o - e e — -— e ot — — — -—
2
| m
! 2
| rad
2 'd2
! ‘ ra

The variances
are in radians squared.
to rad the

The output of

of the astronomic azimuth and zenith angle
: 2

To convert the variance from arc sec

variance is multiplied by l} .

p
the direct error propagation must include the

initial covariance information for the point i. To do this we

simply supplement equations 2-10, 2-11, and 2-12 with three more

equations of the form
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Xi = Xi ’ (2-26)
?i = Yi ' (2-27)
and
2, = 2, . (2-28)
i i

The Jacobian of transformation is(taken in the order of

equations (2-30) to (2-32) and (2-10) to (2-12));

Bxi 90X,
e.g. Bl(l,l) il 1, Bl (4,4) = 3;%.
1 1]
1 o0 0 | 0 0 0
o 1 o0 | 0 0 0
0 0 1 I 0 0 0
N |
Bl =3 - -— - - - - - - -— - -— -— -— e ’ (2'29)
1 0o o : B,(4,4) B, (4,5 B (4,6)
0 1 0 | Bl(5,4) Bl(S,S) Bl(5,6)
L 0 0 1 : B,(6,4) B (6,5) B, (6,6)
where
- _ . . + si N . .
Bl(4,4) [sin ¢i cos Ai (sin Zij cos Aij Aazi351n le sin AiJ
+ Ei cos Zij)
+ sin A(-Aaz.. sin Z,, cos A,, + sin Z,, sin A, (2-20)
I ij ij ij ij ij

+ cos 2, .

ns lJ)

- cos ¢, cos A, (-E, sin 2,, cos A,, - n sin 2, ., sin A, .
i i i ij ij i ij i

J

+ .
cos Zij)]'
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- - . s sin A . + in z..
81(4,5) rij [sin ¢i cos Ai (- sin ZiJ sin ij Aazij51n i
cos A, .)
1]
+ sin A, (faz.. sin 2., sin A,, + sin Z,. cos A,.) (2-31)
i ij ij ij 1) 1]
- cos ¢, cos A, (§. sin 2., sin A,, - n, sin 2, .
i i i ij ij i ij
cos Aij)],
B,(4,6) = - r,. [sin ¢, cos A, (cos Z,. cos A,, +Aaz, . cos Z..
1 ij i i 1] 1] 1) 1]

sin A,, - £, sin 2Z_)
ij i ij

+ sin X, (=Aaz,.cos Z,, cos A,. + cos Z.. sin A, ,
i 1] ij ij ij i

J
(2-32)
-ni sin Zij)
- cos ¢, cos A, (-§, cos Z.,. cos A.. - n, cos 2Z..
i i i ij ij i ij
sin Aij - sin Zij)]'
81(5,4) = - [sin ¢i sin Xi (sin Zij co; Aij +Aazij51n Zij sin Aij
+ Z..
Ei cos iJ)
- cos A.(-8az,.sin Z., ' cos A,, + sin 2., sin A, . + (2-33)
i 1) ij ij 1] 1]

+ n, cos Z,,.
ny 13)

- cos ¢, sin A, (-E, sin 2., cos A, sin Z.. sin A, .
i i i ij i ij i

j - M j

+ cos Zij)]'
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and

= . . . .. Hhaz, . . . si ‘s
81(6,6) riJ [cos ¢1 (cos le cos Alj lJcos ZlJ sin AlJ

- &, sin 2..)
+ + (2-38)

+ si =, .. A . .
sin ¢i ( Ez cos ZLJ cos Alj nl cos ZlJ

sinA,. -sin 2,.)] .
1] 1]

Now with BT equal to the transposed B

1 matrix, we may write,using the

1

covariance law [Vanicek, 1974]

c, =B C Bf , (2-39)

where C2 is the full variance covariance matrix of the two points i

and j and has the form

2
[0} g g [ ] g g
v X. X X.Y, X.2
i xl i xizl : 1] 13 J
2 []
0 o o . 9v.x, vy %vz
Y Y R R i i3
2,
[o3 [o} ag g g [o]
X.2 Y.2 2 ' z2.X Z2.Y. 2.2
i i i) i7j
¢, B . S D A 2L (2-40
2
1)
Ox.x Sy . x. 9z .%X. . Ox. Ox.Y. Ox.2
i%3 i3 iy 3 373 373
- 2
Ox.Y. Ov v, 92 v. 1+ 9%.v Oy Oy 2
i’j i3 i9 , J 3 J 33
' 2
°x.z °¢v.z 9%.z. 1+ %x.z %v.z 9z,
L i3 i i’ i3 i3 j
All the elements of C_. are in ﬁnits of mz.

2

This completes the error propagation in the direct case.

- 2.3.2 Error Propagation in the Inverse Problem

In the inverse problem we are given the covariance matrix

of points i and j. This is in the form of the matrix C_, described

2
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in section 2.3.1. This matrix is then used to derive the covariance

matrix for the spatial distancp,astronimic azimuth,and zenith angle.

The procedure is as follows.

The Jacobian of transformation is (from equations (2-22),

(2-23) and (2-24))

Bz(l,l) 32(1,2) B2(1,3)
B2 = B2(2,l) B2(2,2) 82(2,3)
82(3,1) 32(3,2) 32(3.3)
L _
The elements of 32 are
-(AX,.)
B (lrl) = —-Al'g ’
2 r..
1]
-(AY,.)
B,(1,2) = 36
rij
—(AZ..)(3
32(1,3) = ‘—7?‘l1-‘ '
Aij
82(1,4) = - B2(1,1) ’
32(1,5) = - 32(1,2) ,
82(1,6) = - 32(1,3) ’
(Axij)LA
By(2,1) = 2 2
. (Axij)LA + (AYij)LA

32(1,5)
B2(2,5)

B2(3,5)

B2(l,6)
32(2,6)

32(3,6)

[Aaz,.sin ¢, cos A, + sin A, +
ij i i i

- i -daz, .si
ng cos ¢i cos Ai tan Aij ( sin ¢i cos Xi ljs:.n Ai

+ Ei cos ¢i cos Xi)],

(2-41)
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(Axi')LA .
B_(2,2) = J [aAaz..sin ¢. sin A, - cos A, +
2 (AX )2 + (AY. ) ij i i i
ij'ra ij'LA
n; cos ¢i sin Ai - tan Aij (sin ¢i sin Ai
+ Aazijcos Xi + Ei cos ¢i sin li)] '
(AX. .)
B (2,3) = 1) #A [-Aaz,.cos ¢, + n, sin ¢,
2 (AX )2 + (oY )2 1j i i i
ij LA ij'La
+ tan Aij(cos ¢i - Ei sin ¢i)] ’
82(2,4) = - 82(2.1) ’
32(2,5) = - 82(2.2) '
B,(2,6) = - B,(2,3) ,
-1
82(3,1) = ; > 10 { Ei sin ¢i cos li +
((Axij)LA + (AYij)LA)
in A : A+ z %556 ]
ni sin i cos ¢icos i cos i3 rij .

-1 . .
82(3.2) = Cox )2 . (e )2 )1/2 [Ei sin ¢i sin li n; cos Ai
ij LA ij LA
(AYij)
- 3 ~4
cos ¢i sin Ai + cos zij T 1,
1]
B_(3,3) = -1 [-E. cos ¢. - sin ¢
2 (8x, 02 + (ay, )2 /2 7t 1 1
ij'ra i3’ LA
az..)
—_—i3 G
+ cos Zij T )

ij
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32 (3,4) = - BZ (3,1) ,
B2 (3,5) = - B2(3,2) R
32 (3,6) = - B2(3,3) .

With BT2 equal to the transpose of B2 it follows that

C, =B, C, B, (2-42)

where C_, has the form

3
— 5 -
Or.. Ir. A, Or..2..
1] 1) 1) 1j 1]
2
= 5 2-43
3 %% . .A.. a, . . .z.. (2-43)
i) 1) 1] 1] 13
2
. .2, %, .z, % ..
. TijTij i37i; ij
with the units
2
m m-rad m . rad
m.rad z:ad2 rad2
m.rad rad2 rad2

To convert the rad? ¢y arcsec? the term is
2
multiplied by p . To convert the off diagonal m.rad to arcsec,

the terms are multipliéd by p.
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2.4 New Brunswick Numerical Example

2.4.1 Direct Problem

The following information is given for the solution of the direct
problem and its associated error propagation.
The coordinates of point 1 are
= o ] "
(¢1)G 47° 03' 247644 ,
- o ] L
(ll)G 65° 29' 37453 W ,

and

(hl)G = 100.0 metres .

The components of the deflection of the vertical of point 1 are

‘El =470 ,
and

n, = 60 .

The observations are
r,= 2 500.0m ,

= ° Lo T

Alz 45° 00' oY00 ,

= o L} " -
3 212 87° 00' 0700 .

Equation (2-8) gives

-5
Aa212 = 3.1615 x 10 rad .
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Also given is the associated covariance matrix.

o

1.0000 x 10°%  -8.0000 x 10°8 o l 0 0 0
-8 ) -4 ]
-8.0000 x 10 1.0000°x 10 0 0 0 0
[]
0 0 4.0 : 0 0 0
""""""“"'"“""""T""‘"":;" TTTET ===
c, = 0 0 0 I 7.840 x 10 0 0
]
0 0 0 : 0 25.00 0
] 0 0 o ! o 0  225.00

in units of
pua. . -

2 2
arcsec arcsec

2 2
arcsec arcsec

- e e e e e eme e e-ee e e e mle e e e e e e e e - - - - - ’

'

|

]

[}

]

'

t

| m2

|

. 2
arcsec

{

.

]

2
arcsec

-

b

The curvilinear coordinates ¢ l) (Xl)G, and (hl)G and their associated

Gl
covariance matrix (top left (3,3) quadrant of Cl) must be converted
to (Xl)G, (Yl)G, (Zl)G with its associated covariance matrix and the
variances of the azimuth and zenith angle must be converted from

arcsec2 to radz.

The coordinates become (using equations from, for example,

Krakiwsky et al, [1977])

(X)), = 1806 355.970 m

(Yl)G -3 960 808.539 m ,

. and

(Zl)G

4 645 941.572 m .
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The associated covariance matrix becomes, using equations from,
for example,Krakiwsky et al. [1977] and multiplying the variances of

the astronomic azimuth and zenith angle by L ’

2
P .
- : o
".365 -.703 - .808 | 0 ) )
]
-.703 1.587 -1.772, 0 0 0
(]
.808 -1.772 2.188 ! 0 0 0
cl= ---------.-----.' --------------- - ® .-
' - - -
) ) 0 17.84 x 10°% 0 )
|
) ) o ! 0 5.876 x 10 1° 0
|
0 0 o , O 0 5.288 x 10°
.
in units of
[ 2 2 2 .
m m m :
2 2 2 1
m m m ( .
!
n? n? m2 |
e e e em - eee-- ---—--|q‘----————-—----—-
| m2
I
1 rad?
|
: rad2

The coordinates (XZ)G, (Yz)G, (22)G ising equations (2-10), (2-11)
and (2-12) are

(xz)G = 1 807 462.838 m,

(Y,)

2g -3 958 981.272 m,

and

(ZZ)G

4 647 240.008 m.
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Using formulae from,for example,Krakiwsky et al,[1977],

the Cartesian coordinates arxe converted to curvilinear coordinates

yielding
(¢2)G = 47° 4' 217801 '
(Az)G = §5° 27' 397788 W ,
and
(h2)G =231.243 m .

Beginning the direct problem error propagation, the Jacobian

of transformation, Bl’ (equation (2-29)) is

1 o o O 0 0 i
[}

o 1 o, o 0 0
i

o o 11! o 0 0

Bl-'-' -"-------,‘-__-—----_—3---—-_ --2-

1 0 0 ,.44275 2.1424 x 10° -6.4974 x 10
]

0 1 0 }.73091 -4.4319 x 102 1.6475 x 10°

0 0 1 |.51937 -1.2027 x 103 -1.7646 x 10°

Using equation (2-139) the resultant covariance matrix C2 for

i

points 1 and 2 is

i . 365 -.703 .808 |.365 -.703 .808

1
-.703 1.587 -1.772 :-.703 1.587 =1.772

[}
.808 -1.772 2.188 ! .808 -1.772 2.188

(]
c2= i el i R i N .
.365 -.703 .808 , .370 -.709 .813
' .
—.703 1.587 -1.772 :-.709 1.602 -1.787
[}
| .813 -1.787 2.205

.808 -1.772 2.188

N -

2
where the units of all the elements are m .
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The lower right hand 3 x 3 sub matrix is converted to a
covariance matrix of the curvilinear coordinates (using formulae from,

for examplerKrakiwsky et al. [1977]) yielding

pe . -
1.024 x 102 -2.196 x 10 - -7.431 x 10°°
c¢2,l2.h2= -2.196 x 10°° 1.052 x 10°4 -1.093 x 1072 ,
L-7.431 x 107> -1.093 x 10°2 4.033
-
in units of
- 2 2 -
arcsec arcsec arcsec.nm
2 2
arcsec arcsec arcsec.m .
arcsec.m arcsec.n m2
L R

2.4.2 Inverse Problem

In the inverse problem the coordinates of points 1 and 2 and

-

their covariance matrix C2 are known(in this example as the results of

the direct problem). Using equations (2-22), (2-23), and (2-24) the

distance, astronomic azimuth and zenith distance are

r = 2 500.
12 00.000 metres,
- ooo' "
A12 45 0700 ,
and
Z = 87° 0' 0700 .

12
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The inverse problem Jacobian of transformation matrix B

2 (equation
(2-41)) is '
-.44275 -.73091 -.51937 .44275 .73091 .51937
B,= -3.4373x10"% 7.1106x107°  1.9295x10”% 3.4373x20™% -7.1106x1075-1.9295x10"
1.0396x10 % -2.6350x10™% "2.8233x107%

-4 - -
-1.0396x10 '2.6359x10 % -2.8233x10

Using equation (2-42) the resultant covariance matrix C3 for the

distance, astronomic azimuth and zenith distance is

7.840 x 10 2 g.82 x 10711 7.239 x 1070
c,=| 8.82 x 10711 25,00 -2.712 x 10~/
7.239 x 102°  _3.712 x 1077 225.00
in units of
u-‘. 2 1'
m : m. arcsec m.arxcsec
2 2
m.arcsec arcsec arcsec
.2 2
m.arcsec arcsec arcsec
L -

where m.rad have been converted to arc.sec by multiplication by ' p and
rad® have been converted to arcsec2 by multiplication by p% Note that.

the off diagonal terms are negligible because of the nature of our example

(see page 25) but the terms could be significant.
2.5 Prince Edward Island Numerical Example

2.5.1 Direct Problem

The following information is given for the solution of the direct

problem and its associated error propagation.
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The coordinates of point 1 are

= ° ' "4
(4)1)G 46° 42' 2897147 ,
* - o ] "
(ll)G 64° 29' 347014 w,
and

(hl)G= 100.0 m .

The components of the deflection of the vertical of point 1 are

El = 470 ,

and
— “
nl = 670 .

The observations are

r12 = 2. 500.00 m
= o ] "
A12 135° 00' 0oY00 ,
and
= ° ' "
le 87° 00' 0Y00 .

Bquation (2-8) gives

-5
Aazlz— 2.9080 x 10 rad .

Also given is the associated covariance matrix

.
1.0000 x 104 -8.0000 x 107® 0 : 0 0 0
[ ]
-8.0000 x 1078 1.0000 x 1074 o | 0 0 0
[}
0 0 4.0° 0 0 0
. —-—--—_--
c]_. ------ ""’_""-----"3—-----4 )
0 0 0 ! 7.840 x 10 0 0
]
0 0 0 | 0 25.00 0
Y
0 0 o 0 0 225.00
!
L —
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in units of

2 2
arcsec arcsec

'
!
|

2 2 |
arcsec arcsec '
!

|

2
arcsec

2
arcsec

The curvilinear coordinates (¢1)G. (Al)G and (hl)G and their associated
covariance matrix (top left (3,3) gquadrant of Cl) must be converted to
(Xl)G, (Yl)G, (Zl)G with its associated covariance matrix and the
variances of the azimuth and zenith angle must pe converted from
arc sec 2 to radz.

The coordinates become (using equations from, for example,
Krakiwsky et al.[1977]),

(x,) 1 886 820.969 m ,

1'G
= - 520.208 m
(Yl)G 3 954 g '
and
(zl)G = 4 619 420.996 m.

The associated covariance matrix becomes, using equations from,
for example,Krakiwsky et al.[1977] and multiplying the variances on the

astronomic azimuth and zenith angle by 13 '
N [o]



.395 -.733 .839 : 0 0 0
[}
-.733  1.581 ~-1.759 ! 0 0 0
. ]
.839 -1.759  2.164 0 0 0
- |-------=-"=-=-=-"=— s mmm === == ==
¢ 0 0 o , 7.8a x 107" 0 0
| -
0 0 0 | 0 5.876 x 10 1° 0
' 5
L- 0 0 0 | 0 0 5.288 x 10
in units of
[ 2 2, ]
m m m '
2 2 !
m m m ;
2 2
m m m
g
' ,n@
l 2
: rad
: rad'2
e N -
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ina - i - 2- -
The coordindtes (XZ)G' (Yz)G‘ (Zz)G,u51ng equations (2-10), (2-11)

and (2-12) are

(XZ)G =1 889 006.235 m ,

(Yz)G = -3 955 000.606 m ,
and

(22)G = 4 618 305.724 m.

Using formulae, from for example Krakiwsky et al. [1977], the
above Cartesian coordinates are convetted to curvilinear coordinates

yielding
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(¢2)G = 46° 41' 39?973 '

(AZ)G = 64° 28°' 10??33 w,
and

(hZ)G = 231.311 m

Beginning the direct problem error propagation, the Jacobian

of transformation, B (equation (2-29)) is

l ?

1 0 01 0 0 0
1} .
[}

o 1 o0 0 0 0
)

o 0 1. 0 0 0

B = [------- D i Fomc e

1 0 0 . .87411  -1.0399x 10° -6.2476 x 10
|

0 1 o0 }-.19216  -1.9200 x 103 1.5241 x 10°

|0 o 1 i -.44611  -1.2105 x'10° -1.8806 x 10°

Using the equation (2-39) the resultant covariance matrix C2

for points 1 and 2 is

fhor

.395  -.733 839 1 .395  -.733 .839
-.733  1.582 -1.759 | -.733 1.582  -1.759
. ]
.839 -1.759 2.164 + .839 -1.759 2.164
c, =|----- SR H S I
.395  -.733 .839 | .398 -.737 .846
i
-.733  1.582 -1.759 , -.737 1.596  =-1.773
]
i .839 -1.759 2.164 { .846 ~1.773 2.184

where the units of all the elements.are uhz.
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The lower right hand 3 x 3 sub matrix is converted to a covariance
matrix of the curvilinear coordinates (using formulae from, for example ,

Krakiwsky et al. [1977)) yielding

1.024 x 1004 2.067 x 107° 7.359 x 10°°
C¢2,A2,h2 = | 2.067x107® 1.050 x 107% -1.085 x 1074 | ,
7.359 x 10> -1.085 x 10~2 4.030
L. -
in units of
2 2 :
arcsec arcsec arcsec.m
2 2 -
arcsec . arcsec arcsec.m .
arcsec.m arcsec.m m2 A

2.5.2 Inverse Problem

In the inverse problem the coordinates of points 1 and 2 and
their covariance matrix Cz are known (in this example the results of the
direct problem). Using equations (2-22), (2-23), and (2-24) the distance,

astronomic azimuth and zenith distance are

Xy, = 2 500.000 m R
= (-] 1] "
Alz 135°00*' 0O0V00 ,
and
A = 87°00' 0700 .

12
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The inverse problem Jacobian of transformation matrix B

2
(equation (2-41)) is ,
-.87411 .19216 .44611 .87411 -.19216 -.44611
-4 -4 -4 -4 -4 -4
B2 =11.6684x10 3.0804x10 1.9421x10 -1.6684x10 -3.0804x10 -1.9421x10
-5 -4 -4 -5 -4 -4
9.9961x10 -2.4385x10 3.0090x10 -9.9961x10 2.4385x10 -3.0090x10

Using equation (2-42) the resultant covariance matrix C3 for the

distance, astronomic azimuth,and zenith distance is

- - -9
7.840 x 10 4 6.79 x 10 *Y -2.751 x 10
c, = 6.79 x 10711 25.00 -5.026 x 102 | ,
—2.751 x 100 -5.026 x 10°° 225.00
in units of
) -
m arcsec.m arcsec.nm
2 2
arcsec.m arcsec arcsec .
2 2
arcsec.m : arcsec . arcsec

where m.rad have been converted to arcsec.m by multiplication by p and
rad2 have been converted to acrsec2 by multiplication by pz. Note that.

the off diagonal terms are negligible because of the nature of our example
(see page 31) but the terms could be significant.

2.6 Nova Scotia Numerical Example

2.6.1 Direct Problem

The following information is given for the solution of the direct

problem and its asscciated error propagation.
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The coordinates of point 1 are
()= 44° 39" 3v123

= o ] "
(Al)G 63°Q00' 0Y000 W

and
(hl)G= 100.0 metres .

The components of the deflection of the vertical of point 1 are

g, = 470 ,
= 670 .

The observations are

r12 = 2 500.0 metres
= (-] "
Al2 225° Q0 0Y00 '
and
= °0o' oY .
le 87°00' 0%Y00

Equation (2-8) gives

Aaz. = 2.8377 x 10> rad .

12
Also given is the associated covariance matrix Cl
- —
-4 -8
1.0000x10 -8.0000x10. 0 1 0 0 0
|
8.0000x10™%  1.0000x10~% o, 0 0 0
. .
!
i R PR T AL AU
0 0 o !7.880x0 o 0
1
0 0 0o | 0 25.00 0
{
0 0 o | 0 0 225.00
L ! _ J
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in units of

-

2 2 ,
arcsec arcsec

2 2
arcsec arcsec

. 2
arcsec

]

!

|

|

{

{ ) :
F= = = = & e e - e e e e m
|

1

1

|

{

|

2
arcsec J

The curvilinear coordinates (¢1)G, (Al)G, and (hl)G and their associated
covariance matrix (top left (3,3) guadrant of Cl) must be converted from
arcsec2 to radz.

The coordinates become (using equations from, for example,

Krakiwsky et al. [19771),

(x,)

2 063 453.133 m ’

1°G
(Yl)G = -4 049 754.797 m ,
and
(Zl)G = 4 459 697.671 m .

The associated covariance matrix becomes, using equations from,
for example,Krakiwsky et al. [1977],and multiplying the variances on the

astronomic azimuth and zenith angle by L p

P
) .465 ~-.818  .886 | O 0 0
-.818 1.654 -1.739 ; 0 0 0
-886 -1.739  2.024 b 0 0
T 0 0 0 i;é;;&i""g"“'“}—‘““
0 0 0 i 0 5.876x10 L0 0
0 0 o 1 o 0 5.288x10 >
_
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in units of

- 2 2 2 | 7
m m m |
|
2 2 2 !
m m m |
1
m2 m2 m2 |
- e e eEn - o= ‘—-——-—-'--:2——‘-—--~-~-———
I
! rad2
| rad2
I

The coordinates (xz)G’ (YZ)G ' (ZZ)G using equations (2-10)

(2-11) and (2-12) are

(XZ)G =2 062 435.795 m ,

(YZ)G = -4 051 744.675 m , . .
and

(ZZ)G = 4 458 533.780 m .

Using formulae from,for example)Krakiwsky et al.[1977]

the above Cartesian coordinates are converted to curvilinear coordinates

yielding
(¢2)G = 44° 38' 57925 ’
(Az)G = 63°01' 20v088 W ,
and
(hz)G = 23l.414 m .,

Beginning the direct problem error propagation, the Jacobian

of transformation, B (equation (2-29)) is

ll
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1 0 0 0 0 0
[}
0 1 o ! 0 0 0
[]
0 0 1 0 0 0
B = |~mrrttttmtrt T S o mmsm — —mrm e m o]
1 0 0 1 -.38694 -2.1362x10 -8.5928x10
]
0 1 0 ! -.79595 3.0392x10° 1.4825x10°
|
] 0 0 1 i -.46556 1.2558x10° -1.8204x10°
Using equation (2-43) the resultant covariance matrix C2
for points 1 and 2 is
.465 -.818 -886 | .465 -.818 .886
]
-.818 1.654 -1.739 | -.818 1.654 -1.739
[}
.886 -1.739 2.024 : .886 -1.739 2.024
C. . = T T T T T T TS T e e e e - — - -
2 .465 -.818 886 | .473 -.835 ~8937]
-.818 1.654 -1.739 : -.825 1.667 -1.753
|
.886 -1.739 2.024 ! .893 -1.753 2.042
|
-

. 2
where the units of all the elements are m .
The lower right hand 3 x 3 sub matrix is converted to a
covariance matrix of the curvilinear coordinates (using formulae from,

for example,Krakiwsky et al. [1977]) yielding

-4 -6 -5
1.024 x 10 -2.148 x 10 7.364 x 10

6 4

c¢2,A2,h2 = |-2.148 x 107 1.046 x 10~ 1.035 x 107 %| ,

5 4

7.364 x 10 1.035 x 10 4.033
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in units of

- -
2 2
arcsec arcsec arcsec.m
2 2
arcsec arcsec arcsec.m -
2
arcsec.m arcsec.m m
-

2.6.2 Inverse Problem

In the inverse problem the coordinates of points 1 and 2 and

their covariance matrix C, are known (in this example the results of

2
the direct problem). Using equations (2-22), (2-23), and (2-24) the

distance, astronomic azimuth and zenith distance are

tlz =2 500.00 m .
= o ' "
Alz 225°00' 0Y00 ,
and
- -] . “" .
212 87° ' 0700

The inverse problem Jacobian of transformation matrix 82
(equation (2-41)) is

r
. 38694 + 79595 .46556 -. 38694 -.79595 -.46556

B, = |3.4273x10"% -4.8761x10"> 4

-4 - - -
=-2.0149x10 = -3.4273x10 = 4.8761x10 5 2.0149x10 4

-4 -4 ) - - -
L»]..3748)(].0 ~2.3720x10 2.9126x%10 4 -1.3748x10 4 2.3720x10 4 ‘-2.93.263(10..4

~ o'
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Using equation (2-46) the resultant covariance matrix C, for

3
the distance, astronomic azimuth and zenith distance is
7.840 x 10 5.56 x 10 T -4.194 x 10'1Cﬂ
o = | 5-56x 10 25.00 2.440 x 1077 |
3 -10 -7
-4.194 x 10 2.440 x 10 225.00
in units of
e 2 -
m M.arcsec . m.arcsec
2 2
L m.arcsec arcsec arxcsec
2 2
m.arcsec arcsec arcsec

where m.rad have been converted to m.arcsec by multiplication
by p and radz.have been converted to arcsec2 by multiplication by pz.
Note that the off diagonal terms are negligible because of the nature

of our numerical example (see page 36) but the terms could be significant.
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3. Computations on the Ellipsoid

In this chapter equations are given for the reduction of observed
directions, angles, azimuths, distances and zenith distances, from the
terrain to the reference ellipsoid (and conversely), after which equations

are given for computing the direct and inverse problems on the ellipsoid.

3.1 Notation
The notation used in this chapter is listed here for convenience.

a,b

semi-major and semi-minor axes respectively of the Clarke 1866

reference ellipsoid,

a=6 378 206.4 m

‘b =6 356 583.8 m

N

e = first eccentricity of the reference ellipsoid ,

e? = (a2 -1b% /a° (3-1)

¢i'li = ellipsoidal coordinates of a point i

¢m,.xm = mean ellipsoidal coordinates of two points i and j
¢, + ¢,
ST SR § -
¢m > (3-2)
and
Ai + A,
A== (3-3)
m 2
rij = observed spatial distance bétween points i and j, corrected for

refraction and instrumental corrections

Sij = distance between points i and j on the surface of the reference
ellipsoid
dij = observed horizontal direction on the terrain from terrain point i

to point j
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aij = geodetic azimuth on the ellipsoid from point i to point j

Aij = terrain astronomic azimuth from point i to point j
Ra = Euler radius of curvature in the azimuth a..
M. N, +
R = (3-4)
Q.. . 2 2
ij M, sin a,. + N, cos a,.
i ij i i

Mi = radius of curvature of the ellipsoid in the meridian plane at
point i
M, = a(l-ez)/(l - &2 sin2 ¢i)3/2 (3-5)
Ni = radius of curvature of the ellipsoid in the prime vertical plane
at point i
N, = a/(1 - e® sin’ ¢i)1/2 (3-6)
Mm = mean meridian radius of curvature, Mm - (Mi + Mj)/z
(3-7)
Nm S mean prime vertical radius of curvature; Nm = (Ni + Nj)/z
(3-8)
Zij = observed zenith distance on the terrain frbm terrain point i
to point j, corrected for refraction and instrumental corrections
hi = héight of terrain point i above the reference ellipsbid measured
along the ellipsoid normal
Ei = deflection of the vertical component in the meridian plane at
point i
n = deflection of the vertical component in the prime vertical plane
at point i
Bijk £ terrain horizontal angle at point j from point i to point k
z.,. = zenith distance corrected for terrain deflection of the vertical

1]
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denotes an ellipsoidal quantity

()

an approximate quantity

()

orthometric height of a terrain point j (height of point above

m
(1]

the geoid)

N* = geoidal height of point j (geoid reference ellipsoid separation)

3.2 Reduction Formulae

3.2.1 Introduction

Upon examination of the various redﬁction formulae, it will
be seen that the corrective terms are sometimes functions of the
position to be solved for or the quantity being corrected. If the
position of the point being solved for‘is required, then the codrdinates

may be computed using the formulae,

r,, cos (A, . )
ij ij

¢~ = ¢i + M (3-9)
J i
a
a _ ¢i + ¢j
m 2
r,. sin (A, )
A2 =, o+ —d 2] (3-10)
3 i
Nm cos'¢m

Deflection components for horiz§ntal control points will be
given along with the published redefined coordinates. The means for
computing Ei and ni,for any new points .in the Maritimes,will be avail-
able through the Surveys and Mapping Division of L.R.I.S. Heights of
points above the ellipsoid must be as accurate as possible and can be

obtained by adding the orthometric height to the geoidal height,
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hj‘= Hj + N*j*. (3-11)

Although we are now Qorking in the two-dimensional domain
of the ellipsoidal surface, the heights of the points are neededvfor
the reduction of various observed quantities to the ellipsoidal surface.
The height Hj is the orthometric height. The geoid height, Ng, for
known control points will be given along with the published redefined
coordinates. As with Ej and nj methods for computing Ng for any
Maritime points will be available.

Having reduced the observations, the direct and inverse
position computations may be done on the ellipsoid surface using the
Puissant's formulae or the Gauss Mid Latitude formulae (or any of
many other equivalent formulae). Upon completion of the direct problem
new coordinates for point 2 are available. These shouid now be used
in the reduction formulae to obtain more precise corrections. This
is most essential when the ellipsoidal height difference of the two
points is very large. The error propagation through the reduction
formula are formulated assuming tha? the estimates of the second
point are with 1" of their final value or approximately 30 metres.

The coordinates obtained from the solution of the direct problem should

therefore be tested against the estimates used in the reduction formulae.
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3.2.2 Reduction of Horizontal Directions

A horizontal direction is reduced from the terrain to the

ellipsoid by [Krakiwsky, and Thomson, 1974].

h,
a%. = a, . + (=1 e2 sin a,_, cos a,. cos2 $.)
ij ij Mo ij ij b
ezs?'. cosz ¢y sin 2a, .
- ¢ ij ij
2,
- ([§, sina,, - n, cos a,.] cot z.,) » (3-12)
1 1] 1 1] 1]
where, a
N. + N.
N ==,
m 2
'Mi + Mé
Moo=,
m 2
, a
¢, + ¢,
=2 J
¢m > ’

a a
and Nj and Mj are evaluated at ¢ja and uij=Aij in a first approximation.

3.2.3 Reduction of Horizontal Angles

Since a horizontal angle is actually composed of two directions,
we reduce it from the terrain to the ellipsoid by applying equation

12
(3-®) twice. This yields

h
e j 2 . 2
s, = + P . o .
lek Bjik (M“'ije sin a,;-cos o, cos ¢J)
+ (-hL e? sin a,, cos a cos2 é,)
Mm, ik ik k
ik
2 2 2
e S,. Cos ..sin 2a, .
+ ij ¢ml] %3 )
1282
m, .
13
2 .2 2 R
) (e Six €05~ ¢m;ySin 2 aik)
1282
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+ i -
- ([Ei sin aij . n, cos aij] cot zij)

- ([Ei sin @, -, cos aik] cot zik) . (3-13)
and all quantities are the same as those in section 3.2.2.

3.2.4 Reduction of Zenith Distances

A terrain zenith distance is reduced from the terrain to

the ellipsoid [Krakiwsky and Thomson, 1974 ]

z,,=2,.+ (E, cosa,, +n, sina,.). (3-14)
ij ij i ij i ij

3.2.5 Reduction of Astronomic Azimuths

The observed astronomic azimuth is best reduced from the
terrain to the ellipsoid in a series of steps as follows. First

aij = Aij -n tan ¢i ’ (3-15)
n 1] . 1 L]
aij = aij - «Ei sin aij - n; cos aij) cot zij) ' (3-16)

where Zij has been corrected as described in section 3.2.4. The next

reduction is

L " h, " "

. =a,, + (—J—-e2 sin a,. cos a, . cos2 $.), (3-17)
1] 1] J

and finally, using Si. as computed by equation (3-20)
J 2 2 2 - . "

" e Si' cos ¢ m Sin 2 ai.

a.. =a. .- ( hj J

.. . . ) (3-18)
ij ij

2
12 N

where aij is the desired geodetic azimuth.

3.2.6 Reduction of Spatial Distances

A terrain spatial distance, rij' between two points i and j

-

(see Figure 1 below) is reduced from the terrain to the ellipsoid as

follows [Krakiwsky and Thomson, 1974 ].
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Figure 3-1

Spatial Distance Reductjon
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Compute, .
P - i - 2 (3-19)
° (1 + Ei% (r+ Ejﬁ '
R R

Then the ellipsoid distance is given by

-1 Zo
Sij = 2R sin (Eﬁ? ' (3-20)
where Ah = h, - h, ,
3 i
and R + R
ai. a.i
R=—21 _ J%
2
M N,
in which R = : 1 - R
ai. 2 5
J M. sin a,. + N, cos a..
i ij i ij
M. N, .
and R = 1] .
Q..
ji

M. sin2 a., + N, cos2 Q..
J Ji J J1

3.2.7 Magnitude of Corrections

To give the user an idea.of the magnitude of the various
corrective terms several graphical illustrations are given. It must
be noted here that the graphs are used solely for illustration and
should not be used to obtain the corrective terms.

The first term illustrated is the so called gravimetric

corrective term or deflection of the vertical term, C! (which appears

1

in the direction, angle, and astronomic azimuth reductions), and is

given as

Y= - i L) . 3-21
Cl p (( Ei sin aij + n, cos aij) cot ziJ) ( )
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An examination of Figure (3-2) shows that the corrective term,

Cg, can be significant and should be taken into account.

The second corrective term to be examined is the skew normal
correction (applied to directions, angles, and astronomic azimuths), which is a
geometrical correction fesulting from the height of the target above
the reference ellipsoid. This takes thg form

Ej__ 2 . 2
C; =Py (e” sin aij cos aij cos ¢j) . (3-22)
m .
From Figure (3-3) it can be seen that the corrective term can be
signigicant and should be taken into account for control surveys.

The next term to be examined is the normal section to
geodesic term (applied to directions, angles, and astronomic azimuths),
‘which is the result of the‘normal section-gqodesi; separation,and is

given by 2._2 2 .
-e Si. cos ¢ sin 2 ai.
Cc! =p ( J m l) . (3-23)

3 12 §°
m

Examining Figure (3-4) we see that the corrective terms are
a magnitude smaller than those of the skew normal and only become
critical on longer lines.

Distance reductions (3-21) and (3-22) are siagnificant and
should always be considered. Very often, however, the geoid-ellipsoid
separation, N*, is neglected. It is well known that this leads to a
scale error éf 1 ppm for every 6 m of N* that is neglected.

‘Table 1 illustrates the errors introduced when H (orthometric height)

is used in place of h (ellipsoidal height); that is, N is neglected.
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CONDITIONS
£ = 10"
n = 1070
Z,. = 80° 0' 000
ij
2 =
1--
CORRECTIONS
IN
20 30 [+] 50 60 (]
SECONDS LR i ¥ } } 4 o . a,, DEGREES
] ==
-4

Figure 3-2

GRAVIMETRIC CORRECTION
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‘CONDITIONS

——— = °
b, = 41

41°

= o
¢, = 40

GEODETIC AZIMUTH (DEGREES)

Figure 3-3

SKEW NORMAL CORRECTION

h

h

2

2

= 1000 m

=100 m
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CONDITIONS
= o
¢M 45
= 0____
312 15
- o
alz 45

.016-

.014-

0124

.01
NORMAL
SECTION
TO .008+
GEODESIC
CORRECTION

(SECONDS) 006

.004-

.0021

DISTANCE (km)

Figure 3-4

NORMAL SECTION TO GEODESIC CORRECTION
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As a final note the surveyor should be aware that errors
introduced by improper reduction of observed quantities are systematic

and propagate through a network as such.

Geoid ) Ellipsoid

Distance Distance Difference ppm

Hl =75 m hl =8l m . m

H2 =50 m h2 =56 m

8.027.95 8 027.94 . .01 1.2 x 10°°
16 053.19 16 053.17 .02 1.2 x 10°°
24 075.71 4 24 075.69 .02 - .9 x 107°
32 095.52 32 095.49 .03 .9 x 107°
40 112.60 40 112.56 .04 1.0 x 10°°
48 126.95 48 126.90 .05 1.0 x 107
56 138.57 _ 56 138.52 .05 0.9 x 10°°
64 147.46 64 147.40 .06 0.9 x 10°°
72 153.60 72 153.53 .07 1.0 x 10°°
80 157.00 80 156.93 .07 0.9 x 10°°
88 157.65 88 157.57 .08 0.9 x10°
96 155.55 96 155.46 .09 0.9 x 10°°

Table 3-1

Effect of Geoidal Height

on Distance Reduction

3.2.8 Error Propagation Through Reduction Formula

The variance for the reduced quantities is taken to be the
variance of the observation itself except for distances. This is

not entirely rigorous but is practical for most surveying applications.
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For precise work such as first order geodetic work the contributions

could be significant. For example if one assumed the conditions

¢i = 45° ,
- " = ”"
ni = 20Y0 (on. 2Y0),
i
= " - "
Ei 2070 (GE. 2Y0),
i
z,, = 175°,
i3
and
.. = 45°,
1]
the contribution of cn and og to the standard deviation of a direction
i i

would be approximately 1lY0. Assuming the same conditions the contributio
to the standard deviation of an azimuth would be 294 .

The same conditions would add approximately 2Y0 to the standard
deviation of the observed zenith distance.

The propagation of errors through the distance reduction
formulas concerns only the error in the ellipsoid height of the end
points of the measured distance. The.covariance matrix of the heights

of the end points is needed and it has the form

o, 2 0 o ]
i3
c. = 0 o 2 o , (3-24)
1 h, h.h
i iy
I 0 ch h ohz i

where all units are in m~;. 3 J

The Jacobian of transformation matrix B, is (from equation

-

1
(3-19))

Bl = [Bl(l, 1) Bl (1, 2) Bl 1,3)1 , (3-25)
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where
_ Fi§ ,
Bl (1, 1) = hi Ei
zo(l + ;;ﬁ (1 + R )
2 _ 2
(Ah° - 7))
B, (1,2) = = h13 h. T zﬁh n )
24 1,2 Jy a+d e+
) R (1 + R )¢5 1+ R ) ( R R
and
@n? - 2
1 ij 2Ah
B, (1,3) = [ - ] .
1 22 i h; 2 hy hy
o R(1 + E—-) (1 + R ) (1 + Efﬂ (1 + R )

With B T equal to the transpose of B,, the variance for the

1 1

ellipsoid distance, Sij’is
C,=B, C, B , (3-26)

where C2 is given by

.. . 2
and is in units of m .

3.3 "Reduction" of Computed Geodetic

Quantities to the Terrain

It is sometimes desirable .to compare observed geodetic quantities
(directions, azimuths, distances) with computed geodetic quantities.
If the latter are given on the ellipsoid, they may be “"reduced" to
the terrain so that they may be compared with the observed quantities.

In order to "reduce" the directions, horizontal angles, zenith
distances, and azimuths, we simply re-arranée terms in equations (3-12),

(3-13), (3-14) and (3-15) to (3-18) respectively. For example, to
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"reduce" a direction from the ellipsoid to an observed direction on

.

the terrain, we get

e

. =4d;., + . si L. = N, . ..
dlJ i3 (61 sin alJ n; cos alj) cot 213
by 2 2
- (= e sina,, cos a,, cos” ¢.)
M ij ij j
e2 Si. cosz¢m sin 2 ai.
+ ( 1 1y . (3-27)
12 N2
m

To reduce distances from the ellipsoid to the terrain we use
a similar procedure. Re-arrangment of terms in equations (3-19) and

(3-20) yield

S..
n = 3 _11_ -
Y 2R sin ( 2R) p (3-28)
e .= (22 (1 + Ei—) 1+ Efl-) + an21t/2 (3-29)
ij o R R ’

Note that in all these "reductions" to the terrain we should
not expect to have complete agreement between the computed quantity
and the newly observed quantity sinée both of these gquantities have

some statistical fluctuation.

3.4 Puissant’s Formula
It should b; noted here aé the outset that the derivation of
Puissant's formulae is based on a spherical approximation, thus they
are correcé to 1 ppm (part per miliion) at 100 km, beyond which they
bre;k dow; rabidly (;0 ébm ag 250 km when ¢ = 60°) [Bomford, 1971,

p. 1341.
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3.4.1 Direct‘Problem

The direct problem is: given the geodetic quantities ¢i' li' sij

aij' compute the geodetic coordinates ¢j, lj. The solution for ¢j is

iterative and proceeds as [Krakiwsky and Thomson, 1974]

2
Si. Si' 2
A = [-—J-cos a.., - -1 tan ¢, sin” «a,,
Xk Ni ij ZN? i ij
i
S:' 2 2
- 2L os a,. sin“a.. (L + 3 tan” ¢.)1 , (3-30)
3 ij ij i
6N,
i
then,
S,, cos a,. S,. tan ¢, sin” «a,.
Ad = ij - _ _ij i
ktl My 2M,N,
i'i
s?. cos a,. sin2 a,.(1 + 3 tan2 $.) 3e2 sing. cos ¢,
1) 1] 17 i i i
- 3 101 - ) 3 . A¢k] .
6M.N, 2(1-e” sin” ¢.)
i'i i
where the letter k is a iteration counter. (3-31)
Finally
. .t -
¢J = ¢1 A¢k+l (3-32)

Examining equation (3-31) it can be seen‘tﬁat A$ is a function
of A¢ and therefore iteration is necessary. To accomplish this the
solution A¢k+l is substituted for.A¢k and A¢k+2 is obtained. This
process is repeated until the difference between successive 4¢ values
is less than 1 x 10-9 radians. This procedure is shown numerically in
the example given in section 3.8, 3.9, and 3.10.

Now

Sij si. 2 2
AN = ﬁ_l sin a,, sec ¢. (1 - -—J-(l - sin” a.. sec” ¢.)), (3-33)
3 i3 3 en2 i3 3
' j

"and

A, = X, + AN . (3-34)
j i
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As a further step, one may compute the inverse azimuth.

First compute

- 3
- . Ad A . Ad
Aa = AX sin ¢m sea ( 2) + 12 (sin ¢m sec =
.3 3 A
-sin ¢m sec (—%0) ' (3-35)
then
= ° -

aji aij + Aa + 180° . (3-36)

3.4.2 Inverse Problem

Puissant's inverse problem is: given ¢i' Ai of peint i and
.+ A, of point j, compute the quantities S,., a.. and a,.. The
$j0 Ay Of point 3, comp B i3° %43 3i
solution proceeds as follows [Krakiwsky and Thomson 1974 ]

First compute,

AMN N, -1
]
_ sec ¢.
«,. = tan * : ' (3-37)
iy A6 M,
3e2 sin ¢, cos ¢, Ad
i i
(1 - 3 3 )
B 2(1 - e° sin ¢i)
and
AN N,
Sy; = ] ' (3-38)
Ik sec ¢. sin a..
3 ij,
or
A Mi
sij = [ 1 ¢ (3-39)
k oo
78 %% %5, 3¢? sin'y, cos ¢, Ad
(1- = )

2(1-e2 sin? 4,
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where Ad

"
-
!
-

-

and

AX

(]
>
!
>

L]

Next ,new values of aij and Sij are computed as follows.

Compute
3
AX N, (Sijk)
= 1l — sin a. .

1l sec ¢j 6&; A3,

(3-40)
.3 2
- ———— sin” a.,. sec ¢.
1) J
and - . - -

M,
i

3e2 sin ¢i cos ¢i
2(1 - e sin ¢i)

" 2 . 2
(sijk) tan ¢i sin aijk
+ —— (3‘41)
2N, )
i

3 . 2 2
(S.. ) cosa,, sin“a,. (1 + 3 tan” ¢.)
i3, i3y i3, i

Now
= tan b (= (3-42)
and

- —_—, (3-43)

or

= — . (3-44)
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Note that the new aij (equation (3-43)), is used in (3-43) or (3-44).
k+1
Now using the new values of S, and a, . we may again compute updated
' Tx+1 a1

values by returning to equations (3-40), (3-41), (3-42) and (3-43) or

(3-44). This iteration process continues until changes in aij and Sij

are negligible (Aaij <1lx 1072 radians).

Once we have obtained a final value for a aji is computed

37
using equations (3-35) and (3-36). This completes the inverse problem

using Puissant's formulae.

3.5 The Gauss Mid-Latitude Formulae
These formulae are also based on a spherical approximation of
the earth and because of the degree of approximation should only be
used for points separated by less than 40 km at latitudes less than 80°

[Allen et al, 1968] and are accurate to 2 ppm within these bounds.

3.5.1 Direct Problem

The direct problem is: given the quantities ¢i, Ai' Sij and aij'
compute the geodetic coordinates ¢j, Aj. The solution is iterative.
The first iteration is

S.. cos a.,.

8, = (—— (3-45)
i
¢jk =¢; + A0 (3-46)
S sind..
M = I 214 (3-47)



and

Then

A

I

Ba, = &, sin ¢ .

6

= A

The second iteration proceeds as

and

bdrir =

S

1

i

+_AAk .

m

.. cos (a,,
ij

Aak

+-2—')

M
m

¢j =4 *Ad

AA

k+l

S,.
1]

sin (a..
i

J

N

m

cos ¢m

(3-48)

(3-49)

(3-50)

(3-51)

(3-52)
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Having obtained a new A°k+

1 We can return to (3-50) and repeat

the procedure solving for A¢k+2, a new ¢, AN and Aak This

Jk+2 k+2
procedure is repeated until the.difference between spccessive cycles

+2°

is less than 1 x 10-9 radians for all gquantities. Upon completion of

the iterations we compute

= + -
¢j ¢; Ad (3-53)
= + -
Aj li ax (3-54)
and as a further step we compute the inverse azimuth
a,, =a,. + Aa + 180 . (3-55)
J1 1j

3.5.2 Inverse Problem

The inverse problem is: given ¢i, ki of point i and ¢j' Aj
of point j, compute the direct and inverse geodetic azimuths a, s and

a.. and the ellipsoid distance S,.,. The procedure is as follows.

ji 1]
First
A = ¢j - d)i v (3-56)
AN = A, - A, (3-57)
and J 1
Aa = A\ sin ¢Jm. (3-58)

Next compute

Ao -1 _A)
a (a.13 + > ) tan 26 %n ] . (3-59)
Then
Aa
aij =a = (3-60)
and
a.. =a,. + Aa + 180° . (3-61)

ji ij



Finally, Sij

or
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(= sji) is computed either from

AX Np cos ¢
S,. = (3-62)
13 . ' Ao ’
sin (aij + Y )

Y
Si5 = ;m) . (3-63)
is ¥ 2

3.6 Error Propagation Through Position

Computations

The notation used in this section is identical with that used

in Section 3.5. This is because the Gauss Mid-Latitude formulae

have been used for the generation of the necessary Jacobian matrix

elements.

This approximation amounts to errors well within

the accuracy of the formulae themselves, that is less than 1 ppm at

100 km.

3.6.1 Direct Problem Error Propagation

manner.

The direct problem error propagation proceeds in the following

The covariance matrix for point i is combined with the

variance of the geodetic azimuth and the variance of the ellipsoidal

distance to produce the covariance matrix C3. The form of c3 is
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) -
o g 1 0 0
¢1 ¢1A1 :
1
. ]
9.2, % ' ° 0
cy= |--thooZiol Lol == === e
[]
0 0 ' o]
\ a ..
' 1] 2
0 o | o
| ij
b -l
in units of
— 2 7]
rad rad'2
rad2 rad2
radz
v 2
a

2
Arcsec may be converted to rad2 for use in the above

covariance matrix by multiplying by_ig .
P

To include the covariance information of point i in the output

covariance matrix the equations

b, = ¢, (3-65)
and

A. =) ’ (3-66)
are required.

The Jacobian of transformation matrix B, is (from equations

2
(3-66), (3-67), (3-53) and (3-54))

i 1 0 (0] 0
0] 1 0] -0
BZ = ) (3-67)
. 32(3,1) 32(3:2) 82(3'3) 32(3:4)
32(4,1) 32(4,2) 82(4,3) 32(4:4)
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where, 2 2 -

3 sij cos am Mi“i e” sin ¢i cos ¢i

2M 2 a2
m

82(3,1) =1 -

s sin ao_ AA cos ¢
m m

- i
. 14
4M
m
B (3.2) = Sij sin a  sin ¢m__
27 2M !
m
- Sij sin am
32(3'3) = M '
m
cos o
82(3’4) = M - ’
m- .
2 .
Mie sin ¢i cos ¢i cos ¢
- . : _ m__
82(4,1) Sij sin a (Nm sin ¢m o 32) )
S.. cos a_ AX.
1 . i3 m
( 5+ '
2 Nm cos ¢m 4Nm .

Si' cos a sin ¢m
B,(4,2) =1 - ] -

2 Nm cos ¢m

Si‘ cos am
B,(4,3) = =] ,

N, cos @n

and
sin a
m

N, cos qn

82(4,4) =

With Bleequal to the transpose of Bz, the covariance matrix

for points i and j will then be

T
c4-32c382 ’ (3-68

where C4 has the form
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, -
F°¢i Yo 1 To3dy T hyhs
|
-0 '
Toirg I R LY Ajhy
C = - . . e - - l
4 -l- STE S e e --
To15 TAgdy | Ty %0324
. . ! 2
idy Pyt Ty Ty

All elements in C4 are in rad? which can be converted to

2 . X .
arcsec” by simply multiplying each element of C4 by pz.

3.6.2 Inverse Problem Error Propagation

The inverse problem error propagation proceeds as follows.

First, the covariance matrix for the points i and j is written as

[ %4 2 o g o ]
i $5Ay 595 325
c, - KRV axizj Ay (3-69)
Tty Ty Ty 4523
| %oty Ay "45M Ay
where all units, in C4 are in rad? which is obtained from a covariance
matrix in arcsec2 by multiplying each element by i .

2
P
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Then using equations (3-65), (3;66). (3-60), (3-61) along with

= ¢, . 3-70
¢j ¢3 . ( )
Ai = Ai (3-71)
the Jacobian of transformation B3 is
1 0 0 o ]
0 1l 0 0
0 ’ (o] 1l 0
B3 = (3“72)
0 (0] 0 1
B3(5,1) B3(5,2) B3(5,3) 33(5.4)
where
A\ cos ¢m
33(5, 1) = 33 (6, 1) - 5 '

33(5, 2) = B, (6, 2) + sin ¢m ’

A\ cos O

B3(5, 3) = 83(6, 3) - “"‘3""‘ PR
sin ¢m
AX . Npn cos ¢
33 (6,1) = ( (AXN cos ¢ ) )A ( Y} -+
1+ oM
Ad Mm
2 ., 2
Mi e sin ¢i cos ¢i cos ¢ 3 N cos ¢ M, e sin ¢ cos ¢
. 201 - e2) 2 My Q- e? sin’ $;)-
A\ cos ¢

1 . m

- -Z-Nm sin ¢m) + 2 -,
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{'- e

- N cos 9. sin ¢
B, (6.2) = — (—B— ) . —2
AA N. cos ¢ Ad M
1+ (= m . m_)2 m
Ad M
L m
3 : - N cos ¢_ .
. A
- B, (6,3) = L & ( —=2 L
A\ N cos ¢ 2 Ad M Ad
1 +( m m_ m
Ap M
L m
‘M e2 sin ¢, cos ¢, cos ¢ N cos ¢ M e2 sin ¢, cos ¢
+ i j j m _3_m m_ i i i
2 2 .2
2(l__e)z Mo (l. e” sin ¢j)
AA cos ¢
1 . m
-2Nms.1n¢m.)+ ; ’
: 4
and
N cos ¢ sin ¢
m
B,16,4) = L ( — Ty o+ .
AA N cos ¢ Ad M 2
1+ m m )2 m
¢ M
With B4T equal to the transpose of B, the covariance matrix

for the points i and j and the direct (aij) and inverse (aji) azimuths

is given by
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C; = By C, B3T ' €3-73}
where C5 has the form
{1 O g
! 5 35 % %3
|
[ %% 4A,. o\, a,.
{ 17713 i ji
C4 ‘ [o] [o}
| 9. ai. $. a..
j 5 %31
c, = (7 (3-74)
|
o). a.. o). a..
;- - - W ©® ® @ @O W S o - o e - e ---.- -— *‘ — Jz -au- - - J JL
g g a o o g
by oy A%y %y %y My iy 1 iy "13%51
o oy o o Vo o
L %% M % % Ny Y Cu®s ®3i_

with all units in radz.
If the accuracy of the distance and its relationship with the

coordinates, and azimuths aij and aji is required, then using equations

(3-64), (3-66) (3-70) and (3-71), plus

aij = aij ' (3-75)

and

aji = uji ! (3-76)

the Jacobian of transformation 84, is
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0 0 0 0 1 0
34 = 0 0 0 0 0 1l , (3=-77)
B (3,1) 0 B (3,3) 0 B (3,5) B.(3,6)
L -
where
2 .
- M‘m 3 A Mi e sin ¢i cos ¢i
B (3,1) = +
4 . .. +a,., - 180
@;4 * oy - 180 2 (1 - e sin® §,) cos(21—1 )
cos (=2 ] ) i 2 !
M 3 A M, e sin ¢, cos ¢
3 (3,3) = B — + 1 ] ] :
4 "’ o +a.. - 180 2 2 @, +a.i-180‘.
cos ( 23 ) 2 (1 - e sin ¢j) cos (—1 1 )
ai, + a.i - 180
Ap M sin (—1— )
B (3,5) = m 2
4 ' 2a,, +a,. - 180. ’
2 cos ij ji :
( 2 )
1
and g
B4(316) = 84(715)0

With B 4T equal to the transpose of B 4 the covariance matrix is

T
Ce=ByCsBy - (3-78)

where C.6 has the form

-



.in units of

where the rad.m may be converted to arcsec.m by multiplying by p and

2

- rad

rad2

rad.m

71

ij %51

ji

a..S,,
jivij -

rad2
rad2

rad.m

®13°13
®55%43

S. .
ij

rad.m

rad.m R

-

rad” may ba converted to arcsec2 by multiplying by pz.
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3.7 Introduction to Numerical Examples

3.7.1 Use of Computed Geodetic Azimuth

Before commencing with the numerical examples for direct and
inverse problems on the reference ellipsoid, let us examine the deter-
mination of the geodetic azimuth of a line by means other than the
reduction of a terrain astronomic azimuth. A common situation is to
know the geodetic coordinates of the instrument stétion i and those of
the reference station j, along with the covariance matrix (C2) for those
.points. ~The geodetic azimuth aij for the line ijvcan be computed using
the Puissant's (section 3.4) or Gauss Mid Latitude (section 3.5) inverse
formulae, The covariance matrix involving the point§ and the azimuth
can be derived using the inverse problem error propagation (section 3.6.2).

The terrain angle Bj (k is the unknown point) can be

ix
measured and then using the reduction formulae outlined in section
3.2.3 the angle is reduced to the ellipsoid giving B;ik' This angle

is then added to uij yielding

R .
@, Bjik + aij . (3-79)
The variance of LI is computed as
0> =0 24,2 . (3-80)
ik jik 1j

[ 2 . Vg o |
L2 ¢1§1 ‘ ¢ia'i'.‘l
g a N g 0
Ay Moo Moy

¢y = |- IR (3-81)
e ox ] g 0 '
301y %15 5 ®ix )
qg
X 0 0 ! 0 Sikj
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in units of

r -
x:a\d'2 rad2 | rad.2
|
rad 2 rad® : : rad 2
R T ST
rad rad : rad 2
2
. i m
- . -
The terms o¢ a. - and GX result from the fact that ai.,
i%15 i%15 J

which was used in equation (3-79) to form @ is derived from the
coordinates of points i and j and therefore is correlated with point i.
The o and ¢ terms can be takeh from the appropriate location
¢iai. Aa, .
\ j i"ij
in equation (3-74).

Having obtained the above information (equations (3-79) and
(3-81))'the direct problem can be solved using the Puissant or Gauss
Mid-Latitude solution for the direct problem as outlined in éections
3.4.1 and 3.5.1.

The numerical examples that follow are done assuming that an

astronomic azimuth has been determined by observation.

3.7.2 Ellipsoid Direct Problem Flow Chart

Figure (3-5) contains a flow chart which depicts the steps
to be executed in doing the direct probiem. The flow chart begins with
the obseryed astronomic azimuth, zenith distance and spatial distance,
followed by the reduction of these ébservations. These reduced observations
are then used in either the Puissant or Guass Mid Latitude direct

problem solution.



Observed Astronomic
Azimuth and Zenith

Distance Aij zij 1
Y

LaPlace Equation

- L]
(3 15)(°ij) 3
Compute Approximate
a .a
s AL

b0 Ay 4
\

Correction to Zenith

Distance (3-14) z,. 5

1)

4

Gravimetric Correction

. — ”

(3-16) uij 6
A

Skew Nor@gl Correction

(3-17)4uij 7

Y

Convert Spatial Distance
to Ellipsoidal Distance

(3-19, 3-20) Sij

74

Observed Spatial
Distance I,

Y

Normal Section Correction

(3-18) uij

9

- - > +3 W\‘hﬁ}ws’/ ekm.‘- . f\iq'

—

Puissant's Direct Problem

10a

OR

Y

Guass Mid Latitude
Direct Problem ;qp

Figure 3-5

RETURN to S

Ellipsoid Direct Problcm Flow Chart
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3.8 New Brunswick Numerical Example

3.8.1 Direct Problem

The information given here for the solution of the direct
problem on the reference ellipsoid and its associated error propagation,
is identical to that used for the numerical example for the three
dimensional case in Section 2.4.

The coordinates of point 1 are

¢1 = 47° 03' 247644 '

11 = 65° 29' 37453 W

= -65° 29' 37453 ,

and the associated covariance matrix is

2.3504 x 10> -1.8804 x 10718

i -1.8804 x 10 18 2.3504 x 10 %>

C
¢iA
in units of

2

rad rad. 2

rad2 ’ rad'2 .

The deflection of the vertical components for point 1 are
El = 470 '

and

n1 = 670 .

The observations are

)

r, = 2 500.00 m,

- o ] "
512 45° 00' 00700 .

and

= 87° 00'00%00 .
212 87° 00°'00700

The variance of the astronomic azimuth is

o 2
Aij )
= 5.876 x 10

= 25700 arcsec2

10 rad2
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This value is taken to be the variance of the geodetic azimuth

o 2 g 2
a i3 A 13
The ellipsoid heights of the two points are

h, = 100.00 m.

1l
h2 = 231.243 m.
The covariance matrix C1 of the spatial distance and heights is given by
a ' -
-4
7.840 x 10 0 0
c, = 0 4.0 _ 4.0 B
o - 4.0 4.033
in units of 2 - ’ ~
= n
2 2
m m .
2 2
m m

The approximate coordinates for point 2 (equations (3-9)

;nd (3-10)) are

¢32 = 47°04' 21"889,

and
a ° '
A 9 = 65" 27" 397680 W
= -65° 27' 39v680.
The corrected zenith distance (equation (3-14)) is
= ° ] "
%3 87°00*' 7U07

The first steps through the azimuth reduction give

(equations(3-15), (3-16) and (3-17))

- = o 1] L .
a5 44° 59' 53764

The distance is now reduced using equations (3-19), (3-20),

and assuming

12 12 ¢

and

- °
u21 u12 + 180 .
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The reduced distance is

512 =2 496.488 m ,

The variance of the distance is (using equation (3-26))

- 2
o 2. 8.760 x 10 4 m .

12 .
The final correction to the azimuth (equation (3-18)) yields

the geodetic azimuth
= ° ] "
a5, 44° 59' 53764 .

The covariance matrix C3 (equation (3-64)) is given by

r.2.3504 x 10  _1.8804 x 10718 0 )
. -1.8804 x 10 % 2.3504 x 1073 0. 0
C =
-3 0 0 . 5.876 x 109 o
) 0 ) 8.760 x 10 %
L -
in units of
- 2 ~ -1
rad rad. 2
rad 2 rad.2
rad 2
N n? |

fhe direct problem solution using the reduced quantities
(s12 and 312) is done using Puissant's formulae. After the first
iteration the difference in the A¢ terms is

|84, - 8¢,| = or1s014

= 8.733 x 107 rad

After the second iteration

lae, - 8¢5] < 2 x 1of4 arcsec

<1x10° raa

This indicates that the stopping criteria has been met and from

the final iteration of equation (3-31)
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A = 577157 .
Now (from equation (3-32))
¢2 = 47° 04' 217801 ,
then (from (3-33) and (3-34))

12 = 65° 27' 397787 W

= -65° 27' 39787 ,
and finally (from (3-35) and (3-36))

a,, = 225°00' 54789 .

21
At this point the approximate values ¢a, A2 are tested against
the values akove to see if they are within 1 arc second of the final
coordinates as determineéd by Puissant's formulae. In this example
6,7 - ¢, =o0m872 , |
and
Aza - A, = 0079 .
This indicates that there is no need to repeat the observation
reduction process and the error propagation assumptions will be valid
(see section 3.2.8). If the magnitude of either coordinate difference
had been greater than 190, the ¢2, Az solved for using Puissant's
formula would have become 4ba, Xza and the whole procesé from where
023, Xza were first computed would have to be repeatéd.
Turning to the direct problem error propagation (section (3.6.1))

the Jacobian matrix, 82 (equation (3-67)), of the direct error propagation

is
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1 0 0 : 0
0 1 0 0
By = -4 -4 -7 |
1 1.0146 x 10 -2.7717 x 10 1.1100 x 10
-4 -1 -4 -7
21732 x 107" 9.9985 x 10 4.0553 x 10 1.6248 x 10

Using equation (3-68) the covariance matrix, C4, of points

1 and 2 (converted to arcsecz) is

4 8 4 8

B - - : - -
1.000 x 10 -8.000 x 10 1.000 x 10 -5.826 x 10

8 8 5

-8.000 x 10°° 1.000 x 104 -6.985 x 10~ 9.999 x 10~

4 _6.085 x10™° 1.024 x 100%  -2.186 x 107°

5 4

1.000 x 10

-5.826 x 102 9.999 x 10>  -2.186 x 107° 1.051 x 10~

oo

3.8.2 Inverse Problem

In the inverse problem the coérdinates o% the two points 1 and
2 are provided along with the corresponding variance covariance matrix.
In this example, the coordinates are those determined in the direct
problem (section 3.8.1)

¢1 = 47° 03' 247644,

A, = 65° 29' 30453 W

1
= -65° 29' 37453 ,
¢2 = 47° 04' 219801 ,
Xz = 65° 27' 397787 W

-65° 27' 397787 ,
and the covariance matrix, C4, (section 3.8.1) is given in units of
radz.
Using Puissant's inverse formulae the solution of the inverse
problem on the reference ellipsoid is executed. After the first iteration

-the azimuth difference is
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(a..) = 7.42 x 10”S rad

(a 1272

12'1
= 157313 .

Upon completeion of the second iteration

(a (312)3l< 1 x 10'9 rad

1222 ©
. < 2 x‘10'4 arcsec .

This indicates that the stopping criteria has been met and from the final

iteration (equations (3-42) and (3-43)) the-geodetic azimuth and

distance are

@, = 44° 59' 53764

and

812 = 2 496.488 m .

Finally (from equation (3-35) and (3-37))
= °00" "
ay, 225°00' 547892 .

The Jacobian of transformation, B3, is (using equation (3-72))

pon : -
1l 0 0 o
0 1 0 0
83 = 0 | o 1 0 .
0 0 0 1
1804.090 -1232.308 - =1804.631 1232.308
1804.090 -1233.041 -1804.631 1233.041
. -

Using equation (3-73) the covariance matrix C5 (converted to

arcsecz) is



2.703x10

-3.658x10

'} 4

| 2.698x10™° -3.659x10"

5

-6.956x10 >

-6.958x10 >

!
"4 2s.00
2

1.010x10

1.010x10

5 5

}2.703x10 ° -2.698x10

! -5
~3-658x10

}6.956x10-

-3.659x10 >

3 3

-6.958x10
2

‘1.010x10-2 1.010x10

l 25.00
| 25.00 25.01

If error propagation for the computed distance is required,

the Jacobian of transformation 84 is (using equation (3-77))

0]

B = 0]

The covariance matrix C

0

0

0

0

t9.009x106 0  9.009x10

0 1 0

0 0 1

© o 1248.538 1248.538

2
elements to arcsec.m and arcsec’)

25.00

25.00

6.175 x 10°°  2.768 x 10~

25.00 -

25.01

5

6 is (using equation (3-78) and converting

6.175 x 10 °

5

2.768 x 10 .

8.759 x 10 °
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3.9 Prince Edward Island Numerical Example

3.9.1 Direct Problem

The information given here for the solution of the direct problem
on the reference ellipsoid and its associated error propagation, is
identical to that.used for the numerical example for the three dimensional
case in section 2.5, |

The coordinates of point 1 are

¢1 46° 42' 287147 -

M

64° 29' 347014 W

-64° 29' 347014 .

and its covariance matrix is

2.3504 x 10 1° -1.8804 x 10 18
c*ixi i 1.8804 x 10 18 2.3504 x 107 1> !
in units of
rad? rad?' ‘
2 2 :

rad rad
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The deflection of the vertical components for point 1 are

and

j 0o .
“1'6
The observations are

:lr].2 = 2 500.00 m P

A12 =135° 00' 0vY00 .

and

= ° . Q"
le 87° 00' 0700 .

The variance of the astronomic azimuth is

GAZ = 25%0 arcsec2

ij
= 5.876 x 10 10 rag 2

This value is taken to be the variance of the geodetic azimuth

(o4 2 = q 2
aij Aij

The ellipsoid heights of the two points are

h) =100.00 m ,

= )
hz .237.31 m .

A}

The covariance matrix C. ©f the spatial distance and heights is given by

1

7.840 x 10 +° 0 o |

c, = "o - 4.0 4.0 ,
0 4.0 4.032
in units of ‘-
2
’
mz mz -
w2 n2
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The approximate coordinates for point 2 (equations
(3-9) and (3-10)) are

¢§ = 46° 41' 307899 ,

A = 64° 28' 107807 W
= -64° 28' 10Y807 .
The corrected zenith distance (eqﬁation-(3-14)) is

z%, = 87°00'01"41 }
ij

The first steps through the azimuth reduction give

(equations(3-15), (3-16) and (3-17))

" ° [} "
aj, = 134° 59' 53U25 .

The distance is now reduced using equations (3-19), (3-20)

and assuming

12 12 '

and

]

= "y -]
a21 612 + 180 .

The reduced distance is

S12 = 2 496.484 m.

The variance of the distance is (equation (3-26))

osz =8.761 x 10 % 2 .
12

The final correction to the azimuth (equation (3-18)) yields
the geodetic azimuth

a4, = 134° 59' 5325 .
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The covariance matrix C3 (equation (3-64)) is given by

- - -
2.3504 % 10 13 -1.8804 x 10 8 0 )
-1.8804 x 10 '8 2.3504 x 1013 0 0
C =
3 0 0 5.876 x 10 -0 0
0 0 ) 8.761 x 10 4
in units of
rad? rad2 ]
xad2 rad2
rad?
2
m
L -

The direct problem solution using the reduced gquantities

(s,. and alz) is done using Puissant's formulae. After the first

12
iteration the difference in the A¢ term is
|A¢l - 8¢,| = ov18270

= 8.86 x 107/ rad.
After the second iteration

|84, - a6, < 2x 10”4 arcsec
< 1 x 10-9 rad.
This indicates that the stopping criteria has been met and

from the final iteration of equation (3-31)
Ad =-57"174

Now (from equation (3-32))

¢2 = 46° 41' 307973
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and (from (3-33) and (3-34))

12 = 64° 28' 107933 W
= -64° 28' 107933 ,
and finally (from (3-35) and (3-36))

= ° ' "
a21 315°00' 53771 .

At this point the approximate coordinate values ¢a, la, are
tésted against the values above to see if they are within 1 arc second
of the final coordinates as determined by Puissant's formulae. In
this example

¢ - ¢2 = -07074 '

PN

Az - Az = 07126 .
" This indicates that there is no need to.repeat the observation
reduction process and the error propag;;ion assumptions will be valid.
(see section 3.2.8). If the magnitude of either coordinate difference

had been greater than 170, the ¢2a' lza solved for using Puissant's formula

a

would have become ¢ Az , and the whole process from where ¢2a,12a were

2 ’
first computed would have to be repeated.

Turning to the direct problem error: prbpagation (Section

(3.6.1)) the Jacobian matrix, B 2 (equation (3-67)), of the direct

error propagation is

1 0 " 0 0
B, = 0 1 ) o
-4 -4 -7
1 1.0084 x 10 -2.7713 x 10 -1.1103 x 10
5.1300 x 1074 1.0002 -4.0288 x 102 1.6134 x 10~/

Using equation (3-68) the covariance matrix C,, of points 1

4'

and 2 (converted to arcsecz) is
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1.000 x 10°*  -8.000 x 10°®  1.000 x 10™?  -5.871 x 1078
-8.000 x 10°° 1.000 x 1074 -6.992 x 10°®  1.000 x 1074
?4 i 1.000 x 1074 -6.992 x 1078 1.024 x 1074 2.075 x 10”°
-5.871 x 1000 1.000 x 10°%  2.075 x 107 1.051 x 107%

e -

3.9.2 Inverse Problem

In the inverse problem the coordinates of the two points 1
and 2 are provided along with the corresponding va?iance covariance
matrix. In this example, the coordinates are those determined in
the direct problem (section 3.8.1)

¢, = 46° 42" 28147 ,

Ay, = 64° 29' 347014 W

e |
-64° 29' 347014 ,
¢2 = 46° 41° 307973 ,

12 = 64° 28' 10V933 W

= -64° 28' 107933 ,

and the covariance matrix, C4 (section 3.8.1) is given in units of

rad2 .

Using Puissant's inverse formulae the solution of the inverse
problem on the reference ellipsoid'is executed. After the first

iteration the azimuth difference is

| (a |= 7.33 x 10-S rad

121~ (90,
= 15%116 .

Upon completion of the second iteration

-9
I(au)2 - (@) <1x10 rad

<2 x 10-4 arc sec .
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This indicates that the stopping criteria has been met and

from the final iteration (equations (3-42) and (3-43)) the geodetic

azimuth and distance are

= o ' "
@5 134° 59' 53725 ¢

and

S;,=24%.484 m

Finally (from equation (3-35) and (3-37))

- °nn"’ "
%51 315°00' 53771 .

The Jacobian of transformation, 33, is (using equation

(3-72))
r -
1 0 0 ()
0 1 0 0
0 0 1 0
By = .
4 0 0 0 1
1804.096 1241.714 -1803.562 -1241.714
1804.096 1240.986 -1803.562 -1240.986
. ) -
Using equation (3-73) the covariance matrix C5 (converted
to arcsecz) is
— ' 5 5]
: 2.671x10 2.676x10
' -5 -5
+=3.641x10 -3.640x10
(o] ]
Cs 4 1-6.902x10 >  -6.900x10" >
]
i-1.011x1072 -1.011x10"2
Sy T Iy T T TTRTTTiToglmmsss s —o——ome-
2.671x10 ~ -3.641x10 -6.902x10 -1.011x10 : 25.00 25.00
5 -6.900x10"3 -1.011x10”2! 25.00 24.99

ﬁ.676x10-5 -3.640x10
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If error propagation for the computed distance is required,

the Jacobian of transformation 84 is (using equation (3-77))

0 0 0 0 1 0

B4= 0 ‘0 0 0 0 1 .

9.007 x 106 "0 -9.006 x 106 0 -1247.958 -1247.958

The covariance matrix Cg is (using equation (3-78) and

converting elements to arcsec.m and arcsecz)

25.00 25.00 5.904 x 10°°
Ce = 25.00 24.99 2.712 x 10> | |
5.904 x 10 ° 2.712 x 10°° 8.762 x 101

- 3.10 MNova Scotia Numerical Example

3.10.1 Direct Problem

The information given here for the solution of the direct.
problem on the reference ellipsoid and its associated error propagation,
is identical to that used for the numerical example for the three

dimensional case Section 2.6.
The coordinates of point 1 are
; ¢1 = 44° 39' 37123 ,
Al = 63° 00' 07000 W
= -63°00' 07000 ,

and its covariance matrix is

5 8

2.3404 x 10t -1.8804 x 10t

c - ) _ ,
$5%;  |-1.8804 x 10 18 2.3504 x 10 1

in units of
ra62 - rad?

rad2 rad2
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The deflection of the vertical components for point 1 are
El = 470 ,

and

= "
Y 670 .

The observations are

£, = 2 500.00 m ,

= ] ' "
A, = 225° 0' 0%00 ,

and

= ° [ " .
le 87° 0' 0%00-.

The variance of the astronomic azimuth is

2
o} = 2570 arcsec2

Ay
= 5.876 x 10 0 raa? .

This value is taken to be the variance of the geodetic azimuth

0'2 =02
. aij Aij

. e ’ M
The ellipsoid heights of the two points are

h, = 100.000 m ,

.

1
h2 = 231.414m .
The.covariance matrix C1 is given by (spatial distance and heights)
7.840 x 1074 0 0
c, = 0 4.0 4.0 ,
(o] 4.0 4.033
in units of 2

v
m2 nlz .
m? n?

' The approximate coordinates for point 2 (from equations (3-9)
and (3-10)) are
¢ = 44° 38'057854

and
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A; = 63°01' 20%"214. W

= -63° 01' 20V214 .

The corrected zenith distance ( equation (3-14)) is’
= ° v n
zij 86° 59' 52793 .

The first steps thfbugh the azimuth reduction give (equations

(3-15), (3-16) and (3-17))

" =224° ' 54700 .
alz 4° 59' § .

The distance is now reduced using equations (3-19), (3-20),
and assuming

12 12 !

and

= "e °
621 °12 + 180° .

The reduced distance is

812 =2 496.479 m .

The variance of the distance is (using equation (3-26))

2

le

The final correction to the azimuth (equation (3-18)) yields

2

o =8.762 x 10 4 n? .

the geodeti; azimuth

- ° ' "
a5 224° 59' 547011 .

The covariance matrix C3 (equation (3-64)) is given by

5 18

2.3504 x 101 -1.8804 x 10~

.

-1.6804 x 10 18

2.3504 x 10 *°

3 5.876 x 10 10

8.762 x 10~ 3
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in units of

r r:ad2 ::ad2

radz rad2

rad

The direct problem solution using the reduced quantities (s12

and °12) is done using Puissant's formulae. After the first iteration

the difference in the A¢$ terms is

|a¢, - a¢,| = or19667

= 9.53 x 10" rad.

After the second iteration : .

. -4
|84, = 865 < 2 x 10" arcsec
9

.

< 1x10 rad .
This indicates that the stopping criteria has been met and

from the final iteration of equation (3-31)

A = 577198 .
Ndw (from equation (3-32))
¢2 = 44° 38' 5v925,
then (from (3-33) and (3-34))

Xz = 63° 01' 207088 W

= =53° 01' 207088

and finally (from (3-35) and (3-36))

= L L by A
a5 44° %? 57973 .
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At this point the approximate coordinate values ¢a, la, are
" tested against the values above to see if they are within 1 arc second
of the final coordinates as determined by Puissant's formulae. In
this example
a _ = —q"
4, 4, o*o71 ,
and
a _’ _an
12 Az = -0%126 .
This indicates that there is no need to repeat the observation
reduction process and the error propagation assumptions will be valid

(see section 3.2.8)., If the magnitude of either coordinate difference

had been greater than 190, the ¢2, Xz solved for using Puissant's

a
2

where ¢2a' Aza were first computed would have to be repeated.

formula would have become ¢2a, A and the whole process from

Turning to the direct problem error propégation (section (3.6.1))

the Jacobian matrix, 82 (equation (3-67)), of the direct error propagation

is
1 0 ' 0 0
0 1 0 )
B, = -5 -4 -
1 -9.740 x 10 2.772° x 10 -1.111 x 10
1.911 x 104 1.000 -3.884 x 10% -1.555 x 10~
. Using equation (3-68) the covariance matrix, C4,of points 1

and 2 (converted to atcsecz) is

7

7
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p -
1.000 x 100%  -8.000 x 20°®  1.000 x 10™*  -9.912 x 1078
-8.000 x 10°8 1.000 x 104 -8.974 x 1078 1.000 x 10~
K 1.000 x 104 -8.974 x 10°®  1.024 x10*  -2.157 x10° |~
-9.912 x 10" ° 1.000 x 1074 -2.157 x 107° 1.047 x 104

3.10.2 1Inverse Problem

In the inverse éroblem the coordinates of the two points 1 and
2 are provided along with the cofresponding variance covariance matrix.
In this example, the coordinates are those determined in the direct
problem (section 3.8.1)

¢1 = 44° 39' 37123,

A, = 63° 0' 0000 W

= -6300' 0Y000 ,

¢2.=‘44o 38" 51.0925 ,

-

A, = 63;01' 20%088
= -63°0l" 20".088 .
and the covariance matrix, C4, (section 3.8.1) is given in units of
rad2 .
Using Puissant's inversé formulae the solution of the inverse
problem on the reference ellipsoid is executed. After the first
iteration the azimuth difference is

5

| (@ = 6.82 x 10 ° rad .

121~ (o))l
. = 147068 .
Upon completion of the second iteration

.o -9
|(a12)2 (012)3| <1 x 10 °~ rad

_< 2 x 10..4 arcsec .
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This indicates that the stcpping criteria has been met and

" from the final iteration (from equations (3-42) and (3-43)) the geodetic

azimuth and distance are

(-] ] "
12 224° 59' 54701 ,

a
and

512 =2 496.479 n,

Finally (from equation (3-35) and (3-37))

= ° ' "
021 44° 58' 57773

The Jacobhian of transformation, B3, is (using equation (3-72))

! 0 0

0 1 )

o 0 1

=k 0 0 0
-1803.329 1288.095 1802.832
-1803.329  1287.392  1802.832

2, .
arcsec’) is

Using equation (3-73) the covariance matrix C5

-t~

0

0

0

1
-1288.095

' -1287.392

1-2.482x10
|
}—3.512:40'
] -
Ce c, | 6-906x10
] -
1=9.746x10
R e e
-2.482x10 ° -3.512x10 ° 6.906x10 ° =9.746x10 I 25.00
]
- -5 -3 -3
-2-486x107 -3.511x107 6.904x10"" -9.743x107 25.00

-

(converted to

S _2.486x10"

5 .3.s11x10”

3 6.904x10"
3 -
-9.743x10

24.99

If error propagation for the computed distance is required,

the Jacobian of transformation By is (using equation (3-77))

5

5

3

3




96

0 0 0 0 1 0
B4= o] 0 0 0 0 1
-9.003 x 106 0 9.003 x 106 0 -1247.826 -1247.826

The covariance matrix C6 is (using equation (3-78) and converting

) 2
elements to arcsec.m and arcsec’)

r . -

25.00 25.00 5.477 x 10 °

c = 25.00 24.99 2.522 x 10°° |-

5.477 x 100 2.522 x 10°°  8.764 x 104
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4. COMPUTATIONS ON A CONFORMAL MAPPING PLANE

In Chapter 2, the solution of the direct and inverse problems
in the 3-D environpent were given. In Chapter 3 the reduction of
observed quaptities to the reference ellipsoid were treated for the
solution of the direct aﬁd inverse problems on that surface. This
chapter presents the completion of the process with the further reduction
of the’ellipsoidal quantities to the conformal mapping plane and the

solution of the direct and inverse problems on that surface.

4.1 Notation
dij = direction from point i to point j

(T-t)ij £ arc to chord correction for line from point i to point j

.xi,Yi = Mapped coordinates.of point i : :
xi,Ai = spherical cooréinates of point i )
AAi = spherical longitude of point to ke mapped minus the sphericai
longitude of the origin
AAis Ai- A° (4-1)
a,b = semi-major and semi minor axes respectiyely of the Clarke 1866
reference ellipsoid, |
a= 6378 206.4 m ,
b= '6 356 583.8 m .
a £ geodetic azimuth from point i to point j

ij
Bijk £ horizontal angle from point i to point k with instrument at
point j

Yi 2 meridian convergence at point i

Sij 2 ellipsoid distance from point i to point j
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zij = distance from point i to point j
Szj = projected geodesic length

¢°‘ Ao' Xo? Ao,xo,Yo = coordinates of the origin of the projections
k° = scale factor at the origin of the double stereographic projection
or scale factor at the central meridian of the 3° Transverse Mercator

ACM = geodetic longitude of central meridian

/2

R = radius of the conformal sphere (R =-(MN)l evaluated at ¢°)

X. , Yia = approximate mapped coordinates of point i

—~
~
"

ellipsoidal quantity

( ) = approximate quantity

Ni = Prime vertical radius of curvature at éoint i
’ Mi = Meridiap radius of curvatﬁre at point i

BA; = geodetic longitudg at point minus geodetic longitude at central

ﬁ;;idi;n )
By = = (4-2)

tij = grid azimuth from point i to point j.

Tij = grid azimuth of the projected geodesic from point i to point j
kij = the line scale factor

4.2 Reduction of Observations

The quantities needed in the reduction of observations from the
reference ellipsoid to the mapping plane are the (T-t) correction
(sometimes called the "arc to chord" correction), the meridian convergence,
and the line scale factor ([Bomford, 1971; Krakiwsky, 1973]. Specific

formulae for these quantities must be derived for each projection and-are

given in this chapter.

4.2.1 Reduction of Horizontal Directions (Ellinsoid to the

Mapping Plane).

e
45 = dfy - (O . (4-3)
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(’r-t)ij

Tangent to projected geodesic

> X

Figure 4-1

REDUCTION OF HORIZONTAL DIRECTIONS
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4.2.2 Reduction of Horizontal Angles ( Ellipsoid to the Mapping

Plane)
From Figure 4-2
e
Bijk gijk + (T t:)ij (T t)ik . (4-4)
4.2.3 Reduction of Azimuth ( Ellipsoid to the Mapping Plane)
From Figure 4-3
tij = aij i Pl (T-t)ij . (4-5)
4.2.4 Reduction of Distances ( ° Ellipsoid to the Mapping Plane)

The distance on the plane from a point i to a point j is computed

by:;

zij = kijsij' (4-6)

where ;;jis the line scale factor of the line i to j.

4.3 New Brunswick Stereographic Double Projection

.

4.3.1 Direct Problem
fhe direct problem on the N.B. Stereogfaphic projection plane
is stated as: given the grid coordinates foﬁﬁof point i and the
astronomic azimuth §ij and spatial distance Fij' to a point j, compute
the grid coor?inates xj, Yj of the point j. The solution is as follows.
First the azimuth, Aij' and the distance,rij,must be reduced
to the geodetic azimuth, aij' and elliposid distance, sij' as'
described in Chapter 3. These quantities must then be reduced
to the conformal mapping plane. Beginning with the azimuth, the
meridian convergence and (T-t) corrections must be applied. Meridian

convergence is given by [Thomson et al., 1977)
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PROJECTED GEODESIC st 3

. TANGENT TO PROJECTED GEODESIC
2ij : :
—“‘ t. .
1]
l,
T, .

Tix - Six
A

Figure 4-2

REDUCTION OF HORIZONTAL ANGLES
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TANGENT TO
PROJECTED MERIDIAN

Y
A

13

.

ij

PROJECTED
MERIDIAN

N
/S PROJECTED

GEODESIC

(T—t)ij

TANGENT TO
PROJECTED GEODESIC

Figure 4-3

REDUCTION OF AZIMUTH
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_ sin AA, (sin x, + sin )
Y, = tan 4 n 2 ]- (4-7)
cos xi cos X +(1 + sin x; sin xo) cos AAi

The meridian convergence obtained from (4-7) is then applied
to the geodetic azimuth yielding the grid azimuth of the projected

geodesic T, , namely

i3

T.=0a,. Y, . (4-8)
. . . a
T ig used jn the computation of the a?proxlmate coordinates xj, 3

ij

for the second point , yielding

a

i 4-9
xj = xi + Sij sin Tij ’ ( )
and
Y®=Y +5S,.cosT,. . (4-10)
3j i ij ij
The (T-t)ij correction is: now written as [Thomson et al., 1977 1
o XS Y, - ax, AY; .
(T-t),. = tan = (— - — =1 (4-11)
13 ax, Ax.? + Ay, AY.% +(2k R)
i 3 i 3j o
in which
Axl = Xi - Xo ’
AYi - Yi - Yo v
ad=x2-x (4-12)
. 3 3 °

and

AY, = Y, - Y .
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The sign on the (T-t) correction must noQ be determined.
Referring to Figure 4-3 it can be seen that the sign on the correction
varies from quadrant to quadrant. To determine the sign the
following tests must be.perforhed. If the grid azimuth tij is
between the grid azimuth from point i to the origin and the grid
azimuth from the origin to the point i then the sign on the correction
(used in equations (4-3) and (4-5)) is positive.. If the grid
azimuth tij is between the grid azimuth from the origin to the point
i and the grid azimuth from the point i to the origin then the sign
on the correction is negative.

If.the grid azimuth tij is equal to either the grid azimuth
from the point i to the o;igin or from the qrigin to the point i,

(T-t) = 0 [Thomson et al., 1977]. .
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III Iz

Tangent

«— Projected Geodesic
Grid Azimuth (t..)
1)
Fiéure 4-4

SIGN OF (T-t) CORRECTION STEREOGRAPHIC
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It should be noted that (4-11) gives the ('r-t)ij correction
for the mapping of the line from the conformal sphére to the plane and
is missing an ellipsoi&al term. This term has been proven insignificant
[Thomson et al., 1977 ] and can be safely neglected. The azimuth is

now written as (equation (4-5)),

tig T3 T

- (T-t)ij .
Turning to the distance, and using the preéiously obtained

approximate coordinates of point j the line scale factor k
Simpson's rule)

13 is (following

- 11 4 1., -1

k. == 6—+ -+ 1

1306 k; 43,2 ’
m 5

(4-13)

where ki is the point scale factor at point i and is computed from

[Thomson et al. 1977 ]}

(x, - x )%+ (v, - v)?
ki = ko + é ' (4-14)
4 ko R :

and k.a is the approximate point scale factor at point j and is given
by [Thomson et al.,1977 ],

2 - xo)2 + (Y2 - Yo)2
=k + — bl . (4-15)

3 e 4 x R
[o]

km is the point scale factor at the midpoint of the line ij and is given

by [Thomson et al,,hL1977 ]

a x - xo)2 + (Y: - Yo)2 _
k> =k + 5 , : (4-16)
4% R
. [e]
- where X + X a
o . E (4-17)
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and a
a Yi + Y,
2

The point scale factor given here (equation (4-14)) accounts
only for the mapping of thke conformal sphere on the plane.
It is accurate to 1 x 10--7 (Thomson et al.,
1977) if it is used as an approximation to the scale factor for the
mapping of ellipsoidal information on the conformal plane. The

reduced distance is now written as(equgtion (4-6)),

To complete the direct problem we have

xj = xi + 2ij sin tij R : -(4-19)
and

Y. =Y, + 2,.cos t.. . (4-20)
3 i ij ij

4.3.2 Inverse Problem

The inverse problem on the N.B. stereographic plane is stated
as: given the grid coordinates xi, Yi of point i and the grid
coordinates xj, Yj of point j compute the grid and geodetic azimuths

t and a,.., and the grid and geodetic distance £.. and S,_..
ji : ij ij

310 %43

If further reduction from the ellipsoid to the terrain is required

ij

refer to Section 3.3. The grid distance and azimuths are given respectively by
‘ 2,1/2

2
and
-1 X, = Xi
tij = tan ~ [-J— ] . (4-22)

Y, - Y,
b] i
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and

tji = tij + 180° . (4-23)

From equations (4-5), (4-7), and (4-11) we have that

a4 = tij tygt ('x:—f:)ij ’ (4-24)

and from equations (4-6) and (4-13)

L.
s, =—L (4-25)
ij -
k..
ij
. Since ('I‘—t)ji = - (T-t)ij, then
aji = tji + Yj - ('r-t)ij ' ’ (4-26)

where Yj is computed from equation (4-7).

This completes the inverse problem.

4.4 Prince Edward Island Stereographic Double Projection

4.4.1 Direct Problem

The direct problem on the P.E.I. Stereographic projection plane is
given the grid coordinates xi' Yi of point i and the astronomic azimuth,
Aij and spatial distance,tij, to a point j, cormoute the grid coordinates
xj, Yj of the point j. The solution is as follows.

. First the azimuth, Aij' and the distance tij must be reduced

to the geodetic azimuth, &ij’ and the ellipsoid distance, sij' as described
in Chapter 3. These quantities must then be reduced to the conformal mapping
Plane. Beginning with the azimuth, éhe meridian convergence and (T-t)
corrections must be applied. Meridian convergence is given by [Thomson et al.

1977}
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-1 '51n AAi (sin x; * sin xo)

Yi = tan [ - ] «(4-27)

cos y; cos Xo + (1 + sin xi sin xo) cos AAi

The meridian convergence obtained from (4-27)is then applied to
the geodetic azimuth yielding the grid azimuth of the projected

geodesic, T namely

ij’

. - 4-28
Tij - Gij Yi- ( )

a

)

. . a
Tij is used for the computation of approximate coordinates (xj ’ Yj

for the second poing, yielding

Xj = Xi + Sij sin Tij P) (4-29)
and
a
Y, =Y. +S., cosT.. . (4-30)
3 i ij ij
The (T-t) correction is now written as ([Thomson et al,,
1977 1 a a
oy OX.C av, - Ax. AV,
(T-t), . = tan = [ = Ja =1 (4-31)
J Ax, Ax.? + AY, AY.% +(2k_ R)
i 3j i 3j ()
in which
AX, = X, - X,
i o
oY, =¥, - ¥,
a a (4-32)
AX, = XJ - Xo,
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The sign on the (T-t) correction must now be determined.

Referring to Figure 4-3 it can be seen that the sign on the correction
varies from quadrant to quadrant. To determine the sign the

following tests must be performed. If the grid azimuth tij is
.between the grid azimuth from point i to the origin and the grid
azimuth from the origin to the point i then the sign on the correction
(used in equations (4-3) and (4-5)) is positive. If the grid

azimuth tij is between the grid azimuth from the origin to the point

i and the grid azimuth from the point i to the origin then the sign

on the correction is negative.

If the grid azimuth tij is equal to either the grid azimuth
from the point i to the origin or from the origin to the point i,

(T-t) = 0 [Thomson et al., 1977].
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It should be noted that (4-31) gives the (T—t)ij correction for
the mapping of the line from the Gonformal sphere to the plane and is
missing an ellipsoidal term. This term has been proven insignificant
[Thomson et al.,1977 ] and can be safely neglected. The azimuth is

now written as (equation (4-5)),
tij = aij -y - (T-t)ij .

Turning to the distance and using the previously obtained
approximate coordinates of point j, the line scale factor is (following

Simpson's rule) [Thomson et al., 1977]

1 4 1 -1

= 1
k.. =[Z G+ —]+ -] (4-33)
S 5 | 6 'k, a a !

i km kj

where ki is the point scale factor at point i and is computed from

[Thomson et al., 1977 ].

x, - x)%+ v, - v)?
ki = ko + 2 . (4-34)
4 ko R

. a . . . . . .
K is the approximate point scale factor at point j and is given by

3
(Thomson et al., 1977 ]

a 2
+ (Yj - Yo)

3 o : 4x R
[o]

. (4-35)

km is the point scale factor computed at the midpoint of the

line ij and is given by [Thomson et al., 1977]

a 2 a
ka = k + (xm B xo) + (Ym - YO)
’
m o 4x R?
o

2

(4-36)
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where
X, + X2
x2=2_1 (4-37)
m
2
and a
a Yi + Y.
Y - = . (4~38)
n 2

The point scale factor given here (equation (4-14)) accounts
only for the mapping of the conformal sphere on the plane.
It is accurate to 1 x 10.7 [Thomson et al., 1977 ] if it is used as
an approximation to the scale factor for the mépping of the ellipsoidal
information on the conformal plane. The reduced distance is now

written as (equation (4-6)),

To complete the direct problem we have

X. =X, + L., sint,. , (4-39)
3 i ij ij
and

Y. =Y, + &£, ,cost.. . .- . .. (4-40)
» I | i3 —voviy ot s o

4.4.2 Inverse Problem

The inverse problem on the P.E.I. stereographic projection
plane is stated as: given the grid coordinates xi'yi of point i and
and the grid coordinates xijj of point j compute the grid and‘geodetic

azimuths t.., t.., a,., a.., and the grid and geodetic distancesf%,. and
ij" "3iv Tij ji - ij

sij' If further reduction from the ellipsoid to terrain is required[

refer to Section 3.3. The grid distance and azimuths arelgéven respectively by

: 2 2
zij = [(Xj - Xi) + (Yj - Yi) ) B (4-41)
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R A
t,. = tan [—1'———— ) I (4-42)
ij Y, - Y,
j i
and
t,. =t,. +180° . (4-43)
ji ij
From equations (4-5), (4-27) and (4-31) we have that
aij = tij + Yy + (T-t)ij . . (4-44)
and from equatiors (4-6) and (4-33)
L., . '
s, =—1 | (4-45)
1] s
kl]
Since (‘l‘-t)ji = - (T-t)ij
o =t vy, - (T-t).. 4-46
Oy 517 Y ( )1] ( )

where Yj is computed from equation (4-27). This completes the inverse

problem.

4.5 Nova Scotia 3° Transverse Mercator -

4.5.1 Direct Problem

The direct problem on the N.S. 3° Transverse Mercator plane is stated
as: given the grid coordinates X; Yi of point i, the astronomic
azimuth Aij' and spatial distance rij to a point j( compute the grid
coordinates xj, Yj of the point j.

As with all the map projections the first step is to reduce

the observations Ai and rij from the terrain to the ellipsoidal

3

quantities of geodetic azimuth a, and ellipsoid distance Si as described

3 J
in Chapter 3. These reduced quantities must be reduced once more to obtain
the grid azimuth tij and the chord distance lij' Beginning with the azimuth

the meridian convergence and (T-t) corrections must be applied.
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The meridian convergence accurate to 070l is computed using

(Krakiwsky, 1973.]

AX? cos2 é. (1 + 3G, + 262)
v.= A\, sin ¢ [1 + = = 1 1
i i i
AA: cos4 ¢i (2—622)
+ 1. (4-47)
15
The values for Gl and G2 are given by
32 - b2 2
G =z s b (4-48)
and
= . . 4-4
G, : tan ¢i (4-49)

To evaluate (T-t) correction the approximate coordinates of
point j are required. These can be computed by first computing the

grid azimuth of the projected geodesic

Tij = uij -y . (4-50)

Using this azimuth, Tij' the approximate coordinates are

a
= i T -
xj xi + Sij sin i3 . (4-51)

and

a .
Y, =Y +S,. T -
5 Yl S1J cos i (4-52)

3 .
The ('r-t)ij correction, accurate to 07Y02 for a 100 km line is

given by [Krakiwsky, 1973 ]

_a f a, 2
(Y2 - v,) (ax® + 2 ax.) (28%. + ax3)
AT-t) = it 3 Lyal- = i), as3y
‘ 6 R 2 27 R 2
m&\M' m

where Rm is the Gaussian mean radius evaluated at the mean latitude

¢m and is given by
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R =/M_ u_ . (4-54)

a a
ij = xj - X, (4-S5)
and
ax, = X, =X . (4-56)

The azimuth is now written as (equation (4-4))

f1g T %3 TV T Ty
Turning to the distance, and using the previously obtained

approximate coordinates we can write the line scale factor as [Krakiwsky,

1973 ]

- _ Axu2 Axu2
1=k (1+6Rz (l+36R2)) ' (4-57)
m¥--KJ,
where
2 2 a.2
Xy = ax)® o oaxg axg (0%, (4-58)

and Rm is computed using (4-51).

The distance zij then computed using (4-6), namely

L..,=k.. S, .
ij ij i3
The above formula is accurate to 1 x 10-'7 for lines up to
150 km in length [Krakiwsky, 1973 ].

Finally, we write that
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xj =X + zij sin tij ' (4-59)

and

Yj = Xi + zij

which completes the direct problem.

cos tij R (4-60)

4.5.2 Inverse Problem

The inverse problem on the N.S. 3° Transverse Mercator projection
plane is: given the grid coordinates Xi, Yi of point i and xj, Yj of point

j compute the grid and geodetic azi ‘ ;
3 mpute the grid and geodetic azimuths, tij’ tji' aij' and aji' and

the grid and geodetic distance li and sij . * If further reduction

3

from the ellipsoid to the terrain is required refer to Section 3.3.

The grid distance and azimuths are given respectively by

- L w22 _ v 124,172 _

zij [(xj xi) + (Yj Yi) ] ' (4-61)

X, - X,
t.. = tan 1 (=1 - (4-e2)

ij Y. - Y,

J 1

and
t.. = t,, + 180° . (4-63)
J1 1)

From equations (4-4), (4-47) and (4-50) the geodetic-azimuth is

“ij = tij + Y; + (T-t)ij ' (4-64)
and from equation (4-6)
li.
Sy = T+ (4-65)
_ ki
where kij is computed from (4-57).

Since (T-t)ji = - (T-t)ij

uji = tji + yj - (T-t)ij ’ (4-66)
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where Yj is computed using equation (4-47).
This completes the inverse problem on the N.S. 3° Transverse

Mercator projection.

4.6 Error Propagation

4.6.1 Direct Problem Error Prqpaqation

The covariance matrix for the point i is combined with the variance
of the plane azimuth and the variance of the plane distance to form
the covariance matrix Cl‘ The variance on the plane azimuth is taken
to be‘equal to the variance on the obsérved astronomic azimuth and

the variance on the plane distance is taken to be equal to the variance

on the ellipsoidal distance. The matrix C, has the form

1
i o 2 o] i 0 0 1
Xy %
9x. Y, oy 2 | 0 Y
cl = j» - -l—- - - .l- -e .. - o e f--..—-- ’ (4-66)
0 0 : 5 T 0
» 1) N
0 ° ' 0 I,
L \ i3 §-
in units of
[~ -
2 2
m m
2 2
m m
. , )
m
rad2
where rad2 can be obtained from arcsec2 by multiplying by
1l
=5 -
p

Using the equations
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xi =X, , (4-67)
Yi = Yi P (4-68)
X, =X, + li. sin tis o (4-69)
and J J J
= 2 -
Yj Yi + ij cos tij ’ (4-70)
the Jacobian of transformation matrix Bl is given as
1 0 0 0
o] 1 0 0
Bl = ’ (4-71)
1 0 81(3.3) 81(3(4)
0 1 31(4,3) 31(4,4)
in which
Bl(3,3) = sin tij '
81(3,4) = zij cos tij
Bl(4,3) = cos tij '
and
31(4,4) = - 2ij sin tij .

With BlT equal to the transpose of Bl' the covariance matrix

for the points i and j will then be

T

c2- Bl c1 Bl . (4-72)
where Cz has the form
.~ [ ] -
2 : o
g g
x1 X ¥ : xlv3 xivj
g (o} 2 : o] [+
v ‘
c, = XY, Y, : yixj Yin ) , (4-73)
e e R
(¢} g , C g
X.X. Y. X, X X.Y
i%j i3 ! j j %
[ ]
[0} (o] (o] (o}
X. X,Y, Y,
iYy i¥y 0 %Y j
- -
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in which all units are in m2 .

4.6.2 Inverse Problem Error Propagation

The covariance matrix C_, (equation (4-73)) is known. Using

2
equations
_ 2 _ 2,172 _
zij [(xj xi) + (Yj Yi) R (4-74)
and
-1 (x. - xi)
t.. = tan = [ <2 , (4-75)
J (Y, - ¥,)
b] i
the Jécobian of transformation, leis.
82(1,1) . 32(1,2) 82(1.3) 32(1.4)
BZ = A ,(4'76)
82(2,1) 32(2,2) 32(2.3) B2(2.4)
where
(Y, - Y.)
B,(1,1) =
2 z..z ’
1]
(X, - xi)
13
(Y. - Yi)
52(1,3) = ’
g 2
1)
(X, - X.)
B_(1,4) = R S '
2 g 2
ij
(X, - X.)
By(2,1) = ——3
2
ij
(Y. - Y.)

82(2,2) - )
2
ij
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(X, - X,)
B, (2,3 = +—21 ¢
2 2
15
and
(y, - Yi)
B,(2,4) = 4—= .
2
ij

With 32T equal to the transposed Bz, the covariance matrix for

the derived plane azimuth and distance is given by

T
c3 = 32 c2 Bz (4-77)

where C3 has the form

ag 2 g
tij ti-l..
c, = 3713 , (4-78)
3
g o .2
BRECLIT ij 1
in units of
rad2 rad'm .
2 3
rad.m m .

The rad2 can be converted to arcsec2 by multiplying
by pz. The m.rad can be converted to m.arcsec by
multiplying by p.

The variance on the plane azimuth is taken to be equivalent
to the variance of the geodetic azimuth and the variance of the
pPlane distance is taken to be eq;ivalent to that of the ellipsoid
distance. These are valid assumptions since the error propagation

through the reduction equations proves insignificant.
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4.7 Introduction to Numerical Examples

4.7.1 Use of Computed Grid Azimuths

Before commencing with the numerical examples for direct
and inverse problems on the mapping plane, let us examine the deter-
mination of theiérid azimuth of .a line by means other than the
reduction of a terrain astronomic azimuth. " A comhon situation is
to know the grid coordinates of the instrument station i and those
of the reference station j, along with the covariance matrix (Cz)
for those points. The grid azimuth tij for the 1in§ ij can be
computed using equation (4-75). The covariance matrix involving the
points and the azimuth can be derived using the inverse problem
error propagation (section 4.6.2).

The terrain angle Bjik (k is the unknown point) can be
measured and then using the reduction formulae outlined in Section
3.2.3 the angle is reduced to the ellipsoid giving B;ik' This angle
is then reduced to'the mapping plane angle Bijk' using the reduction
formulae outlined in Section 4.2.2. This angle is then added to tij

yielding

tik = ajik + tij . (4-79)

The variance tik is computed as
2
o =g +0 . (4-80)

Equation (4-79) indicates that the grid azimuth tik is correlated to
the grid azimuth tij which has been computed from the coordinates

of point i and j. This implies that ti must be correlated to the

k



coordinates of points i and j.

development on the ellipsoid, Section 3.7.
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This is completely analagous to the

To obtain the necessary

covariance information between point i and the azimuth tik we first

expand the Jacobian of transformation, Bz, to account for the

following equations namely

and

The resulting Jacobian, 83, is

With B_T

1l
0

82(1,1)

g

3

82(1,2)

B2(1,3)

0

0

82(1,4)

(4-81)

(4-82)

. (4-83)

equal to the transposed B3, the covariance matrix

for the derived plane azimuth and point i coordinates is given by

where C4

C
has the form
g 2
Xy
C, = [+
4 xiYi
g
L xitij

Yitiy

(4-84)

(4-85)
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in units of

' -
m2 mz m.rad
mz m2 m.rad .
2
m.rad m.rad rad
L N

"where m.rad can be converted to m.arcsec by multiplication by p
and rad2 can be converted to arcsec2 by multiplication by p2.

Substituting 02 (equation (4-80)) for 02 in equation
tik tlj
(4-85) and including the observed distance variance c£  between
ik
the points i and k (k is the unknown point), ye obtain the alternate

expression for the covariance matrix Cl namely
-2 . N
%% %%. Y. 9% 0
i i'i iij
2
°%.v. % 9. ¢ 0
iti i i7ij
cl = ) (4-86)
(o] [} o 0
X5 Y%y bix
0 o (o] 022
ik
where the new variance 022 is in units of m2 .
ik :

4.7.2 Mapping Plane Direct Problem Flow Chart

Figure 4-5 contains the flow chart for the mapping plane
direct problem. The purpose of this flow chart is to indicate the
steps required to reduce the observations from the terrain to the
mapping plane environment and then perform the direct problem on the

* mapping plane. The last decision box, 15, checks to see if the final
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Observed Astronomic " [Observed Spatial

Azimuth and Zenith Distance
i A,. Z.,. r,
Distance ij Zij 1 i3

Y
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O

l

Compute Approximate Coordinates

a

X, =X, +S,, sin T,
3 i i

ij j

¥ 2=Y +5S..cosT..
b i ij ij
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NS 4-51, 52
. 11

) 4

T-t Correction
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t.. =T,. - (T-t),, PEI 4-31
1) 1j 1)
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¥
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ij ij i3
NS 4-57 13
Y
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= + i
xj xi zij sin tij
P> + k
-Yj Yi zij cos tij 14

Figure 4-5

Mapping Plane Direct Problem Flow Chart .
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coordinates of the point j are within 30 m of the approximate values.
This is in keeping with the error propagation assumptions mentioned

in Section 3.2.1 concerning the reduction formulae.

4.8 New Brunswick Numerical Example

4.8.1 Direct Problem

The following information is given for the solution of the
direct problem and its associated error propagation.
The coordinates of point 1 are

X, = 377 164.887 m ,

Yl = 862 395.774 m .

The geodetic azimuth is (see Section 3.8.1)

- (-] L ”
a, 44° 59' 53'64 ,
and has a variance oaz = 25.00 arésec2
12
The ellipsoid distance is (see Section 3.8.1)

512 = 2 496.488 m ,
. 2 -4 2
and has a variance os = 8.762 x 10 m .
12 .
The covariance matrix, Cl, for the above information is
-2 -4
4.455 x 10 -7.09 x 10 0 0
.-4 -2
C1= -7.09 x 10 9.535 x 10 0 0
0 0 8.762 x 1074 0 -10
0 0 0 5.876 x 10
in units of —- -
2 2
. m m
2 2
m m
¢ = 2
m
) rad2

The covariance matrix for the coordinate values has been

obtained from the numerical examples used in Chapters 2 and 3 and has
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been converted to the mapping plane covariance matrix by formulae from,
for example, Krakiwsky et al., [1977]. As mentioned in section 4.6.1
the variance of the plénéﬁézimuth is taken to be equal to the variance
of the obse;ved astronomiq ;zimuth and the variance of the plane distance
is taken.to be‘eéuél to ﬁhe variance of the ellipsoid distance.
Using equation (4-7) the meridian convergence is
Y = 0° 44' 24763 ’

and from equation (4-8) the grid azimuth of the projected geodesic is
= ° (] "
Tyo 44° 15' 29701 .

The approximate coordinates (from equations (4-9) and (4-10))

are
Ca
x2 = 378 907.164 m ,

Yza = 864 183.768 m .

The ('I‘-t)12 correction (using equation (4-11l)) is
- = o [] [
(T t)12 + 0°00°' 0704 ,

and the grid azimuth, t (from equation (4-5)) is

12’

° (] " '
t12 = 44° 15' 28797 .

The line scale factor, (from equation (4-13)) is

k12'
k12 = ,999974 .

and using equation (4-6) the chord distance is

112 = 2496.423 m .

Using equations (4-19) and (4-20) the coordinates of point 2 are
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X, = 378 907.118 m,

2
Y2_= 864 183.722 m.
The x2;Y2 values are converted to the geodetic coordinates
¢2.l2 (using formulae from, for example, Krakiwsky et al., [1977])
yielding

¢, = 47°04' 21%801

A, = 65° 27

2 38787 W,
which are identical to the solutions obtained in the Three Dimensional
and Ellipsoid examples (Sections 2.4.1 and 3.8.1 respectively).

Turning to the error propagation(Section 4.6.1)the Jacobian

of transformation, B,, is (from equation (4-71))

- 1 . . -
1 0 ) .0
0 1 0 0
Bl= .
1 0 .69789 1787.948
| o 1 .71620  -1742.231
The covariance matrix for points 1 and 2 is (from equation
(4-72)) _
4.455 x 102 -7.09 x 10 4.455 x 1072 -7.09 x 1074
-7.09 x 1074 9.535 x 1072 -7.09 x 107% 9.535 x 102

4.458 x 102

-7.09 x 1074

in which all units are

-7.09 x 103

9.535 x 102

. 2
inm .

4.685 x 102

-2.101 x 10~

-2.101 x 10

9.758 x 102

3
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The lower right hand (2 x 2) sub matrix is converted to the
covariance matrix of the geodetic coordinates ¢2, Az (using formula

from, for example, Krakiwsky et al., [1977]) yielding

1.024 x 1077 -2.19 x 10°°
C =
$,A . - - ’
272 -2.18 x 10°° 1.051 x 104
in units of arcsecz. - It can be seen that this is

equivalent to the covariance matrices derived in the Three Dimensional

and Ellipsoidal examples (Sections 2.4.1 and 3.8.1 respectively).

4.8.2 Inverse Problem

In the inverse problem the coordinates of points 1 and 2

along with the associated covariance matrix, C

41 are known (in this

example the results of the direct problem).
The grid distance and the direct and inverse grid azimuths

are (from equations (4-21), (4-22) and (4-23))

&=
12 2 496.423 m ,

t,, = 44° 15' 28797 ,

12
and
t21 = 224° 15' 28797 .
The ellipsoidal distance S,, is (from equation (4-25))
S12 = 2 496.488 m .

The direct geodetic azimuth is (from equations (4-24))

- ° ' "
%9 44° 59' 53764 ,

and then (from equation (4-26)) the inverse geodetic azimuth is



130

= o ] "
%51 225°00' 54789

The inverse problem error propagation begins with the

Jacobian of transformation, Bz, (given by equation (4-76))

4

4 4 4

-2.8689 x 10 2.7956 x 10 2.8689 x 10 -2.7956 x 10

-.69789 =-.71620 .69789 .71620

The covariance matrix, CB' (from equation (4-77)) is

25.00 0]
3" 0 8.762 x 1074 |
in units of
arcsec2 m.arcsec
C3= . ’ 2' ¢
m.arcsec m "
where the arcsec2 have been obtained from the rad.2 . by multiplication
by pz and arcsec.m have been obtained from the rad.m by

multiplication by p.

The variance of the plane azimuth is taken to be equivalent
to that of the geodetic azimuth and the variance of the plane distance
is taken to be equivalent to that of the ellipsoid distance (as

described in Section 4.6.1).
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4.9 Prince Edward Island Numerical Example

4.9.1 Direct Problem

The following information is given for thé solution of the
direct problem and its associated error propagation.

The coordinaées of point 1 are
xl = 585 855.446 m,

Y, = 340 817.760 m.

The geodetic azimuth is (see Section 3.9.1)

- = o ] "
@), = 134° 59' 5325 ,

and has a variance ¢ 2 . 25.00 arcsec2 .
12

The ellipsoid distance is (see Section 3.9.2).

S;, = 2 496.484 m. .

12 -4 2
and has a variance os = 8.762 x 10 m- .
The covarianég matrix, Cl,'for the above information is
4.514 x 10> 9.04 x 10°¢ 0 0
-4 -2
9.04 x 10 9.534 x 10 0 0
C, = .
1 0 0 8.762 x 107 o
0 0 0 5.876 x 10 1°
in units of
- 2 -
m m
2 2
m m
Cla . mz

rad
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The covariance matrix for the coordinate values has been
obtained from the numerical examples used in Chapters2 and 3 and has
been converted to the mapping plane covariance matrix by formulae from,
for example, Kraki&sky et al., [1977]. As mentioned in Section 4.6.1
the variance of the plane azimuth is taken to be equal to the variance
of the observed astronomic azimuth and the variance of the plane distance
is taken to be equal to the variance of‘the ellipsoid distance.

Using equation (4-27) the meridian convergence is

Yy ==1°05' 29%10 ,

and from equation (4-8) the grid azimuth of the projected geodesic is

= o ' "
le 136° 05' 22935 .

The approximate coordinates (from equations (4-29) and

-

(4-30)) are

xza = 587 586.841 m ,

yza = 339 019.232 m.

The (T-t)12 correction (using equation (4-31)) is

- =0° 0' O"
(T t)12 0° 0' 0739

and the grid azimuth, t12, (from equation (4-5)) is

= 136° 05' 21796 .
t12 136 9

The line scale factor, (from equation (4-33)) is

k12’
. k12 = 1.000 013 B
and using equation (4-6) the chord distance is

L = . .
12 2 496.516 m
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Using equations (4-39) and (4-40) the coordinates of point
2 are ‘
X, = 587 586.867 m ,
Y, = 339 019.212 m .
The x2,y2 values are converted to the geodetic coordinates
¢2,X2 (using formulae from, for example, Krakiwsky et al., [1977])
yielding
¢, = 46° 41' 307973

A, = 64° 28' 10Y933 W ,

2
which are identical to the solutions obtained in the Three Dimensional
and Ellipsoidal examples (Sections 2.5.1 and 3.9.1 respectively)

Turning to the error propagation (Section 4.6.1)the Jacobian

of transformation, Bl’ is (from equation -(4-71))

1 0 0 0
0 1 0 0
By © .
1 0 .69353 -1798.549
0 1 -.72042 -1731.421

The covariance matrix for points 1 and 2 is (from equation

(4-72))
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- -
4.514 x 1002 9.04 x 1074 4.514 x 1072 9.04 x 1074
9.04 x 10°° 9.54 x 102 9.04 x 10 4 9.54 x 1072
27 4.514 x 102 9.04 x 10°% 4.746 x 102 2.296 x 1073
| 9.04 x 107 9.54 x 10 2.296 x 1073 9.755 x 102 ]

in which all units are in m2 .
The lower right hand (2 x 2) sub matrix is converted to the
covariance matrix of the geodetic coordinates ¢2: kz (using formula from,

for example, Krakiwsky et al. [1977]) yielding

1.024 x 10°4 2.07 x 10°°
c = !
222 2.07 x 10°° 1.050 x 1074
in units of arcsecz. It can be seen that this is equivalent to

the covariance matrices derived in the Three-Dimensional and Ellipsoidal

examples (Sections 2.5.1 and 3.9.1 respectively)

4.9.2 Inverse Problem

In the inverse problem the coordinates of points 1 and 2
along with the associated covariapce matrix, Cz, are known (in this
example the results of the direct problem).

The grid distance and the direct and inverse grid azimuth are

(from equations (4-41), (4-42) and (4-43))
4, = 2496.517 =m ,

= "
t12 136°05' 21796 ,

and

= 316° 05' 21796.
t,) = 316° 05' 21796
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The ellipsoidal distance S,_, is (from equation (4-45))

12

512 = 2 496.484 m .

The direct geodetic azimuth is (from equation (4-44))

= ° [ "
@2 134° 59' 53725 ,

and then (from equations (4-46)). the inverse geodetic azimuth
is

a_, = 315°00' 53771 .

21
The inverse problem error propagation begins with the
Jacobian of transformation, Bz, (given by equation (4-76))

4 4 4

2.8857 x 10 2.7780 x 10 2 -2.8857 x 10 -2.7780 x 10

-.69353 . 72042 . .69353 -.72042

The covariance matrix, C (from equation (4-77)) is

3'
25.00 0
C, = ’
3 0] 8.762 x 10 4
in units of
2
arcsec m.arcsec
C3’ 2 ’
m.arcsec m
where the arcsec2 have been obtained from the tad2 by multiplication
by p2 and arcsec.m have been obtained from the rad.m by

multiplication by p.

The variance of the plane azimuth is taken to be equivalent
to that of the geodetic azimuth and the variance of the plane distance
is taken to be equivalent to that of the eilipsoid distance (as described

in Section 4.6.1).
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4.10 Nova Scotia Numerical Example

4.10.1 Direct Problem

The following information is given for the solution of the
direct problem and its associated error propagation.
The coordinates of point 1 are

Xl = 5 618 978.072 m ’

Yl = 4 946 528.965 m .

The geodetic azimuth is (see Section 3.10.1)

= L} L
) 224 59°' 54701 .

The ellipsoid distance is (see Section 3.10.2).

512 2 496.479 m

.and has a variance og 2 = 8.762 x 10-4 hz .

.12 . . . . .
The covariance matrix, Cl' for the above information is

4.861 x 10 2 -9.15 x 10 4 ) 0
-4 -2
-9.15 x 10 9.539 x 10 , ) 0
C =
1 0 0 8.762 x 10 4 0
0 0 0 5.876 x 10 10
L .
in units of
_ , " -
m m
2 2
m m
C =
1 2
. Vradz
ke -
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The covariance matrix for the coordinate values has been
obtained from the numerical examples used in Chapters2 and 3 and has
been converted to the mapping plane covariance matrix by formulae
from, for‘example, Krakiwsky et al., [1977]. As mentioned in Section
4.6.1 the variance of the plane azimuth is taken to be equal to the
variance of the observed astronomic azimuth and the variance of the
plane distance is taken to be equal to the variance of the ellipsoid
distance.

Using equation (4-47) the meridian convergence is
Y, = 1°03' 15%48 ,
and from equation (4-8) the grid azimuth of the projected geodesic is

= o L} "
le 223° 56' 38Y53 .

The approximate coordinates (from equations (4-55) and (4-56))
are

x2a = 5 617 245.627 m ,

zza = 4 944 731.455 m .

The (T—t)12 correction (using equation (4-50)) is
- ==0°00"' O%
'(T t)12 0 90 0754 ,
and the grid azimuth, tl2' (from equation (4-5)) is
P [ ] L} "
t12 223° 56' 399707 .

The line scale factor, Iiz, (from equation (4-57)) is

;iz = 1.000 071 47
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and using equation (4-6) the chord distance is

£12 = 2 496.657 m .

Using equations (4-59) and (4-60) the coordinates of point
2 are

X, =5 617 245.499 m ,

2
Yz =4 944 731.331 m .
The xz. Y2 values are converted to the geodetic coordinates

¢2, 12 (using formula from, for example, Krakiwsky et al., [1877])
yielding
$, = 44° 38' 5925 ,
A, = 63°01' 20.088 W .
which are identical to the ‘solutions obtained in the Three Dimensional
and Ellipsoid examples (Sections 2.6.1 and 3:10.1respectively).
Turning to the error propagation (Section 4.6. 1)the Jacobian

of transformation, Bl' is (from equation (4-71))

r 1l 0 0 0
0 1 : 0 0
Bl .
1l 0 -.69396 -1797.634
0] 1 -.72002 1732.574

The covariance matrix for points 1 and 2 is (from equation

(4-72))
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[ 4.861 x 1072 -9.15 x 1079 4.861 x 102 9.15 x 1079 |
-9.15 x 10°% 9.539 x 10 > -9.15 x 10~% 9.539 x 102
“ 4.861 x 102 -9.15 x 10 ° 5.093 x 10 2 -2.31 x 1073
-9.15 x 104 9.539 x 102 -2.31 x 10°° 9.761x 10 2

in which all units are in metresz.
The lower right hand sub matrix is converted to the covariance
matrix of the geodetic coordinates ¢2, Xz (using formula from, for

example, Krakiwsky et al., [1977]) yielding

1.024 x 107* -2.15 x 10°°
C =
L PP . _ : _ '
272 -2.15 x 10°° 1.046 x 10
in units of arcsecz. It can be seen that this is equivalent to the

covariance matrices derived in the Three Dimensional and Ellipsoidal

examples (Sections 2.6.1 and 3.10.1 respectively).

4.10.2 Inverse Problem

In the inverse problem the coordinates of points 1 and 2
along with the asgociated covariance matrix, Cz, are known (in this
example the results of the direct problem) .

The grid distance and the direct and inverse grid

azimuths are (from equations (4-61), (4-62) and (4-63))
112 = 2 496.657 m '

t., = 223° 56' 39707 ,

12

and

= ° . "
t2l 43° 56' 39707 .
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The ellipsoidal distance 514 is (from equation (4-65))

e

S12 =2 496.479 m .

The direct geodetic azimuth is (from equation (4-64))

) = o . ”
@, = 224° 59' 54701 .

and then (from equation (4-66)) the inverse geodetic azimuth is

. = ° ' "
%y 44° 58' 57773 .

The inverse problem error propagation begins with the
Jacobian of transformation, BZ,_(given by equation (4-76))

4 4

2.8839 x 10 ~2.7795 x 10 -2.8839 x 10 % 2.7795 x 107¢

.69396 . 72002 -.69396 - =.72002

The covariance matrix, C3, (from equation (4-77)) is

25.00 . 0

‘3" 0 8.762 x 10 '
in units of
arcsec? m.arcsec’
€3 " . m.arcsec m? !

where the arcsec2; nave been obtained ﬁrom the rad 2 - by multiplication
_ by p2 and arcsec.m have been obtained from the rad - m by
multiplication by.p.

The variance ©f the plane azimuth is taken to be equivalent
to that of the geodetic agimuth and the variance of the plane distance
is taken to be equivalent to that of the ellipsoid distance (as

described in Section 4.6.1).
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APPENDIX I

Rotation and Reflection Matrices

In Chapter 2 the -use of rotation is an important consideration.

The rotation matrices Rl' R2 and R3 each rotate a coordinate system

about a certain axis. An R, rotation matrix rotates the Y and 2

1
axes about the X axis (Figure A-la). An R2 rotation matrix rotates
the X and Z axes about the Y axis (Figure A-1b). An R. rotation

3
rotates the X and Y axes about the Z axis (Figure A-lc).

The positive direction of rotation for a right handed coordinate
system is taken by convention to be counter-clockwise when viewed from
the positive end of the axis about which the rotation takes place.

The rotation matrices are given by [ﬁells, 1971 ]

1l 0 0
(e) = i -
Rl 0 cos 0 sin © , A-1
0 - =-sin © cos 6
cos 6 0 -sin 6
Rz(e) = 0] 1 0 ’ A-2
sin 6 0 cos ©
and
cos 6 sin 8 0
. R3(6) = |-sin 6 cos © 0 ’ A-3
0 0 1
-~

in which 8 is the angle of rotation.
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Other important transformation matrices are the reflections

Pl, Pz,and P3. Their function is to interchange the positive and

negative direction along each axis. The Pl reflection is used on the

X axis (Figure A-2a). The P2 reflection is used on the Y=-axis

(Figure A-2b). The P3 reflection is used on the Z axis (Figure A-2).

_The reflection matrices are given by

- -
-1 0 0
P, = 0 1 0 , (A-4)
0 0 1 .
b =
p— -t
1 0 0
P, = 0 -1 .0 ’ (a-5)
0 0 Tl
B 1 0 0
p3 = 0 1 o] . (A-6)
0 0 -1

e . -
For further information about rotation and reflection matrices

and their properties, the reader is referred to, for example, Wells

[1971].
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APPENDIX II

Covariance Law and the Jacobian of Transformation

This appendix gives a short explanation of the covariance
law of which the law of propagation of errors is a special case.

To begin with consider a random variable x that can take
on an infinite number of values. Let dx be the actual error in x,
which is involved in the definition of the variance of x (02); namely*

a2
ify 9%

ci = limit (a=7)

n &> o n

If we do not know the actual error, but only an estimate of it - usually

called the residual v, = x; = ;', where x is the sample mean,

n
z xi/n , then the sample variance is defined as
i=1

n

z vi2

2 i=1
s¢ = — . (A-8)
n-1

Note that for 52 to be an unbiased estimate of 02 we need to define

it with n-1 in the denominator.

Let us now work our way up to the covariance law, in matrix
form, by beginning with the simplest case: y is some function of x;

namely
y = £ (x) . . (A-9)

* the variance can be defined in the forms of mathematical expectations
- a rigorous manner which is more appealing from the mathematical point

of view.
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Taking the total differential of the above yields

- af (x)

dy 3% dx . (A-10)

Considering dy and dx to be (actual) errors, we sum the squares of n

of these and then divide by n in the context of the above equation;

this yields
n n
T ay? , I ax
i=1 AE(x), % i=1
n = ( a'x( ) n ’ ' (A 11)

and as n + ®, we get

2 .2 2 }
Uy = (—-—ax ) Q’x ’ (A 12)

which is the formula for the propagation of errors from one variable

X into another variable y.

Let us now take the case that y is a function of two random

variables Xy and x_, i.e.

2

y = f(xl, xz) . (A-13)

Taking the total differential yields

of of , _
dy = axl dxl + 3;; dx2 . (a-14)

Considering dy, dx1 and x, again to be actual errors, and

squaring and summing the terms on both sides of the above equation results in

n n v n
T ay’ T dx12 , I dx22
i=1 . 2f,2 i=l . @f,° iml
n 3x1' n ax, n
n (a-15)
I dx, dx
. 1 2
of 9f . i=1
t2G) G n :

1 2
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after considering n + «», we can write

2 of .2 2 2 of

r2 2

of
a, = ()" a + () o ) o
y axl Xy sz X, 3x1 ax2 x) X, .
Note the newly intréduced quantity Oy , the covariance between
172
x1 and Xy: namely
n
.2 dxl dx2
i=1
%%, n )
172

This quantity is zero if the errors dxl and dx2 are statistically
independent.
Let us expand our mocdel such that we have two random

variables Yy and ¥y which are both a function of the same two random

variables xy and X,. In equation form we have:

vy = £ (x.x)

Y, = f2 (xl,xz) .

Applying the concepts given above we can write the variance of vy, as:

Af, 2 af, 2 af,  3f
2
Oy T ) Ot ) Gl 2D G2 o,
1 1 1 2 2 1 2 1%2
the variance of Y, as:
af_ 2 af f of
2
oyt ) Ot ) 0t h (G o
2 p) 1 1 2 X2 1 2 1%

and the covariance between Yy and Y, as:

(A-16)

(A-17)

"(A-18)

(A-19)

(A-20)
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dy 3y dy, 3y
o, =D D ety GhHEH o 2 (a-21)
Y)Y, 5 TS B | X 9% X

3yl 3y2 ayl 3y2\ .

7
axl axz 3x2 axl xlx2

+ (

The above three equations can be written in matrix form as

follows:

c =Jc 3 .
Yy r¥, X, 0%, ‘ (A-22)

where the covariance matrix of xl and x2 is

Ce. x = . (A-23)

The Jacobian of transformation from the x's to the y's is

and JT is the transpose of J (above). The resultant covariance matrix

for the y's is

™ 7]
3y, 3y,
3x1 3x2
J = ’ (a-24)
3y, 3,
ax ax
L 1 2

c
Y11¥,

2
g
Y

o
Yy,

g
Y)Y,

2
g
Y,

(A-25)
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The covariance law is valid for any number of y's and x's.

In the case above

c,= 3 ¢ 3 (a-26)

where u = 2 and n = 2.

Note, the covariance law is also valid in terms of the sample
variances and covariances. The only thing that changes is the
interpretation of the results, which of course must be in terms of the sample

values and not the true or actual variances and covariances.





