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PREFACE 

The work done in preparing thi~ report was funded, under contract, 

by the Land Registration and Information Services, Surveys and Mapping 

Division. 

This report is not meant to co\'er all aspects of conformal 

mapping. The theory of conformal mapping is adequately covered in several 

referenced texts. This report concerns itself only with the theory of the 

stereographic double projection, particularly as it may apply to use in 

the Maritime provinces of New Brunswick and Prince Edward Island. The 

approach used herein is analytical; no numerical examples regarding 

coordinate transformations, plane survey computations, etc., are included. 

For numerical examples, the reader is referred to a manual entitled 

Geodetic Coordinate Transformations in the Maritimes [1977]. 
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1. INTRODUCTION 

i As is well known, the mathematical figure that is a most con-

venient rlepresentation of the size and shape of the earth is a biaxial 
i 

ellipsoid (ellipsoid of revolution) • Tra1itional geodetic computations 

are carr~ed out on this surface. tofuen or..e wishes to perform the same 

computatiJons on a plane, it is necessary to map the ellipsoidal infor-
' 

mation -points, angles, lines, etc. -on a plane mapping surface. A 

I 

convenienit mapping for geodetic purposes is a conformal mapping in which 
I 
i 

ellipsoidal angles are preserved on the mapping plane. 
I 

I 

I The stereographic projection of a sphere on a plane is 
i 

credited ~o Hipparchus (c. 150 B.C.), the same man to whom we are in-

debted for plane and spherical trigonometry. This mapping has the 

following properties [Grossmann, 1964]: 

(i) it 1 is a perspective projection whose perspective centre is the 

antipodal point of the point at which the plane is tangent to the 

I 
spfuere; 

I 

i 
(ii) it I, is an azimuthal conformal projection; 

(iii) is~scale lines are concentric circles about the origin of the 

pr~jection; 
' 

(iv) gr~at circles are projected as circles. 
i 

' !However, we are interested in the conformal mapping of a biaxial 

ellipsoid 1on a plane. There is no mapping of an ellipsoid to a plane that 
! 

all of the characteristics of a 

sphere to Ia plane [Grossmann, 1964]. The stereographic projection of an 

-e~l-l_i_p_s_o_i_d-+~-f~r-e_vo __ lution can be approached in two different ways: 
I 

1 
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(i) a dquble projection, in which the biaxial ellipsoid is conformally 
' I 

map~ed to a sphere, which is then"stereographically projected" to 
I 

a p~ane; 
' 

(ii) a "quasi-stereographic" mapping is obtained directly in which one 

of ~he properties of the spherical stereographic projection is 

rigorously retained while the others are only approximately fulfilled. 

The approach described in this report is one of a double 

projectiort. Ellipsoidal data is mapped conformally on a conformal sphere. 

Then, a second conformal mapping of the spherical data to the plane com-

pletes the process. Since the two mappings are conformal, the result is 

i 
a conformal mapping of ellipsoidal data on a plane. 



2. 'rHE CONFORMAL SPHERE 

In the development of the stere:::>graphic "double projection" of 

the ellipso~d to a plane, the conformal sphere is introduced as a nee-
' 

essary intermediate mapping surface. Once the ellipsoidal information 

is mapped o~ the conformal sphen', the application of the geometric and 

i 

trigonometr!ic principals fc>r the stereographic perspective projection of 

a sphere tola plane can be applie:d. The end result is a conformal 

I 

mapping of the ellipsoid on the plane. 

N6te that the projection of the ellipsoid on the conformal sphere, 

as develope~ by Gauss [Jord<m/ Eqgert, 1948], is a conformal mapping. 

Further, th~ meridians and : ~arallels on the ellipsoid map as meridians and 

parallels o~ the sphere. 

2.1 Direct (¢, A ~ x, /1.) Mapping 

A.differential length of a geodesic on the ellipsoidal surface 

is given by: (for example Krakiwsky (1973]) 

2 2 M2 2 2 2 
N cos <P (2)' sec ¢ d ¢ + d A ) (1) 

N 

i 

where N and iM are the prime vertical and meridian radii of curvature of 
I 

the ellipsofd at the point of interest designated by the geodetic 

latitude ¢ and geodetic longitude A. Similarly, a differential length 

' 

of a corres9onding arc of a grea-r circle on a sphere of radius R is 

given as ( fo\r example Jordan/Eggert [1948]) 

1 2 2 2 2 2 + d !1.2> I dS = R cos :1. (sec x d X (2) 
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in which x! and A are the spherical latitude and longitude respectively. 
! 

kow, the condition that the mapping of the ellipsoid on the 
I 

sphere be conformal can be expressed as {for example Richardus and Adler 

[19721) 

E G 
- = - = constant 
e g 

{3) 

where E, G~ and e, g are known as the first Gaussian fundamental quan-

tities of ~he sphere and the ellipsoid respectively. For the develop-

ment here,; (3) is re-written as 

(ix) 2 E' (2A) 2 G' ap ClA 
= = e g 

in which [Jhchardus and Adler, 1973] 

Substituti~g (5) 

or 

E' 
2 

G' 
2 2 = R ; = R cos 

2 2 2 
e = M ; g = N cos 

in (4) yields 

(l.x) 2 R2 <a/\,2 2 2 
R cos X acp oA 

= 
M2 2 2 

N cos <P 

~ ~ _ R cos X~_ 
M 3$ - N cos ~ ClA - k 

k2 

X 

<P 

= k2 

where the constant k is referred to as the point scale factor. 

Npw, we want the mapping to obey the condition 

X = f ( $) 

thus 

or 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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in which c1 is some constant. Then, (7) can be re-written as 

~ _ M cos X = k 
o~ - cl N cos ~ (11} 

The solutibn of this differential equation (11) is given by (for example 

H.J. Heuve~ink [1918]) 

in which e' is the first eccentricity of the ellipsoid and c 2 is an 

integratio~ constant. 

(12) 

Now, since c1 is a constant, and since th~ constant of integ-

ration wou~d only mean a change in the choice of a zero meridian, 

equation (10) yields directly 

fr -~~.-=-c_l_A ... I (13) 

It follows that if c1 , ~' x are known, the point scale factor 

k could be :computed from (7) as 

R cos X 
k = cl N cos ~ (14) 

The problem to be addressed now is the evaluation of the con-

stants c1 , ~c 2 , and R in order that one might obtain solutions for 

equations (12), (13), and (14). The method of solution given here is one 

in which, .for a particular differentially small region, the deviation of 

the point s'cale factor k from 1 shall be a minimum. While this stipulation 

is not mandatory, it is done for convenience and as an ideal case. 

The point (differentially small region) of interest on the 

ellipsoid - conunonly called the origin - is 
I 

its counterbart on the sphere by (X , A ) • 
f 0 0 
I 

designated by (~ , A), and 
0 0 

At this point, it is required 

that k = 1.\ Now the scale factor can be expressed as 

k = f <x> (15) 
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and when Jxpanded as a Taylor series (including terms to order 2) , to 

be evalua~ed at the origin, yields 

2 2 
d f(X)) ~ + 

2 0 2 
d X 

In the above expression 

f (X) = k 
0 0 

where k is the point scale factor referred to the origin (~ , A ) or 
0 0 0 

(X0 , A0 ). Now, with the conditions expressed above, one must have 

k ::: 1 
0 

dk 
-= 0 
dX 

0 

0 

Evaluation: of these derivatives yields (for example Heuvelink [1918]) 

dk sin $0 - c 1 sin x0 
--- = ----~----~------~ dx0 c 1 cos X0 

di2k 
2 

sin N cos 4> 1 0 0 
---- = + 

i 2 M 2 2 2 
clx o c1 cos xo cos xo cl 0 

Since k - 1, then directly from (14) 
0 

k 
0 

R cos x0 
= 1 = c 

1 N cos $ 
0 0 

4>0 sin xo 
2 

cos xo 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

Setting (19) equal to zero (as per the condition expressed by (18)), one 

then gets 

sin 4> - c sin xo 0 1 
0 = c 1 cos x0 

(22) 

or 

[ sin 4>0 = cl 

. 
sin xo I (23) 
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I 

I 2 2 
Then, sett+ng (20) equal to zero, multiplying each term by c 1 cos x0 , 

and re-writing yields 

2 ~ 2 
c1 - c1 sin ~0 sin x0 = M: cos ~0 

0 

(24) 

Now, replacing sin ~o by cl sin xo gives 

2 2 2 
N 

2 
sin 0 

~0 cl - cl xo =-cos 
M 

(25) 

0 

or 

(26) 

Now, squaring each of (23) and (26) and equating them yields 

2 
sin c. 

1 

or 

Rewriting (128) 

.2 
;cl = 

gives 

However, since 

then 

Replacing 

2 
xo 

as 

sin 

2 
cl 

2 2 2 2 
N 

sin 0 
+ cl cos xo = ¢1 + cos cf>oM 0 

0 

N 
2 2 2 

sin <P + 
0 

cl = cos cf>oM 

2 

= 

~ + 
0 

1 + 

N 
0 -= 

M 
0 

0 

2 
cos 

2 
cos 

0 

2 
N 

~ + ~0 ( 
0 1) cos 

0 M 
0 

N 
2 0 

<Po <P -- cos 
o M 

0 

and 
2 

a {1-e ) 
M = ----~~~~--~-

0 (1 2 . 2 ~ )3/2 -e SJ.n '~' 
0 

e 2 2 
1 + --2 cos ~ 

'~'o 
1-e 

(30) and manipulating terms yields 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 
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c = (1 + e 2 
2 cos4 ~ >112 (33) 

1 1-e o 

Now, to compute R, one proceeds as follows. Recall that for 

the case at hand, k = 1, therefore from (21) 
0 

N cos cj>o 
R 0 

cl cos xo 

From (26). 

cos cj>o r_;_ 
cl = cos X M 

0 0 

Then, sub~tituting for (34) one gets 

= IN M I· 0 0 

Finally, hhe constant c 2 is evaluated via a re-written 

(12) , namely 

version 

IT x0 cj> 1-e sin ~ 
tan(-+--) {tan(~+_£) ( o)e/2} ~cl 

4 2 4 2 l+e sin ~0 

(34) 

(35) 

(36) 

of equation 

(37) 

. In summary, the direct transformation, with k = 1, proceeds as 
0 

follows. · Select an origin (~ , A ) • Compute the radius of the conformal 
0 0 

sphere using (36), then the constant c1 by (33). Then, X can be 
0 

evaluated 1 by (23) and A0 from (13). Finally, the constant c 2 is computed 

using (37). The evaluation of further (X, A) from any (~, A) is then 

carried out using equations (12) and (13) using the already computed 

constants c1 , c2 , k0 , and R. 

Recall again that this development is for k = 1. If one were 
0 

to select1 k equal to another value, then R would change as is obvious 
0 

from the expression obtained combining (21) and (26) with k ~ 1, namely 
0 

R = k I M N (38) 
0 0 0 
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2.2 Inverse (X, A+ ~, A) Mapping 

It is assumed for this section that the fundamental definition 

of coordinates is in terms of a biaxial ellipsoid. Furthermore, it is 

assumed that the required constants - c 1 , c 2 , k0 , R- have been computed 

as outlirted in section 2.1. 

The transformation of conformal spherical longitude to geodetic 

(ellipsoidal) longitude is given by a simple re-arrangement of terms in 

equation (13) namely 

t" = A/cl I· (39) 

The solution for ~ from X cannot be solved for directly from 

(12) . I~ can.however be solved for via the Newton-Raphson iteration tech-

nique. Briefly, one proceeds as follows. Given a non-linear function 

f (x) = 0, 1 select an initial approximate value x (n-l) . Evaluate the 

iterativ~ improved solutions x from 
n 

=X -
n-1 f' (x) ' 

f{x) 
n=O, 1, 2 , • • • I• (40) 

in which :f'(x) is the first derivative of the function f(x). The process 

is continued until lx - x 1 1 < £ , where £ is a predetermined limit. 
n n-

In the case X + ~ , one starts with ~ = x as a first approx-

imation. The equation (12) is re-written as 

tan (.!!. + A) = 0 
4 2 

{41) 

The first derivative with respect to~. f'(~) is 

(42) 
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The iterat~ve process (4o) should be continued until e: is less than 

1/100,000 of a second of arc (less than 1 mm). 

2. 3 Summary 

The conformal mapping of a biaxial ellipsoid on a conformal 

sphere has been developed. While most equations are of a general nature, 

the reader: is again cautioned that the final results yielding R = I N M ' 
0 0 

was based on k = 1. . 0 

The choice of constants - c 1 , c 2 , R- can lead to several 

alternative conformal mappings. The constant c1 is a function of only 

ellipsoidal eccentricity e and geodetic latitude cp0 of the origin. It 

can be se~n, using equation (33), that at the equator (cf> = 0°) 
0 

and from ~quation (37) 

Furthermo~e, if k = 
0 

1, 

(-1-) 1/2 
2 

1-e 

II Xo 
c = tan(-+-) 

2 4 2 

then from (34) 

R = 
a(l-e2)1/2 

cos xo 

since at ~0 = 0, N = a and cos cf>o = 1. 
0 

At the pole (cf> :::; goo) , one gets 
0 

(43) 

(44) 

(45) 

from ( 33) that 

(46) 

However, the problem now arises that c 2 is undefined at the pole (check 

with cf> =goo in equation (37)). For a treatment of the polar stereo­
a 

! 

graphic ptojection of the ellipsoid on a plane, the reader is referred 

e4arnple, Krakiwsky [lg73], pp. g2-g4, to, for 

In this report, only the oblique case will be dealt with here-
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after. Furthermore, the treatment will be limited to the case in which 

the elliJsoid is conformally mapped on a sphere and vice-versa, such that 
I . 

i 

R = ~ and k0 = 1, with c 1 and c 2 being determined by equations (33) 

and (37) ~espectively. 
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3. CpNFORMAL MAPPING OF THE CONFORMAL SPHERE ON A PLANE 

This process - the mapping of the sphere on a plane - is what 

is commonly referred to in the literature as the "stereographic projection". 

In our ca'se, where we are interested in the conformal mapping of the 

ellipsoid' on a plane, it is the second step of the "double projection" 

process. 

3.1 Geometric Properties 

As has been mentioned previously, this part of the mapping 

process is commonly referred to as a perspective projection. The pers-

pective 80int P (Figure 1) is diametrically opposite the origin 0. To 

I 

project ~ny point Q on the sphere to the mapping plane, one need only draw 

a line f~om P through Q to obtain the projected point Q' (Figure 1). It 

should b~ noted that Figure 1 depicts the situation in which the mapping 

plane is tangent to the conformal sphere at the origin 0, while in Figure 

2, the m~pping plane becomes a secant plane. As will be shown later, the 

differen~e between the two cases is expressed analytically as a change in 

the seal~ factor at the origin (k'). 
0 

The stereographic projection (~phere to plane) is generally 

i 

treated ~uch that three distinct cases arise as to the position of mapping 
I 

plane re]ative to the sphere. The three are the normal (polar) (see 

I Figure 3)1, 

on.g~n cdl 

conformal 
I 

I 

transverse (see Figure 4) , and oblique (see Figure 5). The 

of the normal (polar) stereographic is one of the poles of the 

sphere with the opposite pole as the perspective point. 
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Figure 1 
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SterJographic (Spherical) Projection (Tangent Plane) 
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p 

(a) Secant Plane (b) 

Po tnt 
of con.t.>et 

0 

p 

Tangent Plane 

__ Longiluc{e l'tericfi.;m 

(c) Projected Meridians and Parallels 

Figure 3 

Normal (Polar) Stereographic Spherical Projection 
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(c) Mapping of Parallels and Meridians 

Figure 4 

Transverse Stereographic Spherical Projection 
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SP 

(b) Secant Plane 

(c) Mapping of Parallels and Meridians 

Figure 5 

Oblique Stereographic Spherical Projection 
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Parallels of latitude map as concentric circles, while longitude meridians 

map as straight lines radiating from the origin (Figure 3(c)) [Thomas, 

1952; Richardus and Adler, 1972]. The transverse stereographic has its 

origin at some point on the spherical equator (Figure 4) • The spherical 

equator then maps as a straight line, as does the meridian through the 

origin (Figure 4(c)). All other meridians and parallels map as parts of 

circles [Thomas, 1952; Richardus and Adler, 1972]. The choice of the 

origin for an oblique stereographic mapping is arbitrary. The meridian 

through the origin maps as a straight line. All other meridians and 

parallels map as circles (Figure 5(c)) [Thomas, 1952; Richardus and Adler, 

1972]. 

3.2 Direct (X, 1\ + x, y) Mapping 

Figure 5 shows the elements of interest as they appear on the 

conformal sphere. As before, the point 0 is the origin and Q is the point 

to be mapped. Figure 6 depicts the section of the conformal sphere con­

taining O, Q, C (centre of the sphere), and P (perspective point). In 

Figure 7, a plan view of the mapping plane and the sphere (along the line 

0 C P) is given. 

From Figure 8, it can be seen that the plane (x, y) mapping 

coordinates of the projected Point Q' are given by 

X S COS S 

y s sin S 

in which, from Figure 7, sis given as 

s = 2 R tan o/2 

(4 7) 

(48) 

Now, using respectively the cosine and sine laws of spherical trigonom­

etry in the spherical triangle 0 N Q (Figure 6), one finds 
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I 

- . ----·- .... -· 

Figure 6 

Map · p1ng of the Conformal Sphere on 
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\ 
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a Plane 
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Figure 7 

Geometric Interpretation of the Stereographic Projection (Sphere to Plane) 

./ 
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i 
I 

( 
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\ 
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\ 
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\ 

' ·' 

'~-
p 

~-• o• , ·-----¥·-•-·•-• • •·•-- N ••• 

Projection Plane 

Figure 8 

Plan View of Stereographic Projection (Sphere to Plane) 



coso= cos(90- x·)cos(90- X) + sin(90- X )sin(90- X)cos ~A , (49) 
0 0 

and 

in which 

The above 

sin(90 - S) = sin(90 - x> 

,_\ i~ = A - A 
0 

equations (49) and (50) , finally 

sin Mo. 
sine 

yield 

. cos c5 = sin xo sin X + cos xo cos X cos 

cos 8 = cos ;( 
sin !!A 
sino 

Now, using the trigonometric identity 

e 
tan - = 

2 
1 - cos a 

sin 9 
sin e = ..::..::.;:=--~ 
1 + case , 

, . (50} 

(51) 

6 A , (52) 

(53) 

(54) 

substituting in equation (48) for tan 0/2, thence in (47) for s, yields 

or 

X = 2 R sin c5 

1 + cos s 
cos x sin 6A 

sino 

cos x. sin 6A 
X = 2 R --------~~~-~~--~---------------~ 1 + sin x0 sin X + cos x0 cos x cos !!A 

(55) 

(56) 

using the spherical triangle 0 Q N (Figure 6), and the· five parts r~1e 

of s~herical trigonometry, one gets 

cos(90-S)sinO = cos(90-X)sin(90-X ) - cos(90-x }sin(90-x}cos !!A , 
0 0 

or 

sin 
sinX cos x0 - sin x0 cos x cos 6A 

8 = ------------~. --~0-~~------------
s~n 

Substituting for sin S and s in (~7) now yields 

sin 6 
y = 2 R ~ 

!+COS. u 

and finally 
sJ.n X cos 

2 'f = R 
1 + sin X 

xo 

sin X cos X0 - cos X sin x0 cos 6A 

sin 6 

- cos X S:tn X cos 2-J\ 
0 

sin xo + cos X cos xo cos t-.A 

(57) 

(58} 

(59) 

(60) 



These equations - (56) and (60) - for the mapping of a point from the con-

formal sphere to a plane are identical to those found in the literature 

(for example, Jordan/Eggert [1948]; Richardus and Adler [19721>. 

To close t.~is section, it is left to show: 

(i) that the mapping is conformal; 

(ii) how one deals with a scale factor other than k' = 1 at the origin 
0 

<x , A > ; 
0 0 

(iii) how one computes grid coordinates •. 

Thomas [1952] shows tha.t for mapping any surface on a plane, the 

mapping is conformal 5.f 

F = 0 
(61) 

G U 
- =-.e v 

in which E, F. and G are the Gaussian fundamental quantities, defined here 

as 

I 

, 

u and v are any functions such that 

U = U(A) 

v = v<x> 

Evaluating the derivatives, one obtains 

{sin x + sin x0 ) ax 
--- 2 R sin ~A(~----~----~--~------~----------~~~ ax- (1 +sin X sin X +cos X cos x cos AA>2 

ax 
a;\= 2 R cos X 

0 0 

cos ~A (1 + sin x sin x0 ) + cos x cos x0 

(1 +sin X sin X +cos X cos X cos ~A) 2 
0 0 

(62) 

(63) 

(64) 

(65) 
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cos 6A(l + sin X sin Xo) + cos X cos xo ~ 2 R ( ) (66) 
ax (l + sin X sin xo + cos X cos Xo cos llA) 2 

Cly 
sin X + sin xo 

at\ 2 R sin /).f.. cos X ( ) 

(1 + sin X sin X + cos X cos xo cos llA) 2 
0 

(67) 

Substituting in (61) yields 

F 0 

and 

G u 1 -
E v 2 

(68) 
cos X 

proving that the mapping, represented by equations (56) and (60), is 

conformal. Finally, since the mapping of the ellipsoid to the conformal 

sphere was developed as a conformal mapping (section 2.1), and since the 

mapping of the conformal sphere to the plane has been proven to be con-

formal, then the entire mapping - ellipsoid to plane - through a double 

projection process, is conformal. 

Thus far, it has been assumed that the mapping plane has been 

tangent to the conformal sphere at the origin. This infers a scale factor 

of unity (k' = 1) at the origin. In the case where k' takes on a value 
0 0 

other than unity, the mapped coordinates must change. It can be shown 

(for example, Jordan/Eggert [1948]) that the resulting mapping coordinates 

are given by 

X = k' 
0 

y = k' 
0 

[2 R 1 + sin x sin X + cos X cos X cosllAJ 
0 0 

cos X sin 11A 

sin X cos x0 - cos X sin x0 cos llA 

[2 R 1 + sin X0 sin x + cos X0 cos X cos llA] · 

The development of an expression fork' is given in section 4.1. 

(69) 

Finally, the topic of "grid" coordinates must be dealt with. 

The origin of the plane coordinate system for the stereographic projection 
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is the ellipsoidal point (~0 , A0 ), or equivalently the spherical point 

(X , A ) . The orientation of the coordinate system axes is given in 
0 0 

Figure 7. To avoid negative coordinates, it is common practice that some 

"false" coordinates - other than x = 0 y = 0 - be assigned to the origin 
0 , 0 

of the plane coordinate system. The shifted plane coordinate system is 

commonly referred to as the mapping "grid". Designating grid coordinates 

by X, Y, the arbitrary origin coordinates (sometimes referred to as the 

"false" origin) by x y , and the mapped coordinates by x, y (from 
o' o 

equations (69)), then the following relationship is established: 

X = X + X 
0 

y 

It should be noted that when dealing with the direct <x, A ~ x, y) or 

(70) 

inverse (x, y ~ x, A) mappings, one operates with the mapping coordinates 

(x, y) • 

3.3 Inverse (x, y ~ x, A) Mapping 

Applying the cosine law to the spherical triangle 0 N Q (Figure 

6) , yields 

cos (90 - X) cos(90- X )cos o + sin(90- X )sin o cos(90 - 8), 
0 0 

or 

fsin X= sin X0 coso+ cos x0 sino sin 8 

This equation is used directly for the solution of x for a point of 

interest since, from Figure 8, 

and from Figure 7 

S = sin -l (y_) 
s 

s = ( 2 2)1/2 
X + y 

(71) 

(72) 

(73) 

(74) 
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-1 
6 = 2 tan 

s 
2R 

Similarly, the sine law yields 

Finally, 

sin f>..A 
cos B sin 6 

cos X 

3.4 Summary 

Special cases of the spherical mapping equations are easily 

(75) 

(76) 

obtained from the general ones given in section 3.3. For example, when 

X0 = 90° (polar) , then (69) reduces to 

Similarly, when X 
0 

x = k 1 [ 2 R cos x sin l'IA1 
o 1 + sin x 

Y = k I [2 - cos X cos l'IA] 
o R 1 + sin x 

0° (transverse) , then (69) becomes 

kl [2 R ~o: X sin tJ.A 
tJ.A] X = 

0 cos X cos 

y kl [1 
sin X 

cos Ml 0 + cos X 

The analytical expressions for the conformal mapping of 

ellipsoidal points on a plane via the stereographic double projection 

process have now been completely developed. In brief, one maps any 

(77) 

(78) 

ellipsoidal point (~, A) to its conformal spherical counterpart (X, A) via 

equations (12) and (13). Mapping plane coordinates (x, y) are then 

computed from (X, A) using (69}, and finally, grid coordinates are obtained 

via (70). 
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The remainder of this report deals with two items: 

(i) the reduction of ellipsoidal data - directions, distances, azimuths -

to the mapping plane so that plane computations can be carried out 

correctly; 

(ii) the propagation of the variance-covariance information associated 

with the (¢, A)'s to equivalent information associated with the (x, y) 's. 
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4. SCALE FACTOR, MERIDIAN CONVERGENCE, (T - t) 

THe conformal mapping of ellipsoidal points, designated by 

geodetic coordinates (~, A), to the plane, designated by coordinates 

(x, y), using the stereographic double projection technique, was given 

in Chapters 2 and 3. To carry out computations on the mapping plane 

(e.g. direct problem,· intersection, resection), ellipsoidal quantities 

must be similarly mapped. In this chapter, the mapping of ellipsoidal 

distances, azimuths, and directions (or angles) are treated. 

4.1 Scale Factor 

In section 2.1, the point scale factor for the mapping of 

ellipsoidal data to the conformal sphere was shown to be given by 

equation (14),namely 

k = c R cos X 
. 1 N cos ~ 

The point scale factor for the mapping of the conformal sphere 

on the plane is derived as follows. In Figure 9, the element of arc dS 

is projected to the mapping plane as ds. The arc element dS can be 

expressed as 

dS = R d ~ • {79) 

Using plane trigonometry, the length ds is determined as follows. The 

triangle POQ' yields the length PQ' by 

PQ I _2_R--=~ 
= cos 0/2 (80) 

The length of the side Q'A in the triangle PQ'A is then 
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Sphere to Plane Point Scale Factor 
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Q'A PQ' 
do Rd 0 . -= 

0/2 2 cos 
(81) 

Now, from Q'AT' 

ds 
Q'A R d a 

= a/2 cos 2 
a/2 cos 

(82) 

The scale factor is then expressed as 

ds R d a/cos 
2 

a/2 k' -= 
dS R d a 

or 

k' l 
2 

cos a/2 
{83) 

From equation (52), 

cos 6 = sin x0 sin X + cos x0 cos X cos 6A 

and we know that 

2 l + cos 6 
cos 6/2 = ( 2 ) 

Equation (83) in its final form is then 

k' 
2 

(84) 
1 + sin x0 sin x + cos x0 cos x cos 6A 

If the scale factor at the origin of the mapping <x0 , A0 ) is other than 

unity - say an arbitrary value k' - then the general expression for the 
0 

point scale factor is 

k' = k' 
0 (1 + sin X sin X + cos X cos X cos6A) 

0 0 

2 
(85) 

The point scale factor (m) for the double projection - ellipsoid to plane -

is obtained simply as 

m k • k' 

or 
r---~--~~----------------------------------------~ 2 c 1 R 

N 
m 

cos 
(86) 

cos ~(1 + sin X0 sin X + cos x0 cos X cos ~A) 
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Again, if one has a scale factor at the origin that is designated to be 

other than unity, one need only multiply the value obtained from (86) by 

the designated value m . 
0 

A simpler approach to the problem is as follows. It is known 

that the scale factor is given by (for example, Krakiwsky [1973]) 

2 
m = <*> 2 + c1f> 2 

2 2 
{87) 

N cos <fl 

Now 

ax ax a A 
-= . 
3:\ af'l a>. 

(88) 

1x.= 3y • 'dl\ 
a>, af'l 3A 

From (9) we know that 

and from (65) and (67), ox/of\ and oy/31\ are given. Substitution in (87) 

and a re-arrangement of terms yields 

m 
cos (89a) 

cos <fl(l + sin x0 sin x + cos x0 cos X cos ~/\) 

The above equation is identical to that derived previously. 

It can be shown that the point scale factor for the mapping of 

ellipsoidal data to the conformal sphere, given by equation (14), can be 

neglected for any practical purposes. That is, the factor, 

c 1 R cos X 

N cos <fl 

-7 
in equation (89a) causes changes in m in the order of 1 x 10 Thus, for 

practical purposes, the point scale factor for the double projection may 

be computed from equation (85). With this in mind, we derive an express-

ion for the point scale factor in terms of the grid coordinates as follows. 
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From equations (47) , (48) , (69), and (70) we get, 

X - X = 2k' R tan 6/2 cos a 
0 0 

y yo = 2k' R tan 6/2 sin a 
0 

which gives 
2 ) 2 (X - X ) + (Y -2 

6/2 
0 yo 

tan 
4 (k I) 2 R 

2 
0 

Now from (83) , (84), and (85) and neglecting the scale factor from the 

ellipsoid to the 

m ::: k' = 

or 

conformal sphere, 

1 
2 

k' ) k' (OS 
0 2 

8/2 0 
cos 

m ::: k' 
0 

2 
(1 + tan 0/2) 

6/2 + sin 
2 

2 
6/2 cos 

2 
or, substituting the previous expression for tan 6/2, 

m ::: k' + 
0 

2 2 
(X - X ) + (Y - y ) 

0 0 

6/2) 

This equation gives the point scale factor from ellipsoid to plane 

(89b) 

-7 
accurate to approximately 1 x 10 for an area the size of New Brunswick. 

The topic of a line scale factor is often raised when dealing 

with conformal mapping. In many cases, expressions are developed - in 

terms of mapped coordinates x, y - for use in surveying computations. 

However, as has been shown by several authors (for example, Jordan/ 

Eggert [1948]), these expressions are nothing more than functions of the 

point scale factors at the end and mid-points of a line. For example, 

Jordan/Eggert [1948] develop the expression for a line ij as 
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m.. s 
1.] 

]_ ( .!_ __ + ~ + .!__) 
6 m. m m. 

1. m J 

l s --= 

in which S is the ellipsoidal distance, s the plane distance, and m., 
l. 

(90) 

m, m. are the point scale factors at i, the mid-point of the line (m), 
m J 

and j respectively. 

One final point about scale should be noted - the isoscale lines 

on the conformal mapping plane are not concentric circles about the origin. 

This property is adequately explained, for example, by Grossmann [1964] , 

p. 221. 

4.2 Meridian Convergence 

Meridian convergence (y) for a conformal projection is given 

by, for example, Krakiwsky [1973] 

tan y 
ay;n 

= ax; ax (91) 

From equations (88), then (9}, (65) and (67) respectively, one gets 

sin b.A(sin X + sin X ) 
2 c1 R cos X 0 

(1 + sin sin 
2 

X xo + cos X cos xo cos b.A) 
tan y = (92) 

cos X cos X + (1 + sin X sin X ) cos b.A 
2 c1 R cos X 

0 0 

2 
(1 + sin x sin xo + cos X cos xo cos b.A) 

or when reduced 

tan y = 
sin b.A (sin X + sin X0 ) 

(93) 
cos X cos X + (l + sin X sin X ) cos b.A 

0 0 

It can easily be shown, using equation (91) that meridian con-

vergence is equal to zero when mapping the ellipsoid on the confonnal 

sphere. While this fact, on its own, is of no great consequence, it is 

important if one wishes to derive the (T - t) correction for the mapping 

of the ellipsoid on a conformal sphere. 
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4. 3 (T - t) 

The (T - t) correction is important for survey computations on 

the plane. It is needed in the reduction of a geodetic azimuth and of an 

ellipsoidal direction (see Figure 10) . For the conformal stereographic 

double projection, the rigorous determination of the (T - t) correction 

requires two parts: 

(i) that caused by the mapping of the ellipsoidal data on a conformal 

sphere; 

(ii) that caused by the mapping of the conformal spherical data on a 

mapping plane. 

Let us deal with (i) first. 

Jordan/Eggert [1948] pp. 256-260 present a rigorous derivation 

of the ellipsoidal to spherical (T- t). The result of this is 

2 k. sin a .. + k. sin a .. 
(T - t) 

1 1] J ]1 s 
= -

3 R 
(94} 

in which k.' k. are defined for the end points of a line ij by 
1 J 

2 2 
4> 

02 
k = p" . (e 1 ) cos . tan 4> . x._ 

(e I) 2 2 4>>1/2 p02 (1 + cos 
(95} 

In equations (94) and (95) above, a .. and a .. are the direct 
1] ]1 

and inverse geodetic azimuths, s the plane length of the line ij, 

R the radius of the conformal sphere, e 1 the second eccentricity of the 

ellipsoid and p" = 206264.806 ••. and p 0 = 57.29578 •••• Using this infor-

mation, one obtains (T - t) in seconds of arc. 

The development of the expression for the ellipsoid to conformal 

sphere (T - t) has not been presented here. The main reason for this is 

that for any region over which one may apply the stereographic double' 

projection, this portion of the total (T - t) correction is insignificant. 
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Meridian Convergence and (T-t) 
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For example, in Hungary, where the extent of the territory is approx-

imately 5° in longitude and 4° in latitude, this portion of the (T - t) 

has not been used [Jordan/Eggert, 1948]. Furthermore, if one computes the 

following example 

<1>2 
f..)... = 10 

one finds 

(T- t) 12 = + 0~019, (T- t) 21 = 0~015 

Clearly, for the two provinces in Canada that use the stereographic double 

projection, these corrections are insignificant and can be safely neglected. 

The second part of (T - t) - sphere to plane - is of greater 

concern. An adequate derivation is given as follows. 

In Figure 12 we see that the lines O'P' and O'Q' are true 

images of the lines OP and OQ in Figure 11. This is because the great 

circles radiating from the origin of the stereographic projection map as 

straight lines. The great circle from P to Q however, maps as an arc of 

a circle. As a result of its being a circle, we have that (T - t)PQ = 

- (T - t)QP and since the projection is conformal the sum of the angles 

is the same in the spherical triangle and the projected triangle. There-

fore we have that 

(T - t) = E/2 
PQ 

where £ is the spherical excess of the triangle OPQ. 

From spherical trigonometry 

cot (t./2) 
cot (oOP/2 ) cot (o0212 > 

cot(~ POQ) + sin << POQ) 

therefore 

cot (T - t) 

(96) 

(97) 

(98) 



/ 

I 
I 
/ 
I 
I 

I 
I _... 
I a 
I 
I 

I // 
I 
k' 

35 

Figure 11 

Spherical Triangle OPQ 
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Figure 12 

(T-t) Sphere to Plane 
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From the derivation of the inverse coordinate transformations, we have 

. -1 Yp 
B = s1.n -

OP sp 

-1 Yn 
sin -A 

-1 sp 
tan (--) 

2k'R 
0 

6 -1 s 
....22. = tan (..:=.2._) 

2 2k'R 
0 

Using the trigonometric identities 

and 

then 

or 

cot (A _ B) = cot A cot B + 1 
cot B - cot A 

-1 
cot (sin A) 

0 
A 

p 
~ ;1--:-: 

----.5.-- + 1 

cot (13 - B )= 
OP OQ 

cot (8 - B )= 
OP OQ 

s 

;:-;; 
~~--:: 

Q 

- y 
Q 

2 

(99) 

(100) 

(101) 

(102) 

(103) 

(104) 

(105) 

+ 1 

(106) 
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Noting that /s 2 - y 2' = x 

then 

or 

XPXQ+YPYQ 
cot (S - B ) = - -

OP OQ XQ yp - y X Q p 

If we now use the trigonometric identities 

-l 
cot (tan A) 1/A 

sin (A - B) = sin A cos B - cos A sin B 

. ( . -l ) s1n S1n A = A 

cos (sin-1 A) = / l - A2' 

the second term in equation (98) becomes 

cot (o0 P) cot (o0 Q) 

sin (SOP - SOQ) 

Therefore, 

(;:'k' 
0 

s 
p 

yp 

s 
p 

R)2 

s 
Q 

X 
Q -

s 
Q 

(2k I R) 2 
0 

YQ xp 

s s 
Q p 

2 
(2k 1 R) 

0 

yp X - y X 
Q Q p 

2 

cot (T-t)PQ 

X X + y y + ( 2k I R) 
P Q P Q o __ 

XQ Yp - xp YQ 

(107) 

(108) 

(109) 

(110) 

(111) 

(112) 

(113) 

(114) 

(115) 
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2 
-l xp XQ + Yp Yg +(2k'R) 

( 'r - t) == cot (~----'1i0.---=--_;;.=--....:0::.,.._--\) 
PQ xQ Yp _ ~ YQ 

(116) 

Since this equation is unstable for (T - t) small, which it always is, 

it is re-written as 

(T - t) PQ (117) 

In summary, it should be noted that for rigorous corrective 

procedure, the (T - t) for the stereographic double projection would be 

the sum of the results of equations {94) and (117). However, as has been 

previously stated, the ellipsoid to sphere (T - t) can be safely 

neglected, thus leaving the user to cope only with the (T - t) for sphere 

to plane represented analytically by equation {117). 
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5. ERROR PROPAGATION IN COORDINATE TRANSFORMATIONS 

When transforming ~. A coordinates to plane (X, Y) grid coord-

inates we may also wish to transform the ~. A covariance matrix to obtain 

the X, Y covariance matrix. The rigorous development of this trans-

formation as well as the inverse transformation (i.e. the transformation 

of the X, Y covariance matrix to the ~. A covariance matrix) is the subject 

of this chapter. Readers not familiar with basic matrix algebra and the 

theory of propagation of variances and covariances are referred to 

Mikhail [1976]. 

Let 
2 

a~ a~,>. 

~,A (118) 

cr~,A 
2 

crA 

and 2 
crx <JXY 

fx,Y 
2 

(J (J 
XY y 

denote the covariance matrices of the ~. A and the X, Y coordinates 

respectively. Then, from the theory of propagation of variances and 

covariances [Mikhail, 1976]: 

ax ax ax ay 

f.x,Y 
a<P li 

= ~,A. 
a<P a<P (120) 

ay ay ax aY 
a<P a>. n a>. 

or 

f.x,Y (121) 
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where the matrix J (we denote matrices here by an underlined uppercase 

letter) is 

ax ax 
-

J a¢ a>. 
(122) 

ay ay 
a¢ aA 

and Jt denotes the transpose of J. 

To carry out the transformation of equation (121) then, we must 

f d 0 ax ax aY aY 
determine the elements o J, i.e. we must etermlne ~· 3i' ~and 3T· 

We note that 

ax ~~ ax aA 
( 123) - + --

a¢ ax a¢ aA a¢ 

ax ~~ ax a A 
(124) +--

a>.. ax a;_ a A a;_ 

aY 3Y av aY a/\ 
(125) - ---'-'-'-

+a!\~ a¢ ax aq, 

and 

(126) 

for the stereographic double projection. Thus, we must determine 

0 f h 0 1 d 0 0 ax ax CJY ay ax av aA 
expresslons or t e partla erlvatlves ax' aA' ax' aA' ~· at· ~ and 

Cl/1. 
a>.. 

From equations (69) and (70) we have 

2 k I R cos X sin !J/1. 
0 

X X + sin 0 1 + xo sin X + cos xo cos X cos I'!. I\ 
(127) 

2 k' R(sin X cos xo - cos X sin xo cos !JA) 
y 0 

y + sin 0 1 + xo sin X + cos xo cos X cos 111\ 
( 128) 

from which 

ax 
(sin X + sin xo ) 

dX 
2 k' R sin 61\( ) 

0 
(1 l'c.A)2 + sin X sin xo + cos X cos xo cos 

(129) 
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ax cos Ll.i\(1 + sin X sin xo ) + cos X cos xo 
-= 2 k' R cos X( ) all. 0 

(1 + sin sin + cos MI.) 2 X xo X cos xo cos 
(130) 

cos Ll./1.(1 + sin X sin xo ) + cos X cos xo ay 
2 k' R( ) -ax= 0 

(1 sin sin Ll.fl.)2 + X xo. + cos X cos xo cos 
(131) 

sin x + sin x0 aY 
aA - 2 k~ R sin LI.A cos x<-----------------------------------------). (132) 

(1 +sin X sin X +cos X cos X cos Ll.fl.) 2 
0 0 

From equations (12) and (13) we have 

X 

from which we get 

(c -1) . 1 2 
2c1c 2 {q tan r} 1 • q{2 sec r 

in which 

and 

Also 

and 

2 { }2c 1 + c q tan r 1 
2 

q = (1 - e sin cp)e/2 
1 + e sin cp 

r = (I!. + 1, 
4 2 

~- 0 aJ.. -

0 

IT 
4 } , 

2 
e cos cp tan r } 

( 2 . 2 J. 
1 - e s1.n 'I' 

(133) 

(134) 

(135) 

(136) 

(137) 

(138) 

(139) 

(140) 
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Now, from equations (123) to (126) we have 

ax m 
-= - . u aq, n 

(141) 

ax p 
-= cl - cos X , a A n 

(142) 

ay P 
a¢ = {.- • u (143) 

and 

ay m 
ai = c1 ; cos x, (144) 

where 

m = 2 k' R sin t.l\(sin X + sin Xo) 
0 

(145) 

n = (1 + sin X sin xo + cos X cos xo cos t.l\)2 (146) 

p 2 k' R (cos ill\(1 + sin x sin xo ) + cos X cos xo> 0 
(147) 

(c -1) 
2 2 

cos q, tan • q{ sec r e r} 2c1 c 2 q{tan r} 1 2 2 2 
(1 - e sin q, 

u = 
2 r}2c1 1 + c2{q tan 

(148) 

Substituting equations (141) , ( 14 2) , (143), and (144) into equation (122) 

gives 

m p . u cl . . cos X 
n n 

J = (149) 

p m . u cl . . cos X 
n n 

and finally we obtain CX from equation (121) . For the inverse trans­
- ,Y 

formation (i.e. transform ~X,Y to get ~,A) we have 

-1 

c 
-X,Y 

J c 
-X,Y 

-1 
J ~~,A 

J t 

(repeated) (121) 

(150) 



thus 

-1 
J c 

-x,Y 

-1 (Jt)-1 
J fx, Y 

-1 
s;p,A = J 
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C J t 

~,A 

(Jt,-1 
fx,Y 

(151) 

(152) 

(153) 

It should be noted here that certain approximations may be made 

in equations (145) to (148) to obtain sufficient precision in equations 

(121) and (153). This is left for the reader. Also, if one wishes to 

propagate variances for more than one point, a hyper-matrix equation may 

be formulated from equation (121) or (153) as follows. 

Let ~,A be the covariance matrix of two Points, i.e. 

2 
a<P a a a 

1 <j>lA1 <1>1<1>2 <j>1A2 

2 
a<P A. a A. a a 

1 1 1 A.1<j>2 A.1A.2 

s;p, A = 
2 

(154) 

a a a<P a 
<1>1<1>2 A.l<j>2 <j>2A2 2 

2 
a<P A a a (\ 

1 2 A.lA.2 <j>2A2 2 

Then we may write: 

2 
ax a a a 

1 XlY1 xlx2 XlY2 

2 
a cry a a 

XlYl 1 YlX2 yly2 

fx,Y 2 
a a a a 

x1x2 YlX2 x2 X2Y2 

(155) 

t,/? 2 
a a a a 

XlY2 yly2 X2Y2 y2 

~s;p,A.i! 
t 

(156) 
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where now 

ax1 ax1 ax1 ax1 

aq,l a>.. 1 aq,2 a>..2 

()y1 ClY1 ClY1 ClY1 

aq,l a>..l <1¢2 a>..2 

J = ( 157) 
ax 2 ax2 ax2 ax2 

Cl¢1 a>..1 aq,2 a>..2 

()y 2 ()Y 
2 

'"y 
I) 2 ()Y 

2 
aq,1 ;)A )<jl 

2 a>..; 

But of course 

ax1 ax1 ClY1 ()y1 ax2 ax2 ay2 (ly 
2 

0 {158) --= --= 
a>..2 = 

-- = --=--= --= 
a<P2 a "2 a<jl2 ()<jl1 (!/..1 Cl<jl1 a\ 

Thus 

ax 1 ax1 
0 aq,l a\ 

() 

()y1 ay 
1 0 0 i1 0 

a<P1 a>..1 

J = = (159) 

0 0 
ax 2 ax2 

0 .'2.2 aq,2 ()/..2 

0 0 
ay2 ()y2 

d<jl2 dA2 

and 

:J 
t 

.'2.1 ~1 0 

c ~,!.. (160) 
-X,Y -~ 

t 
0 0 ~2 

where ~-,A and c 
-X,Y 

are of t.he form given in equations (154) and ( 1')5) 

respectively. The inverse transformation of equation (160) is given :t_,y: 
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(161) 

It should be noted here that any covariance between separate 

stations is being propagated in equations (160) and (161) where if we use 

equations (121) and (153) for each station separately, we are ignoring 

this covariance information. Equations (160) and (161) may be expanded 

for any number of stations 1n a similar way. For example, for three 

stations; 

0 0 
-1 t -1 

~1 Jl 0 0 

~,A 0 ~2 0 ~X,Y 0 
t 

~2 0 (162) 

0 0 ~3 0 0 
t 

~3 

where ~,A and ~X,Y are now covariance matrices of dimension six by six. 



47 

REFERENCES 

Grossmann, w. (1964). Geodatische Rechnungen und Abbildimgen in der 
Landesvermessung. Stuttgart: Verlag Konrad Wittwer. 

Heuvelink, H.J. (1918). De Stereografische Kaartprojectie in Hare 
Toepassing. Delft: Technische Boekhandel J. Waltman Jr. 

Jordan/Eggert (1948). Handbuch der Vermessungskunde. J.B. Metzlerche 
Verlag buch handlung und C.E. Paeschel Verlag GmbH. 

Krakiwsky, E.J. (1973). Conformal Map Projections in Geodesy. Department 
of Surveying Engineering Lecture Note No. 37, University of New 
Brunswick, Fredericton. 

Mikhail, Edward M. (1976). Observations a~d Least Squares. New York: 
IEP - A Dun-Donnelley. 

Richardus, P. and R.K. Adler (1972). Map Projections. Amsterdam: North 
Holland Publishing Company. 

Thomas, P.O. (1952). Conformal Projections in Geodesy and Cartography. 
u.s. Department of Commerce, Coast and Geodetic Survey, special 
publication no. 251, Washington. 




