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Abstract

At the point of data collection, it is beneficial to capture linear features at the highest possible

resolution to support various applications at different levels of detail. Line simplification

is the process of selecting relevant characteristic vertices of a polyline based on some

data reduction criteria. In the context of other planar objects, a line simplification must

maintain a certain spatial and topological relations consistent with the original polyline. In

computational graphics, data storage, network transmission, and spatial analysis, it is very

beneficial to replace complex geometric objects with simpler ones that capture the relevant

features of the original.

Given a polyline Lwith n vertices, the line simplification problem seeks to approximate

L as L′ withm vertices, wherem < n based on some criteria. The goal is to find vertices

of L′ that represent L “well”. In this dissertation, given the maximum separation between

L and L′ as ε and a set of optional constraints, we focus on finding L′ as a subset of vertices

of L in the context of other arbitrary planar objects. Out of context simplification of L can

lead to topological errors. To constrain L′, we explore the following optional constraints:

(i) L′ should preserve planar self-intersection and avoid introducing new self-intersections

with itself or other polylines, (ii) consecutive segments ofL′ should not invert the sidedness

relation in L, (iii) L′ should preserve disjoint, intersect and minimum distance relation to

other planar objects, and (iv) the sidedness of planar objects relative toL should not change

in L′.

Using a context based convergence towards the original polyline, we improve upon
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earlier methods by developing a set of geometric heuristics that precisely deforms parts

of the original polyline to resolve topological conflicts. This novel approach prevents

unnecessary vertex inclusion during reversion towards the original polyline. Algorithms

developed in this dissertation are evaluated using real world datasets: road network, contour

lines, and spatiotemporal trajectories. Experimental results show topological errors are

avoided with competitive compression ratios relative to unconstrained simplification. The

contributions of this dissertation are algorithms and tools for a consistent simplification of

arbitrary polylines in the context of arbitrary planar objects.
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Chapter 1:

Introduction

“Everything should be made as simple as possible, but not simpler."

—Albert Einstein

Recent advancements in sensor technologies have lead to an increasing high resolution

of spatial and temporal data collection. Sensors such as Light Detection and Ranging

(LIDAR), Very High Resolution (VHR) Satellite Imagery (sub-meter panchromatic reso-

lution), high resolution imagery and high definition video from unmanned aerial vehicles

(UAV) have lead to detailed spatial and temporal mapping. Sensors equipped with Global

Positioning System (GPS) and Radio-Frequency Identification (RFID) have also allowed

outdoor and indoor tracking of moving objects.

Based on sensor and resolution of data capture, linear features and outlines of polygonal

boundaries may be discretized at a certain level of detail. For example, topographic

mapping agencies often collect aerial imagery at the highest resolution possible and then

extract vector data by digitizing. To facilitate reproduction at various scales, methods of

a raw vectorization often represent linear features or outlines of regions with more detail

than is required [Douglas and Peucker, 1973; Gribov and Bodansky, 2004]. The results of

vectorization usually need some form of compression or simplification.

Data reduction is often required to store, transmit, visualize and analyse high resolution

1



data. Simplification is required when there is a change in map scale or when mixing

multi-source data at different scales [Li and Openshaw, 1993]. During simplification, it is

important to keep characteristic points of linear features and outlines of polygonal regions

[White, 1985]. The graphic representation of linear features is common in many fields

such as computer graphics, digital image processing, cartography, geographic information

systems (GIS), very large scale integration (VLSI), and computational geometry. Based

on a geometric context, a linear feature can be treated as a set of points, chain of lines

(polyline), or a polygon (linear ring).

Line simplification is the process of selecting salient relevant vertices that capture the

linear characteristics of the original polyline at some error bound [Weibel, 1997;McMaster,

1987]. If the simplification captures critical vertices of the original, great efficiency

can be obtained in vector operations, speed of transmission over a network, storage,

visualization, and resource minimization (e.g., VLSI circuit layout). A compact shape

approximation can reduce computer resource (disk and memory) requirements and can

accelerate computations involving shape information in finite element analysis, collision

detection, visibility testing, shape recognition, and visualization [Heckbert and Garland,

1997].

In the context of other planar objects, out of context simplification can lead to topological

errors [Muller, 1990; Guibas et al., 1993; de Berg et al., 1998; Saalfeld, 1999; Estkowski

and Mitchell, 2001]. The complexity and hardness of the line simplification problem have

been explored by Guibas et al. [1993], Estkowski [1998], Saalfeld [2000], and Estkowski

and Mitchell [2001]. Existing methods lack a unified treatment of arbitrary polylines in

the context of arbitrary planar objects while observing spatial and topological constraints.

This PhD dissertation presents a set of novel geometric heuristics for topological sim-

plification of polylines under spatial constraints. The research started with contextual

developments using the Ramer-Douglas-Peucker (RDP) algorithm [Ramer, 1972; Douglas

and Peucker, 1973]. Using context based topological error resolution (convergence prop-
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erty of RDP), further advanced geometric heuristics were developed. The set of heuristics

were then extended to contextual online trajectory simplification with support for ad hoc

queries. Heuristics and algorithms developed were then used to extend ESRI ArcGIS

cartographic toolbox to make practical this research in industry. This is an article-based

PhD dissertation, presented and supported though the following papers:

1. Paper 1 (Peer Reviewed):

Tienaah, T., Stefanakis, E., & Coleman, D.(2015). Contextual Douglas-Peucker

Simplification, Geomatica 69(3)327-338.

2. Paper 2 (In Review):

Tienaah, T., Stefanakis, E., & Coleman, D.(2018). Line Simplification While

Keeping it Simple or Complex.

3. Paper 3 (In Review):

Tienaah, T., Stefanakis, E., & Coleman, D.(2018). Topologically Consistent Online

Trajectory Simplification.

1.1 Dissertation Structure

This research is presented as a six chapter article-based dissertation. Chapter 1 is an

introduction, a brief background, research problem, research objectives and scope of this

dissertation. The next three chapters (2, 3 and 4) are peer reviewed journal papers, which

are either published or under review at the time of drafting this document [Tienaah et al.,

2015, 2018a,b].
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In chapters 2, 3 and 4 the principal author conducted the primary research while the

co-authors provided reviews and minor inputs on content and structure. Chapter 5 is a

practical implementation of this research in a commercial GIS package. Chapter 6 is a

summary of this research, limitations, open problems, and conclusion. Figure 1.1 lays out

the structure of this dissertation.

Introduction

Chapter 1: Dissertation Structure, Background, Research Problem,

Research Objectives, Overview of Chapters

Peer Reviewed Articles / Research Application

Chapter 2: Paper 1

Contextual Douglas-Peucker 

Simplification

Chapter 3: Paper 2

Line Simplification While 

Keeping it Simple or Complex

Chapter 4: Paper 3

Topologically Consistent Online

Trajectory Simplification

Chapter 5: Application

Extending Cartographic Toolset -

ESRI ArcGIS

Summary and Conclusion

Chapter 6

Figure 1.1: Dissertation Structure

1.2 Background

A Linear features on a map is an abstraction of an areal object (river, road centerline, trails,

boundary of a country, shoreline of a lake, contours of a terrain); in image processing, it

is the edge or outline of regions in an image. The continuous motion of a moving object

is often approximated as a trajectory. A trajectory at the point of data collection is often

captured as a discrete set of consecutive positions with additional components such as

time or speed. A moving object equipped with a Global Positioning System (GPS) can be

person with a cellphone, GPS tagged animal (study of migratory or movement patterns),

a GPS equipped navigating vehicle (car, vessel at sea, drone, air-plane). A high definition

video of a moving object is also captured as discrete frames at a high frame rate. Each
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frame of a video is an image that captures the position of a moving object at a given time

(slice of a time sequence).

The number of vertices used to represent the discrete representation of a liner feature

or boundary of a region can vary at the point of data capture. Technological advancements

in active and passive sensors indicate a trend towards high resolution data collection.

For example, advancements in mapping technology such as Light Detection and Ranging

(LIDAR) has made possible high-resolution terrain data (high resolution contours). Very

High Resolution (VHR) satellite imagery such as WorldView-4 (0.31m) and Pleiades-1B

(0.5m) are able to capture parts of the earth in sub-meter panchromatic resolution. In recent

times, higher spatial resolutions are obtain through areal imagery by ultra high definition

sensors on unmanned aerial vehicles (UAVs). To perform spatial analytics, raster to vector

conversion is a common practice in many topographic mapping agencies. It is beneficial to

vectorize linear features at the highest possible resolution and then resample it at different

scales for various purposes.

High resolution linear representation leads to redundant shape or temporal information

at the point of data capture. In geographic information systems (GIS), cartography, com-

puter graphics, data compression or image processing, it is beneficial to replace complex

geometric objects with simpler ones that capture the relevant features of the original

[Buttenfield, 1985]. It is important to preserve linear characteristic vertices during data

reduction as a set of representative features of the original. The process of selecting,

displacing or introducing new vertices while removing other less critical vertices is line

simplification [White, 1985; Weibel, 1997; McMaster, 1987; Saux, 2003; Guilbert and

Saux, 2008].

1.2.1 Linear Features

In this dissertation, we consider an arbitrary linear feature as a polyline with an ordered

chain of line segments. A line (segment) refers to a unidimensional extent joining two
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endpoints. A linear ring (polygonal) is formed if the first and last point in a polyline are

coincident. The degree of a vertex in the chain of a polyline is the number of line segments

incident on it [de Berg et al., 1998].

1.2.1.1 Simple Polylines

A polyline is simple if consecutive segments only intersect at a connecting vertex (degree

2). In this dissertation, a simple polyline can be a segment with coincident endpoints (zero

length) or with separate endpoints (non-zero length). A simple polyline can also be a chain

of segments with separate or coincident endpoints (see Figure 1.2).

p0 p1

(a)

p0 p1

(b)

p0

p1

p2

p3

(c)

p0

p1
p2

p3

p4

p5

(d)

Figure 1.2: Simple Polylines: (a) segment of zero length, (b) line segment, (c) polyline
and (d) ring (polygonal)

1.2.1.2 Complex Polylines

A polyline may have planar or non-planar self-crossings. A planar self-intersection is

a vertex with degree greater than two. Non-planar self-intersections have overlapping

segments that intersect at a non-vertex or at collinear segments. See complex linear types

in Fig.1.3.
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Figure 1.3: Complex Polylines: (a) planar self-intersection at p1 (b) non-planar intersection
between P0P1 and P2P3, (c) non-planar intersecting ring, (d) planar intersecting ring and
(e) non-planar collinear intersection between P0P1 and P4P5

1.2.2 Line Simplification

Line simplification is an important operator in cartographic generalization. It involves

a reduction of complexity in a map, emphasizing the essential while suppressing the

unimportant, maintaining logical and unambiguous relations between map objects, and

preserving aesthetic quality [Weibel, 1997]. In manual generalization, the important

features of a line are selected, simplified, exaggerated, smoothed or displaced from other

features [McMaster, 1987]. These features known as “critical points” include those which

are related to the physical characteristics of a line and those related to a “perceived” sense

of relevance, such as vertices closer to a city along a river [White, 1985]. In effect, it is a

subjective cognitive process.

Most simplification algorithms seek to remove redundant coordinates from a polyline

by first finding salient “features” of the polyline. Selection of critical points is based

on the topological relationship between points and their neighbours, the extent of this

neighbourhood search varies based on algorithm [McMaster, 1987]. Smoothing algorithms

on the hand displaces points in attempt to reduce angularity thereby giving a flowing
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appearance to a polyline [Saux, 2003; Guilbert and Saux, 2008]. For a detailed survey of

line simplification algorithms and their development over the years, refer to Weibel [1997],

Heckbert and Garland [1997], and Shi and Cheung [2006].

Different types of polylines express various topological characteristics within itself or

with other planar objects (points, lines and polygons). The process of line simplification

introduces positional error in the resultant polyline and may cause topological errors

[Muller, 1990; Saalfeld, 1999; Estkowski and Mitchell, 2001; da Silva and Wu, 2006;

Abam et al., 2014; Arge et al., 2014; Funke et al., 2017]. In the context of other planar

objects, the spatial relationship between the simplified polyline and objects in its planar

space may be different compared to the original polyline. Topological conflict resolution

for different types of polylines is at the core of the line simplification problem.

1.2.2.1 Categorization of Algorithms

McMaster [1987] classified line simplification algorithms into various categories [Weibel,

1997]:

• independent point: e.g., every nth point of a polyline is selected, the others are

removed,

• local processing: e.g., vertices are selected based on euclidean distance between

consecutive vertices, the perpendicular distance to a base line connecting the neigh-

bours of a vertex, or angular change,

• constrained extended local processing: these algorithms search beyond immediate

vertex neighbours e.g., Lang [1969],

• unconstrained extended local processing: e.g., Reumann and Witkam [1974], and

• global routines: e.g., Douglas and Peucker [1973]; Visvalingam andWhyatt [1993].

Various simplification algorithms in these categories can further be classified into two

main variants: unrestricted and restricted [Agarwal and Varadarajan, 2000; Abam et al.,
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2014]. In the unrestricted case, the vertices of the simplification are allowed to be any

arbitrary points, not just the vertices of the original polyline (see Imai and Iri [1986];

Guibas et al. [1993]; Goodrich [1995]; Saux [2003]; Guilbert and Saux [2008]; Goethem

et al. [2013]). In the restricted version, the vertices of simplified polyline are a subsequence

of the original.

Whether restricted or unrestricted every line simplification algorithm introduces a devi-

ation from the original, the error (ε) of the simplification [Cromley, 1991]. Simplification

algorithms are also classified based on their error criteria. Some of the error criteria

in literature are: bandwidth or parallel strip error criterion, Hausdorff distance, Fréchet

distance, areal displacement, and vector displacement [de Berg et al., 1998].

The scope of this dissertation is limited to the restricted line simplification problem. To

preserve the topological characteristics during simplification, this dissertation uses variants

of the Douglas-Peucker (DP) or the Ramer-Douglas-Peucker Algorithm (RDP) algorithm

based on a tolerance bandwidth error (ε) criterion [Ramer, 1972; Douglas and Peucker,

1973].

RDP is a restricted (subset property) global line simplification algorithm. The algorithm

has been independently proposed by Ramer [1972] in image processing and Douglas and

Peucker [1973] in cartography. RDP is easy to implement and its recursive nature lends to

a hierarchical structure for multi-scale simplification [Cromley, 1991; Jones and Abraham,

1987; Van Oosterom, 1991; Tienaah et al., 2015]. It has a proximity property that ensures

a simplification is within a distance ε of the original polyline. ε may be increased or

decreased at any step in the algorithm to allow for different levels of pruning. This allows

for any level of precision to the original polyline by choosing a small enough ε as ameans of

converging to the original [Saalfeld, 1999]. In this dissertation, we exploit these properties

to resolve spatial and topological errors.

White [1985] performed a study on critical points of a linear feature as a psychological

measure of curve similarity; she reported the RDP method was best at choosing critical
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points compared to other methods (nth point elimination and selection through a perpen-

dicular calculation between three consecutive points). A study of mathematical similarity

and discrepancy measures between a polyline and its simplification by McMaster [1987]

ranks RDP as “mathematically superior”. The RDP algorithm is also one of the most

popular simplification algorithms in open-source and commercial GIS, databases, and

software tools [Tienaah et al., 2015]. RDP is used as a basis for polyline simplification in

this dissertation to make practical the results of this research in academia and industry.

1.2.3 RDP Algorithm

Let the coordinates (VL) of a polyline(L) be P0, Pi, ..., Pn where P0 is (x0, y0) and Pn is

(xn, yn). L is defined by n + 1 coordinates and n line segments: P0P1, P1P2, P2P3, ...,

Pn−1Pn. ε is the maximum separation (simplification error) between L and L′, where L′

is the simplification of L at ε > 0. The vertices of L′ (VL′) are a subset of L (VL′ ∈ VL).

The algorithm starts by first creating an approximation of the entire (global) polyline

as P0Pn. It then computes the distance offset of each vertex from P0+1 to Pn−1. In this

dissertation, the distance offset is the minimum Euclidean distance from a vertex Px to

P0Pn; the original RDP by Douglas and Peucker [1973] uses a perpendicular distance,

which is not always the minimum distance from a point to a segment. Let Pk be the vertex

with maximum of the minimum offset distances from P0Pn. If εk > ε, split L into two

sub-polylines L0,k (P0, P1, Pi, ..., Pk) and Lk,n (Pk, Pk+1, Pj, ..., Pn), where εk is the offset

distance from Pk to P0Pn. The algorithm recursively simplifies L0,k and Lk,n as new

inputs. The recursion terminates if εk ≤ ε or Li,j is a segment (j − i = 1, where j > i).

VL′ is a set composed of P0, Pn and the endpoints of each recursive sub-polyline. The

algorithmic complexity of RDP is O(n2).
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Figure 1.4: RDP Simplification

Figure 1.4 shows simplification of L as L′ at ε. The minimum offset distance (ε11) from

P11 to the generalized segment (dashed line) P8P12 is the length of P11P12 which is not

perpendicular to P8P12. The ability to change the error function of RDP makes it suitable

for extension to spatiotemporal trajectory simplification [Keogh et al., 2001; Meratnia and

Rolf, 2004].

1.2.3.1 Spatial and Topological Relations

Using selected characteristic vertices by the RDP algorithm, a context planar object of

a sub-polyline Li,j (from index i to j) is any object (Ci) that intersects the convex hull

(grey region) of Li,j or at certain distance (δ) from its boundary. Consider CA and CB in

Figure 1.5, CA is a context object of L3,6 and can a context object of L6,8 based on a user

defined δ; CB is a context neighbour of L6,8.
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Figure 1.5: RDP Context Neighbours

In this dissertation, the following spatial and topological relations are investigated when

deforming sub-polylines of L.

1. Disjoint / Intersect: L′i,j should express intersect or disjoint relation to Ci as

expressed by the sub-polyline Li,j .

2. Proximity: L′i,j should express a certain user defined minimum distance to any Ci

as expressed by Li,j . This relation is relaxed (L′i,j can violate the constraint) if Li,j

violates the proximity constraint.

3. Homotopy / Sidedness: the sidedness of Ci in relation to Li,j should not change

when deformed as a segment PiPj . Keeping the endpoints (Pi and Pj) of Li,j fixed,

Li,j is homotopic toPiPj ifLi,j can be deformed into a segmentPiPj without leaving

(stepping overCi) the planar space [Cabello et al., 2004]. In Fig. 1.5, keeping P6 and

P8 fixed, L6,8 cannot be collapsed as P6P8 because of the presence of CB between

L6,8 and P6P8. A further deformation of L6,8 is required using the RDP algorithm,

in this example, L6,8 will split as L6,7 and L7,8. Note that by splitting L6,8 as L6,7 and

L7,8, P8P12 is now topologically invalid: segment P6P7 introduces a self-intersect

12



with P8P12 and the chain P7P8P9 makes a counter-clockwise turn at P8 whereas

P7P8P12 makes a clockwise turn at P8. To resolve these topological errors, L8,12

needs further deformation using RDP.

1.3 The Line Simplification Problem

Line simplification also known as polygonal, chain, minimum-link, subdivision or piece-

wise linear approximation is a well studied problem. Given a polyline L with n segments,

the line simplification problem seeks to approximate L as L′ with m vertices, where

m < n + 1. The goal is to find vertices of L′ that represent L with some “fidelity”. The

simplification criteria for computing L′ can be categorized into two forms [Kurozumi and

Davis, 1982; Imai and Iri, 1988; Chan and Chin, 1992]:

• theMin−ε problem: computes L′ with at mostK vertices that minimizes ε over all

approximations of L that have K vertices, and

• theMin−# problem: computes L′ that uses the smallest number of vertices among

all ε-approximations of L for ε > 0.

In this dissertation we focus on the restricted Min−# problem in the context of other

planar objects (points, lines, and polygons).

1.4 Related Work

Imai and Iri [1988] present a unified approach to simplification of simple polygonal chains

by formulating it in terms of graph theory. They considered the Min−ε and Min−#

problems under various error criteria. Chan and Chin [1992] improves the Min−#

problem by Imai and Iri [1988] fromO(n2 log n) toO(n2). Chan and Chin [1992] further

demonstrates that if the polyline to be approximated forms part of a convex polygon, the

time complexity can be reduced toO(n). Other improvements on the work of Imai and Iri
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[1988] have been explored by Melkman and O’Rourke [1988]. Agarwal and Varadarajan

[2000] notes thatMin−# andMin−ε simplification problems can become intractable if

the approximation is required to be simple or homotopic to the original chain.

One of the requirements in a map subdivisions is that polylines are required to be

simple. No two edges of the subdivision may intersect, except at endpoints [de Berg et al.,

1998; Estkowski, 1998]. de Berg et al. [1998] indicates the following algorithms do not

constrain their outputs to be simple: Chan and Chin [1992], Douglas and Peucker [1973],

Li and Openshaw [1992] and Melkman and O’Rourke [1988]. de Berg et al. [1998] builds

on the work of Imai and Iri [1988] using points as planar context objects in subdivision

simplification. Their implementation avoids self-intersection and intersection with other

polylines of the sub-division by temporally adding all vertices of other polylines as extra

points to the contextual set. Corcoran et al. [2011] indicates the proposal by de Berg et al.

[1998] is only true if and only if the polyline being simplified is monotone.

In Figure 1.6, let L and L′ be two simple polylines oriented from vertex P0 to vertex

Pn, and let C be a set of planar context points. The approach to topological consistency

in the context of C by de Berg et al. [1998] is based on the idea that there exist a chain Ls

that completes both L and L′ as simple polygons denoted by LsL and LsL′ respectively

[Corcoran et al., 2011; da Silva and Wu, 2006]. L is topologically consistent to L′ if

LsL and LsL′ contain the same subset of points in C otherwise it is inconsistent. In the

inconsistent case, a point c in C lies between the bounded face of the polygon formed by

L and L′. Note that the polygon formed by L and L′ can be complex though L and L′

are simple. Corcoran et al. [2011] provides a proof for this topological sidedness relation

using a point-in-polygon test. For c in C, if I(c, L)+ I(c, L′) mod 2 = 0 then c is outside

else it is inside the bounded face formed by L and L′ (even-odd rule algorithm [Shimrat,

1962]); I is the ray casting function.
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Figure 1.6: Topological consistency of L to L′ in the context of C (adapted from da Silva
and Wu [2006])

de Berg et al. [1998] propose their monotone algorithms for determining planar topo-

logical consistency can be generalized to arbitrary chains by applying it to sub-chains

which do not cycle or contain backward tangents. Intuitively, no backward tangent means

that if Pi is the first vertex of a chain, there should not be an edge PjPj+1 that is closer to Pi

than the preceding edge Pj−1Pj [de Berg et al., 1998]. The drawback of this approach to

topological consistency is that it may only be applied to a subset of possible simplifications

[Corcoran et al., 2011]. Another disadvantage of this approach is that the context object

set (C) grows based on number of neighbours to the polyline being simplified.

Saalfeld [1999] proposed to apply the strategy for monotone chains by de Berg et al.

[1998] to arbitrary chains. LetL be a simple arbitrary chain andL′ its simple simplification.

P0 and Pn are the endpoints of L. Let C be a set of planar context points. Corcoran et al.

[2011] attempts to show that the proposal by Saalfeld [1999] is well defined for monotone

and arbitrary simple chains: L′ is a consistent simplification of L with respect to C if

and only if no point of C lies in the bounded face formed by L and L′ [Corcoran et al.,

2011]. This is illustrated in Fig. 1.7, context points O1 and O2 are in the bounded face

(grey region) formed by L and L′ using the point-in-polygon test.
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Figure 1.7: Contextual topological consistency in the bounded face (grey region) of L and
L′

A point-in-polygon test and proof provided by Corcoran et al. [2011] is not sufficient

for determining if L′ is a consistent simplification of L with respect to points in C. For

example, in Fig. 1.8, consider bounded face formed by two simple polylinesL andL′, where

L′ is the simplification of L with context points O1 and O2 in C. The point-in-polygon

algorithmwill reportO1 andO2 are outside the bounded face formed byL andL′. Keeping

the endpoints (P0 and Pn) of L fixed, L cannot be deformed into L′ in the context of O1

and O2.

Figure 1.8: Topological consistency using the bounded face (grey region) of L and L′ in
the context of non-bounded O1 and O2.

The deformation (with fixed endpoints, remove only degree 2 vertices) of L in Fig. 1.8

is illustrated in Fig. 1.9. In Fig. 1.9, keeping P0 and Pn fixed, only P1, P2, P3 and Pn−1 of

L can be removed without passing over O1 or O2 in the non-bounded region.
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Figure 1.9: Homotopic deformation ofL in Fig. 1.8 towardsL′ constrained by non-bounded
O1 or O2. L′x is a temporary deformed edge of L towards L′.

da Silva andWu [2006] demonstrated the bounded face method by de Berg et al. [1998]

is ill-defined for contextual linear features (handling planar linear objects as points). They

also demonstrate the triangle inversion algorithm by Saalfeld [1999] can lead to self-

intersection. The strategy of da Silva and Wu [2006] is to apply sidedness criterion

to each sub-polyline and its collapsed segment. Let D be a set of vertices of context

linear features, L is consistent to L′ if polygons formed by each sub-polyline Li,j and its

segment PiPj contain no point in D. They test for sidedness using the parity (odd-even)

rule. Their approach requires a vertex of a context object must be individually checked

against each sub-polyline of L for consistency. The restrictive algorithm by da Silva and

Wu [2006] showed consistent sidedness of point and lines while avoiding intersections

between linear features. The approach by da Silva and Wu [2006] in using vertices of

neighbouring polylines as context constraints can be restrictive. In a subdivision (e.g.,

contours), vertices of neighbouring contours that may not exist after simplification are

being used to restrict the simplification L.

Kulik et al. [2005] developed a Min−ε ontology-driven simplification algorithm

(DMin) modelled as a connected graph. Without a pre-specified fixed threshold (Min−ε

problem), DMin uses a geometric and semantic weight to remove vertices. Using a

triangle-criterion, DMin avoids self-intersection and preserves non-planar topology by
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keeping track of intersections that are not vertices of the input polylines. The DMin

algorithm by Kulik et al. [2005] depends on a connected graph from input polylines to

maintain topological consistency. In a disconnected graph, DMin can introduce topological

inconsistencies.

Estkowski andMitchell [2001] also developed a graph structure for a planar subdivision

(S - non-crossing but can share endpoints) in the context points as planar constraints.

Isolated feature points and vertices with degree one or greater than two are preserved in

S ′. They implemented a “Simple Detours” (SD) heuristic for chains in S ′ by “untangling”

it to remove intersections introduced by ε-feasible chains. Estkowski and Mitchell [2001]

extended the SD algorithm to maintain the same homotopy type for points in a subdivision

simplification. Their approach has not be demonstrated for arbitrary polylineswith arbitrary

context objects.

Abam et al. [2014] finds a polynomial solution for a simple polyline that is homotopic

in the context of points as planar constraints. They introduce the concept of strongly

homotopic where every shortcut inL′ is homotopic to the sub-polylineLi,j . The homotopic

algorithm byAbam et al. [2014] is based on Cabello et al. [2004] developed for simple lines

in the context of points. The solution provide by Abam et al. [2014] except for x-monotone

is not guaranteed to produce a simple simplification.

Funke et al. [2017] explores map simplification with a local topology constraint (points)

using integer linear programming. Their method builds and maintains a constrained

Delaunay triangulation of the subdivision and and all topology constraints. Vertices of

degree 2 are removed one by one while maintaining the constrained triangulation for

topological consistency. Funke et al. [2017] maintains local topological consistency using

the bounded face technique by de Berg et al. [1998]. A polygon (possibly self-intersecting)

created by a local shortcut and its sub-polyline does not contain any constraint point based

on the even-odd-rule by Shimrat [1962] (see limitations of this test in Fig. 1.9).
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1.5 Research Topic

Topology constraints for simple polylines or monotone (x or xy) chains have been explored

by but not limited to: Imai and Iri [1988], de Berg et al. [1998], Saalfeld [1999], Agarwal

and Varadarajan [2000], Estkowski and Mitchell [2001], Cabello et al. [2004], Kulik et al.

[2005], da Silva andWu [2006], Dyken et al. [2009], Corcoran et al. [2011], Daneshpajouh

and Ghodsi [2011], Abam et al. [2014], and Funke et al. [2017]. Most research literature

that handle topological sidedness often develop constrained simplification algorithms using

points as planar constraints [Imai and Iri, 1988; Agarwal and Varadarajan, 2000; Estkowski

and Mitchell, 2001; Cabello et al., 2004; Abam et al., 2014; Funke et al., 2017].

For any arbitrary chain L, L can be simple or complex. The utility of L′ is lost if errors

are introduced as a result of simplification. If L is simple, L′ is expected to be simple

(and vice versa when complex). In a group (S) of arbitrary polylines, L can have planar

and non-planar intersections with other polylines. The simplified set S ′ should reflect the

topological properties of S. Representative spatial relations: proximity, intersect/disjoint

and sidedness between S and other planar objects should be consistent within some user

defined parameters in S ′. These constraints appear to make the line simplification problem

intractable.

Estkowski andMitchell [2001] showed that simplification of a subdivision (a set of non-

crossing polylines except at endpoints) without introducing new vertices (Steiner points) is

in fact difficult to solve, even approximately: a solution cannot be obtained in polynomial

time within a factor n1/5−ε of an optimal solution, for any ε > 0 unless P = NP . Guibas

et al. [1993] demonstrated that the problem of approximating a polygonal subdivision is

NP -hard; it is NP -complete with no Steiner point [Estkowski, 1998].

There is limited research in simplification of arbitrary polylines in the context of arbitrary

planar objects (points, polylines, and polygons). Furthermore, online simplification of

spatiotemporal streams in the context of arbitrary planar objects is limited. The focus of
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this dissertation is development of geometric heuristics for the simplification of arbitrary

polylines in the context of arbitrary planar objects as constraints.

1.6 Research Statement

Let L be an arbitrary polyline and S a set of arbitrary polylines with L ∈ S. Let L′

and S ′ be the restricted simplification of L and S respectively. L can be treated as

spatially independent from its feature class S (e.g., trajectories that overlap spatially but

are separated in time). L can also be spatially dependent on the neighbouring polylines

in S that constrain its shape, for example, the topology of contour lines (disjoint from

neighbours) and road network (with planar or non-planar intersections). Let C be a set of

arbitrary planar objects (point, polyline, polygons) in the embedding plane of L or S. Let

Q be a set of optional simplification constraints:

1. avoid introducing new self-intersections,

2. preserve planar and non-planar intersections,

3. preserve intersect and disjoint relations with objects in C,

4. preserve proximity to objects in C, and

5. preserve homotopy or sidedness in the context of C.

Given ε > 0 and C as planar constraints, we consider the following restricted line

simplification problems:

1. Compute ε-approximation of L given Q in the context of C;

2. Compute ε-approximation of S where each L in S is spatially dependent given Q;

and

3. Compute an online spatiotemporal ε-approximation of L given Q in the context of

C
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In this dissertation, contributions in chapters 2, 3, and 4 provide topological simplifica-

tion of a polyline or group of polylines in the context of other objects. We extend heuristics

developed in chapter 3 to handle trajectory streams in an online environment in chapter 4.

1.7 Research Objectives

The objectives of this research are addressed based on the simplification problems posed

section 1.6.

1. Develop a conceptual framework for contextual line simplification with pluggable

variants of the RDP error function (ε).

2. Develop algorithms and heuristics to preserve topological properties of polylines

and its spatial relation to other planar objects.

3. Extend heuristics and algorithms for constrained line simplification to online trajec-

tory streams.

4. Develop an application to extend the cartographic tools of an open-source or com-

mercial GIS package.

The objectives and goals of this research provides an integration of varied constraints in

contextual simplification of arbitrary polylines.

1.8 Overview of Each Chapter

Chapter 1 starts with an introduction and a brief background of line simplification. It

details related work, the research problem, and a set of objectives for this dissertation.

In Chapter 2, we outline a conceptual and theoretical development of line simplification

in the context of other planar constraints. The main contribution of this chapter is the

development of a contextual model using the Douglas-Peucker algorithm with a prioritized
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context-based reversion to maintain topology and proximity relation to planar objects.

Contextual constrained simplification is achieved by: (1) developing a linear characteristic

and constrained simplification model that converges to the original polyline to resolve

topological errors, (2) extending a directional relation operator/signature, and (3) extending

the Binary Line Generalization Tree (BLG-Tree).

Chapter 3 improves on the work done in Chapter 2 by developing a set of novel

geometric heuristics for constrained line simplification. Contributions in this chapter

include:

1. prevention of self-intersection in simple polylines,

2. preservation of planar self-intersection in complex polylines and between groups of

polylines,

3. preservation of consistent sidedness between consecutive links in L′,

4. preservation of homotopy between a polyline and its simplification in the context

other planar objects (points, lines and polygons),

5. maintenance of geometric (intersect/disjoint) relations between a polyline and other

planar objects, and

6. maintenance of a minimum distance relation to other planar objects.

This chapter integrates topology (self-intersection, intersect, disjoint, homotopy) with

proximity constraints to contextual planar objects. It also demonstrates constrained sim-

plification of a planar subdivision.

Chapter 4 develops an online contextual trajectory simplification under topological

constraints. This chapter show a first online arbitrary trajectory simplification with topol-

ogy and proximity constraints. A consistent simplification is achieved with the following

contributions:
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1. avoids self-intersection as a result of simplification,

2. preserves non-planar self-intersection between simplification units,

3. preserves intersect, disjoint, distance, and sidedness relation to arbitrary context

geometries, and

4. provides external simplification of arbitrary trajectories in an online environment.

In Chapter 5, we implement geometric heuristics (developed in Chapter 3) as a python

Add-In to extend the cartographic toolbox of ESRI ArcGIS. This is to make practical this

research in industry and academic environments. Chapter 6 concludes this research with

contributions, limitations and recommendations.
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Chapter 2:

Contextual Douglas-Peucker

Simplification

2.1 Abstract

In this paper, we develop a constrained Douglas-Peucker algorithm using a polyline to be

simplified and other geometries as contextual constraints. We develop a contextual model

that incrementally rewinds to the original polyline with relevant characteristic vertices to

resolve contextual conflicts. Constraints covered in this paper are topology and direction.

Our implementation shows a consistent representation and a technique to accelerate multi-

scale simplification of polylines.

2.2 Introduction

Line simplification is a fundamental process in cartographic generalization [Cromley,

1991; Weibel, 1997]. As an operator, simplification reduces redundancy or the level

of detail required to represent a polyline at a desired scale. Line simplification is a
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well-covered topic with many algorithms in cartography, computational geometry, and

computer graphics [Ramer, 1972; Douglas and Peucker, 1973; Reumann and Witkam,

1974; Opheim, 1982; Li and Openshaw, 1992; Normant and Tricot, 1993; Visvalingam

and Whyatt, 1993; Fritsch and Lagrange, 1995; Balboa and López, 2000; Doihara et al.,

2002; Qingsheng et al., 2002; Wu and Deng, 2003; Saux, 2003; Gribov and Bodansky,

2004; Kulik et al., 2005; Guilbert and Saux, 2008; Abam et al., 2010; Daneshpajouh and

Ghodsi, 2011; Wang et al., 2012; Liu et al., 2012; Raposo, 2013; Abam et al., 2014].

One of the most popular algorithms in line simplification is the Douglas-Peucker (DP)

algorithm [Douglas and Peucker, 1973]. The DP algorithm, like many other techniques

of simplification, has an implicit scope to reduce the set of vertices used to represent a

polyline based on some criteria (distance offset, error bound, direction/angular deflection,

area, and other measures). The reduction technique is simple but obtaining a consistent or

meaningful output is a complicated problem. The issues of consistent simplification arise

from the fact that real world geometric properties are often constrained by neighbouring

objects within a given space. Simplification of geometric properties without context may

change the meaning of such properties (semantic representation).

In recent times, there is a greater need to perform simplification due tomulti-scale repre-

sentation of online interactive maps, high spatial and temporal resolution of data collected

using location enabled devices - equippedwith Global Positioning System (GPS). Evidence

of the need for line simplification is observable in widely-used web and desktop mapping

libraries or application [ArcGIS-10.2, 2014; Leaflet, 2014; Openlayers, 2014; PostGIS,

2014]. As part of the Leaflet Geometry module, L.LineUtil (http://bit.ly/1zdZ3nD) pro-

vides utility functions for line simplification using the DP-Algorithm to improve vector

map rendering. OpenLayers geometry library ol.geom.flat.simplify.douglasPeucker

(http://bit.ly/1vLJvaq) is based on the a library extracted from Leaflet. PostGIS spatial

database extension uses ST_SimplifyPreserveTopology (http://bit.ly/1vhwBCg) to perform

topology preserving simplification. ESRI ArcGIS-10.2 cartographic toolset provides Sim-
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plifyLine_cartography for DP line simplification.

The main contribution of this paper is the development and testing of a contextual

model of the Douglas-Peucker algorithm with a prioritized context-based reversion to

maintain topology and direction relation in an embedded space. We achieve consistent

simplification by: (1) developing a line characteristic and constrained simplification model

(sections 2.3-2.3.2), (2) extending a directional relation operator/signature (section 2.3.2),

(3) extending the Binary Line Generalization Tree (section 2.4).

2.3 Conceptual Definitions

A polyline (e.g., road centre line or coastline) is composed of points as vertices (e.g.,

location, intersection) and can be composed to form polygons (e.g., administrative regions,

soil, forest and other thematic features as polygons). We use a modified subset of the

OGC (Open Geospatial Consortium) simple feature specification of a LineString, Line,

and LinearRing [OGC, 2014]. This paper defines a polyline (or often referred to as a

“line”) as a continuous chain of segments. A segment consists of a simple straight line

connecting two points. A segment has a length property if the ends of the segment are

separate in two-dimensional Euclidean space. A segment with zero length (coincident

end points) can be generalized as a point (Fig. 2.1a). A polyline is simple if it does not

self-intersect and is a ring if the endpoint of the last segment is the begin point of the first

segment (Fig. 2.1e). A self-intersecting ring forms a complex ring (Fig. 2.1f).
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(a) point (coincident end
points) (b) segment

(c) simple polyline

(d) complex polyline (e) simple ring (f) complex ring

Figure 2.1: Line abstraction types.

Simplification of a line involves removal of redundant vertices based on a given criteria

to reduce complexity in a dataset [Douglas and Peucker, 1973; Weibel, 1997]. Very often,

linear simplification algorithms start with a polyline L made up of two endpoints and an

arbitrary set of vertices V . With a given criteria, L is simplified into a polyline L′ by

reducing the number of vertices of V to V ′, while keeping the ends of the polyline fixed.

After simplification, V ′ is either a proper subset of V or equivalent to V ; no new vertices

are introduced nor vertices displaced. The classical criteria that guide vertex elimination

are:

• minimize line distortion (no vertex of L should be further away from L′ than a

maximum error threshold - εT ),

• minimize V ′ (increase number of removed vertices or reduce data size), and

• minimize computational complexity (reduce cost of handling/rendering massive

data).

In this paper, we perform constrained simplification of a polyline using the Douglas-

Peucker algorithm. The simplification follows spatial and topological constraints that the

geometric properties of a line and its relation to other neighbouring objects should be

preserved [Mark, 1988; Stefanakis, 2012]. Given an ordered set of N vertices (V(1...N))

forming a polyline L, the Douglas-Peucker algorithm starts by marking the end points
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as “keep” ( V ′1 and V ′N ). The algorithm finds the vertex VK from V2 to V(N−1) with the

maximum error offset (εk) from the line joining the end points (V ′1 and V ′N ). If the εk at

VK is greater or equal to a pre-selected threshold εT (where εT > 0), the vertex is marked

as “keep” (V ′K). This process is repeated recursively by splitting the polyline at VK as

two sub polylines L1 (V(1...K)), and L2 (V(k...N)) [Douglas and Peucker, 1973]. Figure 2.2

shows a graphical illustration of the algorithm. The recursion terminates if the maximum

error offset is less than εT or the polyline reduces to a line with only two vertices. The

generalized line consists of all vertices marked as “keep”. Worst-time complexity for the

Douglas-Peucker algorithm isO(n2) and can be improved toO(n log n) [Hershberger and

Snoeyink, 1992].

(a) Original polyline (b) Simplified polyline

Figure 2.2: Douglas-Peucker Simplification at 0.5units Maximum Error Threshold (εT=
0.5)

A polyline on map may exist with other spatial or thematic features. Neighbourhood

geometries are context geometries that give some spatial or thematic meaning to a polyline

on a map. We define a “neighbourhood geometry” as geometries intersecting the convex

hull of vertices forming the polyline. The convex hull forms a polygon with a minimum set

of vertices that envelope all the vertices of the polyline. A simplified line is a subset of all

vertices of the original polyline, such a line is completely within or shares a boundary with

the convex hull of the original polyline. Other geometries that intersect the convex hull

may have disjoint, intersect or side relationship with the original polyline. A neighbouring
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geometry in relation to a polyline to be simplified can be a segment, polyline, point, or

polygon. For example, Figure 2.3 illustrates the concept of neighbours with respect to

convex hull (A).

Figure 2.3: Neighbour geometries

2.3.1 Topological Relation

Polylines have internal (simple or self-intersection) or external topological relationships

with other neighbouring geometries (intersect, disjoint, left, right, top, or down). During

Douglas-Peucker simplification, the original polyline deforms into a new geometry with

a smaller set of vertices; topological relations with other geometries may be violated

if these geometries are found within the convex hull of the set of vertices forming the

polyline [Saalfeld, 1999; Bertolotto and Zhou, 2007; Daneshpajouh and Ghodsi, 2011;

Stefanakis, 2012].Our contextual model follows a strict geometric topological rule: the

topological signature of the original and simplified polyline should be the same. Geometric

relations are computed using the Dimensionally Extended nine-Intersection Model (DE-

9IM) [Egenhofer and Franzosa, 1991; Clementini et al., 1993]. For example, a simplified

road going through a park (a region or a polygon) is valid if the original geometry shares

the same relation; else, it is an inconsistent representation (see intersect/disjoint relation

in Fig 2.4).
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(a) Intersection (b) Disjoint

Figure 2.4: Intersect and disjoint geometric relation

There have been various attempts to avoid self-intersection introduced as a result of

DP simplification [Saalfeld, 1999; Mantler and Snoeyink, 2000; Estkowski and Mitchell,

2001; Bertolotto and Zhou, 2007; Shi and Charlton, 2013]. Real-world linear geometries

sometimes self-intersect. To the best of our knowledge, there has been little research focus

to maintain self-intersection as a constraint during DP-simplification. A typical example is

a road geometry that goes around a town, roundabout or an obstacle and self-intersects at a

junction. Figures 2.5a and 2.5b show DP simplification using Java Topology Suite (JTS),

version 1.8.0 [Vivid-Solutions, 2014]. JTS is a library for 2D spatial predicate functions

and spatial operators; it is one of the core and widely-used libraries in open source GIS

(C++ port is used in PostGIS, GDAL/OGR, MapServer, QGIS, Shapely - Python).

2.3.2 Direction Relation

The direction relationship of a polyline describes its side relation with a neighbouring

object. The simplified geometry must conform to the same quadrant relation as the

original to avoid side (left, right, up, down, diagonal, and interior) conflicts. We extend

the work of Theodoridis et al. [1998]. Figure 2.6a illustrates a nine cell direction relation

model. It describes a quadrant based relationship between a line to be simplified and

the object within its planar space. By registering the quadrants in which a line intersects

relative to a neighbour, we create a directional signature for which the simplified version of

the line must have to be topologically consistent. In Figure 2.6a, the linear geometry has a
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(a) JTS DP simplification (b) JTS topology preserving DP simplification

Figure 2.5: A complex polyline with self-intersection. Original self-intersection not
preserved (junction).

north, north-west, west, interior and south relation with respect to the polygon (neighbour)

that intersects the convex hull of its vertices. The quadrants are defined by the minimum

bounding box of a neighbouring object within the convex hull of the line to be simplified.

Figure 2.6b shows a direction constraint violation; the original polyline registers a south

relation with respect to the town, whereas the simplified geometry excludes this south

relation.

(a) Nine cell side relation model
(b) Violation of side constraint (south)

Figure 2.6: Direction relation model (a) and DP simplification (b)
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2.4 Contextual Rewind Model

The idea of building hierarchical structures from polylines started in the early 1980s.

Ballard [1981] published a hierarchical representation using a binary tree called the “Strip

Tree”. The strip tree structure is a direct consequence of using a special method for

digitizing lines and retaining all intermediate steps, each strip (orientedminimumbounding

rectangle) consist of vertices of a polyline at each node. Van Oosterom [1991] introduced

the Binary Line Generalization-tree (BLG-tree) which is a binary tree structure of the

Douglas-Peucker algorithm.

As part of his research, the senior author of this paper extends the Binary Line Gen-

eralization tree (BLG-tree) [Van Oosterom, 1991] by keeping a prioritized list of all the

intermediate error offsets (ε) and a convex hull of vertices forming the sub-polyline at each

stage of the polyline decomposition (DP-algorithm). The extended BLG-tree is a direct

binary tree structure of the DP algorithm. Each node of the tree has a reference to the

two end points of the sub-polyline. The idea learned from the BLG-tree is to pre-process

the polyline using an error threshold of zero (0) to obtain a binary tree structure of the

original polyline (see Figure 2.7b). The extra storage (a prioritized list and convex hull

of vertices at each node) in this extended BLG-tree structure is required for a rewind to

relevant characteristic vertices (minimum set) given contextual information.

(a) DP simplification
(b) BLG-tree - excluding V0

Figure 2.7: Extended BLG-Tree

Keeping the endpoints of the original polyline fixed, a vertex with maximum error offset
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(ε) forms the top-level node. From Figure 2.7b, if the ε value of the root node (V 3) is less

than the predetermined simplification error threshold (εT ), the simplified set of vertices

is a null set (∅). Line simplification as applied in the DP algorithm involves a search for

the minimum set of vertices to represent the original line at an error threshold. A DP

simplification in the context of other planar objects requires taking into consideration the

relationship between the line and other geometries. In instances where the relationship is

violated by the simplified line, it is important to reinstate some of the vertices removed,

hence a rewind towards the original line.

Figure 2.8 shows a DP contextual rewind model developed by the senior author of this

paper. All geometries that may become neighbours are indexed using an R-Tree. The

model starts with a polyline, using εT as zero, we pre-process the polyline into a binary

tree. With a pre-processed binary tree structure, the simplification at a given εT is a binary

search for farthest nodes with ε ≤ εT from the root node (depth-first search). A search

path terminates if a node with ε ≤ εT is encountered. Using the convex hull at each node,

we search the R-Tree for neighbours that intersect the convex hull of the polyline being

simplified. Where a geometric relation or direction is violated, the next vertex from a

prioritized list of error offsets is added to the simplified sub-polyline at that node. Conflict

resolution terminates when the topology relation is resolved. In some highly constrained

cases, the algorithm will “rewind” - or revert to the original geometry (simplification

cannot proceed without violating a topology or direction relation of the original polyline.

See the “rewind loop” in Figure 2.8).

Note that the binary tree structure is not balanced and its efficiency depends on the

shape of the original polyline. In the worst case, the binary tree reduces to a link list of

nodes. Furthermore, nodes down the tree may have higher ε values than its parent node

(See Figure 2.7b, ε value of node V 2 versus the parent V 1) [Van der Poorten et al., 2002].

The pre-processed binary tree structure accelerates finding characteristic vertices from a

global decomposition as applied in the DP-algorithm. The structure also allows multilevel
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Figure 2.8: Contextual rewind model

simplification since the entire line is represented once in the binary tree.

Figures 2.9a and 2.9b respectively show an unconstrained and constrained DP sim-

plification; self-intersections resulting from DP simplification are not addressed in this

example. Self-intersection consistency has been explored by many authors in cartography

and computational geometry [Saalfeld, 1999; Mantler and Snoeyink, 2000; Wu and Mar-

quez, 2003; Wu et al., 2004; Bertolotto and Zhou, 2007; Corcoran et al., 2011; Li et al.,

2013]. In Figure 2.9a both topology and direction relation are violated because the planar

geometries as neighbours are not considered during simplification. Figure 2.9b illustrates

a consistent (preserves topology and direction) simplified line with contextual neighbours

as constraints.
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(a) (b)

Figure 2.9: Unconstrained (a) and constrained (b) DP Simplification

2.5 Trajectory Extension

The input data for the DP algorithm is an ordered set of points. A trajectory is a time

ordered set of positions of a moving object. Essentially, it is a chain of segments joining

points with a temporal (time) component. The DP algorithm by itself is not able to

consider the temporal dimension of a trajectory. This is achieved by introducing the notion

of the Synchronous Euclidean Distance (SED) [Meratnia and Rolf, 2004]. In a trajectory,

each point Pi is assigned a temporal stamp (ti), which indicates the time a moving object

crossed Pi. A, B, and C are three spatiotemporal locations recorded for a trajectory T,

with tA < tB < tC (Figure 2.10a). The SED for the point B is equal to the Euclidean

distance BB′, where the location B′ is the position B on the simplified line (dash line)

AC with respect to the velocity vector UAC (Figure 2.10b). In other words, the error offset

(ε) of B is the distance from point B to B′, where B′ is the spatiotemporal trace of B on

the straight-line approximation AC at time tB. The notion of SED only changes how we

compute the error offset (ε) for the DP algorithm.
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(a)

(b)

Figure 2.10: The Synchronous Euclidean Distance.

2.6 Evaluation

The DP and SED algorithms are implemented using Node.js, a JavaScript platform on top

of Google’s V8 JavaScript engine. Vessel Trajectory Data is obtained from Marine Traffic

AIS (www.marinetraffic.com) as comma-delimited files (CSV) with the following fields:

vessel id, latitude, longitude, time, speed, course and other attributes. The project area is

the Aegean Sea, between the mainlands of Greece and Turkey. This site provides a suitable

set of islands that act as contextual constraints in the same planar space as the trajectories.

Figure 2.11 shows a set of one hundred trajectories in the Aegean.

Figure 2.11: Study Area

A sample trajectory with 1, 243 vertices is as shown in Figure 2.12, each dot represents

a vertex with spatiotemporal data.
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Figure 2.12: Sample Trajectory

Using the same trajectory illustrated in Figure 2.12, a constrained SED simplification at

5km distance threshold is illustrated in Figure 2.13. A comparative simplification without

contextual constraints is illustrated in Figure 2.14. In Figure 2.14, the disjoint relation as

shown in Figure 2.12 is violated. Figure 2.15a illustrates a section of an original trajectory

and Figure 2.15b shows both constrained and unconstrained SED simplification. It can

be can be observed in Figure 2.15b that the simplified line at 5km threshold violates both

topology and direction if not constrained.

Figure 2.13: Constrained SED Simplification at 5km distance threshold
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Figure 2.14: Unconstrained SED Simplification at 5km distance threshold

(a) (b)

Figure 2.15: Original Trajectory (a), Constrained and Unconstrained SED Simplification
(b)

To demonstrate the effectiveness of context based simplification, we perform a post

empirical evaluation of constrained and unconstrained SED simplification at SED thresh-

olds starting from 5km to 50km. Figure 2.16 illustrates percentage of vertices removed

(PVR) versus SED thresholds. PVR is computed as a ratio of vertices removed as a result

of simplification to the total number of vertices in the original trajectory. Figure 2.16

shows that, compression ratio decreases with increasing offset SED distance in constrained

simplification as compared to a gradual increase in unconstrained simplification.
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Figure 2.16: Percentage of redundant vertices (PVR versus ε)

The context based simplification presented in this paper reinstates removed vertices to

resolve topology and direction conflicts; as a result, the simplified line is less displaced

from its original. In Figure 2.17, we show a total area of polygonal displacement (TAPD)

[McMaster, 1987]. TAPD is the sum of all displacement polygons standardized by the

length of the original line.

Figure 2.17: Total Area of Polygonal Displacement (TAPD versus ε)

2.7 Conclusion

In this paper, we have developed a contextual rewind model by extending the binary line

generalization tree (BLG-tree) based on the Douglas-Peucker algorithm. We incorporate

a stepwise topology and direction constraint at each binary node to maintain a consistent

simplification. Constraint violations are resolved by reinstating a set of prioritized vertices
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to resolve conflicts. The binary tree structure requires storage of all intermediate steps

during pre-processing (performed once at an error threshold of zero). The storage penalty

of the binary tree structure offsets the cost of re-computing error offsets at different

representations of the same polyline in a multi-scale multi-representation environment.

Future work will focus on localization of static and moving space constraints and other

empirical evaluation metrics.
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Chapter 3:

Line Simplification While Keeping it

Simple or Complex

3.1 Abstract

We study the Min−# line simplification problem under the context of other geometries

(point, polylines, polygons) as constraints. Unconstrained line simplification can lead to

topological, proximity, and other spatial relational errors. Given an arbitrary polyline, a

set context geometries, and ε > 0, we investigate a consistent simplification by observing

these constraints: (i) preserve planar and non-planar intersections, (ii) avoid introducing

new self-intersections as a result of simplification, (iii) preserve spatial relations to context

geometries (disjoint and intersect), and (iv) preserve homotopy in simplification.

Our novel set of geometric heuristics are tested on real world data for correctness and

compression effectiveness. In this paper we show that our constrained simplification is

competitive in compression ratio compared to unconstrained.
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3.2 Introduction

A polylineL defined by n line segments is an ordered connected chain of n+1 coordinates.

Let the coordinates of L be P0, Pi, ..., Pn where P0 is (x0, y0) and Pn is (xn, yn). The chain

of L is defined by segments: P0P1, P1P2, P2P3, ..., Pn−1Pn. The degree of a vertex is

the number of segments incident on it [de Berg et al., 1998]. A vertex of degree one is an

endpoint (P0 or Pn, in a ring, P0 = Pn); degree of two is a connecting or “interior” vertex

that connects two segments (e.g., P1 connects P0P1, P1P2). A vertex with degree greater

than two is a planar “junction” (e.g., a road intersection). By keeping the endpoints (P0 and

Pn) fixed, the line simplification problem seeks the characteristic vertices of L to form a

new chain L′ withm vertices such that the discarded coordinates from L are at most ε from

L′, wherem < n. The maximum ε between L and L′ is often termed as the simplification

error [Douglas and Peucker, 1973; Imai and Iri, 1988; Hershberger and Snoeyink, 1992;

Agarwal and Varadarajan, 2000].

Line simplification can be categorized into two forms: the Min−# and Min−ε

problem [Imai and Iri, 1988; Agarwal and Varadarajan, 2000]. TheMin−ε problem finds

L′ with at most K vertices that minimizes ε over all approximations of L that have K

vertices. The Min−# problem computes L′ that uses the smallest number of vertices

among all ε-approximations of L for ε > 0. The simplification problem can further be

restricted or unrestricted. The restricted case requires the vertices of L′ to be a subset of L:

Pi = P0, Pk, ..., Pj = Pn (i < ... < j). The unrestricted case can introduce new vertices

(Steiner points) in L′ that are not part of L. To approximate L well, the coordinates of

L′ are selected based on some criteria. In this paper, we consider the Min−# restricted

problem and refer to the coordinates in L′ as the characteristic points of L [White, 1985;

McMaster, 1987b]. Irrespective of the simplification criteria, the sub-chain deformation

between characteristic points to form a segment of L′ can lead to topological errors. In the

context of other spatial objects, L′ can lead to spatial relational errors.
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L

L′

O1

O2

O3

Pa

Pb

Pc

Pd

Pe

Pf

Pg

Figure 3.1: Approximation of L (solid) as L′ (dashed) with context objects :O1, O2, O3

Consider Fig. 3.1, starting from Pa on the original polyline L, one will make a counter-

clockwise turn at Pb on the next consecutive chains of L to Pc; on the simplification

L′, Pa, Pb, and Pc makes a clockwise turn at Pb. The topological representation in L′

inverts from Pa, Pb, to Pc. We refer to this simplification inversion in sub-polylines as the

linear inversion problem. The segments PePf and PfPg intersects PcPd in L′ (non planar

self-intersection) which is topologically inconsistent with respect to L. In the context

O1, PaPb is on a different side of O1 compared to L from Pa to Pb - the sidedness of

O1 has changed between the original L and its simplification L′ (inconsistent homotopy).

L′ intersects O3 whereas L is disjoint. L′ can further be constrained by a minimum

distance to other objects. Fig. 3.1 illustrates that simplification of L in isolation can lead

topological and spatial relational errors [Muller, 1990; Guibas et al., 1993; de Berg et al.,

1998; Saalfeld, 1999; Estkowski and Mitchell, 2001]. The complexity and hardness of

the problem have been explored by Saalfeld [2000], Estkowski and Mitchell [2001], and

Guibas et al. [1993].

Linear features (e.g., rivers, roads, contours), boundaries of polygon geometries (e.g.,

parcel or county, coastline) or moving object trajectories (e.g., cars, animals, pedestrians,

vessels) are important in cartography, GIS, Very Large Scale Integration (VLSI), image

processing and computer graphics. The correct simple representation L′ is important for

data storage, data transmission, and speed-up of graphic processing. Line simplification is
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a well studied problem; refer to Weibel [1997], Heckbert and Garland [1997], and Shi and

Cheung [2006] for a comprehensive survey of simplification techniques. Other authors

have studied and applied line simplification in cartography and GIS [Douglas and Peucker,

1973; Buttenfield, 1985; McMaster, 1987a; Cromley, 1991; Hershberger and Snoeyink,

1992; Li andOpenshaw, 1992, 1993;Weibel, 1997], computer graphics, and computational

geometry [Ramer, 1972; Suri, 1986; Melkman and O’Rourke, 1988; Imai and Iri, 1988;

Chan and Chin, 1992; Hobby, 1993; Guibas et al., 1993; Goodrich, 1995; Miyaoku and

Harada, 1998].

In this paper, we develop our simplification heuristics based on a popular line simpli-

fication algorithm independently developed by Ramer [1972] and Douglas and Peucker

[1973] (RDP). The restrictedMin−# problem is explored with the following scope and

constraints:

1. Geometric objective: L′ should preserve disjoint or intersection relation with other

objects in the planar space of L.

2. Min−dist objective: L′ should maintain a certain minimum distance to context

objects (preserve proximity relation if observed by L).

3. Homotopy objective: L should be homotopic to L′ in the context of other geometries

(point, polyline, or polygon).

4. Planar self-intersection: L′ should preserve planar self-intersection and avoid intro-

ducing new self-intersections as a result of simplification.

5. Non-planar self-intersection: L′ should preserve non-planar intersections of L and

with segments of other polylines.

6. Linear inversion: consecutive segment ofL′ should not invert the topological relation

in L.
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The rest of the paper is organized into five sections. Section 3.3 discusses related

work in constrained simplification. Section 3.4 introduces our line simplification algo-

rithm. Constrained heuristics and algorithms are developed in section 3.5. Experimental

evaluation of constrained simplification on real world data are presented in section 3.6.

Section 3.7 concludes the this paper with contributions and future work.

3.3 Related Work

de Berg et al. [1998] developed a method of polygonal simplification of a subdivision

based on the work of Imai and Iri [1988]. They modelled a polygonal chain (L) as a graph

structure where its simplification (L′) are the shortest paths (allowed shortcuts) through

the graph. The limitation of de Berg et al. [1998] is that, L is required to be simple and

L′ can intersect other chains of the subdivision. Their method maintained the sidedness

of points P relative to L and L′ if L is monotone [Corcoran et al., 2011]. Estkowski and

Mitchell [2001] developed a graph structure for a set (S) of polygonal chains and feature

points given ε > 0. Their implementation requires polylines in S to be non-crossing

but can share endpoints. Isolated feature points and vertices with degree one or greater

than two are preserved in the simplification (S ′). They implemented a “Simple Detours”

(SD) heuristic for chains in S ′ by “untangling” it to remove intersections introduced by

ε-feasible chains. Estkowski and Mitchell [2001] extended the SD algorithm to maintain

the same homotopy type in the context of points in a subdivision simplification. Kulik et al.

[2005] developed aMin−ε ontology-driven simplification algorithm (DMin) modelled as

a connected graph. Without a pre-specified fixed threshold (Min−ε problem), DMin

uses a geometric and semantic weight to remove vertices. Using a triangle-criterion, DMin

avoids self-intersection and preserves non-planar topology by keeping track of intersections

that are not vertices of the input polylines.

The graph technique by de Berg et al. [1998] applies to simple and not arbitrary chains.
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The SD algorithm by Estkowski and Mitchell [2001] require non-crossings polylines. The

DMin algorithmbyKulik et al. [2005] depends on a connected graph from input polylines to

maintain topological consistency. In a disconnected graph, DMin can introduce topological

inconsistencies. Furthermore, arbitrary polylines such as a road network may not be simple

(planar and non-planar crossings) limiting techniques for simple polylines in a subdivision

simplification [de Berg et al., 1998; Estkowski and Mitchell, 2001]. The challenge of

maintaining topological consistency between arbitrary polylines in the context of other

objects have led some authors [Saalfeld, 1999; Mantler and Snoeyink, 2000; Wu and

Marquez, 2003] to decompose a polyline into a series of safe simplification sub-polylines.

RDP decomposes a polyline into sub-polylines at characteristic vertices [Douglas and

Peucker, 1973]. Saalfeld [1999] developed a triangle inversion property of vertices in the

convex hull of each sub-polyline to avoid self-intersection. Mantler and Snoeyink [2000]

used a point Voronoi diagram to decompose vertices of polyline into safe sets that can be

simplified without introducing self-intersection. A safe set is an ordered set vertices that

is monotonically increasing in some direction whose convex hull contains no other point.

Wu andMarquez [2003] presented a variant of RDP by dividing a polyline into star-shaped

subsets to prevent self-intersection. Algorithms by Mantler and Snoeyink [2000] and

Wu and Marquez [2003] do not handle the relationship between sub-sets of other linear

geometries that may have planar or non-planar intersections with polyline being simplified.

Saalfeld’s [1999] algorithm applies to polyline simplification in the context of other

objects as points. da Silva and Wu [2006] showed limitations of Saalfeld [1999] and

demonstrates how to extend the method of de Berg et al. [1998] to handle context linear

features by considering it as series of points. Corcoran et al. [2011] provided a unified

understanding between de Berg et al. [1998]; Saalfeld [1999], and da Silva and Wu [2006].

Corcoran et al. [2011] further integrates the benefits of deBerg et al. [1998], Saalfeld [1999]

and da Silva and Wu [2006] to provide a simplification algorithm that is less restrictive

compared to da Silva and Wu [2006]. Corcoran et al. [2011] is limited with respect to
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self-crossing arbitrary polylines that can create non-bounded regions between L′ and L

(e.g., see Fig. 3.14). Also the point-in- polygon (even-odd rule) algorithm [Shimrat, 1962]

as applied by de Berg et al. [1998], da Silva and Wu [2006], and Corcoran et al. [2011]

can restricted by two non bounded objects, see Fig. 3.13. This method of homotopic

simplification does not generalize well to arbitrary context objects such as polylines and

polygons.

Abam et al. [2014] finds a polynomial solution for a simplified polyline that is homotopic

to its input given a set of points as constraints. Abam et al. [2014] introduces the concept of

strongly homotopic where every shortcut inL′ is homotopic to the sub-polyline inL. Funke

et al. [2017] implements an integer linear programming and a heuristic for simplifying a

planar subdivision in the context of points as planar constraints. Their method uses

constrained Delaunay triangulation to maintain topology constraints. Vertices of degree 2

are removed one by one while maintaining the constrained triangulation for consistency.

The algorithmbyAbam et al. [2014] exceptx-monotone linesmay result in self-intersection

for simple polylines. Funke et al. [2017] maintains local topological consistency using the

bounded face technique by de Berg et al. [1998]. A polygon (possibly self-intersecting)

created by a local shortcut and its sub-polyline does not contain any constraint point based

on the even-odd-rule by Shimrat [1962] (see limitations of this method in Fig. 3.13 and

Fig. 3.14). Algorithms of Abam et al. [2014] and Funke et al. [2017] are based on simple

polylines and have not been demonstrated to handle arbitrary polylines with linear and

polygonal context constraints.

3.3.1 Research Contributions

Most algorithms found in literature are either restricted for a specific type of polyline

(monotone or simple) and not arbitrary chains [deBerg et al., 1998; Saalfeld, 1999;Agarwal

and Varadarajan, 2000; Estkowski and Mitchell, 2001; da Silva andWu, 2006; Abam et al.,

2014; Funke et al., 2017]. Attempts have been made to preserve planar and non-planar
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intersections in polylines [Estkowski, 1998; Kulik et al., 2005; Corcoran et al., 2012].

Techniques to avoid self-intersection as a result of simplification have also been explored

[Saalfeld, 1999; Wu and Marquez, 2003; da Silva and Wu, 2006; Mantler and Snoeyink,

2000]. Contextual simplification has also been explored in research literature [de Berg

et al., 1998; Abam et al., 2014; Funke et al., 2017]. There is lack of a unified constrained

simplification algorithm that handles topological relations in an arbitrary polyline or a

class of arbitrary polylines while preserving topology (homotopy, intersect/disjoint, self-

intersection, linear inversion), and proximity constraints to arbitrary context objects (point,

polylines, and polygons). We focus on a set novel geometric heuristics based on sub-

polylines (simplification units) created by RDP to maintain topology and context spatial

relations. Our contributions in this paper include:

1. prevention of self-intersection in simple polylines,

2. preservation of planar self-intersection in complex polylines and between groups of

polylines,

3. prevention of linear inversion (mirroring in L′),

4. preservation of homotopy relation between a polyline and its simplification in the

context other planar objects (points, lines and polygons),

5. maintenance of geometric (intersect/disjoint) relation between a polyline and other

planar objects (points, lines and polygons),

6. maintenance of a minimum distance relation to planar objects.

Our strategy for resolving conflicts is similar in concept to Saalfeld [1999], Estkowski and

Mitchell [2001]. Inconsistencies are resolved by introducing characteristic vertices of L at

εk < ε - a further deformation of a sub-polyline using RDP (“untangling”).
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3.4 Polyline Decomposition

In this paper, we use RDP to decompose a polyline (L) into sub-polylines. The subset and

proximity property of RDP ensures a simplification is within a distance ε of the original

polyline and is a subset of the its vertices. The implementation is generic and adaptable

to other algorithms by changing how the characteristic vertices are selected. RDP is used

as a distance function (Hausdorff) for selecting the shape characteristics of a polyline.

We describe RDP as a preliminary for our constrained simplification heuristics. Given

a distance threshold ε and an ordered set of n + 1 vertices (P0, P1, Pi, ...Pn) forming a

polyline L, RDP performs a recursive decomposition by keeping the endpoints (P0 and

Pn) fixed. It finds a splitting vertex Pk by computing a distance offset of intermediate

vertices (P1, ..., Pn−1) from the generalized segment P0Pn. Pk is the vertex with maximum

of the minimum distances (εk) from each intermediate vertex (P1, ..., Pn − 1) to P0Pn. If

εk > ε, split the input polyline at Pk with sub-polylines L0,k (P0, P1, Pi, ..., Pk) and Lk,n

(Pk, Pk+1, Pj, ..., Pn). L0,k and Lk,n become new inputs to the recursive decomposition,

the recursion terminates if εk ≤ ε or Li,j is a segment (j − i = 1, where j > i). The

complexity of RDP is O(n2). Hershberger and Snoeyink [1992] observed the farthest

vertex Pk from the generalize line segment must be part of the convex hull of its vertices;

they built data structures to maintain and access Pk as a way of improving (O(n log n))

RDP for simple polylines; Hershberger and Snoeyink [1992] does not apply to arbitrary

linear features.
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Figure 3.2: RDP Hulls

In Fig. 3.2, the solid polyline L is the original input and the dashed L′ is a simplification

of L at ε. A shape deformation of L is required to obtain L′, that is, a shape collapse of

each sub-polyline Lk,q into a line segment PkPq. k and q are the vertex indices in L, where

q > k. L′ is an ordered connected chain of collapsed characteristic segments. The shaded

region in Fig. 3.2 illustrates the minimum enclosing area of each sub-polyline (convex hull

of vertices). In this paper, we refer to the convex hull of a sub-polyline as a context hull

(CH). Let CH[k,q] be the context hull of sub-polyline Lk,q, the context collapse of CH[k,q]

is the line segment PkPq where Pk and Pq are the endpoints of Lk,q. Note that Pk and

Pq may not be convex vertices of CH[k,q]. Out of context collapse of CH[k,q] can lead to

spatial and topological errors [de Berg et al., 1998; Saalfeld, 1999; Estkowski andMitchell,

2001].

3.5 Constrained Line Simplification

To perform a constrained consistent RDP simplification, it is important to observe and

resolve topological or spatial relational errors. The main focus of this paper is to consider

topology andminimum distance relation as simplification objectives. We achieve andmake
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an original research contribution by developing a series of algorithms using the context

hull (CH) of each sub-polyline by observing the following constraints:

1. planar self-intersection - a shared vertex (degree > 2) within one or more

polylines,

2. non-planar self-intersection between deformation units - CH of one or other

polylines,

3. intersect and disjoint geometric relation to other context objects (point, line, or

polygon),

4. homotopy of simplified polyline in the context of other objects, and

5. minimum distance relation to other context objects.

CH[i,j] acts as a region of spatial influence for the generalized segment PiPj . Since

PiPj for Li,j cannot exist outside CH[i,j], errors that can occur as a result of simplification

are related to inconsistent relations that exist withinCH[i,j] or at a certain distance (δ) from

its boundary. We refer to geometries that intersect CH[i,j] or at δ from a its boundary as

context neighbours. Context neighbours can be a points, lines, or polygons. Other context

hulls of the same polyline or other polylines are treated as context neighbours. Splitting

and merging of context hulls are central to algorithmic developments in this paper. We

provide some properties and formal definitions.

• Context hull (CH[i,j]): is the minimum enclosing area of a point set (Ps).

Depending on the number of points in Ps, CH[i,j] can be represented geometrically

as a line segment or polygon.

• Deformable: CH[i,j] is deformable if there is a selectable intermediate vertex

Pk at εk where i < k < j and εk < ε. Based RDP (see section 3.4), Pk is the farthest

vertex from PiPj . CH[i,j] with j − i = 1 is not deformable.
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• Collapsible: CH[i,j] is collapsible if it can be represented as PiPj without

violating a pre-specified constraint.

• Contiguous: CH[i,k] and CH[j,n] are contiguous if k = j or i = n. CH[i,k] and

CH[j,n] are non-contiguous if k 6= j and i 6= n.

• Mergeable: contiguous context hulls CH[i,k] and CH[j,n] are mergeable if εq ≤

ε, where Pq is the characteristic vertex from PiPn, where i < q < n.

Some authors [de Berg et al., 1998; Saalfeld, 1999; Estkowski and Mitchell, 2001;

da Silva and Wu, 2006; Tienaah et al., 2015] have considered strategies of further simpli-

fying Li,j by introducing some of the original vertices to resolve topological errors. In

this paper, we use this intuition to develop geometric heuristics to resolve topology and

spatial relational errors. Consider a series of contiguous context hulls: CH[0,3], CH[3,7],

CH[7,9] and CH[7,13]. There is no one obvious strategy of collapsing the context hulls

for an arbitrary polyline. A sequential collapse starting from CH[0,3] can lead topological

errors in successive hulls; the reverse, stating from P7P13 can also be inconsistent with

preceding context hulls. A sequential collapse of each contiguous context hull as presented

in Tienaah et al. [2015] can lead to unnecessary introduction of original vertices in later

context hulls that may be inconsistent with preceding collapsed hulls. In this paper, we

present an original set of heuristics that express the topological and spatial relationship

between context hulls to precisely identify deformable and collapsible hulls. In a group

of polylines (e.g., contour lines, road network), it is important the resulting simplification

retains the spatial and topological characteristics of the input polylines.

3.5.1 Min−# polyline deformation heuristics

Let Pi, Pi+1, Pk, ..., Pj−1, Pj be the coordinates of a sub-polyline Li,j . The geometry of a

context hull is a line segment if the intermediate vertices between i and j (Pi+1, Pk, ..., Pj−1)

are collinear with PiPj . The convex hull of Li,j with two coordinates (j − i = 1) is also
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represented as line segment. Context hulls with more than two coordinates with an areal

extent are represented geometrically as polygons.

After RDP decomposition ofL,Li,j can contain planar and non-planar self-intersection.

A vertexPk shared bymore than two line segments is further deformed atPk if preservation

of planar self-intersection is required. Given a context hull CH[i,j] with a sub-polyline Li,j

containing a vertex with degree > 2 at k, split CH[i,j] at Pk, see Fig. 3.3. For a non-planar

intersection, split CH[i,j] at endpoints of segment involved in the intersection.

Heuristic 3.1. Given a context hull CH[i,j] of sub-polyline Li,j with vertex Pk where

degree(Pk) > 2, k 6= i, and k 6= j, preserve k by splitting CH[i,j] at k into CH[i,k] and

CH[k,j].

(a) context hulls (b) constrained to planar vertex

Figure 3.3: Context hulls containing planar intersect (vertex degree> 2) (a) and constrained
deformation at planar vertex (b)

Theorem 3.1. PiPj is a consistent collapse of Li,j if the convex vertices of Li,j consists of

Pi and Pj and the vertices between i and j are of degree two, where j − i > 2.

Proof. The convex vertices of a line segment or a polyline with collinear vertices are the

endpoints of the input polyline. The area of CH[i,j] is zero and will not change the shape

of Li,j collapsed as PiPj .

After heuristic 3.1, all vertices with at least degree three are constrained as an endpoint

of a context hull. To maintain non-planar intersects, we deform context hulls at endpoints
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of segments involved in non-planar intersection. We also constrain non-planar relationship

between context hulls, see Fig. 3.4a.

Heuristic 3.2. Deform CH[i,j] and CH[m,n] contiguous (j = m) at j if PiPj and PmPn

intersect only at Pj but Li,j and Lm,n intersect other than Pj , see Fig. 3.4a.

(a) contiguous (b) non-contiguous

Figure 3.4: Contiguous context hulls with non-planar intersects (a) and overlap of two
non-contiguous context hulls (b)

Non-contiguous crossings can result from the same polyline or from other polylines of

the same feature class. We define the “relax” distance (δ) as the offset between the intersect

of sub-polylines and the intersect of their collapsed generalized segments. δ is an optional

user defined non-planar distance offset at the time of simplification.

Heuristic 3.3. Deform CH[i,j] and CH[m,n], where j 6= m and n 6= i, if the distance

(dδ) between O and M is greater than δ, where O and M are the intersects between

sub-polylines (Li,j ,Lm,n) and collapsed segments (PiPj ,PmPn) respectively. See Fig. 3.4b.

It is possible to refine heuristic 3.3 by choosing one or a combination that yields the

smallest dδ (Fig. 3.4b): (i) deform CH[i,j] and collapse CH[m,n] as PmPn, (ii) deform

CH[m,n] and collapse CH[i,j] as PiPj , and (iii) deform CH[m,n] and deform CH[i,j].

Two non-contiguous hulls can intersect resulting in a simplified crossing but the sub-

polylines of their context hulls are disjoint, see an example in Fig 3.5a.
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Heuristic 3.4. Given two intersecting non-contiguous context hulls CH[i,j] and CH[m,n]

with disjoint sub-polylinesLi,j andLm,n, deformCH[i,j], ifPiPj intersectsLm,n andPmPn.

(a) inconsistent collapse, deform chb (b) consistent collapse

Figure 3.5: Inconsistent collapse of chb based on heuristic 3.4 in (a); disjoint sub-polylines
with consistent collapsed segments (disjoint) (b)

Two intersecting non-contiguous context hulls CH[i,j] and CH[m,n] can be collapsible.

Unlike other algorithms [Saalfeld, 1999; da Silva and Wu, 2006; Corcoran et al., 2011],

the presence of a sub-polyline in a context space does not trigger further deformation if its

collapse is outside the context space (see Fig. 3.5b).

Heuristic 3.5. IntersectingCH[i,j] andCH[m,n] are collapsible ifLi,j andLm,n are disjoint

and their resulting collapsed segments (PiPj and PmPn) are also disjoint.

It can be deduced from heuristic 3.5 that in the absence of other spatial constraints, it is

topologically consistent to collapse disjoint context hulls, see Fig. 3.6.

Heuristic 3.6. Disjoint CH[i,j] and CH[m,n] are topologically collapsible since their col-

lapsed segments PiPj and PmPn are also disjoint.

Figure 3.6: Collapsible disjoint context hulls
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The sub-polylines of contiguous hulls may not have non-planar intersects as shown in

Fig. 3.7, the resulting collapse of each context hull can be an “inverse” or “reflection” at

the contiguous vertex. For example, in Fig.3.7, the relative sidedness of Li,k to Lk,j is

inconsistent with PiPk to PkPj .

Heuristic 3.7. DeformCH[i,k], ifPj is completely insideCH[i,k] andCH[k,j] if it completely

contains Pi, where CH[i,k] and CH[k,j] are contiguous at k.

Figure 3.7: Linear inversion problem, Li,k to Lk,j is topologically inconsistent with PiPk
to PkPj

Contiguous CH[i,k] and CH[k,j] with intersect at vertex Pk are collapsible relative to

each other if their sub-polylines only intersect at Pk.

Heuristic 3.8. CH[i,k] and CH[k,j] are collapsible as PiPk and PkPj if Pj and Pi are not

contained in CH[i,k] and CH[k,j] respectively (see Fig. 3.8)

Figure 3.8: Collapsible contiguous context hulls

The disjoint or intersect relation of a sub-polyline to objects in its context space is

important. In this paper, we constrain the PiPj to have the same spatial relation (dis-

joint/intersect) to context neighbours as Li,j of CH[i,j]. For example, in Fig. 3.9, cha has
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two context neighbours OA and OB, PiPj should have the same geometric relation as Li,j

(disjoint with OA and intersect OB).

Heuristic 3.9. Deform CH[i,j] if PiPj has a different disjoint or intersect relation to a

context neighbour as expressed by Li,j .

Figure 3.9: Geometric relation (disjoint/intersect). Inconsistent collapse: PiPj should be
disjoint with OA and intersect OB

The proximity of a simplification to context neighbours can change the semantic rep-

resentation of a polyline. For example, in marine vessel trajectories, depth and minimum

distance to a coastline is important with respect to navigation. In Fig. 3.10, the collapse of

cha changes the proximity relation of Oa from δa to δb and for Ob, δc changes to δd.

Heuristic 3.10. Deform CH[i,j] if δs < δ and δo ≥ δ, where δs is the minimum distance

between PiPj and a context object (O), δo is the minimum distance between Li,j and O.

CH[i,j] is collapsible as PiPj if δo < δ since δs can be < δo or ≥ δo.

Figure 3.10: Minimum distance relation to context neighbours

67



Keeping the endpoints fixed, Li,j is homotopic to PiPj if Li,j can be continuously

deformed into PiPj . The deformation of vertices between i and j are removed without

leaving the planar space. Context neighbours are obstacles to such a continuous defor-

mation. By constraining each Li,j to be homotopic (strongly homotopic [Abam et al.,

2014]) to PiPj , a chain of homotopic collapsed segments (L′) is homotopic to the original

polyline (L). Our implementation unlike [Abam et al., 2014; Cabello et al., 2004] is not

limited by collinear vertices (horizontal or vertical) and self-intersections in a polyline.

Our homotopy algorithm also supports arbitrary geometries as context objects.

Homotopy in the context of points, lines, and polygons is achieved by relaxing the

constraint on the boundary of such context neighbours: if Li,j intersects Oa, PiPj is

considered homotopic if it intersects Oa. Li,j and PiPj are not homotopic if they have a

different intersect relation to Oa. We develop a chain deformation algorithm to test the

homotopic deformation of Li,j to PiPj using disjoint context neighbours. Our chain data

structure is like the classic doubly link list with each vertex having a pointer to the next

and previous vertex. All context neighbours are indexed in an in-memory R-Tree to speed

up processing.

Keeping i and j fixed, we iterate over the chain starting at i + 1. Let i = a, i + 1 = b,

i + 2 = c and so on, starting at b, form a triangle with the previous and next vertices

of b as Tabc (see Fig. 3.11a). At b, find context neighbours that intersect Tabc from the

R-Tree. If Tabc is disjoint from context objects, the vertex at b is removed to collapse

Tabc as PaPc, else, the iterator advances to c with previous and next vertices as triangular

vertices. In Figure 3.11b, vertex c is not removable because of CA, the iterator advances to

d, consecutive triangles Tcde and Tcef are collapsible. We repeat the iteration if a triangle

was collapsed in the previous iteration and the number of vertices in the chain is greater

than two. In Fig. 3.11e, the second iteration of triangular deformation will collapse Tacf

by removing c. The algorithm eventually terminates since a and f have no previous and

next vertices respectively. If there are intermediate vertices between the endpoints and
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an iteration does not yield a triangular collapse, it means all the edges are constrained by

context neighbours in such a way that PiPj is not homotopic to Li,j .

(a) collapse triangle abc, re-
move vertex b, advance to c

(b) triangle acd is not col-
lapsible, advance to d

(c) collapse triangle cde, re-
move vertex d, advance to e

(d) collapse triangles cef , ad-
vance to f , stop iteration 1

(e) collapse triangle acf , re-
move vertex c, advance to f

(f) stop iteration 2 - endpoints
a and f

Figure 3.11: Homotopic chain deformation, second iteration starts at (e)

In Fig. 3.12, we show the gradual shape deformation at each iteration with a dash

polyline. Let Li,j have n vertices, keeping i and j fixed, we have n− 2 vertices to collapse

in k iterations. The worst case of the chain deformation algorithm is to collapse only one

triangle per iteration, thus k = n− 2. The complexity of computing the homotopy of each

context hull is O(n2), where n is the number of vertices in Li,j .
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O2

O1

L′

L

(a) polyline, filter for disjoint neigh-
bours

O1

(b) deformation (dash line) - iteration 1

O1

(c) deformation (dash line) - iteration 2

O1

L′

L

(d) deformation (dash line) - iteration 3

Figure 3.12: Homotopic chain deformation

Corcoran et al. [2011] and Funke et al. [2017] based on the work of de Berg et al.

[1998] consider Li,j not homotopic to PiPj if a context object is in the bounded face of

the polygon formed by Li,j and PiPj . The polygon edge PjPi closing the loop from j

to i can create a complex polygon by intersecting some of the edges of Li,j . Algorithms

[de Berg et al., 1998; Corcoran et al., 2011; da Silva and Wu, 2006; Funke et al., 2017]

in literature use point-in-polygon (even-odd rule by Shimrat [1962]) to test if a context

object (point) is inside or outside a bounded face of a polygon. This approach does not

extend well to arbitrary (possibly self intersecting) planar objects such as polylines and

polygons. Moreover, two points in non-bounded faces of a complex polygon can still

prevent a homotopic deformation of Li,j into PiPj . It is therefore not sufficient to test the

inside versus outside relation of each context neighbour, see Figure 3.13.
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i j

O1

O2

(a) simple polyline (Li,j) as a complex
polygon (Qij) formed by vertices ofLi,j
and PjPi. The two context objects (O1

and O2) are not bounded by Qij

i j

O1

O2

(b) planar deformation of Li,j is re-
stricted by non-bounded context objects
(O1 and O2)

Figure 3.13: Restricted non-bounded context objects in chain deformation

An arbitrary ring of vertices Li,j (Pi, Pi+1, ..., Pj, Pi) with non-planar self-intersection

can create non-bounded faces in a polygon (Fig. 3.14). Our method prevents passing over

context objects in this non-bounded region. See Figure 3.14.

i j

O1

(a) non-planar self-intersecting polyline

i j

O1

(b) restricted by non-bounded context
object (O1)

Figure 3.14: Restricted self-intersecting chain deformation by a non-bounded context
object

Heuristic 3.11. Deform CH[i,j] if the chain Li,j cannot be continuously deformed as PiPj

with respect to disjoint context geometries.

3.5.2 Constrained Implementation

Using the RDP algorithm described in section 3.4, each polyline is decomposed into a set

of contiguous context hulls Sh (CH[i,g], CH[g,k], ..., CH[m,j]) at a pre-specified ε. Based

on a set of constrained simplification options, context hulls in Sh are split at planar and

non-planar self-intersections. Sh is then bulk-loaded into an in-memory R-Tree (Hdb). To

71



speed up finding k-nearest context neighbours, other planar geometries are bulk-loaded

into another in-memory R-Tree (Cdb). User defined constrained simplification options

include the following:

1. simplification threshold (ε) (number, e.g., RDP),

2. relaxation distance (number, δ in heuristic 3.3),

3. avoid new self-intersects (boolean, heuristic 3.5),

4. geometric relation (boolean, heuristic 3.9),

5. minimum distance (number, δ in heuristic 3.10),

6. distance relation (boolean, heuristic 3.10),

7. homotopy relation (boolean, heuristic 3.11), and

8. keep planar self-intersects (boolean, heuristic 3.1).

9. keep non-planar self-intersects (boolean, heuristics 3.2 and 3.3).

Based on the options provided, a constrained simplification algorithm is described in

Algorithm 3.1.

Figure 3.15: Concurrent processing model in Algorithm 3.1. A worker refers to a concur-
rent go routine
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Algorithm 3.1 Simplify at ε

1. Let Sh be all context hulls in Hdb.

2. Using each context hull (CH[i,j]) in Sh, query Hdb for hull neighbours and Cdb for
planar context objects, find all deformable hulls based on simplification options;
Check for collapsibility based on the heuristics outlined in section 3.5.1. Results of
context hulls that require further deformation are stored in set Sd.

3. Deform each context hull in Sd based on RDP (see section 3.4) and store results in
set Ss.

4. Remove from Hdb all hulls in Sd (parent hulls of Ss).

5. Update Hdb by bulk-loading context hulls in Ss.

6. Let Sh be Ss, if Sh is not empty, repeat step 2, else, terminate and merge segments
that are mergeable in Hdb.

Algorithm 3.1 is implemented using the Go programming language. Step 2 and 3 in

Algorithm 3.1 uses eight (8) concurrent routines based on the layout in Fig. 3.15 to speed

up processing.

3.6 Experimental Evaluation

To demonstrate the effectiveness of our constrained simplification algorithm, we have

implemented and tested its performance with varied datasets. In this paper, we use a

road network and elevation contours. Experiments are performed on an Intel® CoreTM i7

3.6GHz x4, 16 GB RAM. To accelerate processing, all computations are done in memory

(10GB available RAM).

The first dataset used for experimental evaluation is the New Brunswick (NB) Road

Network, Canada. A Road network has varied topological relations that require preserva-

tion: self-intersection at junctions, non-planar intersection at overpasses, disjoint relation

in two parallel roads, and many more. The dataset consists of 67, 484 polylines with

1, 293, 345 vertices (see appendix. A.1). The second dataset consists of USGS elevation
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contours (40m interval) for Pitkin County, Colorado, USA. The contour dataset contains

42, 701 polylines with 11, 046, 779 vertices. Contours unlike roads present a limited set of

requirements: a single contour (polyline or ring) does not self-cross or cross other contour

lines (see appendix. B.1).

Simplifications are performed progressively over a range of ε values. The New

Brunswick road network is simplified from 2m to 20m at an interval of 2m. The contour

data from Pitkin County are simplified starting 5m to 40m at 5m interval (considering

only planar x, y without z dimension).

3.6.1 Results

At a given ε > 0, each polyline is decomposed into a set of contiguous ε-feasible sub-

polylines based on RDP. For each polyline and between polylines, we compute planar

self-intersections (vertices with degree greater than two); let these planar vertices of degree

greater than two be the set CV . Vertices of segments that form non-planar intersections

are also added to CV . Each ε-feasible sub-polyline Li,j is split into sub-polylines Li,k and

Lk,j if i < k < j, where k is the index of a vertex contained in CV (see heuristic 3.1).

The proximity property of RDP ensures that subsequent deformation of ε-sub-polylines

are within a distance ε of the original polyline.

Isolated RDP decomposition of each polyline can result in topological and spatial

errors. To resolve these errors in the context of other planar objects, all the sub-polylines

are contextually deformed based on algorithm 3.1. At the start, each sub-polyline is

considered “deformable” (invalid). Algorithm 3.1 is used to filter which sub-polylines are

collapsible in the context of planar constraints. Each iteration of algorithm 3.1 reduces

the number of deformable sub-polylines. The progression of number of deformable units

versus iterations is shown in Figures 3.16 and 3.17. The number of iterations required

to resolve all conflicting sub-polylines increases with increasing ε, because the area of a

context hull depends on the size of ε. A bigger context area increases the probability of
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topological or homotopy invalidation during simplification. Figures 3.16 and 3.17 show a

fast convergence from the initial number of deformable hulls at given ε.
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Figure 3.16: Deformation convergence - Road Network - New Brunswick
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Figure 3.17: Deformation convergence - Contours - Pitkin County

Tables 3.1 and 3.2 show the running time and percentage compression of constrained

and unconstrained simplification of NB road network and Pitkin contours respectively. It
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can be observed unconstrained RDP is faster than constrained RDP. The running time

of constrained RDP consists of the running time of unconstrained plus additional pro-

cessing to resolve simplification errors. The percentage of data reduction is computed

as (1 − Ns

No
) ∗ 100% where Ns and No are the number of vertices in the simplified and

original dataset respectively. Constrained RDP in Tables 3.1 and 3.2 show competitive

(small difference) compression ratios compared to unconstrained RDP simplification. The

difference in percentage compression for the road network between constrained and uncon-

strained simplification is quite small (see Tables 3.1), this is because most road outlines are

straight lines with less abrupt changes in direction. A bigger difference will be observed

in detailed outlines (e.g., meandering river or coastlines) with topological constraints.

Figures 3.18 and 3.19 graphically highlight limitations of unconstrained compared

to constrained simplification. Figure 3.18b introduces a self-intersection whereas Fig-

ure 3.18c preserves the original disjoint relation in Figures 3.18a. In the context topologi-

cally disjoint contour lines (Fig. 3.19a), isolated unconstrained simplification of each con-

tour at ε can introduce self-intersections between neighbouring contours, see Figure 3.19b.

Constrained simplification of the same scene in Fig. 3.19a is shown in Fig. 3.19c. Fig. 3.19c

preserves the topology relation in Figure 3.19a.
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Table 3.1: Road Network - Province of New Brunswick (67, 484 polylines - 1, 293, 345
vertices)

ε
(meters)

Constrained
% Compression

Unconstrained
% Compression

Constrained
Time(seconds)

Unconstrained
Time(seconds)

2 70.5 70.6 35.4± 3.7 5.3± 0.1
4 77.2 77.3 25.4± 0.1 3.5± 0.1
6 80.0 80.2 22.0± 0.1 2.9± 0.1
8 81.7 81.8 20.1± 0.1 2.6± 0.1
10 82.8 82.9 19.0± 0.1 2.4± 0.1
12 83.5 83.7 17.9± 0.1 2.3± 0.0
14 84.1 84.3 17.2± 0.1 2.3± 0.1
16 84.6 84.8 16.8± 0.1 2.2± 0.1
18 85.0 85.1 16.2± 0.1 2.1± 0.1
20 85.3 85.4 15.8± 0.0 2.0± 0.0

Table 3.2: USGS Elevation Contours - Pitkin County (42, 701 polylines - 11, 046, 779
vertices)

ε
(meters)

Constrained
% Compression

Unconstrained
% Compression

Constrained
Time(seconds)

Unconstrained
Time(seconds)

5 87.3 87.3 282.2± 1.4 23.7± 0.4
10 91.6 91.6 207.1± 0.9 15.4± 0.5
15 93.4 93.4 183.3± 0.3 11.9± 0.1
20 94.4 94.5 170.0± 0.4 9.7± 0.3
25 95.0 95.2 177.8± 0.4 9.1± 0.3
30 95.4 95.7 182.1± 0.6 8.0± 0.0
35 95.6 96.0 191.6± 0.3 7.4± 0.2
40 95.8 96.3 198.3± 0.4 6.7± 0.1
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(a) Original (b) Unconstrained (c) Constrained

Figure 3.18: Original Road Network (a), Unconstrained (b) and Constrained (c) RDP
Simplification at ε = 20m.

(a) Original (b) Unconstrained (c) Constrained

Figure 3.19: Original Contour (a), Unconstrained (b) and Constrained (c) and RDP Sim-
plification at ε = 30m.
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3.7 Conclusion

In this paper, we consider the Min−# simplification problem using Ramer [1972] and

Douglas and Peucker [1973] (RDP) algorithm. Through a novel set of geometric heuristics,

we demonstrate how to avoid self-intersection introduced by the RDP algorithm, preserve

planar and non-planar intersection, and constrain spatial relations (geometric, distance, ho-

motopy) to other planar objects (points, polylines, polygons). The algorithms are evaluated

on a road network and contour lines to demonstrate its performance and correctness. The

results show a fast convergence to a consistent simplification with competitive compression

ratio as compared to the unconstrained algorithm. All processing and data structures are

implemented in-memory; this is not scalable for datasets that will not fit in main memory

(random-access memory - RAM). Future work should explore an external I/O efficient im-

plementation for constrained polyline simplification. The main contribution (section 3.3.1)

in this paper is resolvingmultiple requirements (section 3.5) towards automated line simpli-

fication to support cartographic generalization, graphic visualization, and data reduction.

Source code of our implementation is available at github.com/TopoSimplify.
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Chapter 4:

Topologically Consistent Online

Trajectory Simplification

4.1 Abstract

Westudy online simplification of arbitrarymassive trajectories in the context of other planar

objects. A trajectory consists of possibly an infinite number of incoming spatiotemporal

instants: (x0, y0, t0), (x1, y1, t1), (xi, yi, ti), ... of a moving object. Our online imple-

mentation is constrained to avoid and preserve self-intersection between simplification

units. Other contextual constraints include disjoint/intersect, homotopy, and proximity

in the context of planar objects. Using real world data, we evaluate our implementation

using moving vessels in the Aegean Sea with islands as planar constraints. Unconstrained

simplification in our evaluation show a higher compression ratio compared to constrained

simplification. Our results show a compression difference of about 4% between constrained

and unconstrained simplification. Constrained simplification also took less than four times

the processing time of unconstrained simplification. The results show a competitive com-

pression ratio in a reasonable amount of time to resolve spatial and topological errors in
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the constrained version.

Unconstrained trajectory simplification is fast with a higher compression ratio but leads

to spatial and topological errors. A consistent constrained simplification provides the

benefits of data reduction while preserving the original spatiotemporal characteristics.

Our implementation provides the first treatment of an online trajectory simplification

that avoids self-intersection as a result of polyline simplification, preserves non-planar

self-intersection between simplification units and maintains homotopy in the context of

arbitrary planar objects. We also provide a framework for concurrent streaming and

constrained simplification to answer ad hoc queries during movement.

4.2 Introduction

Recent advancements in location based sensors (Global Positioning System (GPS), Radio-

Frequency Identification (RFID)), wearable devices (smart watches, GPS enabled sports

bands), hand held devices (cell phones), and self navigation robots (self drivings cars,

drones) have lead to an increasing timestamped telemetry of moving objects.

A trajectory M of a moving object can be tracks of a human, animal, a vehicle with

GPS navigation (car or vessel), hurricane, or the spatiotemporal trace of any moving entity.

The trace of M can be sampled based on time (e.g., at every 10 minutes), distance (e.g.,

at every 10 meters), deflections (e.g., deflection angle greater than 10 degrees) and so on.

Because of storage and transmission limitations, the spatiotemporal locations of a moving

object is generalized by discretization at data collection. It is beneficial to collect data at

the highest resolution and then reduce it in order to optimize performance in subsequent

data processing, transmission, visualization and/or management applications.

Piecewise linear approximation is one of themost widely usedmethods in data reduction

due to its algorithmic simplicity and low computational complexity [Meratnia and Rolf,

2004]. Piecewise linear approximation algorithms can be classified as batch or online.
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Batch algorithms require all spatiotemporal instants ofM , whereas online do not, and are

used to simplify trajectories in a real-time environments.

The spatiotemporal instants ofM are represented as (l0, t0), (l1, t1), (li, ti), ..., (ln, tn)),

where l0, l1, li,..., ln are sampled locations and t0, t1, ti, ..., tn are corresponding time

stamps. A piecewise linear approximation of M assumes that successive instants of M

are connected by straight line segments. Based on an approximation criteria, a restricted

simplification of M seeks to find a sub-series M ′ of M by keeping some instants of M

without displacement or introduction of new spatiotemporal instants that are not part of

M . The vertices of M ′ is therefore a subset of M . The simplification error ε is the

maximum separation betweenM andM ′. The utility ofM ′ is lost if it does not capture the

relevant spatiotemporal characteristics (shape, speed, direction, and other attributes) ofM

[Meratnia and Rolf, 2004; Potamias et al., 2006]. In this paper, we focus on constrained

online trajectory simplification in the context of arbitrary objects (points, lines, or polygons)

as planar constraints.

Trajectory simplification algorithms that extend piecewise linear approximation to han-

dle the temporal dimension inherit the drawbacks of such techniques. Line simplification

is a well studied problem in cartography, computer graphics, and computational geometry.

The following authors have identified spatial and topology errors: Muller [1990], Saalfeld

[1999], Estkowski and Mitchell [2001], Corcoran et al. [2011], Daneshpajouh and Ghodsi

[2011], Stefanakis [2012], and Tienaah et al. [2015]. Moving objects in the physical world

have spatial and temporal relations to other objects or their path of movement (cars are

constrained by the road network and other moving vehicles; vessels at sea are constrained

by landmasses and navigable routes).

Trajectory simplification in isolation (disregarding spatial relations to planar objects or

trajectory fragments) can lead to topology and proximity errors. Using trajectories of ves-

sels at sea (Marine Traffic: marinetraffic.com), we illustrate three simplification problems

that can arise if trajectories are simplified independent of spatial relations to islands. Sea
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vessel trajectories in the context of islands should not intersect land and a simplification

should have the same topological relation to islands as the original. The simplified polyline

(dashed) in Fig. 4.1b violates the disjoint relation of the original trajectory. In Fig. 4.1c,

the simplification is on a different side of the island compared to the original trajectory

(different homotopy class), and Fig. 4.1d shows the simplification may violate keeping a

certain minimum distance to the island.

(a) Vessels and Islands

island

M

M ′

(b) Disjoint error

island

M ′

(c) Homotopy error

island

M ′

(d) Proximity error

Figure 4.1: (a) Sea vessels moving between islands (a snapshot from Marine Traffic in
the Aegean). The source (original in solid polyline) and target (simplified in dashed line)
trajectories of a vessel in spatial relation to an island (polygon). Violation of spatial
relations: (b) topological as the target intersects the island; (c) homotopy as the target
passes through the eastern side of the island; and (d) distance as the target is too close to
the coastline.

The focus of this paper is the problem of finding a restricted sub-series of a trajectory

without moving timestamped positions of the original or introducing new instants. We

further limit our scope to online-simplification with spatial relation constraints to objects

that share the same planar space as the trajectory. We focus on online simplification by

creating an environment that can handle concurrent streams of timestamped positions from

moving vessels at sea. Our implementation is to support a real-time monitoring system

that is able to provide real-time responses to the simplification state of a moving object.

The contributions of this paper include:

1. avoids self-intersection as a result of simplification,

2. preserves non-planar self-intersection between simplification units,
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3. preserves intersect, disjoint, distance, and homotopy relation to arbitrary context

geometries, and

4. provides external simplification of arbitrary trajectories in an online environment.

The remainder of this paper is organized into four major sections. In section 4.3,

we review related work on sampling trajectory streams. In section 4.4 we review and

develop our simplification algorithm. Experimental evaluation of algorithms are discussed

in section 4.6. The paper concludes with contribution and future work in section 4.7.

4.3 Related Work

For a detailed survey of line simplification algorithms and their development over the

years, refer to [Heckbert and Garland, 1997; Shi and Cheung, 2006]. One of the popular

algorithms that extended to spatiotemporal simplification is the Rammer-Douglas-Pecker

(RDP) algorithm [Ramer, 1972; Douglas and Peucker, 1973]. McMaster [1987] andWhite

[1985] showed that theRDP algorithmoutperforms (mathematical and psychological) other

simplification algorithms. The RDP algorithm recursively partitions a polyline based on a

given simplification error ε of vertices from a generalized segment (line joining the first and

last vertex). Vertices with Euclidean distance less than ε are discarded and characteristic

or critical vertices of a polyline are kept. Meratnia and Rolf [2004] extended the RDP

algorithm to consider the spatiotemporal characteristics of a trajectory by replacing the

simplification error (ε) with a time ratio function - Synchronized Euclidean Distance (SED)

or Time Ratio (TR).

In the spatiotemporal domain, the SED distance function projects a temporal position

onto a generalized line segment, the metric that measures the instant location is the

Euclidean distance between the projected and its original location. This approach has been

explored by Cao et al. [2006] and Muckell et al. [2011]. A detailed description of the

SED algorithm is discussed in section 4.4.1.1. Other metrics for trajectories simplification
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include: position, speed, velocity, direction [Long et al., 2013; Muckell et al., 2011, 2014;

Lin et al., 2016; Potamias et al., 2006]. Other techniques such similarity based compression

have been explored by Birnbaum et al. [2013].

Lossy and lossless trajectory compression for a good compression ratio and small error

margin has developed by Nibali and He [2015]. A bottom-up multi-resolution trajectory

simplification has been explored by Chen et al. [2012]. For a comprehensive survey of

trajectory simplification algorithms, see [Sun et al., 2016; Shi and Cheung, 2006; Feng

and Shen, 2017]. In an online environment, global algorithms are not very useful. Online

trajectory simplification techniques have been explored by [Trajcevski et al., 2006; Lange

et al., 2008; Liu et al., 2012, 2013; Muckell et al., 2011; Meng et al., 2017].

Trajectories are captured in a spatial context. The following authors have considered

trajectory simplification constrained by a road network using map-matching or snapping to

the underlying network: [Cao and Wolfson, 2005; Kellaris et al., 2009; Song et al., 2014;

Gotsman and Kanza, 2015; Popa et al., 2015].

Our focus in this paper is to solve the min-# [Imai and Iri, 1988; de Berg et al., 1998]

problem without displacing original sampled instants or introducing new ones. To the best

of our knowledge, very little research has focused on solving the self-intersection problem

in trajectories. Constrained or unconstrained moving objects often generate complex linear

geometries; a trajectory can have circular loops or self-crossing patterns. For example,

interconnected overpasses of a road network will lead to paths that cross in a non-planar

fashion; movement of tracked animals or vessels at sea sometimes have self-crossings.

Most simplification algorithms in the literature consider trajectories as simple polylines

and do not handle non-planar loop patterns or self-crossing paths. Furthermore, most

trajectories and movement patterns in the physical world are constrained and share a

spatial relationship to other objects in the same planar space. As shown in Fig. 4.1, the

semantic representation of a trajectory irrespective of the simplification algorithm is lost if

objects that constrain the spatiotemporal characteristics of the trajectory are not considered
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during simplification.

4.4 Algorithmic Formulation

In this paper, we focus on research limitations mentioned in Section 4.3 in an online

streaming environment using open window time ratio simplification algorithm [Keogh

et al., 2001; Meratnia and Rolf, 2004]. We extend the work of [Tienaah et al., 2015; Ste-

fanakis, 2012] andTienaah et al. [2018] by external (I/O) processing of contextual trajectory

simplification. Tienaah et al. [2018] focused on batch mode, in-memory constrained sim-

plification as applied to polylines without any spatio temporal component. In this paper we

focus on external memory (storage), online-simplification with spatiotemporal trajectories

constrained by planar objects (points, lines, and polygons).

4.4.1 Sampling Algorithm

The SED sampling algorithm [Meratnia and Rolf, 2004] is an adaptation of RDP [Ramer,

1972; Douglas and Peucker, 1973] by changing the distance error function. Given an error

threshold T and a polyline P with an ordered set of n + 1 vertices V0, V1, Vi, ..., Vn, the

RDP algorithm performs a recursive simplification of P by keeping a generalised segment

V0Vn fixed. It finds a splitting vertex Vk by computing a distance offset of intermediate

vertices (V1, ..., Vn−1) from V0Vn. Vk is the vertex with maximum (Tk) of the minimum

distances (Hausdorff distance) from V0Vn. If Tk > T , split the input polyline at Vk with

sub-polylines P0−k and Pk−n. RDP recursively simplifies P0−k and Pk−n based on T ;

the recursion terminates if Tk ≤ T or Pi−j is a segment. The complexity of RDP is

O(n2). The RDP algorithm has been improved using the path-hull method to O(n log n)

by Hershberger and Snoeyink [1992] for simple polylines; this improved implementation

is not suited for arbitrary polylines.
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4.4.1.1 SED Algorithm

The SED algorithm follows the top down recursive simplification of RDP except for how

the error metric (threshold T from section 4.4.1) is calculated (see Algorithm 4.2). In a

trajectory, each spatio temporal instant Vi can be expressed as a tuple of three coordinates

(Vx, Vy, Vt), Vt indicates the time a moving object was at Vx, Vy. In figure 4.2, VA, VB, and

VC are three spatiotemporal instants for trajectory M , where tA < tB < tC (Figure 4.2).

The SED for point B is equal to the Euclidean distance BB′, where the location of B′ is

the position B on the generalized segment (dash) AC with respect to the velocity vector

UAC (Figure 4.2b). In other words, the offset (TB) of B is the distance from point B to B′,

where B′ is the spatio-temporal trace of B on to AC at time tB [Meratnia and Rolf, 2004;

Tienaah et al., 2015].

(a) Trajectory

UAC =
AC

tC − tA
AB′ = UAC(tB − tA)

(4.1)

(b) Trace of B as B′ on UAC

Figure 4.2: Synchronized Euclidean Distance

Algorithm 4.2 Synchronized Euclidean Distance Offset
1: function SED(coordinates, i, j) . coordinates [(x, y, time),...], indices: i, j

2: n←length(coordinates)
3: ViVj ←segment(coordinates, i, j)
4: k, εk ← j, 0 . defaults: index j and ε = 0.0

5: if j − i > 1 then
6: for c in coordinates[i+ 1...j − 1] do . exclude end points at i and j

7: Vsed ←SEDVector( ViVj, coordinates[c] )
8: ε←magnitude(Vsed)
9: if ε ≥ εk then
10: k, εk ← c, ε

11: return k, εk
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4.4.1.2 Opening window algorithm

Opening or sliding window (OPW) is an online algorithm [Keogh et al., 2001; Meratnia

and Rolf, 2004]. Given an ordered stream of spatiotemporal instants Vi, Vi+1, Vi+2, ..., Vi+n

of a moving object, OPW starts by creating a segment ViVi+2 between Vi (anchor) and

Vi+2 (floater) in an ordered series of incoming spatiotemporal instants. It then computes

the distance offset Ti+1 from ViVi+2, if Ti+1 < T , a new generalized segment is created

by extending the floater to Vi+3. The offset computation is repeated for all intermediate

instants between the anchor and floater. The vertex Vi+k with Tk > T becomes the stop

condition with two strategies:

• Normal Opening Window (NOPW) - split the stream at Vi+k and the sub-stream

from Vi to Vi+k can be generalized as ViVi+k; move the anchor to Vi+k and floater to

Vn.

• Before OpeningWindow (BOPW) - split the stream at Vn−1 and the sub-stream from

Vi to Vn−1 can be generalized as ViVn−1; move the anchor to Vn−1 and floater to Vn.

In this paper, we focus on NOPW using SED as error function. The complexity of node

aggregation in memory using NOPW is O(n2), where n is the number of spatiotemporal

instants in cache.

4.5 Implementation

Consider a monitoring station S listening for spatiotemporal instants ofN vessels at sea; S

has a temporal memory B that can store C number of instants per vessel inN , C = B/N .

C is the maximum cache size for each vessel before the memory is flushed to a secondary

storage. In this paper, we assume an infinite external secondary storage for a trajectory

stream. We store all instants of the stream from Vi to Vj as nodeNi,j , where i < j. We use
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intermediate instants (between i and j) for resolving inconsistent simplification of Ni,j .

The field properties of Ni,j are as follows:
struct Node {
fid : int . feature id

nid : int . node id

coordinates : Array[Point3d] . coordinate array of 3d points (x, y, time)

range : [int, int] . indices along stream (anchor, floater): i, j

}

The structure of Ni,j is represented in an external database as:
Node Table (
id : serial NOT NULL . constraint: primary key

fid : int NOT NULL
node : text NOT NULL
geom : geometry NOT NULL
i : int NOT NULL
j : int NOT NULL . constraint: unique (fid, i, j)

size : int CHECK(size > 0)
status : int DEFAULT 0
snapshot : int DEFAULT 0

)
id is the primary key for a trajectory decomposition table, fid represent the feature id

for a trajectory. The size of Ni,j is computed as j − i where j > i, i and j are the indices

of Vi and Vj in an ordered instant stream. size is constrained to be greater than 0. Ni,j

is serialized as text and stored in the field node. The convex hull of vertices from Vi to

Vj is stored as a: (i) polyline: Vi, Vk, ..., Vj are collinear or a segment when j − i = 1 or

(ii) polygon: when the area of the convex hull of vertices from i to j is not zero. status

represents three states of Ni,j: NullState, Collapsible and SplitNode with values 0, 1

and 2 respectively. NullState is the default state indicating the node has not been checked

for constraints; Collapsible indicatesNi,j can be represented as a spatiotemporal segment

ViVj; andSplitNode indicatesNi,j require further processing to be consistent. snapshot is

a flag used to indicate which nodes are being simplified while online streaming. snapshot

has two states: UnSnap and Snap with values 0 and 1 respectively; the default snap state

of a Ni,j is UnSnap.

A node table is populated by the fields and derived field values of Ni,j . Ni,j serves
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as a context collapsible unit of a given moving object with a unique fid. To speed up

processing, node table fields: fid, i, j, size, status, snapshot are indexed using a B-Tree

and geometry as a PostgreSQL/PostGIS generic index structure GIST.

Figure 4.3 shows a layout of online trajectory processing: input stream, aggregation,

simplification, and storage in an external database. Constrained simplification of nodes

are done by taking into account contextual objects within its neighbourhood of influence.

We discuss how to resolve simplification errors in section 4.5.1.

Figure 4.3: Online processing of trajectory streams

The spatiotemporal collapse ofNi,j to form a chain of piecewise approximated segment

(ViVj) requires spatial relations of the original trajectory to other objects that will change

spatial meaning as a result of approximation. Each node is considered “collapsible” if its

segment preserves the spatial relations of the original trajectory, otherwise it is considered

to be “deformable”. Tomake deformable nodes collapsible, we proceed by finding Vk using

the SED algorithm and split Ni,j at k to form two new nodes: Ni,k and Nk,j . The database

is updated by inserting Ni,k, Nk,j and removing Ni,j . This iterative process continuous

until all the nodes are collapsible (see Algorithm 4.3).
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Algorithm 4.3 Constrained Trajectory Simplification
1: function Simplify(fid : int) . simplification of fid at a snapshot

2: markSnapshot(fid, Snap)
3: while <has more deformables for fid> do
4: markDeformables(fid)
5: markNullStateAsCollapsible(fid)
6: splitDeformables(fid)
7: cleanUpDeformables(fid)

8: aggregateSimpleSegments(fid, MergeFragmentSize)
9: saveSimplification(fid)
10: markSnapshot(fid, UnSnap)

Our implementation concurrently performs SED-OPW aggregation and constrained

simplification of stored nodes of multiple trajectories. Simplify (Algorithm 4.3) starts

by first setting the snapshot field of a given fid to Snap (SnapNodes). This flag

differentiates nodes been simplified and newly saved nodes from the concurrent SED-OPW

process. While there are nodes of fid with snapshot = Snap and status = NullState,

constrain SnapNodes by context neighbours and simplification options; set status field

of deformable nodes as SplitNode. Update rest of the SnapNodes as Collapsible. The

next step in simplification is to split and update the nodes table of all SnapNodes with

status = SplitNode. These newly inserted split nodes have status = NullState and

snapshot = Snap. The clean-up step in Simplify deletes all deformable SnapNodes

nodes from the nodes table. While there are nodes for fid with status = NullState and

snapshot = Snap the process iterates until all SnapNodes are collapsible.

After the main loop of Simplify, we seek to merge all contiguous SnapNodes for

fid that can be merged based on a simplification error threshold. Contiguous SnapNodes

that can be merged are deleted from the nodes table and replaced with a new node that

encompasses their ordered instants from i to j. A temporal simplification state of fid

is approximated as a contiguous chain of collapsible SnapNodes; this temporal simpli-

fication is saved in the geometry field of an output table. This is useful in an online
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environment, where the correct constrained simplification of fid can be queried while

object is in motion.

Finally, Simplify completes a simplification snapshot by setting the snapshot flag for

SnapNodes to UnSnap. Our concurrent simplification process resumes a new batch of

trajectory simplification after idling for one second. The simplification process will be idle

when the status of all the nodes are set as Collapsible.

4.5.1 Constrained Simplification

In this paper we consider three spatial relations to be observed by a moving vessels

at sea in the context of islands as constraints: (i) geometric intersect/disjoint relation,

(ii) homotopy of simplified trajectory, (iii) minimum distance to islands. We also consider

two topological properties of a trajectory: (i) self-intersection as a result of simplification,

and (ii) non-planar intersection between simplification units (Ni,j , Nm,n). We ignore self-

intersections within aggregation units since their simplification error is at most ε. We also

limit our scope to topological relations between aggregation units of the same trajectory and

not between trajectories. Using the spatio temporal aggregation by SED-OPW algorithm,

Ni,j is collapsible as ViVj if it preserves these spatial and topological relations in the

context of islands. If Ni,j is not collapsible, it is marked as deformable as described in

Algorithm 4.3. We consider each constraint in detail.

4.5.1.1 Topological Relations

Consecutive and non-consecutive Ni,j units can have non-planar self-intersection (see

Fig. 4.4). We also constrain the non-planar relationship between aggregation units using a

simple geometric heuristic 4.1.

Heuristic 4.1. DeformNi,j andNj,n, if ViVj and VjVn intersect only at j butNi,j andNj,n

intersect other than j, see Fig. 4.4a.
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(a) contiguous (b) non-contiguous

Figure 4.4: (a) Contiguous aggregation units with non-planar intersects (b) overlap of
non-contiguous aggregation units

An example of a situation containing non-planar crossings between non-contiguous

aggregation units of the same trajectory is illustrated in Fig. 4.4b. We constrain the

deviation of the intersection between simplified segments by a “relax” distance (δ) - the

offset between the intersect of sub-polylines and that of their generalized segments.

Heuristic 4.2. DeformNi,j andNm,n, where j 6= m and n 6= i, if the distance (dδ) between

O andQ is greater than δ, whereO andQ is the intersect betweenNi,j ,Nm,n and segments

ViVj ,VmVn respectively. See Fig. 4.4b.

To avoid self-intersection introduced by the simplification algorithm, we use heuris-

tic 4.3. Two aggregation units can avoid self-intersection if their sub-polylines are disjoint

and the intersect between corresponding generalized segments are also disjoint (Fig. 4.5b).

An intersection between two generalized segments of non-consecutive aggregation units

is inconsistent if their sub-polylines are disjoint (Fig 4.5a). Using heuristic 4.3, we decide

between which aggregation unit to further deform using the SED algorithm.

Heuristic 4.3. Given two intersecting non-consecutive aggregation units Ni,j and Nm,n

with disjoint sub-polylines, deform Ni,j , if ViVj intersects Nm,n and VmVn.
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(a) inconsistent collapse, deform Nm,n (b) consistent collapse

Figure 4.5: (a) Inconsistent collapse of Nm,n based on heuristic 4.3 (b) disjoint sub-
polylines with consistent collapsed segments (disjoint)

4.5.1.2 Geometric Relation

We consider the intersection and disjoint relation of a trajectory and its simplified spa-

tiotemporal segment to an island, see Figure 4.6. ViVj is consistent if it has the same

geometric relation as Ni,j to a planar object.

island

Vi

Vj

ViVj

Ni,j

(a) Intersection error

island

Vi

Vj

ViVj

Ni,j

(b) Disjoint error

Figure 4.6: (a) Trajectory aggregateNi,j (solid polyline) is disjoint but ViVj has an intersect
relation to the island. (b)Trajectory aggregate Ni,j (solid polyline) intersects but ViVj has
an disjoint relation to the island. In (b), due to transmission issues or sampling interval,
the trajectory reconstruction can intersect an island. (a) and (b) are not collapsible.

4.5.1.3 Proximity Relation

A minimum distance constraint requires ViVj be within a given δ distance of other planar

objects. See Fig. 4.7. If the original sub-polyline (Ni,j) violates the minimum distance

constraint, ViVj is considered to be a valid collapse.
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island

Vi

Vj

Vk

ViVk

VkVj

Ni,k

Nk,j

δ

Figure 4.7: Minimum distance relation to a planar object. The minimum distance from
ViVk to the island is less than δ; Ni,k requires further decomposition using SED. VkVj is a
valid collapse - has a bigger proximity to the island compared to Nk,j

4.5.1.4 Homotopy Relation

The homotopy relation captures the spatial collapsibility of Ni,j in relation to other planar

geometric objects. The sub-polyline Ni,j is a boundary that subdivides a planar space into

two faces; an object Oi on one face of Ni,j should be on the same face as its collapsed

segment ViVj . If Oi changes a face (sides), then ViVj is an inconsistent collapse ofNi,j . In

this paper, we consider Oi to not change face if it intersects both Ni,j and ViVj (Fig. 4.8).

island

(a) invalid homotopy

island

(b) valid homotopy

Figure 4.8: (a) Trajectory aggregate (solid) polylines have different homotopy to their
simplification (dash segment) (b) Intersecting trajectory aggregate and collapsed segment
(dash) are considered to be of the same homotopy class.

To fully capture the collapsibility of Ni,j with respect to disjoint context objects, we

adopt the chain deformation algorithm by Tienaah et al. [2018]. The algorithm starts

by first filtering context objects that are disjoint to a sub-polyline. Instances indicated

in Fig. 4.8b are classified as valid. Keeping Vi and Vj of Ni,j fixed, we deform Ni,j
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by forming triangles between each intermediate vertex and its immediate neighbouring

vertices (previous, current, and next). For example, given a triangle Tabc, vertex Vb is

the current vertex, Va and Vc are previous and next vertices respectively. We remove the

current (middle) vertex if the triangular face is disjoint from context objects. If a triangular

face intersects a planar object, that triangular face cannot be collapsed as a line segment (a

line from previous to next vertex). The “current” vertex of a triangular face intersecting a

planar object is preserved for future iterations. The iterator moves to the “next” vertex as

the new “current” vertex and the process (triangular face collapse) is repeated up to Vj−1.

The chain deformation is repeated starting from Vi if the next vertex after Vi is not Vj and at

least one triangular collapse occurred in the previous iteration. The deformation algorithm

is depicted pictorially in Fig. 4.9. ViVj is homotopic to Ni,j if there are no intermediate

vertices between Vi and Vj .

(a) Ni,j (b) iteration 1 (c) iteration 1

(d) iteration 1 (e) iteration 2 (f) terminate

Figure 4.9: Homotopic chain deformation

To speed up processing, all disjoint context objects that intersect the the convex hull of

Ni,j are indexed in an in-memory R-Tree. The complexity of computing the local homotopy

Ni,j to ViVj is O(n2).
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i

j

(a) not deformable as ViVj

i

j

(b) not deformable as ViVj

i

j

(c) deformable as ViVj

Figure 4.10: Homotopic collapse ofNi,j , ViVj is homotopic toNi,j in (c) and not homotopic
(a) and (b)

A chain of collapsed homotopic Ni,j is “strongly homotopic” [Abam et al., 2014], that

is, every simplified shortcut ViVj is homotopic to Ni,j . A strongly homotopic chain is

homotopic to the original trajectory, but not all homotopic chains are strongly homotopic.

Figure 4.11 contains four nodes (N0,3, N3,8, N8,13, N13,20) and context object O1. V3V8 and

V13V20 are not homotopic to N3,8 and N13,20 respectively. L′ (dash) is homotopic to L

(solid) but not strongly homotopic.

N0,3

N3,8

N8,13

N13,20

O1

V0

V3

V13

V8V20L′

L

Figure 4.11: Homotopy of a simplification in the context of a planar object. L′ (dash
polyline) is homotopic to L (solid polyline) but not strongly homotopic

4.6 Experimental Evaluation

To evaluate the correctness and performance of our implementation, we use one hundred

(100) trajectories from Marine Traffic (www.marinetraffic.com) archive (2012) of moving
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vessels in the Aegean. The dataset consists of 33, 842 temporal instants covering a distance

of 68, 976.48km (4, 134.17 hours of movement). Each trajectory is simplified at an SED

offset (εSED) from 0.5km to 50km at intervals of 0.5km. We constrain simplified tra-

jectories to a minimum distance of 100m from islands. Non-planar intersections between

aggregation units are constrained to a “relax” distance of 10m (see heuristic 4.2). The

layout of client, server and database architecture is as shown in Fig. 4.3. Experiments

are performed on an Intel® CoreTM i7 3.6GHz x4, 16GB RAM. To accelerate processing

and queries to a spatial enabled database (PostgreSQL/PostGIS), node table fields: fid,

i, j, size, status, snapshot are indexed using a B-Tree and geometry as a generic index

structure GIST.

Spatio temporal transmissions to the server are in eight (8) concurrent batches. A

client-server request and response is processed at both ends in a few milliseconds before

the next transmission(actual time interval between recorded vessel instants can be several

minutes, e.g., 10 or 20 minutes). The server registers the first transmission and drop

subsequent instants tagged as at anchor, moored and aground.

The spatiotemporal instants are aggregated in temporary memory using SED-NOPW at

a minimum cache limit of three (3) and maximum of one million (1, 000, 000). This is to

make sureNi,j aggregates are done by SED distance at a given εSED and not by temporary

memory size restriction. The spatio temporal instants in the cache form Ni,j where Vj is

the vertex at which cache SED > εSED; Ni,j is saved to the nodes table. Vj becomes the

first vertex of the new cache.

While transmission from client to server, records in the nodes table are being simplified

in batches of eight (8) vessels. Constrained simplification input options include εSED, self-

intersection, non-planar intersection displacement between aggregation units, intersect and

disjoint relation, proximity to islands, and homotopy of simplification. In the unconstrained

simplification, εSED is the only input option required. Data reduction over variable εSED

is shown in Fig. 4.12. The processing time with respect to change in εSED is shown in
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Fig. 4.13.
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Figure 4.12: Percentage Compression over variable εSED

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

SED Offset(meters)

10

15

20

25

30

35

40

45

Ti
m
e(
Se

co
nd

s)

Constrained
Unconstrained

Figure 4.13: Processing Time over variable εSED

The results in Fig. 4.12 shows a higher compression rate in unconstrained versus con-

strained simplification. This is expected since, in order to constrain a trajectory in the

context of other geometries, we reintroduce some of the vertices discarded by the uncon-

strained simplification to remain consistent (topology or spatial relation). Figures 4.14,
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4.15, 4.16, and 4.17 show a visual comparison between contained and unconstrained

trajectory simplification in the context of islands in the Aegean.

island

(a) Constrained

island

(b) Unconstrained

Figure 4.14: Original trajectory (solid) (a) constrained simplification (dashed) maintains
geometric relation (b) unconstrained simplification (dashed) intersects island.

(a) Constrained (b) Unconstrained

Figure 4.15: Original trajectory (solid) (a) constrained simplification (dashed) maintains
geometric, homotopy and minimum distance relation (b) unconstrained simplification
(dashed) shows an inconsistent homotopy and spatial relation to island.
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(a) Original (b) Constrained (c) Unconstrained

Figure 4.16: Original trajectory (solid) (b) constrained simplification (dashed) maintains
geometric relation in (a); (c) unconstrained simplification (dashed) violates spatial relations
in (a).

(a) Constrained (b) Unconstrained

Figure 4.17: Original trajectory (solid) (a) constrained simplification (dashed) maintains
homotopy relation; (b) unconstrained simplification (dashed) inconsistent homotopy rela-
tion to island.

4.7 Conclusion

In this paper, we demonstrate the first online trajectory simplification scheme to avoid

and preserve non-planar self-intersection between aggregation units, geometric relation

(disjoint/intersect), proximity, and homotopic characteristics of trajectory streams in an

online environment. Our implementation is designed for arbitrary trajectories with planar

objects (points, lines and polygons) as constraints. Experimental evaluation using sea

vessel trajectories in the Aegean with islands as constraints was conducted. The results

show favourable consistent simplification advantage with constrained simplification at

about 4% less than unconstrained. Experimental evaluation (Section 4.6) showed that

constrained simplification takes about four times the time to process eight concurrent input

streams compared to unconstrained simplification. Unconstrained simplification leads to
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data errors which invalidates the benefits of data reduction.

Our implementation used an external storage resource and supported real-time queries

during on-line aggregation and processing. Future research should focus on efficient

implementation to improve running time with hard real-time requirements.
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Chapter 5:

Extending The Cartographic Toolbox of

ESRI ArcGIS

This chapter shows some excerpts from the NSERC Engage project (2015) conducted by

the author of this dissertation, Dr. Stefanakis, and in collaboration with Dr. Brent Hall at

ESRI Canada. The goal of this project is to create an ArcGIS python Add-In for desktop

GIS.

Algorithms developed as part of this dissertation are bundled into an ArcGIS Add-In

to make this research practical in industry and academic environments. The Add-In is

developed using the Python programming language and ArcGIS ArcPy package. Users

of desktop ArcGIS (revision 10.1 or newer versions) can install and use this Add-In to

simplify linear features with other layers as spatial constraints. The Add-In enhances the

line generalization toolset in desktop ArcGIS with the following benefits:

(a) an accurate representation of static and dynamic linear features in map layouts and

geovisualization,

(b) a sophisticated multi-resolution (multi-scale) representation of the linear features,

and

(c) enhanced data preparation processes (e.g., data reduction) for spatial analysis and
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data mining - spatial relations of the original features are preserved.

First, we present a project layout showing how the packages, modules, documentation

and tests are organized.

5.1 Introduction

For many applications in cartographic mapping and temporal GIS, it is beneficial to collect

data once at a largest scale or highest resolution as a master database. Derived data from

the master database can then be used for other applications. Simplification is also a useful

pre-processing tool before data mining, graphics visualization, data transmission, and data

exploration.

ESRI ArcGIS 10.x (x ≤ 5) cartographic toolset provides Douglas-Peucker (DP) algo-

rithm for line simplification through the Point Remove option of SimplifyLine_cartography.

In this project, we focus on extending the functionality of line simplification in ArcGIS by

providing a context to the DP simplification algorithm for static and spatio-temporal data.

5.1.1 Add-In Implementation

The Add-In layout is illustrated in Fig. 5.1. In the Install/app folder, we implement all

data structures and algorithms in linegen; see linegen layout in Fig. 5.2. In the linegen

package, there are two geometry packages: arcgeom and geom. arcgeom acts as awrapper

around ArcPy geometry classes, such as : arcpy.PointGeometry, arcpy.Multipoint,

arcpy.Polyline, arcpy.Polygon and other ArcPy related utilities. geom consists of

modules and packages for 2D euclidean geometry. structs in linegen contains some

fundamental (stack, deck, sset - sorted set) and spatial data structures (rtree). linegen

also contains the core of this project:constdp (constrained DP). The decomposition of

polylines and heuristics for a consistent simplification are described in chapter 3.
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Figure 5.1: Add-In Project Layout

(a) linegen (b) lingen cont.

Figure 5.2: Line Generalization Packages
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(a) arcgeom
(b) geom

Figure 5.3: Geometry Packages

Figure 5.4: Data Structures
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(a) constdp
(b) constdp cont.

Figure 5.5: Constrained DP package

5.1.2 Add-In

Two line simplification algorithms are implemented: the Douglas-Peucker (DP) algorithm

for static data and Synchronized Euclidean Distance (SED) for spatio-temporal data. The

Add-In requires two input data formats: a linear feature class (2D, 3D with Z or M) or

a text file with 2/3D coordinates. Constrained and unconstrained DP require at least 2D

coordinates and at least 3D for SED simplification. See Figure 5.6.
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(a) Shape properties of linear Feature
(b) Text file with multiple polylines (x, y, time(s))

Figure 5.6: Input Data Types

The pythonAdd-In serves as a graphical user interface for constrained and unconstrained

DP simplification. Other variants of DP simplification, such as SED benefit from the

constrained heuristics of constrained DP. See Add-In toolbar in Fig. 5.7.

Figure 5.7: Add-In Toolbar

Fig. 5.8 and Fig. 5.9 are graphical interfaces for setting simplification options, see

options in Algorithm 0.

5.1.3 Input Options: Feature Class

The feature class options is used to set parameters for DP and SED simplification (Fig-

ure 5.8). The input feature class can be a polyline for static data or with M/Z-values as
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time for spatiotemporal data.

Figure 5.8: Add-In Feature Class Options

5.1.4 Input Options: Text File Options

The text file options is used to set input parameters for the Douglas-Peucker and spa-

tiotemporal simplification using a text file (comma or space separated values) as input

(Figure 5.9). A text file designed for SED simplification should have three columns: X-

and Y-coordinates, and a Time field. The DP and constrained DP tools can still be used on

data loaded using this tool, the time field will be truncated.
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Figure 5.9: Add-In TextFile Options

5.1.5 Simplification Options

Options for constrained and unconstrained simplification are itemized in Algorithm 0.

From the Add-In toolbar, it is possible to print stored simplification options using print

stored simplification options tool. To use the tool, open the Python window in ArcMap to

see options in console (see Figure 5.10).

118



Algorithm 5.4 Constrained DP Options
threshold← float
mindist← float
relaxdist← float

keep_selfintersects← boolean
avoid_new_selfintersects← boolean

geom_relation← boolean
dir_relation← boolean
dist_relation← boolean

Figure 5.10: Add-In Print Options

5.1.5.1 Custom Vertex Selection Function

The difference between DP and SED algorithm is how the score function calculates

the offset of a vertex from the generalized line (start and end point). The DP algorithm

computes minimum distance between a generalized line and intermediate vertices, whereas

SED computes the distance between an intermediate vertex and its spatio-temporal trace

on the generalized line. Also in Fig. 5.11, we show a sample script as a DPmaximum offset

function. Figure 5.11 can be used as a sample for user defined vertex selection function;

see Figures 5.8 and 5.9.
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1 """

2 score with signature : score(coords, rng) :returns (int, float)

3 """

4 import arcpy

5 srs = arcpy.SpatialReference(3857)

6

7 def Pt(o):

8 return arcpy.PointGeometry(arcpy.Point(*o[:2]), srs)

9

10 def segment(a, b):

11 pta, ptb = Pt(a), Pt(b)

12 if pta.equals(ptb): #Note:if a == b polyline((a, b), srs) is empty

13 g = pta

14 else:

15 array = arcpy.Array([arcpy.Point(*o) for o in (a[:2], b[:2])])

16 g = arcpy.Polyline(array, srs)

17 return g

18

19 def score(pln, rng):

20 """

21 Finds maximum offset vertex from the

22 general segment(pln[i] -- pln[j]) where

23 i, j is rng[0] and rng[1]

24 `:param: pln` coordinates of polyline

25 `:param: rng` index of vertices, slice of pln from (i, j)

26 `:returns: (int, float)`

27 """

28 seg = segment(pln[0], pln[-1])

29 index, offset = rng[1], 0.0

30

31 if rng[1] - rng[0] > 1:

32 for k in xrange(rng[0] + 1, rng[1]):

33 dist = seg.distanceTo(Pt(pln[k]))

34 if dist >= offset:

35 index, offset = k, dist

36

37 return index, offset

Figure 5.11: Custom Score Script

5.2 Case Study

Contours present a topological challenge during simplification. Contour lines are not

allowed to self-intersect or intersect with neighbours. This means the simplification of a

contour requires observing the simplification of other neighbouring contours, the simplified

geometriesmust preserve the spatial relationship of the original polylines. Using a snapshot
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of USGS contours near Aspen, Colorado, we show the difference between constrained

simplification at 40m (avoid self-intersection, keep relationship between input polylines).

See Figures 5.12, 5.13 and 5.14.

Figure 5.12: Original contours at 40m interval

The original (Fig. 5.12) snapshot of contours contain 3,242,100 vertices. The table

bellow show comparable space saving in constrained and unconstrained simplification at

thresholds of 20, 30 and 40 meters. Despite comparable space savings, the constrained ver-

sion preserves the original spatial relationship between contours whereas the unconstrained

may result in self-intersection or intersections with other contours at higher thresholds (see

Fig. 5.13 and 5.14).

Vertices at Threshold 20m 30m 40m

Constrained 14249 (99.56%) 11393 (99.65%) 9911 (99.69%)

Unconstrained 14193 (99.56%) 10887 (99.66%) 8935 (99.72%)
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Figure 5.13: Unconstrained DP simplification at 40m

Figure 5.14: Constrained DP simplification at 40m
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5.3 Summary

In this application, we implemented a constrained line simplification algorithm for linear

features using ArcGIS ArcPy. The constrained implementation utilized the Douglas-

Peucker (DP) algorithm as a general framework for polyline decomposition. The im-

plementation was extended to support a variant of the DP algorithm for spatio-temporal

polylines: the Synchronized Euclidean Distance (SED) [Douglas and Peucker, 1973;

Meratnia and Rolf, 2004; Tienaah et al., 2018]. To make this research practical, we have

implemented a python Add-In to extend ArcGIS line generalization toolset. Features of

the Add-In include:

1. simplification of spatially dependent and independent linear features,

2. user defined offset plug-in for different variants of the DP algorithm,

3. prevention of self-intersection as result of simplification,

4. preservation of planar self-intersection,

5. a fine grained control on displacement of non-planar intersection, and

6. preserves intersect/disjoint, homotopy, and distance relations to other geometries as

constraints.

Users of desktop ArcGIS can use this tool to simplify arbitrary static and dynamic (spa-

tiotemporal) polylines with other layers as contextual planar constraints.
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Chapter 6:

Summary and Conclusion

Line simplification is a well studied research problem in cartography, geographic infor-

mation systems, computer graphics, and computational geometry. Despite its long history,

it is still an unsolved problem. In fact, some authors Guibas et al. [1993]; Estkowski

[1998]; Estkowski and Mitchell [2001] have proofed the hardness of the simplification

problem in the context maintaining topological consistency for simple polylines. Based

on its intractable nature, the purpose of this research is the development of spatial data

structures and geometric heuristics to provide a practical solution under multiple spatial

and topological constraints. Our primary focus is simplification of arbitrary polylines in

the context of arbitrary planar objects independent of error function as way of extending

our implementation to spatiotemporal simplification.

6.1 Research Summary

Chapter 1 starts this research with an introduction, related work, research problem, scope,

and objectives. The chapter presents a literature review and lays out the structure of this

dissertation.

In Chapter 2, we develop a constrained Douglas-Peucker algorithm using a polyline to

be simplified and other geometries as contextual constraints. The focus was to develop a
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planar contextual model that incrementally “untangle" using relevant characteristic vertices

to resolve topological conflicts. The implementation demonstrated a consistent technique

to accelerate multi-scale simplification of polylines in context of other geometries.

Chapter 3 develops and implements a novel set of geometric heuristics for theMin−#

line simplification problem with contextual planar objects (point, polylines, polygons) as

constraints. This chapter improves on the work done in Chapter 2 by avoiding unnecessary

introduction of original vertices during topological conflict resolution. Given an arbitrary

polyline, a set of planar objects, and ε > 0, we implement a consistent topological

simplification by observing the following constraints:

1. preserve planar and non-planar intersections,

2. avoid introducing new self-intersections as a result of simplification,

3. preserve intersect/disjoint relations to planar objects, and

4. preserve homotopy in simplification.

our experimental evaluation showed a competitive compression ratio compared to uncon-

strained simplification.

In Chapter 4, we study contextual online simplification of arbitrary trajectory streams

by extending algorithms and heuristics in Chapter 3 to the spatiotemporal domain. In

our online streaming setting, we have a limited amount temporal memory, and assume

an infinite external storage. The ordered sequence of possibly an infinite incoming spa-

tiotemporal instants of a moving object forms its trajectory. Our online implementation is

constrained to avoid introducing new self-intersections as a result of simplification. It also

preserves self-intersection between simplification units. Other constraints include disjoint,

intersect, proximity, and homotopy in the context of arbitrary planar objects. Experimental

evaluation was conducted using real world data - moving vessels in the Aegean Sea with

islands as planar constraints.
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Our results demonstrate a higher compression savings with topological errors in uncon-

strained simplification. Experimental results showed a compression difference of approx-

imately 4% between constrained and its corresponding unconstrained simplification. This

shows a competitive constrained compression ratio in less than four times the processing

time of unconstrained simplification.

Chapter 5 implements heuristics and algorithms developed in this research in a com-

mercial GIS package. The purpose of this implementation is to extend the functionality

of ESRI ArcGIS cartographic toolset. This contribution to desktop GIS provides a fine

grained simplification of polylines and spatiotemporal trajectories using another layer as

contextual constraints.

6.2 Research Contributions

Out-of-context (unconstrained) simplification is fast with a higher compression ratio but

leads to topological, proximity, and other spatial relational errors. A consistent constrained

simplification provides the benefits of data reduction while preserving the original stat-

ic/spatiotemporal characteristics in the input polyline. The contributions of this research

dissertation to line simplification under spatial and topological constraints are realised

through data structures, algorithms, and heuristics that:

1. prevent self-intersection in simple polylines,

2. preserve planar self-intersection (vertices with degree> 2) in complex polylines and

between groups of polylines,

3. preserve non-planar self-intersection at some distance offset (δ) between simplifica-

tion units of one or more polylines,

4. avoid topological linear inversion during simplification,
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5. preserve homotopy relation between a polyline and its simplification in the context

arbitrary planar objects,

6. preserve intersect or disjoint relation between a polyline and other planar objects,

7. maintain a minimum distance relation to arbitrary planar objects, and

8. offer online topological (self-intersection and homotopy) simplification of trajectory

streams with support for ad hoc queries.

Finally, using principles and techniques developed through this research, a cartographic

tool to support contextual simplification for static and dynamic polylines was created to

extend ESRI ArcGIS cartographic toolbox.

6.3 Limitations and Recommendations

Algorithms and data structures in Chapters 2 and 3 are implemented in-memory, and this

is not scalable for datasets that will not fit in main memory (RAM). Future work should

explore I/O efficient structures and algorithms for constrained polyline simplification.

In this dissertation, we explored the Min−# problem. Given ε > 0, the Min−#

problem computesL′ that uses the smallest number of vertices among all ε-approximations

of L. There is limited research on contextual topological simplification based on the

Min−ε problem: find L′ with at mostK vertices that minimizes ε over all approximations

of L that have K vertices.

Our external implementation in Chapter 4 can be improved by using a external key-value

storage versus an object relational database (PostGRE/PostGIS). Furthermore, an efficient

implementation using a systems programming language (without the overhead of memory

management - garbage collection) will improve running time and resource utilization.

Future work should explore hard real-time spatiotemporal simplification for moving object

trajectories with topological constraints.
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6.4 Conclusion

In this dissertation, we consider theMin−# simplification problem. We developed a novel

set of geometric heuristics to demonstrate how to avoid self-intersection introduced by a

simplification algorithm (RDP, SED), preserve planar and non-planar intersection, con-

strain contextual intersect/disjoint relation, observe proximity constraint, and homotopic

simplification of arbitrary polylines in the context of arbitrary planar objects.

The algorithms and heuristics are evaluated using synthetic and real world datasets for

static and spatiotemporal polylines. The experimental results show a fast convergence

to a constrained simplification with competitive compression ratio as compared to un-

constrained requirements. Our contributions (Section 6.2) and practical implementations

provides an approach to handle multiple topological constraints during automated line

simplification. Our heuristics provide an insight into contextual simplification to support

cartographic generalization, graphic visualization, and other data reduction domains that

use static and spatiotemporal polylines. Source code and resources of this dissertation are

made available at github.com/TopoSimplify.
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Appendix A:

Appendix A

A.1 New Brunswick Road-Network

Figure A.1: New Brunswick Road Network

132



Appendix B:

Appendix B

B.1 Pitkin County - Colorado, US

Figure B.1: Pitkin County 40m Contours
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Figure B.2: Pitkin County 40m Contours - A snapshot of vertices

134



Vita

Candidate’s full name: Titus Tienaah

University attended:

• 2011-2018 - PhD Candidate, Geodesy and Geomatics Engineering, University of
New Brunswick, Fredericton, Canada.

• 2008-2011 -MScE, Geodesy andGeomaticsEngineering, University ofNewBrunswick,
Fredericton, Canada.

• 2003-2007 - BSc, Geomatics Engineering, Kwame Nkrumah University of Science
and Technology, Kumasi, Ghana.

Publications:

1. Tienaah, T., Stefanakis, E., & Coleman, D.(2018). Line Simplification While Keep-
ing it Simple or Complex ... In Review

2. Tienaah, T., Stefanakis, E., & Coleman, D.(2018). Topologically Consistent Online
Trajectory Simplification ... In Review

3. Tienaah, T., Stefanakis, E., & Coleman, D.(2015). Contextual Douglas-Peucker
Simplification, Geomatica 69(3)327-338.

Conference Presentations & Proceedings:

1. Tienaah, T., Stefanakis, E., & Coleman, D. (2015). Contextual Line Generalization-
Extending ArcGIS Generalization Toolset. In Proceedings of the 18th AGILE
international conference on geographical information science (pp. 9-12).



2. Tienaah, T., and Stefanakis, E., (2014). Troy is ours - How on earth could
Clytaemnestra know so fast?. In the Proceedings of the 17th AGILE Conference on
Geographic Information Science, Castellon, Spain.

3. Tienaah, T.(2014). Real-time Linear Simplification under Space Constraints. In
Proceedings of Spatial Knowledge and Information, Banff, Canada.

4. Sutherland,M.&Tienaah, T.&Seeram, A.&Ramlal, B.&Nichols, S.(2013). Chap-
ter 7: Public Participatory GIS, Spatial Data Infrastructure, and Citizen-Inclusive
Collaborative Governance. Global Spatial Data Infrastructure Association Press, pp.
123-140.

Research Projects:

1. Tienaah, T., and Stefanakis, E., (2015-2017). Constrained Line Simplification(CLS)
for ArcGIS. Engage Project, Industrial partner: Esri Canada.

2. Tienaah, T., Rak, A. and Coleman, D. (2013). An Examination and Critical Com-
parison of Alternative Maintenance Models for the Nova Scotia Digital Topographic
Database. Contract Report of 2-year consulting study undertaken for the GeoNova
Program Office, Service Nova Scotia and Municipal Relations, Province of Nova
Scotia. March.

3. Mioc, D., Anton, F., Nickerson, B., Santos, M., Adda, P., Tienaah, T., et.al. (2011).
Flood progression modelling and impact analysis. In Efficient Decision Support
Systems-Practice and Challenges in Multidisciplinary Domains. InTech.


	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Dissertation Structure
	Background
	Linear Features
	Simple Polylines
	Complex Polylines

	Line Simplification
	Categorization of Algorithms

	RDP Algorithm
	Spatial and Topological Relations


	The Line Simplification Problem
	Related Work
	Research Topic
	Research Statement
	Research Objectives
	Overview of Each Chapter
	References

	Contextual Douglas-Peucker Simplification
	Abstract
	Introduction
	Conceptual Definitions
	Topological Relation
	Direction Relation

	Contextual Rewind Model
	Trajectory Extension
	Evaluation
	Conclusion
	References

	Line Simplification While Keeping it Simple or Complex
	Abstract
	Introduction
	Related Work
	Research Contributions

	Polyline Decomposition
	Constrained Line Simplification
	Min-# polyline deformation heuristics
	Constrained Implementation

	Experimental Evaluation
	Results

	Conclusion
	References

	Topologically Consistent Online Trajectory Simplification
	Abstract
	Introduction
	Related Work
	Algorithmic Formulation
	Sampling Algorithm 
	SED Algorithm
	Opening window algorithm


	Implementation
	Constrained Simplification
	Topological Relations
	Geometric Relation
	Proximity Relation
	Homotopy Relation


	Experimental Evaluation
	Conclusion
	References

	Extending The Cartographic Toolbox of ESRI ArcGIS
	Introduction
	Add-In Implementation
	Add-In
	Input Options: Feature Class
	Input Options: Text File Options
	Simplification Options
	Custom Vertex Selection Function


	Case Study
	Summary
	References

	Summary and Conclusion
	Research Summary
	Research Contributions
	Limitations and Recommendations
	Conclusion
	References

	Appendix A
	New Brunswick Road-Network

	Appendix B
	Pitkin County - Colorado, US

	Vita

