
T REPORTECHNICAL
NO. 311

January 2018

RAJESH TAMILMANI

SEMANTICALLY ENRICHED
MODELLING, ANALYSIS, AND

VISUALIZATION OF SIMPLIFIED
LINEAR FEATURES AND

TRAJECTORIES

 SEMANTICALLY ENRICHED MODELLING,

ANALYSIS, AND VISUALIZATION OF

SIMPLIFIED LINEAR FEATURES AND

TRAJECTORIES

Rajesh Tamilmani

Department of Geodesy and Geomatics Engineering

University of New Brunswick

P.O. Box 4400

Fredericton, N.B.

Canada

E3B 5A3

January 2018

© Rajesh Tamilmani, 2018

PREFACE

 This technical report is a reproduction of a thesis submitted in partial fulfillment of

the requirements for the degree of Master of Science in Engineering in the Department of

Geodesy and Geomatics Engineering, January 2018. The research was supervised by Dr.

Emmanuel Stefanakis, and funding was provided by the Natural Sciences and

Engineering Research Council of Canada (NSERC), Discovery Grants Program.

 As with any copyrighted material, permission to reprint or quote extensively from this

report must be received from the author. The citation to this work should appear as

follows:

Tamilmani, Rajesh (2018). Semantically Enriched Modelling, Analysis, and Visualization

of Simplified Linear Features and Trajectories. M.Sc.E. thesis, Department of

Geodesy and Geomatics Engineering Technical Report No. 311, University of

New Brunswick, Fredericton, New Brunswick, Canada, 139 pp.

ii

ABSTRACT

Multi-Scale maps provide a method of abstracting geographic features at different

granularities. Polyline geometries are used to represent linear features, such as roads,

rivers, and pipelines on maps. Map generalization processes are in use to represent these

features either at different scales. Specifically, original geometries representing linear

features at a large scale can be abstracted using a line simplification process. However, the

simplification process may result in losing semantic attributes associated with the original

geometries. This occurs as line simplification eliminates a series of points from the original

geometries that contain attributes or characteristics relevant to the application domain. For

example, points on the road network can contain information about accumulated length of

the road, positional velocity, speed limit or accumulated gas consumption. This study

adopts the SELF (Semantically Enriched Line simpliFication) data structure to preserve

the length and other semantic attributes associated with individual points on linear

geographic features at different granularities. SELF data structure has been implemented

in PostgreSQL 9.4 with PostGIS extension and tested for both synthetic and real linear

features such as rivers and pipelines. Further, Synchronous Euclidean Distance (SED)

based simplification has been implemented to consider the temporal dimension of

trajectories. The SELF data structure is built to preserve semantic attributes associated to

individual points on original trajectories. Subsequently, a graph data model has been

proposed to combine the simplified geometry of trajectory and the semantics lost during

the simplification process. Original trajectories are simplified based on Synchronous

Euclidean Distance (SED) and the Semantically Enriched Line simpliFication (SELF) data

structure is built to preserve the semantics along with the simplified trajectories. These are

iii

modelled in terms of nodes and edges into Neo4j graph database for performing trajectory

data analysis. Finally, a visualization tool has been developed on top of Neo4j graph

database to support the semantic retrieval of trajectories at different granularities.

Historical vessel trajectories were used to test the SELF structure at various levels of

simplification. The simplified versions of these trajectories along with their semantics

were modelled, analyzed and visualized in Neo4j using Cypher query language and Neo4j

spatial procedures.

iv

DEDICATION

I dedicate my thesis work to my family. A special feeling of gratitude to my solicitous

parents, Tamilmani and Ramani who has always motivated and supported from India.

My brother Raguram have always supported me in difficulties.

I would like to express my indebtedness to my supervisor for his guidance, support and

mentorship throughout this research.

v

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Dr. Stefanakis for all his support

and mentorship throughout my research. His support and encouragement motivated me

with many opportunities for conferences, networking and research. His collaborative input

and feedback was invaluable.

I would like to thank Natural Sciences and Engineering Research Council of

Canada for providing funding to make this research successful.

I would also like to thank Sylvia Whitaker for providing administrative support

throughout my Master’s degree.

I would like to thank Maduako Ikechukwu for his useful recommendations during

the graph model implementation mentioned in this thesis.

I am thankful to my family and friends for their support and motivation.

vi

Table of Contents

ABSTRACT……………………………………………………………………………...ii

ACKOWLEDGEMENTS……………………………………………………………….v

List of Figures…………………………………………………………………………....x

List of Tables…………………………………………………………………………..xiii

1. INTRODUCTION…………………………………………………………………….1

 1.1 Thesis Structure…………………………………………………………………………..2

 1.2 Background…………………………………………………………………………..……3

 1.2.1 Cartographic Generalization………………………………………………………….3

 1.2.3 Trajectory Simplification……………………………………………………………..4

 1.2.3 Semantically Enriched Line simpliFication…………………………………………..5

 1.3 Research Topic…...………………………………………………………………………..6

 1.4 Problem Statement………...………………………………………………………………7

 1.5 Research Objective…………………...…………………………………………………...7

 1.6 Data…………………………………...…………………………………………………...8

 1.7 Chapter Summaries…………………………………………………………………...…...9

References…………………………………………………………………………..…………….10

2. ENRICHED GEOMETRIC SIMPLIFICATION OF LINEAR FEATURES…...12

Abstract………………………………………………………………………………………..…12

 2.1 Introduction……………………………………………………………………..………13

 2.2 Literature Review……………………………………………………………..………...15

 2.2.1 Cartographic Generalization………………………………………………...……....15

 2.2.2 SELF (Semantically Enriched Line simpliFication) ………………………..…...…17

 2.3 Methodology………………………………………………………………………..…..18

 2.3.1 Orthogonal Projection of the point on the simplified line……………………..…...19

 2.3.2 Identifying the line type…………………………………………………….…....…20

 2.3.3 Calculating the accumulated length at each point…………………………….……22

 2.3.4 Compression levels……………………………………………………….………..22

 2.3.4.1 Point level………………………………………………………….………..23

 2.3.4.2 Segment level……………………………………………………………….24

 2.3.5 Special cases……………………………………………………………………....24

 2.3.6 Computation of the accumulated length on the original line

 at any point on the simplified line………………………………………………...27

vii

 2.4 Implementation………………………………………….……………………...………..27

 2.4.1 PostGIS Extension…………………………………………………….……..……....28

 2.4.2 SELF Functions………………………………………………………….…..……....28

 2.4.3 Experimental Data…………………………………………………………...………30

 2.4.4 Experiments…………………………………………………………………………32

 2.5 Conclusions……………………………………………………………………..……….39

Acknowledgements………………………………………………………………………...……..40

References……………………………………………………………………………...………....41

3. SEMANTICALLY ENRICHED SIMPLIFICATION OF TRAJECTORIES..…44

Abstract………………………………………………………………………..…………………44

 3.1 Introduction……………………………………………………………………..………46

 3.2 Literature Review……………………………………………………………….………49

 3.2.1 Trajectory Generalization……………………………………………...……………49

 3.2.2 Synchronous Euclidean Distance (SED)…………………..………..………………51

 3.2.3 Semantically Enriched Line SimpliFication (SELF)…………………..……………52

 3.3 Methodology………………………………………………………………...…………..53

 3.3.1 SED Simplification…………………………………………………….……………53

 3.3.1.1 Constructing the trajectory using the individual points……………………….54

 3.3.1.2 Calculating the average velocity of the trip……………………..…………….55

 3.3.1.3 Identify the corresponding SED point for every point on the original line...…57

 3.3.1.4 Removing the points by comparing SED distance

 against simplification threshold……………………………………….………58

 3.3.2 Building SELF structure based on SED simplification…………………..…………60

 3.3.2.1 Finding the SED projection for each point on the

 original trajectory on the simplified trajectory……………...………………61

 3.3.2.2 Calculating the accumulated distance at each point on the original trajectory

 and its SED projection point on the generalized trajectory………..…………62

 3.3.2.3 Semantic based compression levels……………………………………..….…63

 3.3.2.3.1 Speed based compression……………………………………..………63

 3.3.2.3.2 Heading based compression……………………………………..……64

 3.3.2.4 Interpolation of the semantics on the original trajectory at

 any point on the generalized version…………………………..……………...65

 3.4 Implementation…………………………………………………………..……………..66

 3.4.1 PostGIS Extension……………………………………………………..…………...66

 3.4.2 SELF functions………………………………………………………..……………67

viii

 3.4.3 Experimental Data……………………………………………..……………………69

 3.4.4 Experiments…………………………………………………………………………72

 3.4.4.1 SED based simplification…………………………………………..…………72

 3.4.4.2 SELF structure………………………………………………..………………74

 3.5 Conclusions………………………………………………………...……………………80

Acknowledgements……………………………………………………...………………………..81

References……………………………………………………………………...…………………82

4. MODELLING AND ANALYSIS OF SEMANTICALLY ENRICHED

SIMPLIFIED TRAJECTORIES USING GRAPH DATABASES……….…………86

Abstract…………………………………………………………………………..………….……86

 4.1 Introduction………………………………………………………………………...……87

 4.2 Literature Review………………………………………………………………..………90

 4.2.1 Graph databased in trajectory data analysis…………………………………………90

 4.2.2 Trajectory simplification…………………………………………………….………91

 4.2.3 Semantically Enriched Line simpliFication (SELF)………………………...………91

 4.3 Graph data model and analysis………………………………………………….………91

 4.3.1 PostGres to Neo4j bridging…………………………………………………………94

 4.3.1.1 Simplifying the trajectory based on Synchronous Euclidean Distance….……94

 4.3.1.2 Generating nodes and edges from simplified geometry…………………..…..96

 4.3.2.3 Associating the nodes and edges with semantics from SELF structure………97

 4.3.2 Spatial analysis using cypher………………………………………………………100

 4.3.2.1 Finding shortest and longest trajectory………………………………………102

4.3.2.1.1 Based on number of nodes connected between origin and

destination……………………………………………………………………...102

 4.3.2.1.2 Based on original distance between origin and destination……….…103

 4.3.2.1.3 Based on time difference between origin and destination…...………106

 4.3.2.2 Identifying the collision point……………………………………..…………107

 4.4 Visualization tool for semantic interpolation……………………………….…………109

 4.5 Conclusions………………………………………………………………...………….113

Acknowledgements……………………………………………………………………………...113

References……………………………………………………………………………………….114

ix

5. CONCLUSION AND RECOMMENDATIONS………………………………….118

 5.1 Summary of Research……………………………………………….…………………118

 5.2 Achievements of Research………………………………………………….……….....119

 5.3 Recommendations for future work……………………………………...……………..120

 5.4 Conclusions……………………………………………………………...……………..121

 References……………………………………………………………………...…………..122

Appendix

Curriculum Vitae

x

LIST OF FIGURES

 1.1 Dissertation structure………………………………………………………………3

2.1 Comparison of original (solid orange) and the simplified (blue dashed) version...14

2.2 A functional line simplified into a straight-line segment…………………………17

2.3 Point ‘D’ is vertically projected on the line ‘AB’………………………………...19

2.4 Illustrates the orthogonal projection of the point on the simplified line where the

 starting and the ending points of both simplified and original versions are same..20

2.5 A non-function line simplified into a straight line segment……………………...20

2.6 Result of decomposing the non-function into three functions……………………21

2.7 A table summarizing the length measures of a simple line of 11 vertices………..22

2.8 Consecutive points A, B and C are projected on the simplified line……………..23

2.9 Points A, B and C are forming the straight line…………………………………..23

2.10 The simplified line has three segments AB, BC and CD……………………..…24

2.11 Projection of original points on the simplified line……………………...………25

2.12 P’ (6.5, 0) is the orthogonal projection of p (6.5, 1)……………………………..27

2.13 North Tay river (440 points)……………………………………………………..31

2.14 Waasis stream (304 points)………………………………………………………31

2.15 SB Rusagonis stream (461 points)………………………………………….……31

2.16 MNP Moncton lateral (250 points)………………………………………………32

2.17 MNP Utopia lateral (570 points)…………………………………………………32

2.18 Original and simplified version (500 m dp threshold) of a sample line…………32

2.19 A table summarizing accumulated length at each vertex of original

 and simplified line shown in Fig.2.13…..………………...……………………33

2.20 Simplified line with 5 segments AB, BC, CD, DE and EF………………...……34

2.21 Sample point1……………………………………………………………………34

2.22 Sample point2……………………………………………………………………34

2.23 Sample point3……………………………………………………………………35

2.24 Sample point4……………………………………………………………………35

2.25 Sample point5……………………………………………………………………35

2.26 Error in interpolated distance vs segment level compression values…………….37

xi

2.27 Error in interpolated distance vs point level compression values…………….….37

2.28 Average error in interpolated distance vs point level compression values………39

2.29 % of compression vs point level compression values…………………………..39

3.1 Comparison of original and the simplified version when dp-threshold is

 50 meters…..……………………………………………………………………..47

3.2 The Synchronous Euclidean Distance (SED)……………………………………51

3.3 Individual points on the trajectory……………………………………………….55

3.4 Formed trajectory after connecting individual points……………………………55

3.5 Straight line connecting starting and ending points of trajectory………………..56

3.6 Average velocity calculation for multi segment line………………………….…56

3.7 Individual points on the trajectory and the corresponding

 sed points on the straight line…………………………………………………….57

3.8 The sed based simplification algorithm……………………………………….…59

3.9 Sed projection of each point on the simplified trajectory………………………..61

3.10 SED projection of each point on the simplified trajectory and the semantics…...64

3.11 P’ is the sed projection of p………………………………………………………65

3.12 Trajectory – TR2…………………………………………………………………70

3.13 Trajectory – TR4…………………………………………………………………70

3.14 Trajectory – TR3…………………………………………………………………71

3.15 Trajectory – TR5…………………………………………………………………71

3.16 Original and simplified version (90 m threshold) of a sample trajectory …...…..72

3.17 Comparison of original and simplified trajectory at different levels of

 Simplification...…………………………………………………………………..73

3.18 Comparison of number of points retained at different levels

 of simplification between dp and sed-dp algorithm………………………….…..74

3.19 Original trajectory with 500 raw data points……………………………….……76

3.20 Error in interpolated speed vs speed based compression……………………...…77

3.21 Error in interpolated speed vs heading based compression……………………...77

3.22 Error in interpolated heading vs speed based compression…………………...…77

3.23 Error in interpolated heading vs heading based compression……………………77

xii

3.24 Error in interpolated distance vs speed based compression…………………...…78

3.25 Error in interpolated distance vs heading based compression……………….…..78

3.26 Error in interpolated speed vs speed based compression……………………...…78

3.27 Error in interpolated heading vs speed based compression…………………...…79

3.28 Error in interpolated distance vs speed based compression…………………..…79

3.29 % of compression vs heading based compression values……………………..…80

3.30 % of compression vs speed based compression values……………………….…80

4.1 Proposed graph model for storing a simplified trajectory along with

semantics using self structure……………………………………………………92

4.2 Overall system architecture with three components……………………………..93

4.3 Example original and simplified trajectories…………………………………….94

4.4 Labelling the nodes based on the corresponding retained or eliminated points…96

4.5 Nodes and edges after combining self structure with simplified geometry…..…99

4.6 Generated graph data showing the nodes and edges…………………………...100

4.7 Comparing number of points in the original and simplified trajectory………...102

4.8 Shortest trajectories identified in Quantum GIS based on length………………104

4.9 Longest trajectories identified in Quantum GIS based on length………………105

4.10 10-kilometer buffer around the query in Quantum GIS……………………..…108

4.11 Visualization system architecture………………………………………………110

4.12 Dropdown list showing all the existing trajectories……………………………110

4.13 Selected simplified trajectory on the browser screen…………………………..111

4.14 Graph showing the side node which is lost during the simplification………….112

4.15 Alert box with the semantics for the clicked point…………………………..…112

xiii

LIST OF TABLES

 1.1 Data sources and description………………………………………………………..8

2.1 Built-in PostGIS functions used in developing algorithms…………………..……28

2.2 User-defined functions and example statements for calling the functions………...29

2.3 Length and the number of points available in the selected data…………………...31

2.4 Interpolated distance at each point clicked on the simplified line…………………33

2.5 Interpolated distance at different values for segment level compression

threshold..36

2.6 Average error in distance interpolation using self-structure……………………….38

3.1 Attribute table for the trajectory points…..………………………………...………54

3.2 Distance to each sed point on straight line from starting point……………….……57

3.3 Table summarizing semantics at each locations of original and generalized

version……………………………………………………………………………...62

3.4 Speed and heading based compression ratio between points………………………65

3.5 Built-in PostGIS functions used in developing algorithms………………...………67

3.6 User-defined functions and example statements for calling the functions……...…67

3.7 Length and the number of points available in the selected trajectory dataset..……70

3.8 Attribute table of the trajectory shown in Fig. 3.16...……………………...………72

3.9 Length and the number of points available in the selected data……...……………73

3.10 Semantics at each points of original trajectory and its simplified version………75

3.11 Interpolated semantics at each point clicked on the simplified trajectory……….75

3.12 Interpolated semantics at different levels of speed based

 compression threshold…………………………………………………………….76

3.13 Possible outcome and error classification………………………………………..77

3.14 Average error in speed interpolation……………………………………………..78

3.15 Average error in heading interpolation……………………………………..……79

3.16 Average error in distance interpolation…………………………………………..79

4.1 Attribute table for the trajectory points ……………………………………………95

4.2 Number of points in the original and simplified trajectory…………………….…101

4.3 Results of shortest trajectories based on number of nodes……………………….103

xiv

4.4 Results of longest trajectories based on number of nodes………………………..103

4.5 Results of shortest trajectories based on original length…………………………104

4.6 Results of longest trajectories based on the length……………………………….105

4.7 Results of shortest trajectories based on time difference…………………………106

4.8 Results of longest trajectories based on time difference…………………………107

4.9 The point which has most number of

 neighborhood points around it within 10 kilometers……..………………………107

4.10 The top three collision points between 4pm and 8pm………………………….109

1

1. Introduction

Multi-Scale maps provide a method of abstracting geographic features at different

granularities. Multi-Scale representation in geographical information system (GIS)

applications solely depends on the cartographic generalization methods. Generalization is

a collection of processes for abstracting the level of graphical details which can be

presented at a particular map scale. The most common and fundamental generalization

process is simplification, which removes the high-density vertices from the linear features

(e.g. rivers, pipelines and roads) based on a given criterion. The process of simplification

results in reducing the complexity and redundancy of linear features. In addition, the

simplification process may result in losing the geometric properties associated with the

original linear geometries, as a set of intermediate points will be eliminated. These

intermediate points can contain attributes or characteristics depending on the application

domain. For example, points on a road network can contain information about the

accumulated length of the road, positional velocity, speed limit or accumulated gas

consumption.

The advent of satellite technologies has enabled the usage of GPS devices on

moving objects. GPS devices mounted on moving objects generate streams of geo-location

data, which describe the path travelled by the object during a period of time. This path is

called trajectory. Common application domains using trajectory data are city planning,

transportation manage-ment systems, and other location-aware applications [K. Buchin et

al. 2008]. In the era of big data, graph databases address the major challenges in

management and analysis of voluminous data. The concept of storing and representing data

in terms of nodes, edges and properties makes graph databases different from relational

2

databases and well suited for trajectory data management systems [Stefanakis 2017].

Spatial analysis capabilities have already been added to graph database systems. For

instance, Neo4j, one of the most prevalent graph database systems, provides of a spatial

plugin called Neo4j Spatial to facilitate spatial operations on geo-spatial data modelled

using graphs [Neo4j Spatial Plugin 2017].

This thesis focuses on retaining the semantics lost during the process of

simplification of linear geographic features including trajectories. This research

commenced with implementing SELF (Semantically Enriched Line simpliFication) data

structure for static linear features [Stefanakis 2015]. Further, an implementation of the

SELF structure for dynamic linear features has been carried out. Finally, a graph model for

representing simplified trajectories along with their semantics has been proposed. This

model can facilitate the analysis and visualization of simplified trajectories using graph

databases. This is an article-based thesis, which is presented and supported through the

following three papers:

Paper 1 (Peer Reviewed)

Tamilmani R, Stefanakis E, 2017. Enriched geometric simplification of linear features.

Geomatica Vol. 71, No.1, 2017, pp. 3 to 19. doi: dx.doi.org/10.5623/cig2017-101

Paper 2 (Under Review)

Tamilmani R, Stefanakis E, 2017. Semantically enriched simplification of trajectories.

Paper 3 (Under Review)

Tamilmani R, Stefanakis E, 2017. Modelling and Analysis of Semantically Enriched

Simplified Trajectories using Graph Databases.

1.1 Thesis Structure

This research is presented as a five-chapter, article-based thesis, Figure 1.1. Chapter

1 introduces the motivation for this research. The next three chapters (Chapter 2 to Chapter

3

4) present peer reviewed or under review articles, at the moment of drafting the thesis.

Chapter 5 provides a summary and conclusion of the presented research as well as future

opportunities. In Chapters 2 through 4, the primary research was conducted by the first

author while the co-author provided supplementary advice on content.

Figure 1.1 Thesis structure

1.2 Background

1.2.1 Cartographic Generalization

Map generalization is an important concept in cartography that aims at abstracting

(or reducing) the level of details on a map at different scales [Weibel 1996]. While there

are considerable processes in map generalization, such as selection, combination,

smoothing, enhancement and simplification, the fundamental and common generalization

process in cartography is simplification. Simplification is the process of removing high-

density vertices from the linear map features (e.g. rivers, pipelines and roads) based on a

given criterion. The Douglas-Peucker algorithm is extensively used for simplifying lines

4

and provides a simplified version of an original line by controlling the offset while

minimizing the distortion. The simplified version is formed only by retaining a subset of

the vertices and this results in a considerable reduction in length of the line based on a

threshold parameter provided by the user [Douglas et al. 1973]. As a result, the

accumulated length at each point on the original line is not preserved in the simplified line.

1.2.2 Trajectory Simplification

Over the years the usage of GPS devices in mobility vehicles has increased

exponentially and massive amounts of data are being generated by these devices. This data

is used in various public and business applications such as urban transportation planning,

fleet management and traffic modelling [K. Buchin et al. 2008]. The enormous volume of

data does not allow for analytical methods to be applied. For example, a trip duration of 30

minutes, with the location being recorded every 5 seconds, will result in a total of 360

points. In a single day, the dataset will grow to 17,280 points. It necessitates the

identification of the methods for reducing the complexity of the dataset while retaining its

main characteristics. The process of reducing the volume of a trajectory dataset is called

trajectory reduction or simplification. The process of trajectory reduction has evolved from

cartographic generalization.

The Douglas-Peucker (DP) algorithm is a recursive approach for simplifying linear

features. It takes as input the original linear geometry and a threshold distance. The

simplified version of the linear geometry is generated by controlling the offset while

minimizing the distortion. At the end of a recursive process, only a subset of the vertices

is retained to form the simplified geometry. The resultant geometry ends up in reduction in

5

length [Douglas et al. 1973]. Douglas-Peucker algorithm has limited scope to be utilized

in trajectory simplification. DP simplification algorithm does not consider the temporal

dimension (time) associated with the vertices of trajectories. Furthermore, the semantics

(e.g. speed, heading and distance travelled) of those points of the original line (trajectory)

eliminated by the simplification are not preserved in the simplified version. As DP

algorithm has the limitation of not being able to consider the temporal dimension of a

trajectory, the notion of the Synchronous Euclidean Distance (SED) was introduced by

Meratnia and de By. The basic idea of SED is to retain certain points which are more

significant in forming the trajectory than other points as they better convey the trajectory

characteristics for a particular application domain.

Over the years, researchers have focused on modelling and analyzing trajectories

using graphs. However, the tremendous amount of data points contained in trajectories

turns the handling of graphs inefficient.

1.2.3 SELF (Semantically Enriched Line simpliFication)

SELF data structure has been introduced by Stefanakis [2015] to enrich the

simplified line with semantics associated to the original version while achieving efficient

generalization of trajectories by any of the simplification algorithms. The author has

defined two variants in SELF structure based on how detailed the semantics attached to the

simplified geometry are to be.

The basic variant of SELF attaches the original line length (e.g., kilometric travel

distance) to the simplified line. In this variant, a line with end points 1 (start), n (end), and

6

total length (dn) will be represented by a simplified line defined as follows [Stefanakis

2015]:

[x1, y1, xn, yn, dn] (SELF variant: basic)

An advanced variant for function lines will also tag the accumulated length per

vertex along the line. Hence, each vertex K of the original line will orthogonally be

projected on the simplified line and the footprint point K′ will be assigned the accumulated

length dk from point 1 (start) to vertex K along the original line. If dk′ is the Euclidean

distance of point K′ from end point 1, the simplified line will be represented as follows

[Stefanakis 2015]:

[x1, y1, xn, yn, dn, ARRAY {(dk′, dk); k=2, …, n-1}] (SELF variant: advanced-function)

For supporting the trajectory data enrichment, the advanced variant of SELF

structure has been extended to tag trajectory semantics: speed, heading, time and distance

travelled. DP-SED algorithm works well for trajectory simplification, as it retains the

spatiotemporal characteristics of the trajectory. Each point on the original trajectory is

projected on the generalized version based on SED. The footprint of each point will be

assigned with speed, heading, time and distance travelled at that point.

[x1, y1, xn, yn, dn, ARRAY {(dk′, speed, heading, time, dk); k=1, …, n}] (SELF variant: trajectory)

1.3 Research Topic

The primary purpose of this research is to retain the semantic and geometric

attributes associated with individual locations of original linear features and trajectories in

their simplified versions. This has been accomplished by enriching the representation of

7

the simplified lines with an array of values corresponding to multiple locations along the

original lines. To this end, a graph model to represent the simplified geometry of

trajectories along with their semantics has been proposed. Then, trajectories can be

analyzed using Cypher query language and Neo4j spatial procedures. A visualization tool

on top of Neo4j is developed for semantic interpolation at different of trajectory

simplification.

1.4 Problem Statement

The massive trajectory dataset becomes difficult to handle as the millions of raw data

points make the processing complex. Thus, trajectory simplification techniques should be

utilized to reduce the number of points in a trajectory. While the traditional simplification

algorithms use the distance offset as a criterion to eliminate the redundant points, temporal

dimension in trajectories should also be considered in retaining the points which convey

both the spatial and temporal characteristics of the trajectory. At the same time, the

simplification process results in losing the geometric and semantic attributes associated

with the intermediate points on the original geometries.

1.5 Research Objectives

The primary purpose of this research is to retain the geometric (length) and semantic

attributes associated with individual locations of original linear features by associating the

semantic values to the simplified geometry as an array of values corresponding to multiple

locations along the simplified geometry [Stefanakis 2015].

8

The specific research objectives are as follows:

• Implement SED based trajectory simplification technique to consider spatio-

temporal data in trajectory generalization

• Implement the SELF structure to support static and dynamic polylines and to

test with both synthetic and real world features.

• Propose a graph model for combining simplified geometry of trajectory and

SELF structure and perform trajectory data analysis on the modelled data using

Cypher query language and Neo4j spatial procedures.

• Develop a visualization tool on top of Neo4j for semantic interpolation at

different levels of trajectory simplification

1.6 Data

The datasets used for demonstrating the effectiveness of the SELF structure in

semantic interpolation include both public domain data and open source data. Table 1.1

lists out the datasets used in each chapter. These datasets are freely available for everyone

to use. The study area for the chapter 2 includes linear features from New Brunswick

province while the chapters 3 and 4 involve historical trajectory data of moving vessels

collected over the Aegean Sea.

Table 1.1 Data sources and description

Data Type Source Location Description Chapter

ESRI

Shapefiles

(Linear

geometries)

GeoNB Data

Catalogue

[2014]

New

Brunswick,

Canada

Three river

streams, which

are part of the

“North Tay

River,” the

“Waasis Stream”

Chapter 2

Tamilmani,

R.,

Stefanakis, E.,

[2017]

9

and the “South

Branch

Rusagonis

Stream,” as well

as two pipelines,

which are part of

the “MNP

Moncton

Lateral” and the

“MNP Utopia

lateral”.

Comma-

Separated

Value file

containing

individual

locations and

semantics of

the moving

vessel

MarineTraffic

Automatic

Identification

System [2017]

Aegean Sea,

Greece

Individual

locations and the

sematic attributes

of the moving

vessels in the

Aegean Sea

Chapter 3

and 4

Tamilmani,

R.,

Stefanakis, E.,

[2017]

1.7 Chapter Summaries

In Chapter 1, the background information, motivation, and structure of the thesis

have been presented. In addition to that, the overall concepts of cartographic generalization

and trajectory simplification have been introduced and the limitations of the existing

methods were described.

Chapter 2 describes the steps followed in implementing the SELF structure for

managing static linear features. The literature review part of this chapter discusses about

cartographic generalization and introduces the SELF data structure for linear features. The

implemented algorithm applies two kinds of compression on the SELF structure known as

Point level and Segment level. The effectiveness of SELF data structure in semantic

10

interpolation at different levels of simplification is tested with both synthetic and real world

features.

Chapter 3 provides a literature review about trajectory simplification and briefly

describes the SED based simplification and SELF structure for dynamic linear features.

Further, the steps followed to implement SED simplification technique and build the SELF

structure are described. Explanations of the experiments with various real-world

trajectories have been presented.

Chapter 4 introduces a graph model for transforming the semantically enriched

simplified trajectory to a graph. Nodes and edges can then be analyzed using graph query

languages and ad-hoc geospatial procedures in a graph database. This chapter also

discusses the functionality of a visualization tool developed for helping the user in

performing semantic interpolation at different levels of simplification.

Chapter 5 concludes this research. This chapter also discusses the future potential

of this research.

REFERENCES

 Douglas, D.H. and Peucker, T.K., 1973. Algorithms for the reduction of the number

of points required to represent a digitized line or its caricature. The Canadian

Cartographer, 10 (2), 112–122. doi:10.3138/FM57-6770-U75U-7727

K. Buchin, M. Buchin, and J. Gudmundsson. Detecting single file movement. In

GIS '08: Proceedings of the 16thACM SIGSPATIAL international conference on Advances

in geographic information systems, pages 1-10, New York, NY, USA, 2008. ACM.

http://www.utpjournals.press/doi/10.3138/FM57-6770-U75U-7727

11

GeoNB Data Catalogue. March 11, 2014. New Brunswick, Canada [cited February

6, 2017]. Retrieved from http://www.snb.ca/geonb1/e/DC/catalogue-E.asp

MarineTraffic, 2017. Live-ships map: AIS [online]. Available from:

http://www.marinetraffic.com/ais/ [Last visited, June 27, 2017]

Meratnia, N. and de By, R.A., 2004. Spatiotemporal compression techniques for

moving point objects. In: Proceedings of the international conference on extending

database technology (EDBT). Berlin: Springer, 765–782. LNCS 2992.

Neo4j Spatial Plugin, http://neo4j-contrib.github.io/spatial/0.24-neo4j-

3.1/index.html, Accessed on: 17th August 2017

Stefanakis, E., 2015. SELF: Semantically enriched Line simpliFication. In:

International Journal of Geographical Information Science, Vol. 29, Iss. 10, 2015, Pages

1826-1844 doi: 10.1080/13658816.2015.1053092

Stefanakis, E., 2017. Graph Databases – Recent development in Neo4j may help

accommodate the Geospatial Community. GoGeomatics. Magazine of GoGeomatics

Canada. January 2017.

Tamilmani R, Stefanakis E, 2017. Enriched geometric simplification of linear

features. Geomatica Vol. 71, No.1, 2017, pp. 3 to 19. doi: dx.doi.org/10.5623/cig2017-101

Weibel, R., 1996. A typology of constraints to line simplification. In: Proceedings

of 7th international symposium on spatial data handling, 12–16 August, Delft. IGU, 533–

546.

http://neo4j-contrib.github.io/spatial/0.24-neo4j-3.1/index.html
http://neo4j-contrib.github.io/spatial/0.24-neo4j-3.1/index.html

12

2. Enriched geometric simplification of linear features

Abstract

Polyline geometries are used to represent linear features such as roads, rivers and

pipelines on maps. The generalization process ends up with a polyline that represents the

feature at either a different resolution or different scale. In addition, the simplification

process may result in losing the geometric properties associated with the intermediate

points on the original geometries. These intermediate points can contain attributes or

characteristics depending on the application domain. For example, points on the road

network can contain information about accumulated length of the road, positional velocity,

speed limit or accumulated gas consumption. This paper involves implementing the SELF

(Semantically Enriched Line simpliFication) data structure to preserve the length attributes

associated to individual points on actual linear features [Stefanakis 2015]. The number of

points to be stored in the SELF structure is optimized by applying alternative compression

techniques. The data structure has been implemented in PostgreSQL 9.4 [2014] with

PostGIS [2016] extension using PL/pgSQL to support static and non-functional polylines.

Extended experimental work has been carried out to better understand the impact of

simplification to both synthetic and real (natural and artificial) linear features such as rivers

and pipelines. The efficiency of SELF structure in regard to geometric property

preservation was tested at various levels of simplification.

Reprinted from Geomatica Vol. 71, Tamilmani R, Stefanakis E, 2017. Enriched

geometric simplification of linear features. No.1, 2017, pp. 3 to 19. doi:

dx.doi.org/10.5623/cig2017-101

13

2.1 Introduction

Multi-Scale maps provide a method of abstracting the Earth’s geographic features

using different levels of detail at multiple scales. While this concept has existed for

hundreds of years, multi-scale representation in geographical information system (GIS)

applications solely depend on the cartographic generalization methods. Generalization is

the process of simplifying the level of graphical details which can be presented at a

particular map scale. The most common and fundamental generalization process is

simplification, which removes the high-density vertices from the linear features (e.g.,

rivers, pipelines and roads) based on a given criterion. The process of simplifying aides in

reducing the complexity and redundancy in a dataset.

The Douglas-Peucker algorithm is extensively used for simplifying lines and

provides a simplified version of an original line by controlling the offset while minimizing

the distortion. The simplified version is formed only by retaining a subset of the vertices

and this results in a considerable reduction in length of the line based on threshold

parameter provided by the user [Douglas et al. 1973]. As a result, the accumulated length

at each point on the original line is not preserved in the simplified line. The detailed study

on Douglas-Peucker algorithm demonstrates that it is the most visually effective line

simplification algorithm [Wu et al. 2003]. In Fig. 2.1, only the first and last points of

original line are retained in the simplified line. The Douglas-Peucker algorithm also retains

some intermediate points depending on the threshold distance.

file:///C:/Users/alice/Downloads/Polyline%20geometries%20are%20used%20to%20represent%20the%20linear%20features%20such%20as%20roads,%20rivers,%20and%20pipelines%20on%20maps.%20The%20process%20of%20simplifying%20the%20geometry%20by%20means%20of%20Sampling%20and%20generalization%20produces%20the%20polylines%20which%20has%20a%20length%20smaller%20than%20that%20of%20the%20original%20geometries.%20In%20addition%20to%20that%20the%20simplification%20process%20may%20end%20up%20in%20losing%20the%20semantics%20associated%20with%20the%20actual%20line%20features.%20The%20semantic%20loss%20is%20directly%20proportional%20to%20the%20scale%20of%20the%20map.%20This%20paper%20involves%20in%20implementing%20the%20SELF%20(Semantically%20Enriched%20Line%20simpliFication)%20to%20overcome%20the%20above%20problem.%20The%20implemented%20method%20will%20preserve%20the%20attributes%20and%20semantic%20characteristics%20associated%20to%20the%20actual%20linear%20features.%20The%20data%20structure%20has%20been%20implemented%20to%20support%20static%20and%20non-functional%20polylines%20and%20tested%20with%20both%20sample%20and%20real%20world%20features.%20The%20structure%20can%20be%20extended%20to%20real%20time%20spatiotemporal%20features,%20like%20vessel%20trajectories.

14

FIGURE 2.1 : COMPARISON OF ORIGINAL (SOLID ORANGE) AND THE SIMPLIFIED (BLUE DASHED)

VERSION

This paper presents an implementation of the SELF (Semantically Enriched Line

simpliFication) data structure for static linear features that preserves the length attribute

associated with individual locations of original lines, especially for the accumulated length

on original lines. This attribute is associated to the simplified line as an array of values

corresponding to multiple locations along the simplified line. The SELF structure can store

any semantic annotations associated with individual locations or segments of the original

line [Stefanakis 2015].

The purpose of this research is to retain the geometric (length) attribute associated

with individual locations of original lines. This has been accomplished by associating the

accumulated length values to the simplified segment as an array of values corresponding

to multiple locations along the simplified segment [Stefanakis 2015]. The research

objectives are:

1. To implement the SELF structure to support static and non-functional

polylines and to test with both synthetic and real world features.

2. To compare the interpolated distance values using SELF structure at

different levels of simplification.

This paper is organized as follows. Section 2.2 provides a literature review about

cartographic generalization and introduces the SELF data structure for linear features.

15

Section 2.3 describes the steps followed to implement the SELF structure. Section 2.4

presents PostGIS functionalities and explanations of the experiment with various real world

features. Section 2.5 summarizes the contribution of this paper and introduces future

developments for the SELF data structure with respect to dynamic lines and testing with

various application domains.

2.2 Literture Review

2.2.1 Cartographic Generalization

Generalization is an important concept in cartography that aims at simplifying the

level of details on a map at different scales [Weibel 1996]. While there are considerable

techniques in generalization such as selection, combination, smoothing, enhancement and

simplification, the fundamental and common generalization process in cartography is

simplification. Simplification of linear features has acquired a continuous growth of

research over the years by cartographers [Cromley 1991, Weibel 1997, Robinson et al.

2005].

The Douglas-Peucker line simplification algorithm, an improved classis, was

introduced to address the problem of topological inconsistency between original and

simplified 2D polylines. The algorithm avoids the self-intersections on the simplified

version [Wu et al. 2003]. Line simplification algorithms have been experimented in a

streaming environment where the amount of storage is limited, so that all the points cannot

be stored [Abam 2010].

Richter et al. [2012] introduced the concept of semantic trajectory compression

which allows for compression of trajectory data while permitting minimal and acceptable

16

loss in the information associated with the individual points on the trajectory. This

information depends on the application domain and the nature of the trajectory. The

algorithm they proposed enables a user to determine the reference point and all possible

movement change descriptions from that point.

Various techniques have been proposed to enforce the topological constraints while

simplifying a polyline [Shahriari and Tao 2002, Titus et al. 2015, QiuLei et al. 2016].

According to Shahriari and Tao there is no simplifying algorithm that calculates the

threshold values based on the desired accuracy level. The authors propose adaptive

tolerance line simplification in which the user supplies the target level for desired accuracy

and the simplification tolerance value is calculated accordingly. Recently, a series of

attempts have been made to enrich the content of linear features to address the problem of

annotating trajectories with semantic data. [Alvares et al. 2007, Yan et al. 2011, Richter

et al. 2012, Parent et al. 2013].

SELF data structure has been introduced by Stefanakis [2015] to enrich the

simplified line to convey some semantics associated with the original version. He

categorized the lines as functional or non-functional based on their relation between the

originals and simplified lines (Fig. 2.2). Further, the author provided an algorithm for

decomposing non-functional lines into a finite number of functions.

17

FIGURE 2.2: A FUNCTIONAL LINE SIMPLIFIED INTO A STRAIGHT-LINE SEGMENT. POINT K’ AS A

PROJECTION OF VERTEX K WILL BE ASSIGNED WITH THE ACCUMULATED LENGTH OF THE ORIGINAL LINE FROM

ONE END POINT TO VERTEX K.

2.2.2 SELF (Semantically Enriched Line simpliFication)

SELF is a data structure that preserves the attributes of the original line or any

semantic annotations associated with individual locations or segments of that line

[Spaccapietra et al.2008] into the generalized version. SELF has many variations

depending on how rich the semantics attached to the simplified line are.

The basic variant of SELF attaches the original line length (e.g., kilometric travel

distance) to the simplified line. In this variant, a line with end points 1 (start), n (end), and

total length (dn) will be represented by a simplified line defined as follows [Stefanakis

2015]:

[x1, y1, xn, yn, dn] (SELF variant: basic)

An advanced variant for function lines will also tag the accumulated length per

vertex along the line. Hence, each vertex K of the original line will orthogonally be

projected on the simplified line (Fig. 2.2) and the footprint point K′ will be assigned the

accumulated length dk from point 1 (start) to vertex K along the original line. If dk′ is the

18

Euclidean distance of point K′ from end point 1, the simplified line will be represented as

follows [Stefanakis 2015]:

[x1, y1, xn, yn, dn, ARRAY {(dk′, dk); k=2, …, n-1}] (SELF variant: advanced-

function)

2.3 Methodology

A Polyline can be represented as a sequence of points {P1, P2 …. Pn}, where Pi is

a vertex on the polyline and n is the number of points on the polyline. The simplified line

using Douglas-Peucker algorithm with the user defined threshold, always has the number

of vertices which is less than or equal to the number of vertices on the original line.

The goal of the SELF structure is to retain the accumulated length at each point on

the original line, along with the accumulated length of the corresponding point on the

simplified line in the SELF structure.

The algorithm is divided into six steps:

1. Finding the orthogonally projected vertex on the simplified line for each point

on the original line

2. Identifying the category of the original line. The categories are static functional

lines, static non-functional lines [Stefanakis 2015]

3. Calculating the accumulated length at each intermediate point on the original

line and corresponding projected point on the simplified line

4. Remove the individual segment based on the segment compression threshold

and the points based on the point compression threshold

5. Identifying and managing special cases

6. Computation of the accumulated length on the original line at any point on the

simplified line

19

2.3.1 Orthogonal projection of the point on the simplified line:

The algorithm runs ST_SIMPLIFY (geometry, threshold) method in PostgreSQL

which operates based on the Douglas-Peucker algorithm. Each point on the original line is

projected vertically on the simplified line.

In Fig. 2.3 the coordinate of point “C” which is the perpendicular projection of point

“D” on the line “AB” can be computed by algorithm 2.1. Fig. 2.4 illustrates the orthogonal

projection of all the points on the original line.

 FIGURE 2.3: POINT ‘D’ IS VERTICALLY PROJECTED ON THE LINE ‘AB’

Algorithm 2.1: Finding the orthogonal projection of the point on the simplified line (Fig. 2.3)

Input:

1. Starting Point of the simplified line (A)

2. Ending Point of the simplified line (B)

3. Point on the original line to be projected on the simplified line (D)

Output:

1. Orthogonally projected point on the simplified line returned as geometry type

Steps:

1. Retrieve the X and Y coordinate of the three input points

2. Calculate the displacement (dAB) = (X (B) – X (A)) 2 + (Y (B) – Y (A)) 2;

3. Find the Unit point (Up) = ((X (D)-X (A)) *(X (B) – X (A)) + (Y (D) – Y (A)) *(Y (B) – Y (A))

)/dAB;

4. Finally, the X and Y coordinate of Point ‘C’ can be obtained by,

 X(C) = X (A) + (Up * (X (B) – X (A)));

 Y(C) = Y (A) + (Up * (Y (B) – Y (A)));

20

FIGURE 2.4: ILLUSTRATES THE ORTHOGONAL PROJECTION OF THE POINT ON THE SIMPLIFIED LINE WHERE THE

STARTING AND THE ENDING POINTS OF BOTH SIMPLIFIED AND ORIGINAL VERSIONS ARE THE SAME.

2.3.2 Identifying the line type:

In case of a functional line, each point on the simplified line corresponds to a single

point on the original line. On the other hand, a point on the simplified line may correspond

to multiple points on the original line and these types of lines belong to a non-functional

category. The SELF method proposes the decomposition of non-function into a set of

functions [Stefanakis 2015]. In Fig. 2.5 the point “B” on the simplified line corresponds to

the points “B1” and “B2”. Similarly, the points “C1” and “C2” on the original line are

projected to the same point “C” on the simplified line. Therefore, the original line should

be decomposed into three parts: {1…C1}, {C1….A1}, {A1…n} as shown in the Fig. 2.6 by

algorithm 2.2

FIGURE 2.5: A NON-FUNCTION LINE SIMPLIFIED INTO A STRAIGHT-LINE SEGMENT

21

FIGURE 2.6: RESULT OF DECOMPOSING THE NON-FUNCTION INTO THREE FUNCTIONS

Algorithm 2.2: Decomposing the Non-functional line into functions

Input:

1. Geometry of the non-functional line to be decomposed

2. Threshold value for running Douglas-Peucker(DP) algorithm

Output:

1. Functional lines as an array

Steps:

1. Define array of geometry to store the functional lines (A)

2. Create a new function(F1) to store the points

3. Store the starting point of the non-functional line in F1

4. Run the DP algorithm for getting the simplified line geometry

5. FOR EACH point ‘P’ on the original line (P excludes the ending point of a line)

1. Find the orthogonally projected point ‘P’ on the simplified line (P’)

2. Find the orthogonal projection of the point P+1 (P1’)

3. Calculate the accumulated length at the point P’(L1), P1’(L2) on the

simplified line

4. If L2 > L1 then

i. Add the point P+1 to F1

ii. Create a line geometry using the points in F1

iii. Add the created line to the array A

iv. Create a new function (F2)

v. Add the point P+1 to F2

5. ELSE

i. Add the point P+1 to F1

6. END

6. END

7. RETURN the array A

22

2.3.3 Calculating the accumulated length at each point

Advanced variant for SELF structure, tags the accumulated length per vertex along

the line. As shown in the Fig. 2.7, each point on the original line is projected orthogonally

on the simplified line. For each vertex on the original line, the corresponding point on

simplified is annotated with the accumulated length until the (n-1)th point on the original

line. The entire SELF structure is represented as follows:

 FIGURE 2.7: A TABLE SUMMARIZING THE LENGTH MEASURES OF A SIMPLE LINE OF 11 VERTICES

2.3.4 Compression Levels

SELF structure generates a large volume of data which is proportional to the

number of vertices in the original line. In order to diminish the volume, two compression

methods can be applied: (a) point level (b) segment level. These methods are described in

the following sections.

[POINT (0,0), POINT (10,0), 11.6, {(1,1.4),(2,2.4),(3,3.8),(4,4.8),(5,6.2),(6,7.2),(7,8.2),(8,9.6),(9,10.6) }]

23

2.3.4.1 Point Level

If the ratio between the original length connecting three intermediate points and the

simplified length of the corresponding projected points on the simplified line is less than

the given threshold, then the accumulated length at the middle point is not stored (Fig. 2.8).

FIGURE 2.8: CONSECUTIVE POINTS A, B AND C ARE PROJECTED ON THE SIMPLIFIED LINE

Point level compression ratio =

If three points form a straight line (collinear points), then the middle point is not stored.

In Fig. 2.9 the accumulated length at point B is not stored as the points A, B, and C form

the straight line.

[POINT (0,0), POINT (10,0), 11.6 , {

(1,1.4),(2,2.4),(3,3.8),(4,4.8),(5,6.2),(6,7.2),(7,8.2),(8,9.6),(9,10.6) }]

FIGURE 2.9: POINTS A, B AND C ARE FORMING THE STRAIGHT LINE

24

2.3.4.2 Segment Level

In case of multiple straight lines forming the simplified line, the segment level

threshold can be applied. In Fig. 2.10, if the ratio between original length of the segment

(LAB) and simplified length (L′AB) of the segment is within the threshold, then all the points

belonging to that segment are ignored.

Segment level compression ratio =

FIGURE 2.10: THE SIMPLIFIED LINE HAS THREE SEGMENTS AB, BC, AND CD

2.3.5 Special cases

Not all parts of the original line may always be bounded by the area defined by the

perpendicular lines to the end points of the simplified line. In Fig. 2.11, the points A, B, C,

D, E, F and G do not fall within the region of the simplified line.

25

In this case, the starting point 1 is assigned with the points A, B, C as an array of

intervals and the end point n is assigned with the points D, E, F, and G.

FIGURE 2.11: PROJECTION OF ORIGINAL POINTS ON THE SIMPLIFIED LINE

Algorithm 2.4: Computation of the accumulated length on the original line at any point of the

simplified line

Input:

1. Geometry of the simplified line

2. SELF structure of the simplified line

3. Point on the simplified line (P’)

Output:

1. Computed length at P (P is the point projected at P’)

Steps:

5. Find the distance between starting point and point P’ (dp’)

6. FOR EACH pair (dk’,dk) IN THE SELF array

7. IF dk’ > dp’

a. Retrieve the pairs (dk’,dk) and (dk-1’,dk-1)

b. Use linear interpolation within the retrieved pairs to compute the accumulated

length dp

8. END

9. RETURN dp

26

Algorithm 2.3: Building the SELF structure

Input:

1. Line geometry to be simplified

2. Threshold value for running Douglas-Peucker (DP) algorithm

3. Segment level compression threshold value (ST)

4. Point level compression threshold value (PT)

Output:

1. SELF advanced structure

Steps:

1. Define the object of SELF structure (SELF)

2. Add the starting point, ending point and the actual length of original line to

SELF

3. Define the two-dimensional array for storing the accumulated length (AL)

4. Run DP algorithm for getting the simplified line geometry

5. Find the number of segment in the simplified line

6. FOR EACH segment(S) in the simplified line

a. IF segment level compression ratio > ST THEN

1. FOR EACH point ‘P’ on the Segment S (P excludes the starting

and last two points on the original line)

1. IF point level compression ratio at point P > PT THEN

2. Find the orthogonally projected point on the simplified

line (P’)

3. Calculate the accumulate length at the point P(Lp) on

the original line

4. IF P’ IS NOT ON THE SIMPLIFIED LINE THEN

a. Accumulated length at the point P’(Lp’) = 0 or

Length of the original line (decided based on

either P’ is close to Starting point or ending

point)

5. ELSE

a. Calculate the accumulated length at the point

P’(Lp’) on the simplified line

6. END

7. Add Lp, Lp’ to the array AL

8. END

2. END

b. END

7. END

8. Add the accumulated length array to SELF

9. RETURN the SELF structure (SELF)

27

2.3.6 Computation of the accumulated length on the original line at any point on the

simplified line

The SELF structure built using algorithm 2.3 [Appendix 1] can be used to compute the

accumulated length on the original line at any point on the simplified line. In Fig. 2.12, the

accumulated length at ‘P’ can be calculated by applying a linear interpolation on the

segment defined by the projection of vertices (6, 1) and (7, 1) on the simplified line. The

algorithm 2.4 is used for computing the length at P.

FIGURE 2.12: P′ (6.5, 0) IS THE ORTHOGONAL PROJECTION OF P (6.5, 1)

2.4 Implementation

The data structure has been implemented in PostgreSQL 9.4 using PL/pgSQL. The

spatial extension PostGIS 2.3 has been installed in PostgreSQL 9.4 (PostgreSQL,

PostGIS). The implemented algorithm takes a single linear feature and performs Douglas-

Peucker line simplification, which is available in PostGIS (ST_SIMPLIFY). The simplified

version is then associated with the SELF data structure and the compressed structure based

on user-defined segment level threshold and the point level threshold. The user can select

any point on the simplified line to retrieve the original accumulated distance. The

experiments were performed on pipeline and river network data.

28

2.4.1 PostGIS Extension

Table 2.1 summarizes the built-in functions available with PostGIS extension that

were utilized for developing the SELF data structure. For each function, the input and

output parameters are also listed in the table.

TABLE 2.1: BUILT-IN POSTGIS FUNCTIONS USED IN DEVELOPING ALGORITHMS (SOURCE:

HTTP://WWW.POSTGIS.NET/DOCS/)

FUNCTION INPUT OUTPUT

ST_NPoints — Return the number of points (vertexes) in a

geometry. Line GEOMETRY

number of points

in a geometry as

INTEGER

ST_PointN — Return the Nth point in the Line geometry. GEOMETRY of a

line string,

integer n

Nth point in a

single line string

as GEOMETRY

ST_Length — Returns the 2D length of the geometry in

meters
GEOMETRY

2D Cartesian

length of the

geometry as

FLOAT

ST_StartPoint — Returns the first point of a LINESTRING

geometry as a POINT.
Line GEOMETRY

Line

GEOMETRY

ST_EndPoint — Returns the last point of a LINESTRING

geometry as a POINT.
Line GEOMETRY

Point

GEOMETRY

ST_X — Return the X coordinate of the point Point GEOMETRY FLOAT

ST_Y — Return the Y coordinate of the point Point GEOMETRY FLOAT

ST_Distance — For geometry type Returns the 2D

Cartesian distance between two geometries in projected units

(based on spatial ref).

GEOMETRY g1,

GEOMETRY g2
FLOAT

ST_AsText — Return the Well-Known Text (WKT)

representation of the geometry/geography without SRID

metadata.

GEOMETRY TEXT

ST_Simplify — Returns a "simplified" version of the given

geometry using the Douglas-Peucker algorithm.

GEOMETRY,

THRESHOLD

SIMPLIFIED

GEOMETRY

ST_MakeLine — Creates a Line string from array of points GEOMETRY array GEOMETRY

2.4.2 SELF functions

Using PL/pgSQL – procedural language for PostgreSQL, the SELF structure

algorithms were added as new (user defined) functions. Eight new functions were

implemented. The example statement for calling each user defined function is shown in

http://www.postgis.net/docs/

29

Table 2.2 along with the output. The functions are executed on two different linear

geometries “testroad” (Fig. 2.12) and “nfroad” (Fig. 2.6) where “geom” is the geometry

column in the corresponding PostGIS table.

TABLE 2.2: USER-DEFINED FUNCTIONS AND EXAMPLE STATEMENTS FOR CALLING THE FUNCTIONS

FUNCTION INPUT OUTPUT

SELF_PP_POINT— Returns orthogonal projection

of a point on the simplified line.

Starting Point, Ending

Point, Point to be projected

Point GEOMETRY

Select ST_ASTEXT(SELF_PP_POINT(ST_MakePoint(0,0), ST_MakePoint(10,0),ST_MakePoint(5,1)));

Output : POINT(5 0)

SELF_SLP_DIFF – Function for finding the slope

difference between three consecutive points. This

function is used to discard the middle point of three

consecutive points which form the straight line.

Returns the array of slope difference values for each

point on the line (excludes starting and ending point).

line geometry Array of numbers

0 – Three points form

straight line

> 0 – Positive slope

between three points

< 0 – Negative slope

between three points

select SELF_SLP_DIFF(geom) from testroad;

Output : {-100,100,-100,-100,100,0,-100,100,0}

“testroad” contains 11 points. Excluding the starting and ending points the output array contains the slope difference

for the 9 intermediate points.

SELF_ACC_LEN – Function to calculate the

accumulated length at each point on the line

line geometry Array of numerical values

select SELF_ACC_LEN(geom) from testroad;

Output : {1.41,2.4,3.8,4.8,6.2,7.2,8.2,9.6,10.6,11.6}

SELF_CHK_PT— Function to check whether the

projected point is on the simplified line or NOT.

Starting Point, Ending

Point, Point to be projected

Returns the number based

on the following criteria:

0 – On the line

1 – Close to end point

2 – Close to Starting point

select SELF_CHK_PT(ST_MAKEPOINT(0,0),ST_MAKEPOINT(10,0),ST_MAKEPOINT(5,0));

Output : 0

SELF_ADV_CB— To build the SELF structure line geometry, Douglas

Peucker threshold, Segment

Level compression ratio,

Point level compression

ratio

Advanced SELF

Structure

select SELF_ADV_CB(geom,1000.0,0.0,0.0) from testroad;

Output: [POINT (0,0), POINT (10,0), 11.6, {(1,1.4), (2,2.4), (3,3.8), (4,4.8), (5,6.2), (6,7.2), (7,8.2), (8,9.6),

(9,10.6)}]

SELF_ADV_ASTEXT– To display the SELF

structure in user understandable format

SELF structure Text explaining the SELF

structure

30

select SELF_ADV_ASTEXT(SELF_ADV_CB(geom,500.0,10.0,0.0)) from testroad;

Output : SPOINT(0 0) -- EPOINT(10 0) – Actual Length: 11.657 – Accumulated Distance:

","1.000,1.414","2.000,2.414","3.000,3.828","4.000,4.828","5.000,6.243","7.000,8.243","8.000,9.657”

SELF_NS – Decomposing the Non-functional lines

into set of function lines

line geometry Array of functional

geometries

select ST_ASTEXT(UNNEST(SELF_NS(geom))) from nfroad;

Output : "LINESTRING(0 0,1 1,2 1,3 0,4 0,5 1)"

 "LINESTRING(5 1,4 2,3 2)"

 "LINESTRING(3 2,4 3,5 3,6 2,7 1,8 0,9 0,10 0)"

SELF_BUILD – Builds the SELF structure and

returns the simplified geometry with SELF structure

stored in the attribute table

line geometry, Douglas

Peucker threshold, Segment

Level compression ratio,

Point level compression

ratio

Simplified geometry with

SELF structure stored in its

attribute table

select SELF_BUILD(geom,1000.0,0.0,0.0) from testroad;

Output: Simplified geometry with SELF structure stored in the attribute table

SELF_ITP_DIST_ML - To interpolate the distance

using SELF structure

Simplified line geometry,

SELF structure, point

Array of interpolated

distances

select

SELF_ITP_DIST_ML(ST_SIMPLIFY(geom,500.0),SELF_ADV_CB(geom,500.0,0.0,0.0),ST_MAKEPOINT(4,0))

from nfroad;

Output : {4.828,7.657,10.071}

2.4.3 Experimental Data

To demonstrate the effectiveness of the SELF structure in interpolating the distance,

experimentation is done on five different linear features with different values for segment

level and point level compression. Three river streams which are part of the “North Tay

River”, the “Waasis Stream” and the “South Branch Rusagonis Stream,” as well as two

pipelines which are part of the “MNP Moncton Lateral” and the “MNP Utopia lateral” have

been chosen. In order for the set of features to be representative of a wide range of

topological characteristics, it was decided to select a set of linear features with different

number of vertices.

31

TABLE 2.3: LENGTH AND THE NUMBER OF POINTS AVAILABLE IN THE SELECTED DATA

The data has been downloaded from GeoNB (collaborative project of the

Government of New Brunswick) website (GeoNB Data Catalogue) [2017]. Fig. 2.13 to

2.17 show the original and simplified versions (DP threshold 500.0m) of river streams and

pipelines, where the total number of points on the original line is mentioned in the figure

captions.

FIGURE 2.13: NORTH TAY RIVER (440 POINTS)

FEATURE NAME
LENGTH (in

meters)

TOTAL NUMBER OF

VERTICES
NORTH TAY RIVER 14723.185 440

WAASIS STREAM 9026.166 305

SOUTH BRANCH

RUSAGONIS
19853.897 461

MNP MONCTON LATERAL 12271.853 250

MNP UTOPIA LATERAL 8381.864 570

FIGURE 2.14: WAASIS STREAM (304 POINTS)

FIGURE 2.15: SB RUSAGONIS STREAM

(461 POINTS)

32

2.4.4 Experiments

The SELF structure has been built on the original line shown in Fig. 2.18 with

Douglas-Peucker threshold 500.0 meters and both the segment and point level threshold

values as 0. The original distance at each point on the simplified line is listed in Fig. 2.19

FIGURE 2.18: ORIGINAL AND SIMPLIFIED VERSION (500 M DP THRESHOLD) OF A SAMPLE LINE

FIGURE 2.16: MNP MONCTON LATERAL (250

POINTS)
FIGURE 2.17: MNP UTOPIA LATERAL (570

POINTS)

33

FIGURE 2.19: A TABLE SUMMARIZING ACCUMULATED LENGTH AT EACH VERTICES OF ORIGINAL AND

SIMPLIFIED LINE SHOWN IN FIG.2.13

In Fig. 2.18 projection of points A, B and C are not falling on the simplified line.

Thus, the accumulated length at the points A, B and C are stored along with the starting

point of the simplified line because they are close to point 1. Similarly, the ending point

‘n’ consists of the accumulated length at points M, N, O, P and Q where the projection of

points N, O, P and Q do not fall on the simplified line (Table. 2.4).

TABLE 2.4: INTERPOLATED DISTANCE AT EACH POINT CLICKED ON THE SIMPLIFIED LINE

The original line shown in Fig. 2.20 contains 496 points. Some of the points and their

orthogonal projection are shown in Fig. 2.21 to 2.25.

POINT CLICKED

ON THE

SIMPLIFIED

LINE

1 D′ E′ F′ G′ H′ I′ J′ K′ L′ M′ n

INTERPOLATED

DISTANCE

0.0
1.4

2.4

3.8

7.9 8.95 10.3 11.3 12.8 13.8 14.8 16.1 17.1 20.0

29.6

20.0
21.4

24.0

25.4
26.4

34

FIGURE 2.20: SIMPLIFIED LINE WITH 5 SEGMENTS AB, BC, CD, DE AND EF

 FIGURE 2.21: SAMPLE POINT1 FIGURE 2.22: SAMPLE POINT2

35

 FIGURE 2.23: SAMPLE POINT3 FIGURE 2.24: SAMPLE POINT4

 FIGURE 2.25: SAMPLE POINT5

Sample Point1 (Fig. 2.21) and Sample Point2 (Fig. 2.22) correspond to a point on

the original line. Sample points 3 (Fig. 2.23), 4 (Fig. 2.24), 5 (Fig. 2.25) correspond to 5,

3, 3 points on the original line accordingly. Table.2.5 lists the interpolated distance at all 5

sample points at different values of segment level compression. At 40.0% (i.e. ratio

between original length and simplified length of the segment < 40.0) segment compression

36

level, all the points are lost. Wherever there is “NO CHANGE” the length is interpolated

correctly.

TABLE 2.5: INTERPOLATED DISTANCE AT DIFFERENT VALUES FOR SEGMENT LEVEL COMPRESSION THRESHOLD

There are three possibilities while running algorithm 2.4 to compute the

accumulated length on the original line at any point of the simplified line from SELF

structure. Depending on the outcome, the error in interpolation is classified as follows:

1. Interpolated distance is greater than original accumulated length – Negative

error

2. Interpolated distance is less than original accumulated length – Positive error

3. Interpolated distance is equal to original accumulated length – Zero error

Similarly, the distance at all 496 points is interpolated by algorithm 2.4. Fig. 2.26

& 2.27 compares the maximum (Positive error), minimum (Negative error) and standard

deviation in the interpolated distance at various levels of compression.

37

FIGURE 2.26: ERROR IN INTERPOLATED DISTANCE VS SEGMENT LEVEL COMPRESSION VALUES

 FIGURE 2.27: ERROR IN INTERPOLATED DISTANCE VS POINT LEVEL COMPRESSION VALUES

Segment level compression produces higher positive and negative error than point

level compression (Fig. 2.26 & 2.27). As a consequence of segment level compression, the

entirety of segments (continuous points) which have the segment level compression ratio

within the user-defined threshold are eliminated. This leads to an error in interpolation for

the points which belong to the eliminated segment, whereas point level compression

discards only certain points which are within the point level threshold.

38

The distance interpolation algorithm (Algorithm 2.4) has been run with different

levels of compression on these datasets (Table. 2.6).

TABLE 2.6: AVERAGE ERROR IN DISTANCE INTERPOLATION USING SELF-STRUCTURE

It can be seen from Fig. 2.28 that the percentage error increases when the level of

compression is increased. Noticeably, average error for “NORTH TAY RIVER” suddenly

increases after 7% of point level compression. The increase in compression level will

discard more points from SELF structure (Fig. 2.29), though this number would change

due to the different topological complexity of the datasets. Consequently, the level of

compression can be decided based on the application and the required accuracy in distance

interpolation.

10 20 30 2 4 7 10 10 20 30 2 4 7 10
440 376 NA NA 102 40 14 6 440 440 440 103 41 14 6

Compression % 14.55 NA NA 76.82 90.91 96.82 98.64 0 0 0 76.59 90.68 96.82 98.64

Average Error 3.19 NA NA 6.77 13.75 24.36 70.28 0 0 0 0.13 8.55 8.64 11.97

305 304 257 173 189 132 87 56 305 305 173 190 132 87 56

Compression % 0.33 15.74 43.28 38.03 56.72 71.48 81.64 0 0 43.28 37.7 56.72 71.48 81.64

Average Error 0 9.93 11.33 2.21 3.35 3.66 4.39 0 0 0 -1.18 -0.88 3.01 3.06

461 457 154 NA 175 93 30 16 461 418 NA 177 94 30 16

Compression % 0.87 66.59 NA 62.04 79.83 93.49 96.53 0 9.33 NA 61.61 79.61 93.49 96.53

Average Error 0 29.74 NA 1.35 7.89 14.04 20.7 0 0 0 5.34 8.48 12.91 26.05

250 48 NA NA 4 4 4 2 250 250 250 4 4 4 2

Compression % 80.8 NA NA 98.4 98.4 98.4 99.2 0 0 0 98.4 98.4 98.4 99.2

Average Error -0.45 NA NA 19.15 19.15 19.15 20.02 0 0 0 16.97 16.97 16.97 17.43

570 570 570 570 8 7 7 5 570 570 570 8 7 7 5

Compression % 0 0 0 98.6 98.77 98.77 99.12 0 0 0 98.6 98.77 98.77 99.12

Average Error 0 0 0 39.9 41.53 41.53 43.72 0 0 0 24.49 25.84 25.84 26.87

Threshold for Douglas-Peucker Algorithm

Feature Name Length

14723.185NORTH TAY RIVER

Points SEGMENT LEVEL POINT LEVEL POINT LEVEL

500 1000
SEGMENT LEVEL

WAASIS STREAM

SOUTH BRANCH RUSAGONIS STREAM

MNP MONCTON LATERAL

MNP UTOPIA LATERAL

9026.166

19853.897

12271.853

8381.864

39

2.5 Conclusions

This paper involved implementing the SELF (Semantically Enriched Line

simpliFication) data structure to preserve the geometric characteristics associated to the

actual linear features. Currently, the data structure has been implemented in PostgreSQL

9.4 with PostGIS extension using PL/pgSQL to support static and non-functional polylines

and tested with both synthetic and real world features.

The algorithm applies two kinds of compression: point level and segment level. The

segment level compression eliminates entire segments (continuous points) which has the

segment level compression ratio within the user-defined threshold, while point level

compression discards only certain points which are within the point level threshold.

However, the results of the experiments indicate that the different topological complexity

of the datasets play a major role in distance interpolation error.

FIGURE 2.28: AVERAGE ERROR IN INTERPOLATED DISTANCE VS
POINT LEVEL COMPRESSION VALUES

FIGURE 2.29 : % OF COMPRESSION VS
POINT LEVEL COMPRESSION VALUES

40

Future work includes the implementation of the SELF structure extension to

support spatio temporal lines. This will result in an enriched library of PL/pgSQL function

to support the simplification of both static and dynamic lines.

Recoding this library to other programming languages (such as Python) so that it

can be embedded into other commercial or open source GIS software packages is another

future goal. Lastly, special attention will be given in developing a framework to facilitate

the adoption of the SELF structure in various application domains with need for

semantically enhanced multiscale representation of linear features. Applications may need

to retain the accumulated length of the road, positional velocity, speed limit or accumulated

gas consumption in the road network. In a hydrographic network, the river depth or width

can be expressed using the SELF structure.

Acknowledgements

This research has received funding from the Natural Sciences and Engineering Research

Council of Canada (NSERC), Discovery Grants Program.

The authors wish to thank the anonymous reviewers and the editor for their valuable

comments.

41

REFERENCES

Abam, M.A., et al., 2010. Streaming algorithms for line simplification. Discrete &

Computational Geometry, 43 (3): 497–515. doi:10.1007/s00454-008-9132-4

Alvares, L.O., et al., 2007. A model for enriching trajectories with semantic

geographical information. In: The Proceedings of the 15th annual ACM international

symposium on advances in geographic information systems, 7–9 November, Seattle, WA.

Article No. 22.

Cromley, R.G., 1991. Hierarchical methods of line simplification. Cartography and

Geographic Information Science, 18 (2): 125–131. doi:10.1559/152304091783805563

Douglas, D.H. and Peucker, T.K., 1973. Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature. The Canadian

Cartographer, 10 (2): 112–122. doi:10.3138/FM57-6770-U75U-7727

GeoNB Data Catalogue, Retrieved from

http://www.snb.ca/geonb1/e/DC/catalogue-E.asp Published on: March 11th 2014,

Retrieved on : Feb 6th 2017

Parent, C. et al., 2013. Semantic Trajectories Modeling and Analysis. ACM

Computing Surveys, Vol. 45, No.4, Article 42. doi:

http://dx.doi.org/10.1145/2501654.2501656

PostGIS Reference. Chapter 8. Retrieved from

http://postgis.net/docs/reference.html#Management_Functions, Published on: 26th

September 2016, Accessed on: 5th February 2017

http://link.springer.com/article/10.1007%2Fs00454-008-9132-4
http://www.ingentaconnect.com/content/tandf/tcag20
http://www.utpjournals.press/doi/10.3138/FM57-6770-U75U-7727

42

PostgreSQL 9.4.11 Documentation Chapter 40. PL/pgSQL - SQL Procedural

Language. Retrieved from https://www.postgresql.org/docs/9.4/static/plpgsql-

statements.html, Published on: 18th December 2014, Accessed on : 5th February 2017

QiuLei Guo and Hassan A. Karimi, 2016. A Topology-Inferred Graph-Based

Heuristic Algorithm for Map Simplification. In: Transactions in GIS,

doi:10.1111/tgis.12188

Richter, K.F., Schmid, F., and Laube, P., 2012. Semantic trajectory compression:

representing urban movement in a nutshell. Journal of Spatial Information Science, (4): 3–

30.

Robinson, Joel L. Morrison, Phillip C. Muehrcke, A. Jon Kimerling, Stephen C.

Guptill, Elements of Cartography, 6th Edition ISBN: 978-0-471-55579-7

Shahriari, N., and V. Tao, 2002. Minimizing Positional Errors in Line

Simplification Using Adaptive Tolerance Values. In: Symposium on Geospatial Theory,

Processing and Application, 4(3), 213-223.

Spaccapietra, S., et al., 2008. A conceptual view on trajectories. Data &

Knowledge Engineering, 65 (1): 126–146. Retrieved from:

http://www.sciencedirect.com/science/article/pii/S0169023X07002078

Stefanakis, E., 2015. SELF: Semantically enriched Line simpliFication. In:

International Journal of Geographical Information Science, Vol. 29, Iss. 10, 2015, Pages

1826-1844doi: 10.1080/13658816.2015.1053092

https://www.postgresql.org/docs/9.4/static/plpgsql-statements.html
https://www.postgresql.org/docs/9.4/static/plpgsql-statements.html
http://www.sciencedirect.com/science/article/pii/S0169023X07002078

43

Tienaah, T., Stefanakis, E., and Coleman, D., 2015. Contextual Douglas-Peucker

simplification. Geomatica Journal, 69 (3), 327-338, https://doi.org/10.5623/cig2015-306 .

 Weibel, R., 1996. A typology of constraints to line simplification. In: Proceedings

of 7th international symposium on spatial data handling, 12–16 August, Delft. IGU: 533–

546.

Weibel, R., 1997. Generalization of spatial data: principles and selected

algorithms. In: M. Kreveld, et al., eds. Algorithmic foundations of geographic

information systems. Berlin: Springer: 99–152.

Wu,Shil – Ting and Mercedes Rocio Gonzales Marquez 2003. Proceedings of the

XVI Brazilian Symposium on Computer Graphics and Image Processing

(SIBGRAPI’03). 1530-1834/03 doi :10.1109/SIBGRA.2003.1240992.

Yan, Z., et al. 2011. SeMiTri: A framework for semantic annotation of

heterogeneous trajectories. In: The proceedings of the 14th international conference on

Extending Database Technology (EDBT 2011). New York: ACM: 259–270.

https://doi.org/10.5623/cig2015-306

44

3. Semantically enriched simplification of trajectories

Abstract

 Moving objects that are equipped with GPS devices generate huge volumes of

spatio-temporal data. This spatial and temporal information is used in tracing the path

travelled by the object, so called trajectory. It is often difficult to handle this massive data

as it contains millions of raw data points. The number of points in a trajectory is reduced

by trajectory simplification techniques. While most of the simplification algorithms use the

distance offset as a criterion to eliminate the redundant points, temporal dimension in

trajectories should also be considered in retaining the points which convey both the spatial

and temporal characteristics of the trajectory. In addition to that the simplification process

may result in losing the semantics associated with the intermediate points on the original

trajectories. These intermediate points can contain attributes or characteristics depending

on the application domain. For example, a trajectory of a moving vessel can contain

information about distance travelled, bearing, and current speed. This paper presents the

implementation of the Synchronous Euclidean Distance (SED) based simplification to

consider the temporal dimension and building the Semantically Enriched Line

simpliFication (SELF) data structure to preserve the semantic attributes associated to

individual points on actual trajectories. The SED based simplification technique and the

SELF data structure have been implemented in PostgreSQL 9.4 with PostGIS extension

using PL/pgSQL to support dynamic lines. Extended experimental work has been carried

out to better understand the impact of SED based simplification over conventional

Douglas-Peucker algorithm to both synthetic and real trajectories. The efficiency of SELF

45

structure in regard to semantic preservation has been tested at different levels of

simplification.

46

3.1 Introduction

Over the years, technological advancements have enabled the usage of GPS devices

in moving objects. These devices generate streams of points (locations) which form a path

travelled by the moving object during a particular period of time. This traced path is known

as trajectory. Trajectory data is commonly utilized in urban planning, fleet management

systems, and other location-based service applications. With every trajectory containing

enormous amount of data points, it is often required to reduce the data according to the

application domain. The concept of trajectory reduction has evolved from the algorithms

used in cartographic generalization for linear geometric features also known as

simplification [Keates 1989]. The basic idea is to retain certain points which are more

significant in forming the trajectory than other points as they better convey the trajectory

characteristics for a particular context. For example, the point at which a sudden speed

change occurs is more important than other points in vehicle movement tracking. The

conventional generalization techniques for linear features (e.g., rivers, pipelines, and roads)

remove the high-density vertices based on a given criterion.

The Douglas-Peucker (DP) algorithm is a recursive approach for simplifying lines

which takes the original linear geometry and a threshold distance as input. The simplified

version is generated by controlling the offset while minimizing the distortion. At the end

of a recursive process, only a subset of the vertices is retained to form the simplified

geometry. The resultant geometry ends up in reduction in length [Douglas et al. 1973]. DP

simplification algorithm does not consider temporal dimension (time) associated with the

vertices of the trajectories. Furthermore, as a result of simplification the semantics (e.g.

speed, heading and distance travelled) at each point on the original line (trajectory) are not

Polyline%20geometries%20are%20used%20to%20represent%20the%20linear%20features%20such%20as%20roads,%20rivers,%20and%20pipelines%20on%20maps.%20The%20process%20of%20simplifying%20the%20geometry%20by%20means%20of%20Sampling%20and%20generalization%20produces%20the%20polylines%20which%20has%20a%20length%20smaller%20than%20that%20of%20the%20original%20geometries.%20In%20addition%20to%20that%20the%20simplification%20process%20may%20end%20up%20in%20losing%20the%20semantics%20associated%20with%20the%20actual%20line%20features.%20The%20semantic%20loss%20is%20directly%20proportional%20to%20the%20scale%20of%20the%20map.%20This%20paper%20involves%20in%20implementing%20the%20SELF%20(Semantically%20Enriched%20Line%20simpliFication)%20to%20overcome%20the%20above%20problem.%20The%20implemented%20method%20will%20preserve%20the%20attributes%20and%20semantic%20characteristics%20associated%20to%20the%20actual%20linear%20features.%20The%20data%20structure%20has%20been%20implemented%20to%20support%20static%20and%20non-functional%20polylines%20and%20tested%20with%20both%20sample%20and%20real%20world%20features.%20The%20structure%20can%20be%20extended%20to%20real%20time%20spatiotemporal%20features,%20like%20vessel%20trajectories.

47

preserved in the simplified line. As a result, Douglas-Peucker algorithm has limited scope

to be utilized in trajectory simplification. For example, in Fig. 3.1, only the first and last

points of original line are retained in the simplified line for a 50-meter threshold distance,

because none of the perpendicular offset is greater than 50 meters regardless the temporal

data associated with the intermediate points. Depending on the threshold distance some

intermediate points can also be retained using the Douglas-Peucker algorithm. As DP

algorithm has the limitation of not being able to consider the temporal dimension of a

trajectory, the notion of the Synchronous Euclidean Distance (SED) was introduced by

Meratnia and de By.

FIGURE 3.1: COMPARISON OF ORIGINAL AND THE SIMPLIFIED VERSION WHEN DP-THRESHOLD IS 50

METERS

This chapter presents an implementation of DP with the notion of SED and

combining it with SELF (Semantically Enriched Line simpliFication) data structure for

dynamic linear features that preserves the semantic attributes (speed, heading and

distance travelled) associated with individual locations of original trajectory. These

attributes are associated with the DP-SED based simplified trajectory as an array of

values corresponding to multiple locations along the simplified trajectory [Stefanakis

2015].

48

The purpose of this chapter is twofold. First, to involve the temporal dimension in

the simplification of trajectories. Second, to retain the semantic (speed, heading and

distance travelled) attributes associated with individual locations of original trajectories.

The latter has been done by associating the semantic values to the simplified geometry as

an array of values corresponding to multiple locations along the simplified geometry

[Stefanakis 2015].

The overall objectives of this research work are:

1. To implement SED based trajectory simplification technique to consider spatio-

temporal data in trajectory generalization

2. To implement the SELF structure to support dynamic polylines and to test with

both synthetic and real world features.

3. To compare the interpolated semantic values using SELF structure at different

levels of trajectory generalization

The chapter is organized as follows. Section 3.2 provides a literature review about

trajectory simplification and briefly describes the SED based simplification and SELF

structure for dynamic linear features. Section 3.3 presents the steps followed to

implement SED simplification technique and build the SELF structure in

PostgreSQL/PostGIS. Section 3.4 presents PostGIS functionality and explanations of the

experiments with various real-world trajectories. Section 3.5 summarizes the contribution

of this paper and introduces future developments for the SELF data structure with respect

to testing with various application domains.

49

3.2 Literture Review

3.2.1 Trajectory Generalization

Over the years the usage of GPS devices in moving vehicles have increased

exponentially and massive amount of data is being generated by these devices. The

generated data is used in various public and business applications such as urban

transportation planning, fleet management and traffic modelling [K. Buchin et al. 2008].

The enormous volume of data makes it impossible to analyze the data manually. For

example, during the trip length of 30 minutes, if the location is being recorded for every 5

seconds a total of 360 points are recorded. In a day, the dataset contains 17,280 points. It

necessitates to identify the methods for reducing the complexity of the dataset. The concept

of reducing a trajectory dataset is called trajectory reduction or simplification. The idea of

trajectory reduction has evolved from cartographic generalization. Simplification, the

common cartographic generalization technique, has been a key research area for

cartographers over the years [Cromley 1991, Weibel 1997, Robinson et al. 2005, Wu et al.

2003].

The Douglas-Peucker (DP) algorithm has been revamped by many researchers

since it was introduced in 1973. The problem of topological inconsistency between original

and simplified geometry produced by DP algorithm was addressed by avoiding self-

intersections on the simplified geometry [Wu et al. 2003]. The problem of limited data

storage space is addressed by experimenting the line simplification algorithms in a

streaming environment [Abam 2010]. Various techniques have been proposed to enforce

the topological constraints while simplifying a polyline [Shahriari and Tao 2002, Tienaah

et al. 2015, QiuLei et al. 2016].

50

Meanwhile, enriching the content of linear features has gained attention to address

the problem of annotating trajectories with semantic data. [Alvares et al. 2007, Yan et al.

2011, Richter et al. 2012, Parent et al. 2013, Stefanakis 2015]. The trajectory sample points

have been transformed into stops and moves by adding semantic information [Alvares et

al. 2007]. Though the implemented model has shown significant compression of

trajectories while enabling efficient query processing, the preprocessing of adding

semantic information to trajectories is a time-consuming operation. The semantic

enrichment platform SeMiTri, multi-tiered approach, was presented to handle

heterogeneous trajectories (includes both fast and slow-moving objects). The trajectory

generalization platform based on Hidden Markov Model (HMM) technique has not

considered trajectories in large scale [Yan, Z., et al. 2011]. Richter et al. [2012] extended

concepts of network-constrained indexing in mobility object to embed human movement

with the individual locations on the trajectory. The algorithm they proposed enables a user

to determine the reference point and all possible movement change descriptions from that

point but is limited only to urban transport network.

The problem of spatial relation violation while compressing the trajectories was

addressed to maintain disjoint topological relation and direction relations between the

original and generalized trajectory [Stefanakis 2012]. The author has extended DP

algorithm to maintain the topological consistency between the trajectory and its simplified

version.

51

 3.2.2 Synchronous Euclidean Distance (SED)

Most of the simplification algorithms are suitable for generalizing linear

geometries. In these algorithms the data points are retained only based on the perpendicular

distance between data points and the proposed generalized version of it. While these

algorithms can also be applied on trajectory datasets, using the perpendicular distance as a

criterion becomes inappropriate as trajectories are not just linear geometries. Trajectories

represent historical trace of points by associating temporal dimension with spatial data.

With the above idea, the notion of the Synchronous Euclidean Distance (SED) was

introduced to achieve reduction of trajectories while retaining the spatio temporal

characteristics of the trajectory [Meratnia and de By 2004]. The authors have implemented

and tested the DP-SED algorithm (extension of Douglas-Peucker algorithm with the notion

of SED). The proposed algorithm retains the spatiotemporal characteristics while reducing

the trajectories efficiently. Fig. 3.2 demonstrates how SED is calculated between simplified

and original geometry.

FIGURE 3.2: THE SYNCHRONOUS EUCLIDEAN DISTANCE (SED).

In Fig. 3.2, the locations X, Y, Z represent the position of a moving vessel at the

timestamps tX, tY, tZ where tX < tY < tZ. The spatiotemporal footprint of Y (i.e. Y′) is

calculated with respect to the velocity of trip VXZ. The Euclidean distance YY′ is known

(t
Y
- t

x
)

52

as the SED for the point Y. The perpendicular distance applied in DP algorithm is lesser or

equal to the SED (YY′) as the line YY′ is not perpendicular to the straight line XZ.

3.2.3 Semantically Enriched Line Simplification (SELF)

On the one hand, efficient generalization of trajectories can be achieved by DP-

SED algorithm while retaining the spatiotemporal characteristics of the trajectory.

However, the generalized version does not retain the semantics associated with the

individual points on the original trajectory. SELF data structure has been introduced by

Stefanakis [2015] to enrich the simplified line to convey some semantics associated with

the original version. In the attempt of enriching the content of the linear geometries while

reducing the number of points, SELF data structure is proposed to preserve the attributes

of the original line or any semantic annotations associated with individual locations or

segments of that line [Spaccapietra et al. 2008] into the generalized version [Stefanakis

2015]. The author has proposed many variations of SELF and the choices can be made

based on how rich the semantics attached to the simplified line are.

The basic variant of SELF attaches the original line length (e.g., kilometric travel

distance) to the simplified line. In this variant, a line with end points 1 (start), n (end),

and total length (dn) is represented by a simplified line defined as follows [Stefanakis

2015]:

[x1, y1, xn, yn, dn] (SELF variant: basic)

An advanced variant for function lines also tags the accumulated length per

vertex along the line. Hence, each vertex K of the original line is orthogonally projected

53

on the simplified line (Fig. 3.1) and the footprint point K′ is assigned the accumulated

length dk from point 1 (start) to vertex K along the original line. If dk′ is the Euclidean

distance of point K′ from end point 1, the simplified line can be represented as follows

[Stefanakis 2015]:

[x1, y1, xn, yn, dn, ARRAY {(dk′, dk); k=2, …, n-1}] (SELF variant: advanced-

function)

In this paper, the advanced variant of SELF structure has been extended to tag

trajectory semantics: speed, heading, and distance travelled. Each point on the original

trajectory is projected on the generalized version based on SED. The footprint of each

point will be assigned with speed, heading and distance travelled at that point.

 [x1, y1, xn, yn, dn, ARRAY {(dk′, speed, heading, dk); k=1, …, n}] (SELF variant:

dynamic lines).

3.3 Methodology

3.3.1 SED Simplification

Trajectories are formed by connecting a series of raw mobility data points. These

individual data points include the spatiotemporal locations (latitude, longitude, time).

The simplified line using Douglas-Peucker algorithm with the user defined threshold

always considers perpendicular distance as a criterion to eliminate the redundant points.

The goal of the SED based simplification is to also consider temporal dimension

of trajectory data while generalizing the trajectory.

54

The algorithm is divided into four steps:

1. Constructing the trajectory using the individual points (Trajectory Reconstruction)

2. Calculating the average velocity of the trip

3. Identify the corresponding SED point for every point on the original line

4. Removing the points by comparing the SED against the simplification threshold

3.3.1.1 Constructing the trajectory using the individual points (Trajectory

Reconstruction)

Raw points ordered by the timestamp are connected sequentially to form the

trajectory. These data points are in the form (time, latitude, longitude). Ten (10) points

along with their corresponding attributes are given in Table 3.1; their individual locations

are mapped in Figure 3.3 and the constructed trajectory is shown in Figure 3.4.

TABLE 3.1: ATTRIBUTE TABLE FOR THE TRAJECTORY POINTS SHOWN IN FIGURE.3.3

55

FIGURE 3.3: INDIVIDUAL POINTS ON THE TRAJECTORY

FIGURE 3.4: FORMED TRAJECTORY AFTER CONNECTING INDIVIDUAL POINTS

3.3.1.2 Calculating the average velocity of the trip

Average velocity of the trip is defined as the ratio between the straight-line length of the

trip and the total duration of the trip.

Average velocity = (Straight line distance between starting and ending point)/ (Total duration of

the trip)

56

FIGURE 3.5: STRAIGHT LINE CONNECTING STARTING AND ENDING POINTS OF TRAJECTORY

In Fig. 3.5, the average velocity is 20 meters/second. In case of multiple segments

connecting the starting and ending points, the average velocity is calculated for each

segment and retrieved as an array of numeric values (Fig. 3.6).

FIGURE 3.6: AVERAGE VELOCITY CALCULATION FOR MULTI SEGMENT LINE

Algorithm 3.1: Finding the average velocity of the trip (Fig. 3.5)

Input:

1. Raw mobility points ordered by timestamp

Output:

1. Average velocity as a numeric value

Steps:

1. Retrieve the starting and ending points on trip

2. Calculate the straight-line distance between starting and ending

points of the trip(d)

3. Find the duration of trip(t) = ending time – starting time

4. Average Velocity = d/t
5. RETURN the average velocity

57

3.3.1.3 Identify the corresponding SED point for every point on the original line

For each point on the original line the corresponding SED point is identified by

calculating the distance from starting point to the SED point.

Distance to SED point = Average Velocity * Time of travel at the original point

TABLE 3.2: DISTANCE TO EACH SED POINT ON STRAIGHT LINE FROM STARTING POINT (FIG. 3.7)

Based on the distance to SED point, for each point algorithm 3.3 is executed to find the

location of the SED points.

Point ID 1 2 3 4 5 6 7 8 9 10

SED Points 1 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10

Time (Sec) 0 1 2 3 4 5 6 8 10 12

Distance to SED point

(metre)
0 20 40 60 80 100 120 160 200 240

FIGURE 3.7: INDIVIDUAL POINTS ON THE TRAJECTORY AND THE CORRESPONDING SED POINTS ON

THE STRAIGHT LINE

58

3.3.1.4 Removing the points by comparing SED distance against simplification

threshold

SED based simplification algorithm takes the set of points ordered by timestamp and a

threshold distance as input. The recursive algorithm divides the trajectory based on the

SED against the threshold distance. Once the corresponding locations of all the points on

the original trajectory are identified on the straight line connecting the first to the last

point, the algorithm finds all points for which the SED is longer than threshold distance.

Algorithm 3.2: Calculating distance to each SED point from starting point on straight line

Input:

1. Raw mobility points ordered by timestamp

Output:

1. Distance to each point as an array of numeric value

Steps:

1. Define the numeric array (SED_DIST) to store the distance values

2. Calculate the average velocity of the trip (Algorithm 1)

3. FOR EACH point ‘P’ in the input data

a. Find the time difference between P and starting point

b. Multiply the time difference and average velocity of the trip

c. Add the multiplied value to SED_DIST

4. END

5. RETURN the array SED_DIST

Algorithm 3.3: Finding the point on the line based on the distance from starting point

Input:

1. Starting point (SP)

2. Ending point (EP)

3. Distance from starting point (dp)

Output:

1. Point on the straight line returned as geometry type (C)

Steps:

1. Calculate the distance between SP and EP (d)

2. Find the ratio(r) between d and dp

3. The X and Y coordinate of point ‘C’ can be obtained by,

X(C) = (1-r) * X(SP) + r * X(EP);

Y(C) = (1-r) * Y(SP) + r * Y(EP);

4. RETURN the point ‘C’

59

The point with longest SED is marked to be retained for the next iteration. For the next

iteration, two straight line segments are compared against original trajectory. When there

are no points found with an SED longer that the threshold, the algorithm terminates. Fig.

3.8 demonstrates the SED based simplification algorithm in generalizing a trajectory. In

the iteration 1, for each point on the original trajectory its corresponding SED projection

on the straight line connecting 1 and 10 is found. Point 6 has the maximum SED and

greater than the threshold (30 meters). So, point 6 is retained. For the next iteration, the

intermediate simplified line contains two segments 1-6 and 6-10. Again, for each original

point its corresponding SED projection point is found on the intermediate simplified

version. This time point 5 has the maximum SED (>30 meters). At the end of second

iteration the intermediate simplified line contains three segments 1-5, 5-6, 6-10. The

iteration continues until there are no points to be retained. In this case, the algorithm

terminates in the 6th iteration as then none of the points have an SED greater than the

threshold (30 meters).

FIGURE 3.8: THE SED BASED SIMPLIFICATION ALGORITHM

60

3.3.2aBuilding SELF structure based on SED simplification

The goal of the SELF structure is to retain the semantics at each point on the original

trajectory along with the corresponding SED point on the generalized version.

The algorithm is divided into four steps.

1. Finding the SED projection for each point on the original trajectory on the

simplified trajectory

2. Calculating the accumulated distance at each point on the original trajectory

and its SED projection point on the generalized trajectory

3. Remove the individual points based on the change in speed and heading

4. Interpolation of the semantics on the original trajectory at any point on the

generalized version

Algorithm 3.4: SED based simplification

Input:

1. Raw mobility points ordered by timestamp

2. Simplification threshold (T)

Output:

1. Retained points after simplification as an array (SP) of geometry type

Steps:

1. Define the geometry array for storing the retained points (SP)

2. Construct the trajectory by joining all the raw data points in the order of timestamp

3. Add first and last points of trajectory to the array SP

4. Form the straight line (L) by joining starting point and ending point of the trajectory

5. FOR EACH point ‘P’ in the raw mobility data

a. Find it’s corresponding SED point (P’) on the line L

b. Find the distance(dp) between P and P’

c. IF dp > T AND dp is the furthest distance THEN

i. Add the point ‘P’ to the geometry array SP

d. END

e. EXIT WHEN no more points with furthest distance greater than T

6. END

7. Form the intermediate simplified line based on the retained points and assign it to L

8. Recursive call to the loop

9. RETURN the geometry array(SP)

61

3.3.2.1 Finding the SED projection for each point on the original trajectory on the

simplified trajectory

The algorithm takes as input the generalized trajectory obtained as an output of algorithm

3.4. Then each point on the original trajectory is projected on the generalized version

based on SED.

Algorithm 3.5: Finding the SED projection for each point on the original trajectory on the

generalized asdfasdfsadf version

Input:

1. Geometry of the generalized version

2. Constructed original trajectory by connecting raw data points (ordered by timestamp)

Output:

1. SED projection points as an array (SP) of geometry type

Steps:

1. Define the geometry array for storing the SED projection points (SP)

2. FOR EACH segment (S) in the geometry of generalized version

a. Calculate the average velocity (V) over the segment S using algorithm 1

b. FOR EACH point (P) in the segment ‘S’

i. Find the time difference (T) between P and starting point of the segment

ii. Multiply T and V to get the distance to SED point from starting point of

the segment

iii. Use multiplied value to find the point(P’) on the segment by algorithm 3

iv. Add the point P’ to the array SP

c. END

3. END

4. RETURN the array SP

FIGURE 3.9: SED PROJECTION OF EACH POINT ON THE SIMPLIFIED TRAJECTORY

62

3.3.2.2 Calculating the accumulated distance at each point on the original trajectory

and its SED projection point on the generalized trajectory

SELF structure for dynamic lines stores the semantics associated with individual points

on the original trajectory along the generalized version. As shown in Fig. 3.9, each point

on the original trajectory is projected based on the SED on the generalized version.

For each point on the original trajectory, the corresponding SED point is tagged with the

semantics. The entire SELF structure is represented as follows:

[SPOINT (482980 4101964), EPOINT (483220 4101964), 322.843,

{(0.000,0,311,0.00),

(30.594,233.261,200,42.426), (61.188,233.261,111,52.426),

(91.782,233.261,200,123.137),

(122.376,233.261,311,133.137), (152.971,233.261,200,203.848),

(166.523,233.261,111,213.848), (193.628,77.7538,200,284.559),

(220.734,77.7538,311,294.559), (247.839,77.7538,0,322.843)}]

whereas, the semantic array contains the values in the order (accumulated length on the

generalized version, speed, heading, accumulated length on the original trajectory).

TABLE 3.3: TABLE SUMMARIZING SEMANTICS AT EACH LOCATIONS OF ORIGINAL AND

GENERALIZED TRAJECTORY IN FIG. 3.8

63

3.3.2.3 Semantic based Compression Levels

SELF structure generates a large volume of data which is proportional to the number of

points in the original trajectory. The number of points to be stored in SELF structure can

be diminished by applying a semantic based compression: (a) Speed based compression

(b) Heading based compression. These methods are described in following sub-sections.

3.3.2.3.1 Speed based compression

If the ratio of speed between two consecutive points on the original trajectory is less than

the given threshold, then the semantics at second point is not stored.

Speed based compression ratio =

Algorithm 3.6: Building the SELF structure

Input:

1. Raw mobility data points

2. Threshold value for running SED based simplification (algorithm 3.4)

Output:

1. SELF advanced structure

Steps:

1. Define the object of SELF structure (SELF)

2. Construct the original trajectory by ordering the points based on timestamp

3. Add the starting point, ending point and the actual length of original trajectory to

SELF

4. Define the array for storing the accumulated length and other semantics (AL)

5. Run SED based simplification algorithm for getting the generalized version

6. Find the number of segments in the generalized version

7. FOR EACH segment(S) in the simplified line

8. FOR EACH point ‘P’ on the Segment S

9. Find the SED projection point on the generalized version (P’)

10. Calculate the accumulate length at the point P(Lp) on the original trajectory

11. Calculate the accumulated length at the point P’(Lp’) on the simplified line

12. Add Lp, Lp’ and other semantics (heading, speed) to the array AL

13. END

14. END

15. Add the array AL to SELF

16. RETURN the SELF structure (SELF)

64

In Fig. 3.10 the semantic at point 7 is not stored as the ratio of speed between the points 6

and 7 is zero.

3.3.2.3.2 Heading based compression

In case of heading based compression, the semantics of the points are not stored if the

ratio of heading between two consecutive points is less than the threshold.

Heading based compression ratio =

In Fig. 3.10 the heading based compression ratio between points 6 and 7 is 44.5 %. The

semantics at point 7 will not be stored in SELF structure when the heading based

compression ratio applied as 50.0 %.

The self structure after applying both the speed based and heading based compression

thresholds as (10.0, 10.0) for trajectory data given in Table 3.1 is:

FIGURE 3.10: SED PROJECTION OF EACH POINT ON THE SIMPLIFIED TRAJECTORY AND THE SEMANTICS

TABLE 3.4: SPEED AND HEADING BASED COMPRESSION RATIO BETWEEN POINTS (DATA SOURCE: TABLE 3.1)

65

[SPOINT (482980 4101964), EPOINT (483220 4101964), 322.843,

{(0.000,0,311,0.00),

(30.594,233.261,200,42.426), (61.188,233.261,111,52.426),

(91.782,233.261,200,123.137),

(122.376,233.261,311,133.137), (152.971,233.261,200,203.848),

(166.523,233.261,111,213.848), (193.628,77.7538,200,284.559),

(220.734,77.7538,311,294.559), (247.839,77.7538,0,322.843)}]

3.3.2.4 Interpolation of the semantics on the original trajectory at any point on the

generalized version

 The SELF structure built using algorithm 3.6 can be used to interpolate the semantics on

the original trajectory at any point on the generalized version of it. In Fig. 3.11, the

semantics at ‘P’ can be calculated by applying a linear interpolation on the segment

defined by the projection of vertices ‘8’ and ‘9’ on the simplified trajectory. The

algorithm 3.7 is used for computing the semantics at P.

TABLE 3.4: SPEED AND HEADING BASED COMPRESSION RATIO BETWEEN POINTS (DATA SOURCE : TABLE 3.1)

FIGURE 3.11: P’ IS THE SED PROJECTION OF P

66

3.4 Implementation

SED based simplification algorithm and SELF data structure have been

implemented in PostgreSQL 9.4 using PL/pgSQL. The spatial extension PostGIS 2.3 has

been installed in PostgreSQL 9.4 (PostgreSQL, PostGIS). The implemented algorithm

takes a set of raw mobility points and simplification threshold as input. The simplified

version is then associated with the SELF data structure. The user can select any point on

the simplified trajectory, to retrieve the original semantics. The experiments were

performed on a sea vessel trajectory dataset obtained in Aegean Sea, Greece.

3.4.1 PostGIS Extension

Table 3.5 summarizes the built-in functions available with PostGIS extension that

were utilized for implementing SED based simplification algorithm and developing the

SELF data structure. The table describes each function’s input and output parameters.

Algorithm 3.7: Interpolation of the semantics on the original trajectory at any point on the

generalized version

Input:

1. Geometry of the generalized version

2. SELF structure of the generalized version

3. Point on the generalized version at which the semantics have to be interpolated (P’)

Output:

1. Interpolated semantics at P (P is the point projected at P’)

Steps:

1. Find the distance between starting point and point P’ (dp’)

2. FOR EACH value IN THE SELF array

3. IF simplified accumulated length > dp’

a. Retrieve the semantics at previous position and the next position

b. Use linear interpolation within the retrieved semantics to interpolate the

semantics at point P

4. END

5. RETURN the interpolated semantics

67

TABLE 3.5: BUILT-IN POSTGIS FUNCTIONS USED IN DEVELOPING ALGORITHMS (SOURCE:

HTTP://WWW.POSTGIS.NET/DOCS/)

FUNCTION INPUT OUTPUT
ST_PointN — Return the Nth point in the Line

geometry.

GEOMETRY of a

line string,

integer n

Nth point in a single line

string as GEOMETRY

ST_Length — Returns the 2D length of the

geometry in meters

GEOMETRY 2D Cartesian length of

the geometry as FLOAT

ST_StartPoint — Returns the first point of a

LINESTRING geometry as a POINT.

Line GEOMETRY Line

GEOMETRY

ST_EndPoint — Returns the last point of a

LINESTRING geometry as a POINT.

Line GEOMETRY Point

GEOMETRY

ST_X — Return the X coordinate of the point Point GEOMETRY FLOAT

ST_Y — Return the Y coordinate of the point Point GEOMETRY FLOAT

ST_Distance — For geometry type Returns the 2D

Cartesian distance between two geometries in

projected units (based on spatial ref).

GEOMETRY g1,

GEOMETRY g2

FLOAT

ST_AsText — Return the Well-Known Text (WKT)

representation of the geometry/geography without

SRID metadata.

GEOMETRY TEXT

ST_Simplify — Returns a "simplified" version of

the given geometry using the Douglas-Peucker

algorithm.

GEOMETRY,

THRESHOLD

SIMPLIFIED

GEOMETRY

ST_MakeLine — Creates a Line string from array

of points

GEOMETRY array GEOMETRY

3.4.2 SELF functions

Using PL/pgSQL, the procedural language for PostgreSQL, both the SED based

simplification and SELF structure algorithms were added as new (user defined) functions.

Eleven new functions were implemented. The example statement for calling each user

defined function is shown in Table 6 along with the output. The functions are called on

the synthetic trajectory dataset ‘TR2’ (Fig. 3.4).

TABLE 3.6: USER-DEFINED FUNCTIONS AND EXAMPLE STATEMENTS FOR CALLING THE FUNCTIONS

FUNCTION INPUT OUTPUT

SELF_AVG_VLCY— Returns the average

velocity of the trip.

Raw mobility data points

(Spatial relation)

Numeric value

select SELF_AVG_VLCY (‘TR2’ :: regclass);

Output: 20.0

http://www.postgis.net/docs/

68

SELF_ORIG_GEOM – Function for

constructing the trajectory from raw mobility

data points.

Raw mobility data points

(Spatial relation)

Line geometry

select ST_ASTEXT (SELF_ORIG_GEOM (‘TR2’ :: regclass));

Output: "LINESTRING (482980 4101964,483010 4101994,483020 4101994,483070 4101944,483080

4101944,483130 4101994,483140 4101994,483190 4101944,483200 4101944,483220 4101964)"

FIND_POINT – Function for finding the point

on the line based on the distance from starting

point

Starting point, Ending

Point, Distance to the

point to be found

Point geometry

select ST_ASTEXT (FIND_POINT (ST_MAKEPOINT (0,0), ST_MAKEPOINT (10,0), 5.0));

Output: POINT (5,0)

SELF_SED_SP — Function for calculating

distance to each SED point from starting points

on straight line

Raw mobility data points

(Spatial relation)

Numeric array

select SELF_SED_SP (‘TR2’ :: regclass);

Output: { 0 , 20.0 , 40.0 , 60.0 , 80.0 , 100.0 , 120.0 , 160.0 , 200.0 , 240.0 }

COUNT_POINTS— Function to count the

number of points in the line geometry

Line geometry Count of points as a

numeric value

select COUNT_POINTS (SELF_ORIG_GEOM (‘TR2’ :: regclass)));

Output: 10

SORT_ARRAY– Function to sort numeric

array in descending order

Numeric array Numeric array sorted in

descending order

select SORT_ARRAY (ARRAY [1 , 2 , 3 , 2 , 5]);

Output: { 5 , 3 , 2 , 2 , 1 }

CHK_PT – Function to check if the point is

already present in the geometry array

Point geometry array,

Point geometry

Returns the number

based on the following

criteria:

0 – Not present

1 - Present

select CHK_PT (ARRAY [POINT (1,1) , POINT (1,2)] , ST_MAKEPOINT(1,1));

Output: 1

(The point (1,1) is present in the array)

SED_SIMPFY – Function to build the

simplified geometry of trajectory based on the

SED distance

Raw mobility data points

(Spatial relation),

Simplification threshold

Simplified geometry as

an array of points

select ST_ASTEXT (UNNEST (SED_SIMPFY (‘TR2’ :: regclass , 50.0)));

 Output: "POINT (482980 4101964)"

"POINT (483130 4101994)"

"POINT (483220 4101964)"

SELF_DYN_STR_ML_SP – To build the

SELF structure and to return the simplified

geometry with SELF structure stored in the

attribute table

Raw mobility data points

(Spatial relation),

Simplification threshold,

Speed based compression

threshold, heading based

compression threshold

SELF structure for

dynamic lines

69

select UNNEST (SELF_ARRAY (SELF_DYN_STR_ML_SP('TR2' :: regclass,50.0,.0.0,0.0)));

[POINT (482980 4101964), POINT (483220 4101964), 322.843 , {(0.000,0,511,0.00),

(30.594,233.261,400,42.426), (61.188,233.261,211,52.426), (91.782,233.261,400,123.137),

(122.376,233.261,511,133.137), (152.971,233.261,400,203.848), (166.523,233.261,211,213.848),

(193.628,77.7538,400,284.559), (220.734,77.7538,511,294.559), (247.839,77.7538,0,322.843)}]

SELF_DYN_ASTEXT – To display the SELF

structure in user readable format

SELF structure SELF structure in Text

format

select SELF_DYN_ASTEXT (SELF_DYN_STR_ML_SP ('TR2' :: regclass , 50.0));

SPOINT (482980 4101964) -- EPOINT (483220 4101964) – AL : 322.843 - AD: {(0.000,0,511,0.00),

(30.594,233.261,400,42.426), (61.188,233.261,211,52.426), (91.782,233.261,400,123.137),

(122.376,233.261,511,133.137), (152.971,233.261,400,203.848), (166.523,233.261,211,213.848),

(193.628,77.7538,400,284.559), (220.734,77.7538,511,294.559), (247.839,77.7538,0,322.843)}]

SELF_ITP_DIST_ML_SP - To interpolate the

semantics using SELF structures

Simplified line geometry,

SELF structure, point ,

pointer

Array of interpolated

semantic value

select SELF_ITP_DIST_ML_SP(ST_MAKELINE(SED_SIMPFY(‘TR2’ :: regclass, 50.0
)),SELF_DYN_STR_ML_SP(‘TR2’::regclass, 50.0),ST_MAKEPOINT(483100,4101988),2)

Output : 233.261

3.4.3 Experimental Data

To demonstrate the effectiveness of the SED based simplification and SELF

structure in interpolating the semantics, experimentation is done on different trajectory

datasets with different values for speed based and heading based simplification. The

experiments ran over the vessel trajectories for August 2013 in the Aegean Sea as

collected by the MarineTraffic Automatic Identification System (AIS) [MarineTraffic

2017]. The ship speed is measured in knots multiplied by 10 and heading represents the

azimuth of the ship bow in degrees. In order for the set of features to be representative for

a wide range of spatio-temporal characteristics, it was decided to choose trajectories with

different number of mobility data points. TR1 in Table 3.7 refers to the trajectory in Fig.

3.4

70

TABLE 3.7: LENGTH AND THE NUMBER OF POINTS AVAILABLE IN THE SELECTED TRAJECTORY DATASET

Fig. 3.12 to 3.15 show the original trajectories listed in Table 3.7.

FIGURE 3.12: TRAJECTORY – TR2 FIGURE 3.13: TRAJECTORY – TR4

71

FIGURE 3.15: TRAJECTORY – TR5

FIGURE 3.14: TRAJECTORY – TR3

FIGURE 3.15: TRAJECTORY – TR5

72

3.4.4 Experiments

3.4.4.1 SED based Simplification:

The SED based simplified version and the original trajectory is shown in Fig. 3.16

with a simplification threshold of 90.0 meters.

FIGURE 3.16: ORIGINAL AND SIMPLIFIED VERSION (90 M THRESHOLD) OF A SAMPLE TRAJECTORY

(TABLE. 3.8)

TABLE 3.8: ATTRIBUTE TABLE OF THE TRAJECTORY SHOWN IN FIG. 3.16

In Fig. 3.16, the locations ‘3’ and ’4’ represent the same point as the vessel has

stopped at location ‘3’ and stayed there for a minute before leaving. Even though the

locations ‘3’ and ‘4’ are same, their SED projections are different. The cause is due to the

points ‘3’ and ‘4’ have different timestamps.

73

Comparing the number of points retained by SED-DP simplification with DP

simplification indicates that SED-DP simplification always retains more number of points

than DP simplification (Fig. 3.18).

TABLE 3.9: LENGTH AND THE NUMBER OF POINTS AVAILABLE IN THE SELECTED DATA

FIGURE 3.17: COMPARISON OF ORIGINAL AND SIMPLIFIED TRAJECTORY AT DIFFERENT LEVELS OF

SIMPLIFICATION

74

3.4.4.2 SELF STRUCTURE

The SELF structure has been built on the original trajectory shown in Fig. 3.16 with an

SED based simplification threshold of 90.0 meters and both the speed and heading based

compression levels set as 0. The original semantics at each point on the simplified

trajectory are listed in Table 3.10

FIGURE 3.18: COMPARISON OF NUMBER OF POINTS RETAINED AT DIFFERENT LEVELS OF

SIMPLIFICATION BETWEEN DP AND SED-DP ALGORITHM

75

TABLE 3.10: SEMANTICS AT EACH POINTS OF ORIGINAL TRAJECTORY AND ITS SIMPLIFIED VERSION SHOWN IN

FIG. 3.16

TABLE 3.11: INTERPOLATED SEMANTICS AT EACH POINT CLICKED ON THE SIMPLIFIED TRAJECTORY

In Fig. 3.16 the projected points 3′ and 4′ correspond to the same location (points 3 and 4)

on the original trajectory as the original accumulated distance on original trajectory at the

points 3 and 4 is 52.43 meters.

The original trajectory shown in Fig. 3.19 contains 500 points. Ten points have been

chosen randomly to check the effectiveness of SELF data structure in interpolating the

semantics. Table 3.12 lists the interpolated semantics at all 10 sample points at different

values of speed based compression threshold.

76

FIGURE 3.19: ORIGINAL TRAJECTORY WITH 500 RAW DATA POINTS

TABLE 3.12: INTERPOLATED SEMANTICS AT DIFFERENT LEVELS OF SPEED BASED COMPRESSION THRESHOLD

There are three possible outcomes when running algorithm 7 to interpolate the

semantics on the original trajectory at any points of the simplified version from SELF

structure. The type of error in interpolation is classified depending on the outcome given

in Table 3.13

77

TABLE 3.13: POSSIBLE OUTCOME AND ERROR CLASSIFICATION

Similarly, the semantics at all 500 points is interpolated by algorithm 3.7. Fig

3.20-3.25 compares the maximum (positive error), minimum (Negative error), and

standard deviation in the interpolated semantics at different levels of speed and heading

based compression.

FIGURE 3.20: ERROR IN INTERPOLATED SPEED VS

SPEED BASED COMPRESSION

FIGURE 3.21: ERROR IN INTERPOLATED SPEED VS

HEADING BASED COMPRESSION

FIGURE 3.23: ERROR IN INTERPOLATED HEADING VS

 HEADING BASED COMPRESSION

FIGURE 3.22: ERROR IN INTERPOLATED HEADING VS

SPEED BASED COMPRESSION

78

Speed based compression and heading based compression produce almost the same

amount of error in the interpolated semantics (Fig. 3.20-3.25). The different spatio-

temporal characteristics of the datasets play major role in semantic interpolation error.

The semantic interpolation algorithm (Algorithm 3.7) has run with different levels of

compression on these trajectory datasets (Table.3.14-3.16).

TABLE 3.14: AVERAGE ERROR IN SPEED INTERPOLATION

FIGURE 3.25: ERROR IN INTERPOLATED DISTANCE VS

HEADING BASED COMPRESSION

FIGURE 3.24: ERROR IN INTERPOLATED DISTANCE VS

SPEED BASED COMPRESSION

FIGURE 3.26: ERROR IN INTERPOLATED SPEED VS

SPEED BASED COMPRESSION

79

TABLE 3.15: AVERAGE ERROR IN HEADING INTERPOLATION

TABLE 3.16: AVERAGE ERROR IN DISTANCE INTERPOLATION

FIGURE 3.27: ERROR IN INTERPOLATED HEADING VS

SPEED BASED COMPRESSION

FIGURE 3.28: ERROR IN INTERPOLATED DISTANCE VS

SPEED BASED COMPRESSION

80

It can be seen from Fig. 3.26-3.28 that there is a positive correlation between average

error and the level of simplification. The percentage error in interpolation increases when

the values for compression is also increased. Noticeably, average error in distance

interpolation for “TR4” suddenly increases after 20% of speed based compression. The

cause is due to an increase in compression level discards more points from SELF

structure (Fig. 3.29, 3.30). But this number would change due to the different

spatiotemporal characteristics of the datasets. So, the level of compression can be decided

based on the application and the required accuracy in semantics interpolation.

 3.5 Conclusions

This paper summarizes the implementation and testing of a method for semantically

enriched simplification of trajectories. The method combines the Synchronous Euclidean

Distance (SED) based simplification algorithm and SELF (Semantically Enriched Line

simpliFication) data structure to preserve the semantics associated with the actual

trajectories. The method has been implemented in PostgreSQL 9.4 with PostGIS extension

FIGURE 3.30 : % OF COMPRESSION VS

SPEED BASED COMPRESSION VALUES

FIGURE 3.29 : % OF COMPRESSION VS

HEADING BASED COMPRESSION

VALUES

81

using PL/pgSQL to support dynamic lines and tested with both synthetic and real-world

features.

The method applies two kinds of semantic based reduction: speed based and

heading based. Both the compression techniques produce the same amount error in the

interpolated semantics. However, the results of the experiments indicate that the different

spatio-temporal characteristics of the datasets play a major role in the semantic

interpolation error.

The comparison results between SED-DP simplification and DP simplification

indicate that SED-DP simplification always retains more number of points which are more

significant in forming the trajectory than other points as they better convey the trajectory

characteristics for a particular context.

Future work includes the development of a visualization framework to provide an

enhanced user experience. This will help in facilitating the adoption of the SELF structure

in various application domains with need for semantically enhanced multiscale

representation of linear features.

Integrating these libraries to a Graph database (such as Neo4j) so that the extended

functionalities of Graph database can be utilized in trajectory data management is another

future goal.

Acknowledgements

This research has received funding from the Natural Sciences and Engineering Research

Council of Canada (NSERC), Discovery Grants Program.

82

REFERENCES

Abam, M.A., et al., 2010. Streaming algorithms for line simplification. Discrete &

Computational Geometry, 43 (3), 497–515. doi:10.1007/s00454-008-9132-4

Alvares, L.O., et al., 2007. A model for enriching trajectories with semantic

geographical information. In: The Proceedings of the 15th annual ACM international

symposium on advances in geographic information systems, 7–9 November, Seattle, WA.

Article No. 22.

Cromley, R.G., 1991. Hierarchical methods of line simplification. Cartography

and Geographic Information Science, 18 (2), 125–131.

doi:10.1559/152304091783805563

Douglas, D.H. and Peucker, T.K., 1973. Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature. The Canadian

Cartographer, 10 (2), 112–122. doi:10.3138/FM57-6770-U75U-7727

 MarineTraffic, 2017. Live-ships map: AIS [online]. Available from:

http://www.marinetraffic.com/ais/ [Last visited, June 27, 2017]

K. Buchin, M. Buchin, and J. Gudmundsson. Detecting single file movement. In

GIS '08: Proceedings of the 16thACM SIGSPATIAL international conference on

Advances in geographic information systems, pages 1-10, New York, NY, USA, 2008.

ACM.

Keates, J.S., 1989. Cartographic design and production. 2nd ed. Essex: Longman.

http://link.springer.com/article/10.1007%2Fs00454-008-9132-4
http://www.ingentaconnect.com/content/tandf/tcag20
http://www.utpjournals.press/doi/10.3138/FM57-6770-U75U-7727

83

Meratnia, N. and de By, R.A., 2004. Spatiotemporal compression techniques for

moving point objects. In: Proceedings of the international conference on extending

database technology (EDBT). Berlin: Springer, 765–782. LNCS 2992.

Parent, C. et al., 2013. Semantic Trajectories Modeling and Analysis. ACM

Computing Surveys, Vol. 45, No.4, Article 42. doi:

http://dx.doi.org/10.1145/2501654.2501656

PostGIS Reference. Chapter 8. Retrieved from

http://postgis.net/docs/reference.html#Management_Functions, Published on: 26th

September 2016, Accessed on: 17th June 2017

PostgreSQL 9.4.11 Documentation Chapter 40. PL/pgSQL - SQL Procedural

Language. Retrieved from https://www.postgresql.org/docs/9.4/static/plpgsql-

statements.html, Published on: 18th December 2014, Accessed on: 18th June 2017

QiuLei Guo and Hassan A. Karimi, 2016. A Topology-Inferred Graph-Based

Heuristic Algorithm for Map Simplification. In: Transactions in GIS,

doi:10.1111/tgis.12188

Richter, K.F., Schmid, F., and Laube, P., 2012. Semantic trajectory compression:

representing urban movement in a nutshell. Journal of Spatial Information Science, (4),

3–30.

Robinson, Joel L. Morrison, Phillip C. Muehrcke, A. Jon Kimerling, Stephen C.

Guptill, Elements of Cartography, 6th Edition ISBN: 978-0-471-55579-7

84

Shahriari, N., and V. Tao, 2002. Minimizing Positional Errors in Line

Simplification Us-ing Adaptive Tolerance Values. In: Symposium on Geospatial Theory,

Processing and Applica-tion, 4(3), 213-223.

Spaccapietra, S., et al., 2008. A conceptual view on trajectories. Data &

Knowledge Engineering, 65 (1), 126–146. Retrieved from :

http://www.sciencedirect.com/science/article/pii/S0169023X07002078

Stefanakis, E., 2012. Trajectory generalization under space constraints. In: The

proceedings of the 7th international conference on geographic information science

(GIScience 2012), 18–21 September, Columbus, OH.

Stefanakis, E., 2015. SELF: Semantically enriched Line simpliFication. In:

International Journal of Geographical Information Science, Vol. 29, Iss. 10, 2015, Pages

1826-1844 doi: 10.1080/13658816.2015.1053092

Tienaah, T., Stefanakis, E., and Coleman, D., 2015.S Contextual Douglas-Peucker

simplification. Geomatica Journal, 69 (3), 327-338, https://doi.org/10.5623/cig2015-306

Weibel, R., 1996. A typology of constraints to line simplification. In: Proceedings

of 7th international symposium on spatial data handling, 12–16 August, Delft. IGU, 533–

546.

Weibel, R., 1997. Generalization of spatial data: principles and selected

algorithms. In: M. Kreveld, et al., eds. Algorithmic foundations of geographic

information systems. Berlin: Springer, 99–152.

http://www.sciencedirect.com/science/article/pii/S0169023X07002078
https://doi.org/10.5623/cig2015-306

85

Wu, et alShil – Ting and Mercedes Rocio Gonzales Marquez 2003. Proceedings

of the XVI Brazilian Symposium on Computer Graphics and Image Processing

(SIBGRAPI’03) 1530-1834/03 doi :10.1109/SIBGRA.2003.1240992

Yan, Z., et al. 2011. SeMiTri: A framework for semantic annotation of

heterogeneous trajectories. In: The proceedings of the 14th international conference on

Extending Database Technology (EDBT 2011). New York: ACM, 259–270.

86

4. Modelling and Analysis of Semantically Enriched

Simplified Trajectories using Graph Databases

Abstract

 Graph databases are utilized in modelling the huge volume of spatio-temporal data

generated by moving objects that are equipped with GPS devices. This modelled spatial

and temporal information in graphs can be used in performing trajectory analysis such as

optimum path finding or identification of collision risk. At the same time, this massive data

becomes difficult to handle using graph databases as the millions of raw data points make

the graph model complex. Thus, trajectory simplification techniques are applied to reduce

the number of vertices representing a trajectory. However, elimination of intermediate

points by simplification process leads to loss of semantics associated with the trajectories.

These semantics are dependent on the application domain. For example, a trajectory of a

moving vessel can convey information about time, distance travelled, bearing, or velocity.

This research proposes a graph data model that enriches the simplified geometry of

trajectories with the semantics lost during simplification process. Original trajectories

initially modelled and stored in a PostgreSQL/PostGIS database are simplified according

to both their spatial and temporal characteristics using the Synchronous Euclidean Distance

(SED), while the Semantically Enriched Line simpliFication (SELF) data structure is built

to preserve the semantics of the vertices eliminated during the simplification process. Then,

enriched simplified trajectories are transferred to a Neo4j database and modelled in terms

of nodes and edges using graphs. Trajectories can then be processed using Cypher query

language and Neo4j spatial procedures. A visualization tool has been developed on top of

Neo4j graph database to support the semantic retrieval and visualization of trajectories.

87

4.1 Introduction

GPS devices mounted on moving objects generate streams of geo-location data

which describe the path travelled by the object during a period of time, this path is called

trajectory. The advent of satellite technologies has enabled the usage of GPS devices on

moving objects. Common application domains using trajectory data are city planning,

transportation management systems, and other location-aware applications [K. Buchin et

al. 2008]. In the era of big data, graph databases address the major challenges in

management and analysis of voluminous data. The concept of storing and representing data

in terms of nodes, edges and properties makes graph databases different from relational

databases and this is well suited for trajectory data management systems [Stefanakis 2017].

Spatial analysis capabilities have already been added to graph database systems. For

instance, Neo4j, one of the most prevalent graph database systems, provides of a spatial

plugin called Neo4j Spatial to facilitate spatial operations on geospatial data modelled

using graphs [Neo4j Spatial Plugin 2017].

Over the last decade, researchers have focused on modelling and analyzing raw

trajectory data points using graph databases. Data reduction has always been necessary due

to tremendous amount of data points contained in raw trajectories. The process of retaining

only certain points which are significant in forming a trajectory is known as trajectory

simplification and this has evolved from cartographic line simplification methods [Keates

1989]. The basic idea of trajectory simplification is to retain those vertices that better

convey the trajectory characteristics for a particular application domain. For example, the

point at which a vessel has halted for longer duration may be more important than other

vertices in vessel movement tracking. The conventional cartographic simplification

88

techniques have limited applicability to trajectory simplification as they remove high-

density vertices based only on a threshold distance.

For example, the most common simplification algorithm Douglas-Peucker (DP)

does not consider the temporal dimension (time) associated with the raw points of

trajectories. This limits DP algorithm to be utilized in trajectory simplification. The

introduction of Synchronous Euclidean Distance (SED) as a criterion in trajectory

simplification has been applied to overcome this limitation [Meratnia and de By 2004].

Furthermore, trajectory simplification results in a loss of semantics (e.g. speed, heading

and distance travelled) associated with the points that are eliminated during the

simplification process. Semantically Enriched Line simpliFication (SELF) data structure

has recently been proposed to retain the semantic attributes associated with individual

locations of original trajectory [Stefanakis 2015].

The combination of SELF data structure with SED criterion has been implemented

and tested in PostgreSQL/PostGIS using PL/pgSQL [Tamilmani and Stefanakis 2017]. It

has shown that semantics associated with the original trajectory are well retained in the

simplified versions. The advent of graph databases [Neo4j 2017] has introduced an

alternative and usually more efficient way of modelling and analyzing transportation data,

including trajectory data, than traditional databases such as relational or object relation

ones. This paper investigates the advantages of adopting a graph database to model and

analyze the semantically enriched simplified trajectories generated by the combination

SELF data structure with SED criterion [Tamilmani and Stefanakis 2017].

89

The enriched simplified trajectories are extracted from PostgreSQL/PostGIS

databases and modelled into a Neo4j graph database. The nodes in the graph database are

associated with the semantic attributes (speed, heading, time, distance travelled, latitude

and longitude) of the trajectories, while the edges of the graph contain the simplified and

original distances between the nodes representing the vertices. These attributes are utilized

in performing trajectory data analysis.

The contributions of this study are twofold. First, to propose a graph model for

transferring enriched simplified trajectories from PostgreSQL to Neo4j and further

analyzing them as graphs using Cypher query language and spatial procedures. The latter

has been done by utilizing the Neo4j-spatial plugin that provides the geospatial analysis

capabilities to Neo4j graph database [Neo4j Spatial Plugin 2017]. Second, to support the

semantic retrieval and visualization of modelled graph data in Neo4j. For this reason, a

visualization tool has been developed on top of Neo4j for semantic interpolation at different

levels of trajectory simplification.

The paper is organized as follows. Section 4.2 provides a literature review about

trajectory simplification and describes the SELF structure and it’s variants. Section 4.3

presents the steps followed to transfer an enriched simplified trajectory from PostgreSQL

to Neo4j and demonstrates how trajectories can be analyzed based on their spatial and

aspatial attributes using Cypher query language and Neo4j spatial procedures. Section 4.4

presents the visualization tool developed for interpolating the semantic values at different

levels of trajectory simplification. Section 4.5 summarizes the contribution of this paper

and discusses the potential of applying the proposed framework in various application

domains.

90

4.2 Literture Review

4.2.1 Graph databases in trajectory data analysis

Trajectories are formed by connecting a series of raw mobility data points. These

individual data points include temporal dimension apart from latitude and longitude. Over

the years, tabular structured relational databases have been utilised in accommodating

connected points forming trajectories. The relational data model and an extended query

language was proposed for supporting the modelling and querying of real world

transportation networks. The comprehensive framework was built on top of OGC-

complaint data models to support an algebraic-based network model. The proposed model

has not addressed trajectories with millions of points though [Hadi et al., 2014]. In

addition, relational databases inefficient in dealing with relationships because

connectedness leads to an increase in number of joins between the tables, which in fact

affects the performance of the database [Przemysław et al., 2016]. Graph databases help in

leveraging the complex structure and dynamic relationships in connected trajectory data.

The simple collection of nodes (vertices) and relationships (edges) facilitates the modelling

of all varieties of data, from biological structures, to the transportation data. Year by year

the focus on utilizing graph databases in managing, processing and analyzing spatio-

temporal data has increased as the graph’s internal structure is in the form of a network

[Gurfraind et al. 2016]. Similar to SQL in relational databases, graph databases are also

equipped with multifaceted and robust query language for retrieving information. On the

flipside, visualizing all the nodes and edges would pose additional challenges as the graph

layout is limited to display only certain number of nodes. C. Partl et al. [2016] presented

a technique called “Pathfinder” for visualizing and analyzing large graphs. The authors

91

have followed a query-based approach for allowing the users to refine the data based on

specific starting and ending nodes. However, the criteria for choosing these starting and

ending nodes are not properly defined.

This study is focused on analyzing raw data points representing trajectories using

graph database. As millions of raw data points make the graph model more complex, it is

often required to reduce the tremendous amount of data points representing each trajectory.

This process is also known as trajectory simplification.

4.2.2 Trajectory Simplification

[Refer to Section 3.2.1]

4.2.3 Semantically Enriched Line Simplification (SELF)

[Refer to Section 3.2.3]

4.3 Graph data model and analysis

Trajectories are formed by connecting a series of raw mobility data points. Over the

years graph databases have been used in analyzing massive amounts of data generated by

GPS devices mounted on mobility vehicles. For example, a trip duration of 60 minutes,

with the location being recorded every 1 second, results into a total of 3600 points. In a day

trip, the dataset would contain 86,400 points. The number of nodes in the graph model is

directly proportional to the number of points in the trajectory. As the number of nodes

increase the graph model becomes more complex. Hence, it is necessary to reduce the

volume of the dataset by applying trajectory simplification techniques.

92

This study introduces a graph data model that integrates the SELF data structure in

the description of the simplified trajectory (Fig. 4.1). Each simplified trajectory has an

origin and a destination. The starting and ending points of the original trajectory are

converted into origin and destination nodes. The “INTERMEDIATE” nodes are attributed

with original distance, speed, heading, time, latitude and longitude. In fact, these are the

nodes which have been retained during the simplification process. The “SIDE” nodes have

the following properties: original distance, speed, heading and time. These nodes represent

the vertices which were eliminated during the simplification process. So, these nodes do

not carry the latitude and longitude as properties. The edges connecting two intermediate

nodes are weighted with both the original and simplified distance between the

corresponding points on the trajectory. The relationship between two nodes are labelled as

“NEXT”.

FIGURE 4.1: PROPOSED GRAPH MODEL FOR STORING A SIMPLIFIED TRAJECTORY ALONG WITH

SEMANTICS USING SELF STRUCTURE

93

This study examines the modelling and analysis of enriched trajectories in a graph

database. The approach involves three phases which are implemented in three system

components (Fig. 4.2).

Component 1: Transferring the simplified geometry of a trajectory and SELF

structure from PostgreSQL/PostGIS to Neo4j graph database using JDBC

Component 2: Performing spatial and attribute analysis on the modelled data using

Cypher query language and Neo4j spatial procedures.

Component 3: Visualizing the simplified trajectory in web browser for semantic

interpolation at different levels of trajectory simplification.

FIGURE 4.2: OVERALL SYSTEM ARCHITECTURE WITH THREE COMPONENTS

94

4.3.1 PostgreSQL/PostGIS to Neo4j bridging

The purpose of first component in the overall system is to combine the simplified

geometry of a trajectory with SELF structure and to convert the simplified geometry into

nodes and edges with the semantics stored as properties. The simplified geometry data from

PostgreSQL/PostGIS is mapped into Neo4j graph database using Java Database

Connectivity (JDBC).

This component is implemented in three steps:

1. Simplifying a trajectory based on Synchronous Euclidean Distance (SED)

2. Generating nodes and edges from simplified geometry

3. Associating the nodes and edges with semantics from SELF structure

4.3.1.1 Simplifying the trajectory based on Synchronous Euclidean Distance

SELF structure for dynamic lines stores the semantics associated with individual

points on the original trajectory along the simplified version. As shown in the Fig. 4.3, each

point on the original trajectory is projected based on the SED to the simplified version. The

sample trajectory shown in Fig. 4.3 has 10 points in the original version, while the

simplified version retains 7 points.

FIGURE 4.3: EXAMPLE ORIGINAL AND SIMPLIFIED TRAJECTORIES

95

For each vertex on the original trajectory, the corresponding SED point is tagged

with the semantics given in Table. 4.1 [Tamilmani and Stefanakis 2017]. The entire SELF

structure is represented as follows:

TABLE 4.1: ATTRIBUTE TABLE FOR THE TRAJECTORY POINTS SHOWN IN FIGURE.4.3

[SPOINT (482980 4101964), EPOINT (483220 4101964), 322.843,

 {(0.000,0,311,0.00, 2017-05-23 01:00:00.000),

(30.594,233.261,200,42.426, 2017-05-23 01:00:01.000),

(61.188,233.261,111,52.426, 2017-05-23 01:00:02.000),

(91.782,233.261,200,123.137, 2017-05-23 01:00:03.000),

(122.376,233.261,311,133.137, 2017-05-23 01:00:04.000),

(152.971,233.261,200,203.848, 2017-05-23 01:00:05.000),

(166.523,233.261,111,213.848, 2017-05-23 01:00:06.000),

(193.628,77.7538,200,284.559, 2017-05-23 01:00:08.000),

(220.734,77.7538,311,294.559, 2017-05-23 01:00:10.000),

 (247.839,77.7538,0,322.843, 2017-05-23 01:00:12.000)}]

96

4.3.1.2 Generating nodes and edges from simplified geometry

Once the trajectory is simplified each point on the simplified geometry is compared

with the points on the original trajectory to decide the node type. The points which were

eliminated during the simplification are labelled as “SIDE” nodes and the retained points

are labelled as “INTERMEDIATE” nodes, while the starting and ending points of the

trajectory are labelled as “ORIGIN” and “DESTINATION” nodes. The “SIDE” nodes do

not contain latitude and longitude, whereas all other nodes contain the spatial coordinates

as these nodes represent the points which have been retained by the simplification

algorithm.

In our example, the points 2, 7 and 9 were lost during the simplification process

(Fig. 4.4). So, these nodes are labelled as “SIDE”. The remaining nodes representing points

3, 4, 5, 6 and 8 are labelled as “INTERMEDIATE”. The first and last nodes are labelled as

“ORIGIN” and “DESTINATION”.

FIGURE 4.4: LABELLING THE NODES BASED ON THE CORRESPONDING RETAINED OR ELIMINATED POINTS

97

4.3.1.3 Associating the nodes and edges with semantics from SELF structure

Once the nodes have been labelled, the SELF structure has to be parsed along with

the simplified geometry to add the associated semantics as properties to the nodes.

Algorithm 4.1 associates the nodes and edges with semantics from SELF structure. The

developed algorithm takes the simplified geometry and SELF structure as input to add the

properties to the nodes.

The accumulated length at every point on the simplified trajectory is calculated and

stored in an array. Each simplified distance in SELF structure is searched through the

accumulated length array. If a match is found then that node is labelled as

“INTERMEDIATE” and attributed with the corresponding latitude, longitude, speed,

heading, time and distance travelled as extracted from SELF structure. If the accumulated

length does not match with simplified distance in SELF structure then that node is labelled

as “SIDE” and attributed with the corresponding speed, heading, time and distance

travelled from SELF structure.

Two separate CSV (Comma-Separated Values) files have been generated for

uploading the trajectory data into Neo4j. One of them (all_nodes.csv) is for loading the

nodes and the other (all_edges.csv) is for connecting these nodes with edges. Any two

consecutive intermediate nodes are connected by an edge which is weighted with the

original and simplified distance between those nodes (Fig. 4.5).

98

Algorithm 4.1: Associating the nodes and edges with semantics from SELF structure

Input:

1. Points in simplified trajectory as an array

2. SELF structure built on the simplified trajectory

Output:

1. CSV file containing nodes and edges

Steps:

1. Generate a CSV file for storing the nodes and edges

2. Initialize Node_ID to 1

3. FOR EACH point (P) in the geometry of simplified trajectory

4. Calculate the distance (d) to it’s next point

5. Initialize CURRENT_COUNT to 1

6. FOR EACH simplified distance(ds) IN the SELF structure

i. Find the match to the calculated distance (d)

ii. IF d=ds THEN

1. Name the node as “INTERMEDIATE”

2. Assign the current Node_ID

3. Add lat, lon, speed, heading, time and distance travelled

to the node

iii. ELSE

1. Name the node as “SIDE”

2. Format the Node_ID in the form of

“(Node_ID)_(Node_ID+1)_CURRENT_COUNT”

3. Increase CURRENT_COUNT by 1

4. Add speed, heading, time and distance travelled to the

node

7. END

8. Add the node to output CSV file

9. Increase Node_ID by 1

10. END

11. FOR EACH node(n) IN the CSV file

i. IF label(n) = label(n+1) AND label(n) = “INTERMEDIATE”

1. Connect the nodes n and n+1

2. Add the original distance weight as

[distance_travelled(n+1)-distance_travelled(n)]

3. Add the simplified distance weight as straight-line

distance between the nodes n and n+1

ii. ELSE

1. Connect the nodes n and n+1 without weights

12. END

13. Add the edge to output CSV file

14. RETURN CSV file containing nodes and edges

99

The generated nodes are then uploaded to Neo4j graph using the following cypher

query. Nodes are connected by edges after uploading edges CSV file to Neo4j graph

using the following cypher query:

FIGURE 4.5: NODES AND EDGES AFTER COMBINING SELF STRUCTURE WITH SIMPLIFIED GEOMETRY

LOAD CSV WITH HEADERS FROM

'file:///all_nodes.csv' AS csv

CREATE (t: trgraph {trid:csv.tr_id, ptid:csv.pt_id, lat:csv.lat, lon:csv.lon,

simpDist:csv.simpDst, speed:csv.speed, heading:csv.heading,

origDist:csv.origDist, time:csv.time, nodeType:csv.nodeType});

LOAD CSV WITH HEADERS FROM

'file:///all_edges.csv' as csv

MATCH (t:trgraph { ptid : csv.source}), (t1 : trgraph {ptid : csv.target})

WHERE t.ptid <> t1.ptid AND t.trid=t1.trid

create (t)-[:NEXT{trid:csv.tr_id,

caption:csv.caption, source:csv.source,target:csv.target, edgeType:csv.edgeType,

between:csv.between,noofpoints:csv.noofpoints,simpDistWgt:csv.simpDistWeight,

origDistWeight:csv.origDistWeight}]->(t1)

100

The generated graph represents the enriched simplified trajectories using nodes and

edges. Fig. 4.6 shown a sample trajectory graph in Neo4j.

INTERMEDIATE nodes are labelled with the order of the corresponding point in

the simplified geometry. The SIDE nodes are identified by an ID which follows the

namingconvention:(INTERMEDIATE_NODE_ID)_(NEXT_INTERMEDIATE_NODE_

ID)_(COUNTFor instance, the SIDE node with ID “5_6_1” denotes that is the first node

lost during simplification between the intermediate nodes 5 and 6.

4.3.2 Spatial analysis using cypher

The uploaded trajectory data into Neo4j can be analyzed using cypher query

language and Neo4j spatial procedures. Here is a list of examples queries that Neo4j can

support:

1. Finding the shortest and longest trajectory based on:

• Number of nodes

• The original distance between origin and destination

• The time difference between origin and destination

2. Identifying the overall collision points between trajectories:

• Identifying the collision points at particular time interval

FIGURE 4.6: GENERATED GRAPH DATA SHOWING THE NODES AND EDGES

101

The SED based simplification was carried out over a dataset of vessel trajectories

for August 2013 in the Aegean Sea as collected by the MarineTraffic Automatic

Identification System (AIS) [MarineTraffic 2017] and the number of points retained after

simplifying (with a threshold = 10km) is shown in Table.4.2. Individual trajectories are

identified by “MMSI” which is unique for the moving vessel. From Fig. 4.7, it is evident

that the simplification step has reduced the number of points in the original trajectories.

Each simplified trajectory was associated with the SELF structure, modelled into the

graph database, and used for further analysis. Trajectories with different number of

mobility data points have been chosen for analysis in order for the set of features to be

representative for a wide range of spatio-temporal characteristics.

TABLE 4.2: NUMBER OF POINTS IN THE ORIGINAL AND SIMPLIFIED TRAJECTORY

102

4.3.2.1 Finding shortest and longest trajectory

The path in the graph is defined as the sequence of nodes which are connected by

weighted or non-weighted edges. In this model edges are weighted with both the original

and simplified distance between consecutive simplified points. Three criteria have been

considered in finding the longest and shortest trajectory. These are described next.

4.3.2.1.1 Shortest/longest trajectory based on the number of nodes connected

between origin and destination

The sequence of nodes which are connected between the origin and destination is

counted to determine the length of the trajectory. This connectivity measurement is

carried out on all the individual trajectories in the modelled dat. Then the trajectory with

the highest number of intermediate nodes in the database is chosen as the longest and

vice versa. The following cypher query counts the number of nodes in each trajectory and

identifies three shortest trajectories based on the count in ascending order. The results are

shown in Table 4.3.

FOREACH (simplified_trajectory IN graph)

MATCH (origin: simplified_trajectory)- [c: NEXT]->(destination: simplified_trajectory)

WHERE origin.id = destination.id

RETURN origin.name, COUNT(c)

ORDER BY COUNT(c) ASC LIMIT BY 3;

FIGURE 4.7: COMPARING NUMBER OF POINTS IN THE ORIGINAL AND SIMPLIFIED TRAJECTORY

103

All queries have been executed on the data uploaded in section 4.3.1. The cypher query

below counts the number of nodes in each trajectory and identifies the three longest

trajectories by ordering the count in descending order. The results are shown in Table 4.4.

FOREACH (simplified_trajectory IN graph)

MATCH (origin: simplified_trajectory)-[c: NEXT]->(destination: simplified_trajectory)

WHERE origin.id = destination.id

RETURN origin.name, COUNT(c)

ORDER BY COUNT(c) DESC LIMIT BY 3;

4.3.2.1.2 Shortest/longest trajectory based on original distance between origin and

destination

The accumulated distance between the sequence of nodes which are connected between

the origin and destination determines the length of the trajectory. This geometry

measurement is done on all the individual trajectories in the modelled data. Then, the

trajectory with the longest distance is chosen as the longest and vice versa.

TABLE 4. 3: RESULTS OF LONGEST TRAJECTORIES BASED ON THE NUMBER OF NODES

TABLE 4.4: RESULTS OF LONGEST TRAJECTORIES BASED ON NUMBER OF NODES

104

The below query sums up the original distance weight in all the edges for each trajectory

to determine the original length of the trajectory. Then, it finds three shortest trajectories

by ordering the calculated distance in ascending order. The results are shown in Table 4.5

match with the shortest trajectories identified using QGIS (Fig. 4.8).

FOREACH (simplified_trajectory IN graph)

MATCH (origin: simplified_trajectory)-[c: NEXT]->(destination: simplified_trajectory)

WHERE origin.id = destination.id AND origin.type = ‘intermediate’

RETURN origin.name, sum(toFloat(c.origDistWeight))

ORDER BY sum(toFloat(c.origDistWeight)) ASC

LIMIT 3;

TABLE 4.5: RESULTS OF SHORTEST TRAJECTORIES BASED ON ORIGINAL LENGTH

FIGURE 4.8: SHORTEST TRAJECTORIES IDENTIFIED IN QGIS BASED ON LENGTH

105

The below query extracts three longest trajectories by ordering the calculated distance in

descending order. The results shown in Table 4.5 match with the longest trajectories

identified using QGIS (Fig. 4.9).

FOREACH (simplified_trajectory IN graph)

MATCH (origin: simplified_trajectory)-[c: NEXT]->(destination: simplified_trajectory)

WHERE origin.id = destination.id AND origin.type = ‘intermediate’

RETURN origin.name, sum(toFloat(c.origDistWeight))

ORDER BY sum(toFloat(c.origDistWeight)) ASC

LIMIT 3;

TABLE 4.6: RESULTS OF LONGEST TRAJECTORIES BASED ON THE LENGTH

FIGURE 4.9: LONGEST TRAJECTORIES IDENTIFIED IN QGIS BASED ON LENGTH

106

4.3.2.1.3 Shortest/longest trajectories based on time difference between origin and

destination:

The time difference between the sequence of nodes which are connected between the

origin and destination determines the total time duration of the trip. This temporal

measurement is done on all the individual trajectories in the modelled data. Then, the

trajectory with the higher time difference is chosen as the longest and vice versa.

The following query calculates the time difference between origin and destination for

each trajectory to determine the total travel time of a trajectory. The time difference is

then sorted in ascending order to find the three shortest trajectories. The results are shown

in Table 4.7.

FOREACH (simplified_trajectory IN graph)

MATCH (origin: simplified_trajectory)-[c: NEXT]->(destination: simplified_trajectory)

WHERE origin.id = destination.id

RETURN origin.name, (destination.time – origin.time)

ORDER BY (destination.time – origin.time) ASC

LIMIT 3;

The time difference is sorted in descending order to find the three longest trajectories.

The results are shown in Table 4.8.

FOREACH (simplified_trajectory IN graph)

MATCH (origin: simplified_trajectory)-[c: NEXT]->(destination: simplified_trajectory)

WHERE origin.id = destination.id

RETURN origin.name, (destination.time – origin.time)

ORDER BY (destination.time – origin.time) DESC

LIMIT 3;

TABLE 4.7: RESULTS OF SHORTEST TRAJECTORIES BASED ON TIME DIFFERENCE

107

4.3.2.2 Identifying the collision point

The number of points within a particular distance from a reference location helps in

defining how close a point is to the rest of the points in the trajectory. Basically, this is

similar to buffer analysis capability provided by most GIS software packages. In Cypher,

using Neo4j Spatial plugin a similar kind of analysis can be carried out. The function

SPATIAL.CLOSEST finds all geometry nodes in the graph within the distance to the

given coordinate [Neo4j Spatial Plugin 2017]. The following cypher query finds the

corresponding number of nodes within particular distance for each node and identifies the

point which has maximum number of neighbours (Table. 4.9).

MATCH (tr:TrajectoryNodes) WITH tr

CALL SPATIAL.CLOSEST(‘spatial_graph’',{latitude: tr.latitude, longitude:

tr.longitude},10000)

YIELD node WHERE node.trid <> tr.trid

RETURN tr, COUNT(node) ORDER BY COUNT(node) DESC LIMIT BY 1;

Fig. 4.10 shows the plot of 10-kilometer buffer drawn around the query point using

Quantum GIS.

The results from cypher query has been compared against the buffer operator in QGIS.

The number of points falling within the buffer region (34) is same as the number of

neighbours identified by Neo4j (Fig. 4.10).

TABLE 4.8: RESULTS OF LONGEST TRAJECTORIES BASED ON TIME DIFFERENCE

TABLE 4.9: THE POINT WHICH HAS MOST NUMBER OF NEIGHBORHOOD POINTS AROUND IT WITHIN 10 KILOMETERS

108

By enforcing the temporal constraint, the above query can be extended to find the

collision point for a given time period of a day. The following sample will identify the

collision point between 4pm and 8pm (Table. 4.10).

MATCH (tr: TrajectoryNodes) WITH tr

CALL SPATIAL.CLOSEST(‘spatial_graph’',{latitude: tr.latitude, longitude:

tr.longitude},10000)

YIELD node WHERE node.trid <> tr.trid and hour>4pm and hour<8pm

RETURN tr, COUNT(node) ORDER BY COUNT(node) DESC LIMIT BY 1;

FIGURE 4.10: 10 KILOMETER BUFFER AROUND THE QUERY IN QGIS

109

4.4 Visualization tool for semantic interpolation

A web based graph data visualization system has been developed for performing

semantic interpolation from the proposed model. The dynamic system allows the user to

choose the trajectory on which the semantic retrieval will be performed. The graph

visualization capabilities have been added using the JavaScript framework “alchemy.js”.

Alchemy is a graph visualization tool for developing web applications. It is easily

customizable and includes the capabilities like clustering, filtering and embedding graphs

[Alchemy 2017].

The visualization architecture is shown in Fig. 4.11.

TABLE 4.10: THE TOP THREE COLLISION POINTS BETWEEN 4PM AND 8PM

FIGURE 4.11: VISUALIZATION SYSTEM ARCHITECTURE

110

An HTML powered web application allows the user to select a single trajectory

from a collection of trajectories. The browser then sends the corresponding https request

to RESTful Webservice through Angular client [Angular 2017]. The request is then

parsed by Apache server before it hits Neo4j database for retrieving the corresponding

graph as an object. Java-Neo4j-API lets the java program communicate with Neo4j

database. The response is a JSON object that is then parsed by Alchemy to display the

graph data on the browser. The following snapshots summarize the functionality of the

developed system. The user can choose a single trajectory from the dropdown list of

trajectories (Fig. 4.12).

FIGURE 4.11: VISUALIZATION SYSTEM ARCHITECTURE

FIGURE 4.12: DROPDOWN LIST SHOWING ALL THE EXISTING TRAJECTORIES

111

After a trajectory is selected by the user, the corresponding graph data can be

visualized on the browser screen (Fig. 4.13).

Once the database responds with proper data, the object received by Apache

server is sent to alchemy.js as a JSON (JavaScript Object Notation) object. Alchemy

framework enables the browser to parse the JSON object. Numeric value on the edges

denotes the number of points eliminated during the simplification between those edge

nodes.

In this example between node 6 and 7 there was one point which is lost during the

simplification of the trajectory. If the user clicks on that number, the corresponding node

(“SIDE”) which has been lost will also be displayed (Fig. 4.14).

FIGURE 4.13: SELECTED SIMPLIFIED TRAJECTORY ON THE BROWSER SCREEN

FIGURE 4.13: SELECTED SIMPLIFIED TRAJECTORY ON THE BROWSER SCREEN

FIGURE: VISUALIZATION SYSTEM ARCHITECTURE

112

 The nodes in pink circles connected by red colored edges represent

“INTERMEDIATE” points, while the nodes in green connected by dotted green edges

represent “SIDE” points. The user can click on any node to retrieve its corresponding

semantics, such as speed, heading, distance travelled and time of crossing (Fig. 4.15).

FIGURE 4.14: GRAPH SHOWING THE SIDE NODE WHICH IS LOST DURING THE SIMPLIFICATION

FIGURE 4.15: ALERT BOX WITH THE SEMANTICS FOR THE CLICKED POINT

113

4.5 Conclusions

This paper proposed a graph data model to represent simplified trajectories that

preserve both the spatial and temporal characteristics of their original versions. The

model has been implemented in Neo4j using Java programming language. Simplified

trajectories can be analyzed using Cypher query language and Neo4j spatial procedures.

The developed visualization tool helps the user to perform semantic interpolation at

different levels of simplification.

Currently, Neo4j spatial plugin has limited set of spatial procedures. The system

can be made powerful in trajectory data management after more spatial procedures are

integrated into Neo4j graph database [Stefanakis 2017]. Both the graph model and

developed visualization framework can be applied to other application domains such as

bus transit and metro systems.

Acknowledgements

This research has received funding from the Natural Sciences and Engineering Research

Council of Canada (NSERC), Discovery Grants Program.

114

REFERENCES

Alchemy JavaScript., http://graphalchemist.github.io/Alchemy/#/, Accessed on :

12th September 2017

Angular JavaScript., https://angularjs.org, Accessed on : 12th September 2017

Alvares, L.O., et al., 2007. A model for enriching trajectories with semantic

geographical information. In: The Proceedings of the 15th annual ACM international

symposium on advances in geographic information systems, 7–9 November, Seattle, WA.

Article No. 22.

Cromley, R.G., 1991. Hierarchical methods of line simplification. Cartography

and Geographic Information Science, 18 (2), 125–131.

doi:10.1559/152304091783805563

 Gurfraind.A, Genkin.M, A graph database framework for covert network

analysis: An application to the Islamic State network in Europe. World Development,

2016 September, Pages 1-11 doi: 10.1016/j.socnet.2016.10.004

Hadi Hajari, Farshad Hakimpour., 2014 A Spatial Data Model For Moving Object

Databases, International Journal of Database Management Systems (IJDMS) Vol.6,

No.1, February 2014, doi : 10.5121/ijdms.2013.6101 1

 K. Buchin, M. Buchin, and J. Gudmundsson. Detecting single file movement. In

GIS '08: Proceedings of the 16thACM SIGSPATIAL international conference on

Advances in geographic information systems, pages 1-10, New York, NY, USA, 2008.

ACM.

http://graphalchemist.github.io/Alchemy/#/
http://www.ingentaconnect.com/content/tandf/tcag20

115

Keates, J.S., 1989. Cartographic design and production. 2nd ed. Essex: Longman.

MarineTraffic, 2017. Live-ships map: AIS [online]. Available from:

http://www.marinetraffic.com/ais/ [Last visited, June 27, 2017]

Meratnia, N. and de By, R.A., 2004. Spatiotemporal compression techniques for

moving point objects. In: Proceedings of the international conference on extending

database technology (EDBT). Berlin: Springer, 765–782. LNCS 2992.

Neo4j Spatial Plugin, http://neo4j-contrib.github.io/spatial/0.24-neo4j-

3.1/index.html, Accessed on: 17th August 2017

Neo4j Graph Database, https://neo4j.com/, Accessed on : 1st August 2017

Parent, C. et al., 2013. Semantic Trajectories Modeling and Analysis. ACM

Computing Surveys, Vol. 45, No.4, Article 42. doi:

http://dx.doi.org/10.1145/2501654.2501656

Partl.C, Gratzl.S, Streit.M , Wassermann.A.M, Pfister.H, Schmalstieg.D, and

Lex.A , 2016 Pathfinder: Visual Analysis of Paths in Graphs Eurographics Conference

on Visualization (EuroVis) 2016 Volume 35 (2016), Number 3

Przemysław Idziaszek, Wojciech Mueller, Janina Rudowicz-Nawrocka,Michał

Gruszczy´ nski, Sebastian Kujawa, Karolina Górna, Kinga Balcerzak. 2016 Visualisation

of Relational Database Structure by Graph Database CMST 22(4) 217-224

doi:10.12921/cmst.2016.0000014

http://neo4j-contrib.github.io/spatial/0.24-neo4j-3.1/index.html
http://neo4j-contrib.github.io/spatial/0.24-neo4j-3.1/index.html
https://neo4j.com/
http://dx.doi.org/10.1145/2501654.2501656

116

QiuLei Guo and Hassan A. Karimi, 2016. A Topology-Inferred Graph-Based

Heuristic Algorithm for Map Simplification. In: Transactions in GIS,

doi:10.1111/tgis.12188

Richter, K.F., Schmid, F., and Laube, P., 2012. Semantic trajectory compression:

representing urban movement in a nutshell. Journal of Spatial Information Science, (4),

3–30.

Robinson, Joel L. Morrison, Phillip C. Muehrcke, A. Jon Kimerling, Stephen C.

Guptill, Elements of Cartography, 6th Edition ISBN: 978-0-471-55579-7

Shahriari, N., and V. Tao, 2002. Minimizing Positional Errors in Line

Simplification Us-ing Adaptive Tolerance Values. In: Symposium on Geospatial Theory,

Processing and Applica-tion, 4(3), 213-223.

Stefanakis, E., 2017. Graph Databases – Recent development in Neo4j may help

accommodate the Geospatial Community. GoGeomatics. Magazine of GoGeomatics

Canada. January 2017.

Spaccapietra, S., et al., 2008. A conceptual view on trajectories. Data &

Knowledge Engineering, 65 (1), 126–146. Retrieved from :

http://www.sciencedirect.com/science/article/pii/S0169023X07002078

Stefanakis, E., 2012. Trajectory generalization under space constraints. In: The

proceedings of the 7th international conference on geographic information science

(GIScience 2012), 18–21 September, Columbus, OH.

http://www.sciencedirect.com/science/article/pii/S0169023X07002078

117

Stefanakis, E., 2015. SELF: Semantically enriched Line simpliFication. In:

International Journal of Geographical Information Science, Vol. 29, Iss. 10, 2015, Pages

1826-1844 doi: 10.1080/13658816.2015.1053092

Tamilmani R, Stefanakis E, 2017. Enriched geometric simplification of linear

features. Geomatica Vol. 71, No.1, 2017, pp. 3 to 19. doi: dx.doi.org/10.5623/cig2017-

101

Tienaah, T., Stefanakis, E., and Coleman, D., 2015.S Contextual Douglas-Peucker

simplification. Geomatica Journal, 69 (3), 327-338, https://doi.org/10.5623/cig2015-306

Weibel, R., 1996. A typology of constraints to line simplification. In: Proceedings

of 7th international symposium on spatial data handling, 12–16 August, Delft. IGU, 533–

546.

Weibel, R., 1997. Generalization of spatial data: principles and selected

algorithms. In: M. Kreveld, et al., eds. Algorithmic foundations of geographic

information systems. Berlin: Springer, 99–152.

Wu, et alShil – Ting and Mercedes Rocio Gonzales Marquez 2003. Proceedings

of the XVI Brazilian Symposium on Computer Graphics and Image Processing

(SIBGRAPI’03) 1530-1834/03 doi :10.1109/SIBGRA.2003.1240992

Yan, Z., et al. 2011. SeMiTri: A framework for semantic annotation of

heterogeneous trajectories. In: The proceedings of the 14th international conference on

Extending Database Technology (EDBT 2011). New York: ACM

https://doi.org/10.5623/cig2015-306

118

5. Conclusion and Recommendations

The primary purpose of this research was to retain the geometric (length) and

semantic attributes associated with individual locations of linear features and trajectories

in their simplified representation at various level of detail. Efficient modelling, analysis,

and visualization methods were developed. The research has contributed to

PostgreSQL/PostGIS, an open source spatial database system.

5.1 Summary of Research

The preliminary steps of this research were to: (i) investigate the existing

simplification techniques; and (ii) to test the efficiency of SELF data structure in regard to

semantic interpolation at different levels of simplification.

Chapter 2 focused on implementing the SELF (Semantically Enriched Line

simpliFication) data structure to preserve the geometric characteristics associated to the

original linear features. The data structure has been implemented in PostgreSQL 9.4 with

PostGIS extension using PL/pgSQL to support static and non-functional polylines and

tested with both synthetic and real world features.

The objective of Chapter 3 was to implement and test the SELF data structure for

semantically enriched simplification of trajectories. The implemented method combines a

Synchronous Euclidean Distance (SED) based simplification algorithm and SELF

(Semantically Enriched Line simpliFication) data structure to preserve the semantics

associated with the original trajectories (spatio temporal lines). This resulted in an enriched

library of PL/pgSQL functions to support the simplification of both static and dynamic

linear features.

119

Chapter 4 proposed a graph data model to represent and analyze simplified

trajectories that preserve both the spatial and temporal characteristics of the original

versions. Also, a visualization framework for trajectories in graph form has been

developed.

5.2 Achievements of Research

The purpose of this research is to retain the semantic and geometric attributes

associated with individual locations of original linear features and trajectories in their

simplified versions. This has been accomplished by enriching the representation of the

simplified lines with an array of values corresponding to multiple locations along the

original lines. To this end, a graph model to represent the simplified geometry of

trajectories along with their semantics has been proposed for the trajectory data analysis

and visualization purpose.

• SELF structure for static lines applies two kinds of compression: point level and

segment level. The segment level compression eliminates entire segments

(continuous points) which has the segment level compression ratio within the user-

defined threshold, while point level compression discards only certain points which

are within the point level threshold. The results of the experiments indicate that the

different topological complexity of the datasets play a major role in distance

interpolation error.

• The comparison results between SED-DP simplification and DP simplification

indicated that SED-DP simplification always retains more number of points which

are more significant in forming the trajectory than other points as they better convey

the trajectory characteristics for a particular context.

120

• SELF structure for trajectories applies two kinds of semantic based reduction: speed

based and heading based. Both compression techniques produce the same amount

error in the interpolated semantics. However, the results of the experiments indicate

that the different spatio-temporal characteristics of the datasets play a major role in

the semantic interpolation error.

• The proposed graph model has been implemented in Neo4j using Java

programming language. Thus, simplified trajectories can be analyzed using Cypher

query language and Neo4j spatial procedures. The developed visualization tool

helps the user to perform semantics retrieval at different levels of simplification.

5.3 Recommendations for Future Work

 This research was primarily started with alleviating the problem of semantic loss

during the process of simplification. But during the course of this research, additional

research possibilities are identified, and are as follows:

• Future recommendations include recoding this library to other programming

languages (such as Python) so that it can be embedded into other commercial

or open source GIS software packages.

• More emphasis on evaluating the time complexity of the implemented

algorithms with various compression levels being applied to the SELF structure

will make the running time optimal.

• Currently, Neo4j spatial plugin has limited set of spatial procedures. This

system can be made powerful in trajectory data management by integrating

more spatial procedures into Neo4j graph [Stefanakis 2017].

121

• Extending the graph model for performing trajectory similarity measures would

be another possible research area.

• Lastly, the extension of the visualization framework will facilitate the adoption

of the SELF structure in various application domains with need for semantically

enhanced multiscale representation of linear features and trajectories. Both the

graph model and developed visualization framework can be applied to

application domains such as bus transit and metro systems.

5.4 Conclusions

Overall, the primary purpose of this research to implement and test SELF data

structure for linear features and trajectories was accomplished to alleviate the problem in

losing the geometric and semantic attributes associated with the intermediate points on the

original geometries. The experimental results have shown that segment level compression

produces the error higher than point level compression. But, segment level compression

algorithm has less time complexity than point level compression. With the experimental

results from static linear features the SELF structure has been extended to support spatio

temporal lines. That resulted in an enriched library of PL/pgSQL function to support the

simplification of both static and dynamic lines.

Problem with the traditional simplification algorithms identified as, they utilize the

distance offset as a criterion to eliminate the redundant points. Temporal dimension in

trajectories have been considered in retaining the points to convey both the spatial and

temporal characteristics of the trajectory. SED based trajectory simplification technique to

consider spatio-temporal data in trajectory generalization has implemented. The

comparison results between SED-DP simplification and DP simplification indicated that

122

SED-DP simplification always retains more number of points which are more significant

in forming the trajectory than other points as they better convey the trajectory

characteristics for a particular context.

Visualization of the massive trajectory dataset becomes difficult to handle as the

millions of raw data points make the processing complex. The proposed graph model for

combining the simplified geometry of trajectories and SELF data structure has been

significant in performing useful trajectory data analysis on the modelled data using Cypher

query language and Neo4j Spatial procedures. The visualization tool developed on top of

Neo4j provide a useful functionality that can be extended to support different application

domains.

In conclusion, the research provides the way of annotating the simplified geometry

with the semantics by means of SELF structure that can retain the original semantics as an

array of values followed by the graph model and visualization tool for performing useful

trajectory data analysis.

REFERENCES

Stefanakis, E., 2015. SELF: Semantically enriched Line simpliFication. In:

International Journal of Geographical Information Science, Vol. 29, Iss. 10, 2015, Pages

1826-1844 doi: 10.1080/13658816.2015.1053092

Stefanakis, E., 2017. Graph Databases – Recent development in Neo4j may help

accommodate the Geospatial Community. GoGeomatics. Magazine of GoGeomatics

Canada. January 201

123

Appendix I

1. SELF structure for static lines – PL/pgSQL function (Chapter 2)

/* Function Definition – Takes the input as original

geometry, simplification threshold and compression ratios*/

CREATE OR REPLACE FUNCTION SELF_ADV_CB(line geometry, threshold double

precision,thr_ratio numeric,comp_ratio double precision)

RETURNS SELFAdv AS $$

DECLARE

/* Defining the variables and data types*/

self_adv SELFAdv;

no_lines int;

no_simp_points int;

simp_segments geometry [];

func_lines int;

each_simp_line int;

StartingPoint geometry;

EndingPoint geometry;

ActualLength numeric;

pp_point geometry;

pp_point_nxt geometry;

array_count int;

no_of_points int;

count int;

prv_org_dist numeric;

prv_sim_dist numeric;

SELF_LEN text[];

ratio numeric;

orig_line_dist numeric;

simp_line_dist numeric;

orig_dist numeric;

sim_dist numeric;

slp_diff_array double precision[];

comp_ratio_array double precision[];

BEGIN

each_simp_line = 1;

array_count = 1;

count = 1;

prv_org_dist = 0.0;

prv_sim_dist = 0.0;

no_lines = array_length(SELF_NS(line),1);

no_simp_points = ST_NPOINTS(ST_LINEMERGE(ST_SIMPLIFY(line,threshold)));

/* Checking for line type (single/multi segments) based on
the number of points on the lines*/
 IF no_simp_points=2 THEN

 self_adv = SELF_ADV(line, threshold,comp_ratio);

 ELSE

/* Simplify the geometry based on Douglas Peucker algorithm
*/

124

 StartingPoint=ST_StartPoint(ST_LineMerge(ST_Simplify(line,thresho

ld)));

 EndingPoint=ST_EndPoint(ST_LineMerge(ST_Simplify(line,threshold))

);

/* Getting starting and ending points of the line*/
ActualLength=ST_Length(line);

 self_adv.StartingPoint = StartingPoint;

 self_adv.EndPoint = EndingPoint;

 self_adv.ActualLength = round(ActualLength,3);

 simp_segments = SELF_ADV_CASE3(line, threshold);

 func_lines = array_length(simp_segments,1);

/* Applying point and segment level threshold*/
WHILE each_simp_line <= func_lines

 LOOP

 comp_ratio_array =

SELF_COMP_RATIO(simp_segments[each_simp_line]);

 slp_diff_array =

SELF_SLP_DIFF(simp_segments[each_simp_line]);

 IF each_simp_line = func_lines THEN

 orig_line_dist =

ST_LENGTH(simp_segments[each_simp_line]);

 simp_line_dist =

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])));

 ratio = (orig_line_dist-

simp_line_dist)/(orig_line_dist);

 ratio = ratio * 100;

 IF ratio >= thr_ratio THEN

 no_of_points =

ST_NPOINTS(simp_segments[each_simp_line]);

/* Finding orthogonal projection of each point on the
original line into simplified*/
 WHILE array_count < (no_of_points-1)

 LOOP

 IF array_count=1 THEN

 pp_point =

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count));

 pp_point_nxt =

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count+1));

/* Calculating simplified and original distance */

orig_dist =

ST_DISTANCE(ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array

_count),ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_cou

nt+1)) + prv_org_dist;

 IF slp_diff_array[array_count] != 0.0 and

comp_ratio_array[array_count] >= comp_ratio THEN

125

 IF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

!= 3.0 THEN

 IF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

= 0.0 THEN

 sim_dist =

ST_DISTANCE(pp_point,pp_point_nxt) + prv_sim_dist ;

 SELF_LEN[count] =

round(sim_dist,3) || ',' || round(orig_dist,3);

 count = count+1;

 ELSIF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

= 1.0 THEN

 sim_dist =

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line]))) +

prv_sim_dist ;

 SELF_LEN[count] =

round(sim_dist,3) || ',' || round(orig_dist,3);

 count = count+1;

 ELSIF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

= 2.0 THEN

 sim_dist = 0.0

+ prv_sim_dist ;

 SELF_LEN[count] =

round(sim_dist,3) || ',' || round(orig_dist,3);

 count = count+1;

 END IF;

 END IF;

 END IF;

 ELSE

 pp_point =

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count));

 pp_point_nxt =

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count+1));

 orig_dist =

ST_DISTANCE(ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array

_count),ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_cou

nt+1))+orig_dist;

/* Check if the projected point is on the simplified line or
not */

IF slp_diff_array[array_count] != 0.0 and comp_ratio_array[array_count]

>= comp_ratio THEN

 IF

126

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

!= 3.0 THEN

 IF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

= 0.0 THEN

 sim_dist =

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

pp_point_nxt) + prv_sim_dist ;

 SELF_LEN[count] =

round(sim_dist,3) || ',' || round(orig_dist,3);

 count = count+1;

 ELSIF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

= 1.0 THEN

 sim_dist =

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line]))) +

prv_sim_dist ;

 SELF_LEN[count] =

round(sim_dist,3) || ',' || round(orig_dist,3);

 count = count+1;

 ELSIF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

= 2.0 THEN

 sim_dist = 0.0

+ prv_sim_dist ;

 SELF_LEN[count] =

round(sim_dist,3) || ',' || round(orig_dist,3);

 count = count+1;

 END IF;

 END IF;

 END IF;

 END IF;

 array_count = array_count+1;

 END LOOP;

 END IF;

 prv_org_dist = ST_LENGTH(simp_segments[each_simp_line])

+ prv_org_dist;

/* Calculating the simplified and original accumulated
length*/
 prv_sim_dist =

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line]))) +

prv_sim_dist;

 array_count = 1;

 sim_dist = 0.0;

 orig_dist = 0.0;

 each_simp_line = each_simp_line+1;

 ELSE

 orig_line_dist =

127

ST_LENGTH(simp_segments[each_simp_line]);

 simp_line_dist =

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])));

 ratio = (orig_line_dist-

simp_line_dist)/(orig_line_dist);

 ratio = ratio * 100;

 IF ratio >= thr_ratio THEN

 no_of_points =

ST_NPOINTS(simp_segments[each_simp_line]);

 WHILE array_count < no_of_points

 LOOP

 IF array_count=1 THEN

 pp_point =

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count));

 pp_point_nxt =

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count+1));

 orig_dist =

ST_DISTANCE(ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array

_count),ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_cou

nt+1)) + prv_org_dist;

 IF slp_diff_array[array_count] != 0.0 and

comp_ratio_array[array_count] >= comp_ratio THEN

 IF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

!= 3.0 THEN

 IF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

= 0.0 THEN

 sim_dist =

ST_DISTANCE(pp_point,pp_point_nxt) + prv_sim_dist ;

 SELF_LEN[count] =

round(sim_dist,3) || ',' || round(orig_dist,3);

 count = count+1;

ELSIF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

= 1.0 THEN

 sim_dist =

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])))+ prv_sim_dist

;

 SELF_LEN[count] =

round(sim_dist,3) || ',' || round(orig_dist,3);

 count = count+1;

 ELSIF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

= 2.0 THEN

 sim_dist = 0.0

128

+ prv_sim_dist ;

 SELF_LEN[count] =

round(sim_dist,3) || ',' || round(orig_dist,3);

 count = count+1;

 END IF;

 END IF;

 END IF;

 ELSE

 pp_point =

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count));

 pp_point_nxt =

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count+1));

 orig_dist =

ST_DISTANCE(ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array

_count),ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_cou

nt+1))+orig_dist;

 IF slp_diff_array[array_count] != 0.0 and

comp_ratio_array[array_count] >= comp_ratio THEN

 IF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

!= 3.0 THEN

/* Ends the iteration if the cursor reaches last point of
the line */
IF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

= 0.0 THEN

 sim_dist =

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

pp_point_nxt) + prv_sim_dist ;

 SELF_LEN[count] =

round(sim_dist,3) || ',' || round(orig_dist,3);

 count = count+1;

 ELSIF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

= 1.0 THEN

 sim_dist =

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])))+ prv_sim_dist

;

 SELF_LEN[count] =

round(sim_dist,3) || ',' || round(orig_dist,3);

 count = count+1;

 ELSIF

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt)

= 2.0 THEN

 sim_dist = 0.0

+ prv_sim_dist ;

129

 SELF_LEN[count] =

round(sim_dist,3) || ',' || round(orig_dist,3);

 count = count+1;

 END IF;

 END IF;

 END IF;

 END IF;

 array_count = array_count+1;

 END LOOP;

 END IF;

 prv_org_dist = ST_LENGTH(simp_segments[each_simp_line])

+ prv_org_dist;

 prv_sim_dist =

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line]))) +

prv_sim_dist;

 array_count = 1;

 sim_dist = 0.0;

 orig_dist = 0.0;

 each_simp_line = each_simp_line+1;

 END IF;

 END LOOP;

 self_adv.AccumulatedLength = SELF_LEN;

 END IF;

RETURN self_adv;

END; $$

LANGUAGE 'plpgsql';

2. SELF structure for Trajectories – PL/pgSQL function (Chapter 3)

/* Function Definition – Takes input as original trajectory,
simplification threshold, speed and heading based
compression based threshold values */
CREATE OR REPLACE FUNCTION self_dyn_str_ml_sp(

 _tbl regclass,

 threshold double precision, spd_comp double precision, hdg_comp

double precision)

 RETURNS selfadv AS

$BODY$

DECLARE

/* Variables and data type definition to be used in the
algorithm */
curs1 refcursor;

rowcount integer;

sed_rowcount integer;

rowvar record;

avg_vlcty numeric;

sed_ms numeric[];

points geometry[];

segments geometry[];

noofpoints integer;

pointscount integer;

130

noofsegments integer;

segmentscount integer;

seg_len numeric;

self_adv SELFAdv;

time_diff numeric;

simp_geom geometry;

orig_geom geometry;

startingtime timestamp;

avg_vlcty_array numeric[];

prv_len numeric;

acc_len numeric[];

SELF_ARRAY text[];

ind_pts_sgs integer;

ind_pts_ptr integer;

prv_speed double precision;

prv_hdg double precision;

spd_ratio double precision;

hdg_ratio double precision;

BEGIN

rowcount = 0;

sed_rowcount = 0;

prv_len = 0;

prv_speed = 0.0;

prv_hdg = 0.0;

/* Calculating average velocity of the trip and simplifying
the geometry based on Synchronous Euclidean Distance */
avg_vlcty_array = SELF_AVG_VLCY_ML_SP(_tbl,threshold);

orig_geom = SELF_ORIG_GEOM(_tbl, threshold);

simp_geom =

ST_MAKELINE(SIMP_LINE(SED_SIMPFY(_tbl,threshold,threshold),orig_geom

));

acc_len = SELF_ACC_LEN_DYN(orig_geom);

segments = SELF_SED_ADV_CASE3(_tbl, threshold);

self_adv.StartingPoint = ST_StartPoint(ST_LineMerge(simp_geom));

self_adv.EndPoint = ST_EndPoint(ST_LineMerge(simp_geom));

self_adv.ActualLength = ST_LENGTH(orig_geom);

noofsegments = array_length(segments,1);

segmentscount = 1;

/* Reading the individual points on the trajectory using
cursors */
OPEN curs1 FOR EXECUTE format('SELECT * FROM %s', _tbl);

WHILE segmentscount <= noofsegments

LOOP

/* Identifying number of segments in the simplified line */
IF segmentscount = 1 THEN

 ind_pts_ptr = 1;

 ind_pts_sgs = COUNT_POINTS(segments[segmentscount]);

 RAISE NOTICE 'Number of points : %',ind_pts_sgs;

 WHILE ind_pts_ptr <= ind_pts_sgs

 LOOP

 FETCH curs1 INTO rowvar;

 EXIT WHEN NOT FOUND;

 IF prv_speed > 0.0 THEN

131

 spd_ratio = (prv_speed-

rowvar.speed)*100.0/(prv_speed);

 ELSE

 spd_ratio = 100.0;

 END IF;

 IF spd_ratio < 0.0 THEN

 spd_ratio = -1 * spd_ratio;

 END IF;

 IF prv_hdg > 0.0 THEN

 hdg_ratio = (prv_hdg-

rowvar.heading)*100.0/(prv_hdg);

 ELSE

 hdg_ratio = 100.0;

 END IF;

/* Adding the semantics to the SELF structure */
 IF hdg_ratio < 0.0 THEN

 hdg_ratio = -1 * hdg_ratio;

 END IF;

 IF ind_pts_ptr = 1 THEN

 startingtime = CAST(rowvar.time AS TIMESTAMP);

 sed_ms[sed_rowcount] = 0;

 points[sed_rowcount] = rowvar.geom;

 prv_speed = rowvar.speed;

 prv_hdg = rowvar.heading;

 SELF_ARRAY[rowcount] =

round(sed_ms[sed_rowcount],3) || ',' || rowvar.speed|| ',' ||

rowvar.heading || ',' || rowvar.time || ',' ||

acc_len[sed_rowcount];

 rowcount = rowcount + 1;

 ELSIF ind_pts_ptr = (ind_pts_sgs) THEN

 time_diff = EXTRACT(EPOCH FROM (CAST (rowvar.time

AS TIMESTAMP) - CAST(startingtime AS TIMESTAMP)));

 IF ST_LENGTH(segments[segmentscount])>0 THEN

 sed_ms[sed_rowcount] = (time_diff *

avg_vlcty_array[segmentscount-

1])*(ST_DISTANCE(ST_STARTPOINT(segments[segmentscount]),ST_ENDPOINT(

segments[segmentscount]))/ST_LENGTH(segments[segmentscount]));

 ELSE

 sed_ms[sed_rowcount] = (time_diff *

avg_vlcty_array[segmentscount-1]);

 END IF;

 points[sed_rowcount] = rowvar.geom;

 startingtime = CAST(rowvar.time AS TIMESTAMP);

 prv_len = prv_len + sed_ms[sed_rowcount];

 IF (spd_ratio > spd_comp) AND (hdg_ratio >

hdg_comp) THEN

 SELF_ARRAY[rowcount] =

round(sed_ms[sed_rowcount],3) || ',' || rowvar.speed|| ',' ||

rowvar.heading || ',' || rowvar.time || ',' ||

acc_len[sed_rowcount];

 rowcount = rowcount + 1;

 END IF;

 ELSE

 time_diff = EXTRACT(EPOCH FROM (CAST (rowvar.time

132

AS TIMESTAMP) - CAST(startingtime AS TIMESTAMP)));

 IF ST_LENGTH(segments[segmentscount])>0 THEN

 sed_ms[sed_rowcount] = (time_diff *

avg_vlcty_array[segmentscount-

1])*(ST_DISTANCE(ST_STARTPOINT(segments[segmentscount]),ST_ENDPOINT(

segments[segmentscount]))/ST_LENGTH(segments[segmentscount]));

 ELSE

 sed_ms[sed_rowcount] = (time_diff *

avg_vlcty_array[segmentscount-1]);

 END IF;

 points[sed_rowcount] = rowvar.geom;

 IF (spd_ratio > spd_comp) AND (hdg_ratio >

hdg_comp) THEN

 SELF_ARRAY[rowcount] =

round(sed_ms[sed_rowcount],3) || ',' || rowvar.speed|| ',' ||

rowvar.heading || ',' || rowvar.time || ',' ||

acc_len[sed_rowcount];

 rowcount = rowcount + 1;

 END IF;

 END IF;

 sed_rowcount = sed_rowcount + 1;

 prv_speed = rowvar.speed;

 prv_hdg = rowvar.heading;

 ind_pts_ptr = ind_pts_ptr + 1;

 RAISE NOTICE 'rowcount : %',rowcount;

 END LOOP;

 ELSE

 ind_pts_ptr = 1;

 ind_pts_sgs = COUNT_POINTS(segments[segmentscount]);

 RAISE NOTICE 'Number of points from else block :

%',ind_pts_sgs;

 WHILE ind_pts_ptr < ind_pts_sgs

 LOOP

 FETCH curs1 INTO rowvar;

 EXIT WHEN NOT FOUND;

/* Applying Speed and Heading based compression values */
 IF prv_speed > 0.0 THEN

 spd_ratio = (prv_speed-

rowvar.speed)*100.0/(prv_speed);

 ELSE

 spd_ratio = 100.0;

 END IF;

 IF spd_ratio < 0.0 THEN

 spd_ratio = -1 * spd_ratio;

 END IF;

 IF prv_hdg > 0.0 THEN

 hdg_ratio = (prv_hdg-

rowvar.heading)*100.0/(prv_hdg);

 ELSE

 hdg_ratio = 100.0;

 END IF;

 IF hdg_ratio < 0.0 THEN

 hdg_ratio = -1 * hdg_ratio;

133

 END IF;

/* Calculating the accumulated distance at each point on the
original trajectory and its SED projection point on the
generalized trajectory */
 IF ind_pts_ptr = (ind_pts_sgs-1) THEN

 time_diff = EXTRACT(EPOCH FROM (CAST (rowvar.time

AS TIMESTAMP) - CAST(startingtime AS TIMESTAMP)));

 IF ST_LENGTH(segments[segmentscount])>0 THEN

 sed_ms[sed_rowcount] = (time_diff *

avg_vlcty_array[segmentscount-

1])*(ST_DISTANCE(ST_STARTPOINT(segments[segmentscount]),ST_ENDPOINT(

segments[segmentscount]))/ST_LENGTH(segments[segmentscount]));

 ELSE

 sed_ms[sed_rowcount] = (time_diff *

avg_vlcty_array[segmentscount-1]);

 END IF;

 points[sed_rowcount] = rowvar.geom;

 ind_pts_ptr = ind_pts_ptr + 1;

 startingtime = CAST(rowvar.time AS TIMESTAMP);

 prv_len = prv_len + sed_ms[sed_rowcount];

 IF (spd_ratio > spd_comp) AND (hdg_ratio > hdg_comp) THEN

 SELF_ARRAY[rowcount] =

round(sed_ms[sed_rowcount],3) || ',' || rowvar.speed|| ',' ||

rowvar.heading || ',' || rowvar.time || ',' ||

acc_len[sed_rowcount];

 rowcount = rowcount + 1;

 END IF;

 sed_rowcount = sed_rowcount +1;

 ELSE

 time_diff = EXTRACT(EPOCH FROM (CAST (rowvar.time

AS TIMESTAMP) - CAST(startingtime AS TIMESTAMP)));

/* Semantic based compression levels */
IF ST_LENGTH(segments[segmentscount])>0 THEN

 sed_ms[sed_rowcount] = (time_diff *

avg_vlcty_array[segmentscount-

1])*(ST_DISTANCE(ST_STARTPOINT(segments[segmentscount]),ST_ENDPOINT(

segments[segmentscount]))/ST_LENGTH(segments[segmentscount]));

 ELSE

 sed_ms[sed_rowcount] = (time_diff *

avg_vlcty_array[segmentscount-1]);

 END IF;

 points[sed_rowcount] = rowvar.geom;

 ind_pts_ptr = ind_pts_ptr + 1;

 IF (spd_ratio > spd_comp) AND (hdg_ratio > hdg_comp) THEN

 SELF_ARRAY[rowcount] =

round(sed_ms[sed_rowcount],3) || ',' || rowvar.speed|| ',' ||

rowvar.heading || ',' || rowvar.time || ',' ||

134

acc_len[sed_rowcount];

 rowcount = rowcount + 1;

 END IF;

 sed_rowcount = sed_rowcount +1;

 END IF;

 prv_speed = rowvar.speed;

 prv_hdg = rowvar.heading;

 RAISE NOTICE 'row count from else block: %',rowcount;

 END LOOP;

 END IF;

 ind_pts_ptr=0;

 segmentscount = segmentscount+1;

END LOOP;

IF spd_comp >= 0.0 THEN

SELF_ARRAY[rowcount] = round(prv_len,3) || ',' || prv_speed || ','

|| prv_hdg || ',' || acc_len[sed_rowcount-1];

END IF;

self_adv.AccumulatedLength = SELF_ARRAY;

RETURN self_adv;

END; $BODY$

 LANGUAGE 'plpgsql';

3. JAVA methods for combining simplified trajectory with SELF structure

(Chapter 4)

/* Method for combining the simplified geometry with SELF
structure to generate the nodes for the proposed graph model
*/
public List<String> generatetrGraphNodes(List<CustomPoint> simpPoints, List<Double>
arrayOfDistance, List<SELFEXTENTED> selfArray, String comment){

 List<String> nodeString = new ArrayList<String>();
 Trajectory trajectory = new Trajectory();
 Integer simpPointsPointer = 0;
 trajectory.comment = comment;
 trajectory.nodes = new ArrayList<Node>();
 trajectory.edges = new ArrayList<Edge>();
 int noofIntermediatePoints = 0;
 Integer previousId=0;
 for(int i=0;i<selfArray.size() ;i++){
 SELFEdge e = new SELFEdge();
 SELFNode n = new SELFNode();

/* Adding the properties to the first node (Starting point)
*/

 if (i==0){
 n.id = simpPointsPointer+1;
 n.latitude =
simpPoints.get(simpPointsPointer.intValue()).getLatitude();
 n.longitude =
simpPoints.get(simpPointsPointer.intValue()).getLongitude();
 n.simpDist = selfArray.get(i).getSimpDist();
 n.speed = selfArray.get(i).getSpeed();
 n.heading = selfArray.get(i).getHeading();
 n.origDist = selfArray.get(i).getOrigDist();

135

 n.time = selfArray.get(i).getTime();
 n.nodeType = "main";
 trajectory.nodes.add(n);
 simpPointsPointer = simpPointsPointer + 1;
 previousId = n.id;

 System.out.println(comment+"_"+n.id + "," + n.latitude +
"," + n.longitude + "," + n.simpDist + "," + n.speed + "," + n.heading + "," +
n.origDist + "," + n.time + "," + n.nodeType);
 nodeString.add(comment+"_"+n.id + "," + n.latitude + "," +
n.longitude + "," + n.simpDist + "," + n.speed + "," + n.heading + "," + n.origDist +
"," + n.time + "," + n.nodeType);

 }

/* Adding the properties to the intermediate nodes */
 else
if(arrayOfDistance.get(simpPointsPointer.intValue()).equals(selfArray.get(i).getSimpDis
t())){

 n.id = simpPointsPointer+1;
 n.latitude =
simpPoints.get(simpPointsPointer.intValue()).getLatitude();
 n.longitude =
simpPoints.get(simpPointsPointer.intValue()).getLongitude();
 n.simpDist = selfArray.get(i).getSimpDist();
 n.speed = selfArray.get(i).getSpeed();
 n.heading = selfArray.get(i).getHeading();
 n.origDist = selfArray.get(i).getOrigDist();
 n.time = selfArray.get(i).getTime();
 n.nodeType = "main";
 trajectory.nodes.add(n);
 simpPointsPointer = simpPointsPointer + 1;

 System.out.println(comment+"_"+n.id + "," + n.latitude +
"," + n.longitude + "," + n.simpDist + "," + n.speed + "," + n.heading + "," +
n.origDist + "," + n.time + "," + n.nodeType);
 nodeString.add(comment+"_"+n.id + "," + n.latitude + "," +
n.longitude + "," + n.simpDist + "," + n.speed + "," + n.heading + "," + n.origDist +
"," + n.time + "," + n.nodeType);

 SELFEdge e1 = new SELFEdge();
 e1.caption = "NEXT";
 e1.source = previousId;
 e1.target = simpPointsPointer;
 if(e1.source != e1.target-1){
 e1.noOfIntermediatePoints = 0;
 e1.simpDistWeight =
 Double.parseDouble(String.format("%.3f",
arrayOfDistance.get(simpPointsPointer.intValue()-1) -
arrayOfDistance.get(simpPointsPointer.intValue()-2)));

 e1.origDistWeight =
 Double.parseDouble(String.format("%.3f", selfArray.get(i).getOrigDist() -
selfArray.get(i-noofIntermediatePoints-1).getOrigDist()));

 e1.between = (simpPointsPointer-1)+"-
"+simpPointsPointer;
 e1.edgeType = "BRANCH";

136

 trajectory.edges.add(e1);
 }
 e.caption = "NEXT";
 e.source = (simpPointsPointer-1);
 e.target = simpPointsPointer;
 e.edgeType = "MAINSTREAM";
 if(noofIntermediatePoints>0){

 e.noOfIntermediatePoints = noofIntermediatePoints;
 e.simpDistWeight =
 Double.parseDouble(String.format("%.3f",
arrayOfDistance.get(simpPointsPointer.intValue()-1) -
arrayOfDistance.get(simpPointsPointer.intValue()-2)));

 e.origDistWeight =
 Double.parseDouble(String.format("%.3f", selfArray.get(i).getOrigDist() -
selfArray.get(i-noofIntermediatePoints-1).getOrigDist()));

 }
 else{

 e.noOfIntermediatePoints = noofIntermediatePoints;
 e.simpDistWeight =
 Double.parseDouble(String.format("%.3f",
arrayOfDistance.get(simpPointsPointer.intValue()-1) -
arrayOfDistance.get(simpPointsPointer.intValue()-2)));

 e.origDistWeight =
 Double.parseDouble(String.format("%.3f", selfArray.get(i).getOrigDist() -
selfArray.get(i-noofIntermediatePoints-1).getOrigDist()));

 }

 trajectory.edges.add(e);

 previousId = n.id;
 noofIntermediatePoints = 0;
 }
 else{
 noofIntermediatePoints = noofIntermediatePoints +1;

 n.id = Integer.parseInt(String.valueOf(simpPointsPointer
+""+(simpPointsPointer+1)+""+ (noofIntermediatePoints)));
 n.simpDist = selfArray.get(i).getSimpDist();
 n.speed = selfArray.get(i).getSpeed();
 n.heading = selfArray.get(i).getHeading();
 n.origDist = selfArray.get(i).getOrigDist();
 n.nodeType = "side";
 n.between = simpPointsPointer+"-"+(simpPointsPointer+1);
 n.time = selfArray.get(i).getTime();
 trajectory.nodes.add(n);

 System.out.println(comment+"_"+String.valueOf(simpPointsPointer
+"_"+(simpPointsPointer+1)+"_"+ (noofIntermediatePoints)) + "," + n.latitude + "," +
n.longitude + "," + n.simpDist + "," + n.speed + "," + n.heading + "," + n.origDist +
"," + n.time + "," + n.nodeType);

 nodeString.add(comment+"_"+String.valueOf(simpPointsPointer

137

+"_"+(simpPointsPointer+1)+"_"+ (noofIntermediatePoints)) + "," + n.latitude + "," +
n.longitude + "," + n.simpDist + "," + n.speed + "," + n.heading + "," + n.origDist +
"," + n.time + "," + n.nodeType);
 e.caption = "NEXT";
 e.source = previousId;
 e.target = n.id;
 e.edgeType = "BRANCH";
 e.between = simpPointsPointer+"-"+(simpPointsPointer+1);
 previousId = n.id;
 trajectory.edges.add(e);

 }

 }

/* Building the JSON document for the nodes */
 GsonBuilder builder = new GsonBuilder();
 Gson gson = builder.create();
 String gsonString = gson.toJson(trajectory);
 return nodeString;
 }

/* Method for combining the simplified geometry with SELF
structure to generate the nodes for the proposed graph model
*/

 public List<String> generatetrGraphEdges(List<CustomPoint> simpPoints,
List<Double> arrayOfDistance, List<SELFEXTENTED> selfArray, String comment){

 List<String> edgeString = new ArrayList<String>();
 Trajectory trajectory = new Trajectory();
 Integer simpPointsPointer = 0;
 trajectory.comment = comment;
 trajectory.nodes = new ArrayList<Node>();
 trajectory.edges = new ArrayList<Edge>();
 int noofIntermediatePoints = 0;
 Integer previousId=0;
 String prvID = "";

/* Connecting starting node with the intermediate nodes */

 for(int i=0;i<selfArray.size() ;i++){
 SELFEdge e = new SELFEdge();
 SELFNode n = new SELFNode();
 if (i==0){
 n.id = simpPointsPointer+1;
 n.latitude =
simpPoints.get(simpPointsPointer.intValue()).getLatitude();
 n.longitude =
simpPoints.get(simpPointsPointer.intValue()).getLongitude();
 n.simpDist = selfArray.get(i).getSimpDist();
 n.speed = selfArray.get(i).getSpeed();
 n.heading = selfArray.get(i).getHeading();
 n.origDist = selfArray.get(i).getOrigDist();
 n.time = selfArray.get(i).getTime();
 n.nodeType = "main";
 trajectory.nodes.add(n);
 simpPointsPointer = simpPointsPointer + 1;
 previousId = n.id;
 prvID = String.valueOf(previousId);

138

 }
 else
if(arrayOfDistance.get(simpPointsPointer.intValue()).equals(selfArray.get(i).getSimpDis
t())){

 n.id = simpPointsPointer+1;
 n.latitude =
simpPoints.get(simpPointsPointer.intValue()).getLatitude();
 n.longitude =
simpPoints.get(simpPointsPointer.intValue()).getLongitude();
 n.simpDist = selfArray.get(i).getSimpDist();
 n.speed = selfArray.get(i).getSpeed();
 n.heading = selfArray.get(i).getHeading();
 n.origDist = selfArray.get(i).getOrigDist();
 n.time = selfArray.get(i).getTime();
 n.nodeType = "main";
 trajectory.nodes.add(n);
 simpPointsPointer = simpPointsPointer + 1;

 SELFEdge e1 = new SELFEdge();
 e1.caption = "NEXT";
 e1.source = previousId;
 e1.target = simpPointsPointer;
 if(e1.source != e1.target-1){
 e1.noOfIntermediatePoints = 0;

 e1.between = (simpPointsPointer-1)+"-
"+simpPointsPointer;
 e1.edgeType = "BRANCH";
 System.out.println(e1.caption + "," +
comment+"_"+e1.source +"," +comment+"_"+e1.target +","+e1.edgeType +","+e1.between +
"," + e1.noOfIntermediatePoints +","+e1.simpDistWeight +","+ e1.origDistWeight);
 edgeString.add(e1.caption + "," +
comment+"_"+prvID +"," +comment+"_"+e1.target +","+e1.edgeType +","+e1.between + "," +
e1.noOfIntermediatePoints +","+e1.simpDistWeight +","+ e1.origDistWeight);

 trajectory.edges.add(e1);
 }

 e.caption = "NEXT";
 e.source = (simpPointsPointer-1);
 e.target = simpPointsPointer;
 e.edgeType = "MAINSTREAM";
 if(noofIntermediatePoints>0){

 e.noOfIntermediatePoints = noofIntermediatePoints;
 e.simpDistWeight =
 Double.parseDouble(String.format("%.3f",
arrayOfDistance.get(simpPointsPointer.intValue()-1) -
arrayOfDistance.get(simpPointsPointer.intValue()-2)));

 e.origDistWeight =
 Double.parseDouble(String.format("%.3f", selfArray.get(i).getOrigDist() -
selfArray.get(i-noofIntermediatePoints-1).getOrigDist()));

 }
 else{

 e.noOfIntermediatePoints = noofIntermediatePoints;

139

 }
 System.out.println(e.caption + "," + comment+"_"+e.source
+"," +comment+"_"+e.target +","+e.edgeType +","+e.between + "," +
e.noOfIntermediatePoints +","+e.simpDistWeight +","+ e.origDistWeight);
 edgeString.add(e.caption + "," + comment+"_"+e.source +","
+comment+"_"+e.target +","+e.edgeType +","+e.between + "," + e.noOfIntermediatePoints
+","+e.simpDistWeight +","+ e.origDistWeight);
 trajectory.edges.add(e);

 previousId = n.id;
 prvID = String.valueOf(previousId);
 noofIntermediatePoints = 0;
 }

/* Adding properties to the edges connecting intermediate nodes */
 else{
 noofIntermediatePoints = noofIntermediatePoints +1;

 n.id = Integer.parseInt(String.valueOf(simpPointsPointer
+""+(simpPointsPointer+1)+""+ (noofIntermediatePoints)));

 n.simpDist = selfArray.get(i).getSimpDist();
 n.speed = selfArray.get(i).getSpeed();
 n.heading = selfArray.get(i).getHeading();
 n.origDist = selfArray.get(i).getOrigDist();
 n.nodeType = "side";
 n.between = simpPointsPointer+"-"+(simpPointsPointer+1);
 n.time = selfArray.get(i).getTime();
 trajectory.nodes.add(n);
 e.caption = "NEXT";
 e.source = previousId;
 e.target = n.id;
 e.edgeType = "BRANCH";
 e.between = simpPointsPointer+"-"+(simpPointsPointer+1);
 previousId = n.id;
 trajectory.edges.add(e);
 System.out.println(e.caption + "," + comment+"_"+e.source
+"," +comment+"_"+e.target +","+e.edgeType +","+e.between + "," +
e.noOfIntermediatePoints +","+e.simpDistWeight +","+ e.origDistWeight);
 edgeString.add(e.caption + "," + comment+"_"+prvID +","
+comment+"_"+ String.valueOf(simpPointsPointer +"_"+(simpPointsPointer+1)+"_"+
(noofIntermediatePoints)) +","+e.edgeType +","+e.between + "," +
e.noOfIntermediatePoints +","+e.simpDistWeight +","+ e.origDistWeight);
 prvID = String.valueOf(simpPointsPointer
+"_"+(simpPointsPointer+1)+"_"+ (noofIntermediatePoints));

 }

 }

 /* Building the JSON document for the edges */
 GsonBuilder builder = new GsonBuilder();
 Gson gson = builder.create();
 String gsonString = gson.toJson(trajectory);

 return edgeString;

 }

Curriculum Vitae

Rajesh Tamilmani

2016 – 2017, MScEng., Geodesy and Geomatics Engineering, University of New

Brunswick, Canada

2014, Bachelor of Engineering in Geoinformatics, Anna University, Chennai, India

Publications:

Peer-Reviewed Journal Papers:

1. Tamilmani R, Stefanakis E, 2017. Enriched geometric simplification of linear

features. Geomatica Vol. 71, No.1, 2017, pp. 3 to 19. doi:

dx.doi.org/10.5623/cig2017-101

2. Tamilmani R, Stefanakis E, 2017. Semantically enriched simplification of

trajectories. – (under review)

3. Tamilmani R, Stefanakis E, 2017. Modelling and Analysis of Semantically

Enriched Simplified Trajectories using Graph Databases – (under review)

Conference Papers/Presentations:

1. Tamilmani, R., Stefanakis, E., “ESRI Web AppBuilder for rediscovering the

journey of an abandoned child”. The 2017 ESRI User Conference, November 14-15

2017, Halifax, Canada

2. Tamilmani, R., Stefanakis, E., “Enriched Geometric Simplification of Linear

Features”. The 2017 Graduate Research Conference (GRC), University of New

Brunswick, March 18 2017, Fredericton, Canada

