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ABSTRACT 

Multi-Scale maps provide a method of abstracting geographic features at different 

granularities. Polyline geometries are used to represent linear features, such as roads, 

rivers, and pipelines on maps.  Map generalization processes are in use to represent these 

features either at different scales.  Specifically, original geometries representing linear 

features at a large scale can be abstracted using a line simplification process. However, the 

simplification process may result in losing semantic attributes associated with the original 

geometries. This occurs as line simplification eliminates a series of points from the original 

geometries that contain attributes or characteristics relevant to the application domain. For 

example, points on the road network can contain information about accumulated length of 

the road, positional velocity, speed limit or accumulated gas consumption. This study 

adopts the SELF (Semantically Enriched Line simpliFication) data structure to preserve 

the length and other semantic attributes associated with individual points on linear 

geographic features at different granularities. SELF data structure has been implemented 

in PostgreSQL 9.4 with PostGIS extension and tested for both synthetic and real linear 

features such as rivers and pipelines.  Further, Synchronous Euclidean Distance (SED) 

based simplification has been implemented to consider the temporal dimension of 

trajectories.  The SELF data structure is built to preserve semantic attributes associated to 

individual points on original trajectories. Subsequently, a graph data model has been 

proposed to combine the simplified geometry of trajectory and the semantics lost during 

the simplification process. Original trajectories are simplified based on Synchronous 

Euclidean Distance (SED) and the Semantically Enriched Line simpliFication (SELF) data 

structure is built to preserve the semantics along with the simplified trajectories. These are 
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modelled in terms of nodes and edges into Neo4j graph database for performing trajectory 

data analysis.  Finally, a visualization tool has been developed on top of Neo4j graph 

database to support the semantic retrieval of trajectories at different granularities.  

Historical vessel trajectories were used to test the SELF structure at various levels of 

simplification.  The simplified versions of these trajectories along with their semantics 

were modelled, analyzed and visualized in Neo4j using Cypher query language and Neo4j 

spatial procedures.  
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1. Introduction 

Multi-Scale maps provide a method of abstracting geographic features at different 

granularities. Multi-Scale representation in geographical information system (GIS) 

applications solely depends on the cartographic generalization methods. Generalization is 

a collection of processes for abstracting the level of graphical details which can be 

presented at a particular map scale. The most common and fundamental generalization 

process is simplification, which removes the high-density vertices from the linear features 

(e.g. rivers, pipelines and roads) based on a given criterion. The process of simplification 

results in reducing the complexity and redundancy of linear features. In addition, the 

simplification process may result in losing the geometric properties associated with the 

original linear geometries, as a set of intermediate points will be eliminated. These 

intermediate points can contain attributes or characteristics depending on the application 

domain. For example, points on a road network can contain information about the 

accumulated length of the road, positional velocity, speed limit or accumulated gas 

consumption.  

The advent of satellite technologies has enabled the usage of GPS devices on 

moving objects. GPS devices mounted on moving objects generate streams of geo-location 

data, which describe the path travelled by the object during a period of time. This path is 

called trajectory.  Common application domains using trajectory data are city planning, 

transportation manage-ment systems, and other location-aware applications [K. Buchin et 

al. 2008]. In the era of big data, graph databases address the major challenges in 

management and analysis of voluminous data. The concept of storing and representing data 

in terms of nodes, edges and properties makes graph databases different from relational 
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databases and well suited for trajectory data management systems [Stefanakis 2017]. 

Spatial analysis capabilities have already been added to graph database systems. For 

instance, Neo4j, one of the most prevalent graph database systems, provides of a spatial 

plugin called Neo4j Spatial to facilitate spatial operations on geo-spatial data modelled 

using graphs [Neo4j Spatial Plugin 2017]. 

This thesis focuses on retaining the semantics lost during the process of 

simplification of linear geographic features including trajectories. This research 

commenced with implementing SELF (Semantically Enriched Line simpliFication) data 

structure for static linear features [Stefanakis 2015]. Further, an implementation of the 

SELF structure for dynamic linear features has been carried out. Finally, a graph model for 

representing simplified trajectories along with their semantics has been proposed.  This 

model can facilitate the analysis and visualization of simplified trajectories using graph 

databases.  This is an article-based thesis, which is presented and supported through the 

following three papers: 

Paper 1 (Peer Reviewed) 

Tamilmani R, Stefanakis E, 2017. Enriched geometric simplification of linear features. 

Geomatica Vol. 71, No.1, 2017, pp. 3 to 19. doi: dx.doi.org/10.5623/cig2017-101 

Paper 2 (Under Review) 

Tamilmani R, Stefanakis E, 2017. Semantically enriched simplification of trajectories.  

 

Paper 3 (Under Review) 

Tamilmani R, Stefanakis E, 2017. Modelling and Analysis of Semantically Enriched 

Simplified Trajectories using Graph Databases.  

1.1 Thesis Structure 

This research is presented as a five-chapter, article-based thesis, Figure 1.1. Chapter 

1 introduces the motivation for this research. The next three chapters (Chapter 2 to Chapter 
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4) present peer reviewed or under review articles, at the moment of drafting the thesis. 

Chapter 5 provides a summary and conclusion of the presented research as well as future 

opportunities. In Chapters 2 through 4, the primary research was conducted by the first 

author while the co-author provided supplementary advice on content. 

 

 

 

 

 

 

Figure 1.1 Thesis structure 

1.2 Background 

1.2.1 Cartographic Generalization 

Map generalization is an important concept in cartography that aims at abstracting 

(or reducing) the level of details on a map at different scales [Weibel 1996]. While there 

are considerable processes in map generalization, such as selection, combination, 

smoothing, enhancement and simplification, the fundamental and common generalization 

process in cartography is simplification. Simplification is the process of removing high-

density vertices from the linear map features (e.g. rivers, pipelines and roads) based on a 

given criterion.  The Douglas-Peucker algorithm is extensively used for simplifying lines 
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and provides a simplified version of an original line by controlling the offset while 

minimizing the distortion. The simplified version is formed only by retaining a subset of 

the vertices and this results in a considerable reduction in length of the line based on a 

threshold parameter provided by the user [Douglas et al. 1973]. As a result, the 

accumulated length at each point on the original line is not preserved in the simplified line.  

1.2.2 Trajectory Simplification 

Over the years the usage of GPS devices in mobility vehicles has increased 

exponentially and massive amounts of data are being generated by these devices. This data 

is used in various public and business applications such as urban transportation planning, 

fleet management and traffic modelling [K. Buchin et al. 2008].  The enormous volume of 

data does not allow for analytical methods to be applied. For example, a trip duration of 30 

minutes, with the location being recorded every 5 seconds, will result in a total of 360 

points. In a single day, the dataset will grow to 17,280 points.  It necessitates the 

identification of the methods for reducing the complexity of the dataset while retaining its 

main characteristics. The process of reducing the volume of a trajectory dataset is called 

trajectory reduction or simplification. The process of trajectory reduction has evolved from 

cartographic generalization. 

The Douglas-Peucker (DP) algorithm is a recursive approach for simplifying linear 

features.  It takes as input the original linear geometry and a threshold distance. The 

simplified version of the linear geometry is generated by controlling the offset while 

minimizing the distortion.  At the end of a recursive process, only a subset of the vertices 

is retained to form the simplified geometry. The resultant geometry ends up in reduction in 
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length [Douglas et al. 1973].  Douglas-Peucker algorithm has limited scope to be utilized 

in trajectory simplification.  DP simplification algorithm does not consider the temporal 

dimension (time) associated with the vertices of trajectories.  Furthermore, the semantics 

(e.g. speed, heading and distance travelled) of those points of the original line (trajectory) 

eliminated by the simplification are not preserved in the simplified version.  As DP 

algorithm has the limitation of not being able to consider the temporal dimension of a 

trajectory, the notion of the Synchronous Euclidean Distance (SED) was introduced by 

Meratnia and de By.  The basic idea of SED is to retain certain points which are more 

significant in forming the trajectory than other points as they better convey the trajectory 

characteristics for a particular application domain. 

Over the years, researchers have focused on modelling and analyzing trajectories 

using graphs.  However, the tremendous amount of data points contained in trajectories 

turns the handling of graphs inefficient.  

1.2.3 SELF (Semantically Enriched Line simpliFication) 

SELF data structure has been introduced by Stefanakis [2015] to enrich the 

simplified line with semantics associated to the original version while achieving efficient 

generalization of trajectories by any of the simplification algorithms. The author has 

defined two variants in SELF structure based on how detailed the semantics attached to the 

simplified geometry are to be.   

The basic variant of SELF attaches the original line length (e.g., kilometric travel 

distance) to the simplified line. In this variant, a line with end points 1 (start), n (end), and 
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total length (dn) will be represented by a simplified line defined as follows [Stefanakis 

2015]: 

[x1, y1, xn, yn, dn] (SELF variant: basic) 

An advanced variant for function lines will also tag the accumulated length per 

vertex along the line. Hence, each vertex K of the original line will orthogonally be 

projected on the simplified line and the footprint point K′ will be assigned the accumulated 

length dk from point 1 (start) to vertex K along the original line. If dk′ is the Euclidean 

distance of point K′ from end point 1, the simplified line will be represented as follows 

[Stefanakis 2015]: 

[x1, y1, xn, yn, dn, ARRAY {(dk′, dk); k=2, …, n-1}] (SELF variant: advanced-function) 

For supporting the trajectory data enrichment, the advanced variant of SELF 

structure has been extended to tag trajectory semantics: speed, heading, time and distance 

travelled. DP-SED algorithm works well for trajectory simplification, as it retains the 

spatiotemporal characteristics of the trajectory. Each point on the original trajectory is 

projected on the generalized version based on SED. The footprint of each point will be 

assigned with speed, heading, time and distance travelled at that point.  

[x1, y1, xn, yn, dn, ARRAY {(dk′, speed, heading, time, dk); k=1, …, n}] (SELF variant: trajectory) 

1.3 Research Topic 

The primary purpose of this research is to retain the semantic and geometric 

attributes associated with individual locations of original linear features and trajectories in 

their simplified versions. This has been accomplished by enriching the representation of 
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the simplified lines with an array of values corresponding to multiple locations along the 

original lines.  To this end, a graph model to represent the simplified geometry of 

trajectories along with their semantics has been proposed. Then, trajectories can be 

analyzed using Cypher query language and Neo4j spatial procedures.  A visualization tool 

on top of Neo4j is developed for semantic interpolation at different of trajectory 

simplification.  

1.4 Problem Statement 

The massive trajectory dataset becomes difficult to handle as the millions of raw data 

points make the processing complex. Thus, trajectory simplification techniques should be 

utilized to reduce the number of points in a trajectory.  While the traditional simplification 

algorithms use the distance offset as a criterion to eliminate the redundant points, temporal 

dimension in trajectories should also be considered in retaining the points which convey 

both the spatial and temporal characteristics of the trajectory.  At the same time, the 

simplification process results in losing the geometric and semantic attributes associated 

with the intermediate points on the original geometries. 

1.5 Research Objectives 

The primary purpose of this research is to retain the geometric (length) and semantic 

attributes associated with individual locations of original linear features by associating the 

semantic values to the simplified geometry as an array of values corresponding to multiple 

locations along the simplified geometry [Stefanakis 2015].  
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The specific research objectives are as follows:  

• Implement SED based trajectory simplification technique to consider spatio-

temporal data in trajectory generalization  

• Implement the SELF structure to support static and dynamic polylines and to 

test with both synthetic and real world features.  

• Propose a graph model for combining simplified geometry of trajectory and 

SELF structure and perform trajectory data analysis on the modelled data using 

Cypher query language and Neo4j spatial procedures. 

• Develop a visualization tool on top of Neo4j for semantic interpolation at 

different levels of trajectory simplification 

1.6 Data 

The datasets used for demonstrating the effectiveness of the SELF structure in 

semantic interpolation include both public domain data and open source data. Table 1.1 

lists out the datasets used in each chapter. These datasets are freely available for everyone 

to use. The study area for the chapter 2 includes linear features from New Brunswick 

province while the chapters 3 and 4 involve historical trajectory data of moving vessels 

collected over the Aegean Sea.  

Table 1.1 Data sources and description 

Data Type Source Location Description Chapter 

ESRI 

Shapefiles 

(Linear 

geometries) 

GeoNB Data 

Catalogue 

[2014] 

New 

Brunswick, 

Canada 

Three river 

streams, which 

are part of the 

“North Tay 

River,” the 

“Waasis Stream” 

Chapter 2 

Tamilmani, 

R., 

Stefanakis, E., 

[2017] 
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and the “South 

Branch 

Rusagonis 

Stream,” as well 

as two pipelines, 

which are part of 

the “MNP 

Moncton 

Lateral” and the 

“MNP Utopia 

lateral”. 

Comma-

Separated 

Value file 

containing 

individual 

locations and 

semantics of 

the moving 

vessel 

MarineTraffic 

Automatic 

Identification 

System [2017] 

Aegean Sea, 

Greece 

Individual 

locations and the 

sematic attributes 

of the moving 

vessels in the 

Aegean Sea 

Chapter 3 

and 4 

Tamilmani, 

R., 

Stefanakis, E., 

[2017] 

 

1.7 Chapter Summaries 

In Chapter 1, the background information, motivation, and structure of the thesis 

have been presented.  In addition to that, the overall concepts of cartographic generalization 

and trajectory simplification have been introduced and the limitations of the existing 

methods were described. 

Chapter 2 describes the steps followed in implementing the SELF structure for 

managing static linear features.  The literature review part of this chapter discusses about 

cartographic generalization and introduces the SELF data structure for linear features. The 

implemented algorithm applies two kinds of compression on the SELF structure known as 

Point level and Segment level.  The effectiveness of SELF data structure in semantic 
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interpolation at different levels of simplification is tested with both synthetic and real world 

features.  

Chapter 3 provides a literature review about trajectory simplification and briefly 

describes the SED based simplification and SELF structure for dynamic linear features. 

Further, the steps followed to implement SED simplification technique and build the SELF 

structure are described. Explanations of the experiments with various real-world 

trajectories have been presented. 

Chapter 4 introduces a graph model for transforming the semantically enriched 

simplified trajectory to a graph.  Nodes and edges can then be analyzed using graph query 

languages and ad-hoc geospatial procedures in a graph database.  This chapter also 

discusses the functionality of a visualization tool developed for helping the user in 

performing semantic interpolation at different levels of simplification.  

Chapter 5 concludes this research. This chapter also discusses the future potential 

of this research.  
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2. Enriched geometric simplification of linear features 

Abstract 
 

Polyline geometries are used to represent linear features such as roads, rivers and 

pipelines on maps. The generalization process ends up with a polyline that represents the 

feature at either a different resolution or different scale. In addition, the simplification 

process may result in losing the geometric properties associated with the intermediate 

points on the original geometries. These intermediate points can contain attributes or 

characteristics depending on the application domain. For example, points on the road 

network can contain information about accumulated length of the road, positional velocity, 

speed limit or accumulated gas consumption. This paper involves implementing the SELF 

(Semantically Enriched Line simpliFication) data structure to preserve the length attributes 

associated to individual points on actual linear features [Stefanakis 2015]. The number of 

points to be stored in the SELF structure is optimized by applying alternative compression 

techniques. The data structure has been implemented in PostgreSQL 9.4 [2014] with 

PostGIS [2016] extension using PL/pgSQL to support static and non-functional polylines. 

Extended experimental work has been carried out to better understand the impact of 

simplification to both synthetic and real (natural and artificial) linear features such as rivers 

and pipelines. The efficiency of SELF structure in regard to geometric property 

preservation was tested at various levels of simplification. 

Reprinted from Geomatica Vol. 71, Tamilmani R, Stefanakis E, 2017. Enriched 

geometric simplification of linear features. No.1, 2017, pp. 3 to 19. doi: 

dx.doi.org/10.5623/cig2017-101   
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2.1 Introduction 

Multi-Scale maps provide a method of abstracting the Earth’s geographic features 

using different levels of detail at multiple scales. While this concept has existed for 

hundreds of years, multi-scale representation in geographical information system (GIS) 

applications solely depend on the cartographic generalization methods. Generalization is 

the process of simplifying the level of graphical details which can be presented at a 

particular map scale. The most common and fundamental generalization process is 

simplification, which removes the high-density vertices from the linear features (e.g., 

rivers, pipelines and roads) based on a given criterion. The process of simplifying aides in 

reducing the complexity and redundancy in a dataset.  

The Douglas-Peucker algorithm is extensively used for simplifying lines and 

provides a simplified version of an original line by controlling the offset while minimizing 

the distortion. The simplified version is formed only by retaining a subset of the vertices 

and this results in a considerable reduction in length of the line based on threshold 

parameter provided by the user  [Douglas et al. 1973]. As a result, the accumulated length 

at each point on the original line is not preserved in the simplified line. The detailed study 

on Douglas-Peucker algorithm demonstrates that it is the most visually effective line 

simplification algorithm [Wu et al. 2003]. In Fig. 2.1, only the first and last points of 

original line are retained in the simplified line. The Douglas-Peucker algorithm also retains 

some intermediate points depending on the threshold distance. 

 

 

file:///C:/Users/alice/Downloads/Polyline%20geometries%20are%20used%20to%20represent%20the%20linear%20features%20such%20as%20roads,%20rivers,%20and%20pipelines%20on%20maps.%20The%20process%20of%20simplifying%20the%20geometry%20by%20means%20of%20Sampling%20and%20generalization%20produces%20the%20polylines%20which%20has%20a%20length%20smaller%20than%20that%20of%20the%20original%20geometries.%20In%20addition%20to%20that%20the%20simplification%20process%20may%20end%20up%20in%20losing%20the%20semantics%20associated%20with%20the%20actual%20line%20features.%20The%20semantic%20loss%20is%20directly%20proportional%20to%20the%20scale%20of%20the%20map.%20This%20paper%20involves%20in%20implementing%20the%20SELF%20(Semantically%20Enriched%20Line%20simpliFication)%20to%20overcome%20the%20above%20problem.%20The%20implemented%20method%20will%20preserve%20the%20attributes%20and%20semantic%20characteristics%20associated%20to%20the%20actual%20linear%20features.%20The%20data%20structure%20has%20been%20implemented%20to%20support%20static%20and%20non-functional%20polylines%20and%20tested%20with%20both%20sample%20and%20real%20world%20features.%20The%20structure%20can%20be%20extended%20to%20real%20time%20spatiotemporal%20features,%20like%20vessel%20trajectories.
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FIGURE 2.1 : COMPARISON OF ORIGINAL (SOLID ORANGE) AND THE SIMPLIFIED (BLUE DASHED) 

VERSION 

This paper presents an implementation of the SELF (Semantically Enriched Line 

simpliFication) data structure for static linear features that preserves the length attribute 

associated with individual locations of original lines, especially for the accumulated length 

on original lines. This attribute is associated to the simplified line as an array of values 

corresponding to multiple locations along the simplified line. The SELF structure can store 

any semantic annotations associated with individual locations or segments of the original 

line [Stefanakis 2015].  

The purpose of this research is to retain the geometric (length) attribute associated 

with individual locations of original lines. This has been accomplished by associating the 

accumulated length values to the simplified segment as an array of values corresponding 

to multiple locations along the simplified segment [Stefanakis 2015]. The research 

objectives are: 

1. To implement the SELF structure to support static and non-functional 

polylines and to test with both synthetic and real world features.  

 

2. To compare the interpolated distance values using SELF structure at 

different levels of simplification. 

 

This paper is organized as follows. Section 2.2 provides a literature review about 

cartographic generalization and introduces the SELF data structure for linear features. 
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Section 2.3 describes the steps followed to implement the SELF structure. Section 2.4 

presents PostGIS functionalities and explanations of the experiment with various real world 

features. Section 2.5 summarizes the contribution of this paper and introduces future 

developments for the SELF data structure with respect to dynamic lines and testing with 

various application domains.  

2.2 Literture Review  

2.2.1 Cartographic Generalization 

Generalization is an important concept in cartography that aims at simplifying the 

level of details on a map at different scales [Weibel 1996]. While there are considerable 

techniques in generalization such as selection, combination, smoothing, enhancement and 

simplification, the fundamental and common generalization process in cartography is 

simplification. Simplification of linear features has acquired a continuous growth of 

research over the years by cartographers [Cromley 1991, Weibel 1997, Robinson et al.  

2005]. 

The Douglas-Peucker line simplification algorithm, an improved classis, was 

introduced to address the problem of topological inconsistency between original and 

simplified 2D polylines. The algorithm avoids the self-intersections on the simplified 

version [Wu et al. 2003]. Line simplification algorithms have been experimented in a 

streaming environment where the amount of storage is limited, so that all the points cannot 

be stored [Abam 2010]. 

Richter et al. [2012] introduced the concept of semantic trajectory compression 

which allows for compression of trajectory data while permitting minimal and acceptable 
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loss in the information associated with the individual points on the trajectory. This 

information depends on the application domain and the nature of the trajectory. The 

algorithm they proposed enables a user to determine the reference point and all possible 

movement change descriptions from that point. 

Various techniques have been proposed to enforce the topological constraints while 

simplifying a polyline [ Shahriari and Tao 2002, Titus et al. 2015, QiuLei et al. 2016]. 

According to Shahriari and Tao there is no simplifying algorithm that calculates the 

threshold values based on the desired accuracy level. The authors propose adaptive 

tolerance line simplification in which the user supplies the target level for desired accuracy 

and the simplification tolerance value is calculated accordingly. Recently, a series of 

attempts have been made to enrich the content of linear features to address the problem of 

annotating trajectories with semantic data.  [Alvares et al. 2007, Yan et al.  2011, Richter 

et al.  2012, Parent et al.  2013].  

SELF data structure has been introduced by Stefanakis [2015] to enrich the 

simplified line to convey some semantics associated with the original version. He 

categorized the lines as functional or non-functional based on their relation between the 

originals and simplified lines (Fig. 2.2). Further, the author provided an algorithm for 

decomposing non-functional lines into a finite number of functions.  
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FIGURE 2.2: A FUNCTIONAL LINE SIMPLIFIED INTO A STRAIGHT-LINE SEGMENT. POINT K’ AS A 

PROJECTION OF VERTEX K WILL BE ASSIGNED WITH THE ACCUMULATED LENGTH OF THE ORIGINAL LINE FROM 

ONE END POINT TO VERTEX K. 

 

2.2.2 SELF (Semantically Enriched Line simpliFication) 

SELF is a data structure that preserves the attributes of the original line or any 

semantic annotations associated with individual locations or segments of that line 

[Spaccapietra et al.2008] into the generalized version. SELF has many variations 

depending on how rich the semantics attached to the simplified line are. 

The basic variant of SELF attaches the original line length (e.g., kilometric travel 

distance) to the simplified line. In this variant, a line with end points 1 (start), n (end), and 

total length (dn) will be represented by a simplified line defined as follows [Stefanakis 

2015]: 

[x1, y1, xn, yn, dn] (SELF variant: basic) 

An advanced variant for function lines will also tag the accumulated length per 

vertex along the line. Hence, each vertex K of the original line will orthogonally be 

projected on the simplified line (Fig. 2.2) and the footprint point K′ will be assigned the 

accumulated length dk from point 1 (start) to vertex K along the original line. If dk′ is the 
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Euclidean distance of point K′ from end point 1, the simplified line will be represented as 

follows [Stefanakis 2015]: 

[x1, y1, xn, yn, dn, ARRAY {(dk′, dk); k=2, …, n-1}] (SELF variant: advanced-

function) 

2.3 Methodology 

A Polyline can be represented as a sequence of points {P1, P2 …. Pn}, where Pi is 

a vertex on the polyline and n is the number of points on the polyline. The simplified line 

using Douglas-Peucker algorithm with the user defined threshold, always has the number 

of vertices which is less than or equal to the number of vertices on the original line. 

The goal of the SELF structure is to retain the accumulated length at each point on 

the original line, along with the accumulated length of the corresponding point on the 

simplified line in the SELF structure.  

The algorithm is divided into six steps: 

1. Finding the orthogonally projected vertex on the simplified line for each point 

on the original line 

2. Identifying the category of the original line. The categories are static functional 

lines, static non-functional lines [Stefanakis 2015] 

3. Calculating the accumulated length at each intermediate point on the original 

line and corresponding projected point on the simplified line 

4. Remove the individual segment based on the segment compression threshold 

and the points based on the point compression threshold 

5. Identifying and managing special cases    

6. Computation of the accumulated length on the original line at any point on the 

simplified line 
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2.3.1 Orthogonal projection of the point on the simplified line: 

 

The algorithm runs ST_SIMPLIFY (geometry, threshold) method in PostgreSQL 

which operates based on the Douglas-Peucker algorithm. Each point on the original line is 

projected vertically on the simplified line. 

In Fig. 2.3 the coordinate of point “C” which is the perpendicular projection of point 

“D” on the line “AB” can be computed by algorithm 2.1. Fig. 2.4 illustrates the orthogonal 

projection of all the points on the original line. 

 

 

 

                                                               FIGURE 2.3: POINT ‘D’ IS VERTICALLY PROJECTED ON THE LINE ‘AB’ 

 

 

 

Algorithm 2.1: Finding the orthogonal projection of the point on the simplified line (Fig. 2.3) 

Input: 

1. Starting Point of the simplified line (A) 

2. Ending Point of the simplified line (B) 

3. Point on the original line to be projected on the simplified line (D) 

Output: 

1. Orthogonally projected point on the simplified line returned as geometry type 

Steps: 

1. Retrieve the X and Y coordinate of the three input points 

2. Calculate the displacement (dAB) = (X (B) – X (A)) 2 + (Y (B) – Y (A)) 2; 

3. Find the Unit point (Up) = ((X (D)-X (A)) *(X (B) – X (A)) + (Y (D) – Y (A)) *(Y (B) – Y (A)) 

)/dAB; 

4. Finally, the X and Y coordinate of Point ‘C’ can be obtained by, 

        X(C) = X (A) + ( Up * (X (B) – X (A))); 

        Y(C) = Y (A) + ( Up * (Y (B) – Y (A))); 
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FIGURE 2.4: ILLUSTRATES THE ORTHOGONAL PROJECTION OF THE POINT ON THE SIMPLIFIED LINE WHERE THE       

STARTING AND THE ENDING POINTS OF BOTH SIMPLIFIED AND ORIGINAL VERSIONS ARE THE SAME. 

 

2.3.2 Identifying the line type: 

In case of a functional line, each point on the simplified line corresponds to a single 

point on the original line. On the other hand, a point on the simplified line may correspond 

to multiple points on the original line and these types of lines belong to a non-functional 

category. The SELF method proposes the decomposition of non-function into a set of 

functions [Stefanakis 2015]. In Fig. 2.5 the point “B” on the simplified line corresponds to 

the points “B1” and “B2”. Similarly, the points “C1” and “C2” on the original line are 

projected to the same point “C” on the simplified line. Therefore, the original line should 

be decomposed into three parts: {1…C1}, {C1….A1}, {A1…n} as shown in the Fig. 2.6 by 

algorithm 2.2 

 

 

 

 

 

 

 

 

 

FIGURE 2.5: A NON-FUNCTION LINE SIMPLIFIED INTO A STRAIGHT-LINE SEGMENT 
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FIGURE 2.6: RESULT OF DECOMPOSING THE NON-FUNCTION INTO THREE FUNCTIONS 

 

 

 

 

Algorithm 2.2: Decomposing the Non-functional line into functions 

Input: 

1. Geometry of the non-functional line to be decomposed  

2. Threshold value for running Douglas-Peucker(DP) algorithm 

Output: 

1. Functional lines as an array 

Steps: 

1. Define array of geometry to store the functional lines (A) 

2. Create a new function(F1) to store the points 

3. Store the starting point of the non-functional line in F1 

4. Run the DP algorithm for getting the simplified line geometry 

5. FOR EACH point ‘P’ on the original line (P excludes the ending point of a line) 

1. Find the orthogonally projected point ‘P’ on the simplified line (P’) 

2. Find the orthogonal projection of the point P+1 (P1’) 

3. Calculate the accumulated length at the point P’(L1), P1’(L2) on the 

simplified line 

4. If L2 > L1 then 

i. Add the point P+1 to F1 

ii. Create a line geometry using the points in F1 

iii. Add the created line to the array A 

iv. Create a new function (F2)  

v. Add the point P+1 to F2 

5. ELSE 

i. Add the point P+1 to F1  

6. END 

6. END 

7. RETURN the array A 
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2.3.3 Calculating the accumulated length at each point 

Advanced variant for SELF structure, tags the accumulated length per vertex along 

the line. As shown in the Fig. 2.7, each point on the original line is projected orthogonally 

on the simplified line. For each vertex on the original line, the corresponding point on 

simplified is annotated with the accumulated length until the (n-1)th point on the original 

line. The entire SELF structure is represented as follows: 

               FIGURE 2.7: A TABLE SUMMARIZING THE LENGTH MEASURES OF A SIMPLE LINE OF 11 VERTICES 

2.3.4 Compression Levels 

SELF structure generates a large volume of data which is proportional to the 

number of vertices in the original line. In order to diminish the volume, two compression 

methods can be applied: (a) point level (b) segment level. These methods are described in 

the following sections. 

 

 

[ POINT (0,0), POINT (10,0), 11.6, {(1,1.4),(2,2.4),(3,3.8),(4,4.8),(5,6.2),(6,7.2),(7,8.2),(8,9.6),(9,10.6) } ] 
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2.3.4.1 Point Level 

If the ratio between the original length connecting three intermediate points and the 

simplified length of the corresponding projected points on the simplified line is less than 

the given threshold, then the accumulated length at the middle point is not stored (Fig. 2.8).  

 

 

 

 

 

 

 

 

 
 

FIGURE 2.8: CONSECUTIVE POINTS A, B AND C ARE PROJECTED ON THE SIMPLIFIED LINE 

 

 

Point level compression ratio =  

If three points form a straight line (collinear points), then the middle point is not stored. 

In Fig. 2.9 the accumulated length at point B is not stored as the points A, B, and C form 

the straight line. 

[ POINT (0,0), POINT (10,0), 11.6 , { 

(1,1.4),(2,2.4),(3,3.8),(4,4.8),(5,6.2),(6,7.2),(7,8.2),(8,9.6),(9,10.6) } ] 

 

 

FIGURE 2.9: POINTS A, B AND C ARE FORMING THE STRAIGHT LINE 
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2.3.4.2 Segment Level 

In case of multiple straight lines forming the simplified line, the segment level 

threshold can be applied. In Fig. 2.10, if the ratio between original length of the segment 

(LAB) and simplified length (L′AB) of the segment is within the threshold, then all the points 

belonging to that segment are ignored. 

 

Segment level compression ratio =  

 

 

 

 

 

 

FIGURE 2.10: THE SIMPLIFIED LINE HAS THREE SEGMENTS AB, BC, AND CD 

 

2.3.5 Special cases 

Not all parts of the original line may always be bounded by the area defined by the 

perpendicular lines to the end points of the simplified line. In Fig. 2.11, the points A, B, C, 

D, E, F and G do not fall within the region of the simplified line.  
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In this case, the starting point 1 is assigned with the points A, B, C as an array of 

intervals and the end point n is assigned with the points D, E, F, and G. 

 

 

 

 

 

FIGURE 2.11: PROJECTION OF ORIGINAL POINTS ON THE SIMPLIFIED LINE 

 

 

Algorithm 2.4: Computation of the accumulated length on the original line at any point of the 

simplified line 

Input: 

1. Geometry of the simplified line  

2. SELF structure of the simplified line 

3. Point on the simplified line (P’) 

Output: 

1. Computed length at P (P is the point projected at P’) 

Steps: 

5. Find the distance between starting point and point P’ (dp’) 

6. FOR EACH pair (dk’,dk) IN THE SELF array 

7. IF dk’ > dp’ 

a. Retrieve the pairs (dk’,dk) and (dk-1’,dk-1)  

b. Use linear interpolation within the retrieved pairs to compute the accumulated 

length dp 

8. END 

9. RETURN dp 
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Algorithm 2.3: Building the SELF structure 

Input: 

1. Line geometry to be simplified 

2. Threshold value for running Douglas-Peucker (DP) algorithm 

3. Segment level compression threshold value (ST) 

4. Point level compression threshold value (PT) 

Output: 

1. SELF advanced structure 

Steps: 

1. Define the object of SELF structure (SELF) 

2. Add the starting point, ending point and the actual length of original line to 

SELF 

3. Define the two-dimensional array for storing the accumulated length (AL) 

4. Run DP algorithm for getting the simplified line geometry 

5. Find the number of segment in the simplified line 

6. FOR EACH segment(S) in the simplified line 

a. IF segment level compression ratio > ST THEN 

1. FOR EACH point ‘P’ on the Segment S (P excludes the starting 

and last two points on the original line) 

1. IF point level compression ratio at point P > PT THEN 

2. Find the orthogonally projected point on the simplified 

line (P’) 

3. Calculate the accumulate length at the point P(Lp) on 

the original line 

4. IF P’ IS NOT ON THE SIMPLIFIED LINE THEN 

a. Accumulated length at the point P’(Lp’) = 0 or 

Length of the original line (decided based on 

either P’ is close to Starting point or ending 

point) 

5. ELSE 

a. Calculate the accumulated length at the point 

P’(Lp’) on the simplified line 

6. END  

7. Add Lp, Lp’ to the array AL 

8. END 

2. END 

b. END 

7. END 

8. Add the accumulated length array to SELF 

9. RETURN the SELF structure (SELF) 
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2.3.6 Computation of the accumulated length on the original line at any point on the 

simplified line 

The SELF structure built using algorithm 2.3 [Appendix 1] can be used to compute the 

accumulated length on the original line at any point on the simplified line. In Fig. 2.12, the 

accumulated length at ‘P’ can be calculated by applying a linear interpolation on the 

segment defined by the projection of vertices (6, 1) and (7, 1) on the simplified line. The 

algorithm 2.4 is used for computing the length at P. 

FIGURE 2.12: P′  (6.5, 0) IS THE ORTHOGONAL PROJECTION OF P (6.5, 1) 

2.4 Implementation 

The data structure has been implemented in PostgreSQL 9.4 using PL/pgSQL. The 

spatial extension PostGIS 2.3 has been installed in PostgreSQL 9.4 (PostgreSQL, 

PostGIS). The implemented algorithm takes a single linear feature and performs Douglas-

Peucker line simplification, which is available in PostGIS (ST_SIMPLIFY). The simplified 

version is then associated with the SELF data structure and the compressed structure based 

on user-defined segment level threshold and the point level threshold. The user can select 

any point on the simplified line to retrieve the original accumulated distance. The 

experiments were performed on pipeline and river network data. 
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2.4.1 PostGIS Extension 

Table 2.1 summarizes the built-in functions available with PostGIS extension that 

were utilized for developing the SELF data structure. For each function, the input and 

output parameters are also listed in the table. 

TABLE 2.1: BUILT-IN POSTGIS FUNCTIONS USED IN DEVELOPING ALGORITHMS (SOURCE: 

HTTP://WWW.POSTGIS.NET/DOCS/) 

FUNCTION INPUT OUTPUT 

ST_NPoints — Return the number of points (vertexes) in a 

geometry. Line GEOMETRY 

number of points 

in a geometry as 

INTEGER 

ST_PointN — Return the Nth point in the Line geometry. GEOMETRY of a 

line string, 

integer n 

Nth point in a 

single line string 

as GEOMETRY 

ST_Length — Returns the 2D length of the geometry in 

meters 
GEOMETRY 

2D Cartesian 

length of the 

geometry as 

FLOAT 

ST_StartPoint — Returns the first point of a LINESTRING 

geometry as a POINT. 
Line GEOMETRY 

Line 

GEOMETRY 

ST_EndPoint — Returns the last point of a LINESTRING 

geometry as a POINT. 
Line GEOMETRY 

Point 

GEOMETRY 

ST_X — Return the X coordinate of the point Point GEOMETRY FLOAT 

ST_Y — Return the Y coordinate of the point Point GEOMETRY FLOAT 

ST_Distance — For geometry type Returns the 2D 

Cartesian distance between two geometries in projected units 

(based on spatial ref). 

GEOMETRY g1, 

GEOMETRY g2 
FLOAT 

ST_AsText — Return the Well-Known Text (WKT) 

representation of the geometry/geography without SRID 

metadata. 

GEOMETRY TEXT 

ST_Simplify — Returns a "simplified" version of the given 

geometry using the Douglas-Peucker algorithm. 

GEOMETRY, 

THRESHOLD 

SIMPLIFIED 

GEOMETRY 

ST_MakeLine — Creates a Line string from array of points GEOMETRY array GEOMETRY 

 

2.4.2 SELF functions 

Using PL/pgSQL – procedural language for PostgreSQL, the SELF structure 

algorithms were added as new (user defined) functions. Eight new functions were 

implemented. The example statement for calling each user defined function is shown in 

http://www.postgis.net/docs/
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Table 2.2 along with the output. The functions are executed on two different linear 

geometries “testroad” (Fig. 2.12) and “nfroad” (Fig. 2.6) where “geom” is the geometry 

column in the corresponding PostGIS table. 

TABLE 2.2: USER-DEFINED FUNCTIONS AND EXAMPLE STATEMENTS FOR CALLING THE FUNCTIONS 

FUNCTION INPUT OUTPUT 

SELF_PP_POINT— Returns orthogonal projection 

of a point on the simplified line. 

Starting Point, Ending 

Point, Point to be projected  

Point GEOMETRY 

Select ST_ASTEXT(SELF_PP_POINT(ST_MakePoint(0,0), ST_MakePoint(10,0),ST_MakePoint(5,1))); 

Output : POINT(5 0) 

SELF_SLP_DIFF – Function for finding the slope 

difference between three consecutive points. This 

function is used to discard the middle point of three 

consecutive points which form the straight line. 

Returns the array of slope difference values for each 

point on the line (excludes starting and ending point). 

line geometry Array of numbers  

0 – Three points form 

straight line 

> 0 – Positive slope 

between three points 

< 0 – Negative slope 

between three points 

select SELF_SLP_DIFF(geom) from testroad; 

Output : {-100,100,-100,-100,100,0,-100,100,0} 

“testroad” contains 11 points. Excluding the starting and ending points the output array contains the slope difference 

for the 9 intermediate points. 

SELF_ACC_LEN – Function to calculate the 

accumulated length at each point on the line 

line geometry Array of numerical values 

select SELF_ACC_LEN(geom) from testroad; 

Output : {1.41,2.4,3.8,4.8,6.2,7.2,8.2,9.6,10.6,11.6} 

SELF_CHK_PT— Function to check whether the 

projected point is on the simplified line or NOT. 

Starting Point, Ending 

Point, Point to be projected 

Returns the number based 

on the following criteria: 

0 – On the line 

1 – Close to end point 

2 – Close to Starting point 

select SELF_CHK_PT(ST_MAKEPOINT(0,0),ST_MAKEPOINT(10,0),ST_MAKEPOINT(5,0)); 

Output : 0 

SELF_ADV_CB— To build the SELF structure line geometry, Douglas 

Peucker threshold, Segment 

Level compression ratio, 

Point level compression 

ratio 

Advanced SELF 

Structure 

select SELF_ADV_CB(geom,1000.0,0.0,0.0) from testroad; 

Output: [ POINT (0,0), POINT (10,0), 11.6, {(1,1.4), (2,2.4), (3,3.8), (4,4.8), (5,6.2), (6,7.2), (7,8.2), (8,9.6), 

(9,10.6)} ] 
 

SELF_ADV_ASTEXT– To display the SELF 

structure in user understandable format 

SELF structure Text explaining the SELF 

structure 
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select SELF_ADV_ASTEXT(SELF_ADV_CB(geom,500.0,10.0,0.0)) from testroad; 

Output : SPOINT(0 0) -- EPOINT(10 0) – Actual Length: 11.657 – Accumulated Distance: 

","1.000,1.414","2.000,2.414","3.000,3.828","4.000,4.828","5.000,6.243","7.000,8.243","8.000,9.657” 

SELF_NS – Decomposing the Non-functional lines 

into set of function lines 

line geometry Array of functional 

geometries 

select ST_ASTEXT(UNNEST(SELF_NS(geom))) from nfroad; 

Output :   "LINESTRING(0 0,1 1,2 1,3 0,4 0,5 1)" 

 "LINESTRING(5 1,4 2,3 2)" 

                   "LINESTRING(3 2,4 3,5 3,6 2,7 1,8 0,9 0,10 0)" 

SELF_BUILD – Builds the SELF structure and 

returns the simplified geometry with SELF structure 

stored in the attribute table 

line geometry, Douglas 

Peucker threshold, Segment 

Level compression ratio, 

Point level compression 

ratio 

Simplified geometry with 

SELF structure stored in its 

attribute table 

select SELF_BUILD(geom,1000.0,0.0,0.0) from testroad; 

Output: Simplified geometry with SELF structure stored in the attribute table 

SELF_ITP_DIST_ML - To interpolate the distance 

using SELF structure 

Simplified line geometry, 

SELF structure, point  

Array of interpolated 

distances 

select 

SELF_ITP_DIST_ML(ST_SIMPLIFY(geom,500.0),SELF_ADV_CB(geom,500.0,0.0,0.0),ST_MAKEPOINT(4,0)) 

from nfroad; 

Output :  {4.828,7.657,10.071} 

 

2.4.3 Experimental Data 

To demonstrate the effectiveness of the SELF structure in interpolating the distance, 

experimentation is done on five different linear features with different values for segment 

level and point level compression. Three river streams which are part of the “North Tay 

River”, the “Waasis Stream” and the “South Branch Rusagonis Stream,” as well as  two 

pipelines which are part of the “MNP Moncton Lateral” and the “MNP Utopia lateral” have 

been chosen. In order for the set of features to be representative of a wide range of 

topological characteristics, it was decided to select a set of linear features with different 

number of vertices.  
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TABLE 2.3: LENGTH AND THE NUMBER OF POINTS AVAILABLE IN THE SELECTED DATA 

 

The data has been downloaded from GeoNB (collaborative project of the 

Government of New Brunswick) website (GeoNB Data Catalogue) [2017]. Fig. 2.13 to 

2.17 show the original and simplified versions (DP threshold 500.0m) of river streams and 

pipelines, where the total number of points on the original line is mentioned in the figure 

captions.  

 

 

FIGURE 2.13: NORTH TAY RIVER (440 POINTS) 

 

 

 

 

FEATURE NAME 
LENGTH (in 

meters) 

TOTAL NUMBER OF 

VERTICES 
NORTH TAY RIVER 14723.185 440 

WAASIS STREAM 9026.166 305 

SOUTH BRANCH 

RUSAGONIS 
19853.897 461 

MNP MONCTON LATERAL 12271.853 250 

MNP UTOPIA LATERAL 8381.864 570 

FIGURE 2.14: WAASIS STREAM (304 POINTS) 

 

FIGURE 2.15: SB RUSAGONIS STREAM 

(461 POINTS) 
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2.4.4 Experiments 

The SELF structure has been built on the original line shown in Fig. 2.18 with 

Douglas-Peucker threshold 500.0 meters and both the segment and point level threshold 

values as 0. The original distance at each point on the simplified line is listed in Fig. 2.19  

 

 

FIGURE 2.18: ORIGINAL AND SIMPLIFIED VERSION (500 M DP THRESHOLD) OF A SAMPLE LINE 

FIGURE 2.16: MNP MONCTON LATERAL (250 

POINTS) 
FIGURE 2.17: MNP UTOPIA LATERAL (570 

POINTS) 
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FIGURE 2.19: A TABLE SUMMARIZING ACCUMULATED LENGTH AT EACH VERTICES OF ORIGINAL AND 

SIMPLIFIED LINE SHOWN IN FIG.2.13 

In Fig. 2.18 projection of points A, B and C are not falling on the simplified line. 

Thus, the accumulated length at the points A, B and C are stored along with the starting 

point of the simplified line because they are close to point 1. Similarly, the ending point 

‘n’ consists of the accumulated length at points M, N, O, P and Q where the projection of 

points N, O, P and Q do not fall on the simplified line (Table. 2.4). 

TABLE 2.4: INTERPOLATED DISTANCE AT EACH POINT CLICKED ON THE SIMPLIFIED LINE  

The original line shown in Fig. 2.20 contains 496 points. Some of the points and their 

orthogonal projection are shown in Fig. 2.21 to 2.25.  

 

POINT CLICKED 

ON THE 

SIMPLIFIED 

LINE 

1 D′ E′ F′ G′ H′ I′ J′ K′ L′ M′ n 

INTERPOLATED 

DISTANCE 

0.0 
1.4 

2.4 

3.8 

7.9 8.95 10.3 11.3 12.8 13.8 14.8 16.1 17.1 20.0 

29.6 

20.0 
21.4 

24.0 

25.4 
26.4 
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FIGURE 2.20: SIMPLIFIED LINE WITH 5 SEGMENTS AB, BC, CD, DE AND EF 

  

 

 

 

            

 

 

 

 FIGURE 2.21: SAMPLE POINT1                                                    FIGURE 2.22: SAMPLE POINT2 
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 FIGURE 2.23: SAMPLE POINT3                                                                                   FIGURE 2.24: SAMPLE POINT4 

 

 

 

 

 

 

  

                     FIGURE 2.25: SAMPLE POINT5 

Sample Point1 (Fig. 2.21) and Sample Point2 (Fig. 2.22) correspond to a point on 

the original line. Sample points 3 (Fig. 2.23), 4 (Fig. 2.24), 5 (Fig. 2.25) correspond to 5, 

3, 3 points on the original line accordingly. Table.2.5 lists the interpolated distance at all 5 

sample points at different values of segment level compression. At 40.0% (i.e. ratio 

between original length and simplified length of the segment < 40.0) segment compression 
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level, all the points are lost. Wherever there is “NO CHANGE” the length is interpolated 

correctly.  

TABLE 2.5: INTERPOLATED DISTANCE AT DIFFERENT VALUES FOR SEGMENT LEVEL COMPRESSION THRESHOLD 

 

 

 

 

 

 

 

 

There are three possibilities while running algorithm 2.4 to compute the 

accumulated length on the original line at any point of the simplified line from SELF 

structure. Depending on the outcome, the error in interpolation is classified as follows: 

1. Interpolated distance is greater than original accumulated length – Negative 

error 

2. Interpolated distance is less than original accumulated length – Positive error 

3. Interpolated distance is equal to original accumulated length – Zero error 

 

Similarly, the distance at all 496 points is interpolated by algorithm 2.4. Fig. 2.26 

& 2.27 compares the maximum (Positive error), minimum (Negative error) and standard 

deviation in the interpolated distance at various levels of compression.  
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FIGURE 2.26: ERROR IN INTERPOLATED DISTANCE VS SEGMENT LEVEL COMPRESSION VALUES 

 

 

 

 

 

 

       FIGURE 2.27: ERROR IN INTERPOLATED DISTANCE VS POINT LEVEL COMPRESSION VALUES 

Segment level compression produces higher positive and negative error than point 

level compression (Fig. 2.26 & 2.27). As a consequence of segment level compression, the 

entirety of segments (continuous points) which have the segment level compression ratio 

within the user-defined threshold are eliminated. This leads to an error in interpolation for 

the points which belong to the eliminated segment, whereas point level compression 

discards only certain points which are within the point level threshold. 
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The distance interpolation algorithm (Algorithm 2.4) has been run with different 

levels of compression on these datasets (Table. 2.6).  

TABLE 2.6: AVERAGE ERROR IN DISTANCE INTERPOLATION USING SELF-STRUCTURE 

 

It can be seen from Fig. 2.28 that the percentage error increases when the level of 

compression is increased. Noticeably, average error for “NORTH TAY RIVER” suddenly 

increases after 7% of point level compression. The increase in compression level will 

discard more points from SELF structure (Fig. 2.29), though this number would change 

due to the different topological complexity of the datasets. Consequently, the level of 

compression can be decided based on the application and the required accuracy in distance 

interpolation.  

10 20 30 2 4 7 10 10 20 30 2 4 7 10
440 376 NA NA 102 40 14 6 440 440 440 103 41 14 6

Compression % 14.55 NA NA 76.82 90.91 96.82 98.64 0 0 0 76.59 90.68 96.82 98.64

Average Error 3.19 NA NA 6.77 13.75 24.36 70.28 0 0 0 0.13 8.55 8.64 11.97

305 304 257 173 189 132 87 56 305 305 173 190 132 87 56

Compression % 0.33 15.74 43.28 38.03 56.72 71.48 81.64 0 0 43.28 37.7 56.72 71.48 81.64

Average Error 0 9.93 11.33 2.21 3.35 3.66 4.39 0 0 0 -1.18 -0.88 3.01 3.06

461 457 154 NA 175 93 30 16 461 418 NA 177 94 30 16

Compression % 0.87 66.59 NA 62.04 79.83 93.49 96.53 0 9.33 NA 61.61 79.61 93.49 96.53

Average Error 0 29.74 NA 1.35 7.89 14.04 20.7 0 0 0 5.34 8.48 12.91 26.05

250 48 NA NA 4 4 4 2 250 250 250 4 4 4 2

Compression % 80.8 NA NA 98.4 98.4 98.4 99.2 0 0 0 98.4 98.4 98.4 99.2

Average Error -0.45 NA NA 19.15 19.15 19.15 20.02 0 0 0 16.97 16.97 16.97 17.43

570 570 570 570 8 7 7 5 570 570 570 8 7 7 5

Compression % 0 0 0 98.6 98.77 98.77 99.12 0 0 0 98.6 98.77 98.77 99.12

Average Error 0 0 0 39.9 41.53 41.53 43.72 0 0 0 24.49 25.84 25.84 26.87

Threshold for Douglas-Peucker Algorithm

Feature Name Length

14723.185NORTH TAY RIVER

Points SEGMENT LEVEL POINT LEVEL POINT LEVEL

500 1000
SEGMENT LEVEL

WAASIS STREAM

SOUTH BRANCH RUSAGONIS STREAM

MNP MONCTON LATERAL

MNP UTOPIA LATERAL

9026.166

19853.897

12271.853

8381.864
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2.5 Conclusions  

This paper involved implementing the SELF (Semantically Enriched Line 

simpliFication) data structure to preserve the geometric characteristics associated to the 

actual linear features. Currently, the data structure has been implemented in PostgreSQL 

9.4 with PostGIS extension using PL/pgSQL to support static and non-functional polylines 

and tested with both synthetic and real world features.  

The algorithm applies two kinds of compression: point level and segment level. The 

segment level compression eliminates entire segments (continuous points) which has the 

segment level compression ratio within the user-defined threshold, while point level 

compression discards only certain points which are within the point level threshold. 

However, the results of the experiments indicate that the different topological complexity 

of the datasets play a major role in distance interpolation error. 

FIGURE 2.28: AVERAGE ERROR IN INTERPOLATED DISTANCE VS 
POINT LEVEL COMPRESSION VALUES 

 

 

FIGURE 2.29 : % OF COMPRESSION VS 
POINT LEVEL COMPRESSION VALUES 
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Future work includes the implementation of the SELF structure extension to 

support    spatio temporal lines. This will result in an enriched library of PL/pgSQL function 

to support the simplification of both static and dynamic lines. 

Recoding this library to other programming languages (such as Python) so that it 

can be embedded into other commercial or open source GIS software packages is another 

future goal. Lastly, special attention will be given in developing a framework to facilitate 

the adoption of the SELF structure in various application domains with need for 

semantically enhanced multiscale representation of linear features. Applications may need 

to retain the accumulated length of the road, positional velocity, speed limit or accumulated 

gas consumption in the road network. In a hydrographic network, the river depth or width 

can be expressed using the SELF structure.   
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3. Semantically enriched simplification of trajectories 
 

Abstract 
 

 Moving objects that are equipped with GPS devices generate huge volumes of 

spatio-temporal data. This spatial and temporal information is used in tracing the path 

travelled by the object, so called trajectory. It is often difficult to handle this massive data 

as it contains millions of raw data points. The number of points in a trajectory is reduced 

by trajectory simplification techniques. While most of the simplification algorithms use the 

distance offset as a criterion to eliminate the redundant points, temporal dimension in 

trajectories should also be considered in retaining the points which convey both the spatial 

and temporal characteristics of the trajectory. In addition to that the simplification process 

may result in losing the semantics associated with the intermediate points on the original 

trajectories. These intermediate points can contain attributes or characteristics depending 

on the application domain.  For example, a trajectory of a moving vessel can contain 

information about distance travelled, bearing, and current speed. This paper presents the 

implementation of the Synchronous Euclidean Distance (SED) based simplification to 

consider the temporal dimension and building the Semantically Enriched Line 

simpliFication (SELF) data structure to preserve the semantic attributes associated to 

individual points on actual trajectories. The SED based simplification technique and the 

SELF data structure have been implemented in PostgreSQL 9.4 with PostGIS extension 

using PL/pgSQL to support dynamic lines. Extended experimental work has been carried 

out to better understand the impact of SED based simplification over conventional 

Douglas-Peucker algorithm to both synthetic and real trajectories.  The efficiency of SELF 
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structure in regard to semantic preservation has been tested at different levels of 

simplification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

3.1 Introduction  

Over the years, technological advancements have enabled the usage of GPS devices 

in moving objects. These devices generate streams of points (locations) which form a path 

travelled by the moving object during a particular period of time. This traced path is known 

as trajectory. Trajectory data is commonly utilized in urban planning, fleet management 

systems, and other location-based service applications. With every trajectory containing 

enormous amount of data points, it is often required to reduce the data according to the 

application domain. The concept of trajectory reduction has evolved from the algorithms 

used in cartographic generalization for linear geometric features also known as 

simplification [Keates 1989]. The basic idea is to retain certain points which are more 

significant in forming the trajectory than other points as they better convey the trajectory 

characteristics for a particular context. For example, the point at which a sudden speed 

change occurs is more important than other points in vehicle movement tracking. The 

conventional generalization techniques for linear features (e.g., rivers, pipelines, and roads) 

remove the high-density vertices based on a given criterion.  

The Douglas-Peucker (DP) algorithm is a recursive approach for simplifying lines 

which takes the original linear geometry and a threshold distance as input. The simplified 

version is generated by controlling the offset while minimizing the distortion.  At the end 

of a recursive process, only a subset of the vertices is retained to form the simplified 

geometry. The resultant geometry ends up in reduction in length [Douglas et al. 1973]. DP 

simplification algorithm does not consider temporal dimension (time) associated with the 

vertices of the trajectories.  Furthermore, as a result of simplification the semantics (e.g. 

speed, heading and distance travelled) at each point on the original line (trajectory) are not 

Polyline%20geometries%20are%20used%20to%20represent%20the%20linear%20features%20such%20as%20roads,%20rivers,%20and%20pipelines%20on%20maps.%20The%20process%20of%20simplifying%20the%20geometry%20by%20means%20of%20Sampling%20and%20generalization%20produces%20the%20polylines%20which%20has%20a%20length%20smaller%20than%20that%20of%20the%20original%20geometries.%20In%20addition%20to%20that%20the%20simplification%20process%20may%20end%20up%20in%20losing%20the%20semantics%20associated%20with%20the%20actual%20line%20features.%20The%20semantic%20loss%20is%20directly%20proportional%20to%20the%20scale%20of%20the%20map.%20This%20paper%20involves%20in%20implementing%20the%20SELF%20(Semantically%20Enriched%20Line%20simpliFication)%20to%20overcome%20the%20above%20problem.%20The%20implemented%20method%20will%20preserve%20the%20attributes%20and%20semantic%20characteristics%20associated%20to%20the%20actual%20linear%20features.%20The%20data%20structure%20has%20been%20implemented%20to%20support%20static%20and%20non-functional%20polylines%20and%20tested%20with%20both%20sample%20and%20real%20world%20features.%20The%20structure%20can%20be%20extended%20to%20real%20time%20spatiotemporal%20features,%20like%20vessel%20trajectories.
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preserved in the simplified line.  As a result, Douglas-Peucker algorithm has limited scope 

to be utilized in trajectory simplification. For example, in Fig. 3.1, only the first and last 

points of original line are retained in the simplified line for a 50-meter threshold distance, 

because none of the perpendicular offset is greater than 50 meters regardless the temporal 

data associated with the intermediate points. Depending on the threshold distance some 

intermediate points can also be retained using the Douglas-Peucker algorithm. As DP 

algorithm has the limitation of not being able to consider the temporal dimension of a 

trajectory, the notion of the Synchronous Euclidean Distance (SED) was introduced by 

Meratnia and de By. 

FIGURE 3.1: COMPARISON OF ORIGINAL AND THE SIMPLIFIED VERSION WHEN DP-THRESHOLD IS 50 

METERS 

This chapter presents an implementation of DP with the notion of SED and 

combining it with SELF (Semantically Enriched Line simpliFication) data structure for 

dynamic linear features that preserves the semantic attributes (speed, heading and 

distance travelled) associated with individual locations of original trajectory. These 

attributes are associated with the DP-SED based simplified trajectory as an array of 

values corresponding to multiple locations along the simplified trajectory [Stefanakis 

2015].  
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The purpose of this chapter is twofold. First, to involve the temporal dimension in 

the simplification of trajectories. Second, to retain the semantic (speed, heading and 

distance travelled) attributes associated with individual locations of original trajectories. 

The latter has been done by associating the semantic values to the simplified geometry as 

an array of values corresponding to multiple locations along the simplified geometry 

[Stefanakis 2015].   

The overall objectives of this research work are: 

1. To implement SED based trajectory simplification technique to consider spatio-

temporal data in trajectory generalization 

 

2. To implement the SELF structure to support dynamic polylines and to test with 

both synthetic and real world features.  

 

3. To compare the interpolated semantic values using SELF structure at different 

levels of trajectory generalization 

 

The chapter is organized as follows. Section 3.2 provides a literature review about 

trajectory simplification and briefly describes the SED based simplification and SELF 

structure for dynamic linear features. Section 3.3 presents the steps followed to 

implement SED simplification technique and build the SELF structure in 

PostgreSQL/PostGIS. Section 3.4 presents PostGIS functionality and explanations of the 

experiments with various real-world trajectories. Section 3.5 summarizes the contribution 

of this paper and introduces future developments for the SELF data structure with respect 

to testing with various application domains.  
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3.2 Literture Review  

3.2.1 Trajectory Generalization 

Over the years the usage of GPS devices in moving vehicles have increased 

exponentially and massive amount of data is being generated by these devices. The 

generated data is used in various public and business applications such as urban 

transportation planning, fleet management and traffic modelling [K. Buchin et al. 2008].  

The enormous volume of data makes it impossible to analyze the data manually. For 

example, during the trip length of 30 minutes, if the location is being recorded for every 5 

seconds a total of 360 points are recorded. In a day, the dataset contains 17,280 points.  It 

necessitates to identify the methods for reducing the complexity of the dataset. The concept 

of reducing a trajectory dataset is called trajectory reduction or simplification. The idea of 

trajectory reduction has evolved from cartographic generalization.  Simplification, the 

common cartographic generalization technique, has been a key research area for 

cartographers over the years [Cromley 1991, Weibel 1997, Robinson et al. 2005, Wu et al. 

2003]. 

The Douglas-Peucker (DP) algorithm has been revamped by many researchers 

since it was introduced in 1973. The problem of topological inconsistency between original 

and simplified geometry produced by DP algorithm was addressed by avoiding self-

intersections on the simplified geometry [Wu et al. 2003]. The problem of limited data 

storage space is addressed by experimenting the line simplification algorithms in a 

streaming environment [Abam 2010]. Various techniques have been proposed to enforce 

the topological constraints while simplifying a polyline [Shahriari and Tao 2002, Tienaah 

et al. 2015, QiuLei et al. 2016].   
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Meanwhile, enriching the content of linear features has gained attention to address 

the problem of annotating trajectories with semantic data. [Alvares et al. 2007, Yan et al. 

2011, Richter et al. 2012, Parent et al. 2013, Stefanakis 2015]. The trajectory sample points 

have been transformed into stops and moves by adding semantic information [Alvares et 

al. 2007]. Though the implemented model has shown significant compression of 

trajectories while enabling efficient query processing, the preprocessing of adding 

semantic information to trajectories is a time-consuming operation. The semantic 

enrichment platform SeMiTri, multi-tiered approach, was presented to handle 

heterogeneous trajectories (includes both fast and slow-moving objects). The trajectory 

generalization platform based on Hidden Markov Model (HMM) technique has not 

considered trajectories in large scale [Yan, Z., et al. 2011]. Richter et al. [2012] extended 

concepts of network-constrained indexing in mobility object to embed human movement 

with the individual locations on the trajectory. The algorithm they proposed enables a user 

to determine the reference point and all possible movement change descriptions from that 

point but is limited only to urban transport network. 

The problem of spatial relation violation while compressing the trajectories was 

addressed to maintain disjoint topological relation and direction relations between the 

original and generalized trajectory [Stefanakis 2012]. The author has extended DP 

algorithm to maintain the topological consistency between the trajectory and its simplified 

version.   
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 3.2.2 Synchronous Euclidean Distance (SED) 

Most of the simplification algorithms are suitable for generalizing linear 

geometries. In these algorithms the data points are retained only based on the perpendicular 

distance between data points and the proposed generalized version of it. While these 

algorithms can also be applied on trajectory datasets, using the perpendicular distance as a 

criterion becomes inappropriate as trajectories are not just linear geometries. Trajectories 

represent historical trace of points by associating temporal dimension with spatial data. 

With the above idea, the notion of the Synchronous Euclidean Distance (SED) was 

introduced to achieve reduction of trajectories while retaining the spatio temporal 

characteristics of the trajectory [Meratnia and de By 2004].   The authors have implemented 

and tested the DP-SED algorithm (extension of Douglas-Peucker algorithm with the notion 

of SED). The proposed algorithm retains the spatiotemporal characteristics while reducing 

the trajectories efficiently. Fig. 3.2 demonstrates how SED is calculated between simplified 

and original geometry.  

 

FIGURE 3.2: THE SYNCHRONOUS EUCLIDEAN DISTANCE (SED). 

In Fig. 3.2, the locations X, Y, Z represent the position of a moving vessel at the 

timestamps tX, tY, tZ where tX < tY < tZ.  The spatiotemporal footprint of Y (i.e. Y′) is 

calculated with respect to the velocity of trip VXZ.  The Euclidean distance YY′ is known 

(t
Y
- t

x
) 
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as the SED for the point Y. The perpendicular distance applied in DP algorithm is lesser or 

equal to the SED (YY′) as the line YY′  is not perpendicular to the straight line XZ.   

3.2.3 Semantically Enriched Line Simplification (SELF) 

On the one hand, efficient generalization of trajectories can be achieved by DP-

SED algorithm while retaining the spatiotemporal characteristics of the trajectory. 

However, the generalized version does not retain the semantics associated with the 

individual points on the original trajectory. SELF data structure has been introduced by 

Stefanakis [2015] to enrich the simplified line to convey some semantics associated with 

the original version. In the attempt of enriching the content of the linear geometries while 

reducing the number of points, SELF data structure is proposed to preserve the attributes 

of the original line or any semantic annotations associated with individual locations or 

segments of that line [Spaccapietra et al. 2008] into the generalized version [Stefanakis 

2015]. The author has proposed many variations of SELF and the choices can be made 

based on how rich the semantics attached to the simplified line are. 

The basic variant of SELF attaches the original line length (e.g., kilometric travel 

distance) to the simplified line. In this variant, a line with end points 1 (start), n (end), 

and total length (dn) is represented by a simplified line defined as follows [Stefanakis 

2015]: 

[x1, y1, xn, yn, dn] (SELF variant: basic) 

An advanced variant for function lines also tags the accumulated length per 

vertex along the line. Hence, each vertex K of the original line is orthogonally projected 
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on the simplified line (Fig. 3.1) and the footprint point K′  is assigned the accumulated 

length dk from point 1 (start) to vertex K along the original line. If dk′  is the Euclidean 

distance of point K′  from end point 1, the simplified line can be represented as follows 

[Stefanakis 2015]: 

[x1, y1, xn, yn, dn, ARRAY {(dk′, dk); k=2, …, n-1}] (SELF variant: advanced-

function) 

In this paper, the advanced variant of SELF structure has been extended to tag 

trajectory semantics: speed, heading, and distance travelled. Each point on the original 

trajectory is projected on the generalized version based on SED. The footprint of each 

point will be assigned with speed, heading and distance travelled at that point.  

      [x1, y1, xn, yn, dn, ARRAY {(dk′, speed, heading, dk); k=1, …, n}] (SELF variant: 

dynamic lines). 

3.3 Methodology 

3.3.1 SED Simplification 

Trajectories are formed by connecting a series of raw mobility data points. These 

individual data points include the spatiotemporal locations (latitude, longitude, time).  

The simplified line using Douglas-Peucker algorithm with the user defined threshold 

always considers perpendicular distance as a criterion to eliminate the redundant points. 

The goal of the SED based simplification is to also consider temporal dimension 

of trajectory data while generalizing the trajectory.   
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The algorithm is divided into four steps: 

1. Constructing the trajectory using the individual points (Trajectory Reconstruction) 

2. Calculating the average velocity of the trip 

3. Identify the corresponding SED point for every point on the original line 

4. Removing the points by comparing the SED against the simplification threshold 

 

3.3.1.1 Constructing the trajectory using the individual points (Trajectory 

Reconstruction) 

Raw points ordered by the timestamp are connected sequentially to form the 

trajectory. These data points are in the form (time, latitude, longitude).  Ten (10) points 

along with their corresponding attributes are given in Table 3.1; their individual locations 

are mapped in Figure 3.3 and the constructed trajectory is shown in Figure 3.4.  

TABLE 3.1: ATTRIBUTE TABLE FOR THE TRAJECTORY POINTS SHOWN IN FIGURE.3.3 
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FIGURE 3.3: INDIVIDUAL POINTS ON THE TRAJECTORY 

 

 

 

FIGURE 3.4: FORMED TRAJECTORY AFTER CONNECTING INDIVIDUAL POINTS 

 

3.3.1.2 Calculating the average velocity of the trip 

Average velocity of the trip is defined as the ratio between the straight-line length of the 

trip and the total duration of the trip. 

Average velocity = (Straight line distance between starting and ending point)/ (Total duration of 

the trip) 
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FIGURE 3.5: STRAIGHT LINE CONNECTING STARTING AND ENDING POINTS OF TRAJECTORY 

In Fig. 3.5, the average velocity is 20 meters/second. In case of multiple segments 

connecting the starting and ending points, the average velocity is calculated for each 

segment and retrieved as an array of numeric values (Fig. 3.6). 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.6: AVERAGE VELOCITY CALCULATION FOR MULTI SEGMENT LINE 

Algorithm 3.1: Finding the average velocity of the trip (Fig. 3.5) 

Input: 

1. Raw mobility points ordered by timestamp 

Output: 

1. Average velocity as a numeric value 

Steps: 

1. Retrieve the starting and ending points on trip 

2. Calculate the straight-line distance between starting and ending 

points of the trip(d) 

3. Find the duration of trip(t) = ending time – starting time  

4. Average Velocity = d/t  
5. RETURN the average velocity 
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3.3.1.3 Identify the corresponding SED point for every point on the original line 

For each point on the original line the corresponding SED point is identified by 

calculating the distance from starting point to the SED point. 

Distance to SED point = Average Velocity * Time of travel at the original point 

TABLE 3.2: DISTANCE TO EACH SED POINT ON STRAIGHT LINE FROM STARTING POINT (FIG. 3.7) 

Based on the distance to SED point, for each point algorithm 3.3 is executed to find the 

location of the SED points.  

 

 

Point ID 1 2 3 4 5 6 7 8 9 10 

SED Points 1 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10 

Time (Sec) 0 1 2 3 4 5 6 8 10 12 

Distance to SED point 

(metre) 
0 20 40 60 80 100 120 160 200 240 

FIGURE 3.7: INDIVIDUAL POINTS ON THE TRAJECTORY AND THE CORRESPONDING SED POINTS ON 

THE STRAIGHT LINE 
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3.3.1.4 Removing the points by comparing SED distance against simplification 

threshold 

SED based simplification algorithm takes the set of points ordered by timestamp and a 

threshold distance as input. The recursive algorithm divides the trajectory based on the 

SED against the threshold distance. Once the corresponding locations of all the points on 

the original trajectory are identified on the straight line connecting the first to the last 

point, the algorithm finds all points for which the SED is longer than threshold distance. 

Algorithm 3.2: Calculating distance to each SED point from starting point on straight line 

Input: 

1. Raw mobility points ordered by timestamp 

Output: 

1. Distance to each point as an array of numeric value 

Steps: 

1. Define the numeric array (SED_DIST) to store the distance values 

2. Calculate the average velocity of the trip (Algorithm 1) 

3. FOR EACH point ‘P’ in the input data 

a. Find the time difference between P and starting point 

b. Multiply the time difference and average velocity of the trip 

c. Add the multiplied value to SED_DIST 

4. END 

5. RETURN the array SED_DIST 

Algorithm 3.3: Finding the point on the line based on the distance from starting point 

Input: 

1. Starting point (SP) 

2. Ending point (EP) 

3. Distance from starting point (dp) 

Output: 

1. Point on the straight line returned as geometry type (C) 

Steps: 

1. Calculate the distance between SP and EP (d) 

2. Find the ratio(r) between d and dp 

3. The X and Y coordinate of point ‘C’ can be obtained by,  

X(C) = (1-r) * X(SP) + r * X(EP); 

Y(C) = (1-r) * Y(SP) + r * Y(EP); 

4. RETURN the point ‘C’ 
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The point with longest SED is marked to be retained for the next iteration. For the next 

iteration, two straight line segments are compared against original trajectory. When there 

are no points found with an SED longer that the threshold, the algorithm terminates.  Fig. 

3.8 demonstrates the SED based simplification algorithm in generalizing a trajectory. In 

the iteration 1, for each point on the original trajectory its corresponding SED projection 

on the straight line connecting 1 and 10 is found. Point 6 has the maximum SED and 

greater than the threshold (30 meters). So, point 6 is retained. For the next iteration, the 

intermediate simplified line contains two segments 1-6 and 6-10. Again, for each original 

point its corresponding SED projection point is found on the intermediate simplified 

version. This time point 5 has the maximum SED (>30 meters). At the end of second 

iteration the intermediate simplified line contains three segments 1-5, 5-6, 6-10.  The 

iteration continues until there are no points to be retained. In this case, the algorithm 

terminates in the 6th iteration as then none of the points have an SED greater than the 

threshold (30 meters). 

 

 

FIGURE 3.8: THE SED BASED SIMPLIFICATION ALGORITHM 
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3.3.2aBuilding SELF structure based on SED simplification 

The goal of the SELF structure is to retain the semantics at each point on the original 

trajectory along with the corresponding SED point on the generalized version. 

The algorithm is divided into four steps. 

1. Finding the SED projection for each point on the original trajectory on the 

simplified trajectory 

2. Calculating the accumulated distance at each point on the original trajectory 

and its SED projection point on the generalized trajectory 

3. Remove the individual points based on the change in speed and heading 

4. Interpolation of the semantics on the original trajectory at any point on the 

generalized version 

 

Algorithm 3.4: SED based simplification 

Input: 

1. Raw mobility points ordered by timestamp 

2. Simplification threshold (T) 

Output: 

1. Retained points after simplification as an array (SP) of geometry type  

Steps: 

1. Define the geometry array for storing the retained points (SP) 

2. Construct the trajectory by joining all the raw data points in the order of timestamp 

3. Add first and last points of trajectory to the array SP 

4. Form the straight line (L) by joining starting point and ending point of the trajectory 

5. FOR EACH point ‘P’ in the raw mobility data 

a. Find it’s corresponding SED point (P’) on the line L 

b. Find the distance(dp) between P and P’ 

c. IF dp > T AND dp is the furthest distance THEN 

i. Add the point ‘P’ to the geometry array SP 

d. END 

e. EXIT WHEN no more points with furthest distance greater than T 

6. END 

7. Form the intermediate simplified line based on the retained points and assign it to L 

8. Recursive call to the loop  

9. RETURN the geometry array(SP) 
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3.3.2.1 Finding the SED projection for each point on the original trajectory on the 

simplified trajectory 

The algorithm takes as input the generalized trajectory obtained as an output of algorithm 

3.4.  Then each point on the original trajectory is projected on the generalized version 

based on SED. 

 

Algorithm 3.5: Finding the SED projection for each point on the original trajectory on the 

generalized asdfasdfsadf version 

Input: 

1. Geometry of the generalized version 

2. Constructed original trajectory by connecting raw data points (ordered by timestamp) 

Output: 

1. SED projection points as an array (SP) of geometry type 

Steps: 

1. Define the geometry array for storing the SED projection points (SP) 

2. FOR EACH segment (S) in the geometry of generalized version 

a. Calculate the average velocity (V) over the segment S using algorithm 1 

b. FOR EACH point (P) in the segment ‘S’ 

i. Find the time difference (T) between P and starting point of the segment  

ii. Multiply T and V to get the distance to SED point from starting point of 

the segment 

iii. Use multiplied value to find the point(P’) on the segment by algorithm 3 

iv. Add the point P’ to the array SP 

c. END 

3. END 

4. RETURN the array SP 

FIGURE 3.9: SED PROJECTION OF EACH POINT ON THE SIMPLIFIED TRAJECTORY 
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3.3.2.2 Calculating the accumulated distance at each point on the original trajectory 

and its SED projection point on the generalized trajectory 

SELF structure for dynamic lines stores the semantics associated with individual points 

on the original trajectory along the generalized version. As shown in Fig. 3.9, each point 

on the original trajectory is projected based on the SED on the generalized version. 

For each point on the original trajectory, the corresponding SED point is tagged with the 

semantics. The entire SELF structure is represented as follows: 

[ SPOINT (482980 4101964), EPOINT (483220 4101964), 322.843, 

{(0.000,0,311,0.00), 

(30.594,233.261,200,42.426), (61.188,233.261,111,52.426), 

(91.782,233.261,200,123.137), 

(122.376,233.261,311,133.137), (152.971,233.261,200,203.848), 

(166.523,233.261,111,213.848), (193.628,77.7538,200,284.559), 

(220.734,77.7538,311,294.559), (247.839,77.7538,0,322.843)}] 

 

whereas, the semantic array contains the values in the order (accumulated length on the 

generalized version, speed, heading, accumulated length on the original trajectory). 

 

 

TABLE 3.3: TABLE SUMMARIZING SEMANTICS AT EACH LOCATIONS OF ORIGINAL AND 

GENERALIZED TRAJECTORY IN FIG. 3.8 
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3.3.2.3 Semantic based Compression Levels 

SELF structure generates a large volume of data which is proportional to the number of 

points in the original trajectory.  The number of points to be stored in SELF structure can 

be diminished by applying a semantic based compression: (a) Speed based compression 

(b) Heading based compression. These methods are described in following sub-sections. 

3.3.2.3.1 Speed based compression 

If the ratio of speed between two consecutive points on the original trajectory is less than 

the given threshold, then the semantics at second point is not stored. 

 

Speed based compression ratio =  

Algorithm 3.6: Building the SELF structure 

Input: 

1. Raw mobility data points 

2. Threshold value for running SED based simplification (algorithm 3.4) 

Output: 

1. SELF advanced structure 

Steps: 

1. Define the object of SELF structure (SELF) 

2. Construct the original trajectory by ordering the points based on timestamp 

3. Add the starting point, ending point and the actual length of original trajectory to 

SELF 

4. Define the array for storing the accumulated length and other semantics (AL) 

5. Run SED based simplification algorithm for getting the generalized version 

6. Find the number of segments in the generalized version 

7. FOR EACH segment(S) in the simplified line 

8. FOR EACH point ‘P’ on the Segment S  

9. Find the SED projection point on the generalized version (P’) 

10. Calculate the accumulate length at the point P(Lp) on the original trajectory 

11. Calculate the accumulated length at the point P’(Lp’) on the simplified line 

12. Add Lp, Lp’ and other semantics (heading, speed) to the array AL 

13. END 

14. END 

15. Add the array AL to SELF 

16. RETURN the SELF structure (SELF) 
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In Fig. 3.10 the semantic at point 7 is not stored as the ratio of speed between the points 6 

and 7 is zero.  

3.3.2.3.2 Heading based compression 

In case of heading based compression, the semantics of the points are not stored if the 

ratio of heading between two consecutive points is less than the threshold.   

 

Heading based compression ratio =  

In Fig. 3.10 the heading based compression ratio between points 6 and 7 is 44.5 %. The 

semantics at point 7 will not be stored in SELF structure when the heading based 

compression ratio applied as 50.0 %. 

The self structure after applying both the speed based and heading based compression 

thresholds as (10.0, 10.0) for trajectory data given in Table 3.1 is: 

 

FIGURE 3.10: SED PROJECTION OF EACH POINT ON THE SIMPLIFIED TRAJECTORY AND THE SEMANTICS 

 

TABLE 3.4: SPEED AND HEADING BASED COMPRESSION RATIO BETWEEN POINTS (DATA SOURCE: TABLE 3.1) 
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[ SPOINT (482980 4101964), EPOINT (483220 4101964), 322.843, 

{(0.000,0,311,0.00), 

(30.594,233.261,200,42.426), (61.188,233.261,111,52.426), 

(91.782,233.261,200,123.137), 

(122.376,233.261,311,133.137), (152.971,233.261,200,203.848), 

(166.523,233.261,111,213.848), (193.628,77.7538,200,284.559), 

(220.734,77.7538,311,294.559), (247.839,77.7538,0,322.843)}] 

3.3.2.4 Interpolation of the semantics on the original trajectory at any point on the 

generalized version 

 The SELF structure built using algorithm 3.6 can be used to interpolate the semantics on 

the original trajectory at any point on the generalized version of it.  In Fig. 3.11, the 

semantics at ‘P’ can be calculated by applying a linear interpolation on the segment 

defined by the projection of vertices ‘8’ and ‘9’ on the simplified trajectory. The 

algorithm 3.7 is used for computing the semantics at P. 

TABLE 3.4: SPEED AND HEADING BASED COMPRESSION RATIO BETWEEN POINTS (DATA SOURCE : TABLE 3.1) 

 

FIGURE 3.11: P’ IS THE SED PROJECTION OF P 
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3.4 Implementation 

SED based simplification algorithm and SELF data structure have been 

implemented in PostgreSQL 9.4 using PL/pgSQL. The spatial extension PostGIS 2.3 has 

been installed in PostgreSQL 9.4 (PostgreSQL, PostGIS). The implemented algorithm 

takes a set of raw mobility points and simplification threshold as input. The simplified 

version is then associated with the SELF data structure. The user can select any point on 

the simplified trajectory, to retrieve the original semantics. The experiments were 

performed on a sea vessel trajectory dataset obtained in Aegean Sea, Greece. 

3.4.1 PostGIS Extension 

Table 3.5 summarizes the built-in functions available with PostGIS extension that 

were utilized for implementing SED based simplification algorithm and developing the 

SELF data structure. The table describes each function’s input and output parameters. 

Algorithm 3.7: Interpolation of the semantics on the original trajectory at any point on the 

generalized version 

Input: 

1. Geometry of the generalized version 

2. SELF structure of the generalized version 

3. Point on the generalized version at which the semantics have to be interpolated (P’) 

Output: 

1. Interpolated semantics at P (P is the point projected at P’) 

Steps: 

1. Find the distance between starting point and point P’ (dp’) 

2. FOR EACH value IN THE SELF array 

3. IF simplified accumulated length > dp’ 

a. Retrieve the semantics at previous position and the next position  

b. Use linear interpolation within the retrieved semantics to interpolate the 

semantics at point P 

4. END 

5. RETURN the interpolated semantics 
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TABLE 3.5: BUILT-IN POSTGIS FUNCTIONS USED IN DEVELOPING ALGORITHMS (SOURCE: 

HTTP://WWW.POSTGIS.NET/DOCS/) 

FUNCTION INPUT OUTPUT 
ST_PointN — Return the Nth point in the Line 

geometry. 

GEOMETRY of a 

line string, 

integer n 

Nth point in a single line 

string as GEOMETRY 

ST_Length — Returns the 2D length of the 

geometry in meters 

GEOMETRY 2D Cartesian length of 

the geometry as FLOAT 

ST_StartPoint — Returns the first point of a 

LINESTRING geometry as a POINT. 

Line GEOMETRY Line  

GEOMETRY 

ST_EndPoint — Returns the last point of a 

LINESTRING geometry as a POINT. 

Line GEOMETRY Point 

GEOMETRY 

ST_X — Return the X coordinate of the point Point GEOMETRY FLOAT 

ST_Y — Return the Y coordinate of the point Point GEOMETRY FLOAT 

ST_Distance — For geometry type Returns the 2D 

Cartesian distance between two geometries in 

projected units (based on spatial ref). 

GEOMETRY g1, 

GEOMETRY g2 

FLOAT 

ST_AsText — Return the Well-Known Text (WKT) 

representation of the geometry/geography without 

SRID metadata. 

GEOMETRY TEXT 

ST_Simplify — Returns a "simplified" version of 

the given geometry using the Douglas-Peucker 

algorithm. 

GEOMETRY, 

THRESHOLD 

SIMPLIFIED 

GEOMETRY 

ST_MakeLine — Creates a Line string from array 

of points 

GEOMETRY array GEOMETRY 

3.4.2 SELF functions 

Using PL/pgSQL, the procedural language for PostgreSQL, both the SED based 

simplification and SELF structure algorithms were added as new (user defined) functions. 

Eleven new functions were implemented. The example statement for calling each user 

defined function is shown in Table 6 along with the output.  The functions are called on 

the synthetic trajectory dataset ‘TR2’ (Fig. 3.4). 

TABLE 3.6: USER-DEFINED FUNCTIONS AND EXAMPLE STATEMENTS FOR CALLING THE FUNCTIONS 

FUNCTION INPUT OUTPUT 

SELF_AVG_VLCY— Returns the average 

velocity of the trip. 

Raw mobility data points 

(Spatial relation) 

Numeric value 

select SELF_AVG_VLCY (‘TR2’ :: regclass); 

Output: 20.0 

http://www.postgis.net/docs/
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SELF_ORIG_GEOM – Function for 

constructing the trajectory from raw mobility 

data points. 

Raw mobility data points 

(Spatial relation) 

Line geometry 

select ST_ASTEXT (SELF_ORIG_GEOM (‘TR2’ :: regclass)); 

Output: "LINESTRING (482980 4101964,483010 4101994,483020 4101994,483070 4101944,483080 

4101944,483130 4101994,483140 4101994,483190 4101944,483200 4101944,483220 4101964)" 

FIND_POINT – Function for finding the point 

on the line based on the distance from starting 

point 

Starting point, Ending 

Point, Distance to the 

point to be found 

Point geometry 

select ST_ASTEXT (FIND_POINT (ST_MAKEPOINT (0,0), ST_MAKEPOINT (10,0), 5.0)); 

Output: POINT (5,0) 

SELF_SED_SP — Function for calculating 

distance to each SED point from starting points 

on straight line 

Raw mobility data points 

(Spatial relation) 

Numeric array  

select SELF_SED_SP (‘TR2’ :: regclass); 

Output: { 0 , 20.0 , 40.0 , 60.0 , 80.0 , 100.0 , 120.0 , 160.0 , 200.0 , 240.0 } 

COUNT_POINTS— Function to count the 

number of points in the line geometry 

Line geometry Count of points as a 

numeric value 

select COUNT_POINTS (SELF_ORIG_GEOM (‘TR2’ :: regclass))); 

Output: 10 

SORT_ARRAY– Function to sort numeric 

array in descending order 

Numeric array Numeric array sorted in 

descending order 

select SORT_ARRAY ( ARRAY [ 1 , 2 , 3 , 2 , 5 ] ); 

Output: { 5 , 3 , 2 , 2 , 1 } 

CHK_PT – Function to check if the point is 

already present in the geometry array 

Point geometry array, 

Point geometry 

Returns the number 

based on the following 

criteria: 

0 – Not present 

1 - Present 

select CHK_PT (ARRAY [ POINT (1,1) , POINT (1,2) ] , ST_MAKEPOINT(1,1) ); 

Output:     1  

(The point (1,1) is present in the array) 

SED_SIMPFY – Function to build the 

simplified geometry of trajectory based on the 

SED distance 

Raw mobility data points 

(Spatial relation), 

Simplification threshold 

Simplified geometry as 

an array of points 

select ST_ASTEXT (UNNEST (SED_SIMPFY (‘TR2’  :: regclass , 50.0 ))); 

                                                                Output: "POINT (482980 4101964)" 

"POINT (483130 4101994)" 

"POINT (483220 4101964)" 

SELF_DYN_STR_ML_SP – To build the 

SELF structure and to return the simplified 

geometry with SELF structure stored in the 

attribute table 

Raw mobility data points 

(Spatial relation), 

Simplification threshold, 

Speed based compression 

threshold, heading based 

compression threshold 

SELF structure for 

dynamic lines 



69 
 

select UNNEST (SELF_ARRAY (SELF_DYN_STR_ML_SP('TR2' :: regclass,50.0,.0.0,0.0))); 

[ POINT (482980 4101964), POINT (483220 4101964),  322.843 ,  {(0.000,0,511,0.00), 

(30.594,233.261,400,42.426), (61.188,233.261,211,52.426), (91.782,233.261,400,123.137), 

(122.376,233.261,511,133.137), (152.971,233.261,400,203.848), (166.523,233.261,211,213.848), 

(193.628,77.7538,400,284.559), (220.734,77.7538,511,294.559), (247.839,77.7538,0,322.843)}] 

SELF_DYN_ASTEXT – To display the SELF 

structure in user readable format 

SELF structure SELF structure in Text 

format 

select SELF_DYN_ASTEXT (SELF_DYN_STR_ML_SP ( 'TR2' :: regclass , 50.0 ) ); 

SPOINT (482980 4101964) -- EPOINT (483220 4101964) – AL :  322.843  - AD:   {(0.000,0,511,0.00), 

(30.594,233.261,400,42.426), (61.188,233.261,211,52.426), (91.782,233.261,400,123.137), 

(122.376,233.261,511,133.137), (152.971,233.261,400,203.848), (166.523,233.261,211,213.848), 

(193.628,77.7538,400,284.559), (220.734,77.7538,511,294.559), (247.839,77.7538,0,322.843)}] 

SELF_ITP_DIST_ML_SP - To interpolate the 

semantics using SELF structures 

Simplified line geometry,  

SELF structure, point , 

pointer 

Array of interpolated 

semantic value 

select SELF_ITP_DIST_ML_SP(ST_MAKELINE(SED_SIMPFY(‘TR2’ :: regclass, 50.0 
)),SELF_DYN_STR_ML_SP(‘TR2’::regclass, 50.0),ST_MAKEPOINT(483100,4101988),2) 

Output :   233.261 

 

3.4.3 Experimental Data 

To demonstrate the effectiveness of the SED based simplification and SELF 

structure in interpolating the semantics, experimentation is done on different trajectory 

datasets with different values for speed based and heading based simplification. The 

experiments ran over the vessel trajectories for August 2013 in the Aegean Sea as 

collected by the MarineTraffic Automatic Identification System (AIS) [MarineTraffic 

2017].  The ship speed is measured in knots multiplied by 10 and heading represents the 

azimuth of the ship bow in degrees. In order for the set of features to be representative for 

a wide range of spatio-temporal characteristics, it was decided to choose trajectories with 

different number of mobility data points. TR1 in Table 3.7 refers to the trajectory in Fig. 

3.4 
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TABLE 3.7: LENGTH AND THE NUMBER OF POINTS AVAILABLE IN THE SELECTED TRAJECTORY DATASET 

 

Fig. 3.12 to 3.15 show the original trajectories listed in Table 3.7. 

 

 

FIGURE 3.12: TRAJECTORY – TR2     FIGURE 3.13: TRAJECTORY – TR4 
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FIGURE 3.15: TRAJECTORY – TR5 

 

 

FIGURE 3.14: TRAJECTORY – TR3 

 

FIGURE 3.15: TRAJECTORY – TR5 
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3.4.4 Experiments 

3.4.4.1 SED based Simplification: 

The SED based simplified version and the original trajectory is shown in Fig. 3.16 

with a simplification threshold of 90.0 meters.  

FIGURE 3.16:  ORIGINAL AND SIMPLIFIED VERSION (90 M THRESHOLD) OF A SAMPLE TRAJECTORY 

(TABLE. 3.8) 

TABLE 3.8: ATTRIBUTE TABLE OF THE TRAJECTORY SHOWN IN FIG. 3.16 

 

 

 

 

In Fig. 3.16, the locations ‘3’ and ’4’ represent the same point as the vessel has 

stopped at location ‘3’ and stayed there for a minute before leaving. Even though the 

locations ‘3’ and ‘4’ are same, their SED projections are different. The cause is due to the 

points ‘3’ and ‘4’ have different timestamps. 
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Comparing the number of points retained by SED-DP simplification with DP 

simplification indicates that SED-DP simplification always retains more number of points 

than DP simplification (Fig. 3.18). 

TABLE 3.9: LENGTH AND THE NUMBER OF POINTS AVAILABLE IN THE SELECTED DATA 

FIGURE 3.17: COMPARISON OF ORIGINAL AND SIMPLIFIED TRAJECTORY AT DIFFERENT LEVELS OF 

SIMPLIFICATION 
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3.4.4.2 SELF STRUCTURE  

The SELF structure has been built on the original trajectory shown in Fig. 3.16 with an 

SED based simplification threshold of 90.0 meters and both the speed and heading based 

compression levels set as 0. The original semantics at each point on the simplified 

trajectory are listed in Table 3.10 

FIGURE 3.18: COMPARISON OF NUMBER OF POINTS RETAINED AT DIFFERENT LEVELS OF 

SIMPLIFICATION BETWEEN DP AND SED-DP ALGORITHM 
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TABLE 3.10: SEMANTICS AT EACH POINTS OF ORIGINAL TRAJECTORY AND ITS SIMPLIFIED VERSION SHOWN IN 

FIG. 3.16 

 

TABLE 3.11: INTERPOLATED SEMANTICS AT EACH POINT CLICKED ON THE SIMPLIFIED TRAJECTORY 

 

In Fig. 3.16 the projected points 3′ and 4′ correspond to the same location (points 3 and 4) 

on the original trajectory as the original accumulated distance on original trajectory at the 

points 3 and 4 is 52.43 meters.  

The original trajectory shown in Fig. 3.19 contains 500 points.  Ten points have been 

chosen randomly to check the effectiveness of SELF data structure in interpolating the 

semantics. Table 3.12 lists the interpolated semantics at all 10 sample points at different 

values of speed based compression threshold.  
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FIGURE 3.19: ORIGINAL TRAJECTORY WITH 500 RAW DATA POINTS 

 

 

TABLE 3.12: INTERPOLATED SEMANTICS AT DIFFERENT LEVELS OF SPEED BASED COMPRESSION THRESHOLD 

 

There are three possible outcomes when running algorithm 7 to interpolate the 

semantics on the original trajectory at any points of the simplified version from SELF 

structure.  The type of error in interpolation is classified depending on the outcome given 

in Table 3.13 
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TABLE 3.13: POSSIBLE OUTCOME AND ERROR CLASSIFICATION 

 

 

Similarly, the semantics at all 500 points is interpolated by algorithm 3.7. Fig 

3.20-3.25 compares the maximum (positive error), minimum (Negative error), and 

standard deviation in the interpolated semantics at different levels of speed and heading  

based compression. 

FIGURE 3.20: ERROR IN INTERPOLATED SPEED VS  

SPEED BASED COMPRESSION 

 

 

FIGURE 3.21: ERROR IN INTERPOLATED SPEED VS  

HEADING BASED COMPRESSION 

 

 

FIGURE 3.23: ERROR IN INTERPOLATED HEADING VS 

 HEADING BASED COMPRESSION 

 

 

FIGURE 3.22: ERROR IN INTERPOLATED HEADING VS 

SPEED BASED COMPRESSION 
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Speed based compression and heading based compression produce almost the same 

amount of error in the interpolated semantics (Fig. 3.20-3.25).  The different spatio-

temporal characteristics of the datasets play major role in semantic interpolation error. 

The semantic interpolation algorithm (Algorithm 3.7) has run with different levels of 

compression on these trajectory datasets (Table.3.14-3.16).  

TABLE 3.14: AVERAGE ERROR IN SPEED INTERPOLATION  

 

 

 

 

FIGURE 3.25: ERROR IN INTERPOLATED DISTANCE VS 

HEADING BASED COMPRESSION 

 

 

FIGURE 3.24: ERROR IN INTERPOLATED DISTANCE VS 

SPEED BASED COMPRESSION 

 

 

FIGURE 3.26: ERROR IN INTERPOLATED SPEED VS 

SPEED BASED COMPRESSION 
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TABLE 3.15: AVERAGE ERROR IN HEADING INTERPOLATION  

 

 

 

 

 

 

 

 

TABLE 3.16: AVERAGE ERROR IN DISTANCE INTERPOLATION  

 

 

 

 

 

 

FIGURE 3.27: ERROR IN INTERPOLATED HEADING VS 

SPEED BASED COMPRESSION 

 

 

FIGURE 3.28: ERROR IN INTERPOLATED DISTANCE VS 

SPEED BASED COMPRESSION 
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It can be seen from Fig. 3.26-3.28 that there is a positive correlation between average 

error and the level of simplification. The percentage error in interpolation increases when 

the values for compression is also increased. Noticeably, average error in distance 

interpolation for “TR4” suddenly increases after 20% of speed based compression. The 

cause is due to an increase in compression level discards more points from SELF 

structure (Fig. 3.29, 3.30). But this number would change due to the different 

spatiotemporal characteristics of the datasets. So, the level of compression can be decided 

based on the application and the required accuracy in semantics interpolation.  

                          3.5 Conclusions 

This paper summarizes the implementation and testing of a method for semantically 

enriched simplification of trajectories. The method combines the Synchronous Euclidean 

Distance (SED) based simplification algorithm and SELF (Semantically Enriched Line 

simpliFication) data structure to preserve the semantics associated with the actual 

trajectories. The method has been implemented in PostgreSQL 9.4 with PostGIS extension 

FIGURE 3.30 : % OF COMPRESSION VS 

SPEED BASED COMPRESSION VALUES 

 

 

FIGURE 3.29 : % OF COMPRESSION VS 

HEADING BASED COMPRESSION 

VALUES 
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using PL/pgSQL to support dynamic lines and tested with both synthetic and real-world 

features. 

The method applies two kinds of semantic based reduction: speed based and 

heading based. Both the compression techniques produce the same amount error in the 

interpolated semantics. However, the results of the experiments indicate that the different 

spatio-temporal characteristics of the datasets play a major role in the semantic 

interpolation error. 

The comparison results between SED-DP simplification and DP simplification 

indicate that SED-DP simplification always retains more number of points which are more 

significant in forming the trajectory than other points as they better convey the trajectory 

characteristics for a particular context. 

Future work includes the development of a visualization framework to provide an 

enhanced user experience.  This will help in facilitating the adoption of the SELF structure 

in various application domains with need for semantically enhanced multiscale 

representation of linear features. 

Integrating these libraries to a Graph database (such as Neo4j) so that the extended 

functionalities of Graph database can be utilized in trajectory data management is another 

future goal. 
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4. Modelling and Analysis of Semantically Enriched 

Simplified Trajectories using Graph Databases 
 

Abstract 
 

 Graph databases are utilized in modelling the huge volume of spatio-temporal data 

generated by moving objects that are equipped with GPS devices. This modelled spatial 

and temporal information in graphs can be used in performing trajectory analysis such as 

optimum path finding or identification of collision risk. At the same time, this massive data 

becomes difficult to handle using graph databases as the millions of raw data points make 

the graph model complex. Thus, trajectory simplification techniques are applied to reduce 

the number of vertices representing a trajectory. However, elimination of intermediate 

points by simplification process leads to loss of semantics associated with the trajectories. 

These semantics are dependent on the application domain.  For example, a trajectory of a 

moving vessel can convey information about time, distance travelled, bearing, or velocity. 

This research proposes a graph data model that enriches the simplified geometry of 

trajectories with the semantics lost during simplification process. Original trajectories 

initially modelled and stored in a PostgreSQL/PostGIS database are   simplified according 

to both their spatial and temporal characteristics using the Synchronous Euclidean Distance 

(SED), while the Semantically Enriched Line simpliFication (SELF) data structure is built 

to preserve the semantics of the vertices eliminated during the simplification process. Then, 

enriched simplified trajectories are transferred to a Neo4j database and modelled in terms 

of nodes and edges using graphs. Trajectories can then be processed using Cypher query 

language and Neo4j spatial procedures. A visualization tool has been developed on top of 

Neo4j graph database to support the semantic retrieval and visualization of trajectories. 
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4.1 Introduction  

GPS devices mounted on moving objects generate streams of geo-location data 

which describe the path travelled by the object during a period of time, this path is called 

trajectory.  The advent of satellite technologies has enabled the usage of GPS devices on 

moving objects. Common application domains using trajectory data are city planning, 

transportation management systems, and other location-aware applications [K. Buchin et 

al. 2008]. In the era of big data, graph databases address the major challenges in 

management and analysis of voluminous data. The concept of storing and representing data 

in terms of nodes, edges and properties makes graph databases different from relational 

databases and this is well suited for trajectory data management systems [Stefanakis 2017]. 

Spatial analysis capabilities have already been added to graph database systems. For 

instance, Neo4j, one of the most prevalent graph database systems, provides of a spatial 

plugin called Neo4j Spatial to facilitate spatial operations on geospatial data modelled 

using graphs [Neo4j Spatial Plugin 2017].   

Over the last decade, researchers have focused on modelling and analyzing raw 

trajectory data points using graph databases. Data reduction has always been necessary due 

to tremendous amount of data points contained in raw trajectories. The process of retaining 

only certain points which are significant in forming a trajectory is known as trajectory 

simplification and this has evolved from cartographic line simplification methods [Keates 

1989]. The basic idea of trajectory simplification is to retain those vertices that better 

convey the trajectory characteristics for a particular application domain. For example, the 

point at which a vessel has halted for longer duration may be more important than other 

vertices in vessel movement tracking. The conventional cartographic simplification 
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techniques have limited applicability to trajectory simplification as they remove high-

density vertices based only on a threshold distance.   

For example, the most common simplification algorithm Douglas-Peucker (DP) 

does not consider the temporal dimension (time) associated with the raw points of 

trajectories. This limits DP algorithm to be utilized in trajectory simplification.  The 

introduction of Synchronous Euclidean Distance (SED) as a criterion in trajectory 

simplification has been applied to overcome this limitation [Meratnia and de By 2004]. 

Furthermore, trajectory simplification results in a loss of semantics (e.g. speed, heading 

and distance travelled) associated with the points that are eliminated during the 

simplification process.  Semantically Enriched Line simpliFication (SELF) data structure 

has recently been proposed to retain the semantic attributes associated with individual 

locations of original trajectory [Stefanakis 2015].  

The combination of SELF data structure with SED criterion has been implemented 

and tested in PostgreSQL/PostGIS using PL/pgSQL [Tamilmani and Stefanakis 2017].  It 

has shown that semantics associated with the original trajectory are well retained in the 

simplified versions.  The advent of graph databases [Neo4j 2017] has introduced an 

alternative and usually more efficient way of modelling and analyzing transportation data, 

including trajectory data, than traditional databases such as relational or object relation 

ones. This paper investigates the advantages of adopting a graph database to model and 

analyze the semantically enriched simplified trajectories generated by the combination 

SELF data structure with SED criterion [Tamilmani and Stefanakis 2017].  
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The enriched simplified trajectories are extracted from PostgreSQL/PostGIS 

databases and modelled into a Neo4j graph database. The nodes in the graph database are 

associated with the semantic attributes (speed, heading, time, distance travelled, latitude 

and longitude) of the trajectories, while the edges of the graph contain the simplified and 

original distances between the nodes representing the vertices.  These attributes are utilized 

in performing trajectory data analysis.  

The contributions of this study are twofold. First, to propose a graph model for 

transferring enriched simplified trajectories from PostgreSQL to Neo4j and further 

analyzing them as graphs using Cypher query language and spatial procedures. The latter 

has been done by utilizing the Neo4j-spatial plugin that provides the geospatial analysis 

capabilities to Neo4j graph database [Neo4j Spatial Plugin 2017].  Second, to support the 

semantic retrieval and visualization of modelled graph data in Neo4j.  For this reason, a 

visualization tool has been developed on top of Neo4j for semantic interpolation at different 

levels of trajectory simplification. 

The paper is organized as follows. Section 4.2 provides a literature review about 

trajectory simplification and describes the SELF structure and it’s variants. Section 4.3 

presents the steps followed to transfer an enriched simplified trajectory from PostgreSQL 

to Neo4j and demonstrates how trajectories can be analyzed based on their spatial and 

aspatial attributes using Cypher query language and Neo4j spatial procedures. Section 4.4 

presents the visualization tool developed for interpolating the semantic values at different 

levels of trajectory simplification. Section 4.5 summarizes the contribution of this paper 

and discusses the potential of applying the proposed framework in various application 

domains.  
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4.2 Literture Review  

4.2.1 Graph databases in trajectory data analysis 

Trajectories are formed by connecting a series of raw mobility data points. These 

individual data points include temporal dimension apart from latitude and longitude. Over 

the years, tabular structured relational databases have been utilised in accommodating 

connected points forming trajectories. The relational data model and an extended query 

language was proposed for supporting the modelling and querying of real world 

transportation networks. The comprehensive framework was built on top of OGC-

complaint data models to support an algebraic-based network model. The proposed model 

has not addressed trajectories with millions of points though [Hadi et al., 2014]. In 

addition, relational databases inefficient in dealing with relationships because 

connectedness leads to an increase in number of joins between the tables, which in fact 

affects the performance of the database [Przemysław et al., 2016]. Graph databases help in 

leveraging the complex structure and dynamic relationships in connected trajectory data. 

The simple collection of nodes (vertices) and relationships (edges) facilitates the modelling 

of all varieties of data, from biological structures, to the transportation data.  Year by year 

the focus on utilizing graph databases in managing, processing and analyzing spatio-

temporal data has increased as the graph’s internal structure is in the form of a network 

[Gurfraind et al. 2016]. Similar to SQL in relational databases, graph databases are also 

equipped with multifaceted and robust query language for retrieving information. On the 

flipside, visualizing all the nodes and edges would pose additional challenges as the graph 

layout is limited to display only certain number of nodes.  C. Partl et al. [2016] presented 

a technique called “Pathfinder” for visualizing and analyzing large graphs. The authors 
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have followed a query-based approach for allowing the users to refine the data based on 

specific starting and ending nodes. However, the criteria for choosing these starting and 

ending nodes are not properly defined.  

This study is focused on analyzing raw data points representing trajectories using 

graph database.  As millions of raw data points make the graph model more complex, it is 

often required to reduce the tremendous amount of data points representing each trajectory. 

This process is also known as trajectory simplification.  

4.2.2 Trajectory Simplification 

[Refer to Section 3.2.1] 

4.2.3 Semantically Enriched Line Simplification (SELF) 

[Refer to Section 3.2.3] 

4.3 Graph data model and analysis 

 

Trajectories are formed by connecting a series of raw mobility data points. Over the 

years graph databases have been used in analyzing massive amounts of data generated by 

GPS devices mounted on mobility vehicles. For example, a trip duration of 60 minutes, 

with the location being recorded every 1 second, results into a total of 3600 points. In a day 

trip, the dataset would contain 86,400 points.  The number of nodes in the graph model is 

directly proportional to the number of points in the trajectory. As the number of nodes 

increase the graph model becomes more complex. Hence, it is necessary to reduce the 

volume of the dataset by applying trajectory simplification techniques.   
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This study introduces a graph data model that integrates the SELF data structure in 

the description of the simplified trajectory (Fig. 4.1). Each simplified trajectory has an 

origin and a destination. The starting and ending points of the original trajectory are 

converted into origin and destination nodes. The “INTERMEDIATE” nodes are attributed 

with original distance, speed, heading, time, latitude and longitude. In fact, these are the 

nodes which have been retained during the simplification process. The “SIDE” nodes have 

the following properties: original distance, speed, heading and time. These nodes represent 

the vertices which were eliminated during the simplification process. So, these nodes do 

not carry the latitude and longitude as properties. The edges connecting two intermediate 

nodes are weighted with both the original and simplified distance between the 

corresponding points on the trajectory. The relationship between two nodes are labelled as 

“NEXT”.   

 

 

 

 

 

 

 

 

FIGURE 4.1: PROPOSED GRAPH MODEL FOR STORING A SIMPLIFIED TRAJECTORY ALONG WITH 

SEMANTICS USING SELF STRUCTURE 
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This study examines the modelling and analysis of enriched trajectories in a graph 

database.  The approach involves three phases which are implemented in three system 

components (Fig. 4.2). 

Component 1: Transferring the simplified geometry of a trajectory and SELF 

structure from PostgreSQL/PostGIS to Neo4j graph database using JDBC 

Component 2: Performing spatial and attribute analysis on the modelled data using 

Cypher query language and Neo4j spatial procedures. 

Component 3: Visualizing the simplified trajectory in web browser for semantic 

interpolation at different levels of trajectory simplification. 

 

  

 

 

 

 

 

 

 

FIGURE 4.2: OVERALL SYSTEM ARCHITECTURE WITH THREE COMPONENTS 
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4.3.1 PostgreSQL/PostGIS to Neo4j bridging 

The purpose of first component in the overall system is to combine the simplified 

geometry of a trajectory with SELF structure and to convert the simplified geometry into 

nodes and edges with the semantics stored as properties. The simplified geometry data from 

PostgreSQL/PostGIS is mapped into Neo4j graph database using Java Database 

Connectivity (JDBC). 

This component is implemented in three steps: 

1. Simplifying a trajectory based on Synchronous Euclidean Distance (SED)  

2. Generating nodes and edges from simplified geometry  

3. Associating the nodes and edges with semantics from SELF structure 

 

4.3.1.1 Simplifying the trajectory based on Synchronous Euclidean Distance 

SELF structure for dynamic lines stores the semantics associated with individual 

points on the original trajectory along the simplified version. As shown in the Fig. 4.3, each 

point on the original trajectory is projected based on the SED to the simplified version. The 

sample trajectory shown in Fig. 4.3 has 10 points in the original version, while the 

simplified version retains 7 points. 

 

 

FIGURE 4.3: EXAMPLE ORIGINAL AND SIMPLIFIED TRAJECTORIES 
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For each vertex on the original trajectory, the corresponding SED point is tagged 

with the semantics given in Table. 4.1 [Tamilmani and Stefanakis 2017]. The entire SELF 

structure is represented as follows: 

 

 

 

TABLE 4.1: ATTRIBUTE TABLE FOR THE TRAJECTORY POINTS SHOWN IN FIGURE.4.3 

[ SPOINT (482980 4101964), EPOINT (483220 4101964), 322.843, 

 {(0.000,0,311,0.00, 2017-05-23 01:00:00.000), 

(30.594,233.261,200,42.426, 2017-05-23 01:00:01.000),  

(61.188,233.261,111,52.426, 2017-05-23 01:00:02.000),  

(91.782,233.261,200,123.137, 2017-05-23 01:00:03.000), 

(122.376,233.261,311,133.137, 2017-05-23 01:00:04.000),  

(152.971,233.261,200,203.848, 2017-05-23 01:00:05.000),  

(166.523,233.261,111,213.848, 2017-05-23 01:00:06.000),  

(193.628,77.7538,200,284.559, 2017-05-23 01:00:08.000), 

(220.734,77.7538,311,294.559, 2017-05-23 01:00:10.000), 

 (247.839,77.7538,0,322.843, 2017-05-23 01:00:12.000)}] 
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4.3.1.2   Generating nodes and edges from simplified geometry 

Once the trajectory is simplified each point on the simplified geometry is compared 

with the points on the original trajectory to decide the node type.  The points which were 

eliminated during the simplification are labelled as “SIDE” nodes and the retained points 

are labelled as “INTERMEDIATE” nodes, while the starting and ending points of the 

trajectory are labelled as “ORIGIN” and “DESTINATION” nodes. The “SIDE” nodes do 

not contain latitude and longitude, whereas all other nodes contain the spatial coordinates 

as these nodes represent the points which have been retained by the simplification 

algorithm. 

 

In our example, the points 2, 7 and 9 were lost during the simplification process 

(Fig. 4.4). So, these nodes are labelled as “SIDE”. The remaining nodes representing points 

3, 4, 5, 6 and 8 are labelled as “INTERMEDIATE”. The first and last nodes are labelled as 

“ORIGIN” and “DESTINATION”.  

 

FIGURE 4.4: LABELLING THE NODES BASED ON THE CORRESPONDING RETAINED OR ELIMINATED POINTS 
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4.3.1.3 Associating the nodes and edges with semantics from SELF structure 

Once the nodes have been labelled, the SELF structure has to be parsed along with 

the simplified geometry to add the associated semantics as properties to the nodes.  

Algorithm 4.1 associates the nodes and edges with semantics from SELF structure. The 

developed algorithm takes the simplified geometry and SELF structure as input to add the 

properties to the nodes.  

The accumulated length at every point on the simplified trajectory is calculated and 

stored in an array. Each simplified distance in SELF structure is searched through the 

accumulated length array. If a match is found then that node is labelled as 

“INTERMEDIATE” and attributed with the corresponding latitude, longitude, speed, 

heading, time and distance travelled as extracted from SELF structure. If the accumulated 

length does not match with simplified distance in SELF structure then that node is labelled 

as “SIDE” and attributed with the corresponding speed, heading, time and distance 

travelled from SELF structure.  

Two separate CSV (Comma-Separated Values) files have been generated for 

uploading the trajectory data into Neo4j. One of them (all_nodes.csv) is for loading the 

nodes and the other (all_edges.csv) is for connecting these nodes with edges. Any two 

consecutive intermediate nodes are connected by an edge which is weighted with the 

original and simplified distance between those nodes (Fig. 4.5).  
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Algorithm 4.1: Associating the nodes and edges with semantics from SELF structure 

Input: 

1. Points in simplified trajectory as an array 

2. SELF structure built on the simplified trajectory 

Output: 

1. CSV file containing nodes and edges 

Steps: 

1. Generate a CSV file for storing the nodes and edges 

2. Initialize Node_ID to 1 

3. FOR EACH point (P) in the geometry of simplified trajectory 

4. Calculate the distance (d) to it’s next point 

5. Initialize CURRENT_COUNT to 1 

6. FOR EACH simplified distance(ds) IN the SELF structure 

i. Find the match to the calculated distance (d) 

ii. IF d=ds THEN 

1. Name the node as “INTERMEDIATE” 

2. Assign the current Node_ID 

3. Add lat, lon, speed, heading, time and distance travelled 

to the node 

iii. ELSE 

1. Name the node as “SIDE” 

2. Format the Node_ID in the form of 

“(Node_ID)_(Node_ID+1)_CURRENT_COUNT” 

3. Increase CURRENT_COUNT by 1 

4. Add speed, heading, time and distance travelled to the 

node  

7. END 

8. Add the node to output CSV file  

9. Increase Node_ID by 1 

10. END 

11. FOR EACH node(n) IN the CSV file 

i. IF label(n) = label(n+1) AND label(n) = “INTERMEDIATE” 

1. Connect the nodes n and n+1  

2. Add the original distance weight as 

[distance_travelled(n+1)-distance_travelled(n)] 

3. Add the simplified distance weight as straight-line 

distance between the nodes n and n+1 

ii. ELSE 

1. Connect the nodes n and n+1 without weights 

12. END 

13. Add the edge to output CSV file  

14. RETURN CSV file containing nodes and edges 
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The generated nodes are then uploaded to Neo4j graph using the following cypher 

query.  Nodes are connected by edges after uploading edges CSV file to Neo4j graph 

using the following cypher query:  

FIGURE 4.5: NODES AND EDGES AFTER COMBINING SELF STRUCTURE WITH SIMPLIFIED GEOMETRY 

LOAD CSV WITH HEADERS FROM 

'file:///all_nodes.csv' AS csv 

CREATE (t: trgraph {trid:csv.tr_id, ptid:csv.pt_id, lat:csv.lat, lon:csv.lon, 

simpDist:csv.simpDst, speed:csv.speed, heading:csv.heading, 

origDist:csv.origDist, time:csv.time, nodeType:csv.nodeType}); 

 
LOAD CSV WITH HEADERS FROM 

'file:///all_edges.csv' as csv 

MATCH ( t:trgraph  { ptid : csv.source} ), (t1 : trgraph {ptid : csv.target} )  

WHERE  t.ptid <> t1.ptid AND t.trid=t1.trid 

create (t)-[:NEXT{trid:csv.tr_id, 

caption:csv.caption, source:csv.source,target:csv.target, edgeType:csv.edgeType, 

between:csv.between,noofpoints:csv.noofpoints,simpDistWgt:csv.simpDistWeight, 

origDistWeight:csv.origDistWeight}]->(t1) 
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The generated graph represents the enriched simplified trajectories using nodes and 

edges. Fig. 4.6 shown a sample trajectory graph in Neo4j. 

 

 

 

 

 

 

 

INTERMEDIATE nodes are labelled with the order of the corresponding point in 

the simplified geometry.  The SIDE nodes are identified by an ID which follows the 

namingconvention:(INTERMEDIATE_NODE_ID)_(NEXT_INTERMEDIATE_NODE_

ID)_(COUNTFor instance, the SIDE node with ID “5_6_1” denotes that is the first node 

lost during simplification between the intermediate nodes 5 and 6.   

4.3.2 Spatial analysis using cypher 

The uploaded trajectory data into Neo4j can be analyzed using cypher query 

language and Neo4j spatial procedures.  Here is a list of examples queries that Neo4j can 

support: 

1. Finding the shortest and longest trajectory based on: 

• Number of nodes 

• The original distance between origin and destination 

• The time difference between origin and destination 

2. Identifying the overall collision points between trajectories: 

• Identifying the collision points at particular time interval 

FIGURE 4.6: GENERATED GRAPH DATA SHOWING THE NODES AND EDGES 



101 
 

The SED based simplification was carried out over a dataset of vessel trajectories 

for August 2013 in the Aegean Sea as collected by the MarineTraffic Automatic 

Identification System (AIS) [MarineTraffic 2017] and the number of points retained after 

simplifying (with a threshold = 10km) is shown in Table.4.2.  Individual trajectories are 

identified by “MMSI” which is unique for the moving vessel. From Fig. 4.7, it is evident 

that the simplification step has reduced the number of points in the original trajectories. 

Each simplified trajectory was associated with the SELF structure, modelled into the 

graph database, and used for further analysis. Trajectories with different number of 

mobility data points have been chosen for analysis in order for the set of features to be 

representative for a wide range of spatio-temporal characteristics.  

 

 

 

 

 

 

 

 

 

 

 

TABLE 4.2: NUMBER OF POINTS IN THE ORIGINAL AND SIMPLIFIED TRAJECTORY 
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4.3.2.1 Finding shortest and longest trajectory 

The path in the graph is defined as the sequence of nodes which are connected by 

weighted or non-weighted edges. In this model edges are weighted with both the original 

and simplified distance between consecutive simplified points.  Three criteria have been 

considered in finding the longest and shortest trajectory. These are described next. 

4.3.2.1.1 Shortest/longest trajectory based on the number of nodes connected 

between origin and destination 

The sequence of nodes which are connected between the origin and destination is 

counted to determine the length of the trajectory. This connectivity measurement is 

carried out on all the individual trajectories in the modelled dat. Then the trajectory with 

the highest number of intermediate nodes in the database is chosen as the longest and 

vice versa. The following cypher query counts the number of nodes in each trajectory and 

identifies three shortest trajectories based on the count in ascending order. The results are 

shown in Table 4.3.  

FOREACH (simplified_trajectory IN graph) 

MATCH (origin: simplified_trajectory)- [c: NEXT]->(destination: simplified_trajectory)  

WHERE origin.id = destination.id 

RETURN origin.name, COUNT(c) 

ORDER BY COUNT(c) ASC LIMIT BY 3; 

FIGURE 4.7: COMPARING NUMBER OF POINTS IN THE ORIGINAL AND SIMPLIFIED TRAJECTORY 
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All queries have been executed on the data uploaded in section 4.3.1. The cypher query 

below counts the number of nodes in each trajectory and identifies the three longest 

trajectories by ordering the count in descending order. The results are shown in Table 4.4. 

FOREACH (simplified_trajectory IN graph) 

MATCH (origin: simplified_trajectory)-[c: NEXT]->(destination: simplified_trajectory)  

WHERE origin.id = destination.id 

RETURN origin.name, COUNT(c) 

ORDER BY COUNT(c) DESC LIMIT BY 3; 

 

4.3.2.1.2 Shortest/longest trajectory based on original distance between origin and 

destination 

The accumulated distance between the sequence of nodes which are connected between 

the origin and destination determines the length of the trajectory. This geometry 

measurement is done on all the individual trajectories in the modelled data. Then, the 

trajectory with the longest distance is chosen as the longest and vice versa. 

 

TABLE 4. 3: RESULTS OF LONGEST TRAJECTORIES BASED ON THE NUMBER OF NODES 

TABLE 4.4: RESULTS OF LONGEST TRAJECTORIES BASED ON NUMBER OF NODES 
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The below query sums up the original distance weight in all the edges for each trajectory 

to determine the original length of the trajectory. Then, it finds three shortest trajectories 

by ordering the calculated distance in ascending order. The results are shown in Table 4.5 

match with the shortest trajectories identified using QGIS (Fig. 4.8). 

FOREACH (simplified_trajectory IN graph) 

MATCH (origin: simplified_trajectory)-[c: NEXT]->(destination: simplified_trajectory)  

WHERE origin.id = destination.id AND origin.type = ‘intermediate’ 

RETURN origin.name, sum(toFloat(c.origDistWeight)) 

ORDER BY sum(toFloat(c.origDistWeight)) ASC 

LIMIT 3; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 4.5: RESULTS OF SHORTEST TRAJECTORIES BASED ON ORIGINAL LENGTH 

FIGURE 4.8: SHORTEST TRAJECTORIES IDENTIFIED IN QGIS BASED ON LENGTH 
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The below query extracts three longest trajectories by ordering the calculated distance in 

descending order. The results shown in Table 4.5 match with the longest trajectories 

identified using QGIS (Fig. 4.9). 

FOREACH (simplified_trajectory IN graph) 

MATCH (origin: simplified_trajectory)-[c: NEXT]->(destination: simplified_trajectory)  

WHERE origin.id = destination.id AND origin.type = ‘intermediate’ 

RETURN origin.name, sum(toFloat(c.origDistWeight)) 

ORDER BY sum(toFloat(c.origDistWeight)) ASC 

LIMIT 3; 

 

 

 

 

 

 

 

 

 

 

 

TABLE 4.6: RESULTS OF LONGEST TRAJECTORIES BASED ON THE LENGTH  

FIGURE 4.9: LONGEST TRAJECTORIES IDENTIFIED IN QGIS BASED ON LENGTH 
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4.3.2.1.3 Shortest/longest trajectories based on time difference between origin and 

destination: 

The time difference between the sequence of nodes which are connected between the 

origin and destination determines the total time duration of the trip. This temporal 

measurement is done on all the individual trajectories in the modelled data. Then, the 

trajectory with the higher time difference is chosen as the longest and vice versa. 

The following query calculates the time difference between origin and destination for 

each trajectory to determine the total travel time of a trajectory. The time difference is 

then sorted in ascending order to find the three shortest trajectories. The results are shown 

in Table 4.7. 

FOREACH (simplified_trajectory IN graph) 

MATCH (origin: simplified_trajectory)-[c: NEXT]->(destination: simplified_trajectory)  

WHERE origin.id = destination.id  

RETURN origin.name, (destination.time – origin.time) 

ORDER BY (destination.time – origin.time) ASC 

LIMIT 3; 

 

The time difference is sorted in descending order to find the three longest trajectories. 

The results are shown in Table 4.8. 

FOREACH (simplified_trajectory IN graph) 

MATCH (origin: simplified_trajectory)-[c: NEXT]->(destination: simplified_trajectory)  

WHERE origin.id = destination.id  

RETURN origin.name, (destination.time – origin.time) 

ORDER BY (destination.time – origin.time) DESC 

LIMIT 3; 

TABLE 4.7: RESULTS OF SHORTEST TRAJECTORIES BASED ON TIME DIFFERENCE  
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4.3.2.2 Identifying the collision point 

The number of points within a particular distance from a reference location helps in 

defining how close a point is to the rest of the points in the trajectory. Basically, this is 

similar to buffer analysis capability provided by most GIS software packages. In Cypher, 

using Neo4j Spatial plugin a similar kind of analysis can be carried out. The function 

SPATIAL.CLOSEST finds all geometry nodes in the graph within the distance to the 

given coordinate [Neo4j Spatial Plugin 2017].  The following cypher query finds the 

corresponding number of nodes within particular distance for each node and identifies the 

point which has maximum number of neighbours (Table. 4.9).  

MATCH (tr:TrajectoryNodes) WITH tr 

CALL SPATIAL.CLOSEST(‘spatial_graph’',{latitude: tr.latitude, longitude: 

tr.longitude},10000)  

YIELD node WHERE node.trid <> tr.trid  

RETURN tr, COUNT(node) ORDER BY COUNT(node) DESC LIMIT BY 1; 

Fig. 4.10 shows the plot of 10-kilometer buffer drawn around the query point using 

Quantum GIS.  

The results from cypher query has been compared against the buffer operator in QGIS. 

The number of points falling within the buffer region (34) is same as the number of 

neighbours identified by Neo4j (Fig. 4.10).   

TABLE 4.8: RESULTS OF LONGEST TRAJECTORIES BASED ON TIME DIFFERENCE  

TABLE 4.9: THE POINT WHICH HAS MOST NUMBER OF NEIGHBORHOOD POINTS AROUND IT WITHIN 10 KILOMETERS  
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By enforcing the temporal constraint, the above query can be extended to find the 

collision point for a given time period of a day. The following sample will identify the 

collision point between 4pm and 8pm (Table. 4.10). 

MATCH (tr: TrajectoryNodes) WITH tr 

CALL SPATIAL.CLOSEST(‘spatial_graph’',{latitude: tr.latitude, longitude: 

tr.longitude},10000)  

YIELD node WHERE node.trid <> tr.trid  and hour>4pm and hour<8pm 

RETURN tr, COUNT(node) ORDER BY COUNT(node) DESC LIMIT BY 1; 

 

FIGURE 4.10: 10 KILOMETER BUFFER AROUND THE QUERY IN QGIS 
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4.4 Visualization tool for semantic interpolation 

A web based graph data visualization system has been developed for performing 

semantic interpolation from the proposed model. The dynamic system allows the user to 

choose the trajectory on which the semantic retrieval will be performed. The graph 

visualization capabilities have been added using the JavaScript framework “alchemy.js”. 

Alchemy is a graph visualization tool for developing web applications. It is easily 

customizable and includes the capabilities like clustering, filtering and embedding graphs 

[Alchemy 2017]. 

The visualization architecture is shown in Fig. 4.11. 

 

 

 

 

  

TABLE 4.10: THE TOP THREE COLLISION POINTS BETWEEN 4PM AND 8PM 

FIGURE 4.11: VISUALIZATION SYSTEM ARCHITECTURE 
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An HTML powered web application allows the user to select a single trajectory 

from a collection of trajectories. The browser then sends the corresponding https request 

to RESTful Webservice through Angular client [Angular 2017]. The request is then 

parsed by Apache server before it hits Neo4j database for retrieving the corresponding 

graph as an object. Java-Neo4j-API lets the java program communicate with Neo4j 

database. The response is a JSON object that is then parsed by Alchemy to display the 

graph data on the browser.  The following snapshots summarize the functionality of the 

developed system. The user can choose a single trajectory from the dropdown list of 

trajectories (Fig. 4.12). 

 

FIGURE 4.11: VISUALIZATION SYSTEM ARCHITECTURE 

FIGURE 4.12: DROPDOWN LIST SHOWING ALL THE EXISTING TRAJECTORIES 
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After a trajectory is selected by the user, the corresponding graph data can be 

visualized on the browser screen (Fig. 4.13). 

 

Once the database responds with proper data, the object received by Apache 

server is sent to alchemy.js as a JSON (JavaScript Object Notation) object. Alchemy 

framework enables the browser to parse the JSON object. Numeric value on the edges 

denotes the number of points eliminated during the simplification between those edge 

nodes.  

In this example between node 6 and 7 there was one point which is lost during the 

simplification of the trajectory. If the user clicks on that number, the corresponding node 

(“SIDE”) which has been lost will also be displayed (Fig. 4.14). 

      

 

FIGURE 4.13: SELECTED SIMPLIFIED TRAJECTORY ON THE BROWSER SCREEN 

FIGURE 4.13: SELECTED SIMPLIFIED TRAJECTORY ON THE BROWSER SCREEN 

FIGURE: VISUALIZATION SYSTEM ARCHITECTURE 
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 The nodes in pink circles connected by red colored edges represent 

“INTERMEDIATE” points, while the nodes in green connected by dotted green edges 

represent “SIDE” points.  The user can click on any node to retrieve its corresponding 

semantics, such as speed, heading, distance travelled and time of crossing (Fig. 4.15).  

 

 

 

 

 

 

 

FIGURE 4.14: GRAPH SHOWING THE SIDE NODE WHICH IS LOST DURING THE SIMPLIFICATION 

FIGURE 4.15: ALERT BOX WITH THE SEMANTICS FOR THE CLICKED POINT 
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4.5 Conclusions 

This paper proposed a graph data model to represent simplified trajectories that 

preserve both the spatial and temporal characteristics of their original versions. The 

model has been implemented in Neo4j using Java programming language.  Simplified 

trajectories can be analyzed using Cypher query language and Neo4j spatial procedures. 

The developed visualization tool helps the user to perform semantic interpolation at 

different levels of simplification.  

Currently, Neo4j spatial plugin has limited set of spatial procedures. The system 

can be made powerful in trajectory data management after more spatial procedures are 

integrated into Neo4j graph database [Stefanakis 2017]. Both the graph model and 

developed visualization framework can be applied to other application domains such as 

bus transit and metro systems.  
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5. Conclusion and Recommendations 

The primary purpose of this research was to retain the geometric (length) and 

semantic attributes associated with individual locations of linear features and trajectories 

in their simplified representation at various level of detail.  Efficient modelling, analysis, 

and visualization methods were developed.  The research has contributed to 

PostgreSQL/PostGIS, an open source spatial database system. 

5.1 Summary of Research 

 

The preliminary steps of this research were to: (i) investigate the existing 

simplification techniques; and (ii) to test the efficiency of SELF data structure in regard to 

semantic interpolation at different levels of simplification.     

Chapter 2 focused on implementing the SELF (Semantically Enriched Line 

simpliFication) data structure to preserve the geometric characteristics associated to the 

original linear features. The data structure has been implemented in PostgreSQL 9.4 with 

PostGIS extension using PL/pgSQL to support static and non-functional polylines and 

tested with both synthetic and real world features.   

The objective of Chapter 3 was to implement and test the SELF data structure for 

semantically enriched simplification of trajectories. The implemented method combines a 

Synchronous Euclidean Distance (SED) based simplification algorithm and SELF 

(Semantically Enriched Line simpliFication) data structure to preserve the semantics 

associated with the original trajectories (spatio temporal lines). This resulted in an enriched 

library of PL/pgSQL functions to support the simplification of both static and dynamic 

linear features. 
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Chapter 4 proposed a graph data model to represent and analyze simplified 

trajectories that preserve both the spatial and temporal characteristics of the original 

versions. Also, a visualization framework for trajectories in graph form has been 

developed.  

5.2 Achievements of Research 

The purpose of this research is to retain the semantic and geometric attributes 

associated with individual locations of original linear features and trajectories in their 

simplified versions. This has been accomplished by enriching the representation of the 

simplified lines with an array of values corresponding to multiple locations along the 

original lines.  To this end, a graph model to represent the simplified geometry of 

trajectories along with their semantics has been proposed for the trajectory data analysis 

and visualization purpose.  

• SELF structure for static lines applies two kinds of compression: point level and 

segment level. The segment level compression eliminates entire segments 

(continuous points) which has the segment level compression ratio within the user-

defined threshold, while point level compression discards only certain points which 

are within the point level threshold. The results of the experiments indicate that the 

different topological complexity of the datasets play a major role in distance 

interpolation error.  

• The comparison results between SED-DP simplification and DP simplification 

indicated that SED-DP simplification always retains more number of points which 

are more significant in forming the trajectory than other points as they better convey 

the trajectory characteristics for a particular context.  
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• SELF structure for trajectories applies two kinds of semantic based reduction: speed 

based and heading based. Both compression techniques produce the same amount 

error in the interpolated semantics. However, the results of the experiments indicate 

that the different spatio-temporal characteristics of the datasets play a major role in 

the semantic interpolation error.  

• The proposed graph model has been implemented in Neo4j using Java 

programming language.  Thus, simplified trajectories can be analyzed using Cypher 

query language and Neo4j spatial procedures. The developed visualization tool 

helps the user to perform semantics retrieval at different levels of simplification.  

5.3 Recommendations for Future Work 

 This research was primarily started with alleviating the problem of semantic loss 

during the process of simplification.  But during the course of this research, additional 

research possibilities are identified, and are as follows: 

• Future recommendations include recoding this library to other programming 

languages (such as Python) so that it can be embedded into other commercial 

or open source GIS software packages.  

• More emphasis on evaluating the time complexity of the implemented 

algorithms with various compression levels being applied to the SELF structure 

will make the running time optimal. 

• Currently, Neo4j spatial plugin has limited set of spatial procedures. This 

system can be made powerful in trajectory data management by integrating 

more spatial procedures into Neo4j graph [Stefanakis 2017].  
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• Extending the graph model for performing trajectory similarity measures would 

be another possible research area.  

• Lastly, the extension of the visualization framework will facilitate the adoption 

of the SELF structure in various application domains with need for semantically 

enhanced multiscale representation of linear features and trajectories. Both the 

graph model and developed visualization framework can be applied to 

application domains such as bus transit and metro systems.  

5.4 Conclusions 

Overall, the primary purpose of this research to implement and test SELF data 

structure for linear features and trajectories was accomplished to alleviate the problem in 

losing the geometric and semantic attributes associated with the intermediate points on the 

original geometries.  The experimental results have shown that segment level compression 

produces the error higher than point level compression. But, segment level compression 

algorithm has less time complexity than point level compression. With the experimental 

results from static linear features the SELF structure has been extended to support spatio 

temporal lines. That resulted in an enriched library of PL/pgSQL function to support the 

simplification of both static and dynamic lines.  

Problem with the traditional simplification algorithms identified as, they utilize the 

distance offset as a criterion to eliminate the redundant points. Temporal dimension in 

trajectories have been considered in retaining the points to convey both the spatial and 

temporal characteristics of the trajectory. SED based trajectory simplification technique to 

consider spatio-temporal data in trajectory generalization has implemented.  The 

comparison results between SED-DP simplification and DP simplification indicated that 
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SED-DP simplification always retains more number of points which are more significant 

in forming the trajectory than other points as they better convey the trajectory 

characteristics for a particular context. 

Visualization of the massive trajectory dataset becomes difficult to handle as the 

millions of raw data points make the processing complex. The proposed graph model for 

combining the simplified geometry of trajectories and SELF data structure has been 

significant in performing useful trajectory data analysis on the modelled data using Cypher 

query language and Neo4j Spatial procedures. The visualization tool developed on top of 

Neo4j provide a useful functionality that can be extended to support different application 

domains. 

In conclusion, the research provides the way of annotating the simplified geometry 

with the semantics by means of SELF structure that can retain the original semantics as an 

array of values followed by the graph model and visualization tool for performing useful 

trajectory data analysis.  
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Appendix I 

1. SELF structure for static lines – PL/pgSQL function (Chapter 2) 

/* Function Definition – Takes the input as original 

geometry, simplification threshold and compression ratios*/ 

CREATE OR REPLACE FUNCTION SELF_ADV_CB(line geometry, threshold double 

precision,thr_ratio numeric,comp_ratio double precision) 

RETURNS SELFAdv AS $$ 

DECLARE 

/* Defining the variables and data types*/ 

self_adv SELFAdv; 

no_lines int; 

no_simp_points int; 

simp_segments geometry []; 

func_lines int; 

each_simp_line int; 

StartingPoint geometry; 

EndingPoint geometry; 

ActualLength numeric; 

pp_point geometry; 

pp_point_nxt geometry; 

array_count int; 

no_of_points int; 

count int; 

prv_org_dist numeric; 

prv_sim_dist numeric; 

SELF_LEN  text[]; 

ratio numeric; 

orig_line_dist numeric; 

simp_line_dist numeric; 

orig_dist numeric; 

sim_dist numeric; 

slp_diff_array double precision[]; 

comp_ratio_array double precision[]; 

BEGIN 

each_simp_line = 1; 

array_count = 1; 

count = 1; 

prv_org_dist = 0.0; 

prv_sim_dist = 0.0; 

no_lines = array_length(SELF_NS(line),1); 

no_simp_points = ST_NPOINTS(ST_LINEMERGE(ST_SIMPLIFY(line,threshold))); 

/* Checking for line type (single/multi segments) based on 
the number of points on the lines*/ 
 IF no_simp_points=2 THEN 

  self_adv = SELF_ADV(line, threshold,comp_ratio); 

   

 ELSE  

  

/* Simplify the geometry based on Douglas Peucker algorithm 
*/                                                   
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 StartingPoint=ST_StartPoint(ST_LineMerge(ST_Simplify(line,thresho

ld))); 

 

 EndingPoint=ST_EndPoint(ST_LineMerge(ST_Simplify(line,threshold))

); 

 

/* Getting starting and ending points of the line*/   
ActualLength=ST_Length(line); 

  self_adv.StartingPoint =  StartingPoint; 

  self_adv.EndPoint = EndingPoint; 

  self_adv.ActualLength = round(ActualLength,3); 

  simp_segments = SELF_ADV_CASE3(line, threshold);  

  func_lines = array_length(simp_segments,1); 

/* Applying point and segment level threshold*/   
WHILE each_simp_line <= func_lines 

                LOOP 

  comp_ratio_array = 

SELF_COMP_RATIO(simp_segments[each_simp_line]);  

                slp_diff_array = 

SELF_SLP_DIFF(simp_segments[each_simp_line]); 

                IF each_simp_line = func_lines THEN 

                 

                    orig_line_dist = 

ST_LENGTH(simp_segments[each_simp_line]); 

      simp_line_dist = 

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line]))); 

                    ratio = (orig_line_dist-

simp_line_dist)/(orig_line_dist); 

                    ratio = ratio * 100; 

                    IF ratio >= thr_ratio THEN 

             no_of_points = 

ST_NPOINTS(simp_segments[each_simp_line]); 

/* Finding orthogonal projection of each point on the 
original line into simplified*/   
      WHILE array_count < (no_of_points-1) 

      LOOP 

       IF array_count=1 THEN 

       pp_point = 

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])), 

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count)); 

       pp_point_nxt = 

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])), 

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count+1)); 

 

/* Calculating simplified and original distance */   

    

orig_dist = 

ST_DISTANCE(ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array

_count),ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_cou

nt+1)) + prv_org_dist; 

       IF slp_diff_array[array_count] != 0.0 and 

comp_ratio_array[array_count] >= comp_ratio  THEN 
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        IF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

!= 3.0 THEN 

         IF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

= 0.0 THEN 

              sim_dist = 

ST_DISTANCE(pp_point,pp_point_nxt) + prv_sim_dist ; 

       SELF_LEN[count] = 

round(sim_dist,3) || ',' || round(orig_dist,3); 

       count = count+1; 

                                                   ELSIF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

= 1.0 THEN  

                                                        sim_dist = 

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line]))) + 

prv_sim_dist ; 

       SELF_LEN[count] = 

round(sim_dist,3) || ',' || round(orig_dist,3); 

       count = count+1; 

                                                   ELSIF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

= 2.0 THEN  

                                                        sim_dist = 0.0 

+ prv_sim_dist ; 

       SELF_LEN[count] = 

round(sim_dist,3) || ',' || round(orig_dist,3); 

       count = count+1; 

         END IF; 

        END IF; 

       END IF; 

       ELSE 

       pp_point = 

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])), 

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count)); 

       pp_point_nxt = 

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])), 

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count+1)); 

       orig_dist = 

ST_DISTANCE(ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array

_count),ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_cou

nt+1))+orig_dist; 

 

/* Check if the projected point is on the simplified line or 
not */                                                      

     

IF slp_diff_array[array_count] != 0.0 and comp_ratio_array[array_count] 

>= comp_ratio  THEN 

     IF 
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SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

!= 3.0 THEN 

         IF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

= 0.0 THEN 

              sim_dist = 

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

pp_point_nxt) + prv_sim_dist ; 

       SELF_LEN[count] = 

round(sim_dist,3) || ',' || round(orig_dist,3); 

       count = count+1; 

                                                   ELSIF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

= 1.0 THEN  

                                                        sim_dist = 

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line]))) + 

prv_sim_dist ; 

       SELF_LEN[count] = 

round(sim_dist,3) || ',' || round(orig_dist,3); 

       count = count+1; 

                                                   ELSIF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

= 2.0 THEN  

                                                        sim_dist = 0.0 

+ prv_sim_dist ; 

       SELF_LEN[count] = 

round(sim_dist,3) || ',' || round(orig_dist,3); 

       count = count+1; 

         END IF; 

     END IF; 

       END IF;        

       END IF; 

       array_count = array_count+1; 

      END LOOP;  

                    END IF; 

   

      prv_org_dist = ST_LENGTH(simp_segments[each_simp_line]) 

+  prv_org_dist; 

 

/* Calculating the simplified and original accumulated 
length*/ 
      prv_sim_dist = 

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line]))) + 

prv_sim_dist; 

      array_count = 1;  

                    sim_dist = 0.0; 

                    orig_dist = 0.0;    

      each_simp_line = each_simp_line+1; 

  ELSE 

      orig_line_dist = 
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ST_LENGTH(simp_segments[each_simp_line]); 

      simp_line_dist = 

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line]))); 

                    ratio = (orig_line_dist-

simp_line_dist)/(orig_line_dist); 

                    ratio = ratio * 100; 

                    IF ratio >= thr_ratio THEN 

             no_of_points = 

ST_NPOINTS(simp_segments[each_simp_line]);   

      WHILE array_count < no_of_points 

      LOOP 

       IF array_count=1 THEN 

       pp_point = 

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])), 

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count)); 

       pp_point_nxt = 

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])), 

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count+1)); 

       orig_dist = 

ST_DISTANCE(ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array

_count),ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_cou

nt+1)) + prv_org_dist; 

       IF slp_diff_array[array_count] != 0.0  and 

comp_ratio_array[array_count] >= comp_ratio THEN 

     IF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

!= 3.0 THEN 

         IF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

= 0.0 THEN 

              sim_dist = 

ST_DISTANCE(pp_point,pp_point_nxt) + prv_sim_dist ; 

       SELF_LEN[count] = 

round(sim_dist,3) || ',' || round(orig_dist,3); 

       count = count+1; 

 

ELSIF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

= 1.0 THEN  

                                                        sim_dist = 

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])))+ prv_sim_dist 

; 

       SELF_LEN[count] = 

round(sim_dist,3) || ',' || round(orig_dist,3); 

       count = count+1; 

                                                   ELSIF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

= 2.0 THEN  

                                                        sim_dist = 0.0 
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+ prv_sim_dist ; 

       SELF_LEN[count] = 

round(sim_dist,3) || ',' || round(orig_dist,3); 

       count = count+1; 

         END IF; 

      END IF; 

        END IF;    

               ELSE 

       pp_point = 

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])), 

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count)); 

       pp_point_nxt = 

SELF_PP_POINT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])

),ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])), 

ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_count+1)); 

       orig_dist = 

ST_DISTANCE(ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array

_count),ST_PointN(ST_LINEMERGE(simp_segments[each_simp_line]),array_cou

nt+1))+orig_dist; 

       IF slp_diff_array[array_count] != 0.0 and 

comp_ratio_array[array_count] >= comp_ratio  THEN 

     IF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

!= 3.0 THEN 

 

/* Ends the iteration if the cursor reaches last point of 
the line */                                                    
IF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

= 0.0 THEN 

              sim_dist = 

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

pp_point_nxt) + prv_sim_dist ; 

       SELF_LEN[count] = 

round(sim_dist,3) || ',' || round(orig_dist,3); 

       count = count+1; 

                                                   ELSIF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

= 1.0 THEN  

                                                        sim_dist = 

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])))+ prv_sim_dist 

; 

       SELF_LEN[count] = 

round(sim_dist,3) || ',' || round(orig_dist,3); 

       count = count+1; 

                                                   ELSIF 

SELF_CHK_PT(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line])),pp_point_nxt) 

= 2.0 THEN  

                                                        sim_dist = 0.0 

+ prv_sim_dist ; 
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       SELF_LEN[count] = 

round(sim_dist,3) || ',' || round(orig_dist,3); 

       count = count+1; 

         END IF; 

     END IF; 

      END IF;      

       END IF; 

       array_count = array_count+1; 

      END LOOP;  

                    END IF; 

   

      prv_org_dist = ST_LENGTH(simp_segments[each_simp_line]) 

+  prv_org_dist; 

      prv_sim_dist = 

ST_DISTANCE(ST_StartPoint(ST_LineMerge(simp_segments[each_simp_line])),

ST_EndPoint(ST_LineMerge(simp_segments[each_simp_line]))) + 

prv_sim_dist; 

      array_count = 1;  

                    sim_dist = 0.0; 

                    orig_dist = 0.0;    

      each_simp_line = each_simp_line+1; 

   

  END IF; 

                END LOOP;  

  self_adv.AccumulatedLength = SELF_LEN; 

 END IF; 

RETURN self_adv; 

END; $$ 

LANGUAGE 'plpgsql'; 

 

2. SELF structure for Trajectories – PL/pgSQL function (Chapter 3) 

 

/* Function Definition – Takes input as original trajectory, 
simplification threshold, speed and heading based 
compression based threshold values */                                                    
CREATE OR REPLACE FUNCTION self_dyn_str_ml_sp( 

    _tbl regclass, 

    threshold double precision, spd_comp double precision, hdg_comp 

double precision) 

  RETURNS selfadv AS 

$BODY$ 

DECLARE 

/* Variables and data type definition to be used in the 
algorithm */                                                    
curs1 refcursor; 

rowcount integer; 

sed_rowcount integer; 

rowvar record; 

avg_vlcty numeric; 

sed_ms numeric[]; 

points geometry[]; 

segments geometry[]; 

noofpoints integer; 

pointscount integer; 
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noofsegments integer; 

segmentscount integer; 

seg_len numeric; 

self_adv SELFAdv; 

time_diff numeric; 

simp_geom geometry; 

orig_geom geometry; 

startingtime timestamp; 

avg_vlcty_array numeric[]; 

prv_len numeric; 

acc_len numeric[]; 

SELF_ARRAY  text[]; 

ind_pts_sgs integer; 

ind_pts_ptr integer; 

prv_speed double precision; 

prv_hdg double precision; 

spd_ratio double precision; 

hdg_ratio double precision; 

BEGIN 

rowcount = 0; 

sed_rowcount = 0; 

prv_len = 0; 

prv_speed = 0.0; 

prv_hdg = 0.0; 

/* Calculating average velocity of the trip and simplifying 
the geometry based on Synchronous Euclidean Distance */                                                   
avg_vlcty_array = SELF_AVG_VLCY_ML_SP(_tbl,threshold); 

orig_geom  = SELF_ORIG_GEOM(_tbl, threshold); 

simp_geom = 

ST_MAKELINE(SIMP_LINE(SED_SIMPFY(_tbl,threshold,threshold),orig_geom

)); 

acc_len = SELF_ACC_LEN_DYN(orig_geom); 

segments = SELF_SED_ADV_CASE3(_tbl, threshold); 

self_adv.StartingPoint = ST_StartPoint(ST_LineMerge(simp_geom)); 

self_adv.EndPoint = ST_EndPoint(ST_LineMerge(simp_geom)); 

self_adv.ActualLength = ST_LENGTH(orig_geom); 

noofsegments = array_length(segments,1); 

segmentscount = 1; 

/* Reading the individual points on the trajectory using 
cursors */                                                    
OPEN curs1 FOR EXECUTE format('SELECT * FROM %s', _tbl); 

WHILE segmentscount <= noofsegments  

LOOP 

/* Identifying number of segments in the simplified line */                                                      
IF segmentscount = 1 THEN 

       ind_pts_ptr = 1; 

       ind_pts_sgs = COUNT_POINTS(segments[segmentscount]); 

       RAISE NOTICE 'Number of points : %',ind_pts_sgs; 

 WHILE ind_pts_ptr <= ind_pts_sgs  

 LOOP 

 FETCH curs1 INTO rowvar; 

        EXIT WHEN NOT FOUND; 

  IF prv_speed > 0.0  THEN 
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   spd_ratio = (prv_speed-

rowvar.speed)*100.0/(prv_speed); 

  ELSE 

   spd_ratio = 100.0; 

  END IF; 

  IF spd_ratio < 0.0 THEN 

   spd_ratio = -1 * spd_ratio; 

  END IF; 

  IF prv_hdg > 0.0 THEN  

   hdg_ratio = (prv_hdg-

rowvar.heading)*100.0/(prv_hdg); 

  ELSE 

   hdg_ratio = 100.0; 

  END IF; 

/* Adding the semantics to the SELF structure */                                                   
  IF hdg_ratio < 0.0 THEN 

   hdg_ratio = -1 * hdg_ratio; 

  END IF; 

  IF ind_pts_ptr = 1 THEN 

        startingtime = CAST(rowvar.time AS TIMESTAMP); 

        sed_ms[sed_rowcount] = 0;  

        points[sed_rowcount] = rowvar.geom; 

        prv_speed = rowvar.speed; 

        prv_hdg = rowvar.heading; 

                    SELF_ARRAY[rowcount] = 

round(sed_ms[sed_rowcount],3) || ',' || rowvar.speed|| ',' || 

rowvar.heading || ',' ||  rowvar.time || ',' || 

acc_len[sed_rowcount];  

   rowcount = rowcount + 1; 

  ELSIF ind_pts_ptr = (ind_pts_sgs) THEN 

        time_diff = EXTRACT(EPOCH FROM (CAST (rowvar.time 

AS TIMESTAMP) - CAST(startingtime AS TIMESTAMP))); 

        IF ST_LENGTH(segments[segmentscount])>0 THEN 

        sed_ms[sed_rowcount] = (time_diff * 

avg_vlcty_array[segmentscount-

1])*(ST_DISTANCE(ST_STARTPOINT(segments[segmentscount]),ST_ENDPOINT(

segments[segmentscount]))/ST_LENGTH(segments[segmentscount])); 

        ELSE 

        sed_ms[sed_rowcount] = (time_diff * 

avg_vlcty_array[segmentscount-1]); 

        END IF; 

        points[sed_rowcount] = rowvar.geom; 

        startingtime = CAST(rowvar.time AS TIMESTAMP); 

                      prv_len = prv_len + sed_ms[sed_rowcount]; 

        IF (spd_ratio > spd_comp) AND (hdg_ratio > 

hdg_comp) THEN 

                      SELF_ARRAY[rowcount] = 

round(sed_ms[sed_rowcount],3) || ',' || rowvar.speed|| ',' || 

rowvar.heading || ',' ||  rowvar.time || ',' || 

acc_len[sed_rowcount];  

   rowcount = rowcount + 1; 

        END IF; 

  ELSE 

        time_diff = EXTRACT(EPOCH FROM (CAST (rowvar.time 
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AS TIMESTAMP) - CAST(startingtime AS TIMESTAMP))); 

        IF ST_LENGTH(segments[segmentscount])>0 THEN 

        sed_ms[sed_rowcount] = (time_diff * 

avg_vlcty_array[segmentscount-

1])*(ST_DISTANCE(ST_STARTPOINT(segments[segmentscount]),ST_ENDPOINT(

segments[segmentscount]))/ST_LENGTH(segments[segmentscount])); 

        ELSE 

        sed_ms[sed_rowcount] = (time_diff * 

avg_vlcty_array[segmentscount-1]); 

        END IF; 

        points[sed_rowcount] = rowvar.geom; 

        IF (spd_ratio > spd_comp) AND (hdg_ratio > 

hdg_comp) THEN 

                      SELF_ARRAY[rowcount] = 

round(sed_ms[sed_rowcount],3) || ',' || rowvar.speed|| ',' || 

rowvar.heading || ',' ||  rowvar.time || ',' || 

acc_len[sed_rowcount];  

   rowcount = rowcount + 1; 

        END IF; 

  END IF;  

 sed_rowcount = sed_rowcount + 1; 

 prv_speed = rowvar.speed; 

 prv_hdg = rowvar.heading; 

        ind_pts_ptr = ind_pts_ptr + 1; 

        RAISE NOTICE 'rowcount : %',rowcount; 

 END LOOP; 

   ELSE 

       ind_pts_ptr = 1; 

       ind_pts_sgs = COUNT_POINTS(segments[segmentscount]); 

       RAISE NOTICE 'Number of points from else block : 

%',ind_pts_sgs; 

 WHILE ind_pts_ptr < ind_pts_sgs  

 LOOP 

 FETCH curs1 INTO rowvar; 

        EXIT WHEN NOT FOUND; 

 

/* Applying Speed and Heading based compression values */                                                   
  IF prv_speed > 0.0  THEN 

   spd_ratio = (prv_speed-

rowvar.speed)*100.0/(prv_speed); 

  ELSE 

   spd_ratio = 100.0; 

  END IF; 

  IF spd_ratio < 0.0 THEN 

   spd_ratio = -1 * spd_ratio; 

  END IF; 

  IF prv_hdg > 0.0 THEN  

   hdg_ratio = (prv_hdg-

rowvar.heading)*100.0/(prv_hdg); 

  ELSE 

   hdg_ratio = 100.0; 

  END IF; 

  IF hdg_ratio < 0.0 THEN 

   hdg_ratio = -1 * hdg_ratio; 
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  END IF; 

 

/* Calculating the accumulated distance at each point on the 
original trajectory and its SED projection point on the 
generalized trajectory  */                                                      
  IF ind_pts_ptr = (ind_pts_sgs-1) THEN 

        time_diff = EXTRACT(EPOCH FROM (CAST (rowvar.time 

AS TIMESTAMP) - CAST(startingtime AS TIMESTAMP))); 

        IF ST_LENGTH(segments[segmentscount])>0 THEN 

        sed_ms[sed_rowcount] = (time_diff * 

avg_vlcty_array[segmentscount-

1])*(ST_DISTANCE(ST_STARTPOINT(segments[segmentscount]),ST_ENDPOINT(

segments[segmentscount]))/ST_LENGTH(segments[segmentscount])); 

        ELSE 

        sed_ms[sed_rowcount] = (time_diff * 

avg_vlcty_array[segmentscount-1]); 

        END IF; 

        points[sed_rowcount] = rowvar.geom; 

         

        ind_pts_ptr = ind_pts_ptr + 1; 

        startingtime =  CAST(rowvar.time AS TIMESTAMP); 

        prv_len = prv_len + sed_ms[sed_rowcount]; 

  IF (spd_ratio > spd_comp) AND (hdg_ratio > hdg_comp) THEN 

        SELF_ARRAY[rowcount] = 

round(sed_ms[sed_rowcount],3) || ',' || rowvar.speed|| ',' || 

rowvar.heading || ',' ||  rowvar.time || ',' || 

acc_len[sed_rowcount];  

      rowcount = rowcount + 1; 

  END IF; 

        sed_rowcount = sed_rowcount +1; 

  ELSE 

        time_diff = EXTRACT(EPOCH FROM (CAST (rowvar.time 

AS TIMESTAMP) - CAST(startingtime AS TIMESTAMP))); 

 

 

/* Semantic based compression levels */         
IF ST_LENGTH(segments[segmentscount])>0 THEN 

        sed_ms[sed_rowcount] = (time_diff * 

avg_vlcty_array[segmentscount-

1])*(ST_DISTANCE(ST_STARTPOINT(segments[segmentscount]),ST_ENDPOINT(

segments[segmentscount]))/ST_LENGTH(segments[segmentscount])); 

        ELSE 

        sed_ms[sed_rowcount] = (time_diff * 

avg_vlcty_array[segmentscount-1]); 

        END IF; 

        points[sed_rowcount] = rowvar.geom; 

        

          ind_pts_ptr = ind_pts_ptr + 1; 

  IF (spd_ratio > spd_comp) AND (hdg_ratio > hdg_comp) THEN 

                    SELF_ARRAY[rowcount] = 

round(sed_ms[sed_rowcount],3) || ',' || rowvar.speed|| ',' || 

rowvar.heading || ',' ||  rowvar.time || ',' || 
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acc_len[sed_rowcount];  

        rowcount = rowcount + 1; 

  END IF; 

   sed_rowcount = sed_rowcount +1; 

  END IF; 

  prv_speed = rowvar.speed; 

  prv_hdg = rowvar.heading; 

            RAISE NOTICE 'row count from else block: %',rowcount; 

 END LOOP; 

   END IF; 

   ind_pts_ptr=0; 

   segmentscount = segmentscount+1; 

END LOOP; 

IF spd_comp >= 0.0 THEN 

SELF_ARRAY[rowcount] = round(prv_len,3) || ',' || prv_speed || ',' 

|| prv_hdg || ',' || acc_len[sed_rowcount-1];  

END IF; 

self_adv.AccumulatedLength = SELF_ARRAY; 

RETURN self_adv; 

END; $BODY$ 

  LANGUAGE 'plpgsql'; 

 

3. JAVA methods for combining simplified trajectory with SELF structure 

(Chapter 4) 
 

/* Method for combining the simplified geometry with SELF 
structure to generate the nodes for the proposed graph model 
*/                                                    
public List<String> generatetrGraphNodes(List<CustomPoint> simpPoints, List<Double> 
arrayOfDistance, List<SELFEXTENTED> selfArray, String comment){ 
 
 
  List<String> nodeString = new ArrayList<String>(); 
  Trajectory trajectory = new Trajectory(); 
  Integer simpPointsPointer = 0; 
  trajectory.comment = comment; 
  trajectory.nodes =  new ArrayList<Node>(); 
  trajectory.edges = new ArrayList<Edge>(); 
  int noofIntermediatePoints = 0; 
  Integer previousId=0;  
  for(int i=0;i<selfArray.size() ;i++){ 
   SELFEdge e = new SELFEdge(); 
   SELFNode n = new SELFNode(); 

/* Adding the properties to the first node (Starting point) 
*/                                                     

   if (i==0){ 
    n.id = simpPointsPointer+1; 
    n.latitude = 
simpPoints.get(simpPointsPointer.intValue()).getLatitude(); 
    n.longitude = 
simpPoints.get(simpPointsPointer.intValue()).getLongitude(); 
    n.simpDist = selfArray.get(i).getSimpDist(); 
    n.speed = selfArray.get(i).getSpeed(); 
    n.heading = selfArray.get(i).getHeading(); 
    n.origDist = selfArray.get(i).getOrigDist(); 
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    n.time =  selfArray.get(i).getTime(); 
    n.nodeType = "main"; 
    trajectory.nodes.add(n); 
    simpPointsPointer  = simpPointsPointer + 1; 
    previousId = n.id; 
 
    System.out.println(comment+"_"+n.id + "," + n.latitude + 
"," + n.longitude + "," + n.simpDist + "," + n.speed + "," + n.heading + "," + 
n.origDist + "," + n.time + "," +  n.nodeType); 
    nodeString.add(comment+"_"+n.id + "," + n.latitude + "," + 
n.longitude + "," + n.simpDist + "," + n.speed + "," + n.heading + "," + n.origDist + 
"," + n.time + "," +  n.nodeType); 
 
   } 

 

/* Adding the properties to the intermediate nodes */     
   else 
if(arrayOfDistance.get(simpPointsPointer.intValue()).equals(selfArray.get(i).getSimpDis
t())){ 
     
    n.id = simpPointsPointer+1; 
    n.latitude = 
simpPoints.get(simpPointsPointer.intValue()).getLatitude(); 
    n.longitude = 
simpPoints.get(simpPointsPointer.intValue()).getLongitude(); 
    n.simpDist = selfArray.get(i).getSimpDist(); 
    n.speed = selfArray.get(i).getSpeed(); 
    n.heading = selfArray.get(i).getHeading(); 
    n.origDist = selfArray.get(i).getOrigDist(); 
    n.time =  selfArray.get(i).getTime(); 
    n.nodeType = "main"; 
    trajectory.nodes.add(n); 
    simpPointsPointer  = simpPointsPointer + 1; 
 
    System.out.println(comment+"_"+n.id + "," + n.latitude + 
"," + n.longitude + "," + n.simpDist + "," + n.speed + "," + n.heading + "," + 
n.origDist + "," + n.time + "," +  n.nodeType); 
    nodeString.add(comment+"_"+n.id + "," + n.latitude + "," + 
n.longitude + "," + n.simpDist + "," + n.speed + "," + n.heading + "," + n.origDist + 
"," + n.time + "," +  n.nodeType); 
 
 
    SELFEdge e1 = new SELFEdge(); 
    e1.caption = "NEXT"; 
    e1.source = previousId; 
    e1.target = simpPointsPointer; 
    if(e1.source != e1.target-1){ 
     e1.noOfIntermediatePoints = 0; 
     e1.simpDistWeight =
 Double.parseDouble(String.format("%.3f", 
arrayOfDistance.get(simpPointsPointer.intValue()-1) - 
arrayOfDistance.get(simpPointsPointer.intValue()-2))); 
 
     e1.origDistWeight = 
 Double.parseDouble(String.format("%.3f", selfArray.get(i).getOrigDist() - 
selfArray.get(i-noofIntermediatePoints-1).getOrigDist())); 
 
     e1.between = (simpPointsPointer-1)+"-
"+simpPointsPointer; 
     e1.edgeType = "BRANCH"; 
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     trajectory.edges.add(e1); 
    } 
    e.caption = "NEXT"; 
    e.source = (simpPointsPointer-1); 
    e.target = simpPointsPointer; 
    e.edgeType = "MAINSTREAM"; 
    if(noofIntermediatePoints>0){ 
 
     e.noOfIntermediatePoints = noofIntermediatePoints; 
     e.simpDistWeight =
 Double.parseDouble(String.format("%.3f", 
arrayOfDistance.get(simpPointsPointer.intValue()-1) - 
arrayOfDistance.get(simpPointsPointer.intValue()-2))); 
 
     e.origDistWeight = 
 Double.parseDouble(String.format("%.3f", selfArray.get(i).getOrigDist() - 
selfArray.get(i-noofIntermediatePoints-1).getOrigDist())); 
 
 
    } 
    else{ 
 
 
     e.noOfIntermediatePoints = noofIntermediatePoints; 
     e.simpDistWeight =
 Double.parseDouble(String.format("%.3f", 
arrayOfDistance.get(simpPointsPointer.intValue()-1) - 
arrayOfDistance.get(simpPointsPointer.intValue()-2))); 
 
     e.origDistWeight = 
 Double.parseDouble(String.format("%.3f", selfArray.get(i).getOrigDist() - 
selfArray.get(i-noofIntermediatePoints-1).getOrigDist())); 
 
 
    } 
 
    trajectory.edges.add(e); 
 
    previousId = n.id; 
    noofIntermediatePoints = 0; 
   } 
   else{ 
    noofIntermediatePoints = noofIntermediatePoints +1; 
 
    n.id = Integer.parseInt(String.valueOf(simpPointsPointer 
+""+(simpPointsPointer+1)+""+ (noofIntermediatePoints))); 
    n.simpDist = selfArray.get(i).getSimpDist(); 
    n.speed = selfArray.get(i).getSpeed(); 
    n.heading = selfArray.get(i).getHeading(); 
    n.origDist = selfArray.get(i).getOrigDist(); 
    n.nodeType = "side"; 
    n.between = simpPointsPointer+"-"+(simpPointsPointer+1); 
    n.time =  selfArray.get(i).getTime(); 
    trajectory.nodes.add(n); 
   
 System.out.println(comment+"_"+String.valueOf(simpPointsPointer 
+"_"+(simpPointsPointer+1)+"_"+ (noofIntermediatePoints)) + "," + n.latitude + "," + 
n.longitude + "," + n.simpDist + "," + n.speed + "," + n.heading + "," + n.origDist + 
"," + n.time + "," +  n.nodeType); 

   
 nodeString.add(comment+"_"+String.valueOf(simpPointsPointer 
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+"_"+(simpPointsPointer+1)+"_"+ (noofIntermediatePoints)) + "," + n.latitude + "," + 
n.longitude + "," + n.simpDist + "," + n.speed + "," + n.heading + "," + n.origDist + 
"," + n.time + "," +  n.nodeType); 
    e.caption = "NEXT"; 
    e.source = previousId; 
    e.target = n.id; 
    e.edgeType = "BRANCH"; 
    e.between = simpPointsPointer+"-"+(simpPointsPointer+1); 
    previousId = n.id;    
    trajectory.edges.add(e); 
 
  } 
 
  } 
 

/* Building the JSON document for the nodes */     
  GsonBuilder builder = new GsonBuilder(); 
  Gson gson = builder.create(); 
  String gsonString = gson.toJson(trajectory); 
  return nodeString; 
 } 

/* Method for combining the simplified geometry with SELF 
structure to generate the nodes for the proposed graph model 
*/                                                    
 
 public List<String> generatetrGraphEdges(List<CustomPoint> simpPoints, 
List<Double> arrayOfDistance, List<SELFEXTENTED> selfArray, String comment){ 
 
 
  List<String> edgeString = new ArrayList<String>(); 
  Trajectory trajectory = new Trajectory(); 
  Integer simpPointsPointer = 0; 
  trajectory.comment = comment; 
  trajectory.nodes =  new ArrayList<Node>(); 
  trajectory.edges = new ArrayList<Edge>(); 
  int noofIntermediatePoints = 0; 
  Integer previousId=0;  
  String prvID = ""; 

/* Connecting starting node with the intermediate nodes */                                                    
 
  for(int i=0;i<selfArray.size() ;i++){ 
   SELFEdge e = new SELFEdge(); 
   SELFNode n = new SELFNode(); 
   if (i==0){ 
    n.id = simpPointsPointer+1; 
    n.latitude = 
simpPoints.get(simpPointsPointer.intValue()).getLatitude(); 
    n.longitude = 
simpPoints.get(simpPointsPointer.intValue()).getLongitude(); 
    n.simpDist = selfArray.get(i).getSimpDist(); 
    n.speed = selfArray.get(i).getSpeed(); 
    n.heading = selfArray.get(i).getHeading(); 
    n.origDist = selfArray.get(i).getOrigDist(); 
    n.time =  selfArray.get(i).getTime(); 
    n.nodeType = "main"; 
    trajectory.nodes.add(n); 
    simpPointsPointer = simpPointsPointer + 1; 
    previousId = n.id; 
    prvID = String.valueOf(previousId); 
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   } 
   else 
if(arrayOfDistance.get(simpPointsPointer.intValue()).equals(selfArray.get(i).getSimpDis
t())){ 
     
    n.id = simpPointsPointer+1; 
    n.latitude = 
simpPoints.get(simpPointsPointer.intValue()).getLatitude(); 
    n.longitude = 
simpPoints.get(simpPointsPointer.intValue()).getLongitude(); 
    n.simpDist = selfArray.get(i).getSimpDist(); 
    n.speed = selfArray.get(i).getSpeed(); 
    n.heading = selfArray.get(i).getHeading(); 
    n.origDist = selfArray.get(i).getOrigDist(); 
    n.time =  selfArray.get(i).getTime(); 
    n.nodeType = "main"; 
    trajectory.nodes.add(n); 
    simpPointsPointer  = simpPointsPointer + 1; 
 
    SELFEdge e1 = new SELFEdge(); 
    e1.caption = "NEXT"; 
    e1.source = previousId; 
    e1.target = simpPointsPointer; 
    if(e1.source != e1.target-1){ 
     e1.noOfIntermediatePoints = 0; 
      
     e1.between = (simpPointsPointer-1)+"-
"+simpPointsPointer; 
     e1.edgeType = "BRANCH"; 
     System.out.println(e1.caption + "," + 
comment+"_"+e1.source +"," +comment+"_"+e1.target +","+e1.edgeType +","+e1.between + 
"," + e1.noOfIntermediatePoints +","+e1.simpDistWeight +","+ e1.origDistWeight); 
     edgeString.add(e1.caption + "," + 
comment+"_"+prvID +"," +comment+"_"+e1.target +","+e1.edgeType +","+e1.between + "," + 
e1.noOfIntermediatePoints +","+e1.simpDistWeight +","+ e1.origDistWeight); 
    
     trajectory.edges.add(e1); 
    } 
     
    e.caption = "NEXT"; 
    e.source = (simpPointsPointer-1); 
    e.target = simpPointsPointer; 
    e.edgeType = "MAINSTREAM"; 
    if(noofIntermediatePoints>0){ 
 
     e.noOfIntermediatePoints = noofIntermediatePoints; 
     e.simpDistWeight =
 Double.parseDouble(String.format("%.3f", 
arrayOfDistance.get(simpPointsPointer.intValue()-1) - 
arrayOfDistance.get(simpPointsPointer.intValue()-2))); 
 
     e.origDistWeight = 
 Double.parseDouble(String.format("%.3f", selfArray.get(i).getOrigDist() - 
selfArray.get(i-noofIntermediatePoints-1).getOrigDist())); 
 
 
    } 
    else{ 
 
     e.noOfIntermediatePoints = noofIntermediatePoints; 



139 
 

      
    } 
    System.out.println(e.caption + "," + comment+"_"+e.source 
+"," +comment+"_"+e.target +","+e.edgeType +","+e.between + "," + 
e.noOfIntermediatePoints +","+e.simpDistWeight +","+ e.origDistWeight); 
    edgeString.add(e.caption + "," + comment+"_"+e.source +"," 
+comment+"_"+e.target +","+e.edgeType +","+e.between + "," + e.noOfIntermediatePoints 
+","+e.simpDistWeight +","+ e.origDistWeight); 
    trajectory.edges.add(e); 
 
    previousId = n.id; 
    prvID = String.valueOf(previousId); 
    noofIntermediatePoints = 0; 
   } 

/* Adding properties to the edges connecting intermediate nodes */     
   else{ 
    noofIntermediatePoints = noofIntermediatePoints +1; 
 
    n.id = Integer.parseInt(String.valueOf(simpPointsPointer 
+""+(simpPointsPointer+1)+""+ (noofIntermediatePoints))); 
     
    n.simpDist = selfArray.get(i).getSimpDist(); 
    n.speed = selfArray.get(i).getSpeed(); 
    n.heading = selfArray.get(i).getHeading(); 
    n.origDist = selfArray.get(i).getOrigDist(); 
    n.nodeType = "side"; 
    n.between = simpPointsPointer+"-"+(simpPointsPointer+1); 
    n.time =  selfArray.get(i).getTime(); 
    trajectory.nodes.add(n); 
    e.caption = "NEXT"; 
    e.source = previousId; 
    e.target = n.id; 
    e.edgeType = "BRANCH"; 
    e.between = simpPointsPointer+"-"+(simpPointsPointer+1); 
    previousId = n.id;   
    trajectory.edges.add(e); 
    System.out.println(e.caption + "," + comment+"_"+e.source 
+"," +comment+"_"+e.target +","+e.edgeType +","+e.between + "," + 
e.noOfIntermediatePoints +","+e.simpDistWeight +","+ e.origDistWeight); 
    edgeString.add(e.caption + "," + comment+"_"+prvID +"," 
+comment+"_"+ String.valueOf(simpPointsPointer +"_"+(simpPointsPointer+1)+"_"+ 
(noofIntermediatePoints)) +","+e.edgeType +","+e.between + "," + 
e.noOfIntermediatePoints +","+e.simpDistWeight +","+ e.origDistWeight); 
    prvID = String.valueOf(simpPointsPointer 
+"_"+(simpPointsPointer+1)+"_"+ (noofIntermediatePoints)); 
    
   } 
 
  } 

 /* Building the JSON document for the edges */     
  GsonBuilder builder = new GsonBuilder(); 
  Gson gson = builder.create(); 
  String gsonString = gson.toJson(trajectory); 
 
  return edgeString; 
 
 
 
 }
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