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ABSTRACT 

The determination of geoidal heights from astrogeodetic deflec

tions of the vertical is limited in reliability by the lack of available 

data, and its generally poor distribution. In order to overcome this 

problem, one possible method is to use gravity data to assist in pre

dicting d~flections in areas where none have been, or can be, observed. 

This thesis investigates such a procedure, and evaluates the 

capabilities of a high order approximating polynomial to represent the 

geoid. The influence of the additional predicted deflections on the 

shape of the geoid is studied, and various alternatives for the deter

mination of the detailed shape of the geoid in a small area investigated. 

Satisfactory results have been obtained for the deflection 

prediction. However, not all error sources have been accounted for, and 

further refinements, together with an improved gravity field, will result 

in more reliable predictions. 

The use of the approximating polynomial has several advantages 

over the usual approach. Fewer deflection stations are needed than in 

the classical technique, and geoidal heights, together with their error 

covariance matrix, can be computed at any points in the region of inter

est. Geoidal heights, "obtained from other sources~ m~ be used as 

constraints on the solution. 

The techniques developed here· should contribute significantly 

towards enabling deflections to be predicted at geodetic stations, and 

towards providing a reliable tool for geoid computation. 
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CHAPTER 1 

INTRODUCTION 

1.1 The Geoid and its Application 

Before the geoid and its ap~lications can be discussed, a few 

brief definitions are necessary, in order that the terminology used be 

fully understood. 

The geoid is. that particular equipotential surface of the 

earth's gravity field which coincides with mean sea level, in the mean 

sense. The geoid may be closely approximated by an ellipsoid, and the 

separation between these two surfaces is known as the geoidal height, N, 

positive when the geoid is above the ellipsoid (Figure 1.1). 

The plumbline is perpendicular to the geoid, and to the other 

equipotential surfaces of the gravity field. The angle between the 

tangent to the ~lumbline at a point, and the normal to the ellipsoid, 

passing through the same point, is called the deflection of the vertical. 

Deflections of the vertical at the terrain are surface deflections, and 

differ by the amount of the curvature of the plumbline from the corresp

onding deflections at the geoid (Figure 1.1). 

The deflection of the vertical at a point is customarily split 

into two scalar quantities, ~. n. ~ is the deflection component in the 

north-south direction, and is called the deflection in the meridian. n 

is the component at right angles to ~. and is known as the deflection in 

the prime vertical. The sign convention is such that ~ is positive 

1 
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when the geoidal height is increasing towards the south, and n is pos-

itive when the geoidal height is increasing towards the west. 

The geoid is a physical, but intangible, reality which affects 

the field of surveying in several ways. Conventional surveying instruments 

are aligned with their vertical axes parallel to the tangent to the local 

plumbline. In the classical approach to geodesy, calculations are 

carried out on a reference ellipsoid, using observations reduced from the 

terrain to this surface. This reduction requires a knowledge of the 

geoidal heights and of the surface deflections of the vertical (Merry and 
~..., 

Vanicek, 1973). 

The process of spirit levelling, with appropriate corrections 

for variations in gravity, yields height differences between equi-

potential surfaces (Heiskanen and Moritz, 1967). These heights are 

customarily referred, by means of tide-gauges, to mean sea level, and 

thus the geoid effectively becomes the datum surface for heights. How-

ever, mean sea level is not completely coincident with the geoid, as 

variations in its level, due to temperature, pressure, and salinity 

changes, and to other effects, cause it to depart from an equipotential 

surface by an amount estimated to be 1 to 2 metres (Lisitzin and Pattulo, 

1961). The question as to whether mean sea level can be used as an 

approximation to the geoid for geodetic purposes, or whether the geoid 

may be used as a datum from which to measure sea level variations, is 

yet to be settled (see, for instance, Proc. of Symp. on Applic. of Marine 

Geodesy, 1974) . 

The geoid itself is a dynamic surface, with its radius vector 

from the centre of gravity of the earth changing cyclically, due to the 

gravitational attraction of the sun and the moon. This change is of the 
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order of 1 metre (Melchior, 1966). 

Several geodesists have ·investigated means of working without 

the geoid (e.g. Hotine, 1969; Dufour~ 1968). Using the classical 

observ~tions to terrestrial targets, this still appears to be an im

possibility, due to the uncertain effects of atmospheric refraction upon 

vertical angles, and the fact that these are also affected by deflections 

of the vertical. One technique that is independant of the geoid is 

geometric satellite geodesy. Hmvever, it is not imaginable that satellite 

observations will be made at all geodetic stations, and the classical 

observations will be complemented by, rather than replaced by, observations 

to satellites. As shall be shown in the next section, geoidal heights 

form a vital link relating the co-ordinate systems in which these two 

types of observations are used. 

Although there is only one equipotential surface that may be 

called the geoid, there are several different ways in which geoidal 

peights may be computed. This has resulted in several "types" of geoid, 

which are briefly described below: 

(1) The satellite geoid is based upon the analysis of orbit per

turbations of artificial earth satellites. For a description of the 

methods used, see Kaula (1966) or Gaposchkin and Lambeck (1969). This 

representation has the characteristic that, although of uniform quality, 

it is a somewhat smoothed version of the geoid, referred to a geocentric 

ellipsoid. 

(2) The calculation of the gravimetric geoid uses the magnitude of 

the earth's gravity, measured at the terrain, to obtain geoidal heights 

(Heiskanen and Moritz, 1967). It is usually referred to a geocentric 

ellipsoid and, due to lack of gravity data in certain areas of the world, 
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is not of consistent quality. 

(3) The combined satellite-gravimetric geoid combines the best 

features of (1) and (2). The detailed variations in geoidal height are 

described using the gravity anomalies, and the large scale variations 

by using the satellite data {Vincent et al, 1972). 

(4) The calculation of the astrogeodetic geoid uses the direction 

of gravity {rather than the magnitude) to obtain geoidal heights relative 

to the reference ellipsoid to which the direction is related. This 

reference ellipsoid is not necessarily geocentric. Due to the nature of 

the observations it can only be computed for the land masses, and requires 

a good distribution of data. For an example, see Fischer (1960). 

(5) The astrogravimetric geoid combines the best features of (2) 

and (4). It is basically an astrogeodetic geoid, with supplementary 

deflections obtained via gravity anomalies. As this type of geoid is 

the main topic of this thesis, it will be described in more detail in 

later sections. No systematic use of this idea has been made in North 

America, although Fischer et al (1967) used some gravity data in their 

geoid computation. 

1.2 Co-ordinate Systems 

In order to describe the use of the geoid in transformations 

between co-ordinate systems, a brief review of those systems used in 

geodesy is given here. They are of two types: 

(1) Ellipsoidal. 

(2) Cartesian. 

(1) The ellipsoidal co-ordinate system consists of triplets 

of numbers: ($, A, h) defined on a particular rotational ellipsoid. $ is the 
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geodetic latitude, measured north ~rom the equator, A is the geodetic 

longitude, measured east ~rom an arbitrary re~erence plane, and h is the heighi 

above the ellipsoid, measured along the outward normal to the ellipsoid 

(Figure 1.2). For the co-ordinate system to be completely speci~ied, the 

size and shape parameters o~ the ellipsoid must be given, generally as 

a and ~. a-b 
~ is the ~lattening, ~ = --- and a and b are respectively the 

a ' 

semi-major and semi-minor axes o~ the ellipsoid. The h component is 

usually considered in two parts: H, the height above the geoid, and N, 

the geoidal height (Figure 1.1). The classical two-dimensional geodetic 

system consists o~ the (~, A) co-ordinate pairs only. In order to obtain 

a three-dimensional geodetic system, it is apparent that both H and N 

are needed. 

(2) The cartesian co-ordinate system consists o~ triplets of 

numbers (x, y, z), describing the positions o~ points with respect to 

three orthogonal axes (Figure 1.3). When the origin of this co-ordinate 

system coincides with the centre of the ellipsoidal system, and the z-

axis is coincident with the minor axis of the ellipsoid, and the x-z 

plane is the reference meridian plane then the cartesian system is 

related to the ellipsoidal system by the equations: 

[(N(~) +h) cos~ COSA J 
(N(~) +h) cos~ sinA 

((1- e2 ) N(~) +h) sin~ 
1.1 

(Heiskanen and Moritz, 1967), where N(~) denotes the radius of curvature 

of the ellipsoid in the prime vertical, and e is the first eccentricity 

of the ellipsoid. 

When the ellipsoidal (and its corresponding cartesian} system 

is used as a basis for geodetic calculations, it is known as a geodetic 
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system, and the ellipsoid as a geodetic reference ellipsoid. When a 

cartesian system is located in such a way that its origin is at the 

centre of gravity of the earth, the z-axis coincides with the mean 

rotation axis of the earth, and the x-z plane contains the Greenwich 

mean observatory (i.e. it coincides with the Greenwich meridian plane), 

then it is known as a geocentric system (obviously, there is a corr

esponding geocentric ellipsoidal system). The geodetic and geocentric 

co-ordinate systems will not generally coincide, and the origins may be 

shifted with respect to each other (translated) and their axes may not 

be parallel (rotated). It is also conceivable that different scales may 

be used within the systems. In practice these translations, rotations 

and scale changes are small, causing co-ordinate changes of the order 

of 100 metres (Hue:l:-ler et al, 1972). 

Calculations involving observations to terrestrial objects are 

customarily carried out in the two dimensional geodetic system, while 

those involving observations to satellites are carried out in the 

cartesian geocentric system. In order to relate the co-ordinates in 

these two systems, the translation components, rotations, scale change 

and heights H and N are needed. 

The astronomic co-ordinates (~, A) should also be mentioned 

here. The astronomic latitude, ~, of a point P, is the angle formed 

between the normal to the geoid, passing through P, and the mean equator 

(at right angles to the mean rotation axis of the earth) (Figure 1.4a). 

The astronomic longitude A, is measured in the plane of the equator from 

the Greenwich meridian plane east to the plane, containing the mean 

rotation axis, which is parallel to the normal to the geoid at P (Figure 

1. 4b) 0 
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Provided that the geodetic cartesian system is parallel to the 

geocentric cartesian system, then the components of the astrogeodetic 

deflection of the vertical are given by': 

1.2 

nA = (A - A) cos~ 

(Heiskanen and Moritz, 1967). 

1. 3 Accuracy Requirements 

The uses of the astrogravimetric (or astrogeodetic) geoidal 

heights may be itemised as: 

(1) To reduce observed distances and directions from the terrain 

to the geodetic reference ellipsoid. 

(2) To transform the classical two-dimensional geodetic system to 

a '"(;hree-a:tmensional geodetic co-ordinate system. 

(3) To relate the geodetic co-ordinate system to a geocentric 

co-ordinate system (i.e determine translation components and rotations). 

(4) To serve as a datum from which variations in mean sea level 

may be determined. 

(1) The accuracy requirements for the reduction of distances 

and directions will be a function of the accuracy requirements for the 

first-order horizontal control networks. In Canada, the accuracy require-

ments are 5 parts per million (ppm) for distances and 211 for first-

order directions (Klinkenberg, 1972). In order that errors in geoidal 

height and deflections of the vertical do not unduly affect the accuracy 

of the reduced distances and directions, their effects should be con-

siderably smaller than 5 ppm and 2". Assuming the errors in the geoidal 

heights and deflections to be random (which may not be the case, 
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especially for geoidal heights), then a reasonable upper bound for their 

effects is 2.5 ppm and 1". Using the formulae of Merry and Van1C'ek (1973) 

this implies that the accuracy of geoidal heights should be better than 

16 metres and that of deflections of the vertical better than 1" cotg Z 

(where Z is the zenith distance of the target for the particular obser

vation). 

(2) is in fact a subset of (3) and they may be considered to

gether. No established guidelines are available for accuracy standards 

in the transformation from geodetic to geocentric co-ordinate systems. 

A useful rule-of-thumb is that the parameters used in the transformation 

be no less accurate than the data being transformed. With the rapid 

changes taking place in satellite technology, it is difficult to place 

a figure on the accuracy of the geocentric co-ordinates. The optical 

satellite systems, with an accuracy of 10 to 15 metres (Lambeck, 1971), 

are rapidly giving way to the Doppler systems, with an accuracy of 1 to 

2 metres (Wells, 1974). These, in turn, may be replaced by laser systems 

with sub-metre accuracy . (Bender et al, 1968). No rigorous and complete 

analysis of the North American networks has been performed, but they do 

not appear to have reached the same standard of accuracy as the Doppler 

system, and distortions in the networks in excess of 10 metres are evi

dent {Seppelin, 1974; McLellan, 1974). It appears that for the immed

iate future needs, an accuracy for geoidal heights of the order of 

2 metres is adequate for transformation purposes. 

(4) As mentioned earlier, mean sea level variations reach 1 

to 2 metres and, in order for these variations to be completely studied, 

geoidal heights with an accuracy one order better (i.e. 0.1 m to 0.2 m) 

would be required. It is not anticipated that the astrogravimetric 
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geoid will be of much help in this field, as it is limited to land masses 

and enclosed bays. 

1.4 Scope of the Investigation 

This thesis can be treated in two main parts. The first part 

deals with the prediction of astrogeodetic deflections using observed 

deflections and gravity data. The second part deals with the calculation 

of geoidal heights from deflections of the vertical. 

(1) The idea of using gravity data to aid in the prediction 

of astrogeodetic deflections is not new, and was first used by Molodensky 

et al (1962). The method used in this investigation differs considerably 

from those of Molodensky and others, such as Strange and Woollard. (1964), 

who use a linear one-dimensional interpolation between pairs of astra

geodetic deflection stations. and Fischer (1965). who uses a non-linear 

graphical interpolation along a chain of deflection stations. In the 

~echnique developed in this thesis, a non-linear two-dimensional approx

imation polynomial is used for interpolation. Modified gravimetric 

deflections are computed using the available gravity anomalies, and a new 

derivation for the integration-in the inner zone is developed. 

(2) The model for geoidal heights differs radically from the 

traditional linear integration between adjacent deflection stations, 

using Helmert's formula (Heiskanen and Moritz, 1967). In this thesis a 

surface-fitting technique is employed to fit all available deflections. 

This model has also been enlarged to incorporate geoidal heights as add

itional observations. This procedure for computing an astrogravimetric 

geoid is evaluated, bearing in mind present day accuracy requirements, 

and the amount of available data. 



CHAPTER 2 

DEFLECTION PREDICTION 

2.1 Introduction 

2.11 Survey of prediction methods 

There are several possible methods of predicting astrogeodetic 

deflections, all of which have particular advantages and disadvantages. 

These methods should be evaluated on the basis of their reliability, 

ease of use, and the availability of the necessary data. These methods 

have been categorised by Heiskanen and Moritz (1967) as: 

(1) Measurement of zenith distances 

(2) Use of torsion balance 

(3) Use of topographic-isostatic deflections 

(4) Astrogravimetric levelling. 

(1) The measurement of zenith distances, although a direct 

simple approach, is affected by atmospheric refraction to such an extent 

that it cannot be considered reliable. Under the best topographic con

ditions (in high mountains), an accuracy of the order of 20" has been 

achieved in the Rockies (Bacon, 1966), although Hradilek (1968) claims 

that an accuracy of 2" is possible. 

(2) The torsion balance is not easy to use and the reduction 

of data is a laborious process, althoueh (with limited tests) the method 

appears to have an accuracy of the order of 1" (Mueller, 1964). 

14 



15 

(3) The use of topographic-isostatic deflections is based upon 

the assumption that the geodetic and gravimetric reference ellipsoids 

are concentric and are of eQual dimensions. Unless the topographic

isostatic deflections are appropriately corrected, the results will be 

erroneous. The proceaure is also laborious and time-consuming, and 

reQuires knowledge of the surrounding topography and gravity field to a 

considerable distance from the computation point (Szabo, 1962). Con

seQuently, it cannot be recommended as a method of deflection prediction. 

(4) The method of astrogravimetric levelling, as proposed by 

Molodensky et al (1962), does reQuire a knowledge of the surrounding 

gravity field, but not to the same extent as method (3) above. Using a 

linear interpolation between two adjacent astrogeodetic deflection 

stations, Strange and Woollard (1964) '..rere able to predict deflections in 

the .l:{ockies and the Alps with an error of the order ot' O'.'b. 'l'he astra

gravimetric levelling techniQue does appear, therefore, to be the most 

promising of the available techniQues. 

2.12 Two-dimensional interpolation 

This techniQue, developed in this thesis, is an extension and 

modification of Holodensky's astrogravimetric levelling. The same basic 

data is used, but the interpolation between adjacent deflection stations 

is non-linear and two-dimensional. The procedure is as follows. 

Gravimetric deflections of the vertical are calculated at ~11 

astrogeodetic deflection stations ("control" points) in a region of 

interest, and at points for which predicted astrogeodetic deflections 

are desired. The integration in the Vening-.Meinez formulae for the 

gravity deflections is not extended over the whole earth, as reQuired, 
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but only over the neighbourhood of the computation point, forming 

"modified" gravimetric deflections. These modified deflections will not 

agree with the astrogeodetic deflections at the control points due to 

the following reasons: 

(1) ~1e integration for the gravimetric deflections is not complete. 

This error should be nearly constant for points not too far apart. 

(2) The two types of deflections refer to ellipsoids of different 

size, shape, and position. This effect will vary smoothly in a near

linear fashion for points not too far apart. 

The two effects mentioned above can be modelled using a two

dimensional second order correction polynomial, the coefficients of which 

are determined from a comparison of the two types of deflections at the 

control points. This polynomial can then be used to correct the modified 

gravimetric deflections at the other points, to obtain predicted astra

geodetic deflections. The remainder of this chapter describes the data, 

and mathematical models used, and evaluates some test results. 

2.2 Gravity Data 

2.21 Data requirements 

For the calculation of gravimetric deflections of the vertical, 

a homogeneous field of gravity anomalies is required. The gravity 

anomaly, bgp, at a point P on the geoid is given by: 

2.1 

where gp is the actual value of gravity at P and yQ is the normal 

gravity at Q, the corresponding point on the ellipsoid. The normal 

gravity is that generated by this ellipsoid, which should have the same 

potential as the geoid, enclose a mass numerically equal to the mass of 
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the earth, and be geocentric (Heiskanen and Moritz, 1967). Gravity ob-

served at the surface of the earth must be reduced to the geoid, and the 

effect of topographic masses above the geoid removed. To this end, 

several different types of gravity reductions have been developed, result-

ing in different types of gravity anomalies. Of these, the most widely 

available and commonly used is the free-air anomaly, given by: 

2.2 

where gs is observed at the surface point, s, his the height of s above 

P, in metres, and 0.3086 is the normal gradient of gravity, in mgal m-l 

-2 ) (1 gal = 1 em sec • 

The other two most common types of gravity anomaly, the Bouguer 

and Isostatic, both produce an indirect effect upon the deflections of 

the vertical, which is difficult to evaluate (Heiskanen and Moritz, 1967). 

The choice of a gravity reference system for the purpose of 

deflection prediction is arbitrary. A constant change in the absolute 

value of gravity will introduce a constant shift in anomaly values, which 

has no effect upon the computed deflections. Differences in size and 

shape between the gravity reference ellipsoid and the reference ellipsoid 

for astrogeodetic deflections are accounted for in the prediction tech-

nique. Consequently, the most readily available system - at this time -

has been used. This is the 1930 reference system, based upon the 

International Ellipsoid (Heiskanen and Moritz, 1967). At present, very 

little data has been transformed to the newly recommended 1967 Reference 

System (Int. Assoc. of Geodesy, 197la). 

For the purposes of the technique used in section 2.3, three 

different gravity data sets are needed. These are: 

(1) a point gravity a~omaly set, 
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(2) 1/3° x 1/3° mean gravity anomalies, and 

(3) 1° x 1° mean gravity anomalies. 

(By 1/3° x 1/3° mean anomalies, I imply mean gravity anomaly values for 

elements on the surface of the earth '\fith sides of 1/3° latitude and 1/3° 

longitude. Similarly for the 1° x 1° mean values.) 

2.22 Point gravity anomalies 

This data (approximately 100,000 values, in Canada) vas made 

available by the Gravity Division of the Earth Physics Branch (EPB), 

Ottawa (Buck and Tanner, 1972). No accuracy estimates vere obtained vith 

this data, and these estimates vere made, folloving Vanicek et al (1972), 

using the equation: 

'· 2.3 

where a~g is the standard deviation of the gravity anomaly (in mgals), 

am is the measurement error (=0.05 mgal.), and ~His the height error 

(in feet). ~g is only weakly dependant upon horizontal position errors, 

and these have not been considered here. (Note, the term standard 

deviation is not used with its rigorous statistical meaning. It is 

described further in Appendix I: The Method of Least Squares.) The 

various values of a~g' as a function of the values of ~H provided by the 

EPB are shown in Table 2.1. 

2.23 1/3° x 1/3° mean gravity anomalies 

These anomalies have been computed from the point gravity data. 

The mean gravity anomaly, ~g, for a region of area A, is given by: 

~g = !_ f f ~gdA 
A 

2.4 

(Hei skanen and Hori tz, 1967), where fig is the gravity anomaly, known at 
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(Jt,g t,H 

{mga1s) (feet) 

0.05 0.1 

0.1 1.0 

0.3 3.0 

0.9 10.0 

2.4 25.0 

9.4 100.0 

12.0 unknown 

Table 2.1 

ot,g (standard error of a gravity anomaly) as 

a function of /:o,H (estimated height error). 
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every point in the region. In practice, the anomalies are only avail-

able for a few points in the region, and the complete evaluation of the 

surface integral is not possible. 

Several solutions may be used for this problem: 

(l) Direct arithmetic mean, 

(2) Prediction of point anomalies in the region 

(3) Representation of the gravity anomalies by an integrable 

function. 

(2) and (3) are essentially the same, except that in the case of (2) 

the integration of equation 2.4 would be numerically evaluated. (1) has 

the disadvantage that it may be a poor representation of ~g, but, in the 

case of scanty data, it is the only alternative. As the purpose of this 

thesis is not to evaluate procedures for determining an optimal gravity 

field, a simplistic approach has been adopted, using methods (3) and (1). 

When there is sufficient data, the gravity field in the region can be 

represented by a polynomial of second order as proposed by Nagy (1963). 

Then, for any point i: 

~g. = 
1 

2 
L 

j,k=O 
C X J.· yk 
jk 1 i 2.5 

where ~gi is the estimated gravity anomaly at i, cjk are the coefficients 

of a second-order algebraic polynomial, and (x,y) form a co-ordinate pair 

in a local orthogonal system, with the x-axis directed north, and the y-

axis east, and the origin at the centre of the region. 

This polynomial can be integrated to determine ~g: 

-- • c02 2 c20 2 c22 ~ 2 
~g = c + ---b +---a +---a~ 

00 3 3 9 
2.6 

where 'a' is half the north-south extent of the region, and 'b' half the 
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east-west extent (assuming the region to be trapezoidal in shape). The 

detailed derivation of 2.6 is given in Appendix II. 

The coefficients of the polynomial are found from a least sq_uares 

approximation procedure: 

9 
2: 

j=l 
cj = < M ,<j>~ 

and the scalar product <<j>k,<j>j> is defined by: 

n 

k=l, ... ,9 

= 2: w(xi,yi). <j>k(xi,yi). <j>j(xi,yi) ' 
i=l 

where n = number of data points used. 

The weight function w(xi,yi) is given as: 

w(x. ,y.) 
~ ~ 

2.8 

2.9 

where oA is the standard deviation of the point gravity anomaly, 6g., 
ugi ~ 

given by eq_uation 2.3. 

Eq_uations 2.7 can be written in matrix form: 

from which: 

G c = R. 

-l 
c = G R. 

Residuals can be computed at the observed data points: 

v. = 6g. - 6g. 
~ ~ ~ 

where 6gi is given by eq_uation 2.5. 

Then the variance factor o 2 is determined from: 
0 

a2 = <v,v> 
o n-9 

2.10 

2.11 

2.12 
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The error covariance matrix of the coefficients is then: 

2.13 

Rewriting equation 2.6 as: 

~g = b c 1 2.6 

where b 

2.14 

"v 
then,applying the law of propagation of covariance (Vanicek, 1973), the 

variance of ~g is given by: 
2 I T 

o- =bE b 
D.g c -

2.15 

' where E is a reduced covariance matrix containing only the information 
c 

relative to c 1 • 

(Note that, although the coefficients c' are needed in equation 

2.6, all 9 coefficients c must be determined, as the functions ¢. are not 
l. 

orthogonal. ) 

It is not possible to use the above-described procedure in all 

cases, as there is not always sufficient well-distributed point gravity 

data within individual 1/3° x 1/3° blocks. Practical experience has 

indicated that there should be at least 50% more data points than un-

knowns for a reliable solution for the polynomial coefficients. Further-

more, this data should not be clustered in one corner of the 1/3° x 1/3° 

square. If these criteria are not satisfied (i.e. if there is not data 

in at least three quadrants or if there are less than 15 data points), 

then the less sophisticated prodecure of method {1) is used. In this 

procedure, the weighted arithmetic mean of the point gravity anomalies 

in the block is used to represent the mean gravity anomaly. The weights 

used are inversely proportional to the variances of the available anomalies. 
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This technique corresponds to solving for, and using, only the c term 
00 

of equation 2.6 (i.e. a zero order polynomial representation). In this 

case the standard deviation of the mean, given by: 

2.16 

should not be used as an estimate for o~g , as it is based upon the premise 

that 

~g = E(~g. ) 
~ 

2.17 

where E represents the expectation operator (Wells and Krakiwsky, 1971). 

This premise is no longer valid in the case of gravity anomalies where 

the mean, ~g, does not represent the expected value of individual anom-

alies. In order to provide a less biased estimate for the accuracy, the 

following procedure was used. The standard deviations of the rigorous 

integral solution are plotted as a function of the number of points used 

in each block. The resulting second-order curve (Figure 2.1) can then be 

used to predict the standard deviations for the blocks that have less 

than 15 data points. 

The above two procedures will only account for blocks in which 

gravity data exists. There are many 1/3° x 1/3° blocks in which no gravity 

data has been observed. For example, in Eastern Canada only about 70% 

of the blocks contain gravity information. For the empty areas, some 

type of prediction method must be resorted to. These methods are gener-

ally of three types: 

(1) geometric interpolation, 

(2) geophysical prediction, and 

(3) autocorrelation (collocation). 

The investigation, and analysis of these methods are considered beyond the 
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scope of this thesis. 

A version of method (1) has been developed, in which the auto
' 

correlation of the gravity anomalies is partially taken into account. 

The mean anomaly, llgp is predicted from the neighbouring 1/3° x 1/3° mean 

anomalies, llg., using the formula: 
~ 

where the weight function is specified as: 

2.18 

2.19 

Here, a~ is the standard deviation of llg., from equation 2.15, and 
Llgi ~ 

~Pi is the angular distance (in degrees) between the points (~P' Ap) 

and (~., A.). The exponential term takes into account the decrease of 
~ ~ 

the correlation between gravity anomalies with increasing distance 

between them. The non-linear correlation is best represented by an 

exponential function of this type (Kaula, 1957). The value 1.5° has been 

taken from the same reference, in which Kaula uses several gravity pro-

files in the United States to determine correlation coefficients for mean 

free-air gravity anomalies. Estimates of the accuracy of the predicted 

gravity anomalies are found from: 

where: 

n 
= a2 + l E 

o n i=l 
2.20 

2.21 

Equation 2.20 takes into account the fact that the mean, llgp, does not 

represent the expected value of the individual mean anomalies. Hence, 
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a- is the geometric mean of a and the geometric mean of the individ-
~gp 0 

ual anomalies. Although, from a rigorous statistical viewpoint, this 

technique is questionable, it does avoid the practical difficulties 

associated with the large error covariance and auto-covariance matrices 

required for the more rigorous collocation approach (e.g. Horitz, 1972). 

Only the immediately adjacent l/3° x 1/3° blocks are used for 

the prediction (i.e. ~ = 0.5°). If there are less than two mean 
max 

gravity values within this distance, then~ is increased successively 
max 

(in 0.5° increments) until there are at least two adjacent values, or 

until$ exceeds 1.5°. In this case if there are still less than two 
max 

adjacent values a mean anomaly of 0.0 mgal with a standard deviation 

of 11.5 mgal (taken from Figure 2.1) is assumed. 

2.24 1° x 1° mean gravity anomalies 

These were available in two data sets. The first consisted of 

2,131 1° x 1° blocks in Canada, supplied by the EPB. The second cont-

ained 20,113 1° x 1° blocks distributed over the entire earth, excluding 

most of Canada, supplied by the Defense Happing Agency, Aerospace Centre, 

St. Louis (DMAAC) (Seppelin, 1971). These two data sets were combined 

into one data set for North America, north of 40° latitude. There are 

some overlaps of data in the original files, notably along the common 

border of Canada and the U.S.A., and, for these cases, the weighted mean 

of the two values for each overlapping degree square was adopted. The 

original error estimates for the EPB data are optimistic, being based 

upon the deviation of point values from the mean. In order to make 

the error estimates for the combined data set as homogeneous as possible, 

standD.rd deviations were assigned to the EPB data in accordance with the 

procedure described in Rapp (1972). Rapp obtained an empirical function 
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relation between the DMAAC error estimates and the number of data points 

per 1° x 1° block, which is shown diagrammatically in Figure 2.2. The 

weights used in the combination of common blocks were inversely pro-

portional to the variances. 

The combined data set of 3311 1° x 1° blocks still left some 

empty areas in Canada (Figure 2.3). Predicted values were calculated 

for these areas using the same techniques as described earlier for the 

1/3° x 1/3° blocks. Again, the blocks used for the prediction were the 

immediately adjacent ones (~ = 1.5°). If there were less than two 
max 

adjacent blocks with known anomalies, then w was increased to 3.0° 
max 

and then to 4.5°. The entire land mass of Canada and the immediately 

adjacent areas were covered by observed and predicted 1° x 1° mean free-

air anomalies using the above technique. 

2.25 Evaluation of grav:i.ty data 

The determination and evaluation of the gravity field in Canada 

constitutes a thesis in itself. Consequently, it is recognised that the 

data sets described here could be improved in quantity and quality. No 

detailed evaluation of this data has been attempted, but some general 

comments may be made, with regard to each data set. 

(1) The point data in Canada is not evenly distributed and is 

lacking completely in certain areas - see Figure 1 of Nagy (1973). The 

quality of the gravity observations is high, but the free-air reduction 

introduces significant errors (in excess of 10 mgals - Table 2.1) in the 

free-air gravity anomalies, due to the lack of adequate height infor-

mation. The data set is not entirely free of blunders, and several 

incorrect values were detected during the course of this investigation. 
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(2) The reliability of the l/3° x l/3° mean anomalies will depend 

upon the quality, quantity, and distribution of the point anomalies. The 

error estimates discussed in section.2.23 take into account the first 

two of these. Unless the point gravity anomalies are well-distributed 

within each l/3° x 1/3° block, the 1/3° x 1/3° mean anomaly values are 

likely to be biased. 

(3) The 1° x 1° mean anomalies supplied by the DMAAC take into 

account the quality, quantity and distribution of the point gravity 

anomalies (Seppelin, 1971). The EPB mean anomalies do not take the dis

tribution into account and are likely to be unreliable for this reason. 

In combining the two data sets some large differences were noted between 

them at common blocks. These differences, evaluated for 347 blocks, are 

summarised below: 

Mean difference 

RMS difference 

Maximum difference 

Minimum difference 

+ 8.31 mgal 

25.83 mgal 

+ 125.58 mgal 

36.98 mgal 

(These differences are taken in the sense: DMAAC-EPB values.) 

The differences are significant, in that they exceed, in most cases, the 

estimated standard deviations of the mean values, and in that the DMAAC 

values are systematically greater than the EPB values. Some further 

investigation into the causes of these differences is urgently required. 

A further comparison that has been made is that between the 

1/3° x 1/3° data set for Eastern Canada, and the corresponding portion 

of the combined 1° x 1° data set. In this comparison, 1° x 1° mean values 

were computed from the 1/3° x 1/3° mean values, using a weighted 

arithmetic rr.ean. 'l'he weights used were the inverses of the estimated 
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variances. The results obtained from 426 comparisons are summarised 

below: 

Mean difference 

RMS difference 

Haximum difference 

:Minimum difference 

1.59 mgal 

8.19 mgal 

+ 35.21 mgal 

- 70.50 mgal 

(Taken in the sense: 1/3° x 1/3° computed values- 1°x 1° mean values.) 

The majority of the larcer discrepancies occur where only the DMAAC 

values are available for comparison. This indicates that the Canadian 

data is consistent within itself, and that the significant differences 

between the DI-1AAC and EPB l 0 x l 0 means may be due to errors in the DMAAC 

data, rather than in the method used by the EPB. However, this is some-

thing that will have to be clarified by the organisations themselves, and 

the existing data, burdened as it is with unpredictable errors, must be 

used in the best possible fashion. 

2.3 Gravimetric Deflections 

2.31 The Vening-Meinesz formulae 

Gravimetric deflections are computed by means of the integration 

formulae of Vening-Meinesz. Essentially, these formulae are the spatial 

differentials of Stokes' formula for geoidal heights. The classical 

theory of the gravity potential of the earth, leading to these formulae 

is described in several texts (e.g. Heiskanen and Vening-Meinesz, 1958; 

Heiskanen and Moritz, 1967), and will not be discussed here. The formulae 

of Vening-Meinesz are: 

r.G = 4~G f f t;,g d~~1jJ) cosada 
a 
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D.g dS(lJ!) sinadcr 
d1jJ 

2.22 

where the symbols have the following meanings: 

~0 , n° are the gravimetric meridian and prime vertical components of the 

deflecticn of the vertical. 

D.g is a free-air gravity anomaly, as a function of position. 

~ _ -cos(p/2) 

d1jJ - 2sin2 ($/2) 
+ 8sin1jJ - 6cos(1jJ/2) - 3 l-sin(p / 2 ) 

sin$ 

+ 3sin1jJ~n[sin(1jJ/2) + sin2 ($/2)] 

rr = 3.141592653 .•. 

(Vening-Meinesz function) 2.23 

G = 981 gals (an average value of gravity on the geoid). 

~ is the spherical distance from the computation point to the particular 

gravity anomaly, and a is the azimuth of the geodesic connecting the 

computation point with the point to which the particular gravity 

anomaly pertains (measured clockwise from north). 

The deflections of the vertical obtained by means of equation 

2.22 refer to the same ellipsoid as that used to obtain the gravity 

anomalies, D.g, and are obtained at the geoid. The integration of 

equation 2.22 is closed, and should be carried out over the surface of 

the geoid. It is sufficient, in practice, to integrate over the surface 

of a sphere which has the same volume as the earth. This spherical 

approximation introduces errors of the order of the flattening, i.e. 0.3%, 

which, for gravimetric deflections, may be considered negligible (Heiskanen 

and Moritz, 1967). 

The numerical evaluation of Vening-Meinesz formulae requires 

the replacement of the integration by a summation over discrete data: 
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~G = _!_ E ~g dS(~) cosa~cr 
"' 4IIG dl/J 

2.24 

1~ere are two commonly used techniques of computing the deflections 

from equation 2.24. One uses elements that are portions of spherical 

discs, centred at the computation point P, i.e. circular coordinates 

on the surface of the earth (Figure 2.4a). The other uses quasi-rect-

angular blocks formed by the intersections of meridians and parallels, 

i.e. rectangular co-ordinates on the surface of the earth (Figure 2.4b). 

Both methods require the calculation of mean values of ~g for each elem-

ent. 

(1) When circular co-ordinates are used, the values of ~g must be 

recomputed every time the computation point (i.e. the origin of the co-

ordinate system) is moved. This method was originally useful when access 

to high speed computers was difficult or impossible. Circular templates 

were used in conjunction with contour maps of gravity anomalies (e.g. 

Rice, 1952; Derenyi, 1965). This work required a great deal of time 

and effort, and consequently very few deflections could be computed. 

(2) The rectangular block mean values do not change with the 

computation point, and can be precomputed, stored, and used repeatedly. 

This method has been described in Uotila (1960), where the author 

recommends a combination of blocks and circular templates, the templates 

to be used for the inner area, and blocks of 1° x 1° and 5° x 5° for the 

outer area. This technique has been used for computing gravimetric 

deflections of the vertical in North America by Nagy (1963) and Fischer 

(1965). However, the uractical application of their methods allow gravimetric 

deflections to be computed only at block corners, or at the geometric centres 

of blocks. 
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Fischer overcomes this problem by computing "curvature" components 

(spatial derivatives of the deflections) and uses these to account for 

the effect of moving the computation point. This procedure requires a 

uniform, dense gravity coverage in the immediate vicinity, and would 

not therefore be feasible for most conditions. 

(3) A more general approach, involving an analytical solution 

for the deflection contribution from the immediate vicinity of the 

computation point, and a series approximation for the gravity field in 

this vicinity, has been developed here. The summation in equation 2.24 

is broken into three parts: 

2.25 

where each of the subscripted values is determined from a different region 

and involves different block sizes (Figure 2.5). The block sizes used 

are: 1° x 1° for the outer zone; 1/3° x 1/3° for the middle zone. In 

the inner zone, point gravity anomalies are used. The choice of 1° x 1° 

blocks was predetermined by the fact that these were the smallest blocks 

for which mean values were readily available (Decker, 1972). 

dS(l/1) The Vening-Meinesz function, dl/1 , goes to infinity at the 

computation point (Figure 2.6), and it is evident that even smaller 

elements should be used for the vicinity of the computation point. A 

l/3° x l/3° size has been chosen as a compromise between a theoretically 

preferable smaller block size and the reality that the available gravity 

data has a density of one point per 10 km or less (Nagy, 1973). The 

innermost 1/3° x 1/3° block in which the computation point is contained 

is treated in a different way, using point data to detennine the 
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coefficients of a two-dimensional polynomial approximating the gravity 

field. The analytical expression for the Vening-Meinesz integral of 

this series has been derived, using approximations for the Vening-

Heinesz function, as is shown later. The determination of each of the 

components is outlined in the next sections. 

2.32 Outer zone contribution 

The part of equation 2.24 pertinent to the outer zone can be 

written as: 

t;; = 41 ~ l!.g. (d8d,~•1/J)) 1. cos~. cosa . .!!.$ .!!.A 
1 ITG i=l 1 ~ 1 1 1 1 

2.26 

where l!.gi is the mean value of the gravity anomaly in the ith block, 

~-is evaluated at the mid-point of the ith block, 
dljl 

~- is the latitude of this midpoint, 
l 

l!.$1 = l!.Al = lo, 

n is the number of 1° x 1° blocks used, and 

~i' ai are given by: 

2.27 

and (q,P' Ap) are the latitude and longitude of the computation point, and 

(q,i' Ai)the latitude and longitude of the midpoint of the ith block. 
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2.33 Middle zone contribution 

The part of equation 2.24 pertinent to the middle zone is 

similarly given by 

1 m (~) h.A. ~ 2 = 4ITG E h.gJ. d~ J' cos¢. cosaj h.¢2 2 
j=l J 

2.28 

n - 1 ~ h.g (~) cos$. sinaJ. 1:!.~ 2 h.A. 2 2 - 4ITG j=l j d1/J j J 

where h.$2 = h.A. 2 = 1/3°, 

m is the number of l/3° x 1/3° blocks, and the other symbols have 

the same meaning as before. 

For the 1/3° x 1/3° blocks near the computation point, it is 

no longer sufficient to use a value of dS(p) , evaluated at the centre 
dljJ 

of each block, due to the rapid change in this function near the com-

putation point (Figure 2.6). A more rigorous approach is to integrate 

over the block (Heiskanen and Moritz, 1967): 

dS($) 
dljJ 2.29 

where dS(p) denotes the mean value of dS(ljJ) for the block, and A is the 
dljJ dljJ 

block area. For those blocks within 0?5 of the computation point, 

equation 2.29 is integrated numerically and this value used instead of 

the value of dS($) for the block centre. 
dljJ 

One disadvantage of allowing the computation point to be at an 

arbitrary position within a 1/3° x 1/3° block is that equation 2.29 

becomes unstable when the computation point approaches the edges of its 

1/3° x 1/3° block. The error in the numerical integration that may occur 

is illustrated in Table 2.2. In order to keep this error below 10% of 

the deflection value, the co-ordinates of the computation point are 
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For Kg = 50 mgal in adjacent block 

Angular distance 
from computation Error 
point to edge of Contribution to (seconds Error 
block deflection of arc) (percentage) 

oc;>17 1~'32 0~1 01 1 

oc;>1o 2~'38 0'.'03 1 

0<?07 3'!30 0'.'05 2 

oc;>o4 5'.'03 0'.'18 4 

0<?02 7'.'44 0'.'51 7 

oc;>o1 8'.'95 0'.'90 10 

0<?001 13'.'80 3'.'20 23 

Table 2.2 

Error in numerical integration of d~~W) for (1/3° x 1/3°) 

blocks adjacent to block containing computation point. 
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changed slightly (if necessary) so that it is always at least 0~01 

(approximately 1 km) away from the edge. The change in deflection value 

caused by this position shift, is not likely to be significant. 

2.34 Inner zone contribution 

The contribution of the innermost 1/3° x 1/3° block is given 

by: 

2.30 

where ~gp is the gravity anomaly at the computation point P, and gx. gy 

are the horizontal gradients of gravity at P, evaluated in an (x, y) local 

plane co-ordinate system in which the x-axis is directed north, the y-axis 

east, and the origin is at P. R is a mean radius of curvature for the 

earth and: 

x1arctan 2.31 

2 x2 2 y2 2 xl 
g2 = x2y2 - y2arctan - + x arctan xly2 + y2arctan --

y2 2 x2 y2 

2 y2 2 x2 2 yl 2 xl 
- x1arctan x2yl + y1 arctan -- x2a.rctan -+ x1y1-y1arctan -+ 

xl yl x2 yl 
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2 + x1 arctan 

The equations for the primed quantities are identical to those above, 

except that the x andy co-ordinates are interchanged. x1 , y1 , x2 , y2 

are the co-ordinates of the four corners of the innermost (1/3° x 1/3°) 

block, relative to the point P (Figure 2.7). Equations 2.30 and 2.31 

are derived in Appendix III. Values for ~gp, g , g are found by fitting 
X y 

a plane to the point gravity data in the innermost block. The plane is 

defined by the following expression: 

~g. = ~gp + g lx. + gy~Y~ 
~ Xp ~ p ~ 

2.32 

a truncated series expansion at P. Putting: 

cl = ~gp; c2 = gx; c3 = gy; cpl(x,y) = 1; cp2(x,y) = x· cp3(x,y) = y ' 

3 
Mi = E c. cpj 2.33 

j=l J 

The coefficients cj are found from the solution of the matrix equation: 

G c = R. 

where the matrix G has elements: gkj = ~cpk,cp~ , and the vector t has 

elements: tk = <:~g, cp~ j,k=l, •.. ,3. The weight function in the scalar 

products is given by: 

w(x.,y.) 
~ ~ 

2.35 

The inner zone yields most of the information concerning the 

influence of local variations in the gravity field, and it is important 
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that there be sufficient well-distributed data in this zone in order to 

get a reliable estimate of the deflections. Consequently, several criteria 

have been set up to ensure that the data has these characteristics. 

Sufficiency is ensured when there are at least four data points in the 

region. The distribution is checked by ensuring that there is at least 

one data point in each of at least three of the four quadrants around 

the cor.lputation point. If these criteria are not met, no deflection 

components are computed for that point. 

2.35 Error propagation 

In order to obtain some estimate of the reliability of the 

results, propagation of the gravity anomaly errors has been included in 

this study. It has been shown (e.g. Heiskanen and Moritz, 1967), that 

gravity anomalies are correlated with each other as a function of distance, 

and much research has been done into the representation of this corr-

elation by means of auto-covariance functions and empirical covariance 

matrices (e.g. Kaula, 1957; Lauritzen, 1973). However, the practical 

problems involved in using the necessarily large covariance matrices 

associated with the anomalies have not been successfully overcome, as 

yet. Consequently, for the purpose of this thesis, the gravity anomalies, 

both point and mean, have been assumed to be uncorrelated, thus resulting 

in diagonal weight matrices. The propagation of errors for the components 

~1' ~2' nl' n2 is then fairly straight-forward: 

(]~ 
j 

1 '[ n ( ( ddStjJ( ljJ ) ) i = 4IIG v .E cos~. 
1=1 1 

cosa. 
1 

2 2 
d~ • dA. • ) • cr-;:- ] 

J J ilgi 
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The propagation of errors for the inner zone proceeds in two steps. The 

error covariance matrix of the coefficients c. (equation 2.33) is derived 
J 

from: 

where 

The variances of F; 3 

rr2 = 
0 

and n3 

2.37 

n - 2 
L ( ,:lg . - ilg . ) • w (X . , y ~ ) 

i=l ~ ~ ~ ~ 

n-3 2.38 

are given by: 

2 
~1 E dT OF; = c _l 

3 

2 = d E dT a 
T)3 _2 c _2 2.39 

where ~l and ~2 are the linear operators on: q = (ilg, gx' gy) in equation 

2.30: 

F;3 = q ~l 2.30 

~l and ~2 are given by: 

2.40 

dT 1 ( fl 3 I. fl 3 I I 3 I) 
_2 = 2ITG - 1 - ~l' - 3 - ~3 -f2 - ~2 

The complete estimates for the standard deviations of F;G, nG are given 

by: 

+ 2 OF; 
2 

+ 2 ) OF; 
3 

2.41 
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2.4 Astrogeodetic Deflections 

2.41 Astrogeodetic data 

The astrogeodetic deflection components at a point are given 

by: 

[,A = <I> - cp 
2.42 

A n = (A- A) coscp 

where (<I>,A) are the astronomic latitude and longitude of the deflection 

station, and (cp,A) are the corresponding geodetic quantities. (Longitude 

is considered positive eastwards.) 

The above definitions are valid for all points if the minor 

axis of the geodetic reference ellipsoid is parallel to the mean rotation 

axis of the earth, and the Greenwich meridian plane of the geodetic 

system is parallel to the astronomic Greenwich meridian plane. If this 

is not the case, the deflections should be corrected for the rotations 

petween the two systems. There have been several attempts at determin

ing these rotations (e.g. Lambeck, 1971; Mueller at al, 1972; Thomson 

and Krakiwsky, 1974), with some small rotations being evident. An 

apparent rotation between the Greenwich meridian planes has been docu-

mented, and is due to the redefinition of the Greenwich mean astronomic 

meridian by the Bureau International de l'Heure in 1962 (Stoyko, 1962). 

This resulted in the longitude of the U.S. Naval Observatory changing by 

0'!765, while that of the Canadian Dominion Observatory did not alter. 

However, in order to avoid the resultant discontinuity in astronomic 

longitude values, all post-1962 longitudes are still referred to the old 

Greenwich mean meridian (D.A. Rice, personal communication, 1972). This 

essentially means that the astronomic and geodetic co-ordinate systems 
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in North America remain parallel to each other, but are not parallel to 

any other system based upon the post-1962 Greenwich mean meridian (such 

as satellite systems). 

Independent of the rotation in longitude described above, there 

may be an additional rotation of the geodetic co-ordinate system about 

the normal to the ellipsoid at the initial geodetic point. This rotation 

is due to incomplete satisfaction of Laplace's azimuth condition at this 

point (Vanicek and Wells, 1974). 

The astrogeodetic deflection data available for this study 

consisted of 870 deflections in Canada and 3050 deflections in the U.S.A. 

This data was supplied by the Geodetic Survey of Canada and the U.S. 

National Geodetic Survey. Approximately 100 of the Canadian deflections 

were considered to be of low order, due to either poor astronomic deter

minations or large uncertainities in the geodetic co-ordinates (in the 

Arctic Islands). The observations were generally made with a first-order 

universal theodolite {such as the Wild T4 or Kern DKM3A) or with a port

able transit {Bamberg), in accordance with the procedures set out in 

Hoskinson and Duerksen (1952). Different star catalogues have been used 

during the period of observation (some observations date back to the late 

19th century), the principal ones being the General Catalogue, the FK3, 

and the FK4. Longitude, prior to 1925, was obtained using telegraph 

timing techniques. After 1925, time comparisons by means of radio super

seded the telegraphic technique. 

2.42 Sources of error 

In estimating the accuracies of the observed astrogeodetic 

deflections, three different kinds of errors can be distinguished: 
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(1) errors in the astronomic co-ordinates, 

(2) errors in the geodetic co-ordinates, 

(3) error in neglecting the curvature of the plumbline. 

(1) The errors inherent in the observing techniques have been 

estimated at 0~'5 in latitude and 0'.'6 in longitude (Rice, 1962). Pre-

1925 longitudes will have an additional error of 1'.'5, due to errors in 

the telegraph timing method. The systematic differences between the 

various star catalogues used are not expected to affect the astronomic 

positions by more than 0~4 (G. Corcoran, personal communication, 1972)~ 

Reduction of the co-ordinates to the mean pole of 1900-1905 (Conventional 

International Origin) has, in most cases, not been carried out. This 

affects latitude by 0'.'2 and longitude by 0'.'2tancj> (Mueller, 1969). 

(2) Observational errors propagate from the initial point of 

the geodetic datum in a random fashion and an approximate formula for the 

errors in the North American networks has been suggested by Simmons (1950): 

Proportional error~ M1 / 3 /20,000 2.43 

where M is the distance in miles from the initial point (Meades Ranch). 

This formula may be transformed to an estimate for the standard dev-

iation (in arc seconds): 

2.44 

where k is the distance in metres from the origin. 

Systematic errors of two types are also present in the North 

American geodetic networks. The non-rigorous adjustment technique 

initially used has led to systematic distortions of newly-added networks 

that were forced to fit the older results. In Canada, misclosures of up 

to 36 metres (approximately 1 '.'0) have been reported (Dept. of Energy, 

Mines and Resources, 1972), and errors of 0'.'2 in relative position across Hew 

* All the U.S. data has been reduced to either the FK3 or FK4 (W. Strange, 
personal communication, 1974). 
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Brunswick, due solely to the adjustment constraints, have been found 

(Krakiwsky and Konecny, 1971). 

A further source of systematic error is that due to the re-

duction procedure applied to the observations used in the original adjust-

ment of the networks. The horizoLtal directions were not corrected for 

the deflection of the vertical, and the distances were, in effect, reduced 

to the geoid, and not to the ellipsoid. The effect of this last approx-

imation has been estimated not to exceed 0~5 in position, in Canada 

'v 
(Merry and Vanicek, 1973). 

(3) The astronomic co-ordinates should be reduced from the 

terrain to the geoid, prior to the evaluation of the deflection components 

Such a reduction, due to the curvature of actual plumbline between the 

terrain and the geoid, has not been carried out. Consequently, the 

derived astrogeodetic deflections of the vertical are surface astra-

geodetic deflections. The curvature of the plumbline will be mainly 

due to topographic irregularities and crustal density variations. In-

vestigations in the Alps have shown that curvature in mountainous terrain 

may reach 11" (Kobold and Hunziker, 1962). Evaluation of the curvature 

is a difficult task, made more difficult by the fact that (in Canada at 

least) the necessary gravity or other geophysical data is seldom avail-

able in sufficient quantity (Ndyetabula, 1974). Based upon the above 

discussion, a general model for the errors can be written as: 

2.45 

a = l(a2 + a2 + a2 + a2 + a2) 
A o c P G T 

n 

where a is an estimate for the observing precision - 0~5 for latitude 
0 

and 0~6 for lonGitude (for second order deflections, a = 1~5); a 
0 c 
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represents the error due to use of different star catalogues (0'.'4 for old 

observations, O~'O for post-1964 ohservations); crp represents the error 

due to the effect of polar motion - 0'.'2 for latitude and 0'.'2tan<P for 

longitude (for post-1962 U.S. data, cr = O~'O, as the correction for polar p 

motion has been applied); crG is given by equation 2.44; and crT is an 

estimate for the telegraph timing error - 1'.'5 for pre-1925 longitude, 

0~0 for post-1925 longitudes. 

The above model provides accuracy estimates ranging from 0'.'5 

near the initial point to 2~0 in the Canadian Arctic. These estimates 

are likely to be too optimistic, as systematic errors, due to network 

distortion, improper distance and angle reductions, and neglect of 

plumbline curvature, have not been modelled. The effects of these errors 

must be considered unpredictable at this stage, but may vary from 0~0 

to as much as 10~0. 

2.5 Two-dimensional Interpolation 

2.51 Mathematical model used 

The modified gravimetric deflections ~G, nG differ from the 

observed astrogeodetic deflections ~A, nA due to two causes: 

(1) the two types of deflection are related to two ellipsoids of 

different size, shape and position. 

(2) the modified gravimetric deflections do not account for the 

influence of the gravity field beyond the outer zone, and for the error in 
numerical integration. 
These differences, o~, on, can be approximated by two second-order, two-

dimensional, polynomial expressions: 

A G • -
0~ = ~ - ~ = 0~ = 

9 
r: cJI. <PJI.(x,y) 

Jl.=l 
2.46 



A on = n 

or, in a more specific form: 

cSE; 

on 
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G n = on = 

2 
xiyj = l: a .. 

i=O lJ 

j=O 
2.47 

2 
xiyj = l: b .. 

i=O J.J 

j=O 

where (x,y) form a local orthogonal co-ordinate pair, and are given by: 

y = A - A 
0 

2.48 

and (~ ,A ) are the latitude and longitude of an arbitrary origin located 
0 0 

close to the centre of the area. The coefficients a .. , b .. are found 
J.J J.J 

using the least squares approximation technique described earlier: 

2 < k R, 
l: X •y ' 

i=O 
j=O 

2 r k t 
L ~X •y ' 

i=O 
j=O 

k,R. = 0,1,2. 

The weighting functions, used in the scalar products, are: 

w ( 0 E; ) = ( cr2 

f.A 
+ () 2 )-1 

~G 

w(an) = (a 2 + 2 )-l A cr G 
n n 

2.49 

2.50 

o~, on are obtained at the control points where both astrogeodetic and 

modified gravimetric deflections are available. Equations 2.49 can be 

written in matrix notation as: 



from which 
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Ga=m 

G b = n 

-1 a= G m 

The error covariance matrices of the coefficients are found from: 

where 

a2 = 
oa 

n 
E 

i=l 

'<' = 2 G-1 
"'b 0 ob 

~ 2 
(os. - os.) w(o~.) 

~ ~ ~ 

n-9 

n-9 

n = number of control points. The error covariance matrices of the 

quantities o~, on are: 

where C is the matrix: 

~l(xl,yl) ~9(xl' yl) 

2.51 

2.52 

2.53 

2.55 

c = 2. 56 

~1 (xm,ym)-- - ~9(xm,ym) 
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Here ~.(x,y) have the same meaning as in equation 2.46, and m is the number 
~ 

of points for which predicted astrogeodetic deflections are needed. 

Using the computed coefficients, a .. , biJ"' in equation 2.47, 
~J 

values of o~, on can be determined at any point in the region, as a 

function of the local co-ordinates (x,y). Adding these quantities to 

the gravimetric deflections, ~G, nG, the interpolated astrogeodetic 

deflections are: 

2.57 

With error covariance matrices: 

The modified gravimetric deflections have been considered as uncorrelated 

so that E~G and EnG are diagonal matrices in the expression, with the 

diagonal elements being: 

' ... ' , ... ' 

2.52 Choice of zone boundaries 

In the calculation of the modified gravimetric deflections, 

three zone boundaries need to be established. The first two of these 

are not dependant upon the interpolation procedure and could have been 

described in an earlier section. The third zone boundary, that of the 

outer zone, is dependant upon the interpolation procedure. As a matter 

of convenience, all three are described here. 
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(1) Inner Zone Boundary: ~!":leally, this boundary should be such 

that the portion of the gravity ~~ld contained within it could be 

adequately represented by a plane. However, practical considerations 

overrode this requirement. Due to the relatively sparse nature of the 

gravity coverage in Canada, a minimum size of 1/3° X 1/3° was chosen in 

order to have sufficient (at least three) data points within this zone, 

to model a plane. 

(2) Hiddle Zone Boundary: For the numerical integration of equation 

2.24, it is desirable that the element size be kept as small as possible. 

That is, the smallest element size (in this case the 1/3° x 1/3° blocks) 

should extend as far as possible from the computation point. However, 

due to the decrease in the value of the Vening-Meinesz function with 

increase in distance from the computation point (Figure 2.6), it is 

possible to use larger block sizes (such as 1° x 1°) further away. This 

results in a considerable saving in computer time and storage. 

In order to determine the optimum middle zone boundary, the 

following procedure was used. Gravimetric deflections at 9 points in 

New Brunswick were computed, and for each of these the area covered by 

the 1/3° x 1/3° blocks was varied from 1° x 1° to 11° x 11°, in 2° incre

ments. Where less than 11° x 11° was covered by 1/3° x 1/3° blocks, 

1° x 1° blocks were used instead. Taking the 11° x 11° values as a stand

ard, differences in the deflection values, from this standard, were 

obtained at the nine points. The root mean square (RMS) differences, as 

a function of middle zone boundary, are shown in Figure 2.8. A noticeable 

change in trend occurs at the 5° x 5° value on this graph, and this appears 

to be the minimum area that should be covered by 1/3° x l/3° blocks of 

data, without sacrificing too much accuracy. Consequently, 5° x 5° has 
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been selected as the area to be covered by the l/3° x l/3° blocks of 

mean gravity anomalies. 

(3) Outer Zone Boundary: This boundary should be chosen in such a 

way that the residual error, due to the neglect of the distant zones, 

could be modelled by a surface of second order, over the region covered 

by the control points. Preliminary testing, using the gravimetric de-

flections, indicated that, for a region 400 km by 400 km in extent, an 

outer zone boundary 500 k~ from the computation point would be adequate. 

This zone boundary was used for some initial investigations (Merry and 

'v I Vanicek, l97~+a). 

Further testing, described below, showed that a smaller outer 

limit could be used. In this test, deflections were predicted at 18 

points in New Brunswick, using an outer zone boundary ranging from 300 km 

to 800 km. The RMS differences between the deflections obtained using 

the 800 km boundary, and those obtained using smaller values are shown 

in Figure 2.9. It is apparent that a relative accuracy of O'.'l can be 

achieved using as short an integration distance as 300 km. The region 

covered by the control stations, in this test, was 600 km x 500 km. In 

a similar test, using a slightly larger region of 800 km x 800 km, the 

integration distance that provided a relative accuracy of approximately 

0~'1 was 400 km. Hence, it may be concluded that it is adequate to con-

tinue the integration out to approximately half the length of the side 

of the region covered by the control points. This appears to contradict 

the experience of Molodensky et al (1962) and Strange and Woollard (1964), 

who recommend that the integration be carried out to at least the distance 

between control stations. However, it should be remembered that their 

interpolation was one-dimensional and linear, while a two-dimensional 
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second order correction polynomial is used here. Based upon the fore

going, and erring on the cautious side, the outer zone limit has been 

set at 400 km for regions smaller than 800 km x 800 km, and at one-half 

the larger side, for larger regions. 

2.53 Test results 

In order to test the reliability of the procedure, astra-

geodetic deflections were interpolated in a number of different areas: 

(l) New Brunswick 

(2) St. Lewrence River Valley 

(3) Gaspf Peninsula 

(4) Rocky Mountains. 

The relative positions of these areas are indicated in Figure 2.10. In 

each area deflections were interpolated at points at which the astrogeod

etic deflections had been previously observed. A comparison between the 

predicted and observed deflections was then made, and the results are 

summarised in Table 2.3. Table 2.3A gives the detailed comparisons. 

(1) New Brunswick and the surrounding regions have the best astra

geodetic deflection coverage in Canada, and consequently there were a 

large number of control stations available for the interpolation. On 

the other hand, the gravity data is poorly distributed in this region and 

some gross errors in this data were detected, with possibly more errors 

remaining undetected. Therefore, it was not possifule to predict de

flections at as many deflection stations as had be.en expected. The RMS 

error is small (less than 211 ) but so are the defle.,ctions, so that the 

relative error is large. However, it is encouragLmg that the predominant 

upward slope of the geoid towards the east has be~n detected, and is 



59 

. 
I . 
I 
I . 

I 
I . 

I 



60 

evident in the predicted n - components. It should be noted that it is 

major features, such as this slope, which are more important in terms of 

correctly reducing observations from the surface of the earth (Heissl, 

1973). 

(2) In the St. Lawrence region, the gravity data suffers from the 

same poor distribution as in New Brunswick. Fewer deflection stations 

are available to provide control, and consequently the RMS errors are 

larger, as are the deflections themselves. 

(3) In the Gaspe region, similar conditions as in the St. Lawrence 

valley apply, aJ.though more control stations are available. Several of 

the predicted deflection stations are common with those in the other two 

regions, so that a direct comparison of the predicted deflections may be 

made. Using three common points with the New Brunswick set, the RMS 

difference between the predicted values is 0'.'2. For the five common 

points with the St. Lawrence region, the RMS difference is l'.'O. This 

difference is not insignificant and indicates that the predicted values 

are dependant, to some extent, upon the distribution of the particular 

control stations used. A possible reason for this dependance is that 

regionally systematic errors in the astrogeodetic deflections (due to 

network distortion, for example) are being modelled by the correction 

polynomials in each area. 

(4) Rocky Mountains: Due to the nature of the terrain, gravity 

data is sparse, and concentrated in the valleys. It was only possible 

to predict deflections at two stations, one of which was extrapolated. 

Consequently, no conclusions can be based upon these scanty results. 
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2.54 Error evaluation 

For the results obtained in this investigation, the predicted 

errors (obtained by propagation of errors through the mathematical models) 

have been snaller than the actual errors (Table 2.3). (The results in 

the Rockies are not considered here, as there is insufficient data for 

any meaningful comparison to be made.) In order to determine possible 

reasons for this, various possible correlations have been investigated. 

Correlation of actual errors with: 

(1) predicted errors, 

(2) data point distribution in inner zone, 

(3) topography. 

The correlation has been determined in terms of correlation 

coefficients (Vani~ek, 1973), where the correlation between the vectors 

x and y is given by: 

and 

s 
~ 

s s 
X y 

n 
S = l E {(x. - x)(y. - y)} 
~ n i=l 1 1 

2 1 n 
S = - E (x. - x) 

x n i=l 1 

where x, y are the mean values of x, y: 

2.59 

2.60 



Number of RMS RMS Maximum 
Area Component Stations Actual error Predicted Error Error 

New E; 1.17 0.64 -2.34 
17 . 

Brunswick n l. 52 0.67 +2.64 

St. E; 2.82 1.17 +5.16 
9 

Lawrence n 3.03 1.19 -5.06 

E; 3.25 0.76 +7.23 
Gaspe 13 

n 2.16 0.79 -4.66 

E; 0.29 7.34 +0.40 
Rockies 2 

n 0.22 4.12 +0.31 

Table 2.3 

Summary of Deflection Interpolation Results 

RMS 
Predicted 
Deflection 

1.61 

3.60 

7.43 

5.43 

5-55 

5.14 

8.68 

3.44 

Percentage 
Error 

73 

42 

38 

56 

59 

42 

3 

6 

0\ 
1\) 
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Deflection 
File Observed Predicted Observed Predicted 
Nur:J.ber r." F.:" oF.:" n n on 

37 -0.2 +1.6 -1.8 -1.6 -1.8 +0.2 

38 -2.4 -0.1 -.2.3 +0.1 -0.3 +0.4 

39 +2.6 +1.9 +0.7 +0.7 -1.9 +2.6 

41 -2.2 -3.8 +1.6 -2.3 -4.0 +1.7 

45 -1.4 -0.3 -1.1 -1.6 -3.R +2.2 

46 +0.1 -2.0 +2.1 -3.8 -1.8 -2.0 

47 +1.4 +1.5 -0.1 -6.1 -7.6 +1.5 

49 -1.4 -1.6 +0.2 -2.7 -3.9 +1.2 

50 -0.2 ·-0. 5 +0.3 -4.1 -4.8 +0.7 

53 -2.0 -1.0 -1.0 -2.9 -5.0 +2.1 

56 -0.3 +0.9 -1.2 -1.0 -0.8 -0.2 

57 -1.2 -2.9 +1.7 -4.0 -5.5 +1.5 

58 -0.1 -1.0 +0.9 -0.1 -1.5 +1.4 

59 -0.4 +0.4 -0.8 -0.8 -3.1 +2.3 

61 +0.1 +0.1 0.0 +0.8 +1.5 -0.7 

62 -0.6 -0.3 -0.3 -0.8 -1.4 +0.6 

64 +3.2 +2.8 +0.4 -3.8 -2.5 -1.3 

70 -0.5 ... 1,5 +1.0 -4.6 -2.6 -2.0 

72 +3.2 +0.6 +2.6 -7.5 -6.7 -0.8 

75 +3.9 +2,7 +1.2 +7.3 +4.9 +2.4 

79 -5.9 ... 4.6 -1.3• +1.9 +0.8 +1.1 

80 +13.9 +9.5 +4.2 --12.5 -8.6 -3.9 
84 +3,1 +3.8 -0.7 -4.6 -5.3 +0.7 

85 +17.0 +12.1 +4.9 +3.9 +2.2 +1.7 

98 -4.6 -9.8 +5.2 +6.2 +4.4 +1.8 

111 +8.8 +6.5 +2.3 -9.7 ... 8.9 -0.8 

114 +8.7 +9.4 -0.7 -7.5 -2.3 -5.2 

119 -8.2 -4.7 ..... 3.5 -0.9 -0.2 -0.7 

120 -0.3 -1.5 +1.2 +1.7 +1.0 +0.7 

123 -4.8 -0.5 -4.3 -4.4 -4.6 +0.2 

501 +6.8 +6.4 +0.4 -3.8 -4.1 +0.3 

740 +10.4 +10.5 -0.1 -2.9 ... 3.0 +0.1 

957h +14.1 +7.0 +7.1 -13.6 -8.9 -4.7 
' 

Table 2.3A 

Deflection Prediction Results - Comparison with Observed Values. 
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2.61 

pxy can vary from -1 to 1 with zero indicating complete in

dependance. 

1~e degree of correlation may be measured using the criteria 

(v~~icek and H~~ilton, 1972): 

1 > IPxyl > 0.85 strong correlation 

0.85 > IPxyl > 0.40 correlation 

0.40 > IPxyl > A weak correlation 

A > IPxyl no correlation 

where: 
2 

1 - p 
A=l( xy) 

n-2 

and n is the number of elements involved in the testing. 

2.62 

The error correlations have been determined in each of the 

three Eastern Canadian areas investigated, and the coefficients are 

indicated in Table 2. 4. The column headings have the follovTing meanings: 

la: correlation with predicted error in s 

lb: correlation with predicted error in n 

2 correlation with number of data points in.inner zone 

3 correlation with topography roughness. 

There is some correlation of the actual errors with the predicted errors, 

but not sufficient to indicate that a simple scaling of the predicted 

E:rrors would solve the problem. 
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Area la lb 2 3 

New +0.26 +0.29 +0.08 +0.52 
Brunswick 

St. Lawrence +0.12 +0.32 +0.25 +0.20 
Valley 

Gaspe +0.43 +0.58 -0.20 +0.45 

Average +0.27 +0.40 +0.04 +0.39 

Table 2.4 

Error Correlations 

la with predicted error in ~ 

lb with predicted error in n 

2 with number of data points in inner zone 

3 - with topography roughness 



It had been thought that the small number of gravity stations 

in the immediate vicinity of the computation point would produce signif-

icant errors. This would show as a strong negative correlation in column 

2, but this is not the case. It appears that the checks for adequacy of 

data, incorporated in the programme for gravimetric deflections, have 

eliminated this factor as a source of error. 

The correlation with roughness of topography, although weak by 

the criterion established above, does require explanation. The roughness 

of topography is indicated by a factor t, determined as follows: 

t = 

n 
1.: 

i=l 
n 

2.63 

where H. are the heights (in feet) of the n measured gravity anomalies 
1 

in the inner zone, and His the mean of H.: 
1 

H = 
1 n 

1.: 
n i=l 

H. 
1 

The reliability of t as an indicator of the roughness of topography 

2.64 

(within 30 km of the computation point) will depend upon the number and 

distribution of the gravity anomalies in the inner zone. A large value 

for t indicates rough terrain, while a small value indicates the converse. 

The correlation with terrain roughness should indicate the effect of plumb-· 

line curvature, as it is in mountainous terrain that plumbline curvature 

reaches extreme values (Kobold and Hunziker, 1962). It should be remem-

bered that the free air anomalies, used to compute the modified gravimetric 

deflections, are themselves highly correlated with elevation (Uotila, 

1960) , so that the correlation with t may be due, in part, to the in-

fluence of this correlation. 
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Besides the numerical correlations described above, other 

correlations may be determined by examining the error vectors shown in 

Figure 2.11. The error vectors appear to be randomly distributed over 

the region, so that they do not seem to be a function of position. How

ever, in the Gaspe and St. Lawrence areas, the direction of the error 

vectors is similar to the direction of the actual deflections. As this 

direction is exclusiYely away from the land masses towards the open water, 

it may be concluded that the effect of topography on the observed astra

geodetic deflections (i.e. plumbline curvature) has not been modelled by 

the prediction technique. In this same area, the distribution of gravity 

data in the inner zones is generally poorer (see Figures 2.12 and 2.13) 

than in New Brunswick. This seems to indicate that the elementary pro

cedures for checking the distribution of data (described in section 2.34) 

are inadequate. However, this type of distribution of gravity data 

(along main roads and railways) is restricted to parts of Eastern Canada 

and British Columbia. In the remainder of the country the data is dis

tributed on a more uniform grid, better suited to the needs of this kind 

of investigation (Nagy, 1973). 

None of the above described correlations is strong enough to 

be used as a basis for a model modifying the predicted errors to correspond 

better with the actual errors. It appears, therefore, that the attempt 

to reliably predict the error of a predicted deflection is unsuccessful. 

However, these predicted deflections can be used for computing geoidal 

heights, provided they are weighted correctly relative to the observed 

deflections. The predicted standard deviations cannot be used to deter

mine the weights, as they are too optimistic. However, there is a 

significant correlation between the HMS actual errors and the m>iS predicted 
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deflections, for each region (Figure 2.14). A model that does suggest 

itself ~c • 
.LOo 

RMS actual error ::: 0% + 0.3 (RMS predicted deflection) 2.65 

In order to obtain more realistic predicted standard deviations (on the 

average), the following procAdure may be used: All the predicted 

standard deviations are multiplied by a scale factor, S, given by: 

s = "RMS actual error" 
illfS predicted error 

where the "RMS actual error" is given by equation 2.65 and the RMS 

2.66 

predicted error is computed from the individual predicted errors, derived 

using equation 2.58. There will be a separate scale factor for each of 

o~, 0 • 
n 

During the course of this study, several gross errors in the 

point gravity data in Eastern Canada were found. Removal of these in-

correct values from the data set resulted in the predicted deflection 

value at one point changing by 3", to better agree with the observed 

value, and in other deflection values changing by smaller amounts. Other 

errors in the data set are known to exist (R.J. Buck, pers. comm., 1974), 

and correction of these may further improve the results. 

In summary, errors in the predicted deflections are due to a 

combination of: 

(1) Errors (and blunders) in the original gravity data. 

(2) Inadequate modelling of the gravity field. 

(3) Poor distribution of gravity data. 

(4) Poor distribution of deflection control stations. 

( 5) Non-correction of observed deflections for pltunbline curvature. 

(6) Systenatic errors in geodetic co-ordinates. 
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Of these, only random errors in the original gravity data, and 

the effects of the poor control station distribution have been modelled. 

Consequently, the predicted standard deviations are optimistic and need 

scaling before being used in combination with observed astrogeodetic 

deflections of the vertical. 



CHAPTER 3 

GEOID COMPUTATION 

3.1 Survey of Computational Methods 

The most commonly used method is that employing Helmert's 

formula (Heiskanen and Moritz, 1967): 

N. = 1. 

i 
N. 1 - f (~cosa + nsina)ds 

1.- i-1 
3.1 

h N . th . d 1 h . ht f th . th t t . l:" th d fl t . w ere i 1.s e geo1. a e1.g o e 1. s a 1.on, ~. n are e e ec 1.on 

components in the meridian and prime vertical, and a is the azimuth of 

the line connecting the two stations, i-1 and i. In practice, this 

formula is replaced by: 

N. = N. l - 2 s 1. 1.-

(~. + ~. 1 )cosa + (n. + n. 1 )sina 1. 1.- 1. 1.-
3.2 

where ~., n. and ~. 1 , n. 1 are measured at the stations i and i-1, and 
l 1. 1.- 1.-

s is the distance between them. 

Variations based upon this technique have been developed by 

Ney (1955), Rice (1962), Fischer et al {1967), and Lachapelle (1973). 

These variations all make the initial assumption that the geoid varies 

linearly between adjacent deflection stations, no matter how far apart 

these stations may be. 

Recently, more sophisticated techniques have been applied to 

geoid determinations in \-lest Germany and Denmark (Heitz and Tscherning, 

1972), based respectively upon the autocorrelation of geoidal heights, 



and upon the cross-correlation between geoidal heights and deflections of 

the vertical. The second of these methods assumes the deflections to be 

errorless and hence the geoid is made to fit exactly to all the deflec-

tions. This results in a large system of equations (as many equations 

as unknowns) which may be impracticable to solve. The method of Heitz 

(1969), using an empirical autocorrelation function, requires a system of 

equations of half the. size (as many equations as deflection stations). 

It would be practicable to use this technique in smaller countries, such 

as Germany, but impracticable in many other countries, where large 

numbers of deflections are available. 

3.2 The Surface-Fitting Technique 

3.21 Model using deflections 

This approach was developed at the University of New Brunswick 

"'V 
in 1972 and reported in Vanicek and Merry (1973). A two-dimensional 

polynomial of nth order is used to represent the geoid. The coefficients 

of this polynomial are determined using a least-squares approximation, in 

which the quantity to be minimised is the sum of the squares of the weigh-

ted discrepancies between the slope of this mathematical surface, given by 

the derivatives of the polynomial in two orthogonal directions, and the 

slope of the physical surface of the geoid, given by the two components 

of the deflection of the vertical. The procedure is then nothing more than 

fitting a mathematically defined surface to a field of vectors in such a 

way that the directions of the normals to this surface fit best (in the 

least squares sense) to the directions of the vectors. 

As with all the astrogeodetic techniques only relative geoidal 

heights may be determined, and some initial height (usually at the initial 
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point of the horizontal control networks) must be defined. 

The development of this model has been described in detail in 

Vani~ek and Merry (1973), but, for the sake of completeness, is re-

developed here. 

The geoidal height N(x,y) at a point (x,y) may be approximated 

by the polynomial: 

p (x,y) = 
n 

n i J • 
L Cij x y = N(x,y) 

i=O 
j=O 

3.3 

The co-ordinates (x,y) may be determined from the geodetic quantities, 

using the simple transformation: 

X = R(~ - cf> ) 
0 

y = R(A - A ) coscf> 
0 

where (<j>, A) are the geodetic latitude and longitude of the point, 

3.4 

(<j> , A ) are the co-ordinates of an arbitrary origin, and R is a 
0 . 0 

mean radius of curvature of the earth. 

The slope of the geoid, with respect to the geodetic reference 

ellipsoid, is given by the astrogeodetic deflection of the vertical at the 

geoid. Hence the following equations are valid, for small deflections: 

aP aP 

aP 
__.!!. ~ aN == - tans • - s 
ax ax 

aP n • --·= 
ay 

aN = - tann • 
ay - n 

n n Denoting--- and ---by P and P , respectively, the least squares 
ax ay nx ny 

criterion requires that the following expressions be a minimum: 

2 
[Pnx(xR.,yR.) + s ]2 Px = L 

R, 
R, 

2 
[Pny(xR.,yi) + 

2 
Py = L: nR.J 

R, 

3.5 

3.6 



where E implies the summation over all the involved deflection stations. 
R, 

The partial derivatives are evaluated from the formulae: 

n 
E 

i,j=O 
i+jf.O 

. i-1 j = C .. l.X y 
l.J 

~I c . i-1 j 
<.. •• 1X y 

1J i ,j 

i j-1 
C •• jx y 

l.J 

3-7 

with the understanding that, whenever a negative exponent is encountered 

in the summations, the term should be replaced by zero. The conditions 

for a minimum can be written as: 

for i ,j=O, ••. ,n 3.8 

a 2 
.!..x_- 0 ac -

ij 

then: 

3.9 

or: 

I 

E [ ( E 
!/, s,r 

for i=l, ... ,n 
j=O, ... ,n 3.10 

Re-arranging the last equation and using scalar product notation: 

< 1 s-1 r i-1 j~ < i-1 j> r C sx y ix , y ~ =- ~. ix y s ,r sr 3.11 

or 

3.12 

for i=l, ... ,n; j=O, ... ,n 
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Similarly, for they-component: 

j 
I 

I: < . '1> j n, x\·J-
3.13 s ,r 

for·i=O, ••• ,n; j=l, •.. ,,1 

Since both equations have to be satisfied at the same time we have: 

I < s+i-2 r+j> <xs+i ,yr+j-2 > )] E [ C (is X ,y + jr = 
sr s ,r 

<~. xi""ly~ ~ ··~ 3.14 - - i j ' x~yJ-

Considering different weights w~(xi,y~) and wn(x~,y~) for the quantities 

~. and n, leads to the expression: 

-- i ~w~~,xi-lyj~- j ~wnn,xiyj-l~ 

for i,j = o, ••. ,n; i+j t 0 3.15 

The above system of equations may be written in matrix notation as: 

Ab=u 

where the elements of matrix A are given by: 

. < s+i-2 r+j' . ,_,.,...... s+i r+j-2> 
~ = ~s w~x ,y ~ + Jr.........._ wnx ,y ; 

the elements of vector b are the unknown coefficients C 
sr 

b = c m sr 

and vector u consists of: 

where: 

i,j,r,s,=O, ... ,n; i+jfO; r+sto, 
/ 
k=i+j+ni; m=s+r+ns • 

3.16 

3.17 

3.18 

3.19 
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The unknown coefficients C are then obtained from: sr 

3.20 

since A is positive-definite and can always be inverted, provided that 

2t ~ (n + 1)2 - 1 3.21 

The weights used are inversely proportional to the estimated a priori 

variances of the observations, i.e. 
-2 

w~ 
::: 

o~A 

-2 3.22 
w = a A 

n n 

for the observed astrogeodetic deflections, where o~A and anA are given by 

equation 2.43, and: 

-2 
w~ = (so-A) 

~ 3.23 
( -2 w = so-A) n n 

for the predicted astrogeodetic deflections where o~A, anA are determined 

from equation 2.58, and s from equation 2.66. 

The error covariance matrix of the coefficients is found from: 

3.24 

where 

E [w~(Pnx + ~)2 + w (P + n)2] 
t n ny 

a2 = 3.25 
0 2t - (n + 1)2 + 1 

The error covariance matrix, EN' for any vector of q estimated 

geoidal heights, N = P = (P (x1 ,y1 ), ... ,P (x ,y )), can be derived as _ _n n n q q 

follows. Each P (x.,y.) is a linear combination of the coefficients, b: 
n ~ ~ 

N = B b 
- N -

3.26 
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where BN is a q x ((n+l) 2-l) matrix of mixed algebraic functions. Then 

the error covariance matrix, applying the law of propagation of covariance, 

is given by: 

3.27 

3.22 Model using deflections and geoidal heights 

This model is an extension of the model described above, in that 

geoidal heights may be included as additional observations (or weighted 

constraints) in the solution for the polynomial coefficients. There are 

two reasons for developing this particular model: 

(l) The model of section 3.21 produces a somewhat smoothed version 

(because of practical limitations on the number of coefficients) of the 

geoid when it is used over large areas, containing large amounts of 

deflection data. This smoothed version can serve as a basis for local 

geoid computations (showing greater detail) in areas where there are 

sufficient deflections. 

(2) There exists the possibility that satellite data may provide 

geoidal heights to serve as constraints on the solution. The procedure 

would be as follows: 

The satellite determined (x, y, z) co-ordinates of a point in 
s 

a geocentric system are transformed to geodetic (x, y, z)G co-ordinates, 

through the relationship: 

X 

R[: 
X 

0 

y = + Yo 3.28 

z z 
G 

0 
G s 

where R is an elementary rotation matrix, rotating the geocentric 
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co-ordinate system parallel to the geodetic, and (x , y , z ) are the 
0 0 0 

co-ordinates of the origin of the geocentric system, in the geodetic 

system (translation components). A scale change between the co-ordinate 

systems may also be included here. 

The ellipsoidal geodetic co-ordinates (cp, :\, h) may be obtained 

via the equations 1.1. Provided the height of the point above the geoid, 

H, is known (from spirit levelling, for example), then the geoidal height 

is given by: 

N = h - H 3.29 

It should be noted that the (x, y, z) co-ordinates are not 
s 

the only satellite information that could be used. For example, the 

satellite geoid could be transformed to geoidal heights related to the 

geodetic system by means of the differential equation developed in Merry 

and Vanf~ek (1974b). These geoidal heights could then be used as 

constraints. 

Both procedures mentioned above are not independant of an 

initial knowledge of the geoidal heights (referred to the geodetic system), 

as the rotation and translation components can only be found if several 

geoidal heights are already known. The procedure could be made iterative, 

as geoidal heights near the geodetic initial point may be used to 

determine these transformation parameters, which can then be used, as 

outlined above, in regions distant from the initial point. 

In order to include geoidal heights as constraints, the model 

of section 3.21 needs to be expanded in the following way: 

At the k points at which geoidal heights are known: 

p (x,y) = 
n 

n 
E 

i,j=O 
3.30 
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In matrix notation: 

D b = N + V 3.31 

Considering correlated geoidal heights, the least s~uares criterion is 

that: 

P2 = VT P V 3 32 N . 

is a minimum, where P is a correlated weight matrix. It has been shown 

(e.g. vlells and Krakiwsky, 1971) that for e~uations of the type of 3.31, 

this criterion is satisfied by the e~uation: 

3.33 

This e~uation is of the same dimension as eQuation 3.16, and they may be 

added together: 

DT P D b + A b = DT P N + u 

The solution for the coefficients is then: 

3.35 

The components of b, A, and u are as described in the previous section. 

The correlated weight matrix P is given by: 

i.e. the inverse of the error covariance matrix of the geoidal heights. 

This error covariance matrix may be obtained from a prior solution for 

the geoidal heights. The error covariance matrix for the coefficients 

is given by: 

3.37 

where 

k + 2t - (n + 1) 2 
3.38 
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The error covariance matrix of a string of geoidal heights may be 

obtained from Eb as described in section 3.21. 

3.3 Evaluation 

3.31 Preliminary testing 

The variance factor,a2, computed through equation 3.25, is an 
0 

indicator both of the reliability of the initial standard deviations used, 

and of the completeness of the mathematical model. A variance factor of 

1 implies that the initial accuracy estimates were correct, and that the 

mathematical model is complete (Wells and Krakiwsky, 1971). In the least 

squares approximation, the mathematical model is not necessarily 

complete~ but the variance factor may still be used to determine the 

optimum number of polynomial coefficients, in the following way. 

By increasing the number of coefficients, the variance factor 

should decrease, as the model fits the observations better. After a 

certain number of coefficients are used, a further increase may bring 

about little change in the variance factor, and hence in the accuracy of 

the results. This number of coefficients would then be the minimum number 

that should be used. If, at this stage, o2 < 1, then the implication is 
0 

that the observations are, on average, too pessimistically weighted. The 

converse is true if a2 > 1. It should, however, be remembered that, as 
0 

the number of coefficients approaches the number of observations, a2 tends 
0 

to zero, no matter how the observations are weighted. Hence, the above 

inequalities may not be too reliable as guidelines. 

The variance factor, a2, as a function of the number of coe
o 

fficients used for different geoid computations, is shown in Figure 3.1. 
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From two of these results, it appears that the optimum number of coeff-

icients is around 30, but this number will increase (as may be expected) 

with an increasing number of observations. The value of cr 2 for this 
0 

optimum is approximately 6 and, ideally, the number of coefficients (for 

any computation) should be increased. until a variance factor of this order 

is obtained. Practical problems may not make this possible, as accumul-

ated round-off errors in the computer solution limit the number of 

coefficients that may be obtained. The value of 6 for the variance factor 

indicates that the observations have been too optimistically weighted. 

The reasons for this have been discussed in section 2.42. 

3.32 Geoid cornpari~ 

To verify the correctness of the program for this technique, a 

comparison with the conventional technique, over a limited area, was made 

using data supplied by the National Geodetic Survey (Rice, personal comm., 

1973). Test data at 41 stations on a regular grid inside a 1° x 1° square 

in Iowa was used, and the results compared to those of Rice (1965). 

Using 48 coefficients the maximum difference in relative geoidal height 

was 0.3 m (corresponding to 10% of the actual value). This initial test 

showed that satisfactory results could be obtained with this method, and 

further evaluations were performed. These involved computing geoids for 

different regions of North America and comparing them against other 

( ,.., 
published values Vanicek and Merry, 1973). 

Since the publication of the above paper, considerably more data 

has become available and a revised astrogeodetic geoidal height chart for 

North America has been prepared (Figure 3.2). This chart is based upon 

deflections observed at 3923 points in the U.S.A. and Canada, in the years 



85 

F. re 3.2 · a 
1VJ. th Arner1c "d in Nor , tic Geol 

, J "tro:::;coae C ntours ""''l74-l '~ 2 rrtetre o v:L . · ts ' 
141( Coefficlen 



86 

·o.:. . . 

. . . . . . 

Figure 3.3 

lJI;~i7l;-l E.:otins.tt'd Standard Deviations 

0.5 r1etre Contours 



87 

up to, and including, 1972. It does not use the scattered deflections in 

Alaska, Mexico and on EllesJnere Island. Besides serving as an update 

of the chart in Vanf~ek and Merry (1973), it also has a number of other 

uses, relevant to this thesis. It serves as a basis for the geoidal 

height constraints used in section 3.35, and is also a means of evaluating 

the success of the surface-fitting procedure in a continental context. 

This evaluation has been performed by comparing the geoid obtained here 

(denoted UNB74-l) with three other available geoids. These are: 

(1) Army Map Service geoid chart of North America (Fischer et al, 

1967)- denoted AMS67. 

(2) National Geodetic Survey geoidal heights in the U.S.A. (D.A. 

Rice, pers. comm., 1973)- denoted NGS73. 

(3) Computer Sciences Corporation/Goddard Space Flight Centre 

combined satellite-gravimetric geoid of North America (Vincent et al, 

1972) - denoted GSFC72. 

Before these comparisons are described, one other note may be 

made. The estimated standard deviations of the geoidal heights obtained 

in the UNB74-l solution (Figure 3.3) serve as an indicator of areas of 

weakness in the astrogeodetic deflection coverage. In the U.S.A. the 

weakest areas appear to be in Southern Florida and the State of Washing

ton. In Canada the deflection coverage is only adequate in the southern 

parts of the Western and Central provinces and in the Maritime provinces. 

th There also appears to be an area of reasonable coverage north of the 60 

parallel, west of Hudson Bay. In other areas the deflections are sparsely 

distributed, especially in the Yukon, portions of the Northwest Territories, 

the coast of Labrador and the island of Newfoundland. The deflection 

coveraee in the Arctic islands is so scanty that geoidal heights in this 
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region are meaningless. 

(l) The comparison with the AMS67 geoid (Figure 3.4) indicates that 

the additional data observed since 1967 has brought about significant 

changes in the shape of the geoid in North America, although some of 

these changes are due to the difference in the two techniques used. 

Similar changes may be expected in the UNB74-1 geoid when additional data 

in Canada is obtained. The RMS difference between the two geoids 

(measured on a 2° x 2° grid) is± 7.1 m, and the mean difference is 

+ 4.0 m. This bias (in the M1S67 geoid) has already been reported in 

Fischer (1971), although a smaller value of+ 2 to+ 3m was estimated 

then. 

(2) The NGS73 geoid was computed as point geoidal heights at 2528 

deflection stations in the U.S.A., mainly along the High Precision Geod

imeter Traverse. The mean difference from the UNB74-l values is zero, with 

an RMS difference of 2.2 m. As basically the same data was used in the 

U.S.A., these differences are due to the differences in the two techniques 

employed- as mentioned earlier Rice's is based upon Helmert's formula. 

The maximum differences are in Washington and southern Florida (- 6 m and 

+ 8 m, in the sense: NGS73 minus UNB74-l) - the two areas where the dis

tribution of U.S. deflections is weakest. The Puget Sound deflections 

(in Washington) are separated from the remainder by several mountain 

ranges, while the geoidal heights in Florida are based upon deflections 

along a single line of triangulation. 

(3) The GSFC72 geoid was digitised on a 2° x 2° grid for North 

America, with the values being interpolated from the chart accompanying 

the report by Vincent et al (1972). These geoidal heights were first 

tra."lsformed to the same datum as UNBT~-1, taking into account the change 
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in size and shape of the reference ellipsoid, and three translation com

ponents. These translation components were determined simultaneously in 

the transformation, using the least squares principle that the distance 

between the two sets of geoidal heights, after transformation, be a mini

mum. The procedure is described in more detail in Merry and Vanicek 

(1974b). The translation components determined, using this procedure, 

are: 

OX - - 6.5 m ± 0.8 m 

oY = + 154.3 m ± 0.7 m 

oz = + 190.0 m ± 0.6 m 

In this case, the mean difference is zero, and the RMS difference is 3.8 m. 

These values represent the co-ordinates of the centre of the geodetic 

reference ellipsoid in a cartesian co-ordinate system with origin at the 

centre of the geocentric reference ellipsoid used for the GSFC72 geoid. 

The differences between the two geoids, after transformation, are shown in 

Figure 3.5. 

As the GSFC72 geoid is the only external comparison source 

completely independant from the UNB74-l geoid (the others share common 

data), it is worth taking a closer look at the differences especially 

those exceeding (in absolute value) 5 metres. The effect of the scarcity 

of astrogeodetic deflection data in the Yukon, Northwest Territories, 

northern Labrador and Newfoundland is immediately apparent. (It should 

also be borne in mind that the gravity data in parts of these regions is 

also scarce.) The two areas of+ 5 m difference in western Canada and the 

north-western U.S.A. are in mountainous regions where both astrogeodetic 

deflections of the vertical and gravity anomalies are likely to be sparsely 

distributed. The two remaining features, the high near Lake Superior and 
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the low in the south-western U.S.A. are more difficult to explain. The 

Lake Superior high may be due to the paucity of deflection data in that 

region. However, in the south-western U.S.A., there appears to be 

adequate coverage of both deflection and gravity data. 

3.33 Density and distribution of deflection data 

Other investigators, using the linear one-dimensional inter

polation of Helmert's formula, have recommended that the spacing between 

adjacent deflection stations should be of the order of 20 km to 25 knt 

(Rice, 1962; Bamford, 1971; Fryer, 1972). An investigation has been 

carried out as to whether this figure is appJ.icable to the surface

fitting technique. It is apparent that for this approach the deflection 

stations should not be concentrated along single chains of triangulation 

or traverse, but should be well-distributed over the entire region of 

interest. Well distributed deflections have been predicted, using the 

methods of Chapter 2, in an area 500 km by 650 km in Labrador/Quebec. 

Using progressively more deflections in the same area so that the dis

tribution became denser, geoidal heights were computed in the region. 

The variance factor and RMS predicted standard deviation (computed from 

20 selected points) are shown as a function of approximate station spacing 

in Figure 3.6. Also indicated are the RMS geoidal height differences 

(computed at the same points) of the various determinations, compared to 

the final determination. From this figure, it is apparent that a deflection 

spacing of 40- 45 km is adequate and that, if possible, the spacing 

should not exceed 60 km. In general, these results are in agreement with 

those of other investigators, but a somewhat longer spacing may be used. 

This is due to the non-linear two-dimensional interpolation implied in the 

surface-fitting technique, as contrasted to the linear one-dimensional 
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interpolation of HeJEert's technique, used by the other investigators. 

3.34 Inclusion of predicted deflections 

In eastern Canada (east of 75° w) there are approximately 350 

stations at which deflections of the vertical have been obtained by 

astrogeodetic means. These are concentrated in southern Quebec and the 

Maritime provinces and are very scattered in the remaining regions. 

However, these scattered deflections are sufficient to allow astrogeodetic 

deflections to be predicted, using the methods described in the previous 

chapter. Deflections were predicted at 490 stations in this area, at 

approximately 50 km spacing, to yield a fairly homogeneous deflection field 

for eastern Canada. Due to lack of both gravity data and observed de

flections, it was not possible to predict deflections in Labrador north 

of 55° latitude and in Quebec north of 58° latitude. Geoidal heights 

have be0n computed in the region using, in one case, only the observed 

deflections, and, in the other, all the available deflections, including 

those predicted. The geoidal height of a single point in the centre of 

the region was held fixed at + 0.97 m, the value obtained from the con

tinental solution, UNB74-l, described in section 3.32. 

The results for the two computations are shown in Figures 3.7 

and 3.8, and the differences between them in Figure 3.9. The differences 

between the two geoids are large, reaching a maximum of 9 m in northern 

Quebec. The'mean difference is 3.3 m, with the astrogravimetric geoid 

being lower than the astrogeodetic. As was to be expected, the differences 

are smaller in the areas where there were sufficient astrogeodetic deflection 

stations. Predicted .standard deviations of the geoidal heights have also 

been computed for the two solutions, and these are shown in Figures 3.10 
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Figure 3.7 
Astrobeoietic Ceoid in Eastern Canada 

(l metre Contours) 
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Figure 3.8 

AstroGravimetric Geoid in Eastern Canada 

(1 metre Contours) 
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and 3.11. It is apparent that the inclusion of predicted deflections 

has significantly improved the accuracy estimates. This confirms the 
/ 

results obtained for a smaller area and described in Merry and Vanitek 

(l974c). 

From both these figures, the effect of there being only a couple 

of deflection stations on the Labrador coast is evident in the steep slope 

of the standard devi~tion contours in this area. On the other hand, the 

good deflection coverage in the Maritimes is indicated by the shallow 

slope in that region. 

As an external check, both the geoids described above were 

compared to a combined satellite-gravimetric geoid, that of Vincent et al 

(1972). This geoid is considered to have an accuracy of 2 - 3 m on land, 

and a lower accuracy at sea, so that it is of limited value as a precise 

external reference. However, at present, it is the best available inde-

pendant solution. The geoidal heights from this publication were 

digitised at 1° latitude by 2° longitude intervals for eastern Canada. 

They were then transformed to the same datum as the astrogeodetic geoidal 

heights, using the method of Merry and Vanicek (1974b). The RMS differ-

ences are then respectively 3.6 m when compared to the astrogeodetic 

geoid and 3.1 m when compared to the astrogravimetric geoid. There does, 

therefore, appear to be a slight improvement when the astrogravimetric 

geoid is used. 

3.35 Sequential use of the technique 

The mathematical model of section 3.21 has one limitation that 

is important where detailed variations in the geoidal heights for a local 

region are required to be known. The geoidal height at the initial point 
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of a geodetic network is usually defined to be a particular value, and 

all other geoidal heights are determined relative to this value. In order 

to determine geoidal heights at other points in the network, all the de

flection stations between these points and the initial point must be 

included in the determination. For a continent the size of North America, 

this means that a large number of deflections are available for inclusion 

in the model, and the number of coefficients must be correspondingly 

increased in order to adequately describe all variations in geoidal heights. 

A practical limitation is imposed, however, in that round-off errors in 

the solution (by electronic computer) rapidly accumulate with increase in 

the degree of the polynomial. This eventually leads to the matrix of 

normal equations becoming ill-conditioned and impossible to invert (by 

conventional means). The computer time increases with the square of the 

number of coefficients and this, too, is a limiting influence. The great

est number of coefficients successfully used for all the astrogeodetic 

data in North America (as of 1972 and excluding Alaska) is 144. The geoid 

resulting from this solution is shown in Figure 3.2, and the standard 

deviations of these geoidal heights are shown in Figure 3.3. It is appar

ent from a comparison of Figures 3.2 and 3.7 that some detail in eastern 

Canada has been lost in the continental geoid. One way of obtaining 

more detail in a particular region is that used in the previous section, 

in which the geoidal height at a local origin is obtained from a contin

ental geoid and then more detailed geoidal heights, relative to this local 

origin, are computed for the region of interest. This sequential use of 

the model of section 3.21 has two drawbacks, however. One is that the 

point selected as a local origin may not be the most suitable for the 

region, and discontinuities between the local and continental geoids may 



102 

occur at the edGes of the local geoid. In the example mentioned above, 

there are differences reaching 3.5 m at the edges of the local geoid. 

The second is that the standard deviations obtained in the solution are 

relative to the local, and not the continental, origin. The estimated 

variance of the geoidal height at the local origin (from the continental 

solution) may be added to the variances obtained in the local solution, but 

this still results in the incongruous situation that the standard dev

iations of the geoidal heights apparently increase as the continental 

origin is approached (Figure 3.10). 

An alternative approach is to use the mathematical model of 

section 3.22 for the area of interest. In this procedure, a number of 

geoidal heights obtained from the continental solution, together with 

their error covariance matrix, are used as additional observations. 

The astrogravimetric geoid in eastern Canada was computed using 

respectively 4, 10, 15 geoidal heights as constraints. The resultant 

geoidal heights differ only by a constant shift (of + 5.9 m, + 4.6 m, 

+ 5.8 m) from the astrogravimetric geoid described earlier. The variance 

factors for the three solutions differed little from each other. Hence, 

the accuracy of the solution does not appear to be a function of the 

number of constraints used. The solution itself does depend upon the 

particular constraints used. 

The solution using 10 constraints was selected for further 

analysis. The constant shift of+ 4.6 m has brought the astrogravimetric 

geoid into better agreement with the local astrogeodetic geoid (as can 

be seen from Figure 3.9, the astrogravimetric geoid was consistently 

lower than the astrogeodetic). At the same time it also fits the 

continental solution better than does the local astrogeodetic geoid. 
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The continental solution itself would be improved by the inclusion of 

predicted deflections in areas of poor deflection coverage. 

The standard deviations associated with this particular local 

geoid are depicted in Figure 3.12. These values agree with what would 

be intuitively expected, that the errors increase with increasing distance 

from the origin. The slowly varying standard deviation, of approximately 

5 m, implies that the geoidal heights relative to one another are well

determined, but that their relationship with the continental origin is 

less well-known. If only relative geoidal heights are needed (relative 

in a local sense), then either seQuential procedure would suffice. If 

geoidal heights relative to a distant continental origin are reQuired, 

then the second techniQue is preferable. 



·'\.."""". 
I "'· . \ I . 

. l J . 
/ 'l· 

·-·---r· \.. 

104 

Figure 3.12 

Standard Deviations - As7-roGravii:J.Ctric Geoid with 10 Constraints 

(0.5 netre Contours) 



CHAPTER 4 

CONCLUSIONS AND REC0Mt-1ENDATIONS 

4.1 Deflection Prediction 

The method of deflection prediction developed here provides 

satisfactory results when tested using real data. In the test areas 

studied, the actual errors in the predicted deflections are, on average, 

50% of the magnitude of the deflections themselves. Thus, use of these 

deflections will result in an improvement over using no deflections at a11. 

It should be noted that this procedure recovers the more important region

al trends in the geoid, rather than the very short wavelength details, 

which have a localised effect (Meissl, 1973). The accuracy requirement 

of 1" cotgZ for the reduction of directions (described in section 1.3) 

will be met, in all but extreme cases. Hence these predicted deflections 

may be used for this purpose. 

The prediction of errors in these deflections has been less 

successful, and further improvement is necessary. Only random errors 

in the gravity data were taken into accou~t as error sources, and it is 

apparent that these are not the major source. The possible error sources 

have been itemised in section 2.54. The most important of these are: 

(1) Blunders in the gravity data, 

(2) Poor distribution of gravity data, 

(3) Plumbline curvature. 

None of these errors can be eliminated using the prediction technique 
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described here. 

This procedure is an improvement over that suggested by 

Molodensky et al (1962), in that it is not limited to interpolation 

along astrogeodetic profiles. The integration distance needed is half 

that recommended by other investigators, due to the use of a second-order, 

two-dimensional correction polynomial. The computation point is not 

restricted to being on a rectangular grid, but may lie virtually any

where within the area of interest. 

Although, in theory, the size of the area of interest is not 

limited, for practical computational reasons, the area should not exceed 

1000 km by 1000 km. The control stations to be used should be towards 

the outside of this region, so that no extrapolation takes place. There 

should be at least ten control stations, well-distributed over the region 

of interest. No reliable method of evaluating and quantifying distrib

ution has been developed in this thesis, and further investigation in 

this area is recommended, as the distribution of both gravity and 

deflection data can influence the results of the prediction. Further 

assessment and improvement in the quality and quantity of the gravity 

anomalies in North America is warranted, as errors and gaps in this data 

can seriously affect the reliability of this prediction method. 

4.2 Geoid Computation 

Very satisfactory results have been obtained using the surface

fitting procedure. As contrasted to the applications of Helmert's tech

nique, this method takes full advantage of the tri-dimensionality of the 

geoidal surface. As with the deflection prediction, this method is 

dependant upon a homogeneous distribution of data. For this procedure 
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(and those of Heitz and Tscherning (1972)) the deflections of the vertical 

are most effective if they are observed, and predicted,on a regular grid. 

In this technique, deflections need only be available at 40 km 

to 50 km spacing, a tl~o-fold improvement upon the spacing requirements 

of the methods based upon Helmert's formula. The method has the add

itional advantage that geoidal heights, and their associated error 

covariance matrix, can be computed at any points within the region and 

not only at deflection stations. 

The sequential use of the surface-fitting technique allows more 

detail of the geoid to be determined in those areas for which there may 

be a need and for which there is sufficient data. The method using 

previously determined geoidal heights as quasi-observations is preferable, 

as more realistic error estimates are obtained. The inclusion of geoidal 

heights as obtained via satellite determinations (described in section 

3.22) was not evaluated as, at the time of writing, sufficient satellite 

data was not yet available. Further investigations should study whether 

this approach will strengthen the determination of the geoid in areas of 

sparse deflection coverage, such as the Canadian Arctic. 

Of the two accuracy requirements described in section 1.3, the 

first has been met for the conterminous U.S.A. and most of Canada, without 

resorting to gravimetrically predicted deflections. For the second 

requirement (of 2 metres) additional deflections will be needed before it 

can be met. Some of these additional deflections will need to be observed 

deflections (to act as control stations), but the great majority of them 

will have to be predicted, if this requirement is to practically be met 

within the next few years. From the National Reports presented to the 

International Association of Geodesy in Moscow (197lb), it is evident that 
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the scarcity of deflection data is not a North American problem, but a 

global one. Thus these comments apply equally well to other areas of the 

world. 
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APPENDIX I 

THE METHOD OF LEAST SQUARES 

In several of the mathematical models used in this thesis, 

there are more than sufficient observations for a unique solution, and 

a systernatic method to optimise the solution must be found. One such 

method is that employing the least squares principle. Although it is 

not the only optimisation method that may be used, it is one of the 

simplest and most convenient of these methods. Consequently, it has 

been used extensively in this thesis. The least squares principle may 

be described as: 

(1) minimising the trace of the error covariance matrix, 

(2) minimising the distance between two functions. 

(l) The first approach, via the field of statistics, is use-

ful for least squares adjustment (Wells and Krakiwsky, 1971), in which 

the mathematical model relating observed and unobserved parameters is 

complete, and any discrepancies may be considered to be randomly dis-

tributed. The error covariance matrix, of which the trace is to be 

minimised, is that of the unknown quantities, x, and is given by: 

2 
a a 

1 12 

2 

E_ a cr 
I.l = 21 2 X 

2 
cr 

n 
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where a~ is the variance, and o. is the standard deviation of the ith 
1 1 

1 t f d · th · b t th · th and J" th e emen o x; an o .. 1s e error covar1ance e ween e 1 
1J 

elements of x. 

The standard deviation is a measure of the accuracy, while the 

error covariance is a measure of the correlation between quantities. 

They are defined by: 

/ = E((x. - E(x. )) 2 ) 
1 1 1 

1.2 

o.j = E((x. - E(x. ))(x. - E(x.))) 
1 1 1 J J 

1.3 

where E is the expectation operator (Wells and Krakiwsky, 1971). 

The further development of least squares adjustment, leading to 

the solution of sets of normal equations, is not discussed here. For a 

comprehensive treatment of the subject, see Wells and Krakiwsky (1971). 

(2) The second description of the least squares principle is 

from the field of functional analysis. This principle is used in least 

squares approximation, where a complicated function is replaced by a 

simpler one (usually a linear form). The simpler function does not 

necessarily model the original function completely, but the discrepan-

cies may be treated as being random noise. However, these discrepancies 

are not generally homogeneous or isotropic, as in the case of least 

squares adjustment. In this study, the distance to be minimised is the 

Euclidean distance, p(F, P ), given by: 
n 

p 2 (F, P ) = /F (x ,y) - P (x ,y), F (x ,y) - P (x ,y )---. I. 4 n ~ n n ~ 

where the original function F(x,y) is represented by a discrete set of 

values, and the approximating function, P (x,y), is an algebraic poly
n 

nomial of order n. 
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The weight function, w(x,y), may be arbitrarily selected. In 

this investigation, discrete values were used, given by the inverses of 

the variances of the discrete values of F(x,y). The development of the 

normal equations for the solution for the coefficients of P (x,y) is 
n 

treated in detail in Vanf~ek and Wells (1972). 

The propagation of errors has also been included in this study, 

and follows the conventional error covariance propagation theory (Vanicek, 

1973). In some instances, practical difficulties have made it possible 

to propagate only error variances. Estimates of the standard deviations 

of the original data cannot be made by standard statistical means, such 

as those of equation 1.2, as no repeated observations were made. Con-

sequently, the term "standard deviation" has been somewhat loosely applied 

to the accuracy estimates (based largely upon the practical experience 

of others) used for the initial data. 
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APPENDIX II 

DERIVATION OF EXPRESSION FOR MEAN GRAVITY ANOMALY 

The mean gravity anomaly 'E.g is given by: 

lg = ~ !! !J.g dA 

For a rectangular area with a local cartesian co-ordinate 

system (x,y) with origin at the centre and co-ordinates of the four 

corners: (a,b), (-a,b), (a,-b), (-a,-b): 

1 a b 
'Eg = - f f flg dx dy 

4ab -a b 

flg., the anomaly, at the ith point, is approximately given by !J.g.: 
2 2 

2 
j k 

I: CJ.k xi yi 
j,k=O 

Hence, in its fully expanded form, equation II.2 may be written as: 

Evaluating each of these simple integrals: 

1 COl 2 C02 3 ClO 2 + ell 2 2 + Cl2 2 3 
~g = 4ab (Cooxy + 2xy + -3-xy + 2x y -4-x Y 6x Y 

c2o 3 + c21 3 2 + c22 x3y3) 
+-3-xy Txy 9 

a 

I 
b 

I 
y=-b x=-a 

or 

II.l 

II.2 

II.3 

II.5 
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A • 1 (4C h + 4 C h3 + 4 C 3b + 4 C 3b3) 
ug = 4ab ooau 3 02au 3 20a 9 22a 11.6 

i.e. 

A ; c + Co2 b2 c2o 2 + c22 a2_ 2 
ug 00 3 + --3-- a 9 ~b 11.7 
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APPENDIX III 

DERIVATION OF EQUATIONS FOR INNER ZONE CONTRIBUTION TO 

THE GRAVIMETRIC DEFLECTIONS OF THE VERTICAL 

Let the inner zone (1/3° x 1/3°) limits be given by: ~l' ~ 2 , 

~l' ~ 2 (~ 2 > ~l' ct> 2 > ~ 1 ). The Vening-Meinesz integral is then: 

~2 cf>2 
1 

~3 = 4 G f f ~g 
'IT ~=~ ,j,:,j, 

. 1 'I' '1'1 

co sex cos~ dS ( 1/J ) d~dA. 
dl/J . 

III.l 

sincx COScf> dS(w) d~d;\ 
d1jJ . 

where G is the mean gravity, ~g the free-air anomaly, ex the azimuth of the 

line connecting the computation point with the dummy point in the integ-

ration and 1/J is the angular distance between these two points. 

In the inner zone, 1jJ is small, and d~~$) approaches infinity. 

Then, d~~W) can be approximated by: 

~ ~ l + 81/J- 6- 3 l -1/J$/2 + 31/J !n[$/2 + (1/J/2) 2 ] III.2 
d1/J - 2($/2)2 

In the particular case of a 1/3° x 1/3° block, 1jJ < 0.01 radians and: 

~.! 2 3 
d$ - - $2 - $ III.3 

with a maximum error of 0.03%. In the integration, cf>, ~. can be replaced 

by plane rectangular co-ordinates x, y with origin (x , y ) at the com
o 0 

putation point. Then 
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dx = Rd!j> 

dy = R coscj> d). 

IV ; s/R 

s = ./(x2 + y2) 

where R is a mean radius of curvature for the earth. Considering, for the 

moment, only the ~-component, and replacing cosa by x/s we can rewrite 

equation III.l as: 

~3 - -
2 

Ag(2R + 3R) dxdy 
u 2 s cosa 2 

s R 
III.4 

2 2 -3/2 ( 2 2 )-l 
[6g·x(x + y ) + 3/2 6gx x +y ]dxdy 

R 

Integration of the above expression over the inner zone requires 6g values 

to be known over the entire zone. This is not generally the case, and 6g 

at any point in the zone must be approximated. 6g can be written in the 

form: 

6g = 6g + xg + yg + •.• (0) 
0 X y III.5 

where 6g0 is the gravity anomaly at the computation point (x0 ,y0 ) and 

-~ 
gx - ax I x=x 

0 
y=yo 

g = Cl6g 

Y ay-lx=xo 
y=yo 

are the horizontal derivatives of the gravity anomalies at the computation 

point. This approximation uses just these first three terms in the Taylor 

series and is equivalent to fitting a plane to the gravity anomalies in 

the inner zone. Then, for the meridian component: 

-1 
y2 x2 

yg )(x(x2 + y2)-3/2 3 2 2 -1 
~3 = J J (6g + xg + + 2R x(x + y ) )dxdy 21TG 0 X y 

y=yl x=x1 
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6 
1 

~3 - - 2 G E I. 
1T • 1 J J== 

I3 == gy !!A xy(x2 + y2)-3/2 dxdy 

3~go 2 2 -1 
I4 == 2R J fA X (x + y ) dxdy 

I5 
3gx 2 2 

== 2R JJA X (x + y 2)-1 dxdy 

I6 
3g 2 

=if- !fA xy(x 2)-1 + y dxdy 

III.·: 

and the integration is carried out for the whole area A of the inner zone. 

The solution of these integrals is a non-trivial problem and is described 

below: 

y2 
I = ng J -dy 
1 o I( 2 + 2) yl X y 

I = g {~2 -xdy + ~2 ~n(x + l(x2 + y2))dy} lx2 
2 X 1 2 2 

y 1 Y (x + y ) y 1 x==xl 

y 

I 2 III. 7 
y=yl 

III.8 

(x2 + Y2) )dy (2 
xl 

The second part of this expression is evaluated separately: 

y2 2 2 y2 y2 2 
f in(x + l(x + y ))dy == f R.n x dy + f in(l + 1(1 + y2 ))dy 

X 
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y2 2 
=yin x + J in(1 + 1(1 +.Y2 )) dy III.9 

yl X 

2 2 x2 tdt 
Putting l + Y2 = t , then dy = 2 and 

x xl(t - l) 

y2 2 y2 
y tx 

J .R.n ( l + I ( l + 2) ) dy = J in ( t + 1) d t 
Y1 X y1 /(t2 - l) 

y2 tx y2 1 t dt 
= in ( t + 1) J dt - J -- ( x dt 

l(t2 - l) y t + 1 l(t2 - 1) y1 1 

y y2 '(t2 - 1) 
= x in(t + l) l(t2 - 1) I 2 - x J v t + 1 dt III.10 

y1 y1 

Now 

y y2 
= l<t - 1>l<t + 1> 1 2- 1 at 

y1 y1 l(t2 - 1) 
= l(t-1)1(t+1) ( 2 - in(t + l(t2 - 1) ( 2 

III.11 

Back-substituting in equation III.10 

y2 2 . 
J in(1 + /(1 + Y2 ))dy = x[l(t2 - 1)(in(t + 1) - 1) + tn(t + l(t2 - 1))] ]y2 

X 

2 
Substituting for t = 1(1 + Y2 ) and rearranging terms: 

X 

y 

; 2 in(x + l(x2 + y2 ))dy = [y in(x + l(x2 + y2 ))- y + x in(y + l(x2+y2 )) -

y1 

- x inx] 
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Substituting in equation III.8 

I 2 = gx {y ln(x + l(x2 + y2 )) - y- x in x}lx2 
x=x1 

I 
y2 

y=y 
1 

The evaluation of the third integral is straightforward: 

Further: 

x2 -ydy I = 
l(x2 + y2) x=x1 

3t.g 2 2 x2 
= 4R 0 { y R.n(x + y ·) - y + x arctan ~}I 

3gx 
= -{xy 2R 

x2 
(x - y arctan ~) dy I 

y 

arc cot y_ dy} 
X 

x=x1 

3g y 2 y Y2 2 x2 
= 2R x { xy I 2 - ~ arc cot ~ I 2 + ~ f / 2 dy} I 

yl yl yl y + x x=xl 

3g 2 2 x2 = ~ { -g_ - L arc cot y_ + !.___ arctan y_} I 
2R 2 2 X 2 X 

x=xl y=yl 

2 x2 
+ y )dy I 

3g 2 2 2 2 2 x2 = ~ {(x + y ) tn(x + Y ) - Y } I 
x=xl y=yl 

III.8 

III.l2 

III.l3 

III.l4 

III.l5 
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(The integral identities used above are taken from: Selby, S.M. (editor) 

Standard I'-1athematical Tables. Chemical Rubber Company, 1972). Evaluating 

the above equations for the indicated limits, the equation for ~ 3 becomes: 

III.l6 

where 

2 x2 2 y2 + 2 xl 2 
arctan g2 = x2y2 - y2 arctan-+ x arctan-- xly2 y2 arctan-- xl y2 2 x2 y2 

y2 + 2 x2 2 yl 2 xl 
x2y1 yl arctan-- x2 arctan x2 + x1y 1 - yl arctan-+ 

xl y1 y1 

2 yl 
+ arctan-xl x1 
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For n3 , a similar equation can be written, where, sina is replaced by 

y/s: 

n 1 (~gf' + g f' + g f')- - 3--- (6gg' +! g g' +! g g' ) 3 - - 2nG 1 y 2 x 3 4nGR l 2 y z 4 x z 

Here, the equations for fl, f2, f3, gl, g2, g3 are identical to those 

for f 1 , f 2 , f 3 , g1 , g2 , g3 , ~xcept that x andy are everywhere inter

changed. 

The above analytical expressions for s3' n3 are correct to with

in 0.03% for the case where it is sufficient to model the local gravity 

anomalies by a plane. If a more complex modelling is required, then 

many additional integrals would have to be evaluated. The density of 

gravity data presently available does not warrant the additional effort 

involved. 



121 

APPENDIX IV 

PROGRMlME DESCRIPTIONS 

This appendix briefly summarises the purpose, and data used, for 

the major prograrr~es used in the preparation of the thesis. It is not 

intended that this act as programme documentation, as full documentation 

of these programmes is available from the Surveying Engineering Department 

Computer Programme Library, and from the author. All programmes have been 

written in IBM FORTRAN IV for the IBM 370/158 installation at the University 

of New Brunswick Computer Centre. 

(1) MEAN: Computes mean gravity anomalies (for arbitrary size blocks), 

using an analytical integration of a second-order polynomial, 

fitted to point gravity anomalies. The data consists of point 

gravity anomalies, together with their position (latitude and 

longitude) and estimates of their height accuracy. The data set 

should reside on tape, in the format used by the Earth Physics 

Branch, Dept. of Energy, Mines & Resources, Ottawa. Output is 

onto printer, with an optional output onto disc, and consists 

of: Position of the centre of each block, mean gravity anomaly, 

and estimate of its standard deviation. 

(2) FRED: Computes predicted mean gravity anomalies (for arbitrary block 

sizes), using the weighted arithmetic mean of adjacent "observed" 

mean gravity anomalies (obtained via MEAN). The data consists of 

mean gravity anomalies (of the same size block), together with 
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the position of the centre of each block, and estimated stand

ard deviations, read from disc. Output is onto printer (also 

optionally onto disc), and consists of both predicted and 

observed anomalies, block centre positions, and estimated 

standard deviations. 

(3) INTDOV: Computes predicted astrogeodetic deflections using modified 

gravimetric deflections and two-dimensional correction poly

nomials. Input data consists of: Station numbers and pos

itions of points at which deflections are to be predicted (on 

cards); station numbers, observed astrogeodetic deflection 

components, their positions and estimated standard deviations; 

1° x 1° free-air gravity anomalies, 1/3° x 1/3° free-air 

gravity anomalies, point free-air gravity anomalies, together 

with their positions and error estimates (all from disc). 

Output consists of: Station numbers, predicted astrogeodetic 

deflection components, their positions, and estimated standard 

deviations. Output is by line printer, but the results may 

also be punched. An American National Standard FORTRAN version 

of this programme is also available. 

(4) ANGEOID: Computes geoidal heights using a surface-fitting technique 

with deflections of the vertical. Input consists of: Station 

numbers, positions, deflection components, estimated standard 

deviations, all from disc. Output consists of: Station numbers, 

geoidal heights, residuals (at all deflection stations), and 

positions, geoidal heights, and estimated standard deviations 

of the geoidal heights, on a rectangular grid, all by line 

printer. Optionally, the grid values may also be punched, and 
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polynomial coefficients and their associated error covariance 

matrix written on disc. 

(5) CONGA: Is a modification of ANGEOID in which additional input data, 

consisting of geoidal heights and their position and error 

covariance matrix, is used. This data is read from cards. The 

output is identical to that of ANGEOID. 

(6) TRANS: Compute~ translation components between different geodetic 

datums. Input data consists of: Size and shape parameters 

for both datums, positions, geoidal heights and their estimated 

standard deviations, for both datums, and is read from cards. 

The positions on both datums should form matching pairs. Out

put consists of: Residuals, variance factor, translation 

components, and their error covariance matrix, on the line 

printer. 

(7) DOVEGUN2: Is a modification of DOVEGUNl (written by D.B. Thomson 

and A. Hamilton). It computes selected geoidal heights, 

deflections of the vertical, and their error covariance matrices, 

from the polynomial coefficients, and their error covariance 

matrix, produced by ANGEOID. Input consists of the above

mentioned coefficients and matrix, from disc files, and 

station numbers and positions, read from cards. Output consists 

of: Station numbers, positions, geoidal heights, deflection 

components, and error covariance matrices, on the line printer. 

Optionally, positions, geoidal heights and their error covar

iance matrix may be punched. 
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APPENDIX V 

DATA BASE DESCRIPTION 

This section briefly describes the data base developed using 

the raw data supplied by Geodetic Survey of Canada, Earth Physics Branch, 

and Defense Mapping Agency. This raw data has been modfied for use in 

INTDOV and ANGEOID, using some of the programmes ~escribed in the previous 

appendix. A more detailed description is available in the Surveying 

Engineering Computer Library. The data is of two types: Astrogeodetic 

deflections of the vertical, and free-air gravity anomalies. All the 

data sets reside on the disc: SEGEOD, at the University of New Brunswick 

Computer Centre, and are sequential data sets. 

(1) Astrogeodetic Deflection data: consists of two data sets: 

USA.DEFL, and CANA.DEFL. The first of these contains the deflections in 

the United States; the second, those in Canada. Each data record contains 

the following information. Station number; latitude; longitude; 

deflection in meridian(~); deflection in prime vertical (n); standard 

deviation of ~; standard deviation of n. (Note: Longitude measured 

positive EAST.) 

(2) The free-air gravity anomalies are of three classes. Point 

anomalies; 1/3° x 1/3° mean anomalies; 1° x 1° mean anomalies. The mean 

anomaly data sets consist of observed and predicted mean anomalies (see 

section 2.2 of this thesis for details). Due to the large amount of data, 

the classes have been broken down ceocraphically into sntaller data sets. 
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Each data record, in these sets, contains the following. Latitude; 

longitude (these for the mid-point of the block, for the mean anomalies); 

gravity anomaly; standard deviation of gravity anomaly. (Note: Long

itude measured positive WEST.) 

The geographical breakdown of the classes is outlined below, 

in terms of latitude (~) and longitude (A.) limits. 

(1) Point anomqlies: 

PNT.EAST: 

PNT. CENTRE: 

PNT.PRAIR: 

PNT.WECO: 

PNT.NWT: 

PNT.HUDBAY: 

42° ~ 4> < 65° 

42° ~ 4> < 65° 

49° ~ 4> < 65° 

49° ~ 4> < 65° 

60° ~ 4> < 70° 

50° ~ ct> < 65° 

(2) 1/3° x 1/3° mean anomalies: 

PRED3.EAST: 

PRED3 • CENTRE : 

PRED3.PRAIR: 

PRED3. WECO: 

PRED3.NWT: 

PRED3 • HUDBAY 

40° ~ 4> < 65° 

40° ~ ct> < 65° 

47° ~ 4> < 65° 

47° ~ 4> < 65° 

60° ~ cp < 70° 

50° ~ ct> < 65° 

(3) 1° x 1° mean anomalies: 

PREDl: 

52° ~ A. < 75° 

72° ~A. < 90° 

90° ~A. < 120° 

115° < A. < 140° 

90° < A. < 140° 

70° < A < 100° 

50° < A < 80° 

73° < A < 95° 

90° < A < 120° 

115° < A < 145° 

90° < A < 145° 

70° < A < 100° 
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