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ABSTRACT

The determination of geoidal heights frém astrogeodetic deflec-
tions of the vertical is limited in reliability by the lack of available
data, and its generally poor distribution. In order to overcome this
problem, one possible method is to use gravity data to assist in pre-
dicting deflections in areas where none have been, or can be, observed.

This thesis investigates such a procedure, and evaluates the
capabilities of a high order approximating polynomial to represent the
geoid. The influence of the additional predicted deflections on the
shape of the geoid is studied, and various alternatives for the deter-
mination of the detailed shape of the geoid in a small area investigated.

Satisfactory results héve been obtained for the deflection
prediction., However, not all error sources have been accounted for, and
further refinements, together with an improved gravity field, will result
in more reliable predictioné.

The use of the approximating polynomial has geveral advantages
over the usual approach. Fewer deflection stations ére‘needed than in
the classical technique, and geoidal heights, together with their error
covariance matrix, can be computed at any points in the region of inter-
est. Geoidal heights,'obtained from other sources, may be used as
constraints on the solution.

The techniques Qeveloped here should contribute significantly
towards enabling deflections to be predicted at geodetic stations, and

towards providing a reliable tool for geoid computation.
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CHAPTER 1

INTRODUCTION

1.1 The Geoid and its Application

Before the geoid and its applications can be discussed, a few
brief definitioné are necessary, in order that the terminology used be
fully understood.

The geoid is that particular equipotential surface of the
earth's gravity field which coincides with mean sea level, in the mean
sense. The geoid may be closely approximated by an ellipsoid, and the
separation between these two surfaces is known as the geoidal height, N,
positive when the geoid is above the ellipsoid (Figure 1.1).

The plumbline is perpendicular to the geoid, and to the other
equipotential surfaces of the gravity field. The angle between the
tangent to the plumbline at a point, and the normal to the ellipsoid,
passing through the same point, is called the deflection of the vertical.
Deflections of the vertical at the terrain are surface deflections, and
differ by the amount of the curvature of the plumbline from the corresp-
onding deflections at the geoid (Figure 1.1).

The deflection of the vertical at a point is customarily split
into two scalar quantities, £, n. & is the deflection component in the
north-south direction, and is called the deflection in the meridian. n
is the component at right angles to &, and is known as the deflection in

the prime vertical. The sign convention is such that £ is positive
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when the geoidal height is increasing towards the south, and n is pos-
itive when the geoidal height is increasing towards the west.

The geoid is a physical, but intangible, reality which affects
the field of surveying in several ways. Conventional surveying instruments
are aligned with their vertical axes parallel to‘the tangent to the local
plumbline. In the classical approach to geodesy, calculations are
carried out on a reference ellipsoid, using observations reduced from the
terrain to this surface. This reduction requires a knowledge of the
geoidal heights and of the surface deflections of the vertical (Merry and
Van{Zek, 1973).

The process of spirit levelling, with appropriate corrections
for variations in gravity, yields height differences between equi-
potential surfaces (Heiskanen and Moritz, 1967). These heights are
customarily referred, by means of tide-gauges, to mean sea level, and
thus the geoid effectively becomes the datum surface for heights, How-
ever, mean sea level is not completely coincident with the geoid, as
variations in its level, due to temperature, pressure, and salinity
changes, and to other effects, cause it to depart from an equipotential
surface by an amount estimated to be 1 to 2 metres (Lisitzin and Pattulo,
1961). The question as to whether mean sea level can be used as an
approximation to the geoid for geodetic purposes, or whether the geoid
may be used as a datum from which to measure sea level variations, is
vet to be settled (see, for instance, Proc. of Symp. on Applic. of Marine
Geodesy, 197L4).

The geoid itself is a dynamic surface, with its radius vector
from the centre of gravity of the earth changing cyclically, due to the

gravitational attraction of the sun and the moon. This change is of the



order of 1 metre (Melchior, 1966).

Several geodesists have investigated means of working without
the geoid (e.g. Hotine, 1969; Dufour, 1968). Using the classical
observations to terrestrial targets, this still appears to be an im-
possibility, due to the uncertain effects of atmospheric refraction upon
vertical angles, and the fact that these are also affected by deflections
of the vertical. One technique that is independant of the geoid is
geometric satellite geodesy. However, it is not imaginable that satellite
observations will be made at all geodetic stations, and the classical
observations will be complemented by, rather than replaced by, observations
to satellites. As shall be shown in the next section, geoidal heights
form a vital link relating the co-ordinate systems in which these two
types of observations are used.

Although there is only one equipotential surface that may be
called the geoid, there are several different ways in which geoidal
heights may be computed. This has resulted in several "types" of geoid,
which are briefly described below:

(1) The satellite geoid is based upon the analysis of orbit per-
turbations of artificial earth satellites. For a description of the
methods used, see Kaula (1966) or Gaposchkin and Lambeck (1969). This
representation has the characteristic that, although of uniform quality,
it is a somewhat smoothed version of the geoid, referred to a geocentric
ellipsoid.

(2) The calculation of the gravimetric geoid uses the magnitude of
the earth's gravity, measured at the terrain, to obtain geoidal heights
(Heiskanen and Moritz, 1967). Tt is usually referred to a geocentric

ellipsoid and, due to lack of gravity data in certain areas of the world,



is not of consistent quality.

(3) The combined satellite-gravimetric geoid combines the best
features of (1) and (2). The detailed variations in geoidal height are
described using the gravity anomalieé, and the large scale variations
by using the satellite data (Vincent et al, 1972).

(4) The calculation of the astrogeodetic geoid uses the direction
of gravity (rather than the magnitude) to obtain geoidal heights relative
to the reference ellipsoid to which the direction is related. This
reference ellipsoid is not necessarily geocentric. Due to the nature of
the observations it can only be computed for the land masses, and requires
a good distribution of data. For an example, see Fischer (1960).

(5) The astrogravimetric geoid combines the best features of (2)
and (4). It is basically an astrogeodetic geoid, with supplementary
deflections obtained via gravity anomalies. As this type of geoid is
the main topic of this thesis, it will be described in more detail in
later sections. No systematic use of this idea has been made in North
America, although Fischer et al (1967) used some gravity data in their

geoid computation.

1.2 Co-ordinate Systems

In order to describe the use of the geoid in transformations
between co-ordinate systems, a brief review of those systems used in
geodesy is given here. They are of two types:

(1) Ellipsoidal.
(2) Cartesian.
(1) The ellipsoidal co-ordinate system consists of triplets

of numbers: (¢, A, h) defined on a particular rotational ellipsoid. ¢ is the
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geodetic latitude, measured north from the equator, A is the geodetic
longitude, measured east from an arbitrary reference plane, and h is the height
above the ellipsoid, measured along the outward normal to the ellipsoid
(Figure 1.2). For the co-ordinate system to be completely specified, the
size and shape parameters of the ellipsoid must be given, generally as

a and f. f is the flattening, f = Eig , and a and b are respectively the
semi-major and semi-minor axes of the ellipsoid. The h component is
usually considered in two parts: H, the height above the geoid, and N,
the geoidal height (Figure 1.1). The classical two-dimensional geodetic
system consists of the (¢, A) co-ordinate pairs only. In order to obtain
a three-dimensional geodetic system, it is apparent that both H and N

are needed.

(2) The cartesian co-ordinate system consists of triplets of
numbers (x, y, z), describing the positions of points with respect to
three orthogonal axes (Figure 1.3). When the origin of this co-ordinate
system coincides with the centre of the ellipsoidal system, and the z-
axis is coincident with the minor axis of the ellipsoid, and the x-z
plane is the reference meridian plane then the cartesian system is

related to the ellipsoidal system by the equations:

X (N(¢) + nh) cos¢ cosr
= |(N(¢) + h) cos¢ sinA 1.1
z ((1 - e2) N(¢) + h) sing

(Heiskanen and Moritz, 1967), where N(¢) denotes the radius of curvature
of the ellipsoid in the prime vertical, and e is the first eccentricity
of the ellipsoid.

When the ellipsoidal (and its corresponding cartesian) system

is used as a basis for geodetic calculations, it is known as a geodetic
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system, and the ellipsoid as a geodetic reference ellipsoid. When a
cartesian system is located in such a way that its origin is at the
centre of gravity of the earth, the z-axis coincides with the mean
rotation axis of the earth, and the #—z plane contains the Greenwich
mean observatory (i.e. it coincides with the Greenwich meridian plane),
then it is known as a geocentric system (obviously, there is a corr-
esponding geocentric ellipsoidal system). The geodetic and geocentric
co-ordinate systems will not generally coincide, and the origins may be
shifted with respect to each other (translated) and their axes may not
be parallel (rotated). It is also conceivable that different scales may
be used within the systems. In practice these translations, rotations
and scale changes are small, causing co-ordinate changes of the order
of 100 metres (Mueller et al, 1972).

Calculations involving observations to terrestrial objects are
customarily carried out in the two dimensional geodetic system, while
ﬁhose involving observations to satellites are carried out in the
cartesian geocentric system. In order to relate the co-ordinates in
these two systems, the translation components, rotations, scale change
and heights H and N are needed.

The astronomic co-ordinates (&, A) should also be mentioned
here. The astronomic latitude, ¢, of a point P, is the angle formed
between the normal to the geoid, passing through P, and the mean equator
(at right angles to the mean rotation axis of the earth) (Figure 1.lLa).
The astronomic longitude A, is measured in the plane of the equator from
the Greenwich meridian plane east to the plane, containing the mean
rotation axis, which is parallel to the normal to the geoid at P (Figure

1.4p).
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Provided that the geodetic cartesian system is parallel to the
geocentric cartesian system, then the components of the astrogeodetic
deflection of the vertical are given by:

SR
1.2

A

n = (A - X) cosé

(Heiskanen and Moritz, 1967).

1.3 Accuracy Requirements

The uses of the astrogravimetric (or astrogeodetic) geoidal
heights may be itemised as:

(1) To reduce observed distances and directions from the terrain
to the geodetic reference ellipsoid.

(2) To transform the classical two-dimensional geodetic system to
a three-aimensional geodetic co-ordinate system,

(3) To relate the geodetic co-ordinate system to a geocentric
co-ordinate system (i.e determine translation components and rotations).

() To serve as a datum from which variations in mean sea level
may be determined.

(1) The accuracy requirements for the reduction of distances
and directions will be a function of the accuracy requirements for the
first-order horizontal control networks. In Canada, the accuracy require-
ments are 5 parts per million (ppm) for distances and 2" for first-
order directions (Klinkenberg, 1972). In order that errors in geoidal
height and deflections of the vertical do not unduly affect the accuracy
of the reduced distances and directions, their effects should be con-
siderably smaller than 5 ppm and 2". Assuming the errors in the geoidal

heights and deflections to be random (which may not be the case,
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especially for geoidal heights), then a reasonable upper bound for their
effects is 2.5 ppm and 1". Using the formulae of Merry and Vanifek (1973)
this implies that the accuracy of geoidal heights should be better than

16 metres and that of deflections of the vertical better than 1" cotg 2
(where Z is the zenith distance of the target for the particular obser-
vation).

(2) 1is in fact a subset of (3) and they may be considered to-
gether. No established guidelines are available for accuracy standards
in the transformation from geodetic to geocentric co-ordinate systems.

A useful rule-of-thumb is that the parameters used in the transformation
be no less accurate than the data being transformed. With the rapid
changes taking place in satellite technology, it is difficult to place

a figure on the accuracy of the geocentric co-ordinates. The optical
satellite systems, with an accuracy of 10 to 15 metres (Lambeck, 1971),
are rapidly giving way to the Doppler systems, with an accuracy of 1 to
2 metres (Wells, 19T4). These, in turn, may be replaced by laser systems
with sub-metre accuracy . (Bender et al, 1968). No rigorous and complete
analysis of the North American networks has been performed, but they do
not appear to have reached the same standard of accuracy as the Doppler
system, and distortions in the networks in excess of 10 metres are evi-
dent (Seppelin, 197k; McLellan, 197L4). It appears that for the immed-
iate future needs, an accuracy for geoidal heights of the order of

2 metres is adequate for transformation purposes.

(4) As mentioned earlier, mean sea level variations reach 1
to 2 metres and, in order for these variations to be completely studied,
geoidal heights with an accuracy one order better (i.e. 0.1 m to 0.2 m)

would be required. It is not anticipated that the astrogravimetric
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geoid will be of much help in this field, as it is limited to land masses

and enclosed bays.

1.4 Scope of the Investigation

This thesis can be treated in two main parts. The first part
deals with the prediction of astrogeodetic deflections using observed
deflections and gravity data. The second part deals with the calculation
of geoidal heights from deflections of the vertical.

(1) The idea of using gravity data to aid in the prediction
of astrogeodetic deflections is not new, and was first used by Molodensky
et al (1962). The method used in this investigation differs considerably
from those of Molodensky and others, such as Strange and Woollard (196k),
who use a linear one-dimensional interpolation between pairs of astro-
geodetic deflection stations, and Fischer (1965). who uses a non-linear
graphical interpolation along a chain of deflection stations. 1In the
technique developed in this thesis, a non-linear two-dimensional approx-
imation polynomial is used for interpolation. Modified gravimetric
deflections are computed using the available gravity anomalies, and a new
derivation for the integration-in the inner zone is developed.

(2) The model for geoidal heights differs radically from the
traditional linear integration between adjacent deflection stations,
using Helmert's formula (Heiskanen and Moritz, 1967). In this thesis a
surface-fitting technique is employed to fit all available deflections.
This model has also been enlarged to incorporate geoidal heights as add-
itional observations. This procedure for computing an astrogravimetric
geoid is evaluated, bearing in mind present day accuracy requirements,

and the amount of available data.



CHAPTER 2

DEFLECTION PREDICTION

2.1 Introduction

2.11 Survey of prediction methods

There are several possible methods of predicting astrogeodetic
deflections, all of which have particular advantages and disadvantages.
These methods should be evaluated on the basis of their reliability,
ease of use, and the availability of the necessary data. These methods
have been categorised by Heiskanen and Moritz (1967) as:

(1) Measurement of zenith distances

(2) Use of torsion balance

(3) Use of topographic-isostatic deflections
(4) Astrogravimetric levelling.

(1) The measurement of zenith distances, although a direct
simple approach, is affected by atmospheric refraction to such an extent
that it cannot be considered reliable. Under the best topographic con-
ditions (in high mountains), an accuracy of the order of 20" has been
achieved in the Rockies (Bacon, 1966), although Hradilek (1968) claims
that an accuracy of 2" is possible.

(2) The torsion balance is not easy to use and the reduction
of data is a laborious process, although (with limited tests) the method

appears to have an accuracy of the order of 1" (Mueller, 196L).
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(3) The use of topographic-iscstatic deflections is based upon
the assumption that the geodetic and gravimetric reference ellipsoids
are concentric and are of equal dimensions. Unless the topographic-
isostatic deflections are appropriately corrected, the results will be
erroneous. The procedure is also laborious and time-consuming, and
requires knowledge of the surrounding topography and gravity field to a
considerable distance from the computation point (Szabo, 1962). Con-
sequently, it cannot be recommended as a method of deflection prediction.

(4) The method of astrogravimetric levelling, as proposed by
Molodensky et al (1962), does require a knowledge of the surrounding
gravity field, but not to the same extent as method (3) above. Using a
linear interpolation between two adjacent astrogeodetic deflection
stations, Strange and Woollard (196L) were able to predict deflections in
the Rockies and the Alps with an error of the order or 0.6b. ''he astro-
gravimetric levelling technique does appear, therefore, to be the most

promising of the available techniques.

2.12 Two-dimensional interpolation

This technique, developed in this thesis, is an extension and
modification of Molodensky's astrogravimetric levelling. The same basic
data is used, but the interpolation between adjacent deflection stations
is non-linear and two-dimensional. The procedure is as follows.

Gravimetric deflections of the vertical are calculated at all
astrogeodetic deflection stations ("control" points) in a region of
interest, and at points for which predicted astrogeodetic deflections
are desired. The integration in the Vening-Meinez formulae for the

gravity deflections is not extended over the whole earth, as required,
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but only over the neighbourhood of the computation point, forming
"modified" gravimetric deflections. These modified deflections will not
agree with the astrogeodetic deflections at the control points due to
the following reasons:

(1) The integration for the gravimetric deflections is not complete.
This error should be nearly constant for points not too far apart.

(2) The two types of deflections refer to ellipsoids of different
size, shape, and position. This effect will vary smoothly in a near-
linear fashion for points not too far apart.

The two effects mentioned above can be modelled using a two-
dimensional second order correction polynomial, the coefficients of which
are determined from a comparison of the two types of deflections at the
control points. This polynomial can then be used to correct the modified
gravimetric deflections at the other points, to obtain predicted astro-
geodetic deflections. The remainder of this chapter describes the data,

and mathematicél models used, and evaluates some test results.

2.2 Gravity Data

2.21 Data requirements

For the calculation of gravimetric deflections of the vertical,
a homogeneous field of gravity anomalies is required. The gravity

anomaly , AgP, at a point P on the geoid is given by:

bgp = gp - Yq 2.1
where &p is the actual value of gravity at P and YQ is the normal
gravity at Q, the corresponding point on the ellipsoid. The normal

gravity is that generated by this ellipsoid, which should have the same

potential as the geoid, enclose a mass numerically equal to the mass of
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the earth, and be geocentric (Heiskanen and Moritz, 1967). Gravity ob-
served at the surface of the earth must be reduced to the geoid, and the
effect of topographic masses above the geoid removed. To this end,
several different types of gravity reductions have been developed, result-
ing in different types of gravity anomalies. Of these, the most widely

available and commonly used is the free-air anomaly, given by:

AgP =g  * 0.3086h - ¥ 2.2

Q °
where &g is observed at the surface point, s, h is the height of s above
P, in metres, and 0.3086 is the normal gradient of gravity, in mgal m—l.
(1 gal =1 em sec-g.)

The other two most common types of gravity anomaly, the Bouguer
and Isostatic, both produce an indirect effect upon the deflections of
the vertical, which is difficult to evaluate (Heiskanen and Moritz, 1967).

The choice of a gravity reference system for the purpose of
deflection prediction is arbitrary. A constant change in the absolute
value of gravity will introduce a constant shift in anomaly values, which
has no effect upon the computed deflections. Differences in size and
shape between the gravity reference ellipsoid and the reference ellipsoid
for astrogeodetic deflections are accounted for in the prediction tech-
nique. Consequently, the most readily available system - at this time -
has been used. This is the 1930 reference system, based upon the
International Ellipsoid (Heiskanen and Moritz, 1967). At present, very
little data has been transformed to the newly recommended 1967 Reference
System (Int. Assoc. of Geodesy, 197la).

For the purposes of the technique used in section 2.3, three
different gravity data sets are needed. These are:

(1) a point gravity anomaly set,
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(2) 1/3° x 1/3° mean gravity anomalies, and

(3) 1° x 1° mean gravity anomalies.
(By 1/3° x 1/3° mean anomalies, I imply mean gravity anomaly values for
elements on the surface of the earth with sides of 1/3° latitude and 1/3°

longitude. Similarly for the 1° x 1° mean values.)

2.22 Point gravity anomalies

This data (approximately 100,000 values, in Canada) was made
available by the Gravity Division of the Earth Physics Branch (EPB),
Ottawa (Buck and Tanner, 1972). No accuracy estimates were obtained with
this data, and these estimates were made, following Vanicek et al (1972),
using the equation:

2

- o
g = n * (0.09406AH)" 2.3

where OAg is the standard deviation of the gravity anomaly (in mgals),
o is the measurement error (=0.05 mgal.), and AH is the height error
(in feet). Ag is only weakly dependant upon horizontal position errors,
and these have not been considered here. (Note, the term standard
deviation is not used with its rigorous statistical meaning. It is
described further in Appendix I: The Method of Least Squares.) The

various values of GAg’ as a function of the values of AH provided by the

EPB are shown in Table 2.1.

2.23 1/3° x 1/3° mean gravity anomalies

These anomalies have been computed from the point gravity data.

The mean gravity anomaly, ZE; for a region of area A, is given by:

I/ AgdA 2.4

-— 1
Ag = iy

(Heiskanen and Moritz, 1967), where Ag is the gravity anomaly, known at
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dAg AH
0.05 0.1
0.1 1.0
0.3 3.0
0.9 10.0
2.k 25.0
9.4 100.0

12.0 unknown

Table 2.1

GAg (standard error of a gravity anomaly) as

a function of AH (estimated height error).
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every point in the region. In practice, the anomalies are only avail-
able for a few points in the region, and the complete evaluation of the
surface integral is not possible.
Several solutions may be used for this problem:

(1) Direct arithmetic mean,

(2) Prediction of point anomalies in the region

(3) Representation of the gravity anomalies by an integrable
function.
(2) and (3) are essentially the same, except that in the case of (2)
the integration of equation 2.4 would be numerically evaluated. (1) has
the disadvantage that it may be a poor representation of Kg} but, in the
case of scanty data, it is the only alternative. As the purpose of this
thesis is not to evaluate procedures for determining an optimal gravity
field, a simplistic approach has been adopted, using methods (3) and (1).
When there is sufficient data, the gravity field in the region can be
represented by a polynomial of second order as proposed by Nagy (1963).

Then, for any point i:

N 2 s
Ag. = . z cjk xi y? s 2.5
J k=0
where Agi is the estimated gravity anomaly at i, cjk are the coefficients
of a second-order algebraic polynomial, and (x,y) form a co-ordinate pair
in a local orthogonal system, with the x-axis directed north, and the y-
axis east, and the origin at the centre of the region.
This polynomial can be integrated to determine ZgE
Ag = coo ¥ f%g_b2 + E%Q.a2 + i%é a%p° R 2.6

where 'a' is half the north-south extent of the region, and 'b' half the
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east-west extent (assuming the region to be trapezoidal in shape). The
detailed derivation of 2.6 is given in Appendix II.
The coefficients of the polynomial are found from a least squares

approximation procedure:

9
b ooty ey = <A%,¢\ k=1,...59 2.7
=1 <: k7] J 13//
where ¢, (x.,y.) = 1,0 (x.,y.) = ¥.,¢.(x,,y.) = y2 ceend (x.,y.) = x2y2
17ivYi rertii i3 iYi i? V9T ivi
and the scalar product <:§k,¢jj>> is defined by:
n
<¢k,¢> = iE-l w(xi,yi)- ¢k(xi,yi)- ¢j(xi,yi) s 2.8
where n = number of data points used.
The weight function w(xi,yi) is given as:
_ -2
W(Xiayi) GAg. 2'9
i
where oAg is the standard deviation of the point gravity anomaly, Agi,
i
given by equation 2.3.
Equations 2.7 can be written in matrix form:
Gg=2
from which:
¢ =ale 2.10
Residuals can be computed at the observed data points:
V. = - A
N Agi Agi 2.11

-~

where Agi is given by equation 2.5.

Then the variance factor cg is determined from:

2= <w.r> 2.12

gT = n-9 .
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The error covariance matrix of the coefficients is then:

£ =02G . 2.13
c )
Rewriting equation 2.6 as:
—Ezbc' 2'6
where b = (1 EE- éﬁ' a2b2 )
. ,3 ’3 b 9
2.1k
L
and N (coo’ €o2° %20° c22) >

‘v
then,applying the law of propagation of covariance (Vanicek, 1973), the
variance of Zé-is given by:

2 v

= b .
OAg P Zc b . 2.15

where Z; is a reduced covariance matrix containing only the information
relative to c'.

(Note that, although the coefficients c' are needed in equation
2.6, all 9 coefficients S must be determined, as the functions ¢i are not
orthogonal. )

It is not possible to use the above-described procedure in all
cases, as there is not always sufficient well-distributed point gravity
data within individual 1/3° x 1/3° blocks. Practical experience has
indicated that there should be at least 50% more data points than un-
knowns for a reliable solution for the polynomial coefficients. Further-
more, this data should not be clustered in one corner of the 1/3° x 1/3°
square. If these criteria are not satisfied (i.e. if there is not data
in at least three quadrants or if there are less than 15 data points),
then the less sophisticated prodecure of method (1) is used. 1In this
procedure, the weighted arithmetic mean of the point gravity anomalies

in the block is used to represent the mean gravity anomaly. The weights

used are inversely proportional to the variances of the available anomalies.
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This technique corresponds to solving for, and using, only the o term
of equation 2.6 (i.e. a zero order polynomial representation). In this
case the standard deviation of the mean, given by:

B - ve,, B - vg >

g2 =
n (n-1 )<1 1>

should not be used as an estimate for ozg-, as it is based upon the premise

2.16

that

g = E(4g; ) 2.17

where E represents the expectation operator (Wells and Krakiwsky, 1971).
This premise is no longer valid in the case of gravity anomalies where
the mean, ZE; does not represent the expected value of individual anom-
alies. In order to provide a less biased estimate for the accuracy, the
following procedure was used. The standard deviations of the rigorous
integral solution are plotted as a function of the number of points used
in each block. The resulting second-order curve (Figure 2.1) can then be
used to predict the standard deviations for the blocks that have less
than 15 data points.

The above two procedures will only account for blocks in which
gravity data exists. There are many 1/3° x 1/3° blocks in which no gravity
data has been observed. For example, in Eastern Canada only about 70%
of the blocks contain gravity information. For the empty areas, some
type of prediction method must be resorted to. These methods are gener-
ally of three types:

(1) geometric interpolation,
(2) geophysical prediction, and
(3) autocorrelation (collocation).

The investigation, and analysis of these methods are considered beyond the
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scope of this thesis.

A version of method (1) has been developed, in‘which the auto-
correlation of the gravity anomalies is partially taken into account.
The mean anomaly, zéé is predicted from the neighbouring 1/3° x 1/3° mean

anomalies, ZE;, using the formula:

<::-—1/2 —~1/2\:>

AgP 2.18

<>

where the weight function is specified as:

_ =2 =y, /1/5°
w(wpi) = GAgi e 'Pi 2.19
Here, ozé- is the standard deviation of Zé;, from equation 2.15, and
i
Ups is the angular distance (in degrees) between the points (¢P, AP)

and (¢i, ki). The exponential term takes into account the decrease of
the correlation between gravity anomalies with increasing distance
between them. The non-linear correlation is best represented by an
exponential function of this type (Kaula, 1957). The value 1.5° has been
taken from the same reference, in which Kaula uses several gravity pro-
files in the United States to determine correlation coefficients for mean
free-air gravity anomalies. Estimates of the accuracy of the predicted

gravity anomalies are found from:
1 B
o=— =02 += 31 o— 2.20
o} no._

Where:

o2 = = 2,21

Equation 2.20 takes into account the fact that the mean, ZE}, does not

represent the expected value of the individual mean anomalies. Hence,
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ozéé is the geometric mean of Go and the geometric mean of the individ-
ual anomalies. Although, from a rigorous statistical viewpoint, this
technique is questionable, it does avoid the practical difficulties
associated with the large error covariance and auto-covariance matrices
required for the more rigorous collocation approach (e.g. Moritz, 1972).
Only the immediately adjacent 1/3° x 1/3° blocks are used for
the prediction (i.e. wmax = 0.5°). If there are less than two mean
gravity values within this distance, then wmax is increased successively
(in 0.5° increments) until there are at least two adjacent values, or
until ¢max exceeds 1.5°. In this case if there are still less than two

adjacent values a mean anomaly of 0.0 mgal with a standard deviation

of 11.5 mgal (taken from Figure 2.1) is assumed.

2.24 1° x 1° mean gravity anomalies

These were available in two data sets. The first consisted of
2,131 1° x 1° blocks in Canada, supplied by the EPB. The second cont-
ained 20,113 1° x 1° blocks distributed over the entire earth, excluding
most of Canada, supplied by the Defense Mapping Agency, Aerospace Centre,
St. Louis (DMAAC) (Seppelin, 1971). These two data sets were combined
into one data set for North America, north of 40° latitude. There are
some overlaps of data in the original files, notably along the common
border of Canada and the U.S.A., and, for these cases, the weighted mean
of the two values for each overlapping degree square was adopted. The
original error estimates for the EPB data are optimistic, being based
upon the deviation of point values from the mean. In order to make
the error estimates for the combined data set as homogeneous as possible,
standard deviations were assigned to the EPB data in accordance with the

procedure described in Rapp (1972). Rapp obtained an empirical function
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relation between the DMAAC error estimates and the number of data points
per 1° x 1° block, which is shown diagrammatically in Figure 2.2. The
weights used in the combination of common blocks were inversely pro-
portional to the variances.

The combined data set of 3311 1° x 1° blocks still left some
empty areas in Canada (Figure 2.3). Predicted values were calculated
for these areas using the same techniques as described earlier for the
1/3° x 1/3° blocks. Again, the blocks used for the prediction were the
immediately adjacent ones (wmax = 1.5°). 1If there were less than two
adjacent blocks with known anomalies, then wmax was increased to 3.0°
and then to 4.5°. The entire land mass of Canada and the immediately
adjacent areas were covered by observed and predicted 1° x 1° mean free-

air anomalies using the above technique.

2.25 Evaluation of gravity data

The determination and evaluation of the gravity field in Canada
constitutes a thesis in itself. Consequently, it is recognised that the
data sets described here could be improved in quantity and quality. No
detailed evaluation of this data has been attempted, but some general
comments may be made, with regard to each data set.

(1) The point data in Canada is not evenly distributed and is
lacking completely in certain areas - see Figure 1 of Nagy (1973). The
quality of the gravity observations is high, but the free-air reduction
introduces significant errors (in excess of 10 mgals - Table 2.1) in the
free-air gravity anomalies, due to the lack of adequate height infor-
mation. The data set is not entirely free of blunders, and several

incorrect values were detected during the course of this investigation.
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(2) The reliability of the 1/3° x 1/3° mean anomalies will depend
upon the quality, quantity, and distribution of the point anomalies. The
error estimates discussed in section 2.23 take into account the first
two of these. Unless the point gravity anomalies are well-distributed
within each 1/3° x 1/3° block, the 1/3° x 1/3° mean anomaly values are
likely to be biased.

(3) The 1° x 1° mean anomalies supplied by the DMAAC take into
account the quality, quantity and distribution of the point gravity
anomalies (Seppelin, 1971). The EPB mean anomalies do not take the dis-
tribution into account and are likely to be unreliable for this reason.
In combining the two data sets some large differences were noted between
them at common blocks. These differences, evaluated for 347 blocks, are
summarised below:

Mean difference : +  8.31 mgal

RMS difference : 25.83 mgal
Maximum difference : + 125.58 mgal
Minimum difference : - 36.98 mgal

(These differences are taken in the sense: DMAAC-EPB values.)
The differences are significant, in that they exceed, in most cases, the
estimated standard deviations of the mean values, and in that the DMAAC
values are systematically greater than the EPB values. Some further
investigation into the causes of these differences is urgently required.

A further comparison that has been made is that between the
1/3° x 1/3° data set for Eastern Canada, and the corresponding portion
of the combined 1° x 1° data set. In this comparison, 1° x 1° mean values
were computed from the 1/3° x 1/3° mean values, using a weighted

arithmetic mean. The weights used were the inverses of the estimated
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variances. The results obtained from 426 comparisons are summarised

below:
Mean difference : - 1.59 mgal
RMS difference : 8.19 mgal
Maximum difference : + 35.21 mgal
Minimum difference : - 70.50 mgal

(Taken in the sense: 1/3° x 1/3° computed values - 1°x 1° mean values.)
The majority of the larger discrepancies occur where only the DMAAC
values are available for comparison. This indicates that the Canadian
data is consistent within itself, and that the significant differences
between the DMAAC and EPB 1° x 1° means may be due to errors in the DMAAC
data, rather than in the method used by the EPB. However, this is some-
thing that will have to be clarified by the organisations themselves, and
the existing data, burdened as it is with unpredictable errors, must be

used in the best possible fashion.

2.3 Gravimetric Deflections

2.31 The Vening-Meinesz formulae

Gravimetric deflections are computed by means of the integration
formulae of Vening-Meinesz. Essentially, these formulae are the spatial
differentials of Stokes' formula for geoidal heights. The classical
theory of the gravity potential of the earth, leading to these formulae
is described in several texts (e.g. Heiskanen and Vening-Meinesz, 1958;
Heiskanen and Moritz, 1967), and will not be discussed here. The formulae

of Vening-Meinesz are:

G 1 das(y
g = Eia-fgf Ag di ) cosada
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N dgi ) sinado 2.22
o]

where the symbols have the following meanings:

EG, nG are the gravimetric meridian and prime vertical components of the

deflecticn of the vertical.

Ag is a free-air gravity anomaly, as a function of position.

+ 8siny - 6cos(P/2) - 3 1-sin(y /2)

siny

65(y) _ —cos(v/2)
dv 28in2(¢/2)

+ 3sinyen{sin(y/2) + sing(w/Z)] (Vening-Meinesz function) 2.23

3.141592653. ..

=
I

«
1

981 gals (an average value of gravity on the geoid).

P is the spherical distance from the computation point to the particular
gravity anomaly, and a is the azimuth of the geodesic connecting the
computation point with the point to which the particular gravity
anomaly pertains (measured clockwise from north).

The deflections of the vertical obtained by means of equation

2.22 refer to the same ellipsoid as that used to obtalin the gravity

anomalies, Ag, and are obtained at the geoid. The integration of

equation 2.22 is closed, and should be carried out over the surface of

the geoid. It is sufficient, in practice, to integrate over the surface

of a sphere which has the same volume as the earth. This spherical

approximation introduces errors of the order of the flattening, i.e. 0.3%,

which, for gravimetric deflections, may be considered negligible (Heiskanen

and Moritz, 1967).

The numerical evaluation of Vening-Meinesz formulae requires

the replacement of the integration by a summation over discrete data:



33

gG = = X Ag Qgéil cosoalAa

2.2k
nG = ﬂ%ﬁ I Ag Q%éﬂl sinalAc
There are two commonly used techniques of computing the deflections
from equation 2.24. One uses elements that are portions of spherical
dises, centred at the computation point P, i.e. circular coordinates
on the surface of the earth (Figure 2.4a). The other uses quasi-rect-
angular blocks formed by the intersections of meridians and parallels,
i.e. rectangular co-ordinates on the surface of the earth (Figure 2.4b).
Both methods require the calculation of mean values of Ag for each elem-
ent.

(1) When circular co-ordinates are used, the values of Ag must be
recomputed every time the computation point (i.e. the origin of the co-
ordinate system) is moved. This method was originally useful when access
to high speed computers was difficult or impossible. Circular templates
were used in conjunction with contour maps of gravity anomalies (e.g.
Rice, 1952; Derenyi, 1965). This work required a great deal of time
and effort, and consequently very few deflections coulé be computed.

(2) The rectangular block mean values do not change with the
computation point, and can be precomputed, stored, and used repeatedly.
This method has been described in Uotila (1960), where the author
recommends a combination of blocks and circular templates, the templates
to be used for the inner area, and blocks of 1° x 1° and 5° x 5° for the
outer area. This technique has been used for computing gravimetric
deflections of the vertical in North America by Nagy (1963) and Fischer
(1965). However, the practical application of their methods allow gravimetric
deflections to be computed only at block corners, or at the geometric centres

of blocks.
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Fischer overcomes this problem by computing "curvature" components
(spatial derivatives of the deflections) and uses these to account for
the effect of moving the computation point. This procedure requires a
uniform, dense gravity coverage in the immediate vicinity, and would
not therefore be feasible for most conditions.

(3) A more general approach, involving an analytical solution
for the deflection contribution from the immediate vicinity of the
computation point, and a series approximation for the gravity field in
this vicinity, has been developed here. The summation in equation 2.2L4

is broken into three parts:

(a4
]

gty tEy
2.25

n =0 tn, t ng
where each of the subscripted values is determined from a different region
and involves different block sizes (Figure 2.5). The block sizes used
are: 1° x 1° for the outer zone; 1/3° x 1/3° for the middle zone. In
the inner zone, point gravity anomalies are used. The choice of 1° x 1°
blocks was predetermined by the fact that these were the smallest blocks

for which mean values were readily available (Decker, 1972).

as(¥)
ay

computation point (Figure 2.6), and it is evident that even smaller

The Vening-Meinesz function, , goes to infinity at the
elements should be used for the vicinity of the computation point. A
1/3° x 1/3° size has been chosen as a compromise between a theoretically
preferable smaller block size and the reality that the available gravity
data has a density of one point per 10 km or less (Nagy, 1973). The
innermost 1/3° x 1/3° block in which the computation point is contained

is treated in a different way, using point data to determine the
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Figure 2.5

Different-sized Rectangular Blocks
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coefficients of a two-dimensional polynomial approximating the gravity
field. The analytical expression for the Vening-Meinesz integral of
this series has been derived, using approximations for the Vening-
Meinesz function, as is shown later. The determination of each of the

components is outlined in the next sections.

2.32 Outer zone contribution

The part of equation 2.2L4 pertinent to the outer zone can be

written as:

n
-1 — ,as(y)
£ = Too 121 he, ( a )i cos¢, cosa, Apy AX)
n 2.26
_ 2 — ,as5(v) .
ul Hﬁa-iil bg; ( v )i cos¢, sina, A¢, Ay

where ZE; is the mean value of the gravity anomaly in the ith block,

as(y)
ay
$¢. is the latitude of this midpoint,
i

-is evaluated at the mid-point of the ith block,

by = Ax) = 1°,

n is the number of 1° x 1° blocks used, and

., 0. are given by:
Vs 0y g y

b = arccos(s1n¢P sing, + cos¢y cosd;icos()\i - AP))
2.27
cos¢, sin(xi - AP)
a, = arctan( - - )
i cos¢, sing, - sing, cos¢, cos(}\i - AP)

and (¢P, AP) are the latitude and longitude of the computation point, and

(¢i, Ai)the latitude and longitude of the midpoint of the ith block.
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2.33 Middle zone contribution

The part of equation 2.24 pertinent to the middie zone is

similarly given by

= 1
%2 7 TiG 2

I~

- (as(v)
= Agj ( av )j cos¢j cosa, 8¢, X
2.28

nmo~mB

— (as(y) :
Agj ( ) cos¢j 51naj A¢2 AX

2
Lne ay 7

N5 . 2
J

1

where Ap, = ML, = 1/3°,
m is the number of 1/3° x 1/3° blocks, and the other symbols have
the same meaning as before.

For the 1/3° x 1/3° blocks near the computation point, it is
no longer sufficient to use a value of Q%éﬂl , evaluated at the centre
of each block, due to the rapid change in this function near thg com-
putation point (Figure 2.6). A more rigorous approach is to integrate

over the block (Heiskanen and Moritz, 1967):

as(y) _ 1 ,,as(y)
T i T 2.29

where as(y) denotes the mean value of as(y) for the block, and A is the

dy dy

block area. For those blocks within 095 of the computation point,

equation 2.29 i1s integrated numerically and this value used instead of

as(v)
ay

One disadvantage of allowing the computation point to be at an

the value of for the block centre.

arbitrary position within a 1/3° x 1/3° block is that equation 2.29
becomes unstable when the computation point approaches the edges of its
1/3° x 1/3° block. The error in the numerical integration that may occur
is illustrated in Table 2.2. 1In order to keep this error below 10% of

the deflection value, the co-ordinates of the computation point are
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For Ag = 50 mgal in adjacent block

Angular distance

from computation Error

point to edge of Contribution to (seconds Error

block deflection of arc) (percentage)
0°17 132 ovo1 1
0°10 238 003 1
0°o7 3"30 o' 05 2
0%0k 503 0'18 L
0902 T LY o's1 7
0°01 8"95 0"90 10
02001 13780 320 23

Table 2.2
. . . . as(y) o o

Error in numerical integration of —EE——-for (1/3° x 1/3°)

blocks adjacent to block containing computation point.
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changed slightly (if necessary) so that it is always at least 0901
(approximately 1 km) away from the edge. The change in deflection value

caused by this position shift, is not likely to be significant.

2.34 Inner zone contribution

The contribution of the innermost 1/3° x 1/3° block is given

by:
1 3 1 1
R + + = + =
&3 Sgep Tyt g for g f) - arlleye + 5 g 8% | 8,85)
2.30
R ' ' N v o4 1 )
3= “oygliep Ty * e Ty * e fy) - pelleye) 5 g ey T 8,83)

where AgP is the gravity anomaly at the computation point P, and Byt gy
are the horizontal gradients of gravity at P, evaluated in an (x, y) local
plane co-ordinate system in which the x-axis is directed north, the y-axis

east, and the origin is at P. R is a mean radius of curvature for the

earth and:
£, = In(y,+ /OGH0))- Inlyr V(xwy2))= Inly + V(xEay2))+ 1nly + V(xotyD))
_ f2 = yeln(x2+/(x§+y§))—len(xl+/(xi+y§))-ylln(x2+/(x§+y§))+ylln(xl+/(x +yl))

= /(%2 +y2) - V(x2 +y2) -V +yl) * V(xE +yl

1 2 2 o 2 2 2 2 2
g =5 (ygln(x2+y2) + ylln(xl+yl) - yzln(xl"*yg) - ylln(x2+yl))

Y2 Yy ¥ y2
+ X _ arctan — + x_arctan — - X_arctan — - X_arctan — 2.31
2 X 1 b 2 bd 1 b

2 1 2 1
X ¥ X
2 2 2 2 2 1

= - = + ; = . + —_
g2 x2y2 yearctan xgarctan " xly2 yearctan -
2 2 2

- xearctan X—-— X + 2arctan i— - xgarctan z— + X - 2arctan fl +
1 X o1 T Y 2 X 1917

1 1 2 I
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= N

+ x_arctan —
b

2 2 2 2 2 2 2 2 2 2 2 2
= - - + + +
gy = (x5 + yo)ln(xg + y5) - (x] + y5)in(x] + yg) (x, + y))In(x; + y])
> 2 o 2
+ (xl + yl)ln(xl + yl) .

The equations for the primed quantities are identical to those above,
except that the x and y co-ordinates are interchanged. Xl’ yl, x2, y2
are the co-ordinates of the four corners of the innermost (1/3° x 1/3°)
block, relative to the point P (Figure 2.7). Equations 2.30 and 2.31

are derived in Appendix III. Values for AgP, 8, > gy are found by fitting

a plane to the point gravity data in the innermost block. The plane is

defined by the following expression:

-~

S .
Agi ASP gXPXi gyPyi 2.32

a truncated series expansion at P. Putting:

C) = dgp3 ©p = 8,3 3 T £ o1 (x5¥) = 15 ¢, (x,y) = x; ¢3(x,y) =y

3
Ag. = I c, ¢j 2.33

The coefficients cj are found from the solution of the matrix equation:

Gec=2 2.3k

where the matrix G has elements: gkj =~<:@k,¢€;> , and the vector & has
elements: by = <:;g, ¢£;> Jok=1,...,3. The weight function in the scalar
products 1s given by:

W(Xi,yi) = ag 2'35

The inner zone yields most of the information concerning the

influence of local variations in the gravity field, and it is important
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that there be sufficient well-distributed data in this zone in order to

get a reliable estimate of the deflections. Consequently, several criteria
have been set up to ensure that the data has these characteristics.
Sufficiency is ensured when there are at least four data points in the
region. The distribution is checked by ensuring that there is at least

one data point in each of at least three of the four quadrants around

the computstion point. If these criteria are not met, no deflection

components are computed for that point.

2.35 Error propagation

In order to obtain some estimate of the reliability of the
results, propagation of the gravity anomaly errors has been included in
this study. It has been shown (e.g. Heiskanen and Moritz, 1967), that
gravity anomalies are correlated with each other as a function of distance,
and much research has been done into the representation of this corr-
elation by means of auto-covariance functions and empirical covariance
matrices (e.g. Kaula, 1957; Lauritzen, 1973). However, the practical
problems involved in using the necessarily large covariance matrices
associated with the anomalies have not been successfully overcome, as
yet. Consequently, for the purpose of this thesis, the gravity anomalies,
both point and mean, have been assumed to be uncorrelated, thus resulting
in diagonal weight matrices. The propagation of errors for the components

3 is then fairly straight-forward:

12 62, nys M,

n
1 as(y) 2,52
o = ﬂﬁé'/[ g (( m )i cos¢, cosa, d¢j dlj) OAg.]

J i=1 1
2.36
n
o1 ds(y) . 2,2 =
Oﬂj = I /[izl (( i )i cos¢, sinay d¢j dlj) OAgi] for j=1,2 .
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The propagation of errors for the inner zone proceeds in two steps. The

error covariance matrix of the coefficients Cj (equation 2.33) is derived

from:
= g2 gt
Zc oo G 2.37
where
n ~ 2
I (o - 2my) uley, )
2 - _
%o n-3 2.38
The variances of 53 and n3 are given by:
2 T
°g3 =4I
2 _ T
T T G 2.39

where d. and d, are the linear operators on: q = (Ag, gx, gy) in equation

-1 -2
2.30:
el sy Tag, 2.30
?l and ?2 are given by:
T _ 1 3 . 3 . 3
4 =315 fy - 2§81 ~To - SREps T3 7 RE3)
2.40

T—_J_‘__ | 3 LI ] 3 1 1 3 1]
d; = ZnG ( f] - 2’81 'f3 oR°3 5 2R32)

Q

The complete estimates for the standard deviations of EG, n are given

by:

2.l
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2.4 Astrogeodetic Deflections

2.41 Astrogeodetic data

The astrogeodetic deflection components at a point are given
by:
A

£ =9 -4
2.kh2

nA = (A = X) cos¢
where (¢,A) are the astronomic latitude and longitude of the deflection
station, and (¢,A) are the corresponding geodetic quantities. (Longitude
is considered positive eastwards.)

The above definitions are valid for all points if the minor
axis of the geodetic reference ellipsoid is parallel to the mean rotation
axis of the earth, and the Greenwich meridian plane of the geodetic
system is parallel to the astronomic Greenwich meridian plane. If this
is not the case, the deflections should be corrected for the rotations
between the two systems. There have been several attempts at determin-
ing these rotations (e.g. Lambeck, 1971; Mueller at al, 1972; Thomson
and Krakiwsky, 1974), with some small rotations being evident. An
apparent rotation between the Greenwich meridian planes has been docu-
mented, and is due to the redefinition of the Greenwich mean astronomic
meridian by the Bureau International de 1'Heure in 1962 (Stoyko, 1962).
This resulted in the longitude of the U.S. Naval Observatory changing by
0"765, while that of the Canadian Dominion Observatory did not alter.
However, in order to avoid the resultant discontinuity in astronomic
longitude values, all post-1962 longitudes are still referred to the old
Greenvich mean meridian (D.A. Rice, personal communication, 1972). This

essentially means that the astronomic and geodetic co-ordinate systems
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in North America remain parallel to each other, but are not parallel to
any other system based upon the post-1962 Greenwich mean meridian (such
as satellite systems).

Independent of the rotation in longitude described above, there
may be an additional rotation of the geodetic co-ordinate system about
the normal to the ellipsoid at the initial geodetic point. This rotation
is due to incomplete satisfaction of Laplace's azimuth condition at this
point (Vanicek and Wells, 197k).

The astrogeodetic deflection data available for this study
consisted of 870 deflections in Canada and 3050 deflections in the U.S.A.
This data was supplied by the Geodetic Survey of Canada and the U.S.
National Geodetic Survey. Approximately 100 of the Canadian deflections
were considered to be of low order, due to either poor astronomic deter-
minations or large uncertainities in the geodetic co-ordinates (in the
Arctic Islands). The observations were generally made with a first-order
universal theodolite (such as the Wild T4 or Kern DKM3A) or with a port-
able transit (Bamberg), in accordance with the procedures set out in
Hoskinson and Duerksen (1952). Different star catalogues have been used
during the period of observation (some observations date back to the late
19th century), the principal ones being the General Catalogue, the FK3,
and the FK4. Longitude, prior to 1925, was obtained using telegraph
timing techniques. After 1925, time comparisons by means of radio super-

seded the telegraphic technique.

2.42 Sources of error

In estimating the accuracies of the observed astrogeodetic

deflections, three different kinds of errors can be distinguished:
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(1) errors in the astronomic co-ordinates,
(2) errors in the geodetic co-ordinates,
(3) error in neglecting the curvature of the plumbline.

(1) The errors inherent in the observing techniques have been
estimated at OVS in latitude and OV6 in longitude (Rice, 1962). Pre-
1925 longitudes will have an additional error of 1V5, due to errors in
the telegraph timing method. The systematic differences between the
various star catalogues used are not expected to affect the astronomic
positions by more than O'4 (G. Corcoran, personal communication, 1972)%
Reduction of the co-ordinates to the mean pole of 1900-1905 (Conventional
International Origin) has, in most cases, not been carried out. This
affects latitude by 0V2 and longitude by OV2tan¢ (Mueller, 1969).

(2) Observational errors propagate from the initial point of
the geodetic datum in a random fashion and an approximate formula for the
errors in the North American networks has been suggested by Simmons (1950):

Proportional error = M-/3/20,000 2.43
where M is the distance in miles from the initial point (Meades Ranch).
This formula may be transformed to an estimate for the standard dev-
iation (in arc seconds):

o, = 1.89 x 1077.x2/3 2.4k
where k is the distance in metres from the origin.

Systematic errors of two types are also present in the North
American geodetic networks. The non-rigorous adjustment technique
initially used has led to systematic distortions of newly-added networks
that were forced to fit the older results. In Canada, misclosures of up
to 36 metres (approximately 1'0) have been reported (Dept. of Energy,

Mines and Resources, 1972), and errors of 0V2 in relative position across New

* A1l the U.S. data has been reduced to either the FK3 or FKU4 (W. Strange
personal communication, 197h). ?
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Brunswick, due solely to the adjustment constraints, have been found
(Krakiwsky and Konecny, 1971).

A further source of systematic error is that due to the re-
duction procedure applied to the observations used in the original adjust-
ment of the networks. The horizortal directions were not corrected for
the deflection of the vertical, and the distances were, in effect, reduced
to the geoid, and not to the ellipsoid. The effect of this last approx-
imation has been estimated not to exceed 0VS5 in position, in Canada
(Merry and Vanizek, 1973).

(3) The astronomic co-ordinates should be reduced from the
terrain to the geoid, prior to the evaluation of the deflection components.
Such a reduction, due to the curvature of actual plumbline between the
terrain and the geoid, has not been carried out. Consequently, the
derived astrogeodetic deflections of the vertical are surface astro-
geodetic deflections. The curvature of the plumbline will be mainly
due to topographic irregularities and crustal density variations. In-
vestigations in the Alps have shown that curvature in mountainous terrain
may reach 11" (Kobold and Hunziker, 1962). Evaluation of the curvature
is a difficult task, made more difficult by the fact that (in Canada at
least) the necessary gravity or other geophysical data is seldom avail-
able in sufficient quantity (Ndyetabula, 197L4). Based upon the above

discussion, a general model for the errors can be written as:

o a2 2 4 2 2
/(co + ol +oog + GG)

et

s M2 4 62 + g2 + g2 + o2
an /(00 62 + of + of cT)

2.45

where 9 is an estimate for the observing precision - 05 for latitude

and 0V6 for longitude (for second order deflections, o, = 1V5); o,
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represents the error due to use of different star catalogues (04 for old

observations, 0v0 for post-1964 observations); o_ represents the error

P
due to the effect of polar motion - OV2 for latitude and O"2tan¢ for

longitude (for post-1962 U.S. data, o_ = 0Y0, as the correction for polar

P

is given by equation 2.4Lk; and o, is an

motion has been applied); o T

G
estimate for the telegraph timing error - 1'5 for pre-1925 longitude,
0Y0 for post-1925 longitudes.

The above model provides accuracy estimates ranging from 0"5
near the initial point to 2V0 in the Canadian Arctic. These estimates
are likely to be too optimistic, as systematic errors, due to network
distortion, improper distance and angle reductions, and neglect of
plumbline curvature, have not been modelled. The effects of these errors

must be considered unpredictable at this stage, but may vary from 0V0

to as much as 10"0.

2.5 Two-dimensional Interpolation

2.51 Mathematical model used

The modified gravimetric deflections &G, nG differ from the
observed astrogeodetic deflections EA, nA due to two causes:
(1) the two types of deflection are related to two ellipsoids of
different size, shape and position.
(2) the modified gravimetric deflections do not account for the
influence of the gravity field beyond the outer zone, and for the error in
numerical integration.

These differences, 8§, 6n, can be approximated by two second-order, two-

dimensional, polynomial expressions:

8§ =
L

O
™y
[}

vy
i

Y
It e

N M \O

c, ¢,(x,y)
1 2R .
2.46
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where (x,y) form a local orthogonal co-ordinate pair, and are given by:

x=¢ -9
° 2.148

I
>
|
>

y

and (¢°,Ao) are the latitude and longitude of an arbitrary origin located
close to the centre of the area. The coefficients aij’ bij are found

using the least squares approximation technique described earlier:

2
k 2 i k 2
z <X Y » X ‘ya>aij = <6€a X 'y
i=0
J=0
2.49
2
k & i {::> _ k 2%
iEO<X°y s X 0¥ bij— <6n,x ¥ >
3=0
k,2 = 0,1,2.
The weighting functions, used in the scalar products, are:
= (o2 2 y-1
w(8E) = (02 + o4 )
£ 2 2.50
' -1
wlen) = (2, + 0%)
n n

88, &n are obtained at the control points where both astrogeodetic and
modified gravimetric deflections are available. Equations 2.49 can be

written in matrix notation as:
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Ga=mn
2.51
Gb=n
from which
a = G"l
~ ~ 2.52
b=ctn
The error covariance matrices of the coefficients are found from:
T = g2 G"l
a oa
2.53
=52 ot
Zb cob G
where-
n ~ 2
 (sg, - 88.)° w(sg,)
. i i i
02 - i=1
oa n-9
2.54
n ~ 2
z (Gni - Sni) W(Gni)
o2 = ==
ob n-9

n = number of control points. The error covariance matrices of the

quantities 6§, Sn are:

. T
265 =Cz: C
2.55
- T
zﬁn =C Zb C
where C is the matrix:
¢, (xpoyq) - o - ¢9(xl, v,)
C = : - 2.56
oy (o) oo o b Uxoy) |
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Here ¢i(x,y) have the same meaning as in equation 2.46, and m is the number
of points for which predicted astrogeodetic deflections are needed.

Uéing the computed coefficients, aii’ bij’ in equation 2.47,

[
~ ~

values of 6£, &n can be determined at any point in the region, as a
function of the local co-ordinates (x,y). Adding these quantities to
the gravimetric deflections, EG, nG, the interpolated astrogeodetic

deflections are:

~p G -
E =& + 8¢
2.57
~A c -
n =n + 6n
With error covariance matrices:
ITA =37, + LG
g 8g 13
2.58

I7A T+ % G
n én n

The modified gravimetric deflections have been considered as uncorrelated

so that I_G and ZnG are diagonal matrices in the expression, with the

3

diagonal elements being:

oéG seees ogG : oﬁG e ens oi .
1 m 1 m

2.52 Choice of zone boundaries

In the calculation of the modified gravimetric deflections,
three zone boundaries need to be established. The first two of these
are not dependant upon the interpolation procedure and could have been
described in an earlier section. The third zone boundary, that of the
outer zone, is dependant upon the interpolation procedure. As a matter

of convenience, all three are described here.
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(1) Inner Zone Boundary: Ideally, this boundary should be such
that the portion of the gravity izld contained within it could be
adequately represented by a plane. ngever, practical ¢onsiderations
overrode this requirement. Due to the relatively sparse nature of the
gravity coverage in Canada, a minimum size of 1/3° x 1/3° was chosen in
order to have sufficient (at least three) data points within this zone,
to model a plane.

(2) Middle Zone Boundary: For the numerical integration of equation
2.24, it is desirable that the element size be kept as small as possible.
That is, the smallest element size (in this case the 1/3° x 1/3° blocks)
should extend as far as possible from the computation point. However,
due to the decrease in the value of the Vening-Meinesz function with
increase in distance from the computation point (Figure 2.6), it is
possible to use larger block sizes (such as 1° x 1°) further away. This
results in a considerable saving in computer time and storage.

In order to determine the optimum middle zone boundary, the
following procedure was used. Gravimetric deflections at 9 points in
New Brunswick were computed, and for each of these the area covered by
the 1/3° x 1/3° blocks was varied from 1° x 1° to 11° x 11°, in 2° incre-
ments. Where less than 11° x 11° was covered by 1/3° x 1/3° blocks,
1° x 1° blocks were used instead. Taking the 11° x 11° values as a stand-
ard, differences in the deflection values, from this standard, were
obtained at the nine points. The root mean square (RMS) differences, as
a function of middle zone boundary, are shown in Figure 2.8. A noticeable
change in trend occurs at the 5° x 5° value on this graph, and this appears
to be the minimum area that should be covered by 1/3° x 1/3° blocks of

data, without sacrificing too much accuracy. Consequently, 5° x 5° has
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been selected as the area to be covered by the 1/3° x 1/3° blocks of
mean gravity anomalies.

(3) Outer Zone Boundary: This boundary should be chosen in such a
way that the residual error, due to the neglect of the distant zones,
could be modelled by a surface of second order, over the region covered
by the control points. Preliminary testing, using the gravimetric de- '
flections, indicated that, for a region 400 km by 400 km in extent, an
outer zone boundary 500 km from the computation point would be adequate.
This zone boundary was used for some initial investigations (Merry and
Vani¥ek, 197ka).

Further testing, described below, showed that a smaller outer
limit could be used. In this test, deflections were predicted at 18
points in New Brunswick, using an outer zone boundary ranging from 300 km
‘ to 800 km. The RMS differences between the deflections obtained using
the 800 km boundary, and those obtained using smaller values are shown
in Figure 2.9. It is apparent that a relative accuracy of 0"l can be
achieved using as short an integration distance as 300 km. The region
covered by the control stations, in this test, was 600 km x 500 km. In
a similar test, using a slightly larger region of 800 km x 800 km, the
integration distance that provided a relative accuracy of approximately
0Y1 was 400 km. Hence, it may be concluded that it is adequate to con-
tinue the integration out to approximately half the length of the side
of the region covered by the control points. This appears to contradict
the experience of Molodensky et al (1962) and Strange and Woollard (196L4),
who recommend that the integration be carried out to at least the distance
between control stations. However, it should be remembered that their

interpolation was one-dimensional and linear, while a two-dimensional
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second order correction polynomial is used here. Based upon the fore-
going, and erring on the cautious side, the outer zone limit has been
set at L0O km for regions smaller than 800 km x 800 km, and at one-half

the larger side, for larger regions.

2.53 Test results
In order to test the reliability of the procedure, astro-
geodetic deflections were interpolated in a number of different areas:

(1) New Brunswick

(2) St. Lewrence River Valley

(3) Gaspé Peninsula

(L) Rocky Mountains.

The relative positions of these areas are indicated in Figure 2.10. 1In
each area deflections were interpolated at points at which the astrogeod-
etic deflections had been previously observed. A comparison between the
predicted and observed deflections was then made, and the results are
summarised in Table 2.3. Table 2.3A gives the detailed comparisons.

(1) ©New Brunswick and the surrounding regions have the best astro-
geodetic deflection coverage in Canada, and conseguently there were a
large number of control stations available for the interpolation. On
the other hand, the gravity data is poorly distribmted in this region and
some gross errors in this data were detected, with. possibly more errors
remaining undetected. Therefore, it was not possible to predict de-
flections at as many deflection stations as had besn expected. The RMS
error is small (less than 2") but so are the deflewtions, so that the
relative error is large. However, it is encouragimg that the predominant

upward slope of the geoid towards the east has beeim detected, and is
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evident in the predicted n - components. It should be noted that it is
major features, such as this slope; which are more important in terms of
correctly reducing observations from the surface of the earth (Meissl,
1973).

(2) In the St. Lawrence region, the gravity data suffers from the
same poor distribution as in New Brunswick. Fewer deflection stations
are available to provide control, and consequently the RMS errors are
larger, as are the deflections themselves.

(3) In the Gaspé region, similar conditions as in the St. Lawrence
valley apply, although more control stations are available. Several of
the predicted deflection stations are common with those in the other two
regions, so that a direct comparison of the predicted deflections may be
made. Using three common points with the New Brunswick set, the RMS
difference between the predicted values is 0'2. For the five common
points with the St. Lawrence region, the RMS difference is 1V0. This
difference is not insignificant and indicates that the predicted values
are dependant, to some extent, upon the distribution of the particular
control stations used. A possible reason for this dependance is that
regionally systematic errors in the astrogeodetic deflections (due to
network distortion, for example) are being modelled by the corréction
polynomials in each area.

(4) Rocky Mountains: Due to the nature of the terrain, gravity
data 1s sparse, and concentrated in the valleys. It was only possible
to predict deflections at two stations, one of which was extrapolated.

Consequently, no conclusions can be based upon these scanty results.
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2.54 Frror evaluation

For the results obtained in this investigation, the predicted
errors (obtained by propagation of errors through the mathematical models)
have been smaller than the actual errors (Table 2.3). (The results in
the Rockies are not considered here, as there is insufficient data for
any meaningful comparison to be made.) In order to determine possible
reasons for this, various possible correlations ha#e been investigated.

Correlation of actual errors with:

(1) predicted errors,
(2) data point distribution in inner zone,
(3) topography.

The correlation has been determined in terms of correlation

coefficients (Vanfgék, 1973), where the correlation between the vectors

x and y is given by:

S
= XY
Pey "5 S 2.59
X ¥
and
1 n
s.. == 1 {(x, - x)(y. - ¥)}
Xy no. i
2 n -
s = %- r (x. - x) 2.60
i:
n
2 1
sy=; z (yi—y)
i=1

where x, y are the mean values of x, y:



RMS

Number of | RMS RMS Maximum | Predicted Percentage
Area Component Stations Actual error Predicted Error Error Deflection Error
New £ 1.17 0.64 -2.34 1.61 73
17 .
Brunswick n 1.52 0.67 +2.64 3.60 Lo
St. 3 2.82 1.17 45,16 T7.43 38
9
Lawrence n 3.03 1.19 -5.06 5.43 56
g 3.25 0.76 +7.23 5.55 59
Gaspé 13
n 2.16 0.79 -k.66 5.1k L2
£ 0.29 7.3L4 +0.40 8.68 3
Rockies 2
n 0.22 k.12 +0.31 3.44 6
Table 2.3

Summary of Deflection Interpolation Results

c9
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Deflection
File Observed Predicted Observed Predicted
Number g" g" _sg" n n 8n
37 -0.2 +1.6 -1.8| -1.6 -1.8 40.2
38 -2.4 -0.1 -2.3| +0.1 -0.3 +0.4
39 +2.6 +1.9 +0.7 | +0.7 -1.9 +2.6
L1 -2.2 -3.8 +1.6 | -2.3 -k.0 +1.7
L5 ~1.b -0.3 -1.1| <1.6 -3.8 +2.2
46 +0.1 -2.0 +2.1| <3.8 -1.8 ~2.0
L +1.4 +1.5 ~0.1] -6.1 7.6 +1.5
L9 1.4 -1.6 +0.2 | -2.7 -3.9 +1.2
50 -0.2 ~0.5 +0.3| <kh.1 ~4.8 +0.7
53 -2.0 -1.0 ~1.0| -2.9 ~5.0 +2.1
56 -0.3 +0.9 ~1l.2| <1.0 ~0.8 ~0.2
57 -1.2 2.9 +1.7| -k.o ~5.5 +1.5
58 -0.1 -1.0 +0.9 | ~0.1 ~1.5 +1.h
59 -0.h +0.54 -0.8| -0.8 ~-3.1 +2.3
61 +0.1 +0.1 0.0| +0.8 +1.5 -0.7
62 -0.6 -0.3 -0.3| -0.8 ~1.4 +0.6
64 +3.2 +2,8 +0.4 | -3.8 ~2.5 -1.3
70 -0.5 -1.5 +1.0| -k.6 2.6 -2.0
T2 +3.2 +0.6 +2.6 | -T7.5 -6.7 -0.8
75 +3.9 +2,7 +1.2| +7.3 +4.9 +2.h
79 <5.9 <h.6 -1.3"| +1.9 +0.8 +1.1
80 +13.9 +9.5 +h.2 | <12.5 ~-8.6 -3.9
84 +3.1 +3.8 ~0.7| -h.6 -5.3 +0.7
85 +17.0 +12.1 +4,9 | +3.9 +2.2 +1.7
98 -4.6 -9.8 +5,2 1 +6.2 +h4, 4 +1.8
111 +8.8 +6.5 +2.3 1 ~9.7 8.9 -0.8
11k +8.7 +9.4 -0.7| ~-T.5 -2.3 -5.2
119 -8.2 b7 ~3.5| «0.9 ~0.2 ~0.7
120 -0.3 -1.5 +1.2 +1.7 +1.0 +0.7
123 -4.8 -0.5 “L.3 | =b.b -L.6 +0.2
501 +6.8 +6.4 +0.4 | -3.8 4,1 +0.3
40 +10. k4 +10.5 -0.1 | =2.9 ~3.0 +0.1
957h +1h.1 +7.0 +7.1 | -13.6 -8.9 I
Table 2.34

Deflection Prediction Results ~ Comparison with Observed Values.
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pXy can vary from -1 to 1 with zero indicating complete in-
dependance.
The degree of correlation may be measured using the criteria

(Vani¥ek and Hamilton, 1972):

1 Z’lpxyl > 0.85 strong correlation
0.85 z-lpxyl > 0.k40 correlation
0.40 z-lpxyl > A weak correlation

A z_lpxyl no correlation

where:
2
l—pX
A=Y (-H:§4[—) 2.62

and n is the number of elements involved in the testing.

The error correlations have been determined in each of the
three Eastern Canadian areas investigated, and the coefficients are
indicated in Table 2.4. The column headings have the following meanings:

la: correlation with predicted error in &

1b: correlation with predicted error in n

2 : correlation with number of data points in inner zone

3 : correlation with topography roughness.
There is some correlation of the actual errors with the predicted errors,
but not sufficient to indicate that a simple scaling of the predicted

errors would solve ine prcvlen.
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Aresa la 1b 2 3
New +0.26 +0.29 +0.08 +0.52
Brunswick

St. Lawrence | 510 | +0.32 | +0.25 | +0.20
Valley

Gaspé +0.43 +0.58 -0.20 +0.45
Average +0.27 +0.40 +0.0L +0.39

Table 2.4
Error Correlations

la - with predicted error in £

1b ~ with predicted error in n
2 - with number of data points in inner zone

3 - with topography roughness
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It had been thought that the small number of gravity stations
in the immediate vicinity of the computation point would produce signif-
icant errors. This would show as a strong negative correlation in column
2, but this is not thevcase. It appears that the checks for adequacy of
data, incorporated in the programme for gravimetric deflections, have
eliminated this factor as a source of error.

The correlation with roughness of topography, although weak by
the criterion established above, does require explanation. The roughness
of topography is indicated by a factor t, determined as follows:
rzl (& - 1, )2
i=1 *

t = a 2.63

where Hi are the heights (in feet) of the n measured gravity anomalies

in the inner zone, and H is the mean of Hi:

- 1n
H== I H 2.64
n:

The reliability of t as an indicator of the roughness of topography

(within 30 km of the computation point) will depend upon the number and
distribution of the gravity anomalies in the inner zone. A large value

for t indicates rough terrain, while a small value indicates the converse.
The correlation with terrain roughness should indicate the effect of plumb-
line curvature, as it is in mountainous terrain that plumbline curvature
reaches extreme valuesv(Kobold and Hunziker, 1962). It should be remem-
bered that the free air anomalies, used to compute the modified gravimetric
deflections, are themselves highly correlated with elevation (Uotila,
1960), so that the correlation with t may be due, in part, to the in-

fluence of this correlation.
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Besides the numerical correlations described above, other
correlations may be determined by examining the error vectors shown in
Figure 2.11. The error vectors appear to be randomly distributed over
the region, so that they do not seem to be a function of position. How-
ever, in the Gaspé and St. Lawrence areas, the direction of the error
vectors is similar to the direction of the actual deflections. As this
direction is exclusively away from the land masses towards the open water,
it may be concluded that the effect of topography on the observed astro-
geodetic deflections (i.e. plumbline curvature) has not been modelled by
the prediction technique. In this same area, the distribution of gravity
data in the inner zones is generally poorer (see Figures 2.12 and 2.13)
than in New Brunswick. This seems to indicate that the elementary pro-
cedures for checking the distribution of data (described in section 2.3k)
are inadequate. However, this type of distribution of gravity data
(along main roads and railways) is restricted to parts of Eastern Canada
and British Columbia. In the remainder of the country the data is dis-
tributed on a more uniform grid, better suited to the needs of this kind
of investigation (Nagy, 1973).

None of the above described correlations is strong enough to
be used as a basis for a model modifying the predicted errors to correspond
better with the actual errors. It appears, therefore, that the attempt
to reliably predict the error of a predicted deflection is unsuccessful.
However, these predicted deflections can be used for computing geoidal
heights, provided they are weighted correctly relative to the observed
deflections. The predicted standard deviations cannot be used to deter-
mine the weights, as they are too optimistic. However, there is a

significant correlation between the RMS actual errors and the RMS predicted
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Figure 2.11

Error Vectors (Observed-predicted)



68

Station 37 Station LS
o o 0 o [
. . " 0 %o
" 00‘
o 0 0. .2.-...0 '.',
[} ) e [ ]
’ .
L0,
.
y '
. .
Station 50 Station 62
hd . '0. « '
et AR :
A b
¢ Q . o' * . : ¢
. ’.o .' . o e L, .
- °
.' e« O . o )
i - o ° .
L] e O L]
. ¢« T .
o« o 'ec
Oo.'.' . .'.:. e
(W} L] rd

Figurg 2.12

Distribution of Gravity Data - New Brunswick



Station 79

Station 84
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deflections, for each region (Figure 2.14). A model that does suggest

itself is:

RMS actual error = 0Y6 + 0.3 (RMS predicted deflection) 2.65
In order to obtain more realistic predicted standard deviations (on the
average), the following procedure may be used: All the predicted

standard deviations are multiplied by a scale factor, S, given by:

11 f . "
g = RMS actgal ?rror 5.66
RMS predicted error

vhere the "RMS actual error" is given by equation 2.65 and the RMS
predicted error is computed from the individual predicted errors, derived
using equation 2.58. There will be a separate scale factor for each of
cg, cn.

During the course of this study, several gross errors in the
point gravity data in Eastern Canada were found. Removal of these in-
correct values from the data set resulted in the predicted deflection
value at one point changing by 3", to better agree with the observed
value, and in other deflection values changing by smaller amounts. Other
errors in the data set are known to exist (R.J. Buck, pers. comm., 197L4),
and correction of these may further improve the results.

In summary, errors in the predicted deflections are due to a
combination of:

(1) Errors (and blunders) in the original gravity data.
(2) 1Inadequate modelling of the gravity field.

(3) Poor distribution of gravity data.

(4) Poor distribution of deflection control stations.

(5) Non-correction of observed deflections for plumbline curvature.

(6) Systematic errors in geodetic co-ordinates.
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Of these, only random errors in the original gravity data, and
the effects of the poor control station distribution have been modelled.
Consequently, the predicted standard deviations are optimistic and need

scaling before being used in combination with observed astrogeodetic

deflections of the vertical.



CHAPTER 3
GEOID COMPUTATION
3.1 Survey of Computational Methods

The most commonly used method is that employing Helmert's
formula (Heiskanen and Moritz, 1967):
i

N, = N, - 1{1 (Ecosa + nsina)ds 3.1

where Ni is the geoidal height of the ith station, &, n are the deflection
components in the meridian and prime vertical, and o is the azimuth of

the line connecting the two stations, i-1 and i. In practice, this
formula is replaced by:

. .
(g, + & _;)cosa + (n, + n,  )sina

Ni = Ni—l - > s 3.2

where Ei, ng and Ei are measured at the stations i and i-1, and

-1° Mia
s is the distance between them.

Variations based upon this technique have been developed by
Ney (1955), Rice (1962), Fischer et al (1967), and Lachapelle (1973).
These variations all make the initial assumption that the geoid varies
linearly between adjacent deflection stations, no matter how far apart
these stations may be.

Recently, more sophisticated techniques have been applied to

geoid determinations in West Germany and Denmark (Heitz and Tscherning,

1972), based respectively upon the autocorrelation of geoidal heights,

73
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and upon the cross-correlation between geoidal heights and deflections of
the vertical. The second of these methods assumes the deflections to be
errorless and hence the geoid is made to fit exactly to all the deflec-
tions. This results in a large system of equations (as many equations

as unknowns ) Whigh may be impracticable to solve. The method of Heitz
(1969), using an empirical autocorrelation function, requires a system of
equations of half the size (as many equations as deflection stations).

It would be practicable to use this technique in smaller countries, such
as Germany, but impracticable in many other countries, where large

numbers of deflections are available.

3.2 The Surface-Fitting Technigue

3.21 Model using deflections

This approach was developed at the University of New Brunswick
in 1972 and reported in Vanidek and Merry (1973). A two-dimensional
polyncmial of nth order is used to represent the geoid. The coefficients
of this polynomial are determined using a least-squares approximation, in
which the quantity to be minimised is the sum of the squares of the weigh-
ted discrepancies between the slope of this mathematical surface, given by
the derivatives of the polynomial in two orthogonal directions, and the
slope of the physical surface of the geoid, given by the two components
of the deflection of the vertical. The procedure is then nothing more than
fitting a mathematically defined surface to a field of vectors in such a
way that the directions of the normals to this surface fit best (in the
least squares sense) to the directions of the vectors.

As with all the astrogeodetic techniques only relative geoidal

heights may be determined, and some initial height (usually at the initial
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point of the horizontal control networks) must be defined.

The development of this model has been described in detail in
Vani¥ek and Merry (1973), but, for the sake of completeness, is re-
developed here.

The geoidal height N(x,y) at a point (x,y) may be approximated

by the polynomial:

- id:
Pn(xay) - Cij XYy - N(XaY) 3.3

I~ B

1=0
J=0
The co-ordinates (x,y) may be determined from the geodetic quantities,
using the simple transformation:
x = R($ - ¢.)
3.4
y = R(: - Ao) cos¢
where (¢, A) are the geodetic latitude and longitude of the point,
(¢o, Ao) are the co-ordinates of an arbitrary origin, and R is a
mean radius of curvature of the earth.
The slope of the geoid, with respect to the geodetic reference

ellipsoid, is given by the astrogeodetic deflection of the vertical at the

geoid. Hence the following equations are valid, for small deflections:

P
n:aN._ _ = _
X X tang &
3.5
aPn:.-a-y-=_tan = -
oy oy n n
b LR
Denoting 5;— and 55—-by an and Pny’ respectively, the least squares
criterion requires that the following expressions be a minimum:
2 2
= +
o, i[Pm‘(X"’y’L) £,]
3.6
2= [P (x,,y,) +n1°
32 2.

Yy 9 ny &



where I implies the summation over all the involved deflection stations.
L
The partial derivatives are evaluated from the formulae:

o i-1j i-1j
— . - - ] . -
an(xﬂ,yl) . ;_ cijlx v .Z' Cijlx v
i,j=0 1,Jd
i+j#0
3.7
o L1 3-1
Pny(xz’yz) = I Cydxy
i,J

with the understanding that, whenever a negative exponent is encountered
in the summations, the term should be replaced by zero. The conditions

for a minimum can be written as:

=0

for i,j=0,...,n 3.8

then:

[s
IS

or:

. _ L
tl(z ¢ s ST 4 gl)ixl 199120 for i=1,....,n

£ s,r j=0,...,n 3.10

Re-arranging the last equation and using scalar product notation:

<::;§; Csrsxs-lyrixi_l, yj:>’ = - <<:g, ixi_lyj;:> 3.11

or
i Z' [Csrs <::;S+i—2,yr+j::>’] = - i<:::£, xi-lyj::>>
§,r 3.12

for i=1,...,n; j=0,...,n
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Similarly, for the y-component:

' s+i  r+j-2 . i j-1
3oz e r <::§ sy ::>>] =-3 n, x v ::>
S,Tr 3.13
for i=0,...,n; j=l,...,.,n

Since both equations have to be satisfied at the same time we have:

L s+i- 2 r+J s+1 r+J -2
b [CS (is <::: ::>>+ Jr ::>

sS,r
<:: , £:> -3 <<:;, x'y _:::> 3.1k

Considering different weights w )} for the guantities

£, and n, leads to the expression:

' . s+i-2 r+j::> . s+l r+j-2 3
Xr [Csr(ls <WEX Y + Jjr <an Y > )] =
o i-1 3 . i g-1
=-1 <::wg£,x v > - <::Wnn,x y ::>>

for i,j = 0,...,n; i+j # O 3.15

The above system of equations may be written in matrix notation as:

Ab=u 3.16

~

where the elements of matrix A are given by:
=15 a2 TS g < ST RS 3y
akm g 3 J \ n ' B .

the elements of vector b are the unknown coefficients Csr

bm = Csr 3.18

and vector u consists of:

T, i-1 3 , i j-1
w o =-1i <::w£g,x Y ::> -J <:::Wnn,x y ;::> 3.19
where:
i,J,rs5,50,...,n; i+j#0; r+s#0 ,
/ .

k=i+j+ni; m=s+r+ns .
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The unknown coefficients CSr are then obtained from:

b=AT0 3.20

since A is positive-definite and can always be inverted, provided that
22 > (n + 1)° -1 3.21
The weights used are inversely proportional to the estimated a priori

variances of the observations, i.e.

1
Q
e

Ve %
-2 3.22
w_ =0 A |,
n n

for the observed astrogeodetic deflecticns, where o_A and GﬁA are given by

£

equation 2.43, and:

=
I

= (SUEA)—Q
3.23

w

-2
sO. A
n ( n )

for the predicted astrogeodetic deflections where oA, OﬁA are determined

g

from equation 2.58, and s from equation 2.66.
The error covariance matrix of the coefficients is found from:

1 3.2

= g2 A~
Zb Oo A

where

2 2
P (B + % v (7))

2 -
a - 3‘25
° 20 - (n + 1)° + 1

The error covariance matrix, I

N’ for any vector of g estimated

geoidal heights, F = Fn = (Pn(xl,yl),...,Pn(xq,yq)), can be derived as

follows. Each Pn(xi,yi) is a linear combination of the coefficients, b:

~

= BN ? 3.26

=
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where B is a q x ((n+l)2—1) matrix of mixed algebraic functions. Then
the error covariance matrix, applying the law of propagation of covariance,
is given by:

Iy = By I By 3.27

3.22 Model using deflections and geoidal heights

This model is an extension of the model described above, in that
geoidal heights may be included as additional observations (or weighted
constraints) in the solution for the polynomisl coefficients. There are
two reasons for developing this particular model:

(1) The model of section 3.21 produces a somewhat smoothed version
{(because of practical limitations on the number of coefficients) of the
geoid when it is used over large areas, containing large amounts of
deflection data. This smoothed version can serve as a basis for local
geoid computations (showing greater detail) in areas where there are
sufficient deflections.

(2) There exists the possibility that satellite data may provide
geoidal heights to serve as constraints on the solution. The procedure
would be as follows:

The satellite determined (x, y, z)s co-ordinates of a point in
a geocentric system are transformed to geodetic (x, y, z)G co-ordinates,

through the relationship:

X X X
@)
¥y = R Y + yO 3.28
Z Z ZO
G G

where R is an elementary rotation matrix, rotating the geocentric
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co-ordinate system parallel to the geodetic, and (xo, yo, zo) are the
co-ordinates of the origin of the geocentric system, in the geodetic
system (translation components). A scaie change between the co-ordinate
systems may also be included here.

The ellipsoidal geodetic co-ordinates (¢, A, h) may be obtained
via the equations 1.1. Provided the height of the point above the geoid,
H, is known (from spirit levelling, for example), then the geoidal height
is given by:

N=h-H 3.29

It should be noted that the (x, y, z)s co-ordinates are not
the only satellite information that could be used. For example, the
satellite geoid could be transformed to geoidal heights related to the
geodetic system by means of the differential equation developed in Merry
and VaniSek (1974b). These geoidal heights could then be used as
constraints.

Both procedures mentioned above are not independant of an
initial knowledge of the geoidal heights (referred to the geodetic system),
as the rotation and translation components can only be found if several
geoidal heights are already known. The procedure could be made iterative,
as geoidal heights near the geodetic initial point may be used to
determine these transformation parameters, which can then be used, as
outlined above, in regions distant from the initial point.

In order to include geoidal heights as constraints, the model
of section 3.21 needs to be expanded in the following way:

At the k points at which geoidal heights are known:

= lj;T
Pn(x,y) ' b Cijx v N(x,y) 3.30
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In matrix notation:

D ? =N+V 3.31
Considering correlated geoidal heights, the least squares criterion is
that:
=V PV 3.32
is a minimum, where P is a correlated weight matrix. It has been shown
(e.g. Wells and Krakiwsky, 1971) that for equations of the type of 3.31,
this criterion is satisfied by the equation:

D PDL=D PN 3.33

This equation is of the same dimension as equation 3.16, and they may be
added together:

D PDb+Ab=D PN+u 3.34

~ ~

The solution for the coefficients is then:

T

b=(D PD+ A)'l(DT PN+ u) 3.35

The components of b, A, and u are as described in the previous section.

The correlated weight matrix P is given by:
P=1I 3.36

i.e. the inverse of the error covariance matrix of the geoidal heights.
This error covariance matrix may be obtained from a prior solution for

the geoidal heights. The error covariance matrix for the coefficients

is given by:

I = og(DT PD+A)T 3.37

where

2 -
o5 3.38
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The error covariance matrix of a string of geoidal heights may be
obtained from Eb as described in section 3.21.

3.3 Evaluation

3.31 Preliminary testing

The variance factor,og, computed through equation 3.25, is an
indicator both of the reliability of the initial standard deviations used,
and of the completeness of the mathematical model. A variance factor of
1 implies that the initial accuracy estimates were correct, and that the
mathematical model is complete (Wells and Krakiwsky, 1971). 1In the least
squares approximation, the mathematical model is not necessarily
complete, but the variance factor may still be used to determine the
optimum number of polynomial coefficients, in the following way.

By increasing the number of coefficients, the variance factor
should decrease, as the model fits the observations better. After a
certain number of coefficients are used, a further increase may bring
about little change in the variance factor, and hence in the accuracy of
the results. This number of coefficients would then be the minimum number
that should be used. If, at this stage, og < 1, then the implication is
that the observations are, on average, too pessimistically weighted. The
converse is true if oi > 1. It should, however, be remembered that, as
the number of coefficients approaches the number of observations, oi tends
to zero, no matter how the observations are weighted. Hence, the above
inequalities may not be too reliable as guidelines.

The variance factor, og, as a function of the number of coe-

fficients used for different geoid computations, is shown in Figure 3.1.
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From two of these results, it appears that the optimum number of coeff-
icients is around 30, but this number will increase (as may be expected)
with an increasing number of observations. The value of cg for this
optimum is avpproximately 6 and, ideaily, the number of coefficients (for
any computation) should be increased until a variance factor of this order
is obtained. Practical problems may not make this possible, as accumul~
ated round-off errors in the computer solution 1limit the number of
coefficients that may be obtained. The value of 6 for the variance factor
indicates that the observations have been too optimistically weighted.

The reasons for this have been discussed in section 2.L42.

3.32 Geoid comparisons

To verify the correctness of the program for this technique, a
comparison with the conventional technique, over a limited area, was made
using data supplied by the National Geodetic Survey (Rice, personal comm.,
1973). Test data at L1 stations on a regular grid inside a 1° x 1° square
in Iowa was used, and the resulté compared to those of Rice (1965).

Using 48 coefficients the maximum difference in relative geoidal height
was 0.3 m (corresponding to 10% of the actual value). This initial test
showed that satisfactory results could be obtained with this method, and
further evaluations were performed. These involved computing geoids for
different regions of North America and compvaring them against other
published values (Vaniek and Merry, 1973).

Since the publication of the above paper, considerably more data
has become available and a revised astrogeodetic geoidal height chart for
North America has been prepared (Figure 3.2). This chart is based upon

deflections observed at 3923 points in the U.S.A. and Canada, in the years
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Figure 3.2
UNLTU-1 Astroscodetic Geoid in North America
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up to, and including, 1972. It does not use the scattered deflections in
Alaska, Mexico and on Ellesmere Island. Besides serving as an update

of the chart in Vanigék and Merry (1973), it also has a number of other
uses, relevant to this thesis. It serves as a basis for the geoidal
height constraints used in section 3.35, and is also a means of evaluating
the success of the surface-fitting procedure in a continental context.
This evaluation has been performed by comparing the geoid obtained here
(denoted UNBTL-1) with three other available geoids. These are:

(1) Army Map Service geoid chart of North America (Fischer et al,
1967) - denoted AMSET.

(2) National Geodetic Survey geoidal heights in the U.S.A. (D.A.
Rice, pers. comm., 1973) - denoted NGST3.

(3) Computer Sciences Corporation/Goddard Space Flight Centre
combined satellite-gravimetric geoid of North America (Vincent et al,
1972) - denoted GSFCT2.

Before these comparisons are described, one other note may be
made. The estimated standard deviations of the geoidal heights obtained
in the UNBTL-1 solution (Figure 3.3) serve as an indicator of areas of
weakness in the astrogeodetic deflection coverage. In the U.S.A. the
weakest areas appear to be in Southern Florida and the State of Washing-
ton. In Canada the deflection coverage is only adequate in the southern
parts of the Western and Central provinces and in the Maritime provinces.
There also appears to be an area of reasonable coverage north of the 60th
parallel, west of Hudson Bay. In other areas the deflections are sparsely
distributed, especially in the Yukon, portions of the Northwest Territories,
the coast of Labrador and the island of Newfoundland. The deflection

coverage in the Arctic islands is so scanty that geoidal heights in this
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region are meaningless.

(1) The comparison with the AMS67 geoid (Figure 3.4) indicates that
the additional data observed since 1967 has brought about significant
changes in the shape of the geoid in North America, although some of
these changes are due to the difference in the two techniques used.
Similar changes may be expected in the UNBT4-1 geoid when additional data
in Canada is obtained. The RMS difference between the two geoids
(measured on a 2° x 2° grid) is * 7.1 m, and the mean difference is
+ 4.0 m. This bias (in the AMS67 geoid) has already been reported in
Fischer (1971), although a smaller value of + 2 to + 3 m was estimated
then.

(2) The NGST3 geoid was computed as point geoidal heights at 2528
deflection stations in the U.S.A., mainly along the High Precision Geod-
imeter Traverse. The mean difference from the UNBTL-1 values is zero, with
an RMS difference of 2.2 m. As basically the same data was used in the
U.S.A., these differences are due to the differences in the two <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>