
T REPORTECHNICAL
NO. 309

May 2017

MENELAOS KOTSOLLARIS

A SCALABLE WEB TILED MAP
MANAGEMENT SYSTEM

A SCALABLE WEB TILED MAP

MANAGEMENT SYSTEM

Menelaos Kotsollaris

Department of Geodesy and Geomatics Engineering

University of New Brunswick

P.O. Box 4400

Fredericton, N.B.

Canada

E3B 5A3

May 2017

© Menelaos Kotsollaris, 2017

PREFACE

 This technical report is a reproduction of a thesis submitted in partial fulfillment of

the requirements for the degree of Master of Science in Engineering in the Department of

Geodesy and Geomatics Engineering, May 2017. The research was co-supervised by Dr.

Emmanuel Stefanakis and Dr. Yun Zhang, and funding was provided by the Natural

Sciences and Engineering Research Council of Canada (NSERC).

 As with any copyrighted material, permission to reprint or quote extensively from this

report must be received from the author. The citation to this work should appear as

follows:

Kotsollaris, Menelaos (2017). A Scalable Web Tiled Map Management System. M.Sc.E.

thesis, Department of Geodesy and Geomatics Engineering, Technical Report No.

309, University of New Brunswick, Fredericton, New Brunswick, Canada, 146

pp.

ii

ABSTRACT

 Modern map visualizations are built using data structures for storing tile images,

while their main concerns are to maximize efficiency and usability. The core

functionality of a web tiled map management system is to provide tile images to the end

user; several tiles combined construe the web map. This thesis presents a comprehensive

end-to-end analysis for developing and testing scalable web tiled map management

systems. To achieve this, several data structures are showcased and analyzed.

Specifically, this thesis focuses on the SimpleFormat, which stores the tiles directly on

the file system; the ImageBlock, which divides each tile folder (a folder where the tile

images are stored) into subfolders that contain multiple tiles prior to storing the tiles on

the file system; the LevelFilesSet, a data structure that creates dedicated Random-Access

files, wherein the tile dataset is first stored and then parsed in files to retrieve the tile

images; and, finally, the LevelFilesBlock, a hybrid data structure which combines

ImageBlock and LevelFilesSet data structures. This work signifies the first time this

hybrid approach has been implemented and applied in a web tiled map context.

Specifically, each data structure was implemented in Java. The JDBC API was used for

integrating with the PostgreSQL database. This database was then used to conduct cross-

testing amongst the data structures. Subsequently, several benchmark tests on local and

cloud environments are developed anew and assessed under different system

configurations to compare the data structures and provide a thorough analysis of their

efficiency. These benchmarks showcased the efficiency of LevelFilesSet, which retrieved

tiles up to 3.3 times faster than the other data structures. Peripheral features and

iii

principles of implementing scalable web tiled map management systems among different

software architectures and system configurations are analyzed and discussed.

iv

ACKNOWLEDGMENTS

 I wish to express my deepest gratitude to Dr. Stefanakis for all his guidance and

support throughout my Master’s degree.

 My special thanks to Dr. Zhang for all his insights and advices during this

research project.

 I would like to express my sincere gratitude to William Liu, for his important

contributions and recommendations during the design and implementation of the data

structures mentioned in this research project.

 Thanks to David Fraser, for his help and coordination during this research project.

 I am thankful to Dr. Spacek, from the English Department in UNB, for his useful

recommendations on writing this thesis. Also, thanks to Vasilis Pallikaras and Rachel

Clark, for their helpful insights on reviewing this thesis.

 Special thanks to Vasilis Drimilis and Vasilis Kontopoulos, for the motivation and

mentorship they have provided me up until this day.

 I am grateful to my family, for their constant support throughout my life.

v

Table of Contents

ABSTRACT .. ii

ACKNOWLEDGMENTS ... iv

Table of Contents .. v

List of Tables ... ix

List of Figures ... x

List of Symbols, Nomenclature or Abbreviations ... xiv

1. INTRODUCTION .. 1
1.1. Research Questions .. 2

1.2. Research Objectives ... 2

1.3. Thesis Organization ... 3

1.4. Methodology .. 3

2. LITERATURE REVIEW ... 7

3. DATA STRUCTURES FOR TILE STORAGE ... 16
3.1. Tile scheme and zoom levels ... 17

3.2. Tile Dataset & dealing with missing tiles .. 19

3.3. SimpleFormat – File System .. 22

3.4. ImageBlock – File System ... 23

3.5. Databases ... 24

3.5.1 The JDBC API ... 26

3.6. Parsing tiles instead of reading them from the file system 27

4. THE LEVELFILESSET ... 29
4.1. The functionality of LevelFilesSet... 29

vi

4.2. Metadata storage .. 33

4.2.1. LevelFiles storing Metadata .. 34

4.3. The LevelFilesBlock data structure ... 35

5. LOCAL BENCHMARKS .. 39
5.1. Tile Generation Benchmark ... 40

5.2. The first benchmarking phase .. 42

5.3. The second benchmarking phase based on the Network Performance 46

5.4. The third benchmarking phase ... 48

5.5. Outcome ... 55

5.6. Google Cloud Benchmark .. 56

6. STORING AND RETRIEVING TILES ON GOOGLE CLOUD 58
6.1. Interaction and tile storage with Google Cloud ... 58

6.2. Java Servlets... 61

6.3. Google Cloud Benchmarks .. 65

6.6. Outcome ... 69

6.7. Further comments .. 70

7. SOFTWARE ARCHITECTURE.. 73
7.1. Programming Language ... 73

7.1.1. IntelliJ IDEA ... 74

7.2. Operating System (OS) .. 75

7.3. Web Server... 76

vii

7.4. Version Control .. 76

7.5. System Use Cases .. 77

7.5.1. The external developer .. 77

7.5.2. The LevelFilesSet generation ... 79

7.5.3. The LevelFilesSet configuration on the server using Java Servlets 80

7.5.4. The Logical Application Tiers .. 81

7.5.5. The backend developer ... 83

7.5.6. The Frontend Developer ... 83

7.6. Sequence Diagrams .. 84

7.6.1. LevelFilesSet Generation .. 85

7.6.2. LevelFilesSet tile retrieval .. 86

7.7. UML Class diagram ... 86

8. CONCLUSIONS AND RECOMMENDATIONS ... 91
8.1. Conclusions .. 91

8.2. Future Research ... 95

REFERENCES ... 102

Appendix I: LevelFilesSet Implementation Code ... 112
I.1. FileNames class .. 112

I.2. LevelFiles class.. 114

I.3. LevelFilesSet class ... 118

I.4. LookupFile class ... 120

viii

I.5. TileDataFile class ... 123

I.6. Tests Class .. 125

I.7. Tile class ... 129

Appendix II. LevelFilesSet’s Javadoc .. 135

Appendix III. Java Servlet & LevelFilesSet Integration ... 136

Appendix IV. Database Helper Class with JDBC Implementation for PostgreSQL

connection ... 138

Appendix V. Google Cloud Benchmark Tables ... 141

Curriculum Vitae

ix

List of Tables

Table 4.1 Expected size for each Zoom Level .. 35

Table 5.1 Computer Configurations ... 39

Table 5.2 First benchmarking results (Macintosh, ExFAT, SSD, Postgres®) 44

Table 5.3 JMeter Benchmark Results, where Data structure: the tested data structure No.

of samples: the number of successful responds of the server Average time: the

average time of response for each request .. 47

Table 5.4 Benchmarking results (Macintosh, SSD) ... 50

Table 5.5 Benchmarking results on Windows (SSD) ... 51

Table 5.6 Benchmarking results on Windows (HDD) .. 53

Table 0.1 First day benchmark results, 10 May, 10AM at UTC-3h 142

Table 0.2 Benchmark ran on May 10th at 10 PM at UTC-3h ... 142

Table 0.3 Benchmark ran on May 11th at 10 AM at UTC-3h .. 143

Table 0.4 Benchmark ran on May 11th at 10 PM at UTC-3h ... 144

Table 0.5 Benchmark ran on May 12 at 10 AM at UTC-3h ... 145

Table 0.6 Benchmark ran on May 12 at 10 PM at UTC-3h .. 145

x

List of Figures

Figure 1.1 The workflow .. 4

Figure 2.1 High-level market-oriented cloud architecture; taken from Rajkumar et al.

(2008) .. 10

Figure 2.2 At that time, the benchathon solved just over half the outstanding problems.

The point of a benchathon is to gather as many e project leaders as possible,

platforms, and benchmarks in one place and have them work collectively to resolve

technical issues.. 13

Figure 3.1 The LevelFilesSet, Database, SimpleFormat and ImageBlock data structures 16

Figure 3.2 Tiling scheme for zoom level 1 ... 18

Figure 3.3 Global tile grids at the three Lowest Google Maps zoom levels, using the

Spherical web Mercator projection, taken from MicroImages (2010) 19

Figure 3.4 Imputing with the same tile ... 20

Figure 3.5 Pseudocode for the accurate tile fulfilment algorithm 21

Figure 3.6 Accurately imputing the missing tiles based on the tile's size 21

Figure 3.7 The ImageBlock format ... 23

Figure 3.8 The database schema following the SimpleFormat structure 24

Figure 3.9 Requesting tile 1_0_0.jpg using SQL query in Postgres 9.3 25

Figure 3.10 The JDBC Architecture (Java Oracle Documentation, 1995) 27

Figure 3.11 The LevelFiles for each zoom level .. 28

Figure 4.1 The communication of the Lookup File with the TileDataset File 29

Figure 4.2 Version of the LevelFilesSet that allows missing tile indexes by using the tile

stack which indicates the existing tiles within the system .. 32

xi

Figure 4.3 An example of computing the pointers within the Lookup File based on the

equation (1) to retrieve the 1_1_0.jpg tile ... 32

Figure 4.4 Using LevelFilesSet to store Metadata .. 34

Figure 4.5 Total expected size of tiles for each zoom level.. 36

Figure 4.6 The LevelFilesBlock - A hybrid approach based on the LevelFilesSet and the

ImageBlock ... 37

Figure 5.1 Tile generation performance for zoom levels 0 until 5 (Macintosh, Postgres

9.3) .. 40

Figure 5.2 Tile generation performance for zoom levels 6 until 11 (Macintosh, Postgres

9.3) .. 41

Figure 5.3 The three benchmarking phases .. 42

Figure 5.4 Pseudo-Code for the retrieval algorithm ... 43

Figure 5.5 Graphical Representation of the first benchmark results 45

Figure 5.6 Total needed time for each tile to be loaded .. 45

Figure 5.7 Pseudocode for the benchmarking scenarios ... 49

Figure 5.8 Graphical Representation of the first benchmark results for the zoom levels 5

until 10 (Macintosh, ExFat and SSD) ... 51

Figure 5.9 Graphical Representation of the first benchmark results for the zoom levels 5

until 11 (Windows, NTFS and SSD) .. 53

Figure 5.10 Graphical Representation Third benchmark for the zoom levels 7 until 13

(Windows, NTFS and SSD) .. 55

Figure 6.1 Creating new Google Cloud project .. 59

Figure 6.2 Enabling Google Cloud Storage API .. 59

xii

Figure 6.3 LevelFilesSet storage in the Google Bucket ... 60

Figure 6.4 Java Servlet process (from Java EE, Oracle, 2000) ... 61

Figure 6.5 Architecture of Tile Serving in Google Cloud .. 63

Figure 6.6 IntelliJ and Google Cloud Integration ... 63

Figure 6.7 Google Cloud Application Versioning .. 64

Figure 6.8 Benchmark ran on May 10th at 10AM .. 66

Figure 6.9 Benchmark ran on 10 May at 10PM.. 66

Figure 6.10 Benchmark ran on 11 May at 10AM ... 67

Figure 6.11 Benchmark ran on 11 May 2017 at 10AM .. 67

Figure 6.12 Benchmark ran on 11 May 2017 at 10PM... 68

Figure 6.13 Benchmark ran on 12 May 2017 at 10PM... 68

Figure 6.14 Flowchart for choosing the data structure ... 70

Figure 6.15 Google Cloud monthly cost estimation tool .. 71

Figure 6.16 Google Cloud locations, taken from Google Cloud Platform Blog (2016) ... 71

Figure 7.1 Analytics for IDE Usage (Stackoverflow Survey, 2017) 74

Figure 7.2 The use case of the system .. 78

Figure 7.3 Tile retrieval via HTTP response on the client side .. 79

Figure 7.4 Use case of the LevelFiles Data Structure ... 80

Figure 7.5 LevelFilesSet configuration on the server using Java Servlets 81

Figure 7.6 The logical application tiers .. 82

Figure 7.7 The backend developer requests and retrieves a tile by using the LeveFilesSet

data structure ... 83

Figure 7.8 The frontend developer requests the tiles via an HTTP request 84

xiii

Figure 7.9 The sequence diagram for the tile generation .. 85

Figure 7.10 The Tile Retrieval sequence diagram .. 86

Figure 7.11 The LevelFilesSet's UML diagram .. 89

Figure 7.12 Using LevelFilesSet... 90

Figure 8.1 Horizontal and Vertical Scalability ... 94

Figure 0.1 LevelFilesSet's Javadoc ... 136

xiv

List of Symbols, Nomenclature or Abbreviations

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BLOB Binary Large Object

CRUD Create, read, update and delete

CSV Comma-separated values

GGE Geodesy and Geomatics Engineering

GIS Geographic Information System

GIT Version Control System

GPU Graphics Processing Unit

GUI Graphical User Interface

HDD Hard Disk Drive

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IT Information Technology

JAR Java Archive

J2EE Java 2 Platform, Enterprise Edition

JDBC Java Database Connectivity

JMH Java Microbenchmarking Harness

JPG Joint Photographic Experts Group

JVM Java Virtual Machine

JSON JavaScript Object Notation

JVM Java Virtual Machine

MB Megabyte

OGC Open Geospatial Consortium

OOP Object Oriented Programming

ORM Object-Relational Mapping

OS Operating System

OWS OGC web services

PB Petabyte

PNG Portable Network Graphics

REST Representational state transfer

TB Terabyte

UML Unified Model Language

UNB University of New Brunswick

URL Uniform Resource Locator

VCS Version Control System

SQL Structured Query Language

SSD Solid State Drive

SVN Apache Subversion

WMS Web Map Service

WMTS Web Map Tile Service

WTMMS Web Tiled Map Management System

XML Extensible Markup Language

 1

1. INTRODUCTION

 Web tiled map management systems have been developed and used for more than

a decade. Popular vendors, such as Google, Microsoft, and ESRI, have been developing

large scale mapping systems (e.g., Google Maps, Bing Maps and ESRI Maps) to

visualize the world. However, despite public knowledge of the scale of these companies,

very little is known about the architecture underlining these projects. Consequently,

researching the efficiency and applicability of storing and retrieving tiles remains open to

investigation. Anchoring the work on the most widely used techniques, the three most

common solutions for web tiled map management system were implemented. These

solutions include techniques which store the files directly to the File System or use the

databases (Sample et al., 2013). This thesis presents an analysis of two file system

solutions, the SimpleFormat and the ImageBlock, along with a data structure, named

LevelFilesSet, which stores the tiles into Random-Access files (Housel, 2003).

 File systems are complex in nature and have significant differences (e.g., NTFS

and ExFAT; Microsoft, 2013). In implementing a system using a file system solution,

there are decisions that will decrease its scalability. As a prime example, the system will

be compatible with a specific operating system and its accompanying file system. This

inflexibility denies the freedom of cross-platform applicability when using a single

solution. In addition, file system-based solutions are complex and time consuming, and

they significantly decrease the system’s maintainability. In contrast, the LevelFilesSet

data structure is not tied to any operating or file system. Instead, the LevelFilesSet

improves performance and accessibility for the developer adopting the solution.

2

1.1. Research Questions

 This thesis predominantly attempts to determine which data structure provides the

best results for accessing and handling a tile dataset. On a second level of analysis, the

thesis investigates whether the data structure is flexible and scalable across several

systems as well as easy-to-use for the developers who adopt the solution.

1.2. Research Objectives

 The objectives of this research are fivefold:

 To adopt an existing data structure for managing a tile dataset, named

LevelFilesSet.

 To compare the LevelFilesSet with two file system based solutions, the

SimpleFormat and the ImageBlock.

 To design and implement the LevelFilesSet data structure.

 To render the LevelFilesSet data structure easy-to-use for other developers.

 To present the systems engineering of the web tiled map management system.

3

1.3. Thesis Organization

 The remainder of the thesis is outlined as follows: Chapter 2 discusses the

literature review which shows the relevant research that was helpful for this thesis.

Chapter 3 provides an analysis of the existing data structures for storing and retrieving a

tile dataset. Chapter 4 describes the LevelFilesSet and its unique functionalities. Chapter

5 showcases the benchmarks ran locally and provides additional features that will enrich

the capabilities and efficiency of the system. Chapter 6 showcases the benchmarks ran on

Google Cloud. Chapter 7 highlights the software architecture of the system and the

reasoning behind the decisions. Finally, Chapter 8 highlights the conclusions of the

thesis.

1.4. Methodology

 The methodology followed is shown in Figure 1.1. Each of the steps listed will be

described in detail in subsequent chapters of this thesis.

4

Figure 1.1 The workflow

 Identify the scope of the project: Select the areas and use cases in which this

research will be focused.

 Literature Review: Investigate research on the topics.

 Develop and process local and cloud benchmarks: Perform benchmark tests, on

both local and cloud environments, in order to examine the proposed data

structures’ efficiency.

 Identify the optimal data structure for each case: Based on the benchmarks results,

identify which is the best data structure for each case and make it easy-to-use for

other developers.

 Design and develop the system’s software architecture: Implement the system’s

data structure for storing and retrieving tile images.

5

 Document conclusions: Document the conclusions derived from the analysis of

this thesis and identify other topics of interest and potential future research.

 Initially, the scope and the objectives of the project will be identified. These

objectives are based on the goals of the project and on other factors such as time

constraints and project orientation. After the scope of the project is defined, the literature

review will be examined to analyze the work of the other researchers in the field. Several

topics, including web tiled map management system (WTMMS) development, scalable

systems, efficient data structures, web and software architecture, backend and frontend

caching and so on are examined to determine the orientation of the project. The next step

is to run several benchmark tests for the proposed data structures to examine their

efficiency on both storing and retrieving tile images. Several algorithms must be

designed, analyzed and implemented and the end goal must be considered, which is to

determine which data structure can be used in a real WTMMS. It is important to highlight

that benchmark efficiency does not necessarily make the data structure optimal. In this

research, scalability, which is the ability of the system to adapt to changes as the project

evolves and to be easily modifiable across different systems, is considered. The data

structure must be able to maintain large volumes of data regardless of the environment

configurations of the system. The cloud component must also be taken into account and

analyzed too. Google Cloud is among the vendors which offers tile storage and retrieval

functionalities and thus it is important to examine its efficiency. On a further level of

analysis, the software engineering principles under which the data structures are

implemented must be highlighted and explained in extensive detail; a system is a

summation of coding principles and thus the design patterns applied in the low level of

6

the implementation have a significant impact on the system’s performance and

scalability. System engineering is an ongoing process that progresses over time.

Important concerns and future suggestions are crucial for the lifecycle of the project

(Rajlich et al., 2000). In the end, potential features and further suggestions are proposed

and discussed for future research.

7

2. LITERATURE REVIEW

 Initially, Sample and Ioup (2010) mention in their book which core patterns must

be followed in order to implement a web tiled map management system. Their research is

focused on many areas, such as how a tile image dataset can be created by having only a

high resolution image, what kind of data structures should be used for the tile storage,

and a comparison analysis between the more famous techniques of storing files. They

examine different solutions, such as storing tile images on a database and storing them on

the file system, and how the tiles can be served on the client side in order to make it

possible for the user to have an interactive map and run specific queries. This is the most

relevant recent research in the existing literature and this paper will be heavily based on

this source.

 Another important topic is web caching, which is the summary of rules that we

apply in order to categorize which files are more important than others. After

categorizing whether a file is important or not, we can save it accordingly to the proxy

server. Thereafter, if another user requests the same file that exists on the proxy server,

then the proxy server can provide the result without having to forward the request to the

origin web server and that saves a lot of time.

 Sample and Ioup (2010) conclude that while a page request does indeed reveal

short-term correlations and other structures, a simple model for an independent request

stream following the Zipf-like distribution is sufficient to capture certain asymptotic

properties observed at web proxies. Karger et al. (1999), propose a new consistent

hashing technique to provide significant performance improvements on web caching

8

systems. In their conclusion, they demonstrate how their system handles locality issues,

balances load among caches and possesses a high level of fault tolerance that is absent

from other Web caching systems. In addition, Fan et al. (2000) first presented a scalable

Wide-Area Web Cache Sharing Protocol based on measuring the overhead of the existing

protocols using trace-driven simulations and a prototype implementation. They later

compared it to existing protocols such as the internet cache protocol (ICP). Their study

was based on an existing proposal called directory server which was implemented by

Anderson et al. (1997). Barish and Broaczka (2002), present the taxonomy of the World

Wide Web Caching Architectures and describe some of their design techniques.

 Furthermore, they highlight the need of a survey paper in the area, and they

present several types of Caching proxies (Reverse Proxy, Transparent and Forward).

They also mention the importance of optimizing the Disk input and output and they do so

by measuring the performance of each system (NTFS, FAT and so on) in correlation with

the CPU workload. Based on the research conducted by Barish et al. (2002), Li and Zhu

2008, propose a server side caching system that supports efficient storage and retrieval of

cached map image tiles. This efficiency is achieved by organizing the map image tiles of

the same layer in the exact same file and saving the relationships between corresponding

map image tiles on different zoom levels using memory-resident data structures and hard

disc indices. Finally, they evaluate the performance by concluding that the new caching

system can significantly reduce the hard disc access times needed to process a web map

service request.

 Quinn (2008) proposes a predictive model for frequently viewed tiles in a Web

map. Quinn’s project aimed to explain what server side caching is and how it has become

9

a popular technique for developing web maps; present a predictive model for determining

popular areas anticipated to be in high demand and describe ways the model could be

used, evaluated, and updated. Quinn concludes that maps with many scales might require

multiple iterations of the model to be most effective and that the server administrator can

choose how many tiles to create at each scale level of the cache, and may use several runs

of the model when moving from small to large scale.

 In their work, Nagappan et al. (2008) assess the effects of Test-Driven

Development (TDD). More specifically, they built a non-trivial software system based on

a stable standard specification using a disciplined, rigorous unit testing and build

approach based on the TDD practice. TDD takes a different approach to engineering a

system. TDD aims to develop scalable and reusable code that makes systems scalable and

easily deployable across different environments. In their research, they conclude that the

introduction of TDD led to 50% reduction of total written code when compared with an

experienced team who used a different approach for system engineering. They achieved

these results with minimal impact on developer productivity. This test is the basis for

quality checks and serves as a quality contract between all members of the team. It is

highly recommended that more teams adopt TDD in their environments.

 Cloud computing usage has recently increased and more developers are adopting

such solutions, according to Armbrust et al. (2010). The biggest benefit of adapting to

new solutions such as cloud computing comes from the fact that developers with large

enterprise systems are no longer required to invest large capital for hardware and other

resources, but instead, vendors such as Google Cloud and Amazon S3 can be used. By

switching to cloud computing, developers have to be concerned only with the deployment

10

and component configurations, and not with other issues such as hardware repairing,

building servers from scratch, and continuous monitoring of the servers.

 Rajkumar et al. (2008), describes the vision of 21st century cloud computing and

identifies various computing paradigms that promise to deliver the future of computing

utilities. The definition of the high-level market-oriented cloud architecture can be seen

in Figure 2.1.

Figure 2.1 High-level market-oriented cloud architecture; taken from Rajkumar et al. (2008)

 As can be observed, users use the cloud engines for different purposes (e.g.,

dispatching messages, service-request monitoring) and the messages are dispatched to

11

further Virtual Machines (VM) where the computations take place. They define cloud

computing as a new and promising paradigm delivering IT services for computing

utilities. The same architecture could be extended to support web tiled map management

systems and efficient tile retrieval.

 In the subject matter of this thesis, the choice of file system has an important

effect on the results and, particularly on low level computation.

Consequently, understanding how the file system operates is at the core of this project.

Early on, Douceur and Bolosky (1999) analyzed a snapshot of data from 10,568 file

systems of 4801 personal computers running Windows OS in a commercial environment,

containing 140 million files totaling 10.5 TB of data. The purpose of their research was

mainly to approximate the distributions of file size, file age, directory size, and directory

depth They performed a series of benchmark tests and concluded that file sizes fit a log-

normal distribution and that directory sizes fit an offset inverse-polynomial distribution.

However, they did not address the performance of the New Technology File System

(NTFS) over the others.

 In other research, Resenblum et al. (1992) presented a new technique for a disk

storage management system, called a log-structured file system. This type of file system

writes all modifications to disk sequentially, and contains indexing information so that

files can be read back with logarithmic efficiency. These authors presented a series of

simulations that demonstrate the efficiency of this file system. The basic principle behind

this structure is to collect large amounts of new data in a file cache stored in main

memory, and then write the data to disk in a single large input/output (I/O) that can use

12

all the disk’s bandwidth. Although complicated to implement, its performance is cost-

effective.

 Shvachko et al. (2010) describe the Hadoop distributed file system (HDFS),

which is designed to reliably store very large datasets, and stream these data sets at high

bandwidth to user applications. By distributing storage and computation across many

servers, the resources can grow with demand while remaining economical at the same

time. They concluded that their current clusters were less than 4000 cloud machines and

they believe that with the architecture proposed in their paper, they can scale to a much

larger volume of clusters with no problems.

 In relevant work, Ghemawat et al. (2003) designed and implemented the Google

File System (GFS). The purpose of their work was to render a scalable, well-distributed

file system for large data-intensive applications; along with other applications, WTMMS

falls under this category. In their research, they concluded that the GFS is a scalable and

highly optimized file system capable of handling an extremely large number of datasets

across different cluster-servers. The GFS is used in the Google Cloud, so this file system

is most appropriate for storing and retrieving the type of tile dataset described in this

thesis. In their research, they concluded that GFS is an important tool that enables Google

to continue to innovate and tackle problems on the massive scale of the web. This, in

turn, supports the fact that the GFS is able to store the dataset of the entire web.

 Chung et al. (2003) gave emphasis to the ability of systems to evolve and

maintain their interoperability features. Interoperability refers to the ability of the system

to make use of the available information. The authors mention that web service

computing poses significant challenges as developers determine how to leverage

13

emerging technologies to automate individual applications, based on multiple software

components. The Web has become the user interface of every entity around the world,

and for this reason, Web services must offer interoperability through open standards, such

as XML, SOAP, and REST.

 While working through the parameters responsible for implementing WTMMS it

is important to consider the relevant applications. Henning’s (2000) research aimed to

define the principles and guidelines under which algorithms should measure CPU

performance, leading to the establishment of the Standard Performance Evaluation

Corporation (SPEC CPU2000). The goal of SPEC is to develop technically credible and

objective benchmarks to allow individuals to make decisions based on realistic and

unbiased workloads. Henning also mentions that C++ applications are the biggest

challenge to performance measurements because of their continuous version updates

(Figure 2.2).

Figure 2.2 At that time, the benchathon solved just over half the outstanding problems. The point of

a benchathon is to gather as many e project leaders as possible, platforms, and benchmarks in one

place and have them work collectively to resolve technical issues

14

 In this work, Henning admits that there is a lot more to discuss and define in the

CPU benchmarking, and that the SPEC is the initial step for further investigation.

 Based on Henning’s research, Phansalkar et al. (2005), analyze the benchmark

dependency on the system configuration. Although past efforts to identify subsets have

primarily relied on using microarchitecture-dependent metrics of program performance, it

follows that the results could be biased by the idiosyncrasies of the chosen

configurations. Thus, the objective of their study was to present a methodology to

measure the similarity of programs based on their inherent microarchitecture-dependent

characteristics, which would make the results applicable to any microarchitecture. Based

on a series of benchmarking scenarios, they concluded that the proposed methodology

performed similarly across different platforms, in spite of their differences in

configurations and environments.

 Henning (2006) continued his research on CPU2006, working for Sun

Microsystems, detailing a more advanced benchmark description than in his earlier

research (CPU2000). The main examined programming languages were C++ and Fortran.

In his more recent research, Henning performed again a series of unbiased benchmarking.

The purpose of his paper was to present the most current curriculum in the field of CPU

benchmarking; he achieved this by performing 30 benchmark tests on both integer and

floating point benchmarks. He mentions that, although the benchmarks could have

behaved better than the initial CPU2000 version, more research should be conducted to

thoroughly investigate the behavior of the performed benchmarks.

 Features other than CPU performance are critical to WTMMS. Wieczorek et al.

(2004) mentioned a point-radius method for georeferencing tile images. This is useful for

15

web tiled map management systems in that it supports features, such as searching for

certain geographical areas. In their research, they described a method for georeferencing

locality descriptions that accounts for the idiosyncrasies, sources of instability, and

practical maintenance requirements encountered frequently. Their method minimizes the

subjectivity involved in the georeferencing process and the results are consistent,

reproducible, and allow for the use of uncertainty in analyses that use data.

 The systems used to implement the ideas and complex data structures mentioned

above are important factors when building a scalable web tiled map management system.

Thus, when choosing among systems, it is important to identify the framework and the

programming language that will provide such flexibility in implementation. Hundt (2011)

compared the scalability of C++, Java, GO, and Scala. Although C++ performance was

by far the best among the others, it also required the most extensive turning efforts,

making it impossible for the average developer to realistically benefit from it. On the

contrary, the Java version was the easiest to implement and the results-although inferior

to C++ - satisfactory when taking into consideration Java’s ease of use and accessibility.

 To the best of my knowledge, apart from the Tile-Based Geospatial Information

Systems book written by Sample and Ioup (2010), there is no other scientific research

that is focused on Tile-Based Information Systems. However, the techniques applied in

the peer-to-peer and web caching applications as well as the frameworks used, could be

combined to develop an efficient web tiled map management system that can handle

large volumes of data in an optimal and efficient way. In this light, the combination of the

techniques mentioned in this literature review could be used to develop such a scalable

web information system.

16

3. DATA STRUCTURES FOR TILE STORAGE

 As the Figure 3.1 indicates, there are several ways of storing and retrieving image

tiles:

Figure 3.1 The LevelFilesSet, Database, SimpleFormat and ImageBlock data structures

 The options for storing and retrieving are the SimpleFormat, the ImageBlock,

Databases and the LevelFilesSet. This chapter analyzes the benefits and drawbacks of

these options.

17

3.1. Tile scheme and zoom levels

 The tiles are stored in folders, referred to as zoom levels. Each zoom level is

expected to contain 4k tile images, where k represents the folder number. For instance,

the first zoom level will contain 4 images. As the zoom level increases, each tile is

divided into 4 sub-tiles. The maximum number of columns and rows for each zoom level

is 2n – 1, where n represents the number of zoom levels. For instance, in zoom level 5, the

number of columns and rows will range between 0 and 31 (e.g., 5_0_0.jpg to

5_31_31.jpg; Z_X_Y.jpg, where Z represents the zoom level, X the column, and Y the

row). In this research, tiles have the size of 256 pixels and are classified by their zoom

level, column and row of the 2-dimensional map grid (Figure 3.2).

18

Figure 3.2 Tiling scheme for zoom level 1

 The logical tile scheme is the foundational element of a web tiled map

management system. In this research, tiles have the size of 256 pixels and are classified

by their zoom level, column, and row of the 2-dimensional map grid. The logical scheme

consists of mapping the address of the tile images to geospatial coordinates of the

geographical area that the image covers. Google, Bing and Yahoo! Maps all use the tiling

scheme mentioned in this thesis (Sample et al., 2010). This tile scheme renders

computing the addresses of the tiles a trivial procedure and it is preferred over the others

because of its simplicity and easiness to implement. As explained in MicroImages (2010),

the Google Maps tile dataset structure is stored in each subdirectory as described below.

Every tile is aligned on a fixed grid of Spherical Web Mercator projection (Stefanakis,

19

2014). This way, Google Maps can quickly and efficiently load millions of tiles (Figure

3.3). This hierarchical tile structure ensures that the tile dataset with the maximum

possible resolution will never be able to exceed the maximum number of tiles or

directories that the WTMMS can store, thus rendering it efficient and scalable across

different systems.

Figure 3.3 Global tile grids at the three Lowest Google Maps zoom levels, using the Spherical web

Mercator projection, taken from MicroImages (2010)

3.2. Tile Dataset & dealing with missing tiles

 In thoroughly validating the performance of the proposed solutions, the greater

the number of the zoom levels, the higher the accuracy of the results. However, in reality,

there are multiple missing datasets; thus, a dataset fulfillment algorithm has to be

developed to address this problem. There are several different algorithms that can

supplement the dataset with the expected tiles. The core consideration is the average size

20

of the expected missing tile. The algorithm has to insert a tile that approximates the

expected tile size, which is difficult to be predicted with high accuracy. An algorithm that

can provide all the missing tiles without taking into consideration the tile size is

illustrated in Figure 3.4.

Figure 3.4 Imputing with the same tile

 Since testing the performance is the primary concern and since the difference

between reading 4KB and 16KB (or more) is negligible, by adding the same tile

wherever a tile is missing can efficiently add all the expected tiles in the dataset.

 An alternative approach would be to estimate the average size for each zoom level

and then complete the dataset with the expected average tile. Inarguably, this is an

extremely time consuming technique, considering the fact that that zoom levels increase

exponentially with the number of the tiles (i.e., in higher zoom levels there are billions of

expected tiles that have to be read). The algorithm’s pseudocode is illustrated in Figure

3.5.

21

Figure 3.5 Pseudocode for the accurate tile fulfilment algorithm

 A graphical representation of how this algorithm operates is showcased in Figure

3.6.

Figure 3.6 Accurately imputing the missing tiles based on the tile's size

 For demonstration purposes, the first algorithm (Figure 3.5) is used for the tile

dataset completion. More sophisticated algorithms can be used based on the normal

For each Level:

Representative_Tile repr_Tile; //the representative tile

 For each Column & Row:

 If(tile is Missing):

 Fulfil with repr_Tile;

 End If;

 End For each;

End For each;

22

distribution which depends on the size of the tiles (Dutilleul, P., 1999). These algorithms

may better approximate the expected tile size but, as previously noted, are very time

consuming, especially in the upper zoom levels (14 and higher).

3.3. SimpleFormat – File System

 By following this data structure, the tiles are directly stored into folders

segregated by zoom level. One of the advantages of this solution is the ease of its

implementation and usage. However, this comes with drawbacks, including deciding

which operating system and file system should host the LevelFilesSet. Consequently, a

benchmarking across all the available file systems (e.g., NTFS, ExFAT, FAT32) must be

performed to verify the best performance. This would certainly be a time-consuming

practice. Moreover, this solution restricts the system regarding which operating and file

systems can be used. For instance, if NTFS is proven to be the best performing file

system, then this system will not be supported by any operating systems other than

Windows. The ideal system would operate optimally regardless of the underlying

operating system (Zhang et al, 2008). The main problem with using file system-based

solutions is that each file system is operating system-specific. Thus, the very nature of a

file system renders it inapplicable in the context of a multi-modal solution scaling across

different operating systems.

23

3.4. ImageBlock – File System

 Similarly to the SimpleFormat, ImageBlock structure operates in the File System

where the tiles are stored in folders. In this case, however, each folder has an upper limit

on the number of tiled images that can be accommodated. The maximum number of tiles

that each folder can contain is 1024, so after the 6th zoom level, the folders will contain

child-folders. For example, the 6th folder will contain 4 folders as depicted in Figure in

Figure 3.7:

Figure 3.7 The ImageBlock format

 For instance, tile 6_0_34 will be classified into 6_0_32 folder because it contains

tiles with columns ranging from 1 and 31 and rows 32 and 63. As in the tile naming, the

first number of the folder name represents the level, the second number represents the

column, and the third represents the row of the tiles. This solution has the advantage of

distributing the tiles in a more elegant way rather than lumping them under 1 folder, like

SimpleFormat.

24

3.5. Databases

 In the database solution, all the tiles are stored in tables according to each zoom

level. The structure in which the tiles are stored is similar to either SimpleFormat or

ImageBlock. Although databases offer multiple APIs that have been tested and used by

several developers, as presented in Chapter 4, their performance for storing and retrieving

tiles is the worst out of all the alternative solutions. The benefit of using the database

solution is that they are very robust and scalable; however, when performance is the core

factor of decision making, as in this case, this solution proves to be insufficient.

Figure 3.8 The database schema following the SimpleFormat structure

 The database schema showcased in Figure 3.8 follows the SimpleFormat

structure. Each zoom level is stored as a table and each tile contains several attributes

25

(e.g., tile_id, tile_source and so on). The tiles are saved as BLOB data type (Sears et al.

2007). The dataset can be queried by using a SQL query as described in Figure 3.9.

Figure 3.9 Requesting tile 1_0_0.jpg using SQL query in Postgres 9.3

 The databases can inherit different schemas. For instance, the ImageBlock

structure could be used for the structure of the tables. In this research, the

SimpleFormat’s schema is used for testing purposes. Recently Mapbox, a GIS company,

has came up with a format similar to those of the one described above, named MBTile

format. The MBTile format uses a SQLite database to store tiles in one single table

(Table Tiles) and has attributes similar to the database described above (column, row,

BLOB, and so on). Similarly to the file system based solutions, databases bring a lot of

unnecessary features that introduce significant overhead to the system. A tile storage

system will not require the rich number of APIs featured in the database; instead only a

handful of the APIs are necessary and thus databases are not able to efficiently retrieve

tile images.

 Databases are designed to manipulate a structured volume of data, such as

characters and numbers. A tile storage system has little need for queries on structured

data. However commercial systems, such as such as MapBox, use databases instead of

other solutions. If the tile application required frequent update of tile images (from the

user side), then the database would offer straightforward functionalities that would render

26

tile storage and retrieval a lot more straightforward and less time consuming. Hybrid

approaches, such as file system with database solutions would also be an option (e.g.,

LevelFilesBlock stored in the database, as mentioned in Chapter 4.3). In this research,

Postgres 9.3, an open-source database which provides multiple APIs and further

geospatial tools, is chosen for benchmark purposes. The Java framework provides the

JDBC API (see following section), which allows data access from any relational

database. The code can be found in the Appendix IV.

3.5.1 The JDBC API

The JDBC API is a Java API that can access any kind of tabular data and

particularly data stored in the Relational Databases. It works as a “connector” between

the application and the software (Hamilton, G et. al, 1997). Most of the IDEs provide

several plugins that allow them to run database queries by their own interface (e.g. Intellij

IDEA, Oracle etc.). This API is easy to use and it provides the following core interfaces

and classes:

 DriverManager: This class is responsible for the list of database drivers.

 Driver: This is an interface which handles the communication with the database

server.

 Connection: This interfaces with all methods for contacting a database.

27

 Statement: Used to access objects created from this interface to submit the SQL

statements to the database.

 ResultSet: These objects hold data retrieved from a database after a SQL query is

executed.

 SQLException: This class handles any errors that occur in a database application.

The architecture can be seen below (Figure 3.10):

Figure 3.10 The JDBC Architecture (Java Oracle Documentation, 1995)

3.6. Parsing tiles instead of reading them from the file system

 Instead of storing the tiles in the file system, a file which contains all the image

information can be created and parsed accordingly whenever needed. In this solution, the

complexity of the retrieval algorithm is not dependent on the file system. By using

28

Random-Access files, the tiles can be retrieved in constant time. The main drawback of

the LevelFilesSet is that the memory complexity is larger than the previously mentioned

solutions; this is because of the LookupFile which is needed to store the extra pointers to

the TileDataset file. However, the overall performance of the LevelFilesSet, as discussed

in the Benchmarks Results section, is better than the other solutions (Figure 3.11).

Figure 3.11 The LevelFiles for each zoom level

29

4. THE LEVELFILESSET

 Instead of accessing the tile files by using the File System’s inner functions, two

files are created: The Lookup file and the TileDataset file. Each time a tile is requested,

the Lookup file provides pointers that point to locations in the TileData file (Barish, et al,

2000). The TileData file holds the information about all the tiles in each zoom level

(Figure 4.1).

Figure 4.1 The communication of the Lookup File with the TileDataset File

4.1. The functionality of LevelFilesSet

The lookup file contains 2 variables:

 CursorPointer (8 bytes): Represents a pointer to the Data File.

30

 SizePointer (4 bytes): Represents the size of the tile.

 Initially, the LevelFilesSet Dataset is generated by copying the bytes of the tile

files on the LevelFilesSet per zoom level. The way the tiles are stored is based on the

following formula:

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = ((2𝑙𝑒𝑣𝑒𝑙 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛) + 𝑟𝑜𝑤) ∗ 𝑏𝑦𝑡𝑒𝐿𝑒𝑛𝑔𝑡ℎ (1)

where:

 position: the position at the Lookup file

 level: the zoom level of the tile

 column: the column of the tile

 row: the row of the tile

 byteLength: the length of the CursorPointer plus the SizePointer.

 The Lookup file can be extremely large on the high zoom levels (e.g., zoom level

14 or higher). The maximum size of the TileData file can be 264-1 bytes; this number

ensures that the data structure will be able to support higher zoom levels that contain

billions of images. For example, the user wants to retrieve the tile on the 3rd zoom level,

2nd column and 1st row, based on equation (1), where position=204. This means that to

retrieve the tile, the LookupFile must be parsed on the 204th byte of the LookupFile. The

first 8 bytes of that position (bytes 204 until 211) will contain the pointer of the TileData

file and the next 4 bytes (bytes 212 until 215) will contain the size of the tile. After

retrieving the CursorPointer and SizePointer, the TileData file is parsed, starting at the

CursorPointer and reading SizePointer bytes.

31

 Although the implementation of the LevelFilesSet data structure is complex, the

benefits are the following:

a) the system does not rely on the file system for reading a file

b) retrieval of any tile is achieved in constant time.

 In other words, a file system on top of the existing file system is created and used

for tile retrieval. This data structure offers the feature of tile generation, which is based

on the pre-existing tiles structured that depends on the SimpleFormat structure. There are

several other features that could be implemented in the future and could enrich the

functionality of the LevelFilesSet to support other use cases and scenarios. For instance,

one of these features could be the functionality of adding and deleting tiles dynamically.

Tile-based management systems usually have to update their tiles within a specific time

range. The current state of the data structure allows tile generation, which means that the

LevelFiles have to re-generate every time a tile is updated. For supporting this feature,

the implementation of the LevelFilesSet should be upgraded to a more sophisticated

version, as proposed by Sample and Ioup (2010). By storing an extra file which keeps the

pointers of each tile, the LevelFilesSet can modify (i.e., add or delete) each tile

separately. However, this feature is expected to increase the memory needs of the

systems since additional pointers must be stored apart from the tile dataset. Moreover, the

performance is expected to decrease since an additional Seek and Read within the newly

added file will be needed. This upgrade can be seen in the Figure 4.2.

32

Figure 4.2 Version of the LevelFilesSet that allows missing tile indexes by using the tile stack which

indicates the existing tiles within the system

Figure 4.3 An example of computing the pointers within the Lookup File based on the equation (1) to

retrieve the 1_1_0.jpg tile

 Overall, the tile retrieval is done in real time; thus, the complexity of searching

the tile is also done in real time. As showcased in Figure 4.3, since the pointers are stored

in the Lookup file, by reading the tile starting point in the TileDataset file and the

33

expected size of the tile, the tile can be retrieved without linearly examining other tiles.

The Random-Access files allow such functionality since the information is stored in raw

binary data. However, this functionality comes with two drawbacks:

1. The implementation of the LevelFilesSet is complicated and requires careful

design patterns while developing. Similarly to all data structures, if the design

patterns are not optimal, the results will follow suit.

2. The memory complexity increases since the Lookup file requires space for storing

the pointers. The alternative proposed techniques do not require this additional

space.

 If implemented correctly, the LevelFilesSet will be optimal and, as presented in

Chapter 4, optimal results are expected for its performance.

4.2. Metadata storage

 The system is expected to support several other types of data storage, such as

Metadata. Metadata are used to store information relevant to the dataset (Yee et al.,

2003). For instance, if the system uses data from Open Government Canada Data, then

the organization has to be credited accordingly by being stored in the Metadata record.

The Metadata are usually stored in XML files and, in this example, a relevant tag could

be the following: <source> Open Government Canada Data</source>. This raises the

34

question of where the metadata have to be stored, and whether the LevelFilesBlock (see

section 5.6) could be used for Metadata storage as well.

 Multiple systems need to store information as Metadata. In the web tiled map

management server, a tile can be georeferenced (Wieczorek et al., 2004) so that it can

store further information relevant to its purpose.

4.2.1. LevelFiles storing Metadata

 With minimal alteration, the implementation of the data structure, the

LevelFilesSet can support Metadata manipulation. Supporting Metadata storage requires

knowledge of the structure of the XML file beforehand since the tags have to be assigned

specific bytes, as with the case of storing the tile images.

Figure 4.4 Using LevelFilesSet to store Metadata

35

 For instance, as showcased in Figure 4.4, each item of data information can be

stored in the Lookup file and retrieved via the Data file, just as with the tile images. If the

developer wants to access the “location” field from the Metadata, then the lookup file

will be parsed to retrieve the pointers pointing at the Data File and then retrieve the data.

 Since the LevelFilesSet is more efficient than any other data structure, Metadata

storage is expected to be useful for tiled map management systems that use Metadata to

store additional information for the tile dataset. Furthermore, this is an example of how

the LevelFilesSet can be expanded to support any type of data, including Metadata.

4.3. The LevelFilesBlock data structure

 The core ability of storing and retrieving tiles makes LevelFilesSet the most

suitable and efficient solution. However, as previously stressed, when faced with large

zoom levels an architecture must be designed to support the LevelFilesSet across multiple

storage disks. The Table 4.1 and Figure 4.5 provide a conservative estimation, if the

average tile size is 4KB, of the expected size for each zoom level.

Table 4.1 Expected size for each Zoom Level

Tile Zoom

Level

Number of

Tiles

Needed Storage

Memory (TB)

14 414 1

36

15 415 4

16 416 16

17 417 64

18 418 264

19 419 1,024

20 420 4,096

21 421 16,384

22 422 65,536

Figure 4.5 Total expected size of tiles for each zoom level

 For instance, for the 22nd zoom level, if the average size of an image is 4KB, then

the total size of the tiles is expected to be 65.6 PB; which means that the TileDataset file

will have an equal size. Inarguably, storing this large number of information into one

37

single file proves to be impossible and thus non-scalable. The need to distribute tiles

across multiple storage systems becomes vital and the LevelFilesSet, in its simple form,

does not fulfil that requirement. Instead, a hybrid approach, based on the benchmarking

scenarios and scalability concerns, can be created, as illustrated in Figure 4.6.

Figure 4.6 The LevelFilesBlock - A hybrid approach based on the LevelFilesSet and the ImageBlock

 LevelFilesBlock combines LevelFilesSet with ImageBlock. It takes advantage of

the speed superiority of LevelFilesSet and the elegance of ImageBlock, which together

can distribute the tiles across different storage systems. For zoom levels 0 to 5, this

structure follows SimpleFormat’s (and ImageBlock’s) format. For the zoom levels 6 to

11, the LevelFilesSet format is applied. For the upper zoom levels, ImageBlock’s

structure is applied with the major difference being that instead of tile

images, LevelFilesSet is used per subdirectory. The logic behind this approach is to take

advantage of LevelFilesSet performance superiority and ImageBlock’s sophistication in

regard to scalability. A major factor of this approach is limiting the average size of the

image. The goal of each LevelFilesSet within each subdirectory is not to surpass 64GB.

38

This number (64GB) is empirically extracted for each application and is depended on the

average system storage capacity. The goal of selecting a fair constant is to re-ensure that

the system will be able to handle any insertion or deletion within a sub-directory. For

instance, if the system has multiple storage systems of 1TB capacity, then the constant

can be set on 64GB (16% of the system’s total size). On the other hand, increasing the

sub-directories leads to more demands on the system (as derived from Chapter 5.5).

Based on the latest concern, ImageBlock’s tile-limit number can be increased. For

example, if the limit is set to 1 million, then, since the average size of each image is 4KB,

the expected size of the total images will be approximately 1GB. The average image size

may be larger than 4KB. That is, the image size depends on the category of the tiled map

management system and its purpose (e.g., high-resolution tiled map management system,

and so on). In the end, the developer must take inconsideration the following

a) the average tile size within each zoom level

b) the number of the tiles within each sub-directory

c) the maximum capacity of the storage system

 By using LevelFilesBlock, the tiles can be distributed across different storage

systems in an efficient and modifiable way and thus both performance and scalability

concerns can be fulfilled. The developer is expected to adjust the maximum number of

subdirectories based on the average size of the images.

39

5. LOCAL BENCHMARKS

 In this section, several benchmarks that measure the performance of the proposed

data structures under different system specifications are developed and analyzed. The

specifications of the computer that ran the tests described in this research are shown in

Table 5.1:

Table 5.1 Computer Configurations

System CPU Memory

Macintosh Sierra Intel® i7, 2.2 GHz Kingston SSD 256GB,

16GB RAM

Windows 10 Intel® Xeon® CPU

E5-2620 V2 @

2.10GHz

Samsung SSD 512GB,

 8 GB RAM

Windows 10 Intel® Xeon® CPU

E5-2620 V2 @

2.10GHz

Western Digital

3TB HDD

8GB RAM

Database

 (Macintosh)

Postgres 9.3

PgAdmin®

Kingston SSD 256GB,

16GB RAM

40

5.1. Tile Generation Benchmark

 Figure 5.1 and Figure 5.2 show how much time it takes to generate the dataset for

the LevelFilesSet and the database. The database takes approximately 32 times longer

than the LevelFilesSet to copy the dataset and store the tiles as BLOBs. This benchmark

is an indicator of the performance problem and significant delays that arise by using the

database as a storage option

Figure 5.1 Tile generation performance for zoom levels 0 until 5 (Macintosh, Postgres 9.3)

41

Figure 5.2 Tile generation performance for zoom levels 6 until 11 (Macintosh, Postgres 9.3)

 In the next sections, several benchmarks are developed that address the

performance constraints of each data structure under different system specifications when

a tile is requested for retrieval. The benchmark phases were not predefined but, instead,

they were developed based on the results of each phase. Each phase is based on the

results of the previous phase and is developed to extract new goals and achieve new

finding(s). The logic followed in the benchmarks as follows:

 The first benchmark examines the average time of reading a tile image in each

zoom level. The dataset in this scenario will have missing tiles. This benchmark works as

a first prototype and indicates the performance of each data structure. The purpose of this

benchmark is to extract initial results that will lead to further investigation of what is

needed to be examined in the future.

 To validate that the network performance is similar to the performance examined

in the localhost environment from the first benchmark, the second benchmark examines

the relationship between the localhost and network results. This benchmark ensures that

42

the first results are applicable to a real-case scenario. As in the first benchmark, this

benchmark is expected to lead into further results and indicate further steps to be taken.

 The third benchmarking phase will address the issues discovered from the two

previous phases. In this benchmark, the dataset will deal with the issue of the missing tile

dataset, as described in Chapter 4, and I will propose a benchmarking algorithm that will

allow to fairly measure the performance of each proposed data structure and, finally, will

run it on different system environments to ensure the validity of the performance. The

logic is described in Figure 5.3.

Figure 5.3 The three benchmarking phases

5.2. The first benchmarking phase

 There were three core phases during which the data structures were compared. In

the first phase, a dataset with missing tiles was tested to present an initial idea on how the

43

various solutions perform; a comparison between the File System (SimpleFormat and

ImageBlock), Databases, and LevelFilesSet. The algorithm’s pseudocode can be seen in

Figure 5.4.

Figure 5.4 Pseudo-Code for the retrieval algorithm

 This algorithm measures the average time of tile retrieval for each zoom level and

for each solution (SimpleFormat, ImageBlock and LevelFilesSet). It reads through every

tile image within each zoom level. Then, the needed time for reading the tile is added to

the variable which holds the total time duration. In the end, the computed time is divided

by the total number of the tile images in the zoom level. The output number will indicate

how much time, on average, is needed to read a tile image from each zoom level. The

resulting number is useful will showcase how the zoom levels (with different tile

numbers stored) perform and how this number effects the performance of the system.

For Each Level:

Total Avg_Time_Duration = 0;

 For Each Tile:

 Start_Time = Get_Current_Time();

 Read Tile; // SimpleFormat, Database, LevelFilesSet

 End_Time += Get_Current_Time() – Start_Time;

 End For Each;

Avg_Time_Duration = End_Time / #tiles;

End For Each;

44

 The first phase’s benchmark runs under the Macintosh OS with the Database used

being Postgres®. The results and can be seen in Table 5.2 (Figure 5.5).

Table 5.2 First benchmarking results (Macintosh, ExFAT, SSD, Postgres®)

Tile Zoom

Level

Number of

Tiles

Database

(ms)

SimpleFormat

(ms)

LevelFilesSet

(ms)

0 1 0.05 0.01 0.001

1 4 0.1 0.16 0.003

2 16 0.19 0.29 0.024

3 64 0.41 0.3 0.03

4 256 0.48 0.36 0.27

5 1024 1.54 0.38 0.3

6 4096 2.28 0.46 0.32

7 892 3.24 0.59 0.46

8 3565 3.49 0.61 0.47

9 14257 3.51 0.62 0.5

10 57025 3.69 0.67 0.51

11 228097 3.73 0.69 0.52

45

Figure 5.5 Graphical Representation of the first benchmark results

Figure 5.6 illustrates the total time that is required for all the tiles to be retrieved.

Figure 5.6 Total needed time for each tile to be loaded

 The Database, in the 11th zoom level, is 6.2 times slower than the LevelFilesSet,

rendering it insufficient to store large volumes of tile datasets. Furthermore, the

46

LevelFilesSet is approximately 33% faster than the SimpleFormat. While this benchmark

provides an initial proof of concept regarding each solution’s performance, it does not

take in consideration the fact that developers will request certain parts of the web map

each time and that there will be multiple HTTP requests made on the server. The second

benchmark analyzes the network performance and monitors certain latencies that would

not be added while testing locally on the system.

5.3. The second benchmarking phase based on the Network

Performance

 To make the benchmark scenarios more applicable to real cases, this benchmark

examines whether the HTTP request for a tile will have the same average performance as

the first benchmark that ran locally. For this benchmark, the Apache JMeter networking

tool was used. The JMeter is a Java open source software, designed to examine functional

behavior and measure the performance of the application (Halili, 2008). It is used to test

both static and dynamic resources of the application, regardless its backend technologies

and languages. It can be used to simulate a heavy load on a server, group of servers,

network, or object to test its strength or to analyze overall performance under different

load types. JMeter provides a user-friendly interface. This benchmark simulates 600

requests per second that run repeatedly 50 times. After that, an HTTP GET request is

made to all the tiles on the server. For that purpose, a CSV Data Set Config Element is

47

created to load the CSV file containing all the tile names of the system. The logic of this

algorithm is the same as the one in the algorithm used for the first benchmark (Figure

5.5); the difference is that in this benchmark the network performance is analyzed to test

whether it is identical to the performance derived from the first benchmark. The average

results can be seen in Table 5.3.

Table 5.3 JMeter Benchmark Results, where

Data structure: the tested data structure

No. of samples: the number of successful responds of the server

Average time: the average time of response for each request

Data

Structure

No. of

samples

Average

time (ms)

LevelFilesSet 21480 29

SimpleFormat 13060 41

Database 1567 233

 The samples are different by approximately 65%, a result almost identical with

the performance of the first benchmark that ran locally. This outcome proves that the

behavior between a locally-run server and an online web server is very similar. On the

other hand, the average time of a response has a difference of approximately 41%. This

indicates that the response of the server is lower than it is on the localhost, and that is

because of the HTTP overhead (Heidemann et al., 1997). For each HTTP request, an

additional overhead is added for establishing the connection between the client and the

48

web server, resulting in an additional latency of 24%. A way to reduce this overhead is to

request more than one tile at a time. For instance, if 10 tiles are requested, then the total

expected latency added by the overhead will be lower than the initial one. However, since

the server will be responding back with 10 tiles, the required bandwidth of the network

will be much higher; thus, there is a tradeoff between the server’s performance and the

available network’s bandwidth.

 In the third benchmark phase, an algorithm which takes all these aspects into

consideration is developed and run to test the performance of the proposed data

structures.

5.4. The third benchmarking phase

 In the third phase, there are 3 individual benchmarks under which the data

structures are compared. It is important to mention that the purpose of these benchmarks

is to test with all the expected tiles on the system (Chapter of Data Structures). The

pseudo-code for the algorithm used for the benchmark tests can be seen in Figure 5.7.

49

Figure 5.7 Pseudocode for the benchmarking scenarios

 The above algorithm selects randomly an area of 10 tiles for each zoom level.

Then, an average time variable is used to estimate the required time that every data

structure. The number of requested tiles increases sequentially each time (e.g., 1, 2, 3 and

so on). In the end, the average time is computed. To simulate a realistic benchmarking

scenario, 1 to 10 tiles are requested for each zoom level. The threshold indicates the

number of the tiles that are requested each time. Finally, the average time is computed

and reported. It is significant that, in the testing dataset, a tile has an approximate size of

4 Kilobytes (KB). Depending on the network traffic, the developer might want to retrieve

more than one tile per request. This algorithm takes that feature into account and

represents a fair comparison with the number of the requested tiles varying from 1 to 10.

The first test ran on Macintosh under the ExFAT file system and provided the following

results (Table 5.4 and Figure 5.8):

Randomly Select Area (10 tiles);

For Each Level:

 For (threshold 1: 10): //threshold = requesting tiles number

 Compute LevelFilesSet Performance;

 Compute ImageBlock Performance;

 Compute SimpleFormat Performance;

 End For;

 Compute Average Time();

End For Each;

50

Table 5.4 Benchmarking results (Macintosh, SSD)

Tile Zoom

Level

Number of

Tiles

SimpleFormat

(ms)

ImageBlock

(ms)

LevelFilesSet

(ms)

0 1 1.3 1.2 1.1

1 4 1.3 1.2 1.1

2 16 1.4 1.3 1.2

3 64 1.4 1.3 1.2

4 256 2.5 2.3 2.1

5 1,024 4.2 4.7 2.7

6 4,096 8.3 9.3 6.3

7 16,384 11.4 12.2 9.1

8 65,536 13.1 12.9 9.4

9 262,144 16.4 16.1 10.8

10 1,048,576 19.8 19.5 11.9

51

Figure 5.8 Graphical Representation of the first benchmark results for the zoom levels 5 until 10

(Macintosh, ExFat and SSD)

 As observed, for zoom level 10, it takes an average of 11.9 milliseconds (ms) to

retrieve the tiles by using LevelFilesSet, 19.5 ms for ImageBlock and 19.8 ms for

SimpleFormat. The performance improvement of LevelFilesSet over SimpleFormat and

ImageBlock, in zoom level 10, is 66%. SimpleFormat and the ImageBlock have almost

identical results.

 The second benchmark ran on Windows (NTFS) using a Solid-State Drive (SSD).

The Windows SSD memory capacity allowed the test to run until zoom level 11, rather

than the 10 levels in the case of the first benchmark that ran on Macintosh. The results are

reported in the Table 5.5 and Figure 5.9.

Table 5.5 Benchmarking results on Windows (SSD)

Tile Zoom Number of SimpleFormat ImageBlock LevelFilesSet

52

Level Tiles (ms) (ms) (ms)

0 1 5.4 5.4 7.4

1 4 5.5 5.5 7.6

2 16 5.5 5.6 7.8

3 64 5.5 5.6 7.9

4 256 10.8 10.7 7.9

5 1024 21.7 22.3 9.9

6 4096 44.3 41.2 13.8

7 16384 54.9 52.0 16.6

8 65536 67.3 64.3 18.4

9 262,144 68.7 65.8 18.6

10 1,048,576 69.8 72.1 19.9

11 4,194,304 75.1 89.7l 21.8

53

Figure 5.9 Graphical Representation of the first benchmark results for the zoom levels 5 until 11

(Windows, NTFS and SSD)

The performance improvement of LevelFilesSet over the SimpleFormat and

ImageBlock, in the 11th zoom level, is approximately 323%.

 For the third benchmark test, the same Windows machine is used, with the

difference being that the files are stored in the Hard Disk Drive (HDD) instead of the

SSD. The HDD capacity allowed the test to run until the 13th zoom level. The results are

as follows (Table 5.6 and Figure 5.10):

Table 5.6 Benchmarking results on Windows (HDD)

Tile Zoom

Level

Number of

Tiles

SimpleFormat

(ms)

ImageBlock

(ms)

LevelFilesSet

(ms)

0 1 10.3 10.3 10.7

1 4 10.4 10.4 10.8

54

2 16 10.4 10.4 10.8

3 64 18.9 18.8 11.1

4 256 35.5 35.4 15.6

5 1,024 58.2 58.2 23.7

6 4,096 92.9 99.9 41.6

7 16,384 226.9 260.5 90.8

8 65,536 352.7 393.8 127.8

9 262,144 444.7 573.9 171.5

10 1,048,576 567.3 881.7 263.1

11 4,194,304 845 1,110.1 314.1

12 16,777,216 913.4 1,282,9 367.8

13 67,108,864 941.9 1,585.7 371.1

55

Figure 5.10 Graphical Representation Third benchmark for the zoom levels 7 until 13 (Windows,

NTFS and SSD)

 The performance improvement of LevelFilesSet over the SimpleFormat and

ImageBlock, in the 13th zoom level, is approximately 327%.

5.5. Outcome

 The LevelFilesSet’s retrieval time is faster than that of SimpleFormat and

ImageBlock in all the benchmarking scenarios. It is important to highlight the idea behind

the LevelFilesSet methodology. Not only does LevelFilesSet provide better results than

the other structures, but it also performs optimally under any operating and file system.

However, one significant issue arises as the zoom level increases: the TileData file gets

extremely large, rendering it impossible to store tiles using only one disk. For instance,

56

for the 15th zoom level, it is expected to store 1,073,741,824 tiles, and since the average

size of a tile is 4KB, the expected size of the entire zoom level is approximately 4

Terabyte (TB). As the file size increases, LevelFilesSet develops problems. A future

update of LevelFilesSet, described in the chapter 4.3, is expected to provide the necessary

guidelines that will show the way the tiles should be divided across different storage

disks in an efficient and scalable manner. The LevelFilesSet’s code can be found in the

Appendix I.

5.6. Google Cloud Benchmark

 With the recent rise of the cloud-based technologies, more and more applications

are based entirely on the cloud and thus, it is worth examining the performance of

SimpleFormat, ImageBlock, and LevelFilesSet on such platforms. Google Cloud offers a

wide variety of APIs which create a suitable solution for tile storage and retrieval.

Furthermore, Google Cloud offers a set of easy-to-use tools and documentation that make

it easy for developers to implement tile systems. By choosing a cloud-based approach to

tile storage and retrieval, developers can simply upload the dataset and retrieve it. Cloud-

based approaches free the user from having to develop and implement from scratch a

local data center. Consequently, the company can avoid hiring specialized personnel as

well as saving space and funds that would be dedicated to a physical local data center.

Lastly, choosing a cloud-based solution eliminates the need for backups, security,

57

maintenance, hardware upgrade, and peripheral running costs. Importantly, however,

there are a number of trade-offs when choosing cloud hosting. Namely, the company

relies on a single vendor that can control the availability and price of the offered services.

Further, this solution is mostly applicable for small to medium sized companies, as

scalability will rapidly increase both the price and the reliance on a single external

vendor. Beyond expanding on the intricacies of these benefits and drawbacks of using a

cloud based solution, the next Chapter deals with serving tiles by using the Google

Cloud.

58

6. STORING AND RETRIEVING TILES ON GOOGLE CLOUD

 Vendors such as Google, Amazon, and ESRI provide rich collections of online

cloud based API solutions. The cloud is a network of servers, each of which are

developed to address different functionalities (Argyraki et al., 2009). Cloud computing

provides storage and retrieval of data over the Internet instead of the computer’s hard

drive. One of the main benefits of using Google Cloud is the dynamic availability of the

server (including upgradability, automated backups, automated system updates, and easy

integration). Multiple companies and developers are using Google Cloud as their primary

solution for information storage and retrieval and thus, it is important to examine how a

WTMMS could be built based on the Google Cloud Platform.

6.1. Interaction and tile storage with Google Cloud

 Google provides graphical and command-line solutions for deploying information

on the cloud. To upload the dataset on the server, the following steps are performed:

1. Log in the Google Cloud account by visiting the URL:

https://console.developers.google.com.

59

2. Create a new Google Cloud project (Figure 6.1).

Figure 6.1 Creating new Google Cloud project

3. Enable the Google Cloud Pricing by assigning credit card credentials and other

personal information.

4. Enable Google Storage API (Figure 6.2).

Figure 6.2 Enabling Google Cloud Storage API

5. Download Google Cloud SDK in the local machine (URL:

https://cloud.google.com/sdk

6. Install SDK and run the command from the command prompt (or terminal):

$ gcloud auth login --WebTileManagementSystem

7. Read and accept the Google Account permission statement.

60

 The next details showcase how the tile dataset can be uploaded on the Google

Cloud. Developers can either use command-prompt (with the gsutil command) or web

user interface (UI). In the following examples, the steps are showcased with the UI

approach:

1. In Google Cloud Storage, create a Google Bucket.

2. Select the tile dataset to upload in the different folders. For instance, the stored

LevelFilesSet can be seen in Figure 6.3.

Figure 6.3 LevelFilesSet storage in the Google Bucket

 Each uploaded file has a public link that allows developers to access it through an

HTTP request. There are several tools that can be used to process HTTP requests on the

Google Cloud.

61

6.2. Java Servlets

A Java Servlet can be integrated with Google Cloud by following Google’s

specifications, as shown below. A Java servlet is a Java program that extends the

capabilities of a server. Servlets have the purpose of building Web-based applications.

They have access to the entire family of the Java APIs, including the JDBC API to access

enterprise. The servlets architecture can be seen in Figure 6.4:

Figure 6.4 Java Servlet process (from Java EE, Oracle, 2000)

Java servlets perform the following tasks:

1. Read the data sent by the clients (browsers).

2. Read the implicit HTTP request sent by the clients (browsers).

3. Process the data and generate the results.

4. Send the explicit data back to the clients (browsers).

5. Send the implicit HTTP response to the clients (browsers).

6. The following figure depicts a typical servlet life-cycle scenario:

62

The lifecycle of a Java servlet can be described as follows:

 First, the HTTP requests coming to the server are delegated to the server

container.

 The servlet container loads the servlet before invoking the service method.

 Then the servlet container handles multiple requests by spawning multiple

threads, each of which executes the service method of a single instance of the

servlet.

 It is worth mentioning that in each request, the users access the same instance of

the Java servlet; thus, the developer should be cautious about concurrency cases. For

instance, when accessing files which change dynamically, if a file accessed by the end

user changes, then the change will affect the end user who is accessing the file. For web

tiled map management systems, there are no concurrency problems since the tiles are not

updated dynamically. However, if the web tiled map management server would support

dynamic tiles that change frequently, then concurrency should be resolved through

careful design of the tile-loading algorithm.

 Figure 6.5 describes the architecture of the deployed application.

63

Figure 6.5 Architecture of Tile Serving in Google Cloud

 IntelliJ offers a built-in plugin for easy-to-use Google Cloud Integration. The tool,

as illustrated in Figure 6.6, provides a straightforward UI where the developer adjusts the

configurations of the deployment.

Figure 6.6 IntelliJ and Google Cloud Integration

64

 The project is configured with Apache Maven, which is a software project

management and comprehension tool (Dixon et al., 2006). Maven can automate and

manage the project’s build, reporting, and documentation from a central place of

information without requiring further configuration from the developer. Maven offers

great integration with JavaEE applications and it is used to build the project. From its

Console, Google Cloud provides multiple versioning of the project. This means that

whenever an update occurs, the developer has an option to update the current version of

the project without altering the application which is already running on the cloud. This is

rather useful for alpha and beta testing, as discussed by Craig et al. (2002; Figure 6.7).

Figure 6.7 Google Cloud Application Versioning

65

6.3. Google Cloud Benchmarks

 The same algorithm used for the local benchmarks presented in Chapter 5.4 will

be used for this benchmark. However, since the Google environment hosts multiple

applications and the traffic is different depending on temporal load during the test, the

benchmark will run twice per day for three consecutive days, summing up to 6 different

benchmark results, all of which will be performed at consistent times, separated by 12h:

10AM and 10PM (time zone UTC-3h). The times were chosen paradigmatically since

high traffic is expected to occur in the morning and low traffic is expected to occur at

night. However, since Google hosts multiple applications across different regions within

the cloud, high traffic could occur at any time, and is not open to estimation (Savage et

al., 2009). This benchmark controls for the differences in OS and hardware that are

inescapable in local drive benchmarks. The tables with the analytical data which describe

the benchmarks can be found in Appendix V.

 This benchmark ran on May 10th 2017, at 10 AM. The results can be seen in

Figures 6.8 and 6.9.

66

Figure 6.8 Benchmark ran on May 10th at 10AM

 For the 10th zoom level, LevelFilesSet performed approximately 38% faster than

SimpleFormat and 11.5% faster than ImageBlock.

Figure 6.9 Benchmark ran on 10 May at 10PM

 For the 10th zoom level, LevelFilesSet performed approximately 32% faster than

SimpleFormat and 11.8% faster than ImageBlock.

 The second day’s benchmark ran on May 11th 2017, at 10 AM. The results are

shown in Figures 6.10 and 6.11.

67

Figure 6.10 Benchmark ran on 11 May at 10AM

 For the 10th zoom level, LevelFilesSet performed approximately 37.8% faster

than SimpleFormat and 11.2% faster than ImageBlock.

Figure 6.11 Benchmark ran on 11 May 2017 at 10AM

 For the 10th zoom level, LevelFilesSet performed approximately 32.2% faster

than SimpleFormat and 6% faster than ImageBlock.

 The third benchmark results are illustrated in Figures 6.12 and 6.13.

68

Figure 6.12 Benchmark ran on 11 May 2017 at 10PM

 For the 10th zoom level, LevelFilesSet performed approximately 38% faster than

SimpleFormat and 11.5% faster than ImageBlock.

Figure 6.13 Benchmark ran on 12 May 2017 at 10PM

 For the 10th zoom level, LevelFilesSet performed approximately 32% faster than

SimpleFormat and 11.8% faster than ImageBlock.

69

6.6. Outcome

 Within the span of three days, LevelFilesSet performed faster than the other

approaches with an average 9.33% increased speed (for zoom level 10). ImageBlock

performed, on average, 31.9% faster than SimpleFormat. Based on these benchmarks, it

is logical to assume that Google’s object based file system favors structured

subdirectories which contain limited numbers of tiles (Mesnier et al., 2003); hence the

increase of ImageBlock’s performance in comparison with the benchmarks run locally.

These results also enhance LevelFilesBlock’s expected efficiency on the cloud since it

also follows the ImageBlock’s structure, as mentioned in Chapter 4. ImageBlock (and

SimpleFormat) supports updating and deleting tile images easily, whereas LevelFilesSet,

in its current version, does not. If performance is the main concern for developing the

WTMMS, then LevelFilesSet would be the right data structure to choose. However, if the

tile dataset gets updated frequently, then ImageBlock would be the most suitable solution.

Google offers an easy to use deployment platform and the results are very fast, as shown

in the previous section of this chapter. However, the biggest drawback of using Google

Cloud is the price of the APIs, and this is discussed in the next section. A flowchart of the

decision-making process can be seen in Figure 6.14.

70

Figure 6.14 Flowchart for choosing the data structure

6.7. Further comments

 The overall price of the benchmarks described above was about US $300. The

price of Google Engine is based on multiple factors, such as the number of users, the

dataset, the APIs used and so on. Running costs are a predominant concern for developers

that are interested in using the Google Cloud APIs. Google offers a pricing-estimation

tool that makes it easy for developers to pre-calculate the expected expense based on their

usage. As previously stated, Google offers a rich number of APIs that developers can

embed into their applications and configure easily. However, this does not come for free.

For the average application, Google pricing tool estimates that the monthly cost will be

US $1,082.27, as presented in Figure 6.15. It is highly recommended that developers,

71

prior to taking the architectural decision of deploying their applications in the Google

Cloud Platform, use the pricing tool to estimate the expected cost of the system.

Figure 6.15 Google Cloud monthly cost estimation tool

 Another significant factor to consider is the geolocation of the server. Google

cloud operates only in specific locations (Figure 6.16).

Figure 6.16 Google Cloud locations, taken from Google Cloud Platform Blog (2016)

72

 If the majority of expected users come from a place which is not listed as a

location for a potential server, then the latency is expected to be higher than for a place

where Google Cloud contains multiple servers (e.g., North Virginia). The developers

should consider all the mentioned issues prior to choosing to deploy their applications in

Google Cloud and developing web tiled map management systems based on Google

Cloud. Overall, cloud based solutions are convenient, but severely restricted by physical

practicalities, which might improve in future, but currently pose limitations on usability.

73

7. SOFTWARE ARCHITECTURE

 In designing a system, the developer must keep multiple aspects of the software

architecture in mind. No one can safely predict what the trajectory of the next

technological trends will be. For this reason, decision making on this level that is

grounded in essential reasoning remains crucial. In this chapter, elements of software

architecture (Clements et al., 2012) and software quality attributes (Offutt et al., 2002)

are introduced and described in the following sections.

7.1. Programming Language

 The chosen programming language is Java as it addresses all the scalability

concerns, including cross-system scalability. Moreover, Java is one of the most popular

programming languages and offers several libraries that are important for the

development of WTMMSs, such as JDBC (see Chapter 3.5.1), which offers a user-

friendly functionality in regard to database connectivity and manipulation by using ORM,

image processing libraries and other useful APIs. One of the advantages of choosing a

popular programming language to implement a project is that developers that might want

to contribute to the project can easily participate in a later stage. Java has been

established since 1995 and developers choose it because of its capabilities in OOP and

cross platform systems.

74

7.1.1. IntelliJ IDEA

 The IntelliJ IDEA is a Java integrated development environment (IDE). Although

there are multiple IDEs for someone to choose from, IntelliJ was chosen based on the

familiarity with the product and its constantly increasing user base. In the following

diagram developed by Stackoverflow, it can be seen that IntelliJ ranks 6th in the total

number of Development Environment (without counting other IntelliJ products such as

PHPStorm, PyCharm; Figure 7.1):

Figure 7.1 Analytics for IDE Usage (Stackoverflow Survey, 2017)

75

 The IntelliJ IDEA provides several IDEs for the majority of programming

languages. By using the IntelliJ IDEA, the code refactoring as well as the compatibility

across different programming languages becomes easier to handle. Furthermore, IntelliJ

supports continuous integration, sub-versioning and offers a wide range of plugins that

allow developers to constantly increase their productivity.

7.2. Operating System (OS)

 Just as the programming language, the system is expected to be compatible with

any operating system, preferably, without affecting the performance. One question that is

raised before choosing the OS is whether the system will pose an obstacle for the possible

plugins and the available web servers. For instance, installing NGINX® for the caching

mechanism on the backend web server eliminates the Windows® as an OS option since

NGINX® is not compatible with the Windows® environment. Furthermore, several other

operating systems, such as Macintosh®, Linux®, and so on are available. One of the

most important requirements of the project is the ability to scale across different OSes,

and that preferably, the performance of the web tiled map management system will

remain consistent. As presented in the Chapter 5, the system was tested across different

operating systems and the performance of the web tiled map management system

remained stable, when the LevelFilesSet is used as the main data structure.

76

7.3. Web Server

 The Web server is an important part of the application since it will maintain the

core aspects of the application. While the most famous Web server is Apache because it

can run on every OS, for the testing purposes of this project, the chosen server is TomCat

EE (or TomEE). This offers cross operating system compatibility and modifiability when

combined with Java.

7.4. Version Control

 A version control characterizes the management of changes to documents and

other information which allows the developer to trace changes made in the project and

the development team to have a general view of the project’s code (Pilato et al., 2008).

Software developers use Subversion to maintain current and historical versions of files

and source code to have better management of the producing code. Revision control

manages the changes on the coding dataset over time and as the code changes over time,

it can be structured and revised according to the developer’s needs. There are multiple

systems that support versioning, such as SVN and git. In this project, the SVN system

was adopted because of relevant expertise and its apt applicability to the issue a hand.

77

7.5. System Use Cases

 This section describes the use cases of each implemented component. The

following use cases are the ones from the external developer, the LevelFilesSet

generation, the configuration on the server by using Java Servlets, and usage from the

backend and frontend developer.

7.5.1. The external developer

 Figure 7.2 describes the use case of the system.

78

Figure 7.2 The use case of the system

 Initially, the user (developer) requests certain tiles from the server. The message

is processed and the server retrieves the tiles by using the LevelFilesSet data structure.

Then, the server responds to the user by providing the requested images. An important

aspect of this use case design is the fact that the library is encapsulated on the backend

server, and no matter which of the alternative data structures is being used, the users will

not have to change their actions’ behavior for each method. Thus, no alteration of the

frontend code is required. Figure 9 contains an example where the developer requests 2

tiles (7_0_1.jpg and 7_0_2.jpg). The server parses the request and then uses the

LevelFilesSet to retrieve the tiles; following this, the server responds and the developer

can retrieve the tile images. Note that it is the developer’s responsibility to parse each tile

79

accordingly. In this case, for the .jpg file the tiles can be divided by the ASCII prefix

“ˇÿˇ‡” (Zhang, Y., et. al, 2008; Figure 7.3).

Figure 7.3 Tile retrieval via HTTP response on the client side

 The remaining use-cases present the way the LevelFilesSet is generated and

configured to request multiple tiles per HTTP request.

7.5.2. The LevelFilesSet generation

 In this use case, the LevelFiles are generated and stored on the web server. The

prerequisite of this use-case is that the dataset must be in the storage disk for the library

to read and write each tile directly onto the Lookup file and the TileDataset file (Figure

7.4). The LevelFilesSet, in its current stable version, supports only the generation of the

LevelFiles. If the tiles of the system are frequently updated, then the process of the

generation must be repeated each time, a procedure which inevitably imposes delays on

the system.

80

Figure 7.4 Use case of the LevelFiles Data Structure

 Systems that update tile datasets frequently will need the feature of updating

individual tiles instead of the whole datasets, and this is a feature that LevelFilesSet could

support in later versions.

7.5.3. The LevelFilesSet configuration on the server using Java Servlets

 The LevelFilesSet needs to be configured accordingly on the server side. The

internal classes must be modified appropriately in regards to where the LevelFiles are

stored (Figure 7.5).

81

Figure 7.5 LevelFilesSet configuration on the server using Java Servlets

 This action should be performed after the LevelFilesSet dataset has been

generated, and thus the Java Servlet can be configured.

7.5.4. The Logical Application Tiers

 The logical tiers highlight the standard architecture for distributed and large scale

applications. The tiers represent a physical organization of the application’s components

in order to classify the available services and features of a system. The client tier contains

the available end users of the system. The presentation tier consists of the Java Servlet

expected components and the way the data are presented to the client tier. Furthermore,

the business service tier consists of tightly coupled components that conform to the J2EE

distributed component model. In this tier, the web services and standalone servers are

described. Finally, in the Data tier, the main data sources under which the data are stored

82

and retrieved are contained. The logical Tiers of the web tiled map management system

can be seen in Figure 7.6.

Figure 7.6 The logical application tiers

 There are two main clients in this project; the programmer and user client. The

programmer’s goal is to make the mapping interface available for the user client to

navigate through the mapping application. This includes making REST HTTP requests to

the server, retrieving the requested tiles, and presenting them in the map grid. While the

client navigates through the map, the underlying system runs the requests as developed

by the programmer. In this design, the external programmer can retrieve Metadata by

making an HTTP request to the server, similarly to the tile retrieval methods.

83

7.5.5. The backend developer

 In this use case, the backend developer must create the Java Servlet so that when

an HTTP request is made from the frontend developer (e.g., http://www.mydomain.com?

tile=0_0_1) then the requested tile will be returned containing the desired raw pixels

(Figure 7.7).

Figure 7.7 The backend developer requests and retrieves a tile by using the LeveFilesSet data

structure

 The Java Servlet will connect with the LevelFilesSet library (as explained above)

and, once configured, it will render available the tile retrieval.

7.5.6. The Frontend Developer

 It is important to note that the frontend developer is unaware of the data structure

being used on the server for the tile retrieval. This means that regardless of the storage

84

technique used on the backend, both frontend and backend developers can work

independently (Figure 7.8).

Figure 7.8 The frontend developer requests the tiles via an HTTP request

7.6. Sequence Diagrams

 A sequence diagram describes the construction of messages between the objects.

Specifically, a sequence diagram shows the object correlation arranged in time sequence.

Sequence diagrams are very helpful in detecting crucial task latencies and improving the

performance of a specific functionality. By optimizing the functionality and improving

the performance, the latencies can be reduced to a minimum and thus the system can

reach optimal results. This section showcases two sequence diagrams of the two main

functions in LevelFilesSet; the LevelFilesSet’s generation and the tile retrieval.

85

7.6.1. LevelFilesSet Generation

 The figure 7.9 describes the underlying sequence diagram which is used for the

tile generation.

Figure 7.9 The sequence diagram for the tile generation

 The LevelFilesSet uses the build function within the LevelFiles class

(LevelFiles.build).Thereafter, the Lookup (LookupFile.build) and TileData files

(TileDataFile.build) are built and the content of the tile dataset is generated by the

File.ReadAllBytes) function provided by the Tile object. Finally, the ShowStatus function

is the one which reveals the progress of the LevelFilesSet generation.

86

7.6.2. LevelFilesSet tile retrieval

Another important diagram is the one of the tile retrieval, shown in Figure 7.10.

Figure 7.10 The Tile Retrieval sequence diagram

 The LevelFilesSet.getTiles method uses the getTile iteratively; then the

Tile.Builder retrieves the tile. Since this is one of the most important factors of the

LevelFilesSet, it is important to highlight the potential of reducing the time needed for

the runtime of the operation. If the time of tile retrieval is reduced, the LevelFilesSet’s

performance will be better, thus, improving the LevelFilesSet.getTile performance is a

feature worth investigating in future versions of the data structure.

7.7. UML Class diagram

87

 This section explains the architecture of the LevelFilesSet. The goal of this

implementation was to maximize simplicity and usability. For instance, the developer

should not have access to classes which are not required for direct access; that is the

principle of encapsulation (Bloch, 2008). Another principle that was followed during the

implementation is the one of preferring composition over inheritance; by following this

principle, whenever applicable, the object’s composition within the class should be

preferred over the inheritance. This principle was first described by Gamma et al. (1995)

where several benefits were analyzed and explained (Figure 7.11). The LevelFilesSet

adapts the Static Factory pattern, as developed by Bloch, 2008. Every object must

implement the Builder interface which will allow any ongoing instantiation. The Lookup

and TileData files implement the singleton pattern. Since the LevelFilesSet data structure

is not an in-memory data structure (Arge, 2002), then both the Lookup and TileData

object hold a reference to the underlying files run through the operating system.

Each class describes the following

Public Classes:

1. LevelFilesSet: A set of LevelFiles.

2. FileNames: Contains all the file paths and the file names used to perform the I/O.

3. Tile: Represents a Tile image (file) that holds the name, level, column, row, data and

the file type.

Private Classes:

4. LevelFiles: Contains the Lookup file and the TileData file and provides the necessary

methods to store and retrieve the tiles into the files.

5. TileDataFile: Represents a file where the tiles’ bytes are stored.

88

6. LookupFile: The file containing the pointer to the TileDataFile and the size of each

tile.

7. Utilities: Contains static methods used within the framework.

8. MyFileNames: Enum for instantiating the FileNames class’ parameters.

9. PerformanceTests: Includes the Performance Tests that measure the LevelFilesSet’s

API efficiency over the others.

89

Figure 7.11 The LevelFilesSet's UML diagram

90

 The developer initially has to set up the paths where he stores the dataset

(tileDataSetPath, lookupFilePath, tileDataFilePath) and encapsulate the information in

the fileNames variable. Once the fileNames is instantiated, it is passed to the

LevelFilesSet class so it can be instantiated. The developer then can retrieve the tile by

calling the getTile(Z,X,Y) method, where Z the zoom level, X the column number and Y

the row number. The code of the above procedure is highlighted in Figure 7.12.

Figure 7.12 Using LevelFilesSet

//Change the file paths with your values

//the tile dataset path

 String tileDataSetPath = "/Users/mkotsollaris/Desktop/tile_dataset_test/tile_dataset";

 //where the lookupFile is going to be stored

 String lookupFilePath = "/Users/mkotsollaris/Desktop/tile_dataset_test/LevelFiles/LookupFile";

 //where the tileDataFile is going to be stored

 String tileDataFilePath = "/Users/mkotsollaris/Desktop/tile_dataset_test/img_block";

FileNames fileNames = new FileNames.Builder(tileDataSetPath, lookupFilePath,

tileDataFilePath).build();

LevelFilesSet levelFilesSet = new LevelFilesSet.Builder(fileNames).build();

levelFilesSet.getTile(0,0,0); //returns the "0_0_0.jpg" tile

91

8. CONCLUSIONS AND RECOMMENDATIONS

8.1. Conclusions

 The purpose of this research was to determine which data structure provided the

most scalable and efficient system under which tile images could be stored and retrieved.

In conducting this research, four tile storage solutions (database, SimpleFormat,

ImageBlock, and LevelFilesSet) were chosen and implemented from scratch. The

database solution offered the slowest results out of the alternative solutions; databases

could be scaled across different systems but their performance was slow compared to the

other techniques. During the locally performed benchmarks, the file system based

solutions (SimpleFormat and ImageBlock) performed better than the database approach.

Further, in these local benchmarks, SimpleFormat performed faster than the ImageBlock

solution. This performance was explained due to the impact of the exponential growth of

the subdirectories within the increasing number of zoom-levels. That is, the more the sub-

directories within a zoom level, the greater the latencies on the locally-tested file systems,

such as NTFS and ExFAT.

Different results were observed when the cloud-based benchmarks were

performed. Specifically, the Google Cloud object-based file system favored the structured

subdirectories and the ImageBlock performance was greater than its performance tested

in the local environment. For ImageBlock to provide efficient results, a balance should be

92

kept between the number of sub-divided directories (which should be the minimum

applicable) and the number of tiles within the subfolder (which should be the maximum).

On the contrary, LevelFilesSet provides the fastest performance and scales under any

system. Importantly, this comes with drawbacks such as not supporting dynamic tile

adding and deletion within a zoom level. If a tile needs to be replaced, then LevelFilesSet

has to generate the tiles for the entire zoom level. Furthermore, in its current version,

LevelFilesSet stores the entire tile dataset in two single files which renders tile serving

for zoom levels more than 15 not scalable. A hybrid combination of ImageBlock and

LevelFilesSet, named LevelFilesBlock, is proposed to take advantage of LevelFilesSet’s

performance superiority as well as ImageBlock’s elegance and scalability on distributing

the tiles across different storage systems. With the LevelFilesSet logic being applicable to

any type of data storage, an ambitious extension could be the implementation of a generic

form that supports information storage of any type. Another potential refinement would

be examining the delays between the communication of the objects (e.g., TileData file

with Lookup file). If these delays are reduced, LevelFilesSet could produce more

efficient results.

 In the long term, adoption of this data structure can transcend the limitations

imposed by different environments, while improving upon the speed and efficiency of

existing system-specific solutions. Moreover, the software architecture of the project was

aimed to be as scalable as possible. The initial design contained inheritance as well as

other decisions that were not following the principles and guidelines of the large-scale

enterprises; the second version of the architecture was improved and follows most of the

design architectural patterns, as proposed by Bloch (2008) and Gamma et al. (1994). Both

93

scalability and performance were taken into account while the system was developed

from scratch. The LevelFilesSet was designed and implemented and additional features

were suggested for its further development. In the end, the proposed backend server

seems to be able to handle large volumes of users. In Chapter 8.2, additional features are

suggested that could prove to be valuable additions to the system.

 Furthermore, for the web tiled map management system to be consistently

scalable, emphasis was placed on how the software architecture could be implemented to

render the system efficient across different operating systems with different

specifications. Scalability and longevity of software systems is and has been always a

field that researchers have tried to investigate and find solutions for (Weyuker et al.,

2002). Even though software design patterns are time consuming and difficult to

implement across large-scale systems, they are worth developing and can be rewarding.

For instance, Test-Driven-Development (Halili, 2008) is one of the emerging techniques

in developing software. However, the steep learning process of TDD (Pilato, 2008)

makes it hard for the developers to adopt it into their frameworks. Another concern

would be vertical scalability versus horizontal scalability (Wessels, 2001). Vertical

scalability refers to increasing the capacity of the already existing systems, whereas

horizontal scalability refers to the ability to add further systems (Figure 8.1).

94

Figure 8.1 Horizontal and Vertical Scalability

 The ideal system would be an error prone system with the ability to add limitless

new features without interoperability or any other issues. The perfect system does not

exist because of the dynamic requirements and the physical constraints of hardware at

any given time point. Thus, it is important for the developers to continuously keep

building, upgrading, and optimizing their systems, fixing errors of the previous versions

and evolving the system to increase its efficiency and performance. When building a web

tiled map management system, the developer must ask (and provide answers to) the

following questions:

a. What will be the tiling scheme? (presented in Chapters 1 and 2).

b. What data structure will be used for tile storage and retrieval? (presented in Chapters

3 and 4).

95

c. How will the system react to a large load of user requests? (presented in Chapters 5

and 6).

d. What will be the specifications of the system? (presented in Chapter 7).

 This thesis provided a thorough analysis of the principles and guidelines that must

be taken into consideration in order to implement a scalable and efficient web tiled map

management system. In the following section, additional topics are suggested for future

research.

8.2. Future Research

 This research was based primarily on analyzing and implementing optimal data

structures for tile storage and retrieval. During the course of this project, additional

research topics were identified, and are as follows:

 As presented in the Chapter 4.5, the LevelFilesSet data structure could be used to

store Metadata that contain useful information for the tiles. By storing Metadata

information, authors can be credited and the source of the tile datasets becomes

available to the users. This feature enhances the capabilities of tile web server and

follows the necessary guidelines of data acknowledgement.

 The LevelFilesSet can be extended to support any information storage. Systems

that frequently access files and are heavily dependent on the file system’s

96

performance can be benefited by a fast data structure. For the LevelFilesSet to

support such a level of abstraction, a thorough analysis of how such a data

structure could be developed must take place. The key component for why the

LevelFilesSet can support tile storage is the fact that the size of the tile is known

and thus the pixels can be stored in external files and accessed accordingly. Other

domains such as Image Management systems could benefit from using

LevelFilesSet-based approach for data storage, when performance and speed are

concerns.

 For the local benchmarks, the reason why ImageBlock has worse results than

SimpleFormat, is primarily due to the fact that the subdirectories introduce

latencies and thus the greater the number of the subdirectories, the longer the time

of retrieval. A way of reducing the number of retrievals would be to increase the

tile volume limitation per subdirectory, for instance, increasing the limitation

from 1024 to a million and if the average tile size is 4KB, then the expected size

of the subdirectory would be 1GB. Depending on the average tile size, a balance

between the size of each sub-directory and the ability to distribute the tiles across

multiple systems can be achieved. In the best case, an average of 64GB per

LevelFilesSet (within each subdirectory) would be an ideal outcome since the

volume significantly decreases the number of the subdirectories and allows the

storage across multiple systems.

 The current version of LevelFilesSet supports tile generation but not adding and

deleting tiles dynamically. A system which frequently updates its tiles will need

that feature. For supporting this feature, the implementation of the LevelFilesSet

97

should be upgraded to a more sophisticated version, as proposed by Sample et al.

(2010). By storing an extra file which keeps the pointers of each tile, the

LevelFilesSet can modify (add/delete) each tile separately. However, this feature

is expected to increase the memory complexity of the systems since additional

pointers must be stored, as presented in Chapter 3.

 LevelFilesBlock needs to be implemented and validated. Its hybrid approach on

combining LevelFilesSet, which is the fastest available solution and ImageBlock,

which is the most modifiable and scalable solution for distributing tiles across

different storage systems, make it an efficient data structure worth investigating

further.

 Several caching techniques, on top of LevelFilesSet, could be implemented on the

server side that could significantly boost the performance of tile retrieval. While

these caching abstractions are beyond the scope of this thesis project, proposals in

Web Caching, from Gupta (2010) and Wessels (2001), would introduce a

significant performance improvement when the external developer makes an

HTTP request to retrieve one, or multiple, tile images.

 An analysis of the possible network architectures must be developed to improve

the results of the tile retrieval. As stated in Chapters 5 and 6, the HTTP overhead

causes further latencies on the system. Other networking solutions, such as Web-

sockets, are expected to not have such delays since once the connection is

established between the client and the server then there is no need to re-validate

the client’s information. Improving the network performance is crucial and thus a

98

robust benchmark analysis is expected to be useful in regard to scalability and

performance improvement.

 While the number of users increases, the need of supporting load-balancing

techniques across multiple servers becomes vital. Tools like Redis®,

Memcached® and so on provide a user-friendly approach to load balancing and

thus a benchmark between the available tools could provide the benefits and the

drawbacks of each technique.

 LevelFilesSet data structure could be implemented for database management

support. As highlighted in the Benchmark Results chapter, the performance of the

databases provides the worst results amongst all the other techniques. By

providing a plugin which implements the LevelFilesSet within the database-

management-systems, tiles can be efficiently stored and retrieved and thus

developers could consider the database option valuable.

 The LevelFilesSet could be implemented for different platforms. This can be

achieved by either implementing it from scratch or using tools. For instance, an

available tool for importing Java JAR documents to C# is IVKM. Other tools

alike IVKM.NET exist for different programming languages.

 The dataset across different web tiled map management systems

varies. Benchmarks regarding the best tile size and format could prove to be very

helpful in improving performance. The dataset tested in this research were images

of 256x256 pixels in the JPG format. Other image formats, such as PNG, SVN

and so on, are widely used and thus an investigation of these types could prove to

be useful.

99

 Multiple vendors, such as ESRI, Microsoft, Google, offer tile-hosting solutions.

These vendors offer multiple APIs and user-friendly functionalities. An

interesting topic for further investigation is to examine whether the performance

of the data structures examined in this research remains the same across these

vendors. Every individual vendor is not expected to use the same file system;

thus, re-examining the performance on the cloud would provide a useful insight in

regard to choosing the vendor, in case the system is not hosted on the developer’s

cloud.

 More design patterns, as mentioned by Gamma et al. (1994) and Bloch (2008),

could be implemented for the aforementioned data structures. The implementation

does significantly affect the performance of the system. If these data structures are

implemented by following the architectural and low level design patterns, then the

performance is expected to be better than currently.

 Big data frameworks could be tested and combined with the web tiled map

management system’s functionality. For instance, the Hadoop or Spark

framework can be used to access the distributed tiles of the LevelFilesBlock

across different systems. The benefit of using these frameworks is that they are

frequently used by multiple developers and thus they provide a large volume of

accessible APIs that can be used.

 Apart from Google Cloud, other vendors such as Amazon EC2, Microsoft Azure

and ESRI provide cloud support for storing and retrieving tiles. A benchmark

among these vendors would be useful to investigate the performance of the

mentioned systems.

100

 Multiple libraries will be added with the release of Java 9 (OpenJDK, 2017). One

of the libraries is the Java Microbenchmarking Harness. JMH is a Java harness for

building, running, and analyzing Nano/Micro/Milli/Macro benchmarks. When it

comes to accurate benchmarking, there are forces in play like warmup times and

optimizations that can have a significant impact on results, especially when the

accuracy is going down to micro and Nano seconds. JMH is expected to be the

best choice to extract accurate results and run benchmarks in Java.

 Java 9 is expected to fully support HTTP 2.0 SPDY which has already shown

great speed improvements over HTTP 1.1 ranging from 11.81% to 47.7% (Google

SPDY 2017) and its implementation already exists in most modern browsers. Java

9 will have full support for HTTP 2.0 and feature a new HTTP client for Java that

will replace HttpURLConnection, and implement HTTP 2.0 and websockets,

which will allow for further benchmarking options in examining network

performance.

 LevelFilesSet could be implemented in a faster language than Java, like C++ or

Scala. If developed correctly, these languages will offer programming techniques

to accelerate the calculations and tile retrieval and this would increase the

performance of LevelFilesSet.

 LevelFilesSet could be extended to work in-memory and thus allow data storage

in RAM. This feature is expected to prove useful to caching techniques applied on

the server side (Gupta, 2010).

 LevelFilesSet could be extended to support on-the-fly tile update. In the current

form, in the case of a tile getting updated, LevelFilesSet must generate all the tiles

101

of the level. In such a scenario, it would be logical to implement LevelFilesSet as

a file-system itself since the mentioned features would simulate a file system

behavior.

 Additional hardware components could be examined to check their efficiency. For

instance, how would an AMD CPU perform against an Intel CPU, an NVIDIA

GPU with an Intel GPU and others.

 Based on this research, a file system that imitates the behavior of LevelFilesSet

which is specialized in providing efficient tile storage and retrieval could be

developed. This file system must efficiently retrieve tile images with optimal

performance and also make it possible for other type of data to be stored.

 Apart from Google Cloud, several other vendors, such as Microsoft Azure, ESRI

and Amazon S3 support cloud-based storage. Further examination among these

vendors could prove to be useful for deciding which offers the most efficient tile

storage among different tile structures.

 An analysis of the differences between different network protocol, such as

TCP/IP, HTTP and so on, could provide significant information of which network

protocol is the most efficient for tile retrieval.

 In conclusion, the best solution needs to be tailored to the given needs of the

developer. This research provides relevant evidence of a systems engineering approach

that can guide the implementation of efficient web tiled map management systems

followed by scalable data structures and technologies that are optimal and render tile

serving efficient for large numbers of users.

102

REFERENCES

Abreu, F. B., & Carapuça, R. (1994, October). Object-oriented software engineering:

Measuring and controlling the development process. In Proceedings of the 4th

international conference on software quality (Vol. 186, pp. 1-8).

Amazon SE, URL: https://aws.amazon.com/se3/

Apache Subversion, URL: https://subversion.apache.org/

Argyraki, K., & Cheriton, D. R. (2009). Scalable network-layer defense against internet

bandwidth-flooding attacks. IEEE/ACM Transactions on Networking (ToN), 17(4),

1284-1297.

AWS Terrain Tiles, URL: https://aws.amazon.com/public-datasets/terrain/

Arge, L. (2002). External memory data structures. In Handbook of massive data sets (pp.

313-357). Springer US.

Azevedo, L. G., Santoro, F., Baião, F., Souza, J., Revoredo, K., Pereira, V., & Herlain, I.

(2009). A method for service identification from business process models in a SOA

approach. In Enterprise, Business-Process and Information Systems Modeling (pp. 99-

112). Springer Berlin Heidelberg.

Barish, G., Obraczka, K., Way, A., & Rey, M. (2000). World Wide Web Cahing: Trends

and Techniques. IEEE Communications Magazine, 38(5), 178–184.

Batty, M., Hudson-Smith, A., Milton, R., & Crooks, A. (2010). Map mashups, Web 2.0

and the GIS revolution. Annals of GIS, 16(1), 1-13.

103

Blower, J. D. (2010, June). GIS in the cloud: implementing a Web Map Service on

Google App Engine. In Proceedings of the 1st International Conference and Exhibition

on Computing for Geospatial Research & Application (p. 34). ACM.

Boldi, P., Codenotti, B., Santini, M., & Vigna, S. (2004). UbiCrawler: A scalable fully

distributed Web crawler. Software - Practice and Experience, 34(8), 711–726.

http://doi.org/10.1002/spe.587.

Breslau, L., Cao, P., Fan, L., Phillips, G., & Shenker, S. (1999). Web caching and Zipf-

like distributions: evidence and implications. Ieee Infocom, 1, 126–134

http://doi.org/10.1109/INFCOM.1999.749260.

Buyya, R., Yeo, C. S., & Venugopal, S. (2008, September). Market-oriented cloud

computing: Vision, hype, and reality for delivering it services as computing utilities.

In High Performance Computing and Communications, 2008. HPCC'08. 10th IEEE

International Conference on (pp. 5-13). IEEE.

Chapter 2 Java Enterprise System Architecture, URL: https://docs.oracle.com/cd/E19263-

01/817-5764/architecture.html#wp22243

Choosing A Proxy Server (2014), ApacheCon, Bryan Call.

Class RandomAcessFile, Oracle, URL:

https://docs.oracle.com/javase/7/docs/api/java/io/RandomAccessFile.html.

Clements, P. C. (2002). Software architecture in practice (Doctoral dissertation, Software

Engineering Institute).

Curl, command line tool and library for transferring data with URLs, URL:

https://curl.haxx.se/

http://www.easybib.com/cite/results?source=website&provider=&cite-style=mla7&query=https%3A%2F%2Fdocs.oracle.com%2Fcd%2FE19263-01%2F817-5764%2Farchitecture.html%23wp22243
https://docs.oracle.com/cd/E19263-01/817-5764/architecture.html#wp22243
https://docs.oracle.com/cd/E19263-01/817-5764/architecture.html#wp22243

104

Dimension 2: Logical Tiers (Sun Java Enterprise System 5 Technical Overview), URL:

https://docs.oracle.com/cd/E19528-01/820-0167/aauba/index.html

Dixon, M., & Hamilton, M. (2006). U.S. Patent Application No. 12/088,116.

Dutilleul, P. (1999). The MLE algorithm for the matrix normal distribution. Journal of

statistical computation and simulation, 64(2), 105-123.

Fan, L., Cao, P., Almeida, J., & Broder, A. Z. (2000). Summary cache: A scalable wide-

area Web cache sharing protocol. IEEE/ACM Transactions on Networking (Vol. 8)

http://doi.org/10.1109/90.851975.

Ganger, G. R., & Patt, Y. N. (1994, November). Metadata update performance in file

systems. In Proceedings of the 1st USENIX conference on Operating Systems

Design and Implementation (p. 5). USENIX Association.

Chicago

Git Tool, URL: https://git-scm.com/

Google Buckets, URL:

Google Cloud Engine, URL: https://cloud.google.com/compute/

Google Cloud Platform Blog, Brian Stevens (2016), Vice President of Google Cloud,

URL: https://cloudplatform.googleblog.com/2016/09/Google-Cloud-Platform-sets-a-

course-for-new-horizons.html

Google Cloud Storage Documentation, URL: https://cloud.google.com/storage/docs/

Google Maps for Work, "Serving raster layers on Google Cloud Platform", URL:

https://storage.googleapis.com/support-kms-

prod/57E913590B6A12FED962C112597B54F99DA7

105

Google Maps Structure, MicroImages (2010), URL:

http://www.microimages.com/documentation/TechGuides/78googleMapsStruc.pdf

Gupta, P. (2010). Providing caching abstractions for web applications (Doctoral

dissertation, Massachusetts Institute of Technology).

Hamilton, G., Cattell, R., & Fisher, M. (1997). JDBC Database Access with Java (Vol.

7). Addison Wesley.

Heidemann, J., Obraczka, K., & Touch, J. (1997). Modeling the performance of HTTP

over several transport protocols. IEEE/ACM Transactions on Networking (TON),

5(5), 616-630.

Henning, J. L. (2000). SPEC CPU2000: Measuring CPU performance in the new

millennium. Computer, 33(7), 28-35.

Henning, J. L. (2006). SPEC CPU2006 benchmark descriptions. ACM SIGARCH

Computer Architecture News, 34(4), 1-17.

Heydon, A., & Najork, M. (1999). Mercator: A scalable, extensible Web crawler. World

Wide Web, 2(4), 219–229. http://doi.org/10.1023/A:1019213109274.

HTTP Range Requests, Mozilla Developer Network, URL:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Range_requests

Housel III, B. C. (2003). U.S. Patent No. 6,535,869. Washington, DC: U.S. Patent and

Trademark Office.

Hundt, R. (2011). Loop Recognition in C++/Java. Go/Scala.

IKVM.NET Tool, URL: https://www.ikvm.net/

Information Technology – Digital Compression and Coding of Continuous-Tone Still

Images – Requirements and Guidlines, T. (1993). CCITT T. 81.

106

J2EE Oracle, URL: http://www.oracle.com/technetwork/java/javaee/overview/index.html

Java EE, Oracle Documentation, URL (2000):

http://docs.oracle.com/javaee/6/tutorial/doc/bnafe.html

Java SE Documentation, URL:

https://docs.oracle.com/javase/tutorial/jdbc/overview/architecture.html

Java Servlet Tutorial, URL: https://www.tutorialspoint.com/servlets/images/servlet-

lifecycle.jpg

Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R., Iwamoto, K.,

Yerushalmi, Y. (1999). Web caching with consistent hashing. Computer Networks,

31(11), 1203–1213 http://doi.org/10.1016/S1389-1286(99)00055-9.

Lin, K. J., & Richard, G. (2003). Web services computing: advancing software

interoperability.

Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., & Lim, S. (2005). A survey and

comparison of peer-to-peer overlay network schemes. IEEE Communications

Surveys and Tutorials, 7(2), 72–93. http://doi.org/10.1109/COMST.2005.1610546.

MapTiler: Coordinates, Tile Bounds and Projection, URL:

http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

McGrath, H. (2014). Historical Maps of Grand Lake Meadows (Doctoral dissertation,

UNIVERSITY OF NEW BRUNSWICK).

Mesnier, M., Ganger, G. R., & Riedel, E. (2003). Object-based storage. IEEE

Communications Magazine, 41(8), 84-90.

MS-EFSR: Encrypting File System Remote (EFSRPC) Protocol. Microsoft. 14

November 2013.

107

Nagappan, N., Maximilien, E. M., Bhat, T., & Williams, L. (2008). Realizing quality

improvement through test driven development: results and experiences of four industrial

teams. Empirical Software Engineering, 13(3), 289-302.

Offutt, J. (2002). Quality attributes of web software applications. IEEE software, 19(2),

25-32.

OpenJDK JDK 9, URL: http://openjdk.java.net/projects/jdk9/

Open Data Canada, URL: http://open.canada.ca/en/open-data

Phansalkar, A., Joshi, A., Eeckhout, L., & John, L. K. (2005, March). Measuring program

similarity: Experiments with SPEC CPU benchmark suites. In Performance Analysis of

Quinn, S., & Gahegan, M. (2010). A predictive model for frequently viewed tiles in a

web map. Transactions in GIS, 14(2), 193-216.

Rajlich, V. T., & Bennett, K. H. (2000). A staged model for the software life

cycle. Computer, 33(7), 66-71.

Rosenblum, M., & Ousterhout, J. K. (1992). The design and implementation of a log-

structured file system. ACM Transactions on Computer Systems (TOCS), 10(1), 26-52.

Rowstron, A., & Druschel, P. (2001). Storage management and caching in PAST, a large-

scale, persistent peer-to-peer storage utility. ACM SIGOPS Operating Systems

Review, 35(5), 188. http://doi.org/10.1145/502059.502053.

Savage, S. J., & Waldman, D. M. (2009). Ability, location and household demand for

Internet bandwidth. International Journal of Industrial Organization, 27(2), 166-174.

Systems and Software, 2005. ISPASS 2005. IEEE International Symposium on (pp. 10-

20). IEEE.

108

Sears, R., Van Ingen, C., & Gray, J. (2007). To blob or not to blob: Large object storage

in a database or a filesystem?. arXiv preprint cs/0701168.

Sen, S., & Wang, J. (2004). Analyzing Peer-To-Peer Traffic, 12(2), 219–232.

Small, T., Li, B., & Liang, B. (2007). Outreach: Peer-to-peer topology construction

towards minimized server bandwidth costs. IEEE Journal on Selected Areas in

Communications, 25(1).

SPDY: An experimental protocol for a faster web (2010), URL:

http://dev.chromium.org/spdy/spdy-whitepaper.

Stackoverflow Developer Survey Results 2017, URL:

http://stackoverflow.com/insights/survey/2017/?utm_source=so-

owned&utm_medium=hero&utm_campaign=dev-survey-

2017&utm_content=hero-ind-ques

Weyuker, E. J., & Avritzer, A. (2002). A metric to predict software scalability. In

Software Metrics, 2002. Proceedings. Eighth IEEE Symposium on (pp. 152-

158). IEEE.

Wieczorek, J., Guo, Q., & Hijmans, R. (2004). The point-radius method for

georeferencing locality descriptions and calculating associated uncertainty. International

journal of geographical information science, 18(8), 745-767.

Yee, K. P., Swearingen, K., Li, K., & Hearst, M. (2003, April). Faceted metadata for

image search and browsing. In Proceedings of the SIGCHI conference on Human

factors in computing systems (pp. 401-408). ACM.

Zhang, Y., Li, D., & Zhu, Z. (2008). A server side caching system For efficient web map

services. Proceedings - The 2008 International Conference on Embedded Software

109

and Systems Symposia, ICESS Symposia, 32–37

http://doi.org/10.1109/ICESS.Symposia.2008.39.

110

Bibliography

Bloch, J. (2008). Effective java (the java series). Prentice Hall PTR.

Clements, P. C. (2002). Software architecture in practice (Doctoral dissertation, Software

Engineering Institute).

Craig, R. D., & Jaskiel, S. P. (2002). Systematic software testing. Artech House.

Gamma, E. (1995). Design patterns: elements of reusable object-oriented software.

Pearson Education India.

Dombrowski, M. (2017). Personal communication. Dombrowski Marcel, Web

Application Software Development, Geodesy and Geomatics Engineering Dept.,

University of New Brunswick, New Brunswick, Canada, May.

Du, W. (2017). Personal communication. Dr. Weichang Du, Professor, Computer Science

Dept., University of New Brunswick, New Brunswick, Canada, May.

Fraser, D. (2017). Personal communication. David Fraser, Mapping Technologist,

Geodesy and Geomatics Engineering Dept., University of New Brunswick, New

Brunswick, Canada, May.

Halili, E. H. (2008). Apache JMeter: A practical beginner's guide to automated testing

and performance measurement for your websites. Packt Publishing Ltd.

Hamilton, G., Cattell, R., & Fisher, M. (1997). JDBC Database Access with Java (Vol.

7). Addison Wesley.

Mak, G., Rubio, D., & Long, J. (2010). Spring Recipes: A problem-solution approach.

Apress.

Pilato, C. M., Collins-Sussman, B., & Fitzpatrick, B. (2008). Version control with

subversion. " O'Reilly Media, Inc.".

O’Sullivan David (2017). Personal communication. Review of journal paper in

International Journal of Geographical Information Systems (IJGIS). Dr. O’Sullivan

David, Professor in UC Berkeley, April

Sample, J. T., & Ioup, E. (2010). Tile-based geospatial information systems: principles

and practices. Springer Science & Business Media.

Shaw, M., & Garlan, D. (1996). Software architecture: perspectives on an emerging

discipline (Vol. 1, p. 12). Englewood Cliffs: Prentice Hall.

111

Stefanakis, E. (2017). Personal communication. Dr. Emmanuel Stefanakis, Associate

Professor, Geodesy and Geomatics Engineering Dept., University of New Brunswick,

New Brunswick, Canada, May.

Stefanakis, E., Course Notes, GGE5403, php:hypertextpreprocessor, 2012

Wessels, D. (2001). Web caching. " O'Reilly Media, Inc.".

William, L. (2017). Personal communication. William Liu, Research Technician,

Geodesy and Geomatics Engineering Dept., University of New Brunswick, New

Brunswick, Canada, May.

Zhang, Y. (2017). Personal communication. Dr. Yun Zhang, Professor, Geodesy and

Geomatics Engineering Dept., University of New Brunswick, New Brunswick, Canada,

May.

 112

Appendix I: LevelFilesSet Implementation Code

I.1. FileNames class

package unb.mkotsollaris.tilemanagement;

import java.io.File;

import java.util.ArrayList;

/**

 * Contains all the file paths and the file names.

 *

 * @author mkotsollaris

 * @since 1.0

 */

final public class FileNames

{

 /** The tile dataset full directory path */

 private final String tileDataSetPath;

 /** The LookupFile path */

 private final String lookupFilePath;

 /** The TileData path */

 private final String tileDataFilePath;

 private FileNames()

 {

 throw new AssertionError();

 }

 private FileNames(Builder builder)

 {

 this.lookupFilePath = builder.lookupFilePath;

 this.tileDataFilePath = builder.tileDataFilePath;

 this.tileDataSetPath = builder.tileDataSetPath;

 }

 /**

 * Returns the {@link FileNames#tileDataSetPath}.

 */

 public String getTileDataSetPath()

 {

 return tileDataSetPath;

 }

 /**

 * Returns the {@link FileNames#lookupFilePath}.

 113

 */

 public String getLookupFilePath()

 {

 return lookupFilePath;

 }

 /**

 * Returns the {@link FileNames#tileDataFilePath}.

 */

 public String getTileDataFilePath()

 {

 return tileDataFilePath;

 }

 /**

 * Returns the expected {@link Tile} name.

 *

 * @param level the level of the {@link Tile}.

 * @param column the column of the {@link Tile}.

 * @param row the row of the {@link Tile}.

 */

 public String getTileName(int level, int column, int row)

 {

 return getTileDataSetPath() +

 File.separator +

 level +

 File.separator +

 level +

 "_" +

 column +

 "_" +

 row +

 ".jpg";

 }

 /**

 * Provides the Builder pattern for the object initialization.

 */

 public static class Builder

 {

 /** The tile dataset full directory path */

 private final String tileDataSetPath;

 /** The LookupFile path */

 private final String lookupFilePath;

 /** The TileData path */

 private final String tileDataFilePath;

 /**

 * Implements the Builder Pattern for the object initialization.

 *

 * @param tileDataSetPath the tile dataset's path.

 * @param lookupFilePath the lookupFile's path.

 * @param tileDataFilePath the tileDataFile path.

 */

 public Builder(String tileDataSetPath, String lookupFilePath,

 String tileDataFilePath)

 114

 {

 this.tileDataSetPath = tileDataSetPath;

 this.tileDataFilePath = tileDataFilePath;

 this.lookupFilePath = lookupFilePath;

 }

 /**

 * Initializes the object.

 */

 public FileNames build()

 {

 return new FileNames(this);

 }

 }

}

I.2. LevelFiles class

package unb.mkotsollaris.tilemanagement;

import java.io.File;

import java.io.IOException;

/**

 * Contains the Lookup file and the TileData file and provides the necessary

 * methods to store and retrieve the tiles into the files.

 *

 * @author mkotsollaris

 * @since 1.0

 */

final class LevelFiles

{

 /** the number of the bytes that we use for the position pointer */

 final static int positionAllocationBytes = 8;

 /** the number of the bytes that we use for the size pointer */

 final static int sizeAllocationBytes = 4;

 /** the Lookup File */

 private final LookupFile lookupFile;

 /** the TileData File */

 private final TileDataFile tileDataFile;

 /** the level of the according tile dataset */

 private final int level;

 /** the path of the tile dataset in the particular level */

 private final String tileDataSetLevelPath;

 /**

 * Provides the Builder pattern for the object initialization.

 */

 public static class Builder

 {

 115

 /** the level of the according tile dataset */

 private final int level;

 /** the file names information */

 private final FileNames fileNames;

 /**

 * Implements the Builder Pattern for the object initialization.

 *

 * @param fileNames the {@link FileNames}.

 * @param level the {@link Tile} level.

 */

 Builder(FileNames fileNames, int level)

 {

 this.level = level;

 this.fileNames = fileNames;

 }

 /**

 * Initializes the object.

 */

 LevelFiles build() throws IOException

 {

 return new LevelFiles(this);

 }

 }

 //re-insures non instantiability

 LevelFiles()

 {

 throw new AssertionError();

 }

 /**

 * Private constructor.

 */

 private LevelFiles(Builder builder) throws IOException

 {

 boolean generate = false;

 level = builder.level;

 /* the file names information */

 FileNames fileNames = builder.fileNames;

 String lookupFileName = fileNames.getLookupFilePath() + level;

 String tileDataFileName = fileNames.getTileDataFilePath() + level;

 if(!(FileUtilities.exists(lookupFileName) &&

 FileUtilities.exists(tileDataFileName))) generate = true;

 tileDataSetLevelPath = builder.fileNames.getTileDataSetPath() +

 File.separator +

 level;

 lookupFile = new LookupFile.Builder(lookupFileName, level).build();

 tileDataFile =

 new TileDataFile.Builder(tileDataFileName, level).build();

 if(generate)

 {

 System.out.println(

 "Generating Content for the level: " + level + " ...");

 generateContent();

 116

 }

/* else System.out.println(

 "LevelFiles already exists for the level: " + level + ".");*/

 }

 /**

 * Generates the LevelFiles (LookupFile and TileDataFile).

 */

 private void generateContent() throws IOException

 {

 int columnNumber = Tile.computeColumnTotalNumber(level);

 long expectedTileNumber = Tile.computeExpectedTileNumber(level);

 long tileCounter = 0;

 for(int column = 0; column < columnNumber; column++)

 {

 for(int row = 0; row < columnNumber; row++)

 {

 String fileName = tileDataSetLevelPath + File.separator +

 Tile.computeName(level, column, row);

 Tile tile = Tile.getInstance(fileName);

 if(tile.isValid())

 {

 write(tile);

 }

 tileCounter++;

 Utilities.showStatus(tileCounter, expectedTileNumber, 50000);

 }

 }

 }

 /**

 * Updates the tileData and LookUpFile based on the given tile.

 *

 * As explained in page 135. Note that there will be 2^zoomLevel rows and

 * columns. The tile generation algorithm follows the WGS84 standards.

 *

 * File format: First byte: 32 bit (8 byte) for the first number that shows

 * which byte to read from the File Dataset. Second byte: 16 bit (4 byte)

 * for the second number that shows what's the size of the particular tile

 * image.

 *

 * @param tile: the wanted tile

 */

 private void write(Tile tile) throws IOException

 {

 long

 lookupFilePosition =

 lookupFile.getFilePosition(tile.getColumn(), tile.getRow());

 long

 tileDataFileLength =

 FileUtilities.getFileLength(tileDataFile.getFilePath());

 lookupFile.writeLong(tileDataFileLength, lookupFilePosition);

 lookupFile.writeInt(

 tile.getData().length,

 lookupFilePosition + positionAllocationBytes);

 117

 tileDataFile.write(tile.getData(), tileDataFileLength);

 }

 /**

 * Returns the tile by parsing both lookup and tile data files.

 *

 * @param column the column of the {@link Tile}

 * @param row the row of the {@link Tile}

 *

 * @return : The corresponding tile object

 */

 public Tile getTile(int column, int row) throws IOException

 {

 long lookupFilePosition = lookupFile.getFilePosition(column, row);

 long tileDataPosition = lookupFile.readLong(lookupFilePosition);

 int

 tileSize =

 lookupFile

 .readInt(lookupFilePosition + positionAllocationBytes);

 byte[] tileData = tileDataFile.getTile(tileDataPosition, tileSize);

 return new Tile.Builder(tileData, level, column, row).build();

 }

 /**

 * Returns the expected position of the tile based on the following

 * equation:

 *

 * position = column * (2^level+row)*(12), where 12 the total number of the

 * allocation byte per record.

 *

 * @param level the level of the {@link Tile}

 * @param column the column of the {@link Tile}

 * @param row the row of the {@link Tile}

 */

 long getPosition(int level, int column, int row)

 {

 return ((column * (int) (Math.pow(2, level))) + row) *

 (positionAllocationBytes + sizeAllocationBytes);

 }

 /**

 * Returns the expected file length depending on the given level. The

 * returning number is given by the following equation: wanted_number =

 * (2^level)*2^level*12

 *

 * @param level the level of the {@link Tile}

 *

 * @return the expected file length

 */

 static long getExpectedFileLength(int level)

 {

 return (int) Math.pow(2, level) *

 (int) Math.pow(2, level) *

 12;

 }

 118

 /**

 * Generates the Level Files for a particular level.

 *

 * @param level the level of the LevelFiles that will be generated

 */

 static LevelFiles getInstance(FileNames fileNames, int level)

 throws IOException

 {

 return new LevelFiles.Builder(fileNames, level).build();

 }

 /**

 * Generates the level files for all the possible levels.

 *

 * @param fileNames the {@link FileNames}.

 */

 static LevelFiles[] getInstance(FileNames fileNames) throws IOException

 {

 int

 totalTileDataSetDirectoryNumber =

 FileUtilities.getDirectoriesNames(

 fileNames.getTileDataSetPath()).length;

 LevelFiles[]

 levelFiles =

 new LevelFiles[totalTileDataSetDirectoryNumber + 1];

 for(int i = 0; i < totalTileDataSetDirectoryNumber; i++)

 {

 levelFiles[i] = new LevelFiles.Builder(fileNames, i).build();

 }

 return levelFiles;

 }

 @Override public String toString()

 {

 return "LeveFiles for the level " + level;

 }

}

I.3. LevelFilesSet class

package unb.mkotsollaris.tilemanagement;

import java.io.IOException;

/**

 * A set of LevelFiles.

 *

 * @author mkotsollaris

 * @since 1.0

 119

 */

final public class LevelFilesSet

{

 /** The levelFiles per each Level */

 private final LevelFiles[] levelFiles;

 /**

 * Private constructor.

 */

 private LevelFilesSet(Builder builder)

 {

 levelFiles = builder.levelFiles;

 }

 private LevelFiles getLevelFile(int level)

 {

 return levelFiles[level];

 }

 // Suppresses default constructor, ensuring non-instantiability.

 private LevelFilesSet()

 {

 throw new AssertionError();

 }

 /**

 * Returns a {@link Tile} object.

 *

 * @param level the level.

 * @param column the column of the tile.

 * @param row the row of the tile.

 */

 public Tile getTile(int level, int column, int row) throws IOException

 {

 return levelFiles[level].getTile(column, row);

 }

 /**

 * Provides the Builder pattern for the object initialization.

 */

 public static class Builder

 {

 /** The levelFiles per each Level */

 private LevelFiles[] levelFiles;

 /**

 * Implements the Builder Pattern for the object initialization.

 *

 * @param fileNames the {@link FileNames}.

 */

 public Builder(FileNames fileNames) throws IOException

 {

 levelFiles = LevelFiles.getInstance(fileNames);

 }

 /**

 120

 * Initializes the object.

 */

 public LevelFilesSet build()

 {

 return new LevelFilesSet(this);

 }

 }

}

I.4. LookupFile class

package unb.mkotsollaris.tilemanagement;

import java.io.IOException;

/**

 * The file containing the pointer to the TileDataFile and the size of the

 * tile.

 *

 * @author mkotsollaris

 */

final class LookupFile

{

 /** the level of the tiledata file */

 private int level;

 /** the filepath of where the LookupFile is being allocated */

 private final String filePath;

 /**

 * Creates an Empty lookup file or retrieves an existing one.

 */

 private LookupFile(Builder builder) throws IOException

 {

 level = builder.level;

 filePath = builder.filePath;

 if(!FileUtilities.exists(filePath))

 {

 FileUtilities.createFile(filePath,

 LevelFiles.getExpectedFileLength(level));

 }

 }

 // Suppresses default constructor, ensuring non-insatiability.

 private LookupFile()

 {

 throw new AssertionError();

 }

 /**

 * Reads a long variable.

 121

 *

 * @param position the byte of the file.

 */

 long readLong(long position) throws IOException

 {

 return FileUtilities.readLongFromFile(filePath, position);

 }

 /**

 * Provides the Builder pattern for the object initialization.

 */

 static class Builder

 {

 /** the level of the tile dataset */

 private final int level;

 /** the filepath of where the LookupFile is being allocated */

 private final String filePath;

 /**

 * Implements the Builder Pattern for the object initialization.

 *

 * @param filePath the file path

 * @param level the level of of the {@link Tile}

 */

 Builder(String filePath, int level)

 {

 this.filePath = filePath;

 this.level = level;

 }

 /**

 * Initializes the object.

 */

 LookupFile build() throws IOException

 {

 return new LookupFile(this);

 }

 }

 /**

 * Reads an Integer from the file.

 *

 * @param position the byte of the file.

 */

 int readInt(long position) throws IOException

 {

 return FileUtilities.readIntFromFile(filePath, position);

 }

 /** gets the file name */

 String getFilePath()

 {

 return filePath;

 }

 /**

 122

 * Calculates the position of the lookup file based on the level, row and

 * column of the tile.

 *

 * @param row: the row of the wanted tile

 * @param column: the column of the wanted tile

 *

 * @return : the position (in bytes) that the requested tile should be found

 * in the file

 */

 long getFilePosition(int column, int row)

 {

 if(Math.pow(2, level) < column || Math.pow(2, level) < row)

 throw new IllegalArgumentException(

 "level: " + level + ", column: " + column + ", row: " +

 row);

 return ((column * (int) (Math.pow(2, level))) + row) *

 (LevelFiles.positionAllocationBytes +

 LevelFiles.sizeAllocationBytes);

 }

 @Override public String toString()

 {

 return "LookupFile for the level: " + level + " with the filepath:" +

 filePath;

 }

 /**

 * Writes a long variable to the file.

 *

 * @param tileDataFileLength the length of the {@link TileDataFile}

 * @param lookupFilePosition the position (byte) of the {@link LookupFile}

 */

 void writeLong(long tileDataFileLength, long lookupFilePosition)

 throws IOException

 {

 FileUtilities.writeLongToFile(filePath, tileDataFileLength,

 lookupFilePosition);

 }

 /**

 * Writes a long variable to the file.

 *

 * @param tileLength the length of the {@link Tile}

 * @param position the position (byte) of the file

 */

 void writeInt(int tileLength, long position) throws IOException

 {

 FileUtilities.writeIntToFile(filePath, tileLength, position);

 }

}

 123

I.5. TileDataFile class

package unb.mkotsollaris.tilemanagement;

import java.io.IOException;

/**

 * Class Explanation: Represents a tileDataFile where the tiles' bytes are being

 * saved.

 *

 * @author mkotsollaris

 * @since 1.0

 */

final class TileDataFile

{

 /** the level of the tiledata file */

 private int level;

 /** the filename */

 private final String filePath;

 // Suppresses default constructor, ensuring non-instantiability.

 private TileDataFile()

 {

 throw new AssertionError();

 }

 /**

 * Creates an empty Tile Data File or Retrieves an existing one. The new

 * object is created only if the filename does not exist.

 *

 * @param builder the builder object

 */

 private TileDataFile(Builder builder) throws IOException

 {

 level = builder.level;

 filePath = builder.filePath;

 //delete any previous existing file with the same name

 if(!FileUtilities.exists(filePath))

 {

 FileUtilities.deleteFile(filePath);

 FileUtilities.createFile(filePath);

 }

 }

 /**

 * Returns the {@link Tile} from a given position within the file.

 *

 * @param tileDataPos the {@link TileDataFile} position

 * @param tileSize the {@link Tile} size

 */

 byte[] getTile(long tileDataPos, int tileSize) throws IOException

 {

 124

 return FileUtilities.readFromFile(filePath, tileDataPos, tileSize);

 }

 /**

 * Provides the Builder pattern for the object initialization.

 *

 * @author mkotsollaris

 * @since 1.0

 */

 static class Builder

 {

 /** the level of the tiledata file */

 private final int level;

 /** the filename */

 private final String filePath;

 Builder(String filePath, int level)

 {

 this.filePath = filePath;

 this.level = level;

 }

 /**

 * Initializes the object.

 */

 TileDataFile build() throws IOException

 {

 return new TileDataFile(this);

 }

 }

 /**

 * Returns the filepath

 */

 String getFilePath()

 {

 return filePath;

 }

 /**

 * Writes the data of the tile.

 *

 * @param tileData the data of the tile

 * @param position the position that the data will be written

 */

 void write(byte[] tileData, long position) throws IOException

 {

 FileUtilities.writeToFile(filePath, tileData, position);

 }

 @Override public String toString()

 {

 return "LookupFile for the level: " + level + " with the filepath:" +

 filePath;

 }

}

 125

I.6. Tests Class

package unb.mkotsollaris.tilemanagement;

import java.io.IOException;

import java.util.concurrent.ThreadLocalRandom;

import java.util.concurrent.TimeUnit;

/**

 * Created by Menelaos Kotsollaris on 2017-01-22.

 *

 * Class Explanation: Includes the performance tests.

 *

 * PseudoCode for the retrieval algorithm:

 * <pre>

 * Loop: 10 times //10 different parts of the world randomly selected tiles

 * foreach zoom level.

 *

 * Measure Time: LevelFilesSet

 * Measure Time: ImageBlock

 * Measure Time: SimpleFormat

 * End Loop

 * Print Average Time for all

 * </pre>

 */

public class PerformanceTests

{

 private final static String

 tileDataSetPath =

 MyFileNames.TileDatasetPath.getFileName();

 private final static String

 lookupFilePath =

 MyFileNames.LookupFilePath.getFileName();

 private final static String

 tileDataFilePath =

 MyFileNames.TileDataFilePath.getFileName();

 private final static String

 imageBlockFilePath =

 MyFileNames.ImageBlockPath.getFileName();

 private final static FileNames

 fileNames =

 new FileNames.Builder(tileDataSetPath, lookupFilePath,

 tileDataFilePath).build();

 static void compareRetrieval(int level) throws IOException

 {

 float levelFileSum = 0, simpleFormatSum = 0, imageBlockSum = 0;

 float levelFileMin = Float.MAX_VALUE, simpleFormatMin = Float.MAX_VALUE,

 imageBlockMin = Float.MAX_VALUE;

 126

 int levelFileThreshold = -1, simpleFormatThreshold = -1,

 imageBlockThreshold = -1;

 int iterationTimes = 10;

 //threshold is the number of the requesting tiles

 for(int threshold = 1; threshold <= iterationTimes; threshold++)

 {

 int iterationsTimes = 10;

 float[] levelFilesSetTimer = new float[iterationsTimes];

 float[] simpleFormatTimer = new float[iterationsTimes];

 float[] imageBlockTimer = new float[iterationsTimes];

 for(int j = 0; j < iterationsTimes; j++)

 {

 int[] columnNumbers = generateRandomNumbers(threshold, level);

 int[] rowNumbers = generateRandomNumbers(threshold, level);

 simpleFormatTimer[j] =

 measureSimpleFormatRetrieval(level, rowNumbers,

 columnNumbers);

 levelFilesSetTimer[j] =

 measureLevelFilesSetRetrieval(level, rowNumbers,

 columnNumbers);

 imageBlockTimer[j] =

 measureImageBlockRetrieval(level, rowNumbers,

 columnNumbers);

 System.out

 .printf("Threshold %d levelFilesSetTimer: %f, imageBlockTimer: %f, simpleFormatTimer:

%f\n",

 threshold, levelFilesSetTimer[j],

 imageBlockTimer[j], simpleFormatTimer[j]);

 simpleFormatSum += simpleFormatTimer[j];

 levelFileSum += levelFilesSetTimer[j];

 imageBlockSum += imageBlockTimer[j];

 if(isMin((simpleFormatTimer[j] / threshold), simpleFormatMin))

 {

 simpleFormatMin = simpleFormatTimer[j];

 simpleFormatThreshold = threshold;

 }

 if(isMin((levelFilesSetTimer[j] / threshold), levelFileMin))

 {

 levelFileMin = levelFilesSetTimer[j];

 levelFileThreshold = threshold;

 }

 if(isMin((imageBlockTimer[j] / threshold), imageBlockMin))

 {

 imageBlockMin = imageBlockTimer[j];

 imageBlockThreshold = threshold;

 }

 }

 }

 float levelFileAvg = levelFileSum / iterationTimes;

 float simpleFormatAvg = simpleFormatSum / iterationTimes;

 float imgBlockAvg = imageBlockSum / iterationTimes;

 System.out.println(

 "\nLevel: " + level + "\nAverage for levelFilesSetTimer: " +

 levelFileAvg +

 ", imageBlockTimer: " +

 127

 imgBlockAvg +

 ", simpleFormatAvg: " +

 simpleFormatAvg + "");

 System.out.println("Min for levelFileThreshold: " +

 levelFileThreshold +

 ", imageBlockThreshold: " +

 imageBlockThreshold +

 ", simpleFormatThreshold: " +

 simpleFormatThreshold + "\n");

 }

 private static boolean isMin(float value, float simpleFormatMin)

 {

 return (value < simpleFormatMin);

 }

 private static long measureImageBlockRetrieval(int level, int[] rowNumbers,

 int[] columnNumbers)

 throws IOException

 {

 long time1 = System.nanoTime();

 for(int columnNumber : columnNumbers)

 {

 for(int j = 0; j < rowNumbers.length; j++)

 {

 String

 filePath =

 fileNames.getTileName(level, columnNumber,

 columnNumbers[j]);

 Tile

 tile =

 ImageBlock.getTile(

 MyFileNames.ImageBlockPath.getFileName(), level,

 columnNumber, columnNumbers[j]);

 }

 }

 long time2 = System.nanoTime();

 return TimeUnit.MILLISECONDS

 .convert(time2 - time1, TimeUnit.NANOSECONDS);

 }

 private static long getAverage(long[] timerLevelSimpleFormat)

 {

 long sum = 0;

 for(int i = 0; i < timerLevelSimpleFormat.length; i++)

 {

 sum += timerLevelSimpleFormat[i];

 }

 return sum / timerLevelSimpleFormat.length;

 }

 private static long measureSimpleFormatRetrieval(int level,

 int[] rowNumbers,

 int[] columnNumbers)

 throws IOException

 {

 128

 long time1 = System.nanoTime();

 for(int columnNumber : columnNumbers)

 {

 for(int j = 0; j < rowNumbers.length; j++)

 {

 String

 filePath =

 fileNames.getTileName(level, columnNumber,

 columnNumbers[j]);

 Tile tile = Tile.getInstance(filePath);

 }

 }

 long time2 = System.nanoTime();

 return TimeUnit.MILLISECONDS

 .convert(time2 - time1, TimeUnit.NANOSECONDS);

 }

 private static long measureLevelFilesSetRetrieval(int level,

 int[] columnNumbers,

 int[] rowNumbers)

 throws IOException

 {

 LevelFilesSet

 levelFilesSet =

 new LevelFilesSet.Builder(fileNames).build();

 long time1 = System.nanoTime();

 for(int i = 0; i < columnNumbers.length; i++)

 {

 for(int j = 0; j < rowNumbers.length; j++)

 {

 Tile

 tile =

 levelFilesSet.getTile(level, columnNumbers[i],

 rowNumbers[j]);

 }

 }

 long time2 = System.nanoTime();

 return TimeUnit.MILLISECONDS

 .convert(time2 - time1, TimeUnit.NANOSECONDS);

 }

 public static void testTime() throws IOException

 {

 LevelFilesSet

 levelFilesSet =

 new LevelFilesSet.Builder(fileNames).build();

 long time1 = System.nanoTime();

 levelFilesSet.getTile(6, 0, 0);

 long time2 = System.nanoTime();

 System.out.println("LevelFilesSse TIME: " + (time2 - time1));

 String filePath = fileNames.getTileName(6, 1, 8);

 time1 = System.nanoTime();

 Tile tile = Tile.getInstance(filePath);

 time2 = System.nanoTime();

 System.out.println("SimpleFormat TIME: " + (time2 - time1));

 }

 129

 private static int[] generateRandomNumbers(int threshold, int level)

 {

 int max = Tile.computeColumnTotalNumber(level) - 1;

 int[] randomArray = new int[threshold];

 for(int i = 0; i < threshold; i++)

 {

 randomArray[i] = getRandomNumber(0, max);

 }

 return randomArray;

 }

 private enum TileMember

 {

 COLUMN,

 ROW

 }

 private static int getRandomNumber(int min, int max)

 {

 // nextInt is normally exclusive of the top value,

 // so add 1 to make it inclusive

 return ThreadLocalRandom.current().nextInt(min, max + 1);

 }

}

I.7. Tile class

package unb.mkotsollaris.tilemanagement;

import org.apache.commons.lang3.builder.EqualsBuilder;

import org.apache.commons.lang3.builder.HashCodeBuilder;

import java.io.IOException;

import java.util.Comparator;

/**

 * Represents a Tile Image (file) that holds the name, level, column, row, data,

 * and the file type.

 *

 * The tile name in the format X_Y_Z where X = Level, Y = Column, Z = Row.

 *

 * @author mkotsollaris

 * @since 1.0

 */

public final class Tile

{

 /** The Level of the tile (e.g. 0 for the 0_1_2 tile) */

 private final int level;

 /** The Column of the tile (e.g. 1 for the 0_1_2 tile) */

 private final int column;

 130

 /** The Row of the tile (e.g. 2 for the 0_1_2 tile) */

 private final int row;

 /** The data of the tile (bytes) */

 private final byte[] data;

 /** The File path */

 private final String filePath;

 /** @return the {@link Tile#level} */

 public int getLevel()

 {

 return level;

 }

 /** @return the {@link Tile#column} */

 public int getColumn()

 {

 return column;

 }

 /** @return the {@link Tile#row} */

 public int getRow()

 {

 return row;

 }

 /** @return the {@link Tile#data} */

 public byte[] getData()

 {

 return data;

 }

 /** @return the fileName */

 public String computeFileName()

 {

 return getLevel() + "_" + getColumn() + "_" + getRow() + ".jpg";

 }

 /**

 * Private constructor for internal initialization.

 */

 private Tile(Builder builder)

 {

 data = builder.data;

 level = builder.level;

 column = builder.column;

 row = builder.row;

 filePath = builder.filePath;

 }

 /**

 * Initializes a {@link Tile} object.

 *

 * @param filePath the file path of the particular tile

 *

 * @return the {@link Tile}

 131

 * @throws IllegalArgumentException if the filepath is not valid

 */

 public static Tile getInstance(String filePath)

 throws IllegalStateException, IOException

 {

 try

 {

 String name = computeName(filePath);

 return new Builder(getData(filePath), computeLevel(name),

 computeColumn(name), computeRow(name))

 .filePath(filePath).build();

 }

 catch(Exception e)

 {

 throw new IllegalArgumentException(

 "Not A valid tile path: " + filePath);

 }

 }

 /** @return the {@link Tile#filePath} */

 public String getFilePath()

 {

 return filePath;

 }

 /**

 * Computers the number of the expected tiles per zoom level. Assumes that

 * there are no missing tiles.

 *

 * @return long the number of the expected tiles

 */

 static long computeExpectedTileNumber(int level)

 {

 return (long) Math.pow(4, level);

 }

 /**

 * Provides the Builder pattern for the object initialization.

 *

 * @author mkotsollaris

 * @since 1.0

 */

 static class Builder

 {

 /** The Level of the tile (e.g. 0 for the 0_1_2 tile) */

 private final int level;

 /** The Column of the tile (e.g. 1 for the 0_1_2 tile) */

 private final int column;

 /** The Row of the tile (e.g. 2 for the 0_1_2 tile) */

 private final int row;

 /** The data of the tile (bytes) */

 private final byte[] data;

 /** The File path */

 private String filePath;

 /**

 132

 * Implements the Builder Pattern for the object initialization.

 *

 * @param data the data to be written in the file

 * @param level the level of the {@link Tile}

 * @param column the column of the {@link Tile}

 * @param row the row of the {@link Tile}

 */

 Builder(byte[] data, int level, int column, int row)

 {

 this.data = data;

 this.level = level;

 this.column = column;

 this.row = row;

 }

 /**

 * Implements the Builder Pattern for the object initialization.

 *

 * @param filePath the file path

 */

 Builder filePath(String filePath)

 {

 this.filePath = filePath;

 return this;

 }

 /**

 * Initializes the object.

 */

 Tile build()

 {

 return new Tile(this);

 }

 }

 /**

 * Returns the name of the file. For instance, given the path:

 * /Users/mkotsollaris/Desktop/tile_dataset/2/2_0_1.jpg will return

 * '2_0_1.jpg'.

 *

 * FIXME won't work for mac, linux etc. (path hardcoded)! Test

 *

 * @param filePath the filePath (e.g.: /Users/mkotsollaris/Desktop/tile_dataset/2/2_0_1.jpg)

 */

 static String computeName(String filePath)

 {

 String[]

 strArray =

 (System.getProperty("os.name")

 .contains(MyFileNames.Windows.getFileName())) ?

 filePath.split("\\\\") : filePath.split("/");

 return strArray[strArray.length - 1].split("\\.")[0];

 }

 133

 static String computeName(int level, int column, int row)

 {

 return level + "_" + column + "_" + row + ".jpg";

 }

 /**

 * Returns the byte[] array containing the image information.

 *

 * @param filePath the filePath (e.g.: /Users/mkotsollaris/Desktop/tile_dataset/2/2_0_1.jpg)

 */

 private static byte[] getData(String filePath) throws IOException

 {

 return FileUtilities.readFromFile(filePath);

 }

 /**

 * Returns if the file has the proper format.

 */

 boolean isValid()

 {

 return level != -1;

 }

 /**

 * Returns the level of the string.

 *

 * @param fileName: the tile name in the format X_Y_Z where X = Level, Y =

 * Column Z = Row. Example Input: 3_5_1.jpg then the

 * function will return 3.

 */

 static int computeLevel(String fileName)

 {

 try

 {

 return Integer.parseInt(fileName.split("_")[0]);

 }

 catch(Exception e)

 {

 return -1;

 }

 }

 /**

 * Returns the column of the string.

 *

 * @param fileName: Example Input: 3_5_1.jpg then the function will return

 * 5.

 */

 static int computeColumn(String fileName)

 {

 return Integer.parseInt(fileName.split("_")[1]);

 }

 /**

 * Returns the row of the string. For instance, if the input is

 * "/Users/mkotsollaris/Desktop/tile_dataset/2/2_0_1.jpg" the the output

 134

 * will be 0.

 *

 * @param fileName: the tile filePath in the format X_Y_Z where X = Level, Y

 * = Column Z = Row. Example Input: 3_5_1.jpg then the

 * function will return 1.

 */

 static int computeRow(String fileName)

 {

 return Integer.parseInt((fileName.split("_")[2]));

 }

 /**

 * Returns the file type (e.g. if input "/Users/mkotsollaris/Desktop/tile_dataset/2/2_0_1.jpg"

 * then it returns "jpg".

 *

 * @param filePath the filename (e.g. "0_1_2.jpg")

 */

 static String computeFileType(String filePath)

 {

 return filePath.split("\\.")[1];

 }

 @Override public String toString()

 {

 return "Tile level: " +

 level +

 ", column: " +

 column +

 ", row: " +

 row + ", data Length: " + data.length;

 }

 /**

 * Returns the total number of columns for a particular level. The same

 * number stands for the total number of rows as well.

 */

 public static int computeColumnTotalNumber(int level)

 {

 return (int) Math.pow(2, level);

 }

 private static Comparator<Tile> tileLengthComparator = (tile1, tile2) -> {

 if(tile1.getData().length == tile2.getData().length) return 0;

 if(tile1.getData().length > tile2.getData().length) return 1;

 return -1;

 };

 static Comparator<Tile> getTileLengthComparator()

 {

 return tileLengthComparator;

 }

 /**

 * A tile is equal to another tile if they both have the same level, column,

 * row and data (bytes).

 *

 135

 */

 @Override public boolean equals(Object obj)

 {

 if(obj == null) return false;

 if(!(obj instanceof Tile)) return false;

 if(obj == this) return true;

 Tile otherTile = (Tile) obj;

 return new EqualsBuilder().

 append(level, otherTile.level).

 append(column, otherTile.column).

 append(row, otherTile.row).

 append(data, otherTile.data).

 isEquals();

 }

 @Override public int hashCode()

 {

 return new HashCodeBuilder(17, 31). // two randomly chosen prime numbers

 append(level).

 append(column).

 append(row).

 append(row).

 append(data).

 toHashCode();

 }

}

Appendix II. LevelFilesSet’s Javadoc

 The Javadoc of the LevelFilesSet can be seen in Figure 0.1.

 136

Figure 0.1 LevelFilesSet's Javadoc

Appendix III. Java Servlet & LevelFilesSet Integration

package com.mkotsollaris.projects;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

@WebServlet(name = "com.mkotsollaris.projects.MyServlet") public class Servlet

 extends HttpServlet

{

 private LevelFilesSet levelFilesSet;

 public void init()

 {

 String tileDataSetPath = MyFileNames.TileDatasetPath.getFileName();

 String lookupFilePath = MyFileNames.LookupFilePath.getFileName();

 137

 String tileDataFilePath = MyFileNames.TileDataFilePath.getFileName();

 String

 imageBlockFilePath =

 unb.mkotsollaris.tilemanagement.MyFileNames.ImageBlockPath

 .getFileName();

 FileNames

 fileNames =

 new FileNames.Builder(tileDataSetPath, lookupFilePath,

 tileDataFilePath, imageBlockFilePath)

 .build();

 try

 {

 levelFilesSet = new LevelFilesSet.Builder(fileNames).build();

 }

 catch(IOException e)

 {

 e.printStackTrace();

 }

 }

 protected void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

 {

 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException

 {

 try

 {

 String[] tileNames = request.getParameterValues("tile");

 Tile[] tiles = Utilities.retreiveTiles(tileNames, levelFilesSet);

 outputTileToBrowser(tiles, response);

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

 public void destroy()

 {

 // Finalization code...

 }

 /**

 * Checks if the file exists and if it does then it prints it to the user's

 * browser, otherwise in throws an error.

 */

 public void outputTileToBrowser(Tile[] tiles, HttpServletResponse response)

 throws Exception

 {

 response.setContentType("text/html");

 138

 ByteArrayOutputStream outputStream = new ByteArrayOutputStream();

 for(Tile tile : tiles)

 {

 outputStream.write(tile.getData());

 }

 byte c[] = outputStream.toByteArray();

 response.getOutputStream().write(c, 0, c.length);

 }

}

Appendix IV. Database Helper Class with JDBC Implementation for

PostgreSQL connection

/**

 * Created by Menelaos Kotsollaris on 2016-11-24.

 *

 * Class Explanation: Contains the PostgreSQL server connection.

 */

class PostgresHelper

{

 private Connection conn;

 private String host;

 private String dbName;

 private String user;

 private String pass;

 protected PostgresHelper()

 {

 }

 PostgresHelper(String host, String dbName, String user, String pass)

 {

 this.host = host;

 this.dbName = dbName;

 this.user = user;

 this.pass = pass;

 }

 boolean connect() throws SQLException, ClassNotFoundException

 {

 if(host.isEmpty() || dbName.isEmpty() || user.isEmpty() ||

 pass.isEmpty())

 {

 throw new SQLException("Database credentials missing");

 }

 139

 Class.forName("org.postgresql.Driver");

 this.conn =

 DriverManager.getConnection(this.host + this.dbName, this.user,

 this.pass);

 return true;

 }

 ResultSet execQuery(String query) throws SQLException

 {

 return this.conn.createStatement().executeQuery(query);

 }

 /**

 * Adds a Tile to PostgreSQL.

 * */

 int addTileQuery(Tile tile) throws SQLException, FileNotFoundException

 {

 if(!tile.isValid()) throw new IllegalArgumentException("Illegal Tile");

 String tableName = "level" + tile.getLevel();

 long

 id =

 LevelFiles.getPosition(tile.getLevel(), tile.computeColumn(),

 tile.computeRow());

 //String insert = "INSERT INTO "+tableName;

 String insert = "INSERT INTO " + tableName +

 "(" + COLUMNS.TILE_ID + "," + COLUMNS.TILE_DATA + "," +

 COLUMNS.TILE_LEVEL + "," + COLUMNS.TILE_COLUMN +

 "," + COLUMNS.TILE_ROW +

 "," + COLUMNS.TILE_IMAGE_FORMAT + "," + COLUMNS.TILE_SOURCE +

 ")";

 String values = id + ",?" + "," +

 tile.getLevel() + "," + tile.computeColumn() + "," +

 tile.computeRow() + ",\'" + tile.getFileType().toUpperCase() +

 "\'," + "\'" +

 tile.getSource() + "\');";

 String query = insert + " VALUES (" + values;

 PreparedStatement statement = conn.prepareStatement(query);

 statement.setBytes(1, tile.getData());

 int result = statement.executeUpdate();

 statement.close();

 return result;

 }

 /**

 * Loads the dataset to the database.

 * */

 static void loadDataSet(PostgresHelper client, int level)

 throws IOException, SQLException

 {

 File[]

 files =

 FileUtilities.getFiles(

 "/Users/mkotsollaris/Desktop/tile_dataset/" + level);

 for(int j = 0; j < files.length; j++)

 {

 Tile tile = Tile.getInstance(files[j].getAbsolutePath());

 140

 if(tile.isValid()) client.addTileQuery(tile);

 }

 }

 /**

 * Drops and creates a brand new table.

 */

 public void resetDatabase(int level) throws SQLException

 {

 String tableName = "level" + level;

 String query = "DROP TABLE " + tableName;

 //System.out.println(query);

 this.conn.createStatement().executeUpdate(query);

 query = "CREATE TABLE " + tableName + " (" +

 " tile_id BIGINT," +

 " tile_data BYTEA," +

 " tile_level SMALLINT," +

 " tile_row INTEGER," +

 " tile_column INTEGER," +

 " tile_image_format image_format," +

 " tile_source CHARACTER VARYING(30)," +

 " PRIMARY KEY (tile_id));";

 this.conn.createStatement().executeUpdate(query);

 }

 /**

 * Returns a Tile.

 * */

 public Tile getTile(int level, int column, int row)

 throws SQLException, IOException

 {

 long position = LevelFiles.getPosition(level, column, row);

 String tableName = "level" + level;

 PreparedStatement

 preparedStatement =

 conn.prepareStatement("SELECT * FROM " + tableName + " WHERE " +

 COLUMNS.TILE_ID.column_name +

 " = " +

 position);

 ResultSet resultSet = preparedStatement.executeQuery();

 boolean hasNext = resultSet.next();

 if(!hasNext) return Tile.getInvalidTile();

 return new Tile.Builder(resultSet.getBytes(COLUMNS.TILE_DATA.position),

 level, column, row).build();

 }

 /**

 * The columns of the database.

 */

 private enum COLUMNS

 {

 TILE_ID("tile_id", 1),

 TILE_DATA("tile_data", 2),

 TILE_LEVEL("tile_level", 3),

 TILE_ROW("tile_row", 4),

 TILE_COLUMN("tile_column", 5),

 141

 TILE_IMAGE_FORMAT("tile_image_format", 6),

 TILE_SOURCE("tile_image_format", 7);

 private String column_name;

 /**

 * The position starts from the number 1.

 */

 private int position;

 COLUMNS(String column_name, int position)

 {

 this.column_name = column_name;

 this.position = position;

 }

 }

 /**

 * Returns a tile (similar to getTile).

 *

 * */

 public static Tile printTile(String tileName) throws Exception

 {

 PostgresHelper

 client =

 new PostgresHelper(DbContract.HOST, DbContract.DB_NAME,

 DbContract.USERNAME, DbContract.PASSWORD);

 try

 {

 if(client.connect())

 {

 int level = Tile.computeLevel(tileName);

 int column = Tile.computeColumn(tileName);

 int row = Tile.computeRow(tileName);

 return client.getTile(level, column, row);

 }

 }

 catch(Exception e)

 {

 }

 throw new Exception();

 }

}

Appendix V. Google Cloud Benchmark Tables

 142

Table 0.1 First day benchmark results, 10 May, 10AM at UTC-3h

Level

SimpleFormat

(ms)

ImageBlock

(ms)

LevelFilesSet

(ms)

0 52 36 92

1 97 90 127

2 185 155 137

3 195 168 141

4 201 173 156

5 203 184 160

6 231 198 173

7 239 201 181

8 244 204 185

9 247 205 187

10 263 213 191

Table 0.2 Benchmark ran on May 10th at 10 PM at UTC-3h

Level

SimpleFormat

(ms)

ImageBlock

(ms)

LevelFilesSet

(ms)

0 33 22 89

1 56 50 92

 143

2 131 102 123

3 155 147 134

4 189 153 148

5 199 173 158

6 224 191 162

7 238 199 177

8 242 205 192

9 252 208 197

10 267 226 202

Table 0.3 Benchmark ran on May 11th at 10 AM at UTC-3h

Level

SimpleFormat

(ms)

ImageBlock

(ms)

LevelFilesSet

(ms)

0 31 30 77

1 69 68 83

2 155 172 105

3 179 180 116

4 220 190 125

5 239 198 139

6 284 205 183

7 285 220 198

 144

8 297 230 205

9 303 230 215

10 306 247 222

Table 0.4 Benchmark ran on May 11th at 10 PM at UTC-3h

Level

SimpleFormat

(ms)

ImageBlock

(ms)

LevelFilesSet

(ms)

0 31 19 78

1 38 27 82

2 67 41 93

3 104 74 98

4 115 111 105

5 164 127 121

6 213 157 149

7 247 183 161

8 302 213 190

9 360 252 215

10 373 299 282

 145

Table 0.5 Benchmark ran on May 12 at 10 AM at UTC-3h

Level

SimpleFormat

(ms)

ImageBlock

(ms)

LevelFilesSet

(ms)

0 30 13 84

1 99 93 101

2 148 139 109

3 153 148 137

4 176 161 155

5 189 170 168

6 245 237 212

7 287 254 233

8 315 281 267

9 355 301 295

10 393 329 301

Table 0.6 Benchmark ran on May 12 at 10 PM at UTC-3h

Level

SimpleFormat

(ms)

ImageBlock

(ms)

LevelFilesSet

(ms)

0 25 16 61

1 88 62 87

2 153 101 127

 146

3 178 155 149

4 197 192 167

5 201 199 179

6 214 208 185

7 223 214 194

8 228 221 197

9 234 226 206

10 266 247 224

Curriculum Vitae

Menelaos Kotsollaris

2016, Diploma in University Teaching, University of New Brunswick, Canada

2015 – 2017, MScE. University of New Brunswick, NB, Canada

2015, Hons. B.Sc. University of Piraeus, Athens, Greece

Conference Presentations:

1. Kotsollaris, M., Liu, W., Stefanakis, E. & Zhang, Y. “Conceptual Design of a

Scalable Web Tile Management Framework”. The 2017 Graduate Research

Conference (GRC), UNB, March 18 2017, Fredericton, Canada.

Conference Posters:

1. Kotsollaris, M., Liu, W., Stefanakis, E. & Zhang, Y. “Improving the efficiency of

the Web Image Management Systems”. The 2017 Graduate Research conference

(GRC), UNB, March 18 2017, Fredericton, Canada.

2. Kotsollaris, M., Liu, W., Stefanakis, E. & Zhang, Y. “Implementing a Scalable

Web Image Management System”. 14th Annual Research Expo; Faculty of

Computer Science, UNB, April 7 2017, Fredericton, Canada

Journal Papers:

1. Kotsollaris, M., Liu, W., Stefanakis, E. & Zhang, Y. “LevelFilesSet: An efficient

Data Structure for Web Tiled Map Management Systems” – (under review)

