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ABSTRACT 

Data from airborne light detection and ranging (LiDAR) systems are 

becoming more commonplace and are being used in applications other than 

traditional remote sensing and GIS applications, such as for archaeological 

surveys. However, non-expert LiDAR users face challenges when working with 

LiDAR data or derived products. Anecdotal evidence suggests that many users 

may not have much knowledge of how a LiDAR product was derived or the 

qualities of the original LiDAR point cloud. In addition, suitable processing 

software may not be accessible due to cost or may require extensive training and 

familiarity with the tools for users to achieve their desired results.  

This thesis addresses some of the challenges non-expert LiDAR users may 

face by developing a semi-automated point classification framework that does 

not require expert user input to classify individual points within the point cloud. 

The Canadian Airborne LiDAR Acquisition Guideline, released by Natural 

Resources Canada in 2014, was used as a guide in the development process. The 

framework consists of a multi-stage classification process that can be applied 

using LiDAR point clouds exclusively or using LiDAR data integrated with other 

types of data. Code developed as part of this thesis to implement the framework 

is hosted in a repository on Bitbucket. 

The first stage is a ground point identification process that requires little or no 

operator input to classify ground points within a LiDAR point cloud. It achieved 

greater than 95% accuracy in sample tests, as compared to available classified 

ground data. Subsequent stages add or refine classification of points within the 
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point cloud. If only LiDAR data are used, points are classified as 

building/structure, low vegetation, medium vegetation, high vegetation, 

unpaved ground, road or paved surface, or points above paved surface. Points 

that do not meet the criteria for any of the classes are left unclassified. 

Additional data can be introduced at any stage to improve processing time; add 

classes, for example, water; or refine results.  

Recommendations for future research include making greater use of 3D data 

structures, making greater use of point level information, and improving 

methods used to refine classification results.  
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"La dernière chose qu'on trouve on faisant un 

ouvrage, est de savoir celle qu'il faut mettre 

par première." "The last thing one finds out 

when constructing a work is what to put first." 

~ Blaise Pascal 

 CHAPTER 1    

INTRODUCTION 

Light detection and ranging (LiDAR) is a tool whose importance in remote 

sensing has been growing since the mid-1990s. It is primarily considered a 

source of elevation data, with digital elevation models (DEMs) derived from 

LiDAR data collected through airborne laser scanning (ALS) now being used in 

numerous applications. Anecdotal evidence, including conference presentations 

(e.g., [Wittner et al. 2013]); data catalogues offering "LiDAR DEMs" with 5 m 

resolutions (e.g., Halifax Regional Municipality [n.d.]); and comments in the 

literature (e.g., Bewley et al. [2005]; Gesch [2009]; Graham [2010]), however, 

suggests that users may not have much knowledge of how the LiDAR product 

they are using was derived or the qualities of the original LiDAR point cloud.   

One factor that may limit non-expert LiDAR users' knowledge and 

understanding of the data is differing product standards. In July 2012, Natural 

Resources Canada (NRCan) released a first draft of Canadian LiDAR acquisition 

guidelines [Natural Resources Canada, 2012]. After consultation with LiDAR 

user and client communities, a second draft of this document was released in 

October 2013 and the final version released in 2014 [Natural Resources Canada, 

2014]. Henceforth, these will be referred to as the NRCan guidelines. The stated 

objectives of the NRCan guidelines include presenting standardized criteria for 
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data acquisition and derived products, and encouraging data ownership models 

that permit data sharing. If the NRCan guidelines are followed by all parties 

involved in collecting, managing, and processing LiDAR data, future products 

will have the potential to be integrated with other data more easily. However, 

they cannot necessarily be applied retroactively to existing LiDAR data sets 

because some of the required information may be missing or the data may not 

have been collected in a manner that is compatible with the new guidelines.  

Another factor that may limit the uptake of LiDAR data is the availability of 

suitable processing software. Although numerous commercial software packages 

are available for visualizing and processing LiDAR data, for example Terrasolid 

[Terrasolid Oy, n.d.], LP360 [QCoherent Software LLC, n.d.], MARS [Merrick & 

Company, n.d.] and the LAS Dataset toolset in ArcGIS for Desktop [Esri Inc., 

2014], these can be cost-prohibitive for many potential users. Free software is 

often limited to viewers or has been developed for a specific purpose, such as 

forestry [Idaho LiDAR Consortium, n.d.]. A subset of tools in the LAStools 

[rapidlasso GmBH, n.d.] package is open source; however, the tools for 

classification and product derivation must be licenced. In all cases, the software 

may require extensive training and familiarity with the tools for users to achieve 

their desired results.     

Making reference to the NRCan guidelines, this thesis addresses the 

challenges non-expert LiDAR users may have when working with the data by 

developing a semi-automated point classification framework that does not 

require expert user input to classify individual points within the point cloud. The 
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framework consists of a multi-stage classification process that can be used 

exclusively with LiDAR point clouds or with LiDAR data integrated with other 

types of data.  

 1.1. RESEARCH PURPOSE 

As mentioned, although there are a number of software packages available for 

visualizing and processing LiDAR data, these packages are not accessible to all 

users due to cost or complexity. The packages also may not allow data from 

additional sources, such as municipal data catalogues, to be used to augment the 

classification process. There is therefore a need for a software package that is 

simple to use, will classify points to the desired level of completeness, and can 

incorporate additional data when they are available. 

One purpose for developing this LiDAR point classification framework is to 

create a method for processing and interpreting LiDAR data that is simple to 

use. Technological developments in recent years have increased the quantity and 

quality of available LiDAR data, and this in turn has led to the recognition that 

these data can be used for more than just generating DEMs. Specifically, 

extracting and modelling buildings and other complex features from LiDAR data 

are major areas of research, for example, Haala and Brenner [1999], Mumtaz 

and Mooney [2009], Saeedi et al. [2009], and Kabolizade et al. [2010].  

The inherent three-dimensional (3D) nature of LiDAR point clouds makes 

them ideal bases for 3D modelling. Advances and innovations in LiDAR systems, 

including, for example, an increase in the amount of data recorded per emitted 
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pulse, returned pulse intensity recorded along with range, and increased pulse 

repetition rates and scanners with multiple lasers operating simultaneously have 

increased the potential point density ([Wehr and Lohr, 1999; Mallet and Bretar, 

2009; Morsdorf et al., 2009]). They have also contributed to the amount of 

information contained in, and therefore that can be extracted from, LiDAR point 

clouds. However, other inherent characteristics, such as high data volume and 

quasi-random sampling of ground and surfaces, create challenges for processing 

and interpreting the data, including the challenge of having to handle very large 

volumes of data.  

It is not uncommon for researchers in other fields to discuss findings that rely 

on LiDAR-derived DEMs while failing to speak to the vertical accuracy of the 

DEMs, the spatial characteristics of the original point cloud, or the process 

through which the ground surface was extracted, all of which may impact heavily 

on the research findings (e.g., Hiltz [2012]; Mouland et al. [2012]). This is likely 

due to a widespread perception that LiDAR data provide a highly detailed and 

sufficiently accurate representation of the ground surface, even under vegetation 

cover, regardless of how the data were collected or what form that 

representation takes. A process that is simple to apply, in the sense that it does 

not require expert user input, can help researchers gain an understanding of the 

LiDAR data.  

Another purpose for developing this LiDAR point classification framework is 

to create a point classification process that will classify LiDAR data to a desired 

level of completeness. For LiDAR data, the lowest level of classification 
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completeness is ground and non-ground. This is sufficient for applications 

where only the ground surface is required, such as watershed analysis. A more 

complete classification of LiDAR data is needed to extract information for other 

applications, such as building extraction (classify building points within the non-

ground subset); biomass estimation (classify tree canopy points with the non-

ground subset); or road network modelling (classify road points within the 

ground subset).   

There are many approaches to classifying LiDAR data. Some involve first 

interpolating the elevation (or intensity) measurements to a regular grid, which 

allows them to be easily combined with aerial or satellite imagery. Others involve 

working directly with the point cloud, but produce results that show the scene 

reduced to two-dimensional patches that are marked as part of the ground 

surface or of an object of interest. In either case, the inherent 3D nature of the 

data is being underused. While single returns are generated from pulses that fall 

in open areas, multiple returns are generated in vertically structured areas and 

contain more detailed information that can be exploited. For example, 

identifying double returns from rooftop edges helps to delineate more exactly 

the location of a building. A point classification process retains all of the 3D 

information captured within a LiDAR point cloud.  

A final purpose for developing this LiDAR point classification framework is to 

create a process that can incorporate additional data when they are available and 

can augment single-source LiDAR data. Studies have suggested that LiDAR is 

the most cost-effective technology for acquiring elevation data for floodplain 
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mapping [US National Research Council, 2007] yet each LiDAR point cloud is 

wholly unique. Even small, and unavoidable, variations in trajectory, platform 

orientation, laser scan angle, and other flight parameters result in a distinct 

sampling of the same terrain and features that cannot be assumed to be suitable 

for floodplain mapping, or any specific application. Incorporating data from 

additional sources may help to ascertain the suitability of a LiDAR data set. It 

can also produce products that combine the unique temporal and spatial 

characteristics of each data set.  

The products that result from merging data from disparate data sets may 

allow faster processing or provide greater detail, whether vertical, horizontal, or 

object-oriented, than the individual components and can allow trends and 

patterns to be observed over time as technology evolves. In this context, 

disparate data sets could mean data sets collected using different sensor types 

(e.g., LiDAR data and remote sensing imagery), different sensor parameters 

(e.g., imagery from different satellites), different collection parameters (e.g., 

separate LiDAR flights), or any or all of the above. The data sets could have 

different spatial resolutions, different accuracies, and could be in different 

coordinate systems. The source differences must be identified, assessed, and 

resolved before the data can be successfully merged and used in combination. 

This includes the effects of variations on point spacing and point density, and, in 

turn, the effects of variations in point spacing and point density on point cloud 

processing and derived products. 

Combining multispectral imagery with LiDAR data is perhaps the most 
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prevalent integration technique, at least when the objective is classification (e.g., 

Mancini et al. [2009]; Salah et al., 2009; [Guo et al., 2011]). Although airborne 

LiDAR data have some advantages over aerial and satellite imagery, the imagery 

also have advantages over airborne LiDAR data. Combining newer LiDAR data 

sets with older DEMs and contour lines, rather than simply replacing the old 

with the new to fill in gaps, increase the resolution, or update reference data, is 

also becoming more common than in the past (e.g. Reiss [2002]; [Zhang J. , 

2010]; Schindler et al. [2011]). LiDAR survey firms, enabled by LiDAR 

equipment manufacturers offering "a full line of aerial digital cameras" [Optech, 

n.d.], may collect imagery simultaneously with LiDAR data. A process in which 

additional data may be incorporated at any stage can lead to an end product that 

combines the best properties of each available data source.    

 1.2. THESIS OBJECTIVES 

To reiterate, there is a need for a software package that is simple to use, will 

classify points to the desired level of completeness, and can incorporate 

additional data when they are available. In order to extract information from the 

LiDAR point cloud, a complete, in the context of the specific application, and 

accurate classification of LiDAR data is needed. Classification levels and 

accuracy for each level are defined in Section 4 of the NRCan guidelines; 

however, for a building assessment application, for example, "complete" may 

require only ground and building classification.  

To make use of the unique temporal and spatial characteristics of disparate 
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data sets, namely LiDAR data with ancillary data, in such a way that the 

classification results are enhanced in terms of completeness or accuracy, source 

differences must be identified, assessed, and resolved before the data can be 

successfully integrated. 

Hence, the objectives of this thesis are to: 

1. Develop a ground point identification (GPI) process that achieves 

95% point classification accuracy. 

2. Develop a semi-automated multi-stage point classification (MSPC) 

process to classify points as "building/structure", "medium vegetation" and 

"high vegetation", and separate ground points into "low vegetation", "road (or 

paved) surface", and "other ground". High point classification accuracy for all 

classes should be visually verifiable and, where adequate truth exists for point 

classification, numerically as 90% correct or better. 

3. Propose and develop measures to assess the quality of data 

integration results. 

4. Develop, implement, and test strategies for integrating disparate 

data sets, specifically additional elevation data and feature vector data, into 

the LiDAR point classification framework. 

 1.3. THESIS ORGANIZATION  

In order to achieve these objectives and satisfy the purpose that underlies 

them, the remainder of this thesis is organized into six chapters. The flowchart 

in Figure 1.1 shows the relationship between the objectives stated above and the 
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thesis chapters.  

 

Figure  1.1 

Flowchart for the point classification framework. 

The chapters are summarized as follows: 

Chapter 2 gives an overview of literature relevant to the research. This 

includes successes and limitations of existing classification methods, examples 

of LiDAR data integration, and the comparison of the NRCan guidelines to 

guidelines from other countries.  

Chapter 3 presents a discussion of the measures and methods that were used 

in this research, in the context of the NRCan guidelines. It also describes the 

data sets used in testing. 

Point cloud 
with 

Ground  

Obj. 1: Ground Point 
Identification 

(Chapter 4; see Figs. 4.1, 4.8 
and 4.10, and Table 4.1) 

Obj. 2: Multi-Stage Point 
Classification 

(Chapter 5; see Fig. 5.1) 

Obj. 3: Measures to Assess 
Integration Quality 

(Chapter 6, Section 2) 

Obj. 4: Integration of 
Disparate Data 

(Chapter 6, Sections 3 to 7) 

Ground 
raster 

Point cloud 
with Ground, 

Building, 
Vegetation, 

Road 

Point cloud with 
Ground, Building, 
Vegetation, Road, 
and other classes 

Unclassified 
point cloud  
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Chapter 4 details the ground point identification process developed by the 

author, including an accuracy assessment. GPI is comprised of ground detection 

techniques, a surface comparison technique, and a point classification process. 

The GPI process can be fully automated or the user may choose to set 

parameters for the ground detection techniques employed, select different 

surfaces to include in the comparison, and adjust what is deemed to be a 

significant change in the point classification. 

Chapter 5 describes the multi-stage classification process developed by the 

author to classify LiDAR points into seven additional classes using a single 

LiDAR data set. It also includes accuracy assessments. The MSPC process can be 

fully automated, require the user to select between two measures in the initial 

stage and set one threshold in a later stage, or allow manual refinement and 

adjustment of parameters.  

Chapter 6 discusses using other data sources to improve classification results 

and/or processing time, including factors to consider when combining data from 

multiple sources, and also briefly discusses to potential benefits of multi-

temporal LiDAR data.  

Chapter 7 gives conclusions and recommendations, with a review and analysis 

of accomplished tasks with respect to the measurable objectives, and provides 

recommendations for future work. 

With the exception of data visualization and the application of a few basic GIS 

functions, particularly vector data manipulation, all of the work carried out as 

part of this research made use of code developed by the author in the C 



11 

 

programming language. This includes code to implement and test the ground 

point identification process and the multi-stage point classification process. Due 

to space and readability considerations, the core functionality of the developed 

code is included as pseudocode in Appendix A. The full code can be found in a 

repository on Bitbucket1 at https://bitbucket.org/kamolins/thesiscode. 

                                                           
1
 Bitbucket is a code management and collaboration service. Cloud hosting is free for individuals. 

https://bitbucket.org/ 

https://bitbucket.org/kamolins/thesiscode
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"Pereant, inquit, qui ante nos nostra 

dixerunt." "Confound those who have made 

our comments before us." 

~ Aelius Donatus 

 CHAPTER 2  

OVERVIEW OF CONCEPTS AND DISCUSSION OF 
RELATED LITERATURE 

This chapter contains an overview of concepts, literature, and resources 

directly related to the research in this thesis. The first section briefly presents 

principles of LiDAR, provides definitions for important terminology as used in 

this research, and discusses data management techniques that were employed. 

The next sections discuss examples from literature on surface generation, data 

classification, and data integration. The final section provides a comparison of 

existing LiDAR acquisition guidelines.  

 2.1. FUNDAMENTALS 

As previously mentioned, those who use LiDAR data may only use elevation 

products derived from LiDAR and may not have any knowledge of the properties 

of the point cloud. Yet, understanding basic principles of LiDAR is critical to 

understanding the limitations of any derived products. A brief overview of the 

principles of airborne LiDAR, along with definitions of terminology and data 

handling techniques as used in the thesis, is therefore presented here.  
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2.1.1. Principles of Airborne LiDAR 

The basis of LiDAR systems is laser ranging. In pulse-based systems, which 

are used for ALS, a laser pulse is emitted from the sensor. Any object within the 

laser footprint may generate a reflection, also called a return. If two or more 

surfaces are separated by a large enough distance in the range direction, each 

will generate a discrete return [Petrie and Toth, 2008]. These multiple returns 

can provide data from within tree canopies and can be helpful in locating 

boundaries between features. 

Each pulse emitted from the sensor has the same height (energy level or 

intensity) and width. The returning pulses, however, will be distorted in various 

ways. Different materials have different reflectivity properties: snow and 

vegetation, for example, will reflect more of the energy back to the sensor than 

asphalt and concrete [Wehr and Lohr, 1999]. The intensity of each return is 

recorded along with the distance to the target. When LiDAR data are displayed 

using intensity values instead of, or as modulators of, elevation values, more 

feature details may be visible.  

Detailed platform position and orientation measurements are taken 

throughout a survey so that the collected range and scan angle data can be 

accurately transformed into three dimensional coordinates. Although pulses are 

emitted at a constant rate and the scanning mechanism moves in a known 

pattern, small variations in platform speed, position, orientation, etc., as well as 

variations in terrain and feature height will cause deviations from the theoretical 

as to where pulses actually fall [Baltsavias, 1999b].  
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2.1.2. Research Definitions 

Deviations from the theoretical also exist, in a certain sense, in the 

terminology. While the use of some terms is consistent across the literature, the 

use of other terms can vary according to personal preference, institutional 

preference, suitability, or other factors. For this reason, key terms for the 

research in this thesis are defined here: 

Classification: "the action or process of classifying something 

according to shared qualities or characteristics" [Apple Dictionary, 

n.d.]. 

Extraction: "the action of taking out something, esp. using effort 

or force." ORIGIN late Middle English: via Old French from late 

Latin extractio(n-), from Latin extrahere ‘draw out’ [Apple 

Dictionary, n.d.]. 

Filtering: "removing unwanted measurements, as in the case of 

finding ground surface from a mixture of ground and vegetation 

measurements" [Axelsson, 1999] 

This research focuses on point cloud classification, that is, on retaining the 

full point cloud while injecting into it information about the features. A classified 

point cloud will have points marked as ground, building, vegetation, and/or 

other classes. Any of these classes can be extracted from the point cloud, for 

example, to create a ground surface representation or a point cloud containing 

only building points. Information is extracted from the point cloud for use in the 

classification process but the final product is the classified point cloud and not 
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any derived products. Similarly, points may be filtered out of a class but remain 

in the point cloud. 

2.1.3. Data Handling Techniques 

One of the greatest challenges when working with LiDAR is the very large 

volume of data, which are not necessarily organized in a way that allows the 

characteristics of a single point to be analyzed in the context of all geographically 

neighbouring points. A standard file exchange format for LiDAR data is the 

American Society of Photogrammetry and Remote Sensing (ASPRS) LASer 

(LAS) file format specification [LAS Working Group, n.d.]. The latest version, 

LAS 1.4, approved in November 2011, includes many changes and additions to 

address the challenges of accessing, manipulating, and storing large volumes of 

data and information without altering the point cloud. It also allows for the 

inclusion of supplemental information, such as red, green, blue and near-

infrared colourization values obtained from auxiliary optical sensors, to be 

stored for each point, and defines 18 standard point classes, including four 

specific to power transmission structures [Graham, 2012a]. 

Although the LAS specification provides a standard for data storage, 

additional data handling techniques are needed to work with the data. Two basic 

data handling techniques were employed for ground point identification and all 

further classification in this work: regular interpolation and voxel sorting. 

 



16 

 

2.1.3.1. Regular Interpolation 

For LiDAR data, "regular interpolation" is a process of aggregating the point 

data into a two-dimensional grid of equal-sized cells. The search area for 

selecting points to aggregate for each cell can be defined in number of different 

ways, including: 

1. The boundaries of the cell. 

2. The perimeter of a circle inscribed in the cell. 

3. The perimeter of a circle of area equal to that of the cell. 

4. The perimeter of a circle circumscribing the cell. 

Each of these is illustrated in Figure 2.1. The first search area definition is most 

appropriate when the output is a count, such as local point density, an extrema, 

or otherwise is a value representing the cell area. The other search area 

definitions are more appropriate when values are being averaged in some way or 

otherwise are meant to best represent the cell as a discrete point. The larger 

circular search areas ensure that there are fewer points do not fall inside any 

search area but also create overlaps between the search areas of adjacent cells. 

 

Figure 2.1 

Search area definitions: a) cell boundaries; b) circle inscribed in cell; c) circle of 

equal area; d) circle circumscribing cell. Green points fall within search area; red 

points fall outside search area. 

a) b) c) d) 
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Regardless of the definition of the search area, the grid resolution selected for 

the interpolation can affect the results significantly. "Higher" and "lower" 

resolutions are relative to each data set and the distribution of points within the 

data set. In version 2 of the NRCan guidelines [2014], which are further 

described later in this chapter, there is a stated expectation that pulses are 

uniformly distributed throughout the collection area. This is to be verified by 

creating a grid with cell sizes twice the nominal pulse spacing (i.e., by using a 

relatively low resolution) and ensuring that at least 90% of cells contain at least 

one last return point. A lower percentage of cells could indicate clustering of last 

returns and an uneven data collection. The standard pulse spacing specified in 

the NRCan guidelines is 1 pulse per m2. The recommended resolution for raster 

products derived from a point cloud is 1 m. 

A higher grid resolution can provide more detail and accuracy at the 

individual cell level than a lower resolution, but is also more likely to leave gaps 

in the resulting interpolated raster due to an increased probability that no points 

fall within the search area for a given cell. Lower grid resolutions, in contrast, 

tend to smooth out data, which can be advantageous in some circumstances. For 

example, part of the test area in Fredericton includes a forest that was too dense 

in many places for the laser to penetrate openings in the vegetation down to the 

ground. Figure 2.2 shows a sample of the minimum elevations in each cell at 1 

m, 3 m, and 5 m resolutions. In the 1 m interpolation, many of the minimum 

values are "non-ground" points and so the ground surface is mostly obscured. In 

the 5 m interpolation, the resolution is low enough that many of those non-
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ground points are eliminated, resulting in a smoother surface where the ground 

under the forest is mostly visible.  

 

Figure 2.2 

Effect of grid resolution on ground detection under forest canopy. Minimum 

value in cell using a) 1 m b) 3 m and c) 5 m resolution. 

When the interpolation does not represent the minimum or maximum value 

or a count of points within the search area, some function must be applied to 

obtain a single value that represents all of the points in the search area. The 

values to be interpolated could be elevation, intensity, or some other attribute 

contained in the point data. One option is to calculate a simple average, �̅�, from 

the point values: 

 �̅� =
1

𝑛
∑ 𝑣𝑖𝑛   (3.1) 

where n is the number of points in the search area and vi is the value of the ith 

point. This option is simple to implement but places equal weight on every point 

in the search area, regardless of the distance from the centre.  
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A commonly used alternative is inverse distance weighting (IDW). The basic 

form for IDW is: 

 𝑣 = {
∑ 𝑤𝑖𝑣𝑖𝑛 ∑ 𝑤𝑖𝑛⁄ , 𝑖𝑓 𝑑𝑖 ≠ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

𝑣𝑖 , 𝑖𝑓 𝑑𝑖 = 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖
 

 𝑤𝑖 = di
−𝑝 (3.2) 

where n is the number of points in the search area, vi is the value of the ith point, 

di is the distance to the ith point, and p is a number greater than zero [Shepard, 

1968]. The interpolation method deemed most suitable for the circumstances 

was used where interpolated surfaces were required to test the ground point 

identification (GPI) and multi-stage point classification (MSPC) processes.  

2.1.3.2. Voxel Sorting  

Interpolation leads to a loss of information because it reduces the data to 

what is commonly referred to as “2.5 dimensions” — one z value for each 

regularly spaced x and y coordinate pair. Data structures or techniques that 

maintain the three dimensions, such as using volume pixels (voxels), should be 

applied [Mosa et al., 2012] to preserve the inherently 3D information in the 

point cloud. Although voxels are not mentioned in the NRCan guidelines, voxel 

sorting can be used to preserve the 3D data while organizing it in such a way to 

allow faster access to all points within a specified neighbourhood. It is akin to 

the indexing performed by software such as LP360™2 and LAStools™, but it 

applies the concept of voxels: equal volume, three-dimensional divisions of 

space [Stoker, 2009]. The space is divided into rows, columns, and layers, 

                                                           
2 LP360™ is a licenced software product of QCoherent Software LLC.  
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creating voxels of specific length, width, and height. All the points within the 

cloud are then sorted into their respective voxels by layer (z), row (y), column (x) 

and transferred into a new file. By recording the number of points within each 

voxel along with the coordinates and the starting index for each voxel, all points 

near specified coordinates can be quickly and easily located in the sorted file.  

The dimensions of the voxels can be equal (cube) or different (rectangular 

prisms). As currently implemented in the code developed for this thesis work 

(which is included as pseudocode in 0), smaller voxels require a longer time to 

complete the sorting but this is offset by faster processing when point 

neighbourhoods are examined because there are fewer points in the smaller 

voxels.  

 2.2. SURFACE GENERATION 

Research involving LiDAR data ranges from generic ground/non-ground 

separation for DEM generation to highly specialized detection and modelling, 

for example, of power lines and curbstones. The methods a researcher proposes 

to accomplish his or her objectives may use only LiDAR data, imagery 

augmented by LiDAR data, or LiDAR data augmented by imagery or other types 

of data. Some algorithms are designed to work directly with 3D point clouds 

(e.g., Shan and Sampath [2005]; Brodu and Lague [2011]) and perhaps small 

local neighbourhoods (e.g., Chehata et al. [2009]), but the majority create 

intermediate surfaces (e.g., Forlani et al. [2006]; Miliaresis and Kokkas [2007]; 

Antonarakis et al. [2008]; Alexander et al. [2011]) as there is a need to identify 
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the structure within a point cloud before target features can be identified. The 

intermediate surfaces are usually representations of the ground surface but 

Guan et al. [2014] partitioned the point cloud into equal-sized cells and generate 

multi-directional cross-section-planes for each cell.   

 Common surfaces created are upper surfaces, or digital surface models 

(DSMs); ground surfaces, or digital terrain models (DTMs); and normalized 

DSMs (nDSMs, called height above ground or HAG in this thesis), which are 

calculated as the difference between DSMs and DTMs. All three types of surfaces 

are generated from LiDAR point clouds as part of the research in this thesis. The 

next sections give an overview of DTMs and an overview of LiDAR data 

interpolation, as found in the literature. 

2.2.1. Digital Terrain Models 

The first use of the term DTM has been attributed to Charles L. Miller’s work 

in the 1950s [Miller and Laflamme, 1958]. A DTM can be defined as “an ordered 

array of numbers that represents the spatial distribution of terrain 

characteristics” [Doyle, 1978]. Data used to create a DTM could be acquired 

from various sources, such as ground surveys, stereomodels from aerial or 

satellite imagery, existing maps, altimeters, or laser scanners. Two “competing” 

methods of representing the data are grids and triangulated irregular networks 

(TINs). Grids are conceptually simpler and may be simpler to generate, 

manipulate and integrate with other data, whereas TINs adapt to the roughness 

of the terrain, and are therefore arguably the more efficient alternative [Fowler 
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and Little, 1979], although they may also be more prone to including errors from 

the data. 

The objective in Li [1994] was to investigate the accuracy of DTMs generated 

from different data models, namely contours and grids, both alone and 

enhanced with feature-specific data such as points along ridges and break lines. 

It was found that greater accuracies were achieved when the feature-specific 

data were included. Similarly, Florinsky [1998] found that an increased amount 

of information could be extracted when DTMs were combined with imagery. 

Before combining data sets, however, issues such as DTM resolution, accuracy, 

and precise superpositioning need to be resolved.  

Podobnikar et al. [2000] studied integrating elevation data from different 

sources, including contour lines and hydrographic line and polygon data, into an 

existing DEM to produce one at a higher resolution. Their process includes both 

visual examination and statistical testing of the data to be integrated to ensure 

their suitability. In contrast, Reiss [2002] described an opposite approach, using 

photogrammetric data and methods along survey data to verify the accuracy of 

LiDAR data. 

Podobnikar [2005] and Warriner and Mandlburger [2005] further explored 

and proposed methods for generating high-quality DTMs using data from 

various sources, recognizing that each source has its own advantages and 

disadvantages and so can potentially be used as a check and/or to complement 

other data sources. These two papers are discussed in further detail in Section 

2.4. 
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2.2.2. LiDAR Data Interpolation 

One problem that persists with point data is the question of optimum 

sampling, whether they are LiDAR data or data from other point sources. 

Sufficient points need to be acquired to represent the surface with the desired 

degree of accuracy, yet what is “sufficient” depends on the terrain. Algorithms 

have been developed to determine the optimum number of sample elevation 

points, for example, in a stereomodel [Ayeni, 1982]. A LiDAR data point cloud, 

however, consists of pseudo-randomly sampled points in three dimensions. The 

spacing of points in both the along-track and across-track directions is a 

function of the laser scan pattern but is affected by flight parameters and terrain 

variation [Baltsavias, 1999a]. Moreover, while any point is likely to lie in close 

spatial proximity to the points immediately preceding and following it in the 

data file, the scan pattern makes it very difficult to quickly determine if there are 

other points in the cloud that are similarly close. The simplest method of 

overcoming the problem of pseudo-random sampling is to resample the data to a 

regular grid; however, some information is consequently lost and there is no 

guarantee that key feature points will be sampled.  

Zinger et al.  [2002] investigated the effects of three different methods of 

interpolation: triangle-based linear interpolation, triangle-based nearest 

neighbour interpolation, and kriging. They were specifically interested in 

determining which method produced the best results, as determined by 

correlation with a reference DSM, for data from urban areas, where edges are 

critical since they define building outlines, roads, and other urban features. They 
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found that kriging produced slightly better results (approximately 1% higher 

correlation) than linear interpolation but acknowledged that results are 

dependent on the parameters chosen and also that the reference DSM may be 

missing details retained in the interpolations, which would negatively impact 

correlation.  

Goulden et al. [2014] similarly investigated the effects of different 

interpolation methods, but also the effects of spatial resolution and specifically 

on watershed areas and stream networks. From their analysis, they determined 

that the features present in a scene must be taken into consideration when 

choosing the spatial resolution for a DEM, but also the purpose for using the 

DEM as lower resolution DEMs may provide adequate information while being 

easier to process. 

In Cho et al. [2004], the authors used a pseudo-grid in an attempt to avoid 

the loss of information that comes with interpolating point data to a grid. 

Instead of aggregating the point data that fall within each grid cell, the cells 

functioned as bins that store the data of each individual point. This approach has 

the benefits of grid cell adjacency and also of full point detail; however, it is more 

complicated to process and manipulate. 

More recently, some research has involved the use of voxels (volume pixels). 

If voxels are used simply as point aggregators, some loss of information may still 

occur, but less than when rasterization is applied. However, voxels can also be 

used to help reduce the number of points under consideration. For example, Jwa 

et al. [2009] used voxels in the first step of a process to detect and reconstruct 
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powerlines. A Hough transform and an Eigenvalue computation were applied to 

the points within each voxel to detect linear features and thereby identify 

potential powerline points.  

Voxels have also been used in forestry applications. Hosoi et al. [2013] 

divided terrestrial LiDAR data points collected around a tree into voxels and 

then, starting from manually selected seed stem or large branch voxels, classified 

neighbouring voxels as stem, large branch, or small branch in an iterative 

process. The set of classified voxels were then merged to create a solid model of 

the tree. Voxels were also used by Musselman et al. [2013] to create a model but 

from airborne LiDAR data points and to represent the canopy structure rather 

than an individual tree. A traversal algorithm was then applied to the voxel space 

for rays of varying slopes and directions as a way to estimate how solar beams 

are transmitted through the canopy.   

In Chen et al. [2014], multiple scales were used to improve detection and 

reconstruction of building roofs. A large scale (cell size two to three times the 

average point spacing) was used in the identification of non-ground points, from 

which building seed regions are detected. A small scale (cell size half the average 

point spacing) was used to avoid losing of data and detect building features. 

They found that this approach could be applied successfully in complex urban 

environments.  

 2.3. CLASSIFICATION METHODS 

 LiDAR data are being utilized to classify land cover and land use. Height 
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information from the points can be used to discriminate between ground and 

non-ground, and to further discriminate between buildings and vegetation. 

Objects and features can be visually identified within LiDAR data, whether they 

are displayed as a 3D point cloud or rasterized, and from both elevation and 

intensity values. To make different terrain and feature characteristics more 

easily visible, different surfaces can be derived from the data, such as bare-earth 

DTMs, DSMs, HAG, slope, aspect, and others, and assigning sets of these 

surfaces to red, green, and blue colour channels to create an image [Stoker, 

2010]. However, the patterns that are recognizable to the human eye often have 

subtle variations that create challenges for automated object and feature 

recognition. The following sections discuss examples of filtering methods, 

classification approaches and feature identification. 

2.3.1. Basic Filtering 

Filtering entails removing unwanted points. One filtering task that is common 

to most LiDAR classification and interpretation processes is separating ground 

from non-ground points [Axelsson, 1999]; whether it is the ground points that 

are being filtered or the non-ground points depends on the end goal for the 

filtering. Generally, a sudden change in elevation can be expected when moving 

from ground to object (positive slope) or from object to ground (negative slope) 

and this concept is commonly exploited in data filtering algorithms.  

The main problem with slope-based filtering is that it performs poorly in 

areas where the terrain is steep, particularly if it is covered by vegetation. This is 
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observed in Sithole and Vosselman [2004], which compares the performance of 

filtering methods from eight different participants in a variety of settings. The 

comparison also showed that all of the tested methods produced errors in 

complex urban areas, but performed well is smooth, rural areas.  

Various approaches have been devised for resolving the problem of poor 

performance on sloped terrain, for example, Kraus and Pfeifer [2001], which 

combined filtering and terrain interpolation in one process; Sithole [2001], 

which used a filter that adapts to the slope of the terrain so that it can be applied 

to steeper terrain; Shan and Sampath [2005], which applied a one-dimensional 

filter to a scan line in one direction and then the reverse direction; and Yuan et 

al. [2009], which applied a threshold to a point and a planar surface constructed 

from neighbouring points.  

Polat et al. [2015] introduced a decimation step, which they found could be 

applied either before or after an adaptive TIN filtering process with comparably 

high results, in terms of correlation with a reference DEM. The approach used by 

Bartels and Wei [2006] applied a second order Daubechies wavelet filter to 

separate features from hilly terrain, while Lu et al. [2009] used a conditional 

random field model and machine learning to train the classifier. 

In Pingel et al. [2013], a progressive morphological filter was applied to a 

minimum surface derived from LiDAR points. A slope tolerance and a maximum 

window radius that represents the size of the largest non-terrain feature to be 

removes were used to flag cells as either bare earth or object. A DEM was 

derived from the bare earth cells, and then the LiDAR points were classified as 
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ground or non-ground based on their distance from the derived DEM.  

The point cloud is often interpolated to a regular grid during filtering, 

including in some of the approaches cited above, but many examples can also be 

found where the filtering process is point-based. Sithole and Vosselman [2003] 

used a raw point cloud segmentation approach in which points are connected 

into line segments through height differences or slope and then connected into 

surfaces. Surfaces and their composite points are classified as bare earth, 

detached object (bridge, overpass), or attached object (building, vegetation).Yao 

et al. [2009] and Moosmann et al. [2009] also used methods that operate 

directly on the point cloud. The former employed clustering techniques, while 

the latter treated points as nodes in a graph. Point-based filtering methods avoid 

loss of information and accuracy that occurs when 3D point clouds are 

transformed into 2.5D representations, but also require more complex 

procedures. 

2.3.2. Classification of LiDAR Data 

After separating points into ground and non-ground, further filtering or 

classification can be used to identify subclasses within each set: grass, roads, 

bare earth in the set of “ground points”; and buildings and trees in the set of 

“non-ground points.” A significant amount of research, some of which is cited 

below, has been conducted on identifying attributes of the different subclasses 

that, individually or in combination, make them separable within a LiDAR point 

cloud. Height information from LiDAR data was very early seen to be useful for 
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augmenting classification based on images (e.g., [Haala and Walter, 1999]) but 

there have also been ongoing attempts to make use only of the information 

contained within a point cloud.  

Height information is the most reliable information contained in a point 

cloud. Nevertheless, the ability to record both first and last returns allows two 

basic surfaces to be derived, a DSM and an approximative DTM, as well as a 

third surface, HAG, which can all provide information supplementary to height. 

HAG is calculated from the difference between the first return and last return 

surfaces and shows areas of “change,” such as vegetation and building edges. 

Arefi et al. [2003] used these surfaces to classify buildings and trees through a 

process that involves maximum likelihood classification and morphological 

filtering.  

Studies have shown that pulse intensity data may also be suitable for 

classification. For example, Song et al. [2002] conducted a separability analysis 

for four types of materials (asphalt, grass, house roof, and tree) and three 

different intensity interpolations (inverse distance weighting before and after 

filtering and kriging) and found that separability was high enough to allow for 

land-cover classification. However, Yoon et al. [2008]  found that, while the 

intensity from most materials was dependent on the range, this was not the case 

for vegetation and consequently there was not sufficient separability in intensity 

values to allow for land cover classification. Hopkinson [2007] found that there 

was a linear relationship between intensity values and peak pulse power 

concentration and that is was possible to derive a correction model to normalize 
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across variable power concentrations of different surveys. Wang and Glenn 

[2009] applied a normalization factor to the intensity values before using a 

threshold to separate vegetation and non-vegetation (bare ground) and achieved 

an 85% overall accuracy.  

In Garcia-Gutierrez et al. [2009; 2011], thirty-three measures were derived 

from intensity, height, point return information, and other characteristics of the 

point cloud. Among the ten measures chosen for use in the pixel-based classifier 

were intensity minimum, mean, and skewness. The classifier identified pixels as 

water, marsh, grass and bare earth, middle vegetation, high vegetation, roads 

and railways, or urban zones.  

Intensity information has also been assessed for a highly specialized 

classification: temperate, lowland alluvial sediment with the potential to 

preserve the cultural and environmental archaeological record. Challis et al. 

[2011] found that, although the intensity values could not be used to predict 

preservation potential, there was correlation with key soil parameters and 

LiDAR intensity data were useful in qualitative assessments. 

One final type of information contained within a LiDAR point cloud is the 

point return information. Airborne LiDAR survey systems can record separate 

returns for each separable surface within the laser footprint. The LAS file format 

supports up to 15 recorded returns per pulse [Graham, 2012]. Some filtering 

processes make use of point return information, for example Ma et al. [2015], 

which in essence discarded all but single and last returns before applying slope 

based filtering to separate ground from non-ground.       
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Niemeyer et al. [2014]  used a set of measures derived from the LiDAR point 

information, including from point return numbers and point density, in a 

process involving conditional random fields that classified points as grassland, 

road, gabled roof, low vegetation, façade, flat roof, or tree. The measure that they 

found was the most important was HAG.  

2.3.3. Augmenting Classification with LiDAR Data 

Satisfactory results can be achieved using only point clouds, but numerous 

examples can be found of point clouds being used to augment image-based 

classification processes with height information. The images may be acquired 

from aerial or satellite platforms, and may be multispectral, hyperspectral, or 

even synthetic aperture radar (SAR) data. In broad terms, multispectral and 

hyperspectral imagery help to separate objects or land covers based on spectral 

characteristics, while SAR imagery offers surface texture and LiDAR data are 

primarily used as elevation data. Examples of combinations of LiDAR data with 

hyperspectral data include Voss [2008] and Dalponte et al., [2008], which both 

aimed to classify tree species; and Goodenough et al. [2008], which combined 

LiDAR, hyperspectral, and SAR data to classify land covers in a forested area as 

water, swamp, herb, shrub, or forest and claimed to achieve an overall 

classification accuracy of 84%.  

Typically, when multiple data sources are used, a DSM is derived (and/or an 

HAG, and/or a DTM), with a grid resolution to match the resolution of the 

imagery, and used as an additional “spectral” band in the classification. Syed et 
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al. [2005] used three multi-spectral bands from aerial imagery together with 

HAG from LiDAR data in an object-based process that classified pixels into a 

vegetation/non vegetation hierarchy. Bartels et al. [2006] used LiDAR data and 

imagery that were collected simultaneously, specifically using first returns, last 

returns, LiDAR intensity, plus RGB and near infra-red bands. The classification 

process marked pixels as building, vegetation, car, or ground with an 85% 

overall accuracy. Yoon et al. [2006] used the same bands derived from LiDAR 

but derived a normalized difference vegetation index (NDVI) from the imagery. 

The classification process involved clustering, and marked pixels as building, 

grass, road, soil, tree, or water. The process in Yu et al. [2009b] was two-staged. 

The first stage classified pixels as impervious, vegetation, or water based on the 

imagery. The second stage used HAG from the LiDAR data to subdivide the first 

stage classes based on height as well as morphological properties.  

The images that underlie the classification may also be generated from the 

LiDAR data themselves: in Zhou [2013] the results of an object-based 

classification using LiDAR intensity and elevation imagery were found to be 

comparable to those obtained using multispectral and LiDAR elevation imagery. 

Land cover was classified into tree, pavement, grass, or building. The overall 

accuracy for LiDAR data alone was found to be 90.67%, while the overall 

accuracy for LiDAR data with aerial imagery was found to be 92%.  

Parent et al. [2015] developed a detailed set of rules for deriving a 1 m 

resolution land cover map from LiDAR data and multispectral imagery. The land 

covers depicted in the map are deciduous trees, coniferous trees, medium-height 
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vegetation, low vegetation, water, riparian wetlands, buildings, and low 

impervious cover. The measures calculated included maximum and minimum 

height and understory detection from the LiDAR data, and NDVI and reflectivity 

from the imagery. The overall accuracy was over 90%. 

2.3.4. Identifying Features 

LiDAR point clouds are a natural source for 3D data, and buildings can be 

readily detected in point clouds, but the irregular spacing of the data is 

problematic. Many algorithms have been proposed for extracting building 

models from point clouds, or from imagery augmented by point cloud data. 

Some of these rely on a library of building types, while others detect and 

characterize roof planes - either way, the aim is to determine “approximately” 

the shape of the building and its location, not the nature of individual points. 

Elaksher and Bethel [2002] used a region growing technique, starting from 

candidate building points that are at least 5 m above the surrounding terrain, to 

find roof regions from which region borders can be extracted. Rottensteiner and 

Briese [2002]  also used region growing, starting from planar patches that are 

found by segmenting the DSM. Texture analysis was applied in Zhang et al. 

[2009], by using gray level co-occurrence matrix after morphological filtering 

was applied to the DSM; and Samadzadegan et al. [2009b], by calculating 

various measures on first and last return elevation and intensity images.  

The results of building detection and classification processes are affected by 

the scale of the object relative to the size of the window in which data points are 
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being compared as well as by overhanging vegetation. To overcome the scale 

issue, Vu et al. [2009] used a multi-scale process and both elevation data from 

LiDAR and spectral data from aerial imagery. To overcome the vegetation issue, 

Zhou et al. [2009] used clustering based on HAG to find objects and shape 

regularity to determine if an object is a tree or a building. 

Progressive refinements can be introduced to improve final results. Many of 

the works cited above involve multiple stages of filtering and/or classification to 

reach the final product. Another example is Mao et al. [2009], in which 

vegetation points were filtered out by using LiDAR intensity data, along with 

aerial images, before clustering is used to classify building surface points and 

building wall points. A different approach, "double-fusion," was used in Demir et 

al. [2009]: aerial imagery was fused with LiDAR data, and then the results of 

four different building detection methods were fused to produce a final result 

with improved completeness and correctness over the individual results. In 

Alexander et al. [2011], a decision tree classifier was used, with possible classes 

being building with flat roof, building with pitched roof, grass, road, trees, and 

shrubs. Their results illustrated the challenges of correctly classifying points at 

buildings edges: many of these points seemed to have been classified as trees 

and some points at the edges of flat roofs seemed to have been classified as 

pitched roofs. 

A different approach was used in Yu et al. [2011] The point cloud was 

segmented into objects by first extracting terrain and calculating HAG values, 

then identifying clusters of points as individual objects. In the results, each 
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building had its own classification, rather than having one classification for all 

buildings. Li et al. [2012] also used a segmentation approach to classification, 

but for the purpose of segmenting individual trees in a forested area. Lehrbass 

and Wang [2012] aimed to improve mapping of urban tree cover by first using 

the LiDAR data to correct relief displacement of trees in aerial imagery and then 

using HAG derived from the LiDAR data together with the imagery to outline 

tree cover.  

In urban areas, additional data are often available, such as multispectral 

imagery and 2D ground plans, that can help in classifying features. An early 

example of methods proposed for incorporating two types of data, namely 

multispectral imagery and ground plans for buildings, with LiDAR data was in 

Haala and Brenner [1999]. The multispectral imagery was combined with a HAG 

and the ground plans with a DSM. They found that such integrations 

significantly improved image classification and strongly recommend integrating 

LiDAR data during the automatic generation of urban data sets. Rottensteiner et 

al. [2004] noted that the complementary nature of the data – aerial imagery 

offer higher resolution, while LiDAR data are not (as) affected by shadows, 

occlusions, or poor contrast – was most beneficial in building detection, roof 

plane detection, and determination of roof boundaries. Al-Durgham et al. [2012]  

however, argued that many building algorithms still required user interaction 

and did not address the issue of varying point densities. Their approach used 

planar surfaces and minimum bounding rectangles to extract building outlines. 

The scenes tested in Kada and McKinley [2009] did not have vegetation 
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overhanging buildings and the data available included existing grounds plans 

and so the process could be focused on reconstructing roof-structures. The 

method split each footprint into sections and fit roof shapes to each piece. In a 

similar approach, Kim et al. [2013] used a "mean planar filter" to separate points 

that lie in a plane from boundary points. Buildings were then extracted through 

a combination of height filtering, supervised classification using aerial imagery, 

and area-based filtering. Buildings can also be further classified by type, as in 

Meng et al. [2012], where an approach was used that first combined LiDAR data 

with aerial photography to detect buildings and green space versus parking 

space, and then derived additional measures from road polygons to identify 

buildings as residential or non-residential. 

Other features that can be identified and extracted include roads. Clode et al. 

[2007] used intensity and height in the initial classification, then added local 

point density, and finally vectorized the road features. Samadzadegen et al. 

[2009a] applied both a minimum distance and a maximum likelihood classifier 

to first and last return intensity and range, obtaining two classes for roads 

(asphalt and cement), plus building, grassland, tree, and parking classes. The 

results were then fused. Although roads were not the only feature classified in 

Mancini et al. [2009], it did propose an approach for extracting road and 

roundabout features based on the classification results. 

 2.4. DATA FUSION AND INTEGRATION 

Many of the examples cited above combine data from multiple sources – in 
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some cases using data from one source to improve data from another source – 

but few explore in any detail the processes required to combine disparate data 

sets effectively. This section describes two papers that discuss integration in 

great detail: Papasaika and Baltsavias [2009] and Warriner and Mandlburger 

[2005].  

In their paper proposing a method for fusing LiDAR and photogrammetric 

DEMs, Papasaika and Baltsavias identify six reasons for fusing DEMs, any or all 

of which may apply: 

1. To combine DEMs produced by different technologies, which implies 

different strengths and weaknesses. 

2. To update existing DEMs with newer data, perhaps for change detection 

purposes. 

3. To increase the accuracy of DEMs. 

4. To densify DEMs.  

5. To fill gaps in DEMs. 

6. To increase the total coverage area by mosaicking DEMs. 

These reasons could all be extended to apply to any geographic data, not just 

LiDAR and photogrammetric DEMs.  

As part of their fusion method, Papasaika and Baltsavias evaluate the quality 

of the result but require knowledge about the technology used to create the 

DEM, the date when the data were acquired, the resolution of DEM, and a global 

measure of accuracy. They apply a mathematical approach to fusion based on an 

accuracy analysis of each DEM and similarities or differences between DEMs. 



38 

 

Although the process examines local quality, often in a 3x3 window, the final 

solution has only a global measure of accuracy. 

Warriner and Mandlburger have a far simpler fusion process: select the 

highest accuracy data. At boundaries between DTMs, blending can be applied to 

provide a smoother transition. Along with the fusion product, they also generate 

a quality indicator and quality map showing which areas have what accuracy and 

accompany it with a header file that gives more information about the 

accuracies. This largely automatic process is designed for specific data products 

and specific needs, namely integrating 2 m resolution LiDAR-derived DTMs into 

an existing database containing lower resolution elevation products and where 

all the data sources need to be available and selectable. Although their solution is 

not broadly applicable to data integration, aspects of it are, in particular 

blending at boundaries and quality assessment.  

The following section examines existing standards and guidelines for LiDAR 

data acquisition and processing, which are an important factor in successfully 

integrating data sets. 

 2.5. COMPARISON OF EXISTING STANDARDS AND 

GUIDELINES 

Integration is a common theme in at least three documents detailing LiDAR 

standards for different countries:  

"[The collection of numerous lidar data sets across the nation] have used a 
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variety of specifications and required a diverse set of products, resulting in many 

incompatible data sets and making cross-project analysis extremely difficult." 

Preface to the U.S. Geological Survey National Geospatial Program (USGS NGP) 

Lidar Guidelines and Base Specification [US Geological Survey, 2010]. 

"Inconsistent and diverse product specifications, and variable data quality are 

often making it difficult to integrate data sets to address regional, state and 

national issues." Preface to the Australian Intergovernmental Committee on 

Surveying and Mapping (ICSM) LiDAR Acquisition Specification and Tender 

Template [Australian Intergovernmental Committee on Surveying & Mapping, 

2010]. 

"The lack of LiDAR acquisition guidelines contributes to inconsistent data 

quality and impedes data sharing and data integration within and across 

jurisdictions in Canada." Preface to the Canadian Airborne LiDAR Acquisition 

Guideline [Natural Resources Canada, 2014]. 

The commonality in all of these is the need for consistency in data collection 

parameters and deliverables to facilitate integration – but a balance must be 

struck between enough specifications and too many restrictions. Each of these 

documents is summarized in the sections below, followed by a comparative 

analysis of strengths and weaknesses.  

2.5.1. Canadian LiDAR Acquisition Guideline 

The first draft of the NRCan guidelines was circulated in July 2012. They were 

based on the Australian document, cited above, but were to be developed specific 
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to the Canadian reality. Arguably, the technical specifications did not change 

significantly from version 1.0 to version 2.0, in terms of numerical details for the 

specifications that were in version 1.0. However, in the version 2.0 draft, 

released in October 2013, the purpose of the document is explicitly stated as 

being not only to provide consistency in data collection but also "to create a 

baseline for discussion between new and experienced LiDAR data users and 

LiDAR service providers" [Natural Resources Canada, 2013, p. 5]. It provides 

additional clarification of some specifications; introduces new specifications, 

such as point density guidelines; acknowledges that the specifications may need 

to be relaxed or enhanced to meet the specific needs of a client; and encourages 

clients to communicate fully with LiDAR service providers and rely on their 

expertise.  

The project planning and contracting section gives an outline of what 

information should be included when an acquisition project is put out to tender. 

Any landscape characteristics that may affect the data at any stage before 

delivery must be described; this is important for those bidding to be able to plan 

properly. In version 2.0 of the NRCan guidelines, a recommendation is added 

that a description of the intended use of the project deliverables be included so 

that LiDAR service providers might provide guidance based on their experience 

with similar applications. 

The general survey specifications section describes the accuracy, datums, and 

map projection to be used, which are presumably chosen to match the most 

commonly used standards so LiDAR data do not need to be transformed before 
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integration. A note is included about delivering orthometric heights in the new 

Canadian Geodetic Vertical Datum of 2013 (CGVD2013) after November 2013. 

Data and documentation for survey control must be supplied, which allows for 

independent quality checks. The collection requirements, including point 

spacing, maximum scan angle, flight line overlap, and environmental conditions 

help ensure full coverage at a sufficiently high resolution (point density). One of 

the additions to the general specifications is a suggestion that data be collected 

with leaf-on conditions, where this would not reduce the accuracy below what is 

required for the application for which the data are being collected, to increase 

the utility of the data for other applications.  

Perhaps the most significant improvement in version 2.0 over version 1.0 is 

an expanded discussion of point spacing and spatial distribution. Whereas in 

version 1.0, the required nominal point spacing was 2 pulses per square metre, 

version 2.0 makes allowances for different application requirements and defines 

three specifications, low pulse spacing (1 pulse per 2 m2), standard pulse spacing 

(1 pulse per 1 m2) and high definition pulse spacing (2 pulses per 2 m2). Nominal 

point spacing (NPS) is calculated from first returns only. Corresponding nominal 

point densities (NPD), which include multiple returns, are defined for both open 

areas (equal to NPS) and vertically structured areas (three times as many points 

as NPS). Version 2.0 also includes a methodology for verifying the spatial 

distribution of points that is present in the Australian guidelines but were not 

present in version 1.0 of the NRCan guidelines. 

The point cloud specifications require fully compliant LAS format v1.2 or v1.3. 
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The LAS format is one of the most commonly used formats for LiDAR data. A 

variety of software tools are available that can display, and/or process the data, 

including version 10.1 and higher of ArcGIS™3 for Desktop. Basic classification 

types are defined as well as levels of classification with defined classification 

accuracies. Ground must always be classified at a 95% accuracy or greater. These 

definitions provide greater transparency in overall quality. Ensuring a minimum 

accuracy in ground classification means that more reliable products, such as 

bare earth DEMs, can be derived.  

There are two notable changes from version 1.0. First, in version 2.0 it is 

recommended that both ellipsoidal and orthometric heights be provided, rather 

than just ellipsoidal, and that geoid heights be included if ellipsoidal heights are 

not a deliverable. This facilitates integration of the LiDAR data with other height 

data. Second, Classification Level 1, "Automated and Semi-Automated 

Classification" in version 1.0, is split into two levels in version 2.0. Classification 

Level 1 becomes "Ground/Non-Ground" and is the bare minimum level of 

classification required. Classification Level 2, "Standard Classification", can be 

fully or semi-automated and has points classified as ground, vegetation, 

buildings/structures, low/high points and noise, and water. 

The derived data specifications describe how intensity images, DSM, DEM, 

and canopy height model (CHM) are to be generated, although the only data 

product that must be part of the deliverables in all acquisitions is the DEM. 

Version 2.0 provides more detail as to how these products should be generated. 

                                                           
3 ArcGIS is a licenced software product of Esri Inc. 
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The DEM should be generated from points classified as ground only, the DSM 

from the highest return, of any class, within each grid cell, and the CHM as the 

difference between the DSM and the DEM. Intensity images may be one of three 

types, either INT-LAST, from last returns only, INT-FIRST, from first returns 

only, or INT-SUM, the total of intensity values of all returns within a grid cell. 

Each of these products should be at a 1 m resolution and should follow a file 

naming convention that follows National Elevation System (NES) conventions, 

ensuring national consistency. The convention includes information about the 

what, when, how, and where relevant to the data, all in the file name. This is very 

important for organizing large collections of data and referencing data coverage. 

The specifications regarding the data delivery recommend that data sets 

should be supplied as single files where possible. If the data need to be tiled, the 

recommended size is 1 km x 1 km tiles. Global Positioning System (GPS) data for 

all base stations are to be supplied, which allows for independent verification of 

positions. 

The project plan must include verification procedures and calibration checks. 

An accuracy report must be completed and accepted by the client before 

classification proceeds, and must include absolute and relative accuracy 

achieved, flight trajectories as shapefiles, and all information related to 

determining and checking accuracy. The final project report is to discuss all 

processes followed. Detailing all of these procedures and results ensures that 

care is taken in processing the raw data into a 3D point cloud and that all 

relevant information is available after the data are delivered. It also provides the 
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necessary information for independent verification. 

The quality assurance requirements detail processes for determining vertical 

and horizontal accuracy and list maximum demonstrated erroneous 

classification values for each of the levels of classification for both ground and 

other classes. Classification accuracy tests are to be presented in an error matrix 

reporting errors of omission and commission generated from randomly selected 

points. Checks must also be made for consistency in the data. 

2.5.2. Australian Acquisition Specifications 

Much of the NRCan guidelines are copied word for word from the Australian 

version [Australian Intergovernmental Committee on Surveying & Mapping, 

2010], hereafter referred to as the ICSM guidelines, although version 2.0 of the 

NRCan guidelines were reformatted and are not in tabular format, as the ICSM 

guidelines are. Some of the differences in the guidelines are clearly country-

specific, such as referring to the Australian equivalent of the NES, which is the 

National Elevation Framework Data Portal (NEDF-Portal), and specifying 

datums, projection, and geoid model appropriate to Australia. The ICSM 

guidelines document does not have a section describing its purpose and scope 

but is otherwise divided similarly to the NRCan guidelines, with sections for a 

tender template, general LiDAR specifications, point cloud specifications, 

derivative data specifications, data supply specifications, project planning and 

reporting specifications, and quality assurance specifications. 

The reason for other differences between the ICSM guidelines and version 1.0 
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of the NRCan guidelines may be less clear. They may be due to an attempt to 

"Canadianize" the NRCan guidelines, or there may be other causes. The ICSM 

guidelines provide more detail on survey control than the NRCan guidelines and 

specify that files should be limited in size to 2 GB – and that data should be 

delivered on DVD or external hard drive. The ICSM guidelines describe an 

additional derived product, a Foliage Cover Model; require a Quality Assurance 

Plan that complies with ISO 9001; and progress reports every two weeks that 

include a plan for the next two weeks 

The most significant difference is in the quality assurance section. The ICSM 

guidelines stipulate that the vertical accuracy must be tested using a TIN 

constructed from LiDAR bare earth, yet the accuracy validation must be 

performed before classification, and testing against bare earth requires some 

classification. It is unclear how this accuracy validation is to be conducted.  

The ICSM guidelines are also version 1.0. In contrast, the USGS NGP 

guidelines, summarized below, are at version 13. 

2.5.3. USGS NGP Lidar Guidelines and Base Specification 

Unlike the ICSM guidelines and version 1.0 of the NRCan guidelines, which 

are in tabular format, the USGS NGP document [US Geological Survey, 2010], 

hereafter referred to as NGP guidelines, are in a report format. This made it 

more difficult to locate specifications and compare the document to the other 

two documents. (Version 2.0 of the NRCan guidelines are also in a report format 

but follow the same organizational flow as version 1.0 and have clear section 
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divisions and headings.) Among the changes in version 1.1 of the NGP 

guidelines, released in October 2014, was some reorganization and re-formatting 

of the document, including placing some information in tables [Heidemann, 

2014].  

Some of the notable differences are that the NGP guidelines discourage 

achieving nominal pulse spacing through overlap or multiple passes, preferring 

that single flight lines achieve the required spacing. Relative accuracies must be 

no more than ±7 cm within swaths and no more than ±10 cm between swaths in 

the overlap. "Relative accuracy" is not explicitly defined within the document but 

is assumed to be a measure between points expected to be at the same elevation. 

FVA must be ±24.5 cm, as opposed to ±30 cm and the NGP guildelines require 

supplemental vertical accuracy be tested for each landcover type that makes up 

more than 10% of the area. 

Each flight line should have a unique ID and any flight line file larger than 

2GB must be split into segments. All collected flight lines must be delivered, 

including calibration flight lines, and all collected points must be delivered; full 

data delivery allows the client to make a full assessment of the collection 

activities conducted on their behalf. The "withheld" flag or class 11 may be used 

to identify outliers, blunders, noise, and otherwise unreliable points. (Use of the 

withheld flag of class is more clearly described in version 2.0 of the NRCan 

guidelines.) 

A final notable difference is a requirement for 98% classification accuracy for 

all points, except those that are withheld. Fewer classifications must be included 
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than in the NRCan and ICSM guidelines, namely: processed but unclassified, 

bare-earth ground, noise, water, ignored ground, and withheld.  

Each set of guidelines is supposed to meet the needs of a particular country or 

government agency, yet they all concern the same type of data. The next section 

presents a brief comparative analysis of the three set of guidelines. 

2.5.4. Comparative Strengths and Weaknesses 

Overall, the NGP guidelines provide much greater detail and more explicit 

requirements and seem, comparatively, quite restrictive. The high requirement 

for classification accuracy may require significant, and time-consuming, manual 

processing. and the stipulation that files must be split at 2 GB could potentially 

require breaks at more unnatural places in the file than if some discretion could 

be used. Yet such detail can also be helpful: the procedure for checking spatial 

distribution, which was missing from version 1.0 of the NRCan guidelines but 

included in version 2.0, is important to have because the LiDAR point 

distribution will never be uniform in the strict sense and without clarification 

such a requirement could lead to disputes. The main weakness, comparatively, 

in the NGP guidelines is the format: there is a lot of text to read through, making 

it difficult to locate similar or related content in different sections. 

The ICSM guidelines also have "good" detail, such as the point distribution 

check, and "bad" detail, such as requiring a progress report every two weeks and 

specifying how data are to be delivered. One of the main weaknesses of the first 

draft of the NRCan guidelines was that some of the good details had been 
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omitted. Stipulating too many things, even when the documents are called 

"guidelines" and there is some relaxation of requirements in certain conditions, 

can take away the flexibility data suppliers and clients need to adapt to project-

specific circumstances. Not making enough stipulations, however, permits too 

much flexibility, which leads to greater integration challenges.  

Many of the qualitative additions and changes in the second version of the 

NRCan guidelines seem to have been made to emphasize the degree of flexibility 

that exists within the guidelines. Specifications touching on data compatibility, 

for example file format and vertical and horizontal accuracies, are requirements. 

In contrast, specifications touching on data content, for example point spacing 

and level of classification, are merely recommendations. The result is a more 

robust document that should serve the needs of both providers and consumers 

of LiDAR data.  

 2.6. SUMMARY OF RELEVANT CONCEPTS 

The concepts introduced and discussed in this chapter form the foundation 

for the research detailed in this thesis. An understanding of the principles of 

LiDAR, in particular as applied to ALS, is necessary for understanding the 

possibilities and limitations in classification, and the similarities and differences 

between LiDAR data and other data types that might challenge or facilitate 

integration. Clear definitions of terminology used are necessary for 

understanding methods and analysis of results.  

The body of literature related to the use of LiDAR data in classification, 
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whether on their own or in combination with other data, continues to grow. The 

papers cited above provide examples of methods and techniques employed, of 

successes and failures and lessons learned that can be – and were – built upon 

or otherwise used as inspiration for the methods and techniques used in this 

research. The two papers described in Section 2.4 were particularly useful in 

developing the methods and measures employed in Chapter 6 when integrating 

other types of data with LiDAR data.  

Finally, as noted above, the NRCan guidelines helped provide a structure to 

combine the dual goals of LiDAR point data classification and integration of 

disparate data sets. An overview of the guidelines and how they compare with 

other similar documents gives context to the references of the guidelines 

throughout this thesis. The next chapter describes measures used in the GPI and 

MSPC processes developed in this research and how the NRCan guidelines relate 

to these measures, and provides details regarding the data used in testing. 
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"Quidquid agis, prudenter agas, et respice 

finem." "Whatever you do, do it warily, and 

take account of the end." 

~ from Gesta Romanorum 

 

 CHAPTER 3  

METHODS AND DATA SETS 

Both the ground point identification (GPI) and multi-stage point classification 

(MSPC) processes developed as part of this research and described in later 

chapters rely on certain data handling techniques for handling a large volume of 

LiDAR data and employ certain measures to determine spatial context for 

individual points. The two main handling techniques, namely point interpolation 

and voxel sorting, were described in Section 2.1. This chapter describes the 

measures employed to determine spatial context (Section 3.1), where 

appropriate in the context of the NRCan guidelines. It also describes the 

different data sets that were used to test the GPI and MSPC processes that were 

developed (Section 3.2). 

 3.1. DATA MEASURES 

Interpolating and sorting are helpful techniques in managing LiDAR data and 

can also provide some spatial context. To obtain additional spatial context from 

the point cloud data, several different measures were applied in the GPI and 

MSPC processes detailed in Chapters 4 and 5 and the modified MSPC methods 

described in Chapter 6. A few of the measures were also used to assess local 
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quality of data from different sources, which is an important factor to consider 

when fusing data sets [Papasaika and Baltsavias, 2009]. Sample illustrations for 

each of the measures can be found in Appendix B, Section B.1. 

3.1.1. Height Measures 

Height measures are straightforward measures in terms of calculations that 

require at most a reference height surface from which to calculate values. The 

following sections describe the height measures used in this research. 

3.1.1.1. Height Above Ground (HAG) 

HAG is more commonly known as an nDSM, which is the difference from a 

first return or other surface model to the reference ground [Stoker, 2010]. 

Although it is usually derived as a raster product, HAG can also be calculated for 

individual LiDAR points as the difference between the point's z value and the 

reference ground. HAG values are almost always positive but negative values can 

occur, for example, where the ground surface value is the average elevation for a 

group of points. The reference ground can be a DEM derived from the LiDAR 

data, as per the specifications in the NRCan guidelines, or can be from another 

elevation data source. In this research, if the reference ground had any gaps, for 

example, corresponding to building footprints, those gaps were filled before 

HAG was calculated so that values could be obtained for all points. 

One variation of HAG that was developed and used for the MSPC process was 

minimum HAG (mHAG). This measure was similar in principle to HAG but used 
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a minimum value interpolation for the surface model, and calculated the height 

difference only for the minimum value in each grid cell rather than the entire 

point cloud.  

3.1.1.2. Maximum minus Minimum (MaxMin)  

MaxMin was another measure developed and used for the MSPC process. It is 

a raster measure calculated as the difference between the maximum elevation 

and the minimum elevation in a grid cell. MaxMin is near zero for solid surfaces, 

namely for ground and buildings. Small variations in terrain elevation within a 

cell will produce small non-zero MaxMin values.  

Sloped building rooftops can produce small to moderate non-zero MaxMin 

values, depending on the slope angle and the size of the cell. For a 1 m cell 

resolution and roof slopes no more than 45 degrees, MaxMin values will be 1 m 

or less within the area of the rooftop. At the edges of building rooftops and other  

non-terrain features, MaxMin values can be much larger, up to the height of the 

building. The values may also be large where pulses were able to pass through 

openings in vegetation and are akin to the CHM described in the NRCan 

guidelines. The MaxMin values may represent the full height of the vegetation, if 

a cell contains points both from the top of the vegetation and from the ground.  

3.1.1.3. Terrain Ruggedness Index (TRI)  

TRI is a measurement developed by Riley et al. [1999] to express the amount 

of elevation difference between adjacent cells and is calculated as:  
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𝑇𝑅𝐼 = √∑(𝑧0 − 𝑧𝑖)2

8

𝑖=0

 

 (3.1) 

where z0 is the elevation of the centre cell and the zi's are the elevations of the 

eight surrounding cells. Riley et al. applied TRI to a grid at 1 km resolution and 

therefore their ruggedness scale, which defined flat terrain as having a TRI up to 

80 m, is too coarse to use with LiDAR data. The general principle, however, of 

larger TRI values corresponding to larger variation in terrain elevation within 

the cell area, and smaller TRI values corresponding to flatter terrain within the 

cell area, is applicable at grid resolutions appropriate for LiDAR data. 

3.1.2. Non-Height Measures 

LiDAR point clouds contain more than just elevation information. The 

following sections describe measures based on other characteristics that were 

used in this research. 

3.1.2.1. Local Point Density (LPD) 

Although arguments have been made regarding the capabilities of modern 

photogrammetric methods, such as those given in Leberl et al. [2010], LiDAR 

data have much higher point densities than point data generated through most  

other means and therefore provide much greater detail. Yet NPDs, which simply 

divide the total number of points by the area covered, can be misleading in terms 

of the actual distribution and density of points: the presence of multiple returns 
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will increase the NPD, while data voids, which do occur over water, will decrease 

the NPD. In contrast, images representing point density give a better indication 

of point distribution and density by showing the degree of detail available over 

an area of interest. 

 LPD represents the number of single and first (or last) returns in each cell, 

normalized by the area of the cell and is similar in concept to the spatial 

distribution specification described in the NRCan guidelines. Any voids, large or 

small, in the data can be seen in the LPD image, as well as overlap between flight 

lines. This can be helpful in determining an appropriate resolution for derived 

raster products that balances the detailed information provided by higher 

resolutions against the need for nearly complete coverage of the area of interest. 

3.1.2.2. Multiple Return Density (MRD) 

MRD is another point density representation. It is similar to LPD, in that it is 

a normalized and localized point count; the difference is that, where LPD counts 

only single and first returns, MRD counts all returns that are not single or first. 

Multiple returns only occur where the laser footprint contained multiple 

surfaces at separable distances, primarily in areas of vegetation, where the laser 

pulse may be partially reflected from leaves, branches, boles, and/or the ground. 

Other examples include building rooftop and ground and electrical wire(s) and 

ground. The higher an MRD value, the less solid the feature. The highest 

surfaces are excluded (e.g., building rooftop), but all lower surfaces (e.g., ground 

at foot of building) are included in the MRD image. Since no processing is 

required to generate an MRD image, it can be used as a quick approximation of a 
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land cover map.  

3.1.2.3. Intensity  

Intensity is the recorded strength of the return pulse. Many factors besides 

material reflectivity affect recorded intensity, including multiple returns, sensor 

configuration, and flying height. Intensity values therefore should not be used as 

the sole basis for classification and any application of intensity measures must 

be adapted to each data set, or even to each survey segment. For example, in a 

2007 LiDAR survey over Fredericton that was conducted over four days, the 

intensity ranges varied from day-to-day even when the same area was flown. 

Intensity may indicate possible range bias where substances reflecting a higher 

percentage of the laser pulse energy appear to be at higher elevations than 

substances reflecting a lower percentage of the laser pulse energy [Csanyi and 

Toth, 2007].  

The NRCan guidelines describe three types of intensity images: the intensity 

of the last returns only, the intensity of the first returns only, and the total 

intensity of all returns in each cell. No specific guidelines are given for 

calculating the intensity when multiple last returns or first returns fall in the 

same call. Using or at least examining different intensity images may provide 

more information than a single intensity image and this could include images 

where different methods are used to combine intensity values from multiple 

points. 
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3.1.2.4. Ground-vegetation ratio (GVR)  

The greatest advantage of LiDAR remains its ability to penetrate openings in 

vegetation but the laser cannot penetrate the vegetation itself. One lone, 

deciduous tree in late fall/early spring may not obscure the ground to any 

significant degree because there would be plenty of large openings between the 

bare branches. In contrast, a dense cluster of coniferous trees may block a large 

percentage of pulses from reaching the ground year-round because the branches 

and needles are tightly clustered with few openings. Ratios of non-ground to 

total returns have been used in forestry applications, e.g., Hudak et al. [2006]. 

GVR is a modification of such ratios, developed as part of this research, that 

represents the occurrence of ground points as compared to vegetation points 

across a study area as an indication of how well the laser pulses were able to 

penetrate openings in the vegetation. It is used in the MSPC process to mark 

areas of uncertainty, but it can also be used as a visualization technique. 

The process of obtaining a GVR image that was developed involves deriving 

rasters to represent the percentage of total points that are classified as 

vegetation in a local area, the percentage of total points that are classified as 

ground in a local area, and a normalizing factor, for example the LPD as a 

percentage of the maximum LPD in the scene. Each derived raster is then 

assigned to a different RGB colour channel to obtain a single image. By assigning 

the ground point measure to the red channel, the vegetation point measure to 

the green channel and the normalizing factor to the blue channel, as in Figure 

3.1, areas that contain mostly ground points will appear red and areas that 
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contain mostly vegetation points will appear green.  

 

Figure 3.1 

Example of three band ground-vegetation ratio representation. 

The addition of the normalizing factor pulls areas with high point counts 

towards the blue spectrum (i.e., green towards cyan or red towards magenta) 

while areas where there are relatively few points appear black. The mapping 

used above also capped maximum input values at 0.5; any higher values in the 

band were assigned the maximum output value. This had the effect of 

highlighting overlaps: any areas with high percentages (close to 50%) of both 

ground and vegetation points, such as along the edges of trees, appear yellow. It 

must be noted, however, that this is a subjective measure and the results are 

highly dependent on correct ground and vegetation classification. 

Red channel: ground point measure 

Green Channel: vegetation point measure 

Blue Channel: normalizing factor 
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3.1.2.5. Slope  

When a laser pulse is normal to the target surface, it illuminates a circular 

area with a diameter roughly dependent on the beam divergence and the 

distance from the sensor to the target; typical footprints range from 30 cm to 2 

m [Fowler et al., 2007]. When the laser pulse is not normal to the target surface, 

some of the energy hits the target sooner and is reflected back sooner, elongating 

the return pulse and creating an elliptical footprint. A number of factors 

influence when the sensor records a return so, theoretically, the point position 

recorded could be anywhere within the distorted footprint and not necessarily at 

the point where the pulse was aimed.  

A laser pulse may not be normal to the target surface due to the scan angle 

and/or due to sloped terrain. Goulden [2009] examines the error in LiDAR 

observations due to terrain slope. The uncertainty as to where exactly within the 

laser footprint the pulse return was generated means LiDAR data are subject to 

greater errors on sloped surfaces. Papasaika and Baltsavias [2009] consider 

terrain slope in their accuracy analysis, along with aspect and roughness. The 

steeper the angle, the greater the distortion and the lower the accuracy. By 

calculating the slope in the neighbourhood of a specific point, equations can be 

derived for the shape of the laser footprint [Sheng, 2008], giving an uncertainty 

ellipse for the planimetric position of the return pulse.  

Deriving a visual representation of the terrain slope over the whole area of 

interest can help to identify areas where the vertical accuracy may be most 

affected. The slope image could also be used to check for ground classification 
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errors: small areas with high slope values may indicate small non-terrain objects 

that were not successfully separated from the terrain points. 

3.1.2.6. Land Cover Map 

Although land cover is not a metric that can be calculated as the other 

measures, a land cover map can be used to locate open areas. This is important 

because the NRCan and other guideline documents discussed above all specify 

that the fundamental vertical accuracy (FVA) of LiDAR data is to be checked in 

flat, open areas, where there is a high probability that the laser pulse was 

returned from a ground point that is at or very close to the same elevation as the 

measured ground control.  

Land cover maps can also be used to locate areas where there may be 

uncertainty in the derivation of a bare-earth DEM, for example because of a 

dense tree canopy, and may also provide an explanation for any larger errors or 

differences between data from difference sources than were expected. A land 

cover map may be derived from any data source that includes non-ground 

information, but one advantage of deriving a land cover map from LiDAR data is 

the possibility of seeing any overlapping covers, such as where ground points 

have been detected under vegetation. A land cover map enhanced with an 

intensity image, to create more classes, can provide a quick visual aid to identify 

where material reflectivity may have affected measurements along with an aid to 

identify covered terrain. An example of a land cover map derived from LiDAR 

data can be found in Appendix B. 

The following section describes the data sources used to test the LiDAR point 
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classification framework. 

 3.2. DATA SOURCES 

There is a trend towards making data "open" at all levels of government from 

federal (e.g., Government of Canada Open Data Portal4), to provincial (e.g., New 

Brunswick's GeoNB site5) to municipal (e.g., City of Fredericton Open Data [City 

of Fredericton, n.d.] and Open Data Ottawa6). Open data sites provide free 

access to geographic and other types of data sets in various formats. As well, a 

few portals exist to help users access LiDAR data. The primary data sources used 

for this research are from Fredericton, N.B., and include three LiDAR surveys; 

provincial and municipal elevation point data; provincial control monument 

data; and municipal feature data. Yet it is always prudent to test processes with 

data that are markedly different from the data used during the development of 

those processes. The next sections describe and provide technical details, as far 

as they are known and are relevant to this research, regarding the data for 

Fredericton and other areas used in the development and testing of the LiDAR 

point classification framework.  

3.2.1. Data for the City of Fredericton, N.B. 

The principal LiDAR data set used in this research was collected over 

Fredericton, N.B. A number of other data sets were obtained for the City of 

                                                           

4 Government of Canada Open Data Portal http://www.data.gc.ca 

5 GeoNB http://www.snb.ca/geonb1/e/index-E.asp 

6 City of Ottawa Open Data Catalog http://data.ottawa.ca/en/ 
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Fredericton to compare to this data since LiDAR data are not yet available 

everywhere and there is still value in historical data.   

3.2.1.1. Fredericton 2011 LiDAR Data 

The principal LiDAR data set used in this research was collected over 

Fredericton, N.B., in the summer of 2011 by Leading Edge Geomatics, Ltd. for 

the New Brunswick Department of Public Safety and provided to UNB for 

research purposes. The data were delivered in tiles, each 1 km x 1 km, in the New 

Brunswick Double Stereographic projection with orthometric heights referenced 

to the Canadian Geodetic Vertical Datum of 1928 (CGVD28). The labelling 

convention for the tiles is eeee_nnnn, where eeee is the Easting coordinate in 

km and nnnn is the Northing coordinate in km of the south-west corner of the 

tile. Figure 3.2 shows the main test area, an area encompassing most of Odell 

Park where there is dense vegetation and steep terrain. The elevation point data 

have been interpolated to a regulate grid at 1 m resolution. The four tiles are 

labelled, clockwise from top-left, 2486_7439, 2487_7439, 2487_7438, and 

2486_7438. Road centrelines and building footprints have been overlaid on the 

raster for reference.    

Nominal point density for the tiles, based on examination of a small sample, 

is below 2 points per metre2. The data points were reportedly classified as 

ground, low vegetation, and high vegetation, but examination of sample data 

revealed inconsistencies in the classification. 

This data set was collected to replace one collected in 2007 for the same 

agencies for the purpose of flood mapping. A loose screw on the mirror of the 
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sensors during collection introduced inconsistencies in the data [Mofford, 2012], 

rendering it unsuitable for integration and many other applications.    

 

Figure 3.2 

Interpolation of all LiDAR points in the Odell Park study area.  

3.2.1.2. Fredericton 2006 LiDAR Data 

Initial investigations, exploration of horizontal adjustment for data 

integration, and the potential of multi-temporal data made use of a data set 

collected over Fredericton, N.B., in May of 2006 by the Applied Geomatics 

Research Group at the Nova Scotia Community College. The data were delivered 

in the original flight lines, in the Universal Transverse Mercator (UTM) 
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projection, zone 19 N. The vertical reference has been reported as ellipsoidal 

heights [Hopkinson, 2013]. Nominal point density for the data is approximately 

2.5 point per metre2. The data were not classified. 

3.2.1.3. Fredericton Elevation Data 

There are two types of elevation data that were used in this research: elevation 

point data and control monument data. One of the elevation point sources is the 

Digital Topographic Data Base - 1998 (DTDB98), available from Service New 

Brunswick (SNB) [2010]. The New Brunswick Digital Terrain Model, part of the 

DTDB98, consists of point elevations, either as regularly spaced profiles or as a 

filtered data set that was created through a random densification process 

[Pegler, 2001] and contains elevation mass points, check points, spot heights 

and random densified points. The DEM data were collected 

photogrammetrically from 1:33,000-scale leaf-free aerial photography, and 

points are expressed to the nearest 1.0 m in x and y and the nearest 0.1 m in z. 

The stated accuracy is ± 2.5 m for well-defined features [Service New Brunswick, 

2010].  

The other elevation point source is the City of Fredericton (CoF) open data 

site [City of Fredericton, n.d.]. It is newer than the SNB data, having been 

collected as part of the generation of CoF's 2002 orthophotos. It has a nominally 

higher point density than the SNB data but its accuracy is unknown. Z values are 

expressed to the nearest 0.1 m.  

The control monument network database for the province of New Brunswick 

is a database of surveyed points. Many are expressed to centimetre or millimetre 
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precision. Each database record includes associated attributes for the point, such 

as geoid/ellipsoid separation [Service New Brunswick, 2002]. 

3.2.1.4. Fredericton Feature Data 

The data content available from open data sites varies. Municipal data sites 

are likely to include feature data such as road centrelines, building footprints, 

and water bodies, as well as elevation data, but details in the corresponding 

metadata are often lacking. The feature data downloaded from the CoF site 

include road centrelines, building polygons, trails, and stream lines. Little 

information is available regarding the accuracy or currency of these data sets. 

3.2.2. Online LiDAR Databases 

A few on-line portals exist to help users access LiDAR data. One is the Center 

for LiDAR Information Coordination and Knowledge (CLICK)7, operated by the 

U.S. Geological Survey. Another is lidardata.com8, which claims to be “The 

World’s Largest Lidar Data Warehouse”. Information related to the shape and 

the area are accessible by simply clicking on a shape in CLICK; 

LiDARDATA.com does not seem to provide any additional information from the 

GIS. Neither system offers any data for New Brunswick. 

A third portal is OpenTopography.org9 [Krishnan et al., 2011]. Along with free 

access to nearly 500 billion LiDAR data points covering a total area of 85, 757 

                                                           
7 Center for LiDAR Information Coordination and Knowledge (CLICK) 
http://lidar.cr.usgs.gov 
8 Lidardata.com Data Browser http://lidardata.com 
9 NSF OpenTopography Facility http://opentopography.org 
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km2, the site provides links to data management, manipulation, and 

visualization tools. Two data sets from the Christina River Basin in Pennsylvania 

collected as part of the Critical Zone Observatory LiDAR project [Guo, 2011] 

were downloaded from this portal. They are described below. 

3.2.2.1. Christina River Basin 2010 

As noted above, additional data were downloaded from OpenTopography.org 

for a small area in the Christina River Basin (CRB) in Pennsylvania. Significantly 

more technical details are known about these data than about the Fredericton 

data because an accompanying report was also available for download. The data 

were collected as part of the Critical Zone Observatory LiDAR Mapping Project. 

Leaf-off data were collected in April 2010 and leaf-on data were collected in July 

2010 for the same area. The data are in UTM projection, zone 17 N, with 

orthometric heights referenced to the North American Vertical Datum of 1988 

(NAVD88). The nominal point densities for both data sets are slightly above 10 

points per m2 [Guo, 2011]. 

3.2.2.2. Additional Data for Testing 
 

The final two LiDAR data sets that were used in this research were provided 

directly to the author for testing purposes. They were collected and ground 

classified by GeoDigital International, Inc. [Lehto, 2012b]. One data set is from 

Ottawa, Ont., in UTM projection, zone 18 N, and the other is from Oklahoma. No 

additional information is known about these data sets. Feature data were 



66 

 

downloaded from the Open Data Ottawa10 catalogue to use together with the 

Ottawa LiDAR data, including water body polygons, building footprints, and 

street centrelines. 

 3.3. CHAPTER SUMMARY 

While the NRCan guidelines are primarily intended for LiDAR data 

acquisition, the specifications can also be useful when processing data. In this 

chapter, two data management techniques and a set of measures used in the 

ground point identification and multi-stage point classification process 

developed in this research are described in the context of the NRCan guidelines 

as applicable. The data sets used for testing are also described. The following 

chapter details the ground point identification process. 

  

                                                           

10 City of Ottawa Open Data Catalog http://data.ottawa.ca/en/ 
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"All things are artificial, for nature is the art 

of God." 

~ Sir Thomas Browne 

 

 CHAPTER 4  

GROUND POINT IDENTIFICATION 

This chapter describes the GPI process that was developed as part of this 

research. First, the purpose and context of ground extraction are explained 

(Section 4.1), then the ground detection techniques, extracted ground surface 

comparison technique, and point classification and refinement processes 

developed in this research are described (Section 4.2 to 4.4). Finally, an accuracy 

assessment of the ground point identification process is presented based on test 

data from the City of Fredericton (Section 4.5). Pseudocode for the GPI process 

implementation can be found in Appendix A, Section A.1. 

 4.1. PURPOSE FOR GROUND EXTRACTION  

Frequently, LiDAR data users are only interested in the ground surface 

[Lehto, 2012a] for infrastructure planning, terrain and hydrological modelling, 

ground monitoring, or other purposes. Several examples can be found in 

research where the phrase “using LiDAR” could be replaced with “using high 

resolution and high accuracy bare earth elevation data” or, in other words, where 

the method of collecting the data is not important to the application (e.g., [Hiltz, 

2012; Mouland et al., 2012; Wittner et al., 2013]). Identifying and extracting the 
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ground surface was therefore chosen as the basis for all further manipulation 

and utilization of LiDAR data in this research. The terms "identification" and 

"extraction" are used here instead of "segmentation" because the ground surface 

is always treated as one object even when it is being represented by unconnected 

pixel patches or point clusters. In contrast, segmentation according to Yao et al. 

[2009] refers to the partition of a set of measurements into smaller and coherent 

subsets for the purpose of recognizing object-classes. 

Automatic ground extraction at high resolution and high accuracy remains a 

challenge because there are so many possible variations within a relatively small 

area. For example, even in "flat" areas, allowances must be made for roads that 

are raised in the centre for drainage; curb stones that are lower at crossings for 

accessibility; natural bumps and depressions in open fields; and other small 

fluctuations in elevation due to natural and artificial causes. Sudden changes in 

elevation, which generally indicate non-ground objects, could instead be part of 

a cliff face or a retaining wall. There are also cases where different definitions of 

what is considered ground will produce different results: bridges, overpasses, 

and tunnels are all part of the natural ground for part of their distance then rise 

above or fall below it.  

The variety of surface objects that make up a typical landscape – such as large 

and small buildings; hedges and trees; and small urban objects, including cars 

and other vehicles, electrical and telephone lines, and street lights and signs – 

and the varying point densities involved combine to produce almost infinite 

possibilities for point cloud scenes from which the goal is to extract all ground 
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points and only ground points, or, conversely, to filter out all non-ground points. 

A human examining the point cloud and/or derived products can interpret most 

scenes, but it is tedious and time consuming to manually classify the point cloud. 

Even then, the human operator would have difficulty separating any ground 

points from vegetation in a forest on a hill, such as is the case in Odell Park in 

Fredericton. 

Ground extraction or ground filtering was one of the earliest problems 

explored (e.g., [Axelsson, 1999; Briese and Pfeifer, 2001; Kraus and Pfeifer, 

2001; Zhang et al., 2003]) and many examples can be found of algorithms and 

techniques for extracting ground with good – or excellent – results. However, 

many methods require expertise to define the model parameters required to 

produce reliable extractions of ground surfaces while solutions designed not to 

require operator expertise can fail to produce acceptable results under 

conditions that were not present in the data with which the solutions were 

tested. Classification methods using parametric models often perform very well 

with the training data and data that are very similar but may perform relatively 

poorly with new data (e.g., [Caceres and Slatton, 2007; Dalponte et al., 2008]). 

Theoretically, and as demonstrated by Demir et al. [2009], the most successful 

approaches may be those that combine a number of different measures or the 

results from multiple classifiers. 

 The ground point identification process that was developed, henceforth 

referred to as GPI and illustrated in Figure 4.1, applies four ground extraction 

techniques that require little or no operator input but have different strengths 
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and weaknesses. Two of the techniques are raster-based and two are point-

based. As applied through GPI, all four produce raster outputs that represent the 

extracted ground surface. A raster-based comparison technique is used to obtain 

a single raster representation of ground elevation that is then used to identify 

ground points within the point cloud and classify points as ground or non-

ground. A final ground surface can be extracted from the classified point cloud 

however the classified point cloud is the primary product of GPI. The following 

sections describe the detection techniques, surface comparison technique, and 

point classification process that comprise GPI. 

 4.2. GROUND DETECTION TECHNIQUES 

Four separate ground detection techniques were devised for the GPI process 

developed in this research. Each technique has its own strengths and 

weaknesses, some of which are inherent to the data format on which the 

technique operates and some particular to the technique. The primary 

techniques, namely Pixel Connectedness and Point Neighbourhood, require 

more processing time or power but can be used independently of the other 

techniques, albeit with lower overall accuracy; the secondary techniques, namely 

Wavelet Detail Mask and Preliminary Ground Points, require relatively little 

processing but should not be used on their own. These techniques are 

summarized in Table 4.1 and described in the following section. Sample outputs 

from each of the techniques can be seen in Appendix B, Figure B.9. 
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Figure 4.1 

Flowchart for the Ground Point Identification process.  
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Table 4.1  
Summary of ground detection techniques.  

Name, Type Parameter Automatic Manual 

Pixel 

Connectedness, 

Raster-based 

Ground seed 

pixels 

Lowest vertical 

layer with at 

least 0.5% 

coverage 

User selects seed pixels 

or provides  control 

point coordinates 

Slope 

threshold 

Run multiple 

times at 5° 

intervals 

Estimate of maximum 

terrain slope 

Point 

Neighbourhood, 

Point-based 

Ground seed 

points 

Random 

selection from 

last returns 

User selects seed points 

Percent 

threshold 
50% 

User's desired 

probability 

Wavelet Detail 

Mask, Raster-

based 

Detail 

threshold 
+/- 0.15 m 

User's estimate of 

minimum height 

difference for non-

ground 

Preliminary 

Ground Points, 

Point-based 

Height above 

reference 

ground 

+/- 1 m 

User's estimate of 

allowable height 

difference 

4.2.1. Pixel Connectedness 

The Pixel Connectedness technique is raster-based. The goal of this technique 

is to reliably identify and exclude non-terrain objects from an initial potential 

ground surface leaving a raster with, ideally, holes where buildings or other solid 

objects are located and elevation values very close to true ground elevation in 

open areas as well as where penetrable objects (trees) are located. This is 

accomplished by growing a ground surface from a set of seed ground pixels by 

looking for pixels that are connected planimetrically and do not have an 

excessive vertical separation to known ground pixels. It requires an initial 
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potential ground surface, a set of ground seed pixels, and a slope threshold. The 

pseudocode for this technique can be found in Appendix A, Section A.1.1. As a 

raster-based technique, Pixel Connectedness exploits the regular grid pattern of 

rasters both for performing operations and for establishing spatial context 

between features. However, there is some loss of information in the conversion 

from a point cloud to a raster.  

Ground seed pixels are obtained by dividing the 3D scene into a set of equally 

spaced vertical layers and then selecting a suitable seed layer. In the division, a 

binary raster is generated for each vertical layer, with the value 0 representing 

"no points in cell" (0-value cells) and 1 representing "at least one point in cell" 

(1-value cells). Figure 4.2 combines the binary images for four consecutive layers 

in one image to illustrate the effects using a 1 m resolution both planimetrically 

and vertically. In areas of open terrain, consecutive images will creep up slopes, 

with some overlap. Non-terrain objects appear as small isolated groups of cells. 

Selection of the seed layer can be automatic or manual. To avoid having non-

terrain objects in the seed layer, the seed layer should be one of the lowest 

vertical layers. The lowest layer will contain 1-value cells corresponding to the 

lowest points in the file. However, due to sensor errors, noise in the data, multi-

path reflections, or other effects, the lowest points may not necessarily 

correspond to actual ground point elevations or there may be too few to make 

the lowest layer an effective choice for ground seed pixels.  
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Figure 4.2 

Four combined binary raster layer images show bands where terrain elevation 

gradually increases and isolated groups of cells belonging to non-terrain objects 

at lower terrain elevations. 

The lowest layer with, for example, at least 0.5% 1-value cells could be 

automatically chosen as the seed layer, or the layers could be visually inspected 

and one chosen manually. If no layers are deemed suitable to use as the ground 

seed layer, patches or even single pixels could be chosen, or the user could input 

ground seeds by clicking on (a) point(s) on the potential ground surface or 

providing control point coordinates from open areas. Regardless of how the 

ground seed pixels are chosen, minimum elevation values are derived for each 

from the point cloud. 

The initial potential ground surface is a raster of minimum values derived 

from the point cloud that will include buildings and some trees. The true ground 

surface is extracted from the potential ground surface through an iterative 

process. Any pixels that are touching a pixel identified as "ground" from the seed 

Slope creep 

Isolated groups 
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pixels or a previous iteration are flagged and the slope from the identified 

ground pixel to the flagged pixel is calculated. If the slope is less than the 

specified threshold angle, the flagged pixel becomes part of the ground. This 

process can be re-run by manually selecting different seed pixels. 

One slope threshold is used for the entire area and it must be selected based 

on the properties of the area. The maximum threshold that should be used for 

high resolution data is higher than what should be used for lower resolution data 

because "ground-to-rooftop" slope value from 1 m away, for example, is a much 

larger angle than the corresponding "ground-to-rooftop" slope value from 5 m 

away. In general, higher thresholds (e.g., 30°) may fail to eliminate more objects, 

while lower thresholds (e.g., 5°) may eliminate some terrain features or fail to 

find ground pixels at all if the slope of the terrain itself exceeds the threshold, as 

may be the case in rugged terrain or around stream beds.  

Using a single threshold makes the technique inflexible in varying terrain. To 

overcome this inflexibility, the process can be run multiple times with different 

thresholds and the results combined in the surface comparison step of the GPI, 

described in Section 4.3. Figure 4.3 shows two examples of Pixel Connectedness 

results, using different slope thresholds. In (b), a large building was not properly 

excluded by the process. In this particular instance, this is a side effect of the low 

resolution (5 m) and a smoothing operation that was applied to the potential 

surface before the Pixel Connectedness method was applied. 
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Figure 4.3 

Results of the Pixel Connectedness method using two different slope thresholds: 

a) 10° and b) 15°. 

This method is not directionally biased so any feature attached to the ground 

on at least one side will become part of the ground surface. Examples of attached 

objects include bridges, which start and end on roads at ground level; and 

structures with ramped access to the top. These objects may need to be 

identified and removed manually if they do not meet the user's definition of 

"ground." 

4.2.2. Point Neighbourhood 

The Point Neighbourhood method is point-based. The basic premise is to 

grow a set of ground points from a set of ground seed points. Since it operates on 

the point cloud itself rather than a raster interpolation, this method better 

preserves the 3D information. However, the point cloud must be sorted or 

indexed in such a way that the number of points considered as possible 

neighbours is minimized. The seed points can be chosen automatically and at 
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random, with a condition imposed that they must be last returns to minimize the 

probability that they are not ground points. The pseudocode for this technique 

can be found in Appendix A, Section A.1.2. 

For each last or single return point within the neighbourhood of a ground 

seed point, a probability is calculated that it is also a ground point. In effect, this 

is not an independent measure of whether the point being tested is a ground 

point but rather is a measure of whether the point should be identified as a 

ground point given its distance from a known ground point. The three 

probability functions used are: 

 p = 100 - 50 r (4.1) 

 
 p = 100 - 25 r2 (4.2) 

 
 p = (5 r - 10)2 for r <= 2, (4.3) 

where p is the probability, in percent, and r is distance measure in metres. All 

three functions were chosen to have 100% probability when r equals 0 m and 0% 

probability at 2 m metres (see Figure 4.4), since near points are very likely to 

belong to the same class but too much uncertainty exists within a point cloud to 

determine the class of one point based only on the class of another point beyond 

a couple of metres. Simple functions were chosen to limit the computational 

complexity of the algorithm.  
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Figure 4.4 

Probability curves for Point Neighbourhood method. 

If the probability calculated for a point is greater than the set threshold 

percent, the point is marked as "ground." The initial threshold is set at 50% but 

can be set to a higher value to reduce the numbers points being marked as 

ground. Each of the functions is more or less "forgiving" of combined differences 

in planar (d) and vertical (z) distance (the r value) between a reference point and 

the target point, with Eq. 4.2 assigning the highest probability for a given r and 

Eq. 4.3 assigning the lowest probability. The distance measures are: 

 𝑟 = ∆𝑧 + ∆𝑑 2⁄  (4.4) 
for Eq. 4.1 and Eq. 4.2 and 

 𝑟 =  ∆𝑧 + ∆𝑑 3⁄  (4.5) 
for Eq. 4.3, where 

 ∆𝑧 =  |𝑧 − 𝑧0| (4.6) 

 ∆𝑑 =  √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 (4.7) 

The ∆z values are given a larger weight than the ∆d values so that points with 
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large ∆z and small ∆d have lower probabilities than points with small ∆z and 

large ∆d. 

The result of this process is a point cloud where points are marked either 

"ground" or "non-ground." Because the operation is applied directly to points, it 

gives a better representation of the actual ground sampling. However, it can only 

be applied when the point cloud has at least a minimum point density: if the 

point density is too low (i.e., less than 1 pt/m2), there is a risk that no points will 

be found within any neighbourhood even in flat, open terrain. This limitation 

applies under dense vegetation, even for point clouds that otherwise have a 

sufficiently high point density, because of the difficulty penetrating to the 

ground and the resulting sparseness of ground points. Figure 4.5 shows 

examples of the results, using Eq. 4.1 and Eq. 4.2. 

 

Figure 4.5 

Results of the Point Neighbourhood method: a) probabilities calculated using 

Eq. 4.1; b) probabilities calculated using Eq. 4.2. 

As implemented, the maximum distance for which a probability is calculated 

is 2 m. This value could be revised to accommodate sparser point clouds but, 
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when performing one-to-one comparisons, in the absence of other contextual 

information, there is more uncertainty about the relationship between points as 

the distance increases. Eq. 4.2 has, in fact, a tendency to mark vegetation as 

"ground" because the distance measure combined with the probability function 

will assign high probabilities to low vegetation points almost directly above 

ground points, and then higher vegetation points are also touched.  

These probability calculations might seem counter-intuitive: if the terrain is 

sloped, then the calculations should allow for a greater elevation difference at 

larger planimetric distance, rather than the other way around. However, that 

approach would also assign higher probabilities to small non-ground objects at 

larger planimetric distances. By only allowing either ∆z or ∆d to be "large", only 

the points within a constrained neighbourhood are evaluated as possible ground 

points.  

4.2.3. Wavelet Detail Mask 

The Wavelet Detail Mask method is a secondary method, meaning that it 

should not be used as a stand-alone method. It seeks out areas in a raster with 

no sudden changes in elevation by creating a mask to remove areas where there 

are sudden changes in elevation, or in other words, where there are terrain and 

feature details. The pseudocode for this technique can be found in Appendix A, 

Section A.1.3. Wavelet functions as applied to images produce an approximation 

image, or an image at a lower resolution, and a detail image; reversing the 

process restores the original image. The detail image is so-called because it 
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contains the details that were removed from the original image to create the 

approximation. When a non-decimating wavelet filter is applied, the 

approximation image stays at the original resolution and the detail image is 

simply the difference between the original image and the approximation. The 

results are therefore suitable for direct comparison with other images.  

Areas in the detail image where the values are close to zero correspond to 

areas where there was very little difference between values in the window of the 

wavelet filter, or, in other words, flat areas. Areas in the detail image where the 

values are large ("large" being relative to scale) correspond to areas where there 

were large differences between the values in the wavelet filter window, or, in 

other words, areas where the surface is rough. For example, with LiDAR data, 

high vegetation will generally produce large detail values. Large detail values 

also occur at building edges and on sloped roofs.  

To obtain the wavelet detail mask, the minimum LiDAR data values are 

interpolated to a regular grid and then a wavelet filter is applied to the 

interpolation. The wavelet filter that is used in this method is derived from a B3 

cubic spline profile (as described in [Núñez et al., 1999]):  

 
1

256

[
 
 
 
 
1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1]

 
 
 
 

 (4.8) 

The mask is created from the resulting detail image, using thresholds to mark 

areas where there are abrupt changes in elevation. To mask all but the smallest 

variations, the initial threshold is ± 0.15 m. 
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The areas outside the mask are assumed to be ground, although flat roofs of 

large buildings are also outside the mask. Figure 4.6 shows an example of a 

wavelet detail image (Figure 4.6a) and the result of masking the elevation 

interpolation to produce a raster that shows only areas assumed to be ground 

(Figure 4.6b). Note that, contrary to the assumption, a large, flat building roof is 

in the unmasked area. 

 
Figure 4.6 

Results of Wavelet Detail Mask: a) wavelet details; b) masked areas contain no 

data while unmasked areas contain locally flat surfaces. 

Depending on the roughness of the scene overall, a relatively small area might 

be unmasked and so this method may not be sufficient in and of itself to get a 

good ground approximation. It can, however, add support to the findings from 

other methods by confirming ground locations and elevations. A modification of 

the surface comparison technique, which will be described in Section 4.3 below, 

is to use the results of applying the wavelet detail mask as an override for the 

simple count measure, provided at least one of the other rasters in the surface 

comparison is a filled raster so that any flat rooftops remaining in the wavelet 

detail mask can be eliminated through value comparison.  
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4.2.4. Preliminary Ground Points 

The Preliminary Ground Points method is also a secondary method, as it 

depends on having an initial, preliminary ground raster, such as might be 

obtained using the Pixel Connectedness method, and so cannot be used 

independently. The initial ground raster should not have any gaps in data where 

buildings are located or where there are dense trees. Figure 4.7 illustrates the 

effect of filling an initial ground raster. As the name should imply, the ground 

representation does not need to be perfect: it only needs to be free of obviously 

too-high cells, i.e., above-ground elevation values.  

 
Figure 4.7 

a) Initial ground raster with data gaps. b) Initial ground raster after gaps have 

been filled. 

The method itself is point-based: any points with a HAG (determined by 

subtracting the ground raster value from the point elevation value) less than 1 m 

are marked as preliminary ground points. Points that are a reasonable distance 

below the initial ground surface are also marked as preliminary ground, which 

has the effect of pulling the initial surface down. This is a common approach 
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(e.g., [Kraus and Pfeifer, 1998; Briese and Pfeifer, 2001; Schickler and Thorpe, 

2001]) to ground extraction, starting with a general surface and excluding points 

that are too high above while weighting points below more heavily to pull the 

surface down to the true ground surface. The pseudocode for this technique can 

be found in Appendix A, Section A.1.4. The preliminary ground points can be 

used to create a new ground raster and the process can be repeated if there are 

any substantial changes between the initial surface and the new surface or 

simply to further refine the estimate. 

 4.3. SURFACE COMPARISON TECHNIQUE 

Because of the complexity of any scene captured by ALS, the overall ground 

extraction solution has to be adaptable and must consider changes at various 

scales to determine if anomalies are a natural ground features or artificial 

objects. Each of the four methods described in the preceding section can be 

repeated, with variations, to refine to a certain extent the ground rasters that are 

produced but none can definitely find all ground in all cases. Combining the 

results from each, in an effective manner, can help overcome the limitations of 

each and produce a usable final result. 

The surface comparison technique described here, and illustrated in Figure 

4.8 and Appendix B, Figure B.10, is raster-based and therefore has the same 

underlying issues as any raster-based method, namely that it allows for a quick 

comparison even for very large areas, but there is a loss of information. The 

output from the point-based methods described above must be interpolated to a 
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grid to allow them to be compared to the output from the raster-based methods. 

 

Figure 4.8 

Surface comparison technique for obtaining a ground raster from a set of input 

ground surfaces. 

Any number of surfaces can be compared using this technique, provided that 

in the input surfaces empty cells indicate no ground. Two local measures are 

used in the comparison to determine whether the (approximate) ground 

elevation has been found. The first measure is a simple count of how many of the 

rasters that are being compared have a value in a particular cell. With this 

measure, no assessment is made as to whether the value is actually ground. If a 

simple majority of the rasters contains a value, that cell can be considered a 

potential ground pixel.  

… 
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The second measure is the standard deviation of values for the cell, however 

many values there might be. This is calculated only for cells where the count 

criterion is satisfied. Although a similarity in values for a particular cell does not 

guarantee that all of them are at or near ground, differences between values that 

are larger than the cell resolution suggest that non-ground features are present 

in one or more of the input surfaces. Provided that at least one method found a 

true ground value, or at least one of the surfaces being compared was filled to get 

a rough ground approximation below objects, the standard deviation where non-

ground values were found will be greater than the set tolerance and so the 

higher, above-ground values will be rejected. 

The surface comparison technique was tested by the author using two 

iterations and six input surfaces. The script used to implement the comparison 

technique can be found in Appendix A, Section A.1.5, as pseudocode. In the first 

iteration, the surfaces that were compared were:  

1. Results from the Point Neighbourhood technique using Eq. 4.1 

interpolated to a regular grid. 

2. Results from the Point Neighbourhood technique using Eq. 4.3 

interpolated to a regular grid. 

3. Results from Pixel Connectedness technique using a 15° threshold. 

4. Results from Pixel Connectedness technique using a 10° threshold. 

5. Results from Preliminary Ground Points technique based on filled 

surface obtained through the Pixel Connectedness technique, 

interpolated to a regular grid. 
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6. Results from Wavelet Detail Mask technique using a threshold of 

±0.15.  

In the second iteration, the results from the first iteration replaced (2), since it 

was deemed to be most likely to contain non-ground. The results from one test 

area, namely the south-east tile in the Odell Park study area, are shown in Figure 

4.9. The raster contains the average of values in cells where both of the two 

conditions described above, i.e., the count condition (simple majority) and 

standard deviation condition (below set tolerance), were met and no data in cells 

where one or both conditions failed. 

 
Figure 4.9 

Example of the output from the surface comparison technique using six input 

surfaces and two iterations. The resolution is 5 m. 
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 4.4. GROUND POINT CLASSIFICATION AND REFINEMENT 

In the test results in Figure 4.9, as compared to the lower-right tile in Figure 

3.2, it can be seen that ground points were detected under trees and large 

buildings were eliminated using the ground detection techniques and surface 

comparison technique described above. However, although a raster output may 

be suitable for some applications, the goal and the requirement in the NRCan 

guidelines is to classify points, not simply produce a ground raster. The 

comparison technique is therefore just a means to get an approximation of the 

ground through raster methods, which can then be refined through a 

combination of raster and point methods. The three main steps used in the 

refinement process, illustrated in Figure 4.10, are: interpolate, fill, and classify. 

The pseudocode for the fill and interpolate steps can be found in Appendix A, 

Section A.1.6 and for the classify step in Appendix A, Section A.1.4. 

The output from the surface comparison technique is an interpolated raster 

that has no-data cells where buildings and dense vegetation are located. To 

ensure that all of the points in the point cloud can be compared to non-empty 

values in the raster, an iterative process is applied to fill the gaps based on the 

values in connected cells. The further away a no-data pixel is from data values, 

the less reliable the resulting fill value will be – but it is also less likely that there 

are ground data points in the area. Once all the no-data cells have been filled to 

produce an initial reference ground surface, the same technique as in the 

Preliminary Ground Points technique is applied to classify ground points.  

 



89 

 

 

Figure 4.10  

Ground point classification and refinement process. 

A new reference surface is then created by interpolating the classified ground 

points to a raster at a resolution appropriate to the point density. Any points 

classified as ground that were below the initial reference ground surface will pull 

the new surface down. If there are noticeable changes between the initial 

reference surface and the new reference surface, the refinement process will be 

repeated: any holes in the new surface are filled, points are classified against the 

filled raster, and a reference surface is created for comparison. An example of 

the surfaces can be seen in Appendix B, Figure B.11. 
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The final GPI test results for tile 2487_7438 (Odell Park study area, south-

east tile) from the 2011 LiDAR data set are shown in Figure 4.11, interpolated to 

a regular grid for display purposes. The differences between it and Figure 4.9 are 

due to differences in resolution. The output of the surface comparison technique 

cannot be at a higher resolution than the resolution of the input surfaces because 

the technique is entirely raster based. A 5 m resolution was chosen for testing 

the ground detection techniques (Section 4.2) and the surface comparison 

technique (Section 4.3) because of the improved ground detection under forest 

canopy at this resolution, as illustrated in Figure 2.2, and consequently the 

example output shown in Figure 4.9 has a 5 m resolution.  

In contrast, the ground point classification and refinement process can take 

an input raster at any resolution and output a raster at any resolution because 

the classification step of the process is point based. Repeated iterations of the 

process will minimize any negative effects on classification due to the initial 

input raster resolution and once classified, the points can be interpolated at any 

resolution. The resolution of Figure 4.11 is 2 m because this is a more 

appropriate resolution for the point density of the data set than 5 m.  
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Figure 4.11 

Sample interpolation at 2 m resolution of final ground point classification 

results.  

 4.5. TESTING AND ACCURACY  

The stated objective was to develop a ground point identification process that 

achieves 95% point classification accuracy. This should be achieved under 

various conditions without the need for any operator input, or without the need 

for operator input that requires technical knowledge. To test the results of the 

GPI process, seven tiles were chosen from the 2011 Fredericton LiDAR data to 

represent a variety of terrain, vegetation, and building conditions. Four of the 

selected tiles, as shown in Figure 3.2, encompass most of Odell Park and the 
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adjacent residential and commercial properties; one is a section of Garden Creek 

where there are no artificial structures; one is a section of UNB campus and 

residential properties to the north-west (the intersection of Beaverbrook and 

Windsor is at the north-west corner of the tile); and one is part of the City Plat 

and includes a section of the Saint John River.  

The exact same parameters that are listed in Section 4.3 for testing the surface 

comparison technique, and, by extension, the four different ground detection 

techniques, were applied to all seven tiles. Seed pixels for the Pixel 

Connectedness technique and seed points for the Point Neighbourhood 

technique were chosen randomly for each tile. Once the second iteration of the 

surface comparison technique was completed for each tile, three iterations of the 

described point classification and refinement process were applied to each tile. 

Significant differences were observed after the first iteration due to the change of 

resolution between the interpolations (from 5 m for the input ground raster from 

the surface comparison technique to 2 m for the output raster). Differences 

observed after the second iteration were only around features edges and were 

almost all less than 0.5 m. Samples of the test output images can be found in 

Appendix B. 

 The final resolution for the extracted ground raster was chosen as 2m 

because of low overall NPD for all of the tiles and the presence of dense 

vegetation, which further lowers the NPD for ground-only points. However, the 

extracted ground raster is a secondary product of GPI. The classification of 

points as ground within the point cloud is the primary product of the GPI. 
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4.5.1. Accuracy Assessment 

The 2011 Fredericton data, as obtained from the data provider, were classified 

as ground (class 2) and a few other classes. Unfortunately, it is unclear what 

definitions were used for the other classes. For example, some points classified 

as "5", which is the code for "high vegetation" in the LAS format specifications, 

are very close to ground level. Since manually classifying a large enough number 

of points to conduct a reliable accuracy assessment was not feasible, the ground 

classification tool that is part of the LAStools™ package was used in an attempt 

to get a comparable classification. The LAStools™ package was chosen because it 

was free to use for research purposes at the time of testing. However, the 

classification was only partially successful: the widely-accepted LAStools™ 

ground classification tool, called lasground, found some ground points that the 

GPI process did not, and vice versa. Furthermore, lasground requires the user to 

either select one of "forest or hills", "town or flats", "city or warehouses", or 

"metropolis", none of which adequately describe the areas being tested; or 

manually set four different parameters. This requirement makes it difficult for a 

user who is not familiar with the parameters of lasground to use the tool.  

The difficulties in obtaining true ground are illustrated in Figure 4.12a and 

4.12b, which are a point representation and a raster interpolation, respectively, 

of the location of ground points from a sample area under vegetation. The blue 

points or pixels show the locations where only the LAStools™ method identified 

ground points, orange points or pixels show the locations where only the GPI 

process identified ground points, and brown points or pixels are the locations 
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where both methods identified ground points. White pixels in Figure 4.12b are 

the locations where no ground points were identified by either method. Non-

ground points were omitted from Figure 4.12a. Figure 4.12c and 4.12d, which are 

raster interpolations of the elevation values of identified ground points, show no 

anomalies in ground elevation between the two, suggesting that: (1) both 

methods may be equally valid and (2) neither is capable of finding all the ground 

points under dense vegetation that exist in the point cloud.  

 

 
Figure 4.12 

Limitations in quantifying ground classification accuracy: a) point 

representation and b) raster representation of locations of points classified as 

ground by LAStools™ (blue), by the GPI process (orange) and by both (brown) 

or neither (white) method; and interpolation of ground elevation from c) 

LAStools™ results and d) GPI process results. 
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The NRCan guidelines require classification accuracy to be reported in an 

error matrix. Although true accuracy cannot be determined without true ground, 

an assessment can be conducted against the LAStools results. To achieve this, 

the test tiles were divided into 50 m x 50 m segments and approximately 1% 

were randomly selected for assessment. The selected segments contained 

151,245 points, or 1.26% of all the points in the test tiles. Table 4.2 is the error 

matrix for all of the points in the randomly selected segments, while Table 4.3 is 

the error matrix for Segment 6412, which is around E 2486375 N 7438725 in a 

densely forested part of Odell Park. The location and point cloud for Segment 

6412 are shown in Figure 4.13. 

As compared to the LAStools™ ground (forest or hills setting), which is not 

necessarily true ground, all measures of accuracy are above 95% for the 

aggregate sample. As Polygon 6412 illustrates, however, accuracy is lower for 

GPI ground versus LAStools™ ground. Similar results occur with all of the 

sample segments that include a significant amount of high vegetation. Without 

closely examining all of the points in these sample segments, it is not possible to 

determine whether it is the LAStools™ classification or the GPI classification 

that is in error, yet a visual examination and quick analysis of the Segment 6412 

results show that the differences fall into one of three cases. 

 

 



96 

 

Table 4.2 
Error matrix for all points in randomly selected polygons. 

 
GPI ground 

GPI non-

ground 

User's 

accuracy 

LAStools 
ground 

62079 1748 97.26% 

LAStools non-
ground 

3115 84303 96.44% 

Producer's 
accuracy 

95.22% 97.97% 96.78% 

 
Table 4.3 

Error matrix for Polygon 6412. 

 GPI ground 
GPI non-

ground 

User's 

accuracy 

LAStools 
ground 

157 0 100.00% 

LAStools non-
ground 

38 5087 99.26% 

Producer's 
accuracy 

80.51% 100.00% 99.28% 

 

 

Figure 4.13 

Location and point cloud representation of Segment 6412, within the Odell Park 

study area.  

2 Ground 

3 Low Vegetation 

5 High Vegetation 
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First, there are LAStools™ non-ground points that are spatially very close to a 

surface interpolated from the LAStools™ ground points and would likely be 

classified as ground if different parameter values had been set for the lasground 

tool. Second, of the 38 GPI ground points that are non-ground points in the 

LAStools™ results, seven are within 15 cm of the interpolated ground and 

another fifteen are between 15 cm and 30 cm. This is within the fundamental 

vertical accuracy of LiDAR measurements specified in the NRCan guidelines. 

Third, of the nine GPI ground points that are more than 0.5 m above the 

interpolated ground, most are located around a small discontinuity in the 

surface. In the GPI algorithm, the classification of all of these points was flagged 

as being of lower confidence than points closer to the surface.  

As a further attempt to test the accuracy of GPI, other data sets that had 

passed through a classification process used by commercial data producers were 

obtained from GeoDigital International [Lehto, 2012b]. One data set was from 

an area of downtown Ottawa, Ont., and the other from Oklahoma. Upon 

examination of the data, however, it was found that while points classified as 

"ground" were true ground, the unclassified points included a large number of 

points that were within 0.3 m of ground, or, in other words, that were within the 

target vertical accuracy for LiDAR and that might normally be assumed to be 

ground points. This uncertainty in ground point classification precludes the 

calculation of a meaningful error matrix. The measures that are meaningful are 

user's accuracy for ground (matched GPI ground versus all GeoDigital ground 

points) and producer's accuracy for non-ground (matched GPI non-ground 
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versus all GPI non-ground points). For both the Ottawa and Oklahoma data sets, 

greater than 99% is achieved for these measures.  

There are similarities between the Ottawa and Oklahoma scenes and the 

Fredericton scenes. The Ottawa data cover a portion of the city's downtown, 

including Parliament hill. It is similar to the tested Fredericton tile covering the 

City Plat. However, the buildings in the Ottawa data are larger and in many 

cases more complex than the ones in Fredericton data. They are also surrounded 

by less vegetation. Most of the vegetation in the Ottawa scene is along the river, 

where there is also a steep terrain slope. The Oklahoma data cover an area 

outside Tulsa. They are similar to the data from Odell Park or Garden Creek, but 

the terrain is flatter (approximately 15 m change in elevation as compared to 

approximately 40 m or more) and the vegetation less dense. While more 

extensive accuracy testing over a wider range of terrain conditions would be 

valuable, the assessments that were completed show that the ground 

classification accuracy of GPI as compared to other ground classification 

processes is sufficiently high to meet the requirements in the NRCan guidelines 

in mixed urban scenes with varying terrain and areas of high vegetation. 

Furthermore, visual inspection of the classification results did not reveal any 

significant errors.  

 4.6. SUMMARY OF GPI PROCESS 

In this chapter, a process was described for identifying and classifying ground 

points in a point cloud. The process is comprised of a set of detection techniques, 
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a surface comparison technique, and a point classification and refinement 

process. Four detection techniques were described, each of which produces a 

ground surface raster within the GPI process. The ground surfaces are compared 

and a ground raster extracted from the comparison. The ground raster is then 

used to identify ground points within the original point cloud and classify all 

points as either ground or non-ground. In the next chapter, a multi-stage point 

classification process is described that starts with the GPI output and 

progressively identifies additional classes in the point cloud. 
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"The physician can bury his mistakes, but the 

architect can only advise his client to plant 

vines." 

~ Frank Lloyd Wright 

 CHAPTER 5  

CLASSIFICATION OF SINGLE SOURCE LIDAR DATA SETS 

Ground extraction may be sufficient for applications where only terrain 

information is needed, but only extracting ground points effectively discards a 

significant amount of the collected information and there are many applications, 

such as augmented reality and street view navigation, where there is a need for 

detailed representations of buildings and other objects. Although airborne 

LiDAR often cannot provide very much information about building façades, if 

the point cloud is accurately classified it can be used to estimate building 

footprints as well as obtain height information for buildings and other objects 

that may not be available from other data sources, such as satellite imagery (see, 

for example, [Haala and Brenner, 1999; Zhou et al., 2009; Kabolizade et al., 

2010; Chase et al., 2011]).   

When the only data available are in a single point cloud, there are limits to 

what is achievable with automated classification and a multi-stage process is 

necessary. The LAStools™ software, for example, employs three stages: ground 

extraction, calculation of HAG, and classification of buildings and vegetation. 

Clusters of points at least 2 m above ground are considered objects and buildings 

are separated from vegetation using planarity conditions. The user, however, 

needs to be able to categorize the scene or be familiar enough with the effects of 
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varying different parameters on ground extraction results to select appropriate 

values [Isenburg, n.d.]. Building classification can also be performed in LP360™ 

but, again, the user needs to be able to specify appropriate parameters.  

This chapter describes the process developed in this thesis, illustrated in 

Figure 5.1 and henceforth referred to as MSPC for "multi-stage point 

classification," to classify points in a LiDAR point cloud. The stages of MSPC are:  

1. Ground surface extraction (from the output of the process described in 

Chapter 4) and high and low noise identification. 

2. Preliminary classification (Section 5.1), to identify potential vegetation 

and building points. 

3. Building classification (Section 5.2). 

4. Identification of areas of uncertainty and de-classification of points 

within those areas (Section 5.3). 

5. High vegetation classification (Section 5.4). 

6. Separation of low vegetation and roads or other paved surfaces 

(Section 5.5). 

7. Identification of vehicles and other objects above road surfaces 

(Section 5.5).  

With the exception of Stage 1, which offers a choice between two measures, 

and Stage 6, which requires a threshold to be set, the MSPC does not require 

user input and therefore does not require the user to have any expert knowledge. 

Pseudocode for the MSPC process implementation can be found in Appendix A, 

Section A.2. 
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Figure 5.1 

Flowchart for the Multi-Stage Point Classification process. Although both TRI 

and MMM masks may be generated for comparison, only one is used to generate 

a height infused building raster.  
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 5.1. PRELIMINARY CLASSIFICATION 

The primary classes present in a typical urban scene are ground, building, and 

high vegetation. Buildings in general have identifiable characteristics, such as 

height, shape, and roof planarity, while vegetation and other objects can have 

greatly varying characteristics. The goal of the preliminary classification stage is 

to separate (likely) building points from non-building. The pseudocode for 

preliminary classification can be found in Appendix A, Section A.2.1  

Because of variations in how scenes are captured during LiDAR surveys and 

similarities in the way objects appear in the point cloud, particularly when there 

is limited spatial context, no assumptions can be made about the accuracy of the 

preliminary classification; it is simply a starting point for further classification 

and a means to derive spatial context in the form of rasters from the point cloud. 

Two approaches were developed and tested in this work: Terrain Ruggedness 

Index (TRI) Thresholding and Multiple Returns and Height Measures Masking 

(MMM). 

5.1.1. Terrain Ruggedness Index Thresholding 

TRI, proposed by Riley et al. [1999], is a measure of changes in surface 

elevation (described in Section 3.1.1.3). Larger TRI values mean greater variation 

in elevations within the window but the values are scale dependent: the range of 

index values and the interpretation of the values changes with the resolution of 

the raster. Ideally, to use TRI to identify potential buildings, the resolution 

should be 1 m. TRI can be applied to different raster interpolations. From tests 
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conducted on different interpolations it was determined that for the TRI 

thresholding approach the best representation for capturing all surface 

variations, particularly where there is dense vegetation, is one created using 

IDW rather than one created through averaging or maxima selection. However, 

where a scene contains buildings with recessed entrances, a maximum surface is 

a better choice so that any points captured from the ground within these recesses 

would not interfere with the rooftop points above the recesses.  

TRI images, such as the one shown in Figure 5.2a, have too much variability 

to be used directly. Instead, a threshold is applied to locate flat pixels: for a 1 m 

resolution raster, flat pixels are defined as those having a TRI value below 5. 

Isolated pixels that differ in value from the surrounding pixels after the 

threshold is applied, also called "salt and pepper noise," are identified by 

examining the adjacent eight pixels and changing the value to match the 

surrounding pixels to produce a cleaner image.  

If in the cleaned image a pixel is not touching any flat pixels, the 

corresponding surface is, by definition, "rough" and the preliminary 

classification algorithm labels any non-ground points in rough areas as 

"vegetation." If a pixel is touching many flat pixels (more than six), the 

corresponding surface and surrounding neighbourhood are deemed to be 

relatively flat. Figure 5.2b shows the resulting mask corresponding to Figure 

5.2a, where the colour black represents flat neighbourhoods and the colour 

green represents rugged neighbourhoods. 
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Figure 5.2 

Example of a) TRI image and b) corresponding TRI mask.  

At this stage of the MSPC, it is preferable to have errors of omission rather 

than errors of commission for each of the preliminary classes. Points 

erroneously omitted from a preliminary class may be added to a class in later 

stages. HAG is the deciding factor for classifying non-ground points:  

1. Last return points in flat neighbourhoods that are more than 2 m above 

ground are classified as "preliminary building points." 

2. Points in rough areas that are between 0.3 and 2 m above ground are 

classified as "preliminary medium vegetation points."  

3. Those points that are more than 2 m above ground are classified as 

"preliminary high vegetation points."  

Points that do not satisfy the criteria for any of the three preliminary classes, and 

have not been previously identified as ground, are left unclassified. The 

restriction that only last returns can be preliminary buildings points is applied 

because buildings should be solid. Although the measure does exclude first 

a
) 

b) 
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returns that occur at rooftop edges, there is significant uncertainty associated 

with such points and therefore they should not be included in preliminary 

classification. 

Figure 5.3 shows an example of preliminary building classification results 

along with building footprint shapes obtained from CoF open data site, overlaid 

on an elevation raster. It should be noted that, to better illustrate the point 

classification results in this image, a raster was generated showing where points 

classified as preliminary building were located. It is therefore not fully 

representative of the point cloud classification. A similar approach was used for 

other figures in this chapter. 

 

Figure 5.3 

Example of preliminary building classification using TRI Thresholding method. 

The circled area highlights small building under vegetation that remain 

unclassified. 
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5.1.2. Multiple Returns and Height Measures Masking 

As can be seen in Figure 5.3, the TRI method may fail to detect small 

buildings surrounded by high vegetation; in contrast, using the MMM method, 

as shown in Figure 5.4, produces results that correspond more completely to the 

building footprints. The MMM method seeks to overcome the TRI limitations by 

looking for solid regions that are above ground and have little range in elevation 

between highest and lowest points. The mask is produced by combining three 

measures:  

1. An interpolation of multiple return counts (or an MRD), where a zero 

value means no pulses were split by edges or by partial penetration of 

openings in vegetation (Figure 5.5a). 

2. The difference between the highest and lowest points, where a value 

less than 1 m for a 1 m image resolution means that the maximum 

slope within the cell is no greater than the slope of a typical slanted 

roof (Figure 5.5b).  

3.  HAG for the minimum point, where a value greater than 1 m means 

that there is an object above ground level (Figure 5.5c).  

As with the TRI mask, salt and pepper noise is removed in the images 

representing each of the three measures by examining the eight adjacent pixels 

for each potential noise pixel. Then the images are combined to find 

neighbourhoods where all three conditions hold. Figure 5.5 illustrates the 

process of creating the mask. In each of the images, white represents areas 

where the condition failed. Figure 5.5d is the resulting mask. The same height 
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conditions are applied as described above to classify preliminary medium 

vegetation, high vegetation, and building points. 

 
Figure 5.4 

Example of preliminary building classification using MMM method. 

5.1.3. Limitations 

Neither of the approaches described in the previous two sections perform 

perfectly. The TRI method is largely successful in avoiding false building 

detection within areas of vegetation yet performs poorly in residential areas with 

mature tree cover where only a small portion of house roofs may be visible. It 

performs best in scenes where there is clear separation between buildings and 

vegetation. The MMM method performs very well in detecting building points 

(as compared to building footprints), even detecting small houses partially 

obstructed by trees, yet it also detects false buildings in areas of dense, high, 

narrow vegetation (i.e., tall hedges). It will perform best where such vegetation 

does not exist or can be easily detected. 
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Figure 5.5 

Example of a) Multiple return interpolation; b) difference between maximum 

and minimum values; c) minimum HAG; and d) the resulting MMM mask. In all 

images, black represents areas where the conditions were met. 

  

a) b) 

c) d) 
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While most buildings conform to basic shapes, there are almost endless 

variations possible for even small, simple houses that will always create 

challenges and cause failures in automatic building detection. Large buildings 

present even more variations, and creative architecture. As an illustration of the 

challenges, Figure 5.6 shows two views of a point cloud representation of the 

Centre Block on Parliament Hill in Ottawa from the data provided by GeoDigital 

International [Lehto, 2012b]. The single building has multiple level rooftops, 

steeply pitched roofs, the round Library of Parliament, and the tall Peace Tower. 

Even the flag flying from the Peace Tower is visible in the point cloud. The MMM 

method is able to detect more of the building than the TRI method, but the 

round shape and irregular roof structure of the Library of Parliament just do not 

follow normal rules for buildings and present a challenge for any automated 

classification approach.   
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Figure 5.6 

Point cloud representation of the Centre Block of Parliament Hill in Ottawa, 

from data provided by GeoDigital International [Lehto, 2012a]. 
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 5.2. BUILDING CLASSIFICATION 

The goal of the preliminary classification is to separate potential building 

points from non-building points; the next step is to find actual buildings. The 

pseudocode for building classification can be found in Appendix A, A.2.2. This is 

accomplished in the MSPC process using a building mask infused with 

elevations based on the results of the preliminary classification. If the TRI 

thresholding method captures the buildings in a scene sufficiently well, the mask 

can be derived directly from the potential building points.  

If the MMM method is to be used, some processing is required to eliminate as 

many false positives as possible before the mask is derived. First, a binary image 

with 1 m resolution is created from the points classified as potential buildings by 

the MMM method. Isolated pixels both outside and inside of larger shapes are 

removed based on the value of the eight adjacent pixels to produce a cleaner 

image and the results are vectorized to obtain potential building polygons. Zonal 

statistics are then calculated from the minimum HAG raster, including number 

of pixels, sum of values, and mean value of pixels within the polygon. When the 

raster has a 1 m resolution, the number of pixels is equivalent to the total area of 

the polygon.  

The zonal statistics are used to classify the polygons. Although there will be 

some variability in statistics between different data sets, the polygon 

classifications are generally applicable. The classes based on area are: 

(1) Class A: area > 100 m2 (very large building) 

(2) Class B: 60 m2 < area ≤ 100 m2 (large building) 
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(3) Class C: area < 8 m2 (too small to identify) 

The classes based on both area and HAG are: 

(4) Class D: 21 m2 ≤ area ≤ 60 m2 and 8.0 m < HAG < 11.0 m (largish high 

building, probably) 

(5) Class E: 21 m2 ≤ area ≤ 60 m2 and HAG < 8.0 m (largish normal 

building, probably) 

(6) Class F: 12 m2 ≤ area ≤ 20 m2 and HAG < 6.0 m (normal house, 

probably) 

(7) Class G: 8 m2 ≤ area ≤ 11 m2 and HAG < 6.0 m (fragment of house, 

probably) 

The smaller the count, the greater the uncertainty about what the polygon 

represents and there are likely to be polygons on the wrong side of the last four 

thresholds: there is too much variability in how LiDAR points are collected, as 

well as in captured features, to allow for clear boundaries that can be used to 

conclusively separate all features. 

Once the polygons are classified, a raster is created based on the classes 

defined above, excluding Class C, and finally the raster is infused with elevation 

values. The reason for converting back to raster is to obtain localized heights on 

the roofs, rather than some summary of heights for the shape, to have a better 

chance of classifying points on sloped roofs. Figure 5.7 shows an example of the 

classified polygons (a) and the mask infused with elevation values (b). 

In the figures, a Class D polygon (circled, top right) and two Class F polygons 

(circled, centre) are actually hedges, but this could only be determined through 
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close examination of the point cloud. Although the mask derivation process can 

be run automatically, to improve the results the user could intervene to omit 

Classes F and G when creating the mask to remove more polygons that represent 

trees, although this risks also excluding some smaller buildings. Class D could be 

omitted because these could also be dense trees or hedges. Alternatively, a user 

could examine the polygon classifications manually to determine which polygons 

to keep. 

 

Figure 5.7 

Example of building classification process from MMM results: a) classified 

potential building polygons; b) building mask infused with elevation values. 

Whether the building mask is derived from the TRI results or the MMM 

results, the building classification process is completed by conducting a point 

classification where points that are less than 1 m above the mask elevation are 

deemed to be building points. This excludes high overhanging tree points, while 

including any wall points that are at least 0.3 m above ground if the mask 

extends to the edge of the building. 

a) b) 

No data 
G 
F 
E 
B 
A 
D 
C 
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 5.3. UNCERTAINTYAND DECLASSIFICATION 

Building points can be classified without too much difficulty because 

buildings have characteristics that can be defined in code and/or otherwise, 

aside from the exceptions noted in Section 5.1.3. Points belonging to any other 

features, however, present complications. Rather than risk misclassifying such 

points, in the MSPC process areas with the greatest classification uncertainty are 

blocked out by applying an uncertainty measure and points within those areas 

remain unclassified to allow greater confidence in the points that are classified. 

The pseudocode for this stage can be found in Appendix A, Section A.2.3. 

The measure used to map areas of uncertainty is a ground-vegetation ratio, 

which is described in Section 3.1.2. The purpose of the ratio, as illustrated in 

Figure 5.8, is to find areas where there is a certainty of ground classification 

(Figure 5.8a) and areas where, given the preliminary and building classification 

results, there is a certainty of objects that are above ground and not (yet) 

identified as buildings (Figure 5.8b). Uncertainty occurs where there is both a 

significant percentage of points in the window that are ground and a significant 

percentage of points that are not building (Figure 5.8c). In the figure, the value 

for "significant" was set at 10%. This uncertainty measure blocks most power 

lines, the edges of vegetation, and some building edges, as can be seen in Figure 

5.8d. Any points within an area of uncertainty are not classified or declassified in 

the MSPC process. 
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Figure 5.8 

Illustration of uncertainty measure: a) percentage of non-ground, non-building 

points in a 3 x 3 window; b) percentage of ground points in a 3 x 3 window; c) 

resulting uncertainty mask; and d) uncertainty mask overlaid on a raster 

interpolation of elevation.  

  

a) b) 

c) d) 
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 5.4. HIGH VEGETATION CLASSIFICATION 

By this, the fifth  stage of the MSPC process (see Figure 5.1), points have been 

classified as ground and buildings, marked as being in an area of uncertainty, or 

identified as preliminary vegetation. If the uncertainty measure described in the 

previous section is fully successful the points still classified as "preliminary 

vegetation" points should be true vegetation but that is not always the case. To 

increase the degree of certainty for vegetation, two criteria are applied in the 

MSPC process. The pseudocode for high vegetation classification can be found in 

Appendix A, Section A.2.4. First, the points in a 2 m spherical neighbourhood 

around a preliminary vegetation point are tested and at least 50% have to be of 

the same class, i.e., preliminary vegetation. The 2 m distance is based on the 

height for the high vegetation classification in the NRCan guidelines. This 

criterion removes points around the edges of vegetation (and buildings), leaving 

points in the "preliminary vegetation" class for which there is a high level of 

confidence that they are truly vegetation rather than other non-building objects.  

The second criterion is that a point that has been marked as preliminary 

vegetation has to be within range (1 m) of other such points. Any points 

satisfying both criteria are classified as high vegetation. The NRCan guidelines 

simply stipulate that "high vegetation" is more than 2 m above ground and 

"medium vegetation" is 0.3 m to 2 m above ground. During testing of the high 

vegetation classification process, fewer than 3% of  points marked as preliminary 

vegetation in the second stage of the MSPC process (Section 5.1)  were found to 

be between 0.3 to 2 m above ground, and most of these were located on roads or 
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in parking lots (vehicles), adjacent to buildings (raised decks, walls), or within 

areas of high vegetation. Therefore, for this classification process, the "medium 

vegetation" class was used for preliminary vegetation points for which a majority 

of neighbouring points were also preliminary vegetation but that were more than 

1 m away from any such neighbours, along with any vegetation points between 

0.3 and 2 m above ground. This change to the definition of "medium vegetation" 

provides an extra measure of certainty for the "high vegetation" class. Although 

it is possible that more errors of omission will occur as a result of the changed 

definition, there are fewer errors of commission in the high vegetation class than 

there would be without the change. Figure 5.9 shows an example of the results of 

vegetation classification. 

 

Figure 5.9 

Example of high and medium vegetation classification results with building roof 

elevation included to provide context. 
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 5.5. ROADS, LOW VEGETATION AND OBJECTS ABOVE ROAD 

"Ground" consists of roads and other paved surfaces; grass and other low 

vegetation cover; and bare soil. The material reflectivity, which is captured in the 

point intensity values, is used in the MSPC process as a better means to separate 

these groups than elevation. Asphalt generally has low reflectivity while 

vegetation has high reflectivity, but there is no absolute threshold: unhealthy 

(dry) grass may have low reflectance while faded asphalt and gravel may have 

high reflectance. Furthermore, when multiple returns are generated from a 

pulse, the total energy is split between the returns so even highly reflective 

materials may generate returns with low intensity values. Multiple returns are 

therefore excluded from either class (ground or low vegetation) in the MSPC 

process to avoid misclassification. The pseudocode for this stage can be found in 

Appendix A, Section A.2.5.  

The threshold that is used must be chosen arbitrarily, but depends, to a 

certain extent, on the sensor that was used to collect the data and on the scene. 

Figure 5.10 is an example, for illustration purposes, of an intensity value 

histogram for single returns classified as ground. (It is depicted as a scatter plot 

rather than as a vertical bar graph for readability purposes.) In this particular 

data set, there is a plateau in point counts from values around 70 to 110 then an 

increase up to the peak at around 145. Different data sets will have different 

ground intensity histograms. In this and similar scenes, the threshold to split 

between road and grass lies somewhere in the plateau, at a high enough value so 

that most road points will be classified as road, and at a low enough value so that 
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few low vegetation points are classified as road. The threshold value is arbitrarily 

chosen within the range of plateau values.  

 

Figure 5.10 

Example of a ground intensity histogram. Exact shape will be different for each 

data set.  

Points in the ground set with an intensity value below the threshold are 

classified as road points. Vehicles are then located within the point cloud by 

creating a binary road mask and identifying points within the mask that are 0.3 

to 2 m above ground. Points that are within the mask that are more than 2 m 

above ground are classified as "other objects above the road surface." The 

pseudocode for this stage can be found in Appendix A, SectionA.2.6.The height 

threshold was chosen based on an estimate of typical car height. Some vehicles 

will be higher, such as trucks and buses, but mostly the threshold will separate 

overhanging trees, overhead wires and signs, streetlights, and other such 

features that are in the space directly above a road or paved surface. Figure 5.11 

Intensity Value 

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120 140 160 180 200220 240 260 280

P
o

in
t C

o
u

n
t 



121 

 

shows an example of "road" and "low vegetation", and "vehicle" and "other 

object" classification. 

 

Figure 5.11 

Example of road surface, low vegetation, vehicle and other above road feature 

classification results. 

 5.6. REMAINDERS AND ACCURACY 

A large number of points remain unclassified after the MSPC process 

described above is complete, because in the development of the process errors of 

omission were preferred over errors of commission. Sample results are 

described in Section 5.6.1 and quantified in Table 5.1. Pseudocode for the 

implementation of the MSPC process can be found in Appendix A.  

Any stage of the classification process can be rerun, with masks of greater 

certainty or changed restrictions, to slowly reduce the errors of omission. 
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Processing time will vary for each stage depending on the size and number of 

points in the area being processed and on whether the stage employs raster-

based techniques or point neighbourhood techniques (and on the hardware 

capabilities). In testing using the Fredericton data, processing time for each 

stage was on the order of seconds or tens of seconds. The only decisions that the 

user must make are whether to use the TRI or MMM technique in preliminary 

classification and intensity threshold to use to differentiate between roads and 

low vegetation. Criteria could be developed to make these decisions based on the 

data, thereby allowing the MSPC process to be fully automated. 

Yet, there is a limit to how many of the points can be accurately classified 

without resorting to manual classification, as the variability in where points fall 

with respect to feature locations and in intensity values precludes  being able to 

create any definite rule base. In addition, no attempt was made to classify water 

solely from the point cloud in the MSPC process. Often, water bodies return no 

data due to the way water reflects and/or absorbs the laser energy. Where 

returns are generated, the points do not have any distinctive properties that 

allow them to be separated from ground points. Different approaches have been 

applied by researchers to handle water points or wet areas, for example Cook et 

al. [2009], Höfle et al. [2009], Wang et al. [2009], and Wu et al. [2009]. A 

method for classifying water points using data from other sources is proposed in 

Chapter 6.  

One final classification step that was tested was to identify building edges 

(potential wall points). This step is not part of the MSPC process because it 
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depends on having all building points classified and a reliable roof height, and 

furthermore because the generation of such points is highly dependent on the 

orientation of the airborne platform with respect to the building. In the test that 

was conducted, points below the building height and more than 0.3 m above 

ground were marked as edges, as were points up to 1 m above building height 

that were not last returns, which had the effect of outlining buildings where 

pulses were split into multiple returns at the roof edge. Figure 5.12 shows an 

example of a point cloud representation of the building edge point classification. 

 

 

Figure 5.12 

Example of building edge classification results. In the upper image, non-edge 

roof points are in red; in the lower image, these points have been removed to 

make the edge points more visible. 
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5.6.1. Sample Classification Results 

Tables 5.1 and 5.2 contain the numeric results from testing the MSPC process 

described in the previous sections on tile 2487_7439 of the Fredericton data 

(Odell study area, north-east tile). Figures 5.13 and 5.14 are raster 

representations of the classification results. Approximately 25% of the points are 

in an area of uncertainty or otherwise remain unclassified. The edge 

classification criteria operated on all except ground points, on the assumption 

that the building mask did not extend far beyond the actual building area and 

any points within the mask must therefore belong to the building. 

Table 5.1 

Sample classification results for tile 2487_7439, without building edge 
classification. 

class count % class count % 

low vegetation 273,471 15.15% medium 

vegetation 

212,922 11.79% 

road surface 195,556 10.83% high vegetation 413,993 22.93% 

other ground 88,655 4.91% area of 

uncertainty 

156,867 8.69% 

vehicle 11,145 0.62% not classified 295,535 16.37% 

object above road 30,551 1.69% high noise 20 0.00% 

building 126,478 7.01% low noise 2 0.00% 
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Table 5.2 

Sample classification results for tile 2487_7439, with building edge 
classification. 

class count % class count % 

low vegetation 273,350 15.14% medium 

vegetation 

212,609 11.78% 

road surface 195,510 10.83% high vegetation 413,622 22.91% 

other ground 88,655 4.91% area of 

uncertainty 

153,653 8.51% 

vehicle 10,291 0.57% not classified 292,912 16.23% 

object above road 30,199 1.67%    

building 116,894 6.48% building edge 17,478 0.97% 

 

 
Figure 5.13 

Raster representation of point classification results for tile 2487_7439.  
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Figure 5.14 

Enlarged section of classification results for tile 2487_7439. 

5.6.2. Classification Accuracy Assessment 

The points in the Fredericton data sets that were obtained for testing were 

classified as Class 2, 3, or 5 by the data provider yet a visual examination showed 

that this classification could not be taken as truth. For example, points included 

in Class 5, "high vegetation," were observed to be building points. The software 

tools that were available to the author could not produce a truth set large enough 

(several hundreds of thousands of points) for a rigorous accuracy assessment, 

either through automatic or manual processes. Therefore, accuracy tests of 

ground and building classification for three 50 m x 50 m sample areas were 
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completed. The sample areas were manually classified, classified using the 

MSPC process up to the building classification stage, and with LAStools™ as a 

gauge against the performance of a freely available tool. For convenience, these 

will be referred to as Manual, MSPCb, and LAStools, respectively. 

The numerical results of the classification assessment are summarized in 

Tables 5.3 and 5.4. Overall, MSPCb performed marginally better as compared to 

Manual than LAStools. In particular, MSPCb performed better with ground 

classification in terms of both errors of omission (only 8 points versus 71) and 

errors of commission (222 points versus 386). LAStools was found to be more 

likely to classify building points as ground (374 points versus 112), whereas 

MSPCb detected more true building points (1759 points versus 1600) and was 

otherwise more likely to classify a building point as "other" than as "ground."  

Table 5.3 
Ground and building classification accuracy using MSPCb. 

 MSPCb 
other 

MSPCb 
ground 

MSCPb 
building 

User's 

accuracy 

Manual 
other 

1122 110 0 91.07% 

Manual 
ground 

8 8429 0 99.91% 

Manual 
building 

576 112 1759 71.88% 

Producer's 

accuracy  
65.77% 97.43% 100.00% 93.35% 
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Table 5.4 
Ground and building classification accuracy using LAStools™. 

 LAStools 
other 

LAStools 
ground 

LAStools 
building 

User's 

accuracy 

Manual 
other 

1220 12 0 
99.03% 

Manual 
ground 

71 8366 0 
99.16% 

Manual 
building 

393 374 1600 
67.60% 

Producer's 

accuracy 
72.45% 95.59% 100.00% 92.94% 

An examination of where MSPCb fails, illustrated in Figures 5.15 to 5.17, 

shows that misclassifications occur primarily around building edges, and on 

roads and in parking lots where vehicles can be found. Applying the remainder 

of the MSPC process (the "uncertainty", "vegetation", and "road" and "vehicle" 

classification steps) should improve these results, or at least correct some of the 

misclassified points, such as vehicle points classified as ground that were all 

marked as being between 0.3 m and 1 m HAG.  

In each of the figures, brown represents ground points, blue represents 

building points, and green represents vegetation points. (For MSPCb, the 

vegetation classification is preliminary, as described in Section 5.1, whereas the 

vegetation classification is final for LAStools). The point intensity value was used 

to modulate the colour in the images. Sample 6606 (Figure 5.16) presents a 

particular challenge, as it includes a portion of the Science Library on the UNB 

campus, which is built into the ground. Correct classification of this type of 

feature depends on how "ground" versus "building" is defined. 
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The accuracy assessment for all other classes in the MSPC process was 

performed as a simple visual comparison, due to the challenges noted above in 

obtaining a suitable truth set. Figures 5.18 to 5.20 contrast the full classification 

for MSPC against the LAStools (limited to ground, building, vegetation, and 

unclassified classifications) in three samples areas. The colour representations 

for the main classes are: brown for ground points; red for buildings; shades of 

green for vegetation with darker green representing higher vegetation; magenta 

for unclassified points; dark grey for roads; and grey to white for vehicles. 

Further evidence can be seen of the tendency of LAStools™, as applied, to fail to 

find buildings or to misclassify "building" points as "ground" or "vegetation."  
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Figure 5.15 

Building classification results for Sample 7966. Top: Manual. Middle: MSPCb. 

Bottom: LAStools.  
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Figure 5.16 

Building classification results for Sample 6606. Top: Manual. Middle: MSPCb. 

Bottom: LAStools.  
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Figure 5.17 

Building classification results for Sample 1095. Top: Manual. Middle: MSPCb. 

Bottom: LAStools.  
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Figure 5.18 

Classification results for Sample 3341. Top: Full classification using the MSPC 

process. Bottom: LAStools. The circled area is an example of roof points 

classified as vegetation by LAStools™. 
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Figure 5.19 

Classification results for Sample 3059. Top: Full classification using the MSPC 

process. Bottom: LAStools. 
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Figure 5.20 

Classification results for Sample 2910. Top: Full classification using the MSPC 

process. Bottom: LAStools. The circled area is an example of roof points 

classified as ground by LAStools™. 
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 5.7. SUMMARY OF MSPC PROCESS 

This chapter has described the multi-stage point classification process 

developed for this thesis and presented results from test areas in Fredericton. 

Through the seven stages of the MSPC, which builds on the ground point 

classification from Chapter 4, points are classified as building, high vegetation, 

medium vegetation, low vegetation, road or other paved surface, vehicle, and 

other objects above road surface. In the MSPC process, a preference is given to 

having errors of omission rather than errors of commission and points not 

meeting the criteria of any class or falling within an area marked as uncertain 

are left unclassified. This simplifies the process of refining results by, for 

example, repeating stages of the classification process, or even manually 

reclassifying points, as focus can be placed determining the correct class for 

unclassified points rather than correcting misclassification.  

Regardless, there will always be limitations to what can be achieved with 

automated classification using a single LiDAR data set. To achieve more accurate 

classification results, other data sources are needed. Hence, integration of other 

data sources in the classification process is discussed in the next chapter. 
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"This is a singularly ill-contrived world, but 

not so ill-contrived as all that." 

~ A.J. Balfour 

 CHAPTER 6   

CLASSIFICATION OF LIDAR DATA USING MULTIPLE 
DATA SOURCES 

The processes described in Chapters 4 and 5 identify ground points within a 

point cloud and further classify points as building, high and low vegetation and 

other classes. Tests of these processes showed few or no errors of commission 

and, in the case of building points, misclassification as ground only in unusual 

cases where the building has been built into or under the ground.  

With LiDAR as the sole data source, boundaries between objects can be 

indistinct and the lower the point density, the larger the area of uncertainty 

between objects. Approximately 25% of the points in the test data set used in 

Chapter 5 were left unclassified because of this uncertainty. The results could be 

refined and improved iteratively, using similarity measures derived from the 

classified points to assign unclassified points to a class and allowing direct 

operator input in areas of high uncertainty. Another alternative, however, is to 

integrate data from other sources and make use of the additional information in 

the classification process.  

The following sections explore procedures for modifying and adding to the 

ground point identification (GPI) and multi-stage point classification (MSPC) 

processes described in Chapters 4 and 5 to make use of integrated data sets. 

Different sets of test data are used in this chapter from those used in Chapters 4 
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and 5 to illustrate particular aspects of the process modifications. Images 

representing the single source classification results are included where a direct, 

visual comparison is appropriate. Pseudocode for implementing any necessary 

modifications to the GPI or MSPC processes can be found in Appendix A. 

First, the advantages and limitations of existing commercial options for using 

other data sources to classify LiDAR point clouds are explored as alternatives to 

modifying the processes and the code from Chapters 4 and 5 (Section 6.1) then 

characteristics of different data sets that may affect the quality of integration 

results are discussed (Section 6.2). 

The potential for using a ground surface extracted from a leaf-off LiDAR data 

set to extract ground from a leaf-on LiDAR data set is examined as an example of 

using an available ground surface from another source to improve GPI 

processing time (Section 6.3) and the potential for using feature data to enhance 

the MSPC process is investigated in three cases (Section 6.4 to 6.6). The first 

case is using water polygons to separate water points from ground (Section 6.4); 

the second case is using existing building footprints to supplement building data 

extracted from the LiDAR point cloud (Section 6.5); and the third case is using 

existing road centrelines to replace the intensity threshold approach for road 

extraction (Section 6.6). Finally, the potential for using multi-temporal LiDAR 

data to detect change over time is explored (Section 6.7). 

 6.1. EXISTING TOOLS 

A number of commercial tools are available for classifying LiDAR points using 
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other data, including ArcGIS™, LP360™, and MARS® Explorer, which are 

described below and were available to the author during at least part of the 

research process. Commercial tools offer certain advantages, including user 

interfaces to help select data and set parameters, that may not be offered by the 

code tools developed as part of this research but they also have limitations.  

 The LiDAR handling capabilities introduced in version 10.1 of ArcGIS™ 

include a tool for classifying points in LAS files using vector feature data [Esri 

Inc., 2012]. This tool allows buffering around features but does not use z values, 

which creates the potential for misclassification of points in areas where 

multiple classes occur in the same planar region but in different vertical spaces.  

LP360™ also has a tool to classify points using vector feature data 

[QCoherent, n.d.], and while it also does not use z values explicitly, height filters 

that use heights relative to ground elevation or any other base elevation can be 

applied before classification and so can exclude, for example, trees overhanging 

roads or water from the classification.  

Another example is the MARS® Explorer software from Merrick & Company, 

which has two raster-based classification tools, one that uses an ENVI 

classification data set and the other an RGB image. LiDAR points within a 

specified distance of a pixel with the specified characteristics are reclassified. As 

with the two examples above, z values are not considered [Merrick & Company, 

n.d.].  

These and other similar tools can greatly simplify and speed up the 

classification process if they are understood and used correctly but will achieve 
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low classification accuracy if proper care is not taken to ensure the disparate 

data sets, whether LiDAR and vector or LiDAR and raster, are matched in terms 

of feature content and alignment. In addition to the limitations noted, these 

tools may not be accessible to all users due to cost or other factors and therefore 

may not be a viable alternative to modifying the processes from Chapter 4 and 5. 

 6.2. ASSESSING DATA INTEGRATION 

Examples of approaches to fusion tend to focus on combining imagery to 

improve resolution (e.g., multispectral and panchromatic); introducing 

additional data to improve classification (e.g., LiDAR height, hyperspectral 

imagery, SAR data); or improving the quality of DEMs. Whatever terminology or 

techniques are used, the purpose is, as stated in Zhang [2010], "to improve the 

potential values and interpretation performances of the source data." In 

Warriner and Mandlburger [2005], a process is described for adding newer, 

higher resolution data (from LiDAR) to an existing database that includes a 

measure of quality, while the work of Papasaika and Baltsavias [2009] is based 

on the belief that local quality is an important factor in fusing data. Local quality 

is equally important when examining the results of fusion and assessing the 

quality of integration. 

In all cases of data integration, it is important to know how the products used 

in data integration have been generated or derived. Elevation data are generally 

available as points and the sampling distance and pattern greatly affect the end 

product in terms of accuracy and resolution. When working with LiDAR data, a 



141 

 

visual representation of the distribution of points, such as the LPD and MRD 

images described in Sections 3.1.2.1 and 3.1.2.2, can help identify areas where 

data are sparse and therefore the quality of products may be lower as compared 

to areas where the data are dense. 

Different land covers have different associated errors and limitations: for 

example, in areas with dense vegetation it is more difficult to find ground points, 

regardless of the technology used. A representation of land cover types in the 

area of interest as a land cover map, as described in Section 3.1.2.6, can be used 

to locate areas where special care or attention may be needed due to the 

presence of vegetation or other features and may also provide an explanation for 

any larger errors or differences between data from difference sources than were 

expected.  

Intensity images (Section 3.1.2.3) for LiDAR data can also be used to assess 

local quality as they can indicate possible range bias where substances reflecting 

a higher percentage of the laser pulse energy appear to be at higher elevations 

than substances reflecting a lower percentage of the laser pulse energy [Csanyi 

and Toth, 2007]. Another variation of land cover representation for LiDAR data, 

a ground-vegetation ratio representation as described in Section 3.1.2.4, can 

indicate how well the laser pulses were able to penetrate openings in the 

vegetation. Finally, a representation of the terrain slope can help the user 

identify areas where the vertical accuracy of LiDAR data may be most affected. 

When LiDAR data are to be integrated with other elevation data, such as 

existing DEMs, any systematic biases in z must be identified and eliminated 
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between the data sets. Depending on the nature of the data, raster-to-raster, 

raster-to-point and/or point-to-point comparisons can be made between 

elevation data sources to be integrated to determine if any systematic biases 

exist. Examples of each type of comparison can be found in Appendix C. 

Although horizontal alignment should also be verified for elevation data 

integration, if the integration is with a lower resolution DEM there may be 

insufficient detail to assess the horizontal alignment and make any adjustments.  

When sufficiently accurate horizontal data, e.g., accurate road centrelines or 

building footprints, are available, however, it is possible to check the alignment 

and make any necessary adjustments. The LiDAR data must have sufficiently 

high LPD to make a horizontal comparison meaningful: there are never any 

guarantees that a point will hit a building corner or that a road intersection can 

be precisely located, but higher LPD provides a greater level of detail and 

reduces the area of uncertainty. A pixel resolution no lower than 1 m should be 

used, as lower resolutions place increasing importance on the operator's 

interpretation of the location of objects. Different information (e.g., intensity or 

elevation) can be interpolated depending on which best matches the reference 

data. An example of using an intensity image and road centrelines to correct 

offsets in data sets can be found in Appendix C. 

 6.3. AUGMENTED GROUND EXTRACTION 

In the MSPC process described in Chapter 5, ground points must be 

accurately identified and classified before other features can be accurately 
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classified as the ground surface provides a base layer. The process described in 

Chapter 4, while successful, may require more processing time than is desired. 

Processing times will vary depending on processor speed and the data 

themselves, but as an example, each tile in the Odell Park study area (Section 

3.2.1.1) required approximately one- to one-and-a-half hours of processing time, 

depending on the voxel size used in the pre-classification voxel sorting stage. 

When the voxel size was 50 m (meaning length, width and height dimensions all 

50 m), the sorting stage took an hour or more to complete for each 1 km x 1 km 

tile, while applying the Point Neighbourhood ground detection technique to the 

tile, which is the technique most dependent on how spatially adjacent points are 

organized in a data file, took approximately five minutes. When the voxel size 

was 100 m, the time for the sorting stage was reduced to fifteen to twenty 

minutes but the Point Neighbourhood time increased to ten to fifteen minutes.  

As a whole, the four square kilometres of the Odell Park study area required 

four to six hours of processing time, which was acceptable for the purposes of 

testing the processes developed as part of this research but may be too long in 

another context. The first and most time-consuming stages of the GPI process 

(i.e., ground detection techniques) can be bypassed if a DEM or some other 

initial approximation of the ground surface is available, regardless of its source.  

The ground surface approximation is used in place of the output of the surface 

comparison technique in the modified GPI process. Large differences between 

the external DEM and the LiDAR ground surface are overcome during the final 

stage of the GPI process, namely the classification and refinement stage (Section 
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4.4): in areas where the differences are positive, indicating that the DEM is 

higher, lower LiDAR points will pull the reference surface down; in areas where 

the differences are negative, the minimum LiDAR points can provide an initial 

approximation that can be refined in by through iterations of the process.  

An initial approximation from another data source is particularly useful in 

areas of dense vegetation where it is more difficult to find ground. The CRB data 

sets (described in Section 3.2.2.1 and in Guo [2011]) were selected to illustrate 

this concept because little more than three months elapsed between the two 

surveys and so few differences were expected in terrain or building features. 

Significant differences were expected in areas of high vegetation, since the first 

data set was collected in April in leaf-off conditions and the second was collected 

in July in leaf-on conditions. The rasters in Figure 6.1 were generated by 

selecting the minimum and maximum z values within each cell. Although both 

data sets have high point densities, with NPD at 10.27 pts/m2, a 1 m resolution 

was chosen for these rasters to reduce vegetation artifacts in the minimum 

interpolations. The April interpolation (Figure 6.1a) includes far fewer non-

ground minimum elevations than the July interpolation (Figure 6.1c).  

The full GPI process described in Chapter 4 was applied to the April data and 

then the identified ground points were extracted and interpolated to a raster 

surface, shown in Figure 6.2a. However, instead of applying the entire process to 

the July data, the extracted April surface was used as the raster input for the July 

data set in the final GPI stage, the ground point classification and refinement 

process (Section 4.4). It was assumed that, because the data were collected as 
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part of the same project, they were accurately aligned both vertically and 

horizontally. The resulting extracted surface for the July data is shown in Figure 

6.2b. Obtaining the same results solely from the July data would have involved 

far more steps and taken significantly more time: each application of the Point 

Neighbourhood detection technique to the April data required an hour and a half 

to complete, but it did not need to be applied to the July data. 

 

Figure 6.1  

Interpolations of data from Christina River Basin, PA: a) April minimum values; 

b) April maximum values; c) July minimum values; d) July maximum values.  



146 

 

 
Figure 6.2 

Augmented ground extraction: a) ground surface extracted from leaf-off data 

and b) ground points extracted from leaf-on data using leaf-off surface. 

 6.4. WATER CLASSIFICATION 

No attempt was made to classify water points in the MSPC process described 

in Chapter 5. Classifying water points is a difficult task to automate because of 

inconsistencies in LiDAR results. Although point returns are not often generated 

from water bodies, gaps in the data coverage are not necessarily caused by water 

as there may be other materials present whose reflective and absorption 

properties similarly prevent sufficient energy from returning to the sensor. For 

example, black neoprene has a very low reflectivity at the wavelengths typically 

used in airborne LiDAR systems [Wehr and Lohr, 1999]. When returns are 

generated, depending on the angle of incidence of the laser and the water depth 

and clarity, the intensity values can range from near zero to the maximum value 

recorded. Additional information or prior knowledge of the location of water 

bodies is therefore needed to classify water points. Water classification can be 
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applied before the GPI process, if water bodies are clearly separated from all 

other features, or after the GPI process, if there may be objects that overhang or 

bisect the water body that may be filtered out using elevation criteria. 

If the body of water is flat, and its elevation is known, an elevation threshold 

can be used to classify any points generated from its surface; however, this 

approach will not work for water bodies that experience a change of elevation 

within the LiDAR scene or where multiple flat bodies of water, for example, 

ponds and swimming pools, occur at different elevations within the scene. The 

solution that was explored in this research was to use water polygons to define 

the area where water points may be found. Elevation filtering was used together 

with the polygons because of the likelihood of having other features, such as 

vegetation or bridges, overhanging the water. The pseudocode can be found in 

Appendix A, Section A.2.7. 

The LiDAR data set from Ottawa, obtained from GeoDigital International, 

was selected to illustrate water classification because of the particular challenge 

posed by the Rideau Canal that bisects the data set. The LiDAR data as provided 

were simply classified as "ground" and "non-ground," with water points from 

both the canal and the river included in the ground class, as shown in Figure 6.4. 

Because the non-ground points seemed to include a large number of points at 

ground level, the full GPI process was applied to the data set before water 

classification was attempted using water polygons obtained from Open Data 

Ottawa. 

A concern when using data from different sources is proper alignment. The 
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NPD for the Ottawa LiDAR data, first returns only, is 3.57 pts/m2 but from the 

LPD representation (Appendix B, Figure B.4) there are at least 5 pts/m2 

throughout most of the area, providing detailed information about buildings and 

other features. This facilitated an assessment and verification of the horizontal 

alignment of the water polygons with respect to the LiDAR data. 

 
Figure 6.3 

Elevation interpolation of Ottawa LiDAR data set as classified by GeoDigital: 

a) non-ground points and b) ground points.  

The scene includes Parliament Hill, which, as can be seen in the point cloud 

representations in Figure 5.6 and the slope image in Appendix B, Figure B.5, sits 

high above the water near the edge of a precipice. It also includes a series of 

locks from the Ottawa River up to the Rideau Canal. While an elevation 

threshold would have been sufficient to separate points in the Ottawa River from 

the ground class because they are at the global minimum elevation for the scene, 

a thresholding approach would not have been successful in classifying the points 

from the locks or the canal because they are at only locally minimum elevations. 
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It might be noted that the locks may or may not have contained water at the time 

the LiDAR data were collected, and so arguably points within the locks may or 

may not actually be from water. This is another example of the classification of a 

point being dependent on how one chooses to define the feature. Using the water 

polygons to classify points removes this ambiguity by defining clear boundaries 

for the water area, regardless of actual conditions. 

The water classification process implemented as part of this research required 

the use of analysis tools in QGIS to first clip the surface extracted from the GPI 

results to the water polygons before a custom algorithm developed by the author 

was applied to mark points as water. The surface clipping provided both 

boundaries for the water area and an elevation filter to ensure points marked as 

water were both planimetrically and vertically within the identified area. Figure 

6.4 illustrates water classification results for the Ottawa LiDAR data.  
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Figure 6.4 

Illustration of water classification using polygons, with road and building 

features overlaid on extracted and interpolated ground and water classes.  

 6.5. BUILDING FOOTPRINTS 

Although water levels may change seasonally or year-to-year, water body 

boundaries do not tend to change significantly over time, and can often be 

digitized from a raster interpolation of the LiDAR data if necessary for use in 

point classification. Other types of features will change over time, either 

individually or as groups of features and the data available from municipalities 

or other sources may not be current. For example, in the case of building 

footprints, assuming the LiDAR data are more current, the footprint data may 

(1) include buildings that were torn down between the time when the footprints 



151 

 

were generated and the time when the LiDAR data were collected; and (2) not 

include new buildings or building additions that were constructed in that 

interval.  

Building footprints therefore should not be used as the sole basis for building 

classification. They can, however, provide greater certainty regarding building 

classification and potentially be very helpful in finding smaller buildings 

(houses) on tree-lined streets as well as classifying points from buildings with 

irregular architectural features, such as domes, that might otherwise pose great 

challenges to any building classification process. The conjugate of using building 

footprints to classify data is using classified data to update building footprints. 

The building classification process described in Section 5.2 requires a building 

mask infused with elevations. As part of this research, a three-step process was 

developed to create the building mask needed for the MSPC process from 

footprints. Because the footprints are in vector format, which is more difficult to 

work with in code than raster or LAS formats, all three steps are completed in a 

software package such as QGIS or ArcGIS. The first step is to verify the 

horizontal alignment between the building data and the LiDAR data using well 

defined features present in both data sets and adjust the alignment, if necessary. 

The second step uses the mean minimum HAG values derived from the 

LiDAR data points within each building footprint as value attributes to convert 

the polygon footprints to a raster. This has the effect of assigning values near or 

below zero to cells where buildings represented in the footprints do not exist in 

the LiDAR data. Cells outside of building footprints are null-valued. The final 
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step is to create a raster where only the cells where the mean minimum HAG 

value was greater than zero are infused with elevation values from the LiDAR 

data and all other cells are null-valued, thereby eliminating buildings that no 

longer exist from the building mask. This approach cannot capture points from 

new buildings so in the modified MSPC process, preliminary classification (as 

described in Section 5.1) is performed before the building classification 

algorithm is applied using the new building mask.  

Figure 6.5 and 6.6 illustrate the LiDAR-only and building footprint 

classification processes. A tile from the 2011 Fredericton data that covers part of 

the UNB campus was used because it contains examples of buildings missing in 

one or the other data set. However, the LPD is primarily below 2 pts/m2, which 

is too low to accurately assess horizontal alignment and so greater uncertainty 

exists around the boundaries of the polygons. Figure 6.5 shows the two building 

masks: new buildings appear in the LiDAR-only mask (Figure 6.5a), while 

smaller buildings and those built into the ground appear in the LiDAR plus 

footprints mask (Figure 6.5b); examples of each case are circled. Figure 6.6 

illustrates the benefits of performing a preliminary classification: new buildings 

can be identified in the classification results because they are still classified as 

preliminary building points (examples circled).  
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Figure 6.5 

Elevation-infused building masks derived from a) LiDAR data and b) footprints. 

 
Figure 6.6 

Building classification results, using a) LiDAR data only and b) LiDAR data and 

building footprints. 

a) b) 

b) a) 
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 6.6. ROAD CENTRELINES 

In the MSPC process, road points are identified by applying an intensity value 

threshold. Since there are many factors that can affect the recorded intensity of a 

point return, this is not always a reliable approach. Using polylines from road 

network data instead can provide more reliable results. In addition, by using 

polyline data to classify road points, the results will not be affected by the 

presence of trees overhanging the road, which may cause broken lines when an 

intensity threshold is used (as described in Section 5.5).  

Road polylines need to be buffered before they can be used for classification 

in the modified MSPC process. Yet, the appropriate choice for a buffer width to 

capture the road surface on either side of the centerline is not necessarily any 

easier to determine than the appropriate choice for the intensity threshold. The 

road centreline data available from the City of Fredericton include a "street 

class" attribute, which may indicate road width, for example, for freeway road 

segments in contrast to residential road segments. Such information is not 

included in the Ottawa centreline data, however, and may not be provided by 

other municipalities, either.  

In the absence of more specific road width information, a buffer size is 

selected that will not exceed the actual road boundaries in most cases. Similarity 

measures can then be used to improve and refine the results. As part of this 

research, code was developed to use buffered road polylines to classify road 

points. Figure 6.7 contrasts the results of the two road identification approaches, 

namely intensity threshold (as described in Section 5.5) and road centreline 
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buffer, overlaid on an interpolation of intensity values to provide context. The 

same data used for the tests in Chapter 5 were used for this illustration. 

Since road points are only at ground level, the road classification criteria are 

applied only to points classified as "ground" in both the intensity threshold and 

centreline buffer methods with the intent of subdividing this class into "road 

surface," "low vegetation," and "other ground" (ground point not clearly 

belonging to either of the other two classes). It can be seen in the images that the 

intensity threshold method (Figure 6.7a, all three classes included, and 6.7c, 

road surface points only) classifies more points as road surface, as opposed to 

low vegetation or other ground, while the road centreline buffer method (Figure 

6.7b and 6.7d) produces smoother results, in terms of compact and connected 

road segments.  

It can also be seen that, compared to the intensity interpolation, if the data 

sets are not carefully registered and if an appropriate buffer is not chosen, the 

road centreline buffer may miss classifying true road points. As was the case 

with the tile used to test building footprints, LPD for this data set was too low to 

accurately assess the horizontal alignment of the polyline data with respect to 

the LiDAR data.  

Although the road centerline buffer method classifies more points along 

actual roads, it does not classify any points in other paved areas such as parking 

lots. This affects classification of vehicles. The vehicle classification approach 

described in Section 5.5 defined vehicle points as being within the road mask 

(derived from points classified as "road surface") and 0.3 to 2 m above ground.  
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Figure 6.7 

Example of road surface classification results: a) using intensity threshold value 

of 100, all ground classes; b) using a 3 m road centreline buffer, all ground 

classes; c) using intensity threshold value of 100, road surface only; and d) using 

a 3 m road centreline buffer, road surface only.  

Using the road centreline buffer approach to classify road surface points 

largely precludes vehicle point classification because parking lots are not 

included in the road surface class. To overcome these limitations, and also 

separate roads from other ground types such as parking lots, trails, and exposed 

a) b) 
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soil, a combined approach may be used that first applies the intensity threshold 

method to all points classified as ground and then applies the road centreline 

buffer method only to points already classified as road surface. Developing such 

an approach is one of the recommendations for further research. 

Other polyline data that may be available include trails and streams. Figure 

6.8 illustrates how applying a buffer to these data might help to further refine 

classification of the ground surface. The same data used to illustrate the 

modified building classification process was used here because it is an area 

where the trails and streams may not otherwise be identifiable in the LiDAR 

data. Each data source and feature type will have its own characteristics that 

may simplify or complicate point classification. Further research is required to 

determine if and how such data may be used. 

 
Figure 6.8 

Polyline buffers that could be used to classify streams (3 m), roads (3 m) and 

trails (1 m) overlaid on a) classification results and b) elevation interpolation. 
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 6.7. MULTI-TEMPORAL DATA 

In addition to other data types, newer LiDAR data sets may be available in 

areas previously surveyed, as is the case for downtown Fredericton and UNB 

campus where LiDAR surveys were conducted in 2006, 2007, and 2011. If the 

older data are already classified, they can be used to simplify classification of 

new data as described in Section 6.2. Multi-temporal data can also be used to 

detect changes in terrain or features.  

The CRB data used to illustrate augmented ground extraction are examples of 

multi-temporal LiDAR data, but the short interval between collection of the two 

data sets limits their utility in detecting change primarily to seasonal leaf-

on/leaf-off variations. Figure 6.9 is a difference image generated from the two 

CRB data sets, with the interpolation of maximum values in the April data 

subtracted from the interpolation of maximum values in the July data. As 

expected, most of the differences are positive (July values higher), representing 

vegetation growth. Where there are large negative differences (April values 

higher), high vegetation (trees, hedges) was removed or trimmed between April 

and July. Smaller negative differences may be artifacts of the differences in data 

collection specifications and of the interpolation method.  
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Figure 6.9 

Elevation differences, April data subtracted from July data. 

The small differences may also be caused by a light snow cover. Snow is a 

highly reflective material for LiDAR, higher than low vegetation (grass) and in 

the April data intensity values from the ground are often more than 50 units 

higher than the corresponding July data and up to 10 cm higher. While the 

difference in elevation is too small to be conclusive, in comparison the intensity 

values from rooftops and roads are mostly less than 20 units higher in the April 

data, which suggests that a more reflective material was present on the ground 

in April than in July.  
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Where LiDAR data are collected over the same area at time intervals of a year 

or more, the possibility arises of using these data to detect medium to large 

changes in the environment: destruction or construction of buildings and growth 

or removal of high vegetation. The former has applications in disaster response, 

facilitating identification of collapsed buildings, while the latter has applications 

in forestry, aiding in tree volume calculations, or for general monitoring of green 

spaces.  

This potential is illustrated in Figure 6.10 and 6.11 using the Fredericton 

LiDAR data sets collected in 2006 and 2011. The 2006 survey only covered 

downtown Fredericton, where the terrain is mostly flat. Both data sets have leaf-

on conditions, although the 2006 data were collected in late May and so the 

vegetation may not be as full as in the 2011 data, which are believed to have been 

collected in the summer months (exact dates unknown). The figures in Section 

6.3 show examples of changes in building features between building footprints 

and buildings detected in the LiDAR data. In Figure 6.10, differences are 

noticeable in the elevation interpolations of the two point clouds where, for 

example, small buildings have been replaced by a larger building (1); a building 

has been enlarged and high vegetation removed (2); small features and a large 

tree have been removed (3); and generally trees have grown taller and fuller.  
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Figure 6.10 

a) Sample of 2006 LiDAR data. b) Sample of 2011 data. Some notable 

differences, such as building construction and destruction and tree removal, are 

circled.  

1 

1 

2 

2 

3 

3 
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Figure 6.11 

Elevation differences, 2006 data subtracted from 2011 data. Circled areas 

correspond to circled areas in Figure 6.10. 

Full classification and comparison of these data sets would provide a 

comprehensive study of the changes in Fredericton over the five year period. Yet, 

such a comparison is not straightforward: the 2006 data are in the UTM 

coordinate system, zone 19 N, and use ellipsoidal heights; the 2011 data are in 

the New Brunswick stereographic coordinate system and use orthometric 

m 
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heights. Tools are available to transform data between coordinate systems but 

extra care must still be taken to ensure the data sets are accurately aligned 

horizontally.  

A greater difficulty with the 2006 data is that they do not appear to be true 

ellipsoidal heights: after adding the appropriate value for geoid-ellipsoid 

separation, which is -22.37 m in this study area, there is still a difference of 

unknown cause amounting to approximately -1.3 m between the surfaces. To 

generate the image in Figure 6.11, which is a difference image between the 2006 

and the 2011 data, the 2006 data were subtracted from the 2011 data and then a 

constant value of 23.67 was subtracted to account for both the geoid-ellipsoid 

separation and the unknown bias. In these unbiased results, large negative 

differences (2006 values higher) correspond to building deconstruction and high 

vegetation removal; large positive differences (2011 values higher) correspond to 

building construction and vegetation growth. 

 6.8. SUMMARY OF INTEGRATED CLASSIFICATION 

In this chapter, different approaches were explored for modifying the 

classification GPI and MSPC processes developed by the author and described in 

Chapters 4 and 5, to make use of data from other sources. In some cases, such as 

with water bodies, additional data are necessary because the features to be 

classified do not have sufficiently distinguishable point characteristics and 

therefore cannot be reliably classified solely using LiDAR data. In other cases, 

such as with augmented ground classification, additional data can significantly 
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reduce processing time.  

Additional data may also be complementary to the LiDAR data, such as in the 

case of road surface classification where neither LiDAR intensity nor road 

centreline buffers provide truly satisfactory results on their own but combined 

could possibly offer both visually and numerically accurate results. In all cases, 

when using data from multiple sources for classification or for comparison, the 

horizontal and vertical alignment of the data sets must be verified and adjusted 

as necessary to ensure the classification and analysis results are as accurate as 

possible. 

Where multi-temporal data exist, there is great potential for using them to 

detect changes over time. The data may be solely LiDAR data sets, collected 

months or years apart, or disparate data types (LiDAR and vector, LiDAR and 

raster). This potential can be seen both in the test results for the building 

classification modification for building footprints and the assessment of the 

multi-temporal Fredericton LiDAR data, and even in the data sample from the 

Christina River Basin. More research is needed to determine how change 

detection can be automated. The following chapter summarizes the author's 

achievements and proposes areas for future research. 
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"One never notices what has been done; one 

can only see what remains to be done." 

~ Marie Curie 

 CHAPTER 7  

CONCLUSION AND RECOMMENDATIONS 

LiDAR is a tool whose importance in remote sensing has been growing since 

the mid-1990s. In a discussion of current capabilities and community needs for 

working with LiDAR, Arrowsmith et al. [2008] identify the increase in spatial 

resolution, and the corresponding ability to analyze terrain features at higher 

scales, as the primary benefit. Applications of LiDAR elevation data range from 

the simple (derivation of elevation models, e.g., Kobler et al.  [2007]) to the 

complex (e.g., georegistration of high resolution satellite imagery [Oh et al., 

2012]), and include soil moisture mapping (e.g., Southee et al. [2012]), 

archaeology (e.g, Chase et al. [2011]), and delineation of areas at risk from 

flooding and sea-level rise (e.g., Webster et al. [2004]; Gesch [2009]). LiDAR 

point cloud data have also been used for environmental quality assessment (e.g., 

Garcia-Gutierrez et al. [2011]), urban vegetation detection (e.g., [Höfle et al., 

2012]), building change detection (e.g., Champion et al. [2009]), and in 

numerous other ways.  

Yet, non-expert LiDAR users' knowledge and use of the data may be limited 

by several factors including differing product standards and the availability of 

suitable processing software. NRCan recently developed a Canadian LiDAR 

acquisition guidelines document [Natural Resources Canada, 2014] to present 

standardized criteria for data acquisition and derived products and encourage 
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data ownership models that permit data sharing but these guidelines cannot be 

applied retroactively to all existing data sets because some of the required 

information may be missing or the data may not have been collected in a manner 

that is compatible with the guidelines. Existing commercial software packages 

for working with LiDAR data can be cost-prohibitive while free software is often 

limited to viewers or has been developed for a specific purpose, and the software 

may require extensive training and familiarity with the tools for users to achieve 

their desired results. 

Making reference to the NRCan guidelines, this thesis addressed the 

challenges non-expert LiDAR users may have when working with the data by 

developing a semi-automated, multi-stage point classification framework that 

does not require expert user input to classify individual points within the point 

cloud. The stated purposes for developing this framework were: to create a 

method for processing and interpreting LiDAR data that is simple to use; to 

create a point classification process that will classify LiDAR data to a desired 

level of completeness; and to create a process that can incorporate additional 

data when they are available and can augment single-source LiDAR data. These 

purposes were met by achieving the following objectives: 

1. Develop a ground point identification process that achieves 95% 

point classification accuracy. 

2. Develop a semi-automated multi-stage point classification process 

to classify points as "building/structure", "medium vegetation" and "high 

vegetation", and separate ground points into "low vegetation", "road (or 
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paved) surface", and "other ground". High point classification accuracy for all 

classes should be visually verifiable and, where adequate truth exists for point 

classification, numerically as 90% correct or better. 

3. Propose and develop measures to assess the quality of data 

integration results. 

4. Develop, implement, and test strategies for integrating disparate 

data sets into the LiDAR point classification process. 

With the exception of data visualization and the application of a few basic GIS 

functions, particularly vector data manipulation, all of the work carried out as 

part of this research made use of code developed by the author in the C 

programming language. The core functionality of the developed code is included 

as pseudocode in Appendix A. The full code can be found in a repository on 

Bitbucket11 at https://bitbucket.org/kamolins/thesiscode.The following sections 

summarize the contributions made by this research and outline areas for future 

research. 

 7.1. GROUND POINT IDENTIFICATION 

The most significant contribution of this research is the development and 

implementation of a ground point identification (GPI) process that requires little 

or no operator input to classify ground points within a LiDAR point cloud. The 

GPI process consists of three stages, all of which are implemented through code 

                                                           
11

 Bitbucket is a code management and collaboration service. Cloud hosting is free for 
individuals. https://bitbucket.org/ 

https://bitbucket.org/kamolins/thesiscode
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developed by the author. In the first stage, four different ground detection 

techniques, two point-based and two raster-based, are applied to the LiDAR 

point cloud to identify potential ground points. In the second stage, the outputs 

from the four ground detection techniques are compared to obtain a ground 

surface representation and in the final stage, the ground surface is used to 

classify points as "ground."  

None of the ground detection techniques require any expert knowledge to 

run. Input parameters may be set manually but can also be automated. Tests of 

the GPI process were conducted on a set of 50 m x 50 m sample areas, 

representing approximately 1.26% of the total number of points in the 2011 

Fredericton test data and a variety of conditions, including under dense forest 

cover on hilly terrain. The overall accuracy for the GPI process with these 

samples was 96.78% accuracy as compared to results produced using the 

LAStools™ lasground tool.  

The lasground tool requires the user to be familiar both with the data and 

with the parameters of the tool, which means it is not an appropriate tool for 

non-expert users. It was used to check the results of the GPI process because 

none of the LiDAR point clouds that were obtained for testing were classified to 

the degree needed to conduct a rigorous accuracy assessment. Visual inspection 

of the point data as provided revealed inconsistencies and what could be deemed 

incompleteness in the ground point classification, with many points at ground 

level not classified as ground. The data therefore were reprocessed to provide a 

ground reference at the point level. 
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Sample areas where the accuracy of the GPI process was lower than the 

average for the tested samples were found to contain a significant percentage of 

high vegetation points, conditions under which the LAStools™ method also 

seemed to perform relatively poorly. With a manual classification of these 

samples to correct any remaining errors in the ground reference, the author 

believes the ground point classification accuracy would have been found to be 

higher than 97%. The test data were all of mixed urban scenes with varying 

terrain and areas of high vegetation. While this did provide a variety of 

conditions in which to test the data, the GPI process may not perform as well in 

other conditions, for example scenes entirely covered in dense vegetation. 

 7.2. CLASSIFICATION OF SINGLE LIDAR DATA SETS 

The second most important contribution of this research is the development 

of a multi-stage point classification (MSPC) process that, like the GPI process, 

does not require the user to have any expert knowledge. There is only one input 

parameter to set, the intensity threshold, and it is chosen arbitrarily within an 

identified range. The stages of the MSPC process, after the ground surface is 

identified, are: preliminary classification, to separate potential building points 

from potential vegetation points; building point classification; identification of 

areas of high uncertainty; high vegetation classification; separation of low 

vegetation and roads or other paved surfaces; and identification of vehicles and 

other objects above road surfaces. 

The NRCan guidelines define "low" and "medium" vegetation based strictly 
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on height above ground; however, the low vegetation threshold is the same as 

the FVA, 0.3 m, making it inseparable from ground. Therefore, in the MSPC 

process, the low vegetation classification was used to distinguish unpaved from 

paved or road surfaces, which is a class that is not defined in the NRCan 

guidelines but that is defined in the LAS 1.4 specification. The medium 

vegetation classification was used in the MSPC process to identify vegetation 

points that were a distance of between 1 m and 2 m from other vegetation points.  

"Vehicles" and "other objects above the road surface" are new classifications 

defined by the author, as being 0.3 m to 2 m above the road surface and more 

than 2 m above the road surface, respectively. Vehicles do not belong to any of 

the standard classes nor do other objects overhanging roads such as power lines 

or traffic signals, yet these are common features in urban areas and being able to 

locate them in the point cloud provides a more complete representation of the 

urban space. 

A numerical assessment of the MSPC process only up to the building 

classification stage was conducted and only with respect to a very small 

percentage of total points in the test area due to the unavailability of a "true" 

classification to reference. A small set of points were manually classified for 

assessment purposes. The assessment revealed that the method developed by 

the author achieved an overall accuracy of 93.35% – marginally better than the 

LAStools™ accuracy of 92.94%, though likely not statistically significantly 

better. Nevertheless, visual inspection revealed that the classification process 

developed by the author does perform very well and in several instances was 
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able to classify building points where LAStools™ had failed to do so. 

The stages of the MSPC process favour errors of omission over errors of 

commission. This can result in a significant number of points remaining 

unclassified, up to 25% or more in testing. This may be considered a severe 

limitation of the process. However, each stage can be repeated with manually 

modified parameters to try to reduce the percent of unclassified points. 

Alternatively, if data are available from other sources, these can be introduced 

into the MSPC process to add additional spatial context for the point 

classification.  

 7.3. CLASSIFICATION OF LIDAR DATA USING MULTIPLE 

DATA SOURCES 

Although a detailed point classification can be achieved with the MSPC 

process using only a single LiDAR data set, the process can be simplified, 

refined, and/or improved using data from other sources. The final contribution 

of the research is an investigation of the integrating data from sources other than 

the target LiDAR point cloud into the MSPC process.  

Many of the measures used in the GPI and MSPC processes, such as local 

point density, intensity, and ground-vegetation ratio also provide indications of 

the local quality of the LiDAR data and by extension the quality of integration 

results. In particular, a low point density means feature boundaries may not be 

clearly identifiable and therefore data from other sources may not be properly 
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horizontally aligned to the LiDAR data.  

When the additional data include elevation information, proper vertical 

alignment is also important. While large differences between two elevation data 

sources may be expected in areas of steep terrain slope and where the ground is 

obscured by dense vegetation, any systematic elevation biases need to be 

identified through careful comparison of the data.  

The GPI process that was developed by the author, while effective, may be 

time-consuming. A ground surface derived from other data, for example, from a 

provincial DTM or an earlier LiDAR point cloud, can be used as a reference 

ground surface to speed up the process. The best results will be achieved when 

the reference ground surface has similar properties to the LiDAR point cloud 

from which ground is being extracted, particularly a similar vertical accuracy, yet 

even a ground surface with large differences can be used as a reference ground if 

steps are taken to account for these differences. 

The MSPC process developed by the author does not classify water points. 

This is because of the unpredictability of returns from water. However, if 

polygon data or land cover maps that delineate the boundaries of water bodies, 

derived from, for example, satellite imagery, are available, these data can be 

applied to the results of the GPI process to identify points that are within water 

bodies and are near the water surface elevation. 

The building classification stage can potentially be simplified by deriving the 

elevation-infused building mask from existing building footprint polygons; 

however, since the building polygons may not fully correspond to the buildings 
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captured in the point cloud, they should not be the sole means used to locate 

building points.  

To achieve the best results, the horizontal alignment between the polygons 

and the point cloud should be carefully assessed and adjusted and steps should 

be taken when converting the polygons into a building mask to eliminate 

building shapes from the mask that do not exist in the point cloud. Building 

classification should always be performed after the preliminary classification 

stage of the MSPC process, as this will facilitate locating buildings that are in the 

point cloud but are not in the building polygons. If the LiDAR data are newer, 

these will be buildings that have been constructed since the polygons were 

created. 

Similarly, road centrelines can be used in the road and low vegetation 

separation stage. However, if a buffer around the centrelines is used to classify 

roads instead of an intensity threshold, the resulting low vegetation class will not 

be entirely vegetation as it will also include parking lots, private lanes, and any 

other paved surfaces not part of the road network. An approach combining both 

the centrelines and the intensity threshold is discussed below as a 

recommendation for future research. 

Finally, while not strictly classification, integrated multi-temporal LiDAR data 

can be used in change detection. Once adjustments have been made to correct 

any vertical biases or horizontal misalignments, and remaining differences in 

digital surface models (DSMs) derived from two LiDAR point clouds from the 

same area surveyed at different times will be an indication of changes that 
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occurred in the time between the surveys. Changes may include growth or 

pruning of vegetation; removal of vegetation; and construction or destruction of 

buildings.  

 7.4. RECOMMENDATIONS FOR FUTURE WORK 

Although the objectives for the thesis were achieved, no single work can fully 

explore every possible aspect of the topic being studied. Recommendations for 

future work include: 

• Making more full use of voxels. Using voxels to order LiDAR data may be 

an effective method of overcoming the unpredictable arrangement of points in 

a LiDAR data file. The Pixel Connectedness ground extraction method only 

used voxels to determine and confirm the lowest elevation in the area and to 

obtain seed pixels. The possibility of extending pixel connectedness to the 

layers immediately above and below a seed pixel should be explored, as a 

potential alternative to requiring slope thresholds. 

• A point-based comparison technique for ground extraction. The raster-

based comparison technique is effective, yet it is subject to the limitations of 

raster interpolations, namely a loss of information. A point-based comparison 

could better capture small, local variations in the terrain. The Point 

Neighbourhood ground extraction method already assigns probabilities to 

ground points; if the other methods were modified to also assign 

probabilities, a point-based comparison could calculate an overall certainty 

value that a point is ground. 



175 

 

• Explore different equations for the Point Neighbourhood ground extraction 

method. The equations used were selected to assign specific probabilities to 

points in an ellipsoidal neighbourhood determined by the weights for 

elevation and planimetric distance from a central point. These equations were 

found to be effective, yet a more thorough analysis of terrain versus feature 

relationships may help determine more appropriate equations or parameters. 

• Develop a road classification process that utilizes both road centrelines and 

intensity threshold. In Chapter 6, the results of using only road centreline 

buffers were compared to the results of using only an intensity threshold. 

Both approaches have their strengths and weaknesses; combining the two 

could produce a better result overall. One approach would be to first apply the 

road centreline buffer method and use the results to determine an appropriate 

intensity threshold. Another approach would be to first apply the intensity 

threshold method and then the road centreline buffer. Either approach would 

separate roads from other ground types such as parking lots, trails, and 

exposed soil, as well as from low vegetation. 

• Improve methods for refining classification results. The process developed 

by the author was designed to favour errors of omission over errors of 

commission. This approach leaves a significant percentage of points labelled 

as "unclassified" or "uncertain" (around 25% for one tested tile). Since the 

points that are classified should consequently be classified with a high level of 

certainty, neighbouring points that have similar properties (elevation, 

intensity, not proximal to other classes) should have a similarly high level of 
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certainty of belonging to the same class. Some methods to refine classification 

results were developed and implemented as part of the ground extraction and 

overall classification process, but these could be further developed.  

• Explore the implications of multi-temporal LiDAR data. With the growing 

prevalence of airborne LiDAR, more data are becoming available and new 

data are becoming available in areas previously covered by LiDAR surveys, 

creating the possibility of high resolution, high accuracy monitoring of 

changes over time. In particular, monitoring of changes that are more difficult 

to observe and quantify, such as vegetation growth and pruning, may be of 

interest. 

 

The importance of LiDAR as a tool for gathering elevation and other 

information has been growing since the mid-1990s. Making reference to the 

Canadian LiDAR acquisition guidelines document [Natural Resources Canada, 

2014], this thesis addressed the challenges non-expert LiDAR users may have 

when working with LiDAR data by developing a semi-automated, multi-stage 

point classification framework that does not require expert user input to classify 

individual points within the point cloud.   
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 A.1. GROUND POINT IDENTIFICATION PROCESS 

This section contains key code developed to implement the GPI process 

described in Chapter 4. Common functions, such as opening files, allocating 

memory, and reading data from files, have been omitted due to space 

considerations and the code has been rendered as pseudocode for readability. 

Full code files can be found at https://bitbucket.org/kamolins/thesiscode. 

A.1.1. Pixel Connectedness 

Starts at lowest value pixels, as specified by a set of ground seed pixels, and 

applies an angle threshold to add connected pixels to the ground surface. 

Input 

 in_grid: initial potential ground surface, generated from lowest point 

in each cell (elevation raster) 

 seed_grid: set of ground seed pixels (raster where seed pixel cells have 

value 1 and all other cells have value 0); 

 angle: slope threshold (scalar, in degrees) 

Output out_grid: ground surface (elevation raster) 

Intermediate data ref_grid: used for holding and transferring values  

// Step 1: Initialize intermediate grid using seed 

pixel raster 

for each (row i, col j) 

 if (seed_grid[i][j] == 1)   

  ref_grid[i][j] = 1 

 else  

  ref_grid[i][j] = no data 

 

// Step 2: Transfer elevations for seed pixels to 

https://bitbucket.org/kamolins/thesiscode
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output surface 

for each (row i, col j) 

 if (ref_grid[i][j] == 1)  

  out_grid[i][j] = in_grid[i][j] 

 else 

  out_grid[i][j] = no data 

 

// Step 3: Iterative process. Check all neighbouring 

(8-connected) pixels to every seed pixel for 

connected ground. Mark connected pixels and 

transfer elevations to output surface. Repeat 

until no new pixels are marked. 

mark = 1 

while (mark > 0) 

 mark = 0 // reset counter 

 for each (row i, col j) 

  if (ref_grid[i][j] == 1) 

   for each (-1  <= k <=1, -1 <= l <= 1) 

    xy_dist = cellsize * √(k2 + l2) 
    z_dist = in_grid[i+k][j+l] – in_grid[i][j] 

 

    if (z_dist/xy_dist < angle) 

     ref_grid[i+k][j+l] = 1  

     out_grid[i+k][j+l] = in_grid[i+k][j+l]  

     mark++ // increment counter 

 

   // clear cells marked in previous iteration 

   ref_grid[i][j] = 0  

A.1.2. Point Neighbourhood 

Starts with three ground seed pixels selected by percentile from start of point 

file sorted by elevation and assigns probability of other points being ground 

based on Euclidean distance. 

Input 

 in_pts: point cloud sorted into voxel bins (LAS file) 

 per1, per2, per3: percentiles from start of point file at which to locate 

ground seed points (scalars)  
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 eq: type of equation (See Section 4.2.2) 

Output out_pts: point cloud with added probabilities (LAS file) 

Intermediate data seed_pts: used for holding probable ground points 

// Step 1: Locate ground seed points  

for i in (1,2,3)  

 fseek(in_pts, peri * size(point) + size(header)) 

 pi = fread(point) 

 while (pi not last return) 

  pi = fread(point) 

 pi.user_data = 100 

 fwrite(seed_pts, pi) 

 

refX = p1.x 

refY = p1.y 

refZ = p1.z 

count = 3  

  

// Step 2: First iteration, using p1 as reference to 

calculate initial probability for each last 

return point in file. Keep any points with 

probabilities greater than 50% as new seed 

points. Mark non-last return points as such so 

can be skipped later. 

for each (p in in_pts) 

 if (p is last return) 

  delta_d = √((p.x – refX)2 + (p.y – refY)2) 

  delta_z = | p.z – refZ | 
   

  if(eq is Eq. 4.2)  

   prob = 100 - 25 * (delta_z + delta_d/2)
2
 

    

  if(eq is Eq. 4.3 

   if((delta_d/3 + delta_z )<= 2) 

    prob = (5.0*(delta_z + delta_d/3)-10.0)
2 

   else 

    prob = 0 // tamp out rising quad 

    

  if(eq is Eq. 4.1)  

   prob = 100 - 50 * (delta_z + delta_d/2) 

 

  p.user_data = prob 

   

  if(prob >= 50 ){  
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   fwrite(seed_pts,p) 

   count++ 

    

 else 

  p.user_data = 'm'; // mark it as multi 

   

// Step 3: Iterative process. Test points in 2 m 

spherical neighbourhood of remaining seed points, 

including those added in first iteration. Keep 

any points with probabilities greater than 50% as 

new seed points.  

i = 2 

while(i < count){ 

 refX = seed_pts[i].x 

 refY = seed_pts[i].y 

 refZ = seed_pts[i].z 

 

 for each (p in in_pts) 

  if (p within 2 m neighbourhood of seed_pts[i] 

and p.point_data != 'm') 

   delta_d = √((p.x – refX)2 + (p.y – refY)2) 

   delta_z = | p.z – refZ | 
   

   if(eq is Eq. 4.2)  

    prob = 100 - 25 * (delta_z + delta_d/2)
2
 

    

   if(eq is Eq. 4.3 

    if((delta_d/3 + delta_z )<= 2) 

     prob = (5.0*(delta_z + delta_d/3)-10.0)
2 

    else 

     prob = 0 

    

   if(eq is Eq. 4.1)  

    prob = 100 - 50 * (delta_z + delta_d/2) 

 

   if(prob > p.user_data) 

     p.user_data = prob  

   

   if(prob >= 50)  

    // (additional logic is used in actual code 

to avoid duplicate seed points) 

    fwrite(seed_pts,p) 

    count++ 

 

for each (p in in_pts) 

 fwrite(p, out_pts) 
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A.1.3. Wavelet Detail Mask 

Part 1: Applies a 5x5 B3 cubic spline wavelet filter to interpolated elevation 

raster to generate an approximation image and a detail image containing the 

information removed from the original image. 

Input 

 in_grid: initial potential ground surface, generated from lowest point 

in each cell (elevation raster) 

 res: dyadic power setting the effective resolution of the approximation 

with respect to the resolution of the original (scalar) 

Output  

 out_grid_A: approximation of input surface (raster) 

 out_grid_D: details removed from the input surface (raster) 

Intermediate data a_sum: accumulated sum as filter applied  

filter[5][5] = { 

 {1,4,6,4,1}, 

 {4,16,24,16,4}, 

 {6,24,36,24,6},  

 {4,16,24,16,4}, 

 {1,4,6,4,1} 

} 

divisor = 256.0 

  

// Apply filter 

for each (row i, col j) 

 for each (1  <= k <=5, 1 <= l <= 5) 

  a_sum += in_grid[i+res*(k-2)][j+res*(l-

2)]*filter[k][l] 

  

 out_grid_A[i][j] = a_sum / divisor 

 out_grid_D[i][j] = in_grid[i][j] – 

out_grid_A[i][j] 
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Part 2: Applies a mask created from the detail image to the original potential 

ground surface. Mask is based on detail values: where the detail value is greater 

than a set threshold, the potential ground surface will be masked. 

Input 

 in_grid: initial potential ground surface, generated from lowest point 

in each cell (elevation raster) 

 mask_grid: either the wavelet detail image along with a threshold or 

the equivalent image generated, e.g., in another software package, 

where 1 represents a masked cell and 0 represents an unmasked cell. 

Output out_grid: ground surface (elevation raster) 

for each (row i, col j) 

 if (mask_grid[i][j] == 1) 

  out_grid[i][j] = no_data 

 else 

  out_grid[i][j] = in_grid[i][j] 

A.1.4. Preliminary Ground 

Uses a reference ground surface, determined through other means (e.g., by 

applying the Pixel Connectedness method) to classify points as ground based on 

the height difference from the reference ground surface. The allowable height 

difference is 1 m, to account for potentially poor accuracy for the reference 

surface, and so this is a preliminary classification only.  

The full code includes options to reset all point classification to 0; to check 

points previously classified as ground against the reference surface; to split 

points above the reference surface into two classes (0 to 0.3 m and 0.3 to 1 m 

above) and mark points between 1 and 2 m below the reference surface; and 
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allow points up to 10 m below the reference surface to pull it down. 

Input 

 in_pts: point cloud (LAS file) 

 ref_grid: reference ground surface (elevation raster) 

Output out_pts: point cloud with ground classified (LAS file; ground is class 

2) 

Intermediate data hag: height above ground value 

for each (p in in_pts) 

 if (p is last return) 

  hag = p.z – ref_grid[p.x, p.y] 

  if (|hag| <= 1) 

   p.class = 2 

 fwrite(p, out_pts) 

A.1.5. Surface comparison technique 

Compares values from six surfaces to find likely ground surface values. For 

cells where three or more surfaces have data, the standard deviation of the 

values is calculated. If the standard deviation is less than 0.6, the ground surface 

value for the cell is calculated as the average of the input values. 

Input in_grid[n], n from 1 to 6: ground surfaces to compare (raster). Output 

from point-based methods must be interpolated to grid at same resolution as 

other surfaces. 

Output 

 count_grid: counts of how many input surfaces have data in each cell 

(raster) 

 sd_grid: standard deviation for input surface values (raster) 
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 avg_grid: average of input surface values,  output ground surface 

(elevation raster) 

Intermediate data sum_grid: sum of values from input surfaces 

// Step 1: Count the number of input surfaces that 

have data in each cell 

for each (row i, col j) 

 for (n from 1 to 6) 

  if(in_grid[n][i][j] != no data) 

   count_grid[i][j]++ 

   sum_grid[i][j] += in_grid[n][i][j] 

 

// Step 2: Calculate average and standard deviation 

 avg_grid[i][j] = sum_grid[i][j]/count_grid[i][j] 

 for (n from 1 to 6) 

  sd_grid[i][j] += (in_grid[n][i][j] – 

avg_grid[i][j])
2
/count_grid[i][j] 

  

// Step 3: Apply criteria 

 if (count_grid[i][j] < 3 or st_dev[i][j] >= 0.6) 

  avg_grid[i][j] = no data 

 

 A.2. MULTI-STAGE POINT CLASSIFICATION 

This section contains key code developed to implement the MSPC process 

described in Chapter 5, plus water classification described in Chapter 6. 

Common functions, such as opening files, allocating memory, and reading data 

from files, have been omitted due to space considerations and the code has been 

rendered as pseudo-code for readability. Full code files can be found at 

https://bitbucket.org/kamolins/thesiscode. 

 

https://bitbucket.org/kamolins/thesiscode
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Table A.1 
Classification Codes used in MSPC 

Name Code Stage 

Ground 2 0 

Potential medium vegetation 14 1 

Potential high vegetation 15 1 

Potential building 16 1 

Building 6 2 

Non-building within building area  

(temporary, for stage 2 only) 

13 2 

Non-ground within area of uncertainty 0 3 

Mixed neighbourhood (not classified) 1 4 

High vegetation 5 4 

Medium vegetation 4 4 

Low vegetation 3 5 

Road surface 11 5 

Vehicle 10 6 

Other object above road 13 6 

Water 9 - 

 

A.2.1. Preliminary Classification 

Uses a mask derived using TRI or MMM and a DEM derived from points 

classified as ground to classify points as potential medium or high vegetation 

and as potential building.  

To create the TRI mask, first TRI is calculated for a 1 m resolution DSM. A 

threshold is then applied, to mark pixels with TRI values below 5 as flat and all 

other pixels as rough. The results are cleaned to remove isolated points, and 

finally a count is made for each pixel of how many surrounding pixels are flat.  

The MMM mask is a combination of MRD, MaxMin, and mHAG. First, cells 

with MRD 0, MaxMin less than 1, and mHAG greater than one are marked. As 
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for the TRI mask, the results are cleaned to remove isolated points, then any 

marked cells not touching any unmarked cells are assigned a value of 2.  

In both cases, the steps before cleaning and creating the final mask were 

performed using QGIS but could be implemented in code. 

Input 

 in_pts: point cloud with ground classified (LAS file) 

 mask_grid: integer values derived from TRI or MMM. A value of 0 

indicates a rough area. In the MMM mask, a value of 2 indicates a flat 

area above ground. In the TRI mask, the value is the number of eight 

connected pixels that are flat. 

 mode: type of mask. Either TRI or MMM. 

 ground_grid: surface interpolated from ground points  (raster) 

Output out_pts: point cloud with added preliminary classifications (LAS file; 

ground is class 2; preliminary classifications as below) 

for each (p in in_pts) 

 // skip if classified as ground or noise 

 

 row = floor(p.y – in_pts.y_min)/cellsize 

 col = floor(p.x – in_pts.x_min)/cellsize 

 hag = p.z – ground_grid[row][col] 

 

 if (mask_grid[row][col] == 0) 

  if (0.3 <= hag < 2) 

   p.class = 14 // temporary class for medium 

vegetion 

  if (hag >= 2) 

   p.class = 15 // temporary class for high 

vegetation 

  

 else 

  if (mode is MMM) 

   if (hag > 2 and mask_grid[row][col] == 2) 
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    p.class = 16 // temporary class for 

potential building 

  if (mode is TRI) 

   if (hag > 2 and mask_grid[row][col] > 6 and p 

is last return) 

    p.class = 16 

 

 fwrite(p, out_pts)  

A.2.2. Building Classification 

Classifies points as building based on a mask infused with elevation values, 

derived from points identified as potential building points or from building 

footprints. 

Input 

 in_pts: point cloud with ground, and potential medium and high 

vegetation and potential building classified (LAS file; ground is class 2; 

potential classes as in previous section) 

 mask_grid: building mask derived from points identified as potential 

building, with infused height. Cells that are not potentially buildings 

have a value of 0. 

 ground_grid: surface interpolated from ground points  (raster) 

Output out_pts: point cloud with ground and buildings classified (LAS file). 

Points in temporary class can be target of refinement process, or simply 

reassigned to "not classified." 

for each (p in in_pts) 

 // skip if classified as ground or noise 

 

 row = floor(p.y – in_pts.y_min)/cellsize 

 col = floor(p.x – in_pts.x_min)/cellsize 

 hag = p.z – ground_grid[row][col] 
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 bdiff = p.z – mask_grid[row][col] 

 

 if (mask_grid[row][col] > 0) 

  if (bdiff < 1 and hag > 2) 

   p.class = 6 

 

  else 

   p.class = 13 // temporary class  

 

 fwrite(p, out_pts) 

A.2.3. Uncertainty 

Part 1: Calculates the ratio of ground points, vegetation points and other 

points within a window. 

Input 

 in_pts: point cloud with ground, building, and potential medium and 

high vegetation classified (LAS file) 

 w: size of window, in pixels, for calculating the ratio 

 cellsize: resolution, in m, for output grid 

Output out_grid: surface representing ground vegetation ratio (raster) 

Intermediate data  

 g_grid: used for holding count of ground points in window 

 v_grid: used for holding count of vegetation points in window 

 t_grid: used for holding total count of ground in window 

 max_t: highest number of points within any window  

// Step 1: Count the ground, vegetation, and total 

points in each window 

for each (p in in_pts) 

 // skip if classified as noise 

  

 row = floor(p.y – in_pts.y_min)/cellsize 
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 col = floor(p.x – in_pts.x_min)/cellsize 

  

 for each (-w <= k <= w, -w <= l <= w) 

  if (p.class == 2) 

   g_grid[row+k][col+l]++ 

  if (p.class == 14 or p.class == 15) 

   v_grid[row+k][col+l]++ 

 

  t_grid[row+k][col+l]++ 

  if (t_grid[row+k][col+l] > max_t) 

   max_t = t_grid[row+k][col+l] 

 

// Step 2: Calculate ratios and output to 3-band 

image 

for each (row i, col j) 

 out_grid[R][i][j] = g_grid[i][j]/t_grid[i][j] 

 out_grid[G][i][j] = v_grid[i][j]/t_grid[i][j] 

 out_grid[B][i][j] = t_grid[i][j]/max_t 

   

Part 2: Resets to "unclassified" any non-ground points within an area marked 

as uncertain. 

Input 

 in_pts: point cloud with ground, building, and potential medium and 

high vegetation classified (LAS file) 

 mask_grid: uncertainty mask derived from ground-vegetation ratio. 

Has a value of 1 where at least 10% of points in the window are ground 

points and at least 10% are vegetation points. 

Output out_pts: point cloud with uncertainty points removed from 

preliminary classes (LAS file) 

for each (p in in_pts) 

 // skip if classified as ground or noise 

 

 row = floor(p.y – in_pts.y_min)/cellsize 

 col = floor(p.x – in_pts.x_min)/cellsize 

  

 if (mask_grid[row][col] == 1) 
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  p.class = 0 

 

 fwrite(p, out_pts) 

A.2.4. High Vegetation 

Classifies points that were potential high vegetation as high vegetation based 

on proximity to other high vegetation points. 

Input in_pts: point cloud with ground, building, and potential medium and 

high vegetation classified (LAS file) 

Output out_pts: point cloud with high vegetation added (LAS file) 

Intermediate data 

 neighbour: count of points within spherical neighbourhood 

 sameC: count of points of same class within spherical neighbourhood 

// Step 1: Count points within 2m sphere, and points 

of the same class within the sphere 

for each (p in in_pts) 

 refX = p.x 

 refY = p.y 

 refZ = p.z 

 refC = p.class 

 neighbour = 0 

 sameC = 0 

 

 for each (q in in_pts and √((q.x – refX)2 + (q.y 
– refY)

2
 + (q.z – refZ)

2
) < 2) 

  neighbour++ 

  if (refC == q.class) 

   sameC++ 

 

 if (sameC/neighbour < 0.5) 

  p.class = 1 

 

  

// Step 2: Reassign potential high vegetation points 

within 1 m of other potential high vegetation 

points to high vegetation class 
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for each (p in in_pts) 

 if (p.class == 14) 

  p.class = 4 

 

 for each (q in in_pts) 

  if (p.class == q.class == 15) 

   distance = √((q.x – refX)2 + (q.y – refY)2 + 
(q.z – refZ)

2
) 

   if (distance < 1) 

    p.class = 5 

   if (1 <= distance < 2) 

    p.class = 4 

 

fwrite(p, out_pts) 

A.2.5. Roads and Low Vegetation 

Classifies ground points that are single returns as low vegetation if the 

intensity value if above the specified threshold, and as road surface if below 

threshold. 

Input 

 in_pts: point cloud with ground, building, medium vegetation, and 

high vegetation classified (LAS file) 

 threshold: intensity value selected to divide roads (low intensity) from 

vegetation (high intensity)  

Output out_pts: point cloud with ground split in to road, low vegetation, or 

other (LAS file) 

for each (p in in_pts) 

 if (p.class == 2 and p is single return) 

  if (p.i > threshold) 

   p.class = 3 

  else 

   p.class = 11 

  

 fwrite(p, out_pts) 
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A.2.6. Object Above Roads 

Classifies points within areas identified as roads/paved surfaces and are 

above ground as vehicles (0.3 m to 2 m above) or other object (more than 2 m 

above). The same cleaning is applied to the road mask as for TRI and MMM 

masks to remove isolated pixels. 

Input 

 in_pts: point cloud with ground, building, medium vegetation, high 

vegetation, low vegetation and roads classified (LAS file) 

 mask_grid: paved surface mask derived from points classified as road 

or paved surface (raster). Cells that are part of a paved area have a 

value of 2. 

 ground_grid: surface interpolated from ground points  (raster) 

Output out_pts: point cloud with vehicles and other objects above road added 

(LAS file) 

for each (p in in_pts) 

 row = floor(p.y – in_pts.y_min)/cellsize 

 col = floor(p.x – in_pts.x_min)/cellsize 

 hag = p.z – ground_grid[row][col] 

  

 if (mask_grid[row][col] == 2) 

  if (0.3 <= hag < 2) 

   p.class = 10 

  if (2 <= hag) 

   p.class = 13 

  

 fwrite(p, out_pts) 

A.2.7. Water Classification 

Classifies points a water (class 9) using a mask derived from a water boundary 
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polygon and ground elevation. 

Input 

 in_pts: point cloud (LAS file) 

 mask_grid: water area mask derived from water polygons (raster) 

 ground_grid: surface interpolated from ground points  (raster) 

Output out_pts: point cloud with water points classified(LAS file) 

for each (p in in_pts) 

 row = floor(p.y – in_pts.y_min)/cellsize 

 col = floor(p.x – in_pts.x_min)/cellsize 

 hag = p.z – ground_grid[row][col] 

 

 if (mask_grid[row][col] != 0) 

  if (hag < 0.5) 

   p.class = 9 

 

 fwrite(p, out_pts) 

 

 

 

 

 A.3. UTILITY SCRIPTS 

This section contains additional script tools that were used in the GPI and 

MSPC processes to prepare mask, ground surfaces, etc. Common functions, such 

as opening files, allocating memory, and reading data from files, have been 

omitted due to space considerations and code has been rendered as pseudo-code 

for readability. Full code files can be found at 

https://bitbucket.org/kamolins/thesiscode. 

https://bitbucket.org/kamolins/thesiscode
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A.3.1. Fill 

Fills gaps in a raster so that surface appears continuous.  

Input 

 in_grid: surface to be filled (raster) 

 mode: method to calculate fill value. Can be average, minimum, or 

maximum. 

 num_iter: optional, maximum number of iterations  

Output: out_grid: filled surface (raster) 

Intermediate data 

 empty: count of cells that have no data 

 changed: count of cells filled during the current iteration 

 iter: current iteration number 

 mode_value: calculated value for empty cell  

// Set loop conditions 

num_iter = 200 or input limit 

empty = rows * cols 

changed = rows * cols 

 

while (empty > 0 and (changed > rows*cols/100/100 

|| iter < num_iter)) 

 empty = 0 

 changed = 0 

 

 for each (row i, col j) 

  if (in_grid[i][j] == no data) 

   neighbour = 0 

   for (-1 <= k <= 1, -1 <= l <= 1) 

    if (in_grid[i+k][j+l] != no data) 

     neighbour++ 

     mode_value = ... (depends on mode) 

    

   if (neighbour > 2) 

    out_grid[i][j] = mode_value 



212 

 

    changed++ 

   else 

    out_grid[i][j] = no data 

    empty++ 

 

  else 

   out_grid[i][j] = in_grid[i][j] 

  

 iter++ 

A.3.2. Grid 

Interpolates LAS point data to a grid.  

Input 

 in_pts: point cloud (LAS file) 

 cellsize: grid resolution  

 mode: method to calculate interpolation. Options: average elevation; 

average intensity; IDW (elevation); average elevation of points in one 

class only; average elevation of points in one flight line; local point 

density; multiple return density; minimum; maximum; count number 

points of specific classes in cell; user data. 

 search_area: criteria for selecting points to aggregate. See Section 

3.1.1. and Figure 3.1.  

Output: out_grid: interpolated surface (raster) 

Intermediate data: varies, depending on mode 

for each (p in in_pts) 

 // skip if doesn't match mode criteria, e.g., 

specified class, return number 

 

 row = floor(p.y – in_pts.y_min)/cellsize 

 col = floor(p.x – in_pts.x_min)/cellsize 
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 count[row][col]++ 

 

 if average elevation mode 

  temp[row][col] += p.z 

 

 if average intensity mode 

  temp[row][col] += p.i 

 

 if IDW mode 

  distance = √((xcol – p.x)
2
 + (yrow – p.y)

2
) 

  temp[row][col] += p.z/distance
p
 

 

 if minimum mode 

  if (p.z < temp[row][col]) temp[row][col] = p.z 

 

 if maximum mode 

  if (p.z > temp[row][col]) temp[row][col] = p.z 

 

for each (row i, col j) 

 if average mode 

  out_grid[i][j] = temp[i][j]/count[i][j] 

 

 if LPD or MRD mode 

  out_grid[i][j] = count[i][j]/cellsize/cellsize 

 

 for all other modes 

  out_grid[i][j] = temp[i][j] 

A.3.3. Clean 

Removes salt and pepper noise from masks and images. 

Input 

 in_grid: image to be cleaned (raster). 

 mode: cleaning process: regular (0, 2, optional 1) or count (0-8) 

 threshold: if count mode, threshold for counting a connected pixel 

Output out_grid: cleaned image (raster)  

Intermediate data count 

for each (row i, col j) 
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 if (regular mode) 

  for each (-1 <= k <= 1, -1 <= l <= 1) 

   if (input_grid[i+k][j+l] >= 1) 

    count++ 

 

  if (count >= 6) 

   out_grid[i][j] = 2 

  if (count <= 2) 

   out_grid[i][j] = 0 

 

  if (2 < count < 6 and want marked) 

   out_grid[i][j] = 1 

 

 if (count mode) 

  for each (-1 <= k <= 1, -1 <= l <= 1) 

   if (input_grid[i+k][j+l] >= threshold) 

    count++ 

 

 out_grid[i][j] = count 

 

  



215 

 

 Appendix B APPENDIX B 

 

 

 

 

APPENDIX B 

ADDITIONAL IMAGES 
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 B.1. MEASURE ILLUSTRATIONS 

This section contains examples of the measures described in Section 3.1.  

B.1.1. Height Measures 

Figure B.1 illustrates the process of obtaining a HAG image. A HAG value can 

also be calculated for individual points. For mHAG, both the DSM and the DEM 

are derived from the minimum values in each cell.  

 

Figure B.1 

Sample height above ground surface. a) DSM b) DEM c) Difference between 

DSM and DEM.    

Figure B.2 illustrates the MaxMin measure. It is very similar to HAG, but uses 

actual minimum values for the lower surface rather than a derived DEM. Figure 

B.3 is of the terrain ruggedness index. The raster resolution is 1 m and the TRI 

values in the range of 0 to 20. Figures B.3b and B.3c show the effect of choosing 

different values as the threshold for roughness: 1.0 and 1.5, respectively. 
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Figure B.2 

Sample maximum minus minimum surface. a) Maximum values b) minimum 

values c) Difference between maximum and minimum. 

   

Figure B.3 

a) Sample terrain ruggedness index and two masks from TRI: count of adjacent 

pixels with TRI less than b) 1.0 and c) 1.5. 
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B.1.2. Non-Height Measures 

Figures B.4 and B.5 illustrate local point density and slope, and are also 

included to further illustrate water point classification example in Section 6.4.  

Most cells appear to have a local point density of at least 5 pts/m2 and the terrain 

primarily has slopes less than 15 ° except along the river's edge. 

Figure B.6 illustrates multiple return density, in which only the non-single, 

non-first returns are counted. 

 

Figure B.4 

Sample local point density image from Ottawa data.  



219 

 

 
Figure B.5 

Sample terrain slope representation for Ottawa data. 

 

Figure B.6 

Sample multiple return density. 
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Figure B.7 is an example of an intensity image. The upper portion of the 

image includes the St. John River. For the most part, no returns were generated 

from the water but the points that were generated have intensity values through 

almost the full range of values recorded for the area. 

 

Figure B.7 

Sample intensity image. 

Figure B.8 is an example of a land cover map. Only ground, building and 

vegetation points have been classified, and not points at the boundaries between 

feature types.  
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Figure 

Figure B.8 

Example of a land cover map derived from LiDAR data showing ground, 

buildings, and high vegetation. 
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 B.2. GPI OUTPUT SAMPLES 

This section contains sample output from the GPI process. Figure B.9 shows 

the set of ground detection results detailed in Section 4.3 as inputs to the surface 

comparison technique for testing: a) Pixel Connectedness using a 10° threshold 

and b) a 15° threshold; c) Point Neighbourhood using the negative quadratic 

equation and d) the linear equation; e) Preliminary Ground Points, filled; and f) 

Wavelet Detail Mask using a threshold of ±0.15.  

Figure B.10 shows the two measures calculated during the surface comparison 

technique output and the final output. In this implementation, the wavelet detail 

mask was allowed to override the count criterion (Figure B.10a) since the 

threshold used for the mask left a sparse surface and any parts of that surface 

that are not part of the ground will be counteracted by the standard deviation 

criteria (Figure B.10b) with the inclusion of a filled surface.  

Figure B.11 shows the raster products of two iterations of the ground point 

classification and refinement stage. The initial input surface, Figure B.11a, is the 

output from the comparison technique and has a 5 m resolution. Figure B.11b is 

the same surface but with gaps filled. Figures B.11c and B.11d are the 

surface/filled surface pair resulting from classifying points as ground based on 

Figure B.11b. Because the surface after is being interpolated from points and not 

based on a raster, the resolution could be increased to 2 m. Similarly, Figures 

B.11e and B.11f (output of second iteration) are the surface/filled surface pair 

resulting from classifying ground points based on Figure B.11d. 
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Figure B.9 

Results from ground detection techniques: a) Pixel Connectedness, 10°; b) Pixel 

Connectedness, 15°; c) Point Neighbourhood, negative quadratic equation; d) 

Point Neighbourhood, linear equation; e) Preliminary Ground Points, filled; e) 

Wavelet Detail Mask, threshold ±0.15. 
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Figure B.10 

Results from an application of the surface comparison technique using the 

surfaces in Figure B.9. a) Count criterion; b) standard deviation criterion; and c) 

output surface, the average of input surfaces where criteria are met. 
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Figure B.11 

Raster products from two iterations of the ground point classification and 

refinement process. a) Initial input, 5 m resolution; b) filled input; c) 

interpolation of ground points classified in first iteration, 2 m resolution; d) 

filled interpolation, input to second iteration; e)  interpolation of points 

classified in second iteration; and f) filled surface. 
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INTEGRATION ASSESSMENTS 
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 C.1. RASTER-TO-RASTER 

Figure C.1 is an example of a raster-to-raster comparison between 

interpolations of filtered data set from SNB DTDB98 and the 2011 LiDAR data in 

the Odell Park sample area. Figure C.2 shows an enlarged area from the upper-

left corner of C.1. There do not seem to be any systematic biases but there are 

three "problem types," meaning large differences between surfaces in the 

comparison: 

1. Connected areas where the LiDAR surface is above the SNB surface 

(smooth blue areas). 

2. Disjoint areas where the LiDAR surface is above the SNB surface 

(rough blue areas). 

3. Disjoing areas where the LiDAR surface is below the SNB surface 

(rough red areas). 

The likely explanation for Type 1 is that between the time the SNB points were 

collected and the LiDAR points were generated, the terrain was filled and/or 

levelled and (in some cases) a building constructed. For Type 2, there are no 

direct comparisons between the LiDAR points and the SNB points. The data 

characteristics suggest that it is the SNB interpolation that is in error. For Type 

3, clusters of LiDAR points indicate a lower surface, suggesting the laser was 

able to penetrate through to the bottom of a narrow ravine which is not captured 

in the SNB data. 
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Figure C.1 

Result of subtracting LiDAR elevations from SNB elevations. Orange/red means 

SNB values are higher; blue means LiDAR values are higher. 
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Figure 

Figure C.2 

Close-up of from Figure C.1, with building footprints and SNB points added. 
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 C.2. RASTER-TO-POINT 

A software tool was used to determine the elevations of each interpolated 

surface (LiDAR, SNB, and CoF) at 27 control monument locations within the 

Odell Park case study area. The errors between the control and the 

interpolations were then calculated by subtracting the surface elevations from 

the control elevations. Table C.1 contains the calculated differences. Differences 

greater than 0.3 are highlighted.  

The error for the LiDAR data is greater than 0.3 m for only two monuments 

and one of these, Monument 7027, was destroyed before the LiDAR data were 

collected. When this monument is removed from consideration, the RMSE for 

the LiDAR data is 0.15 m. This suggests that the LiDAR data is accurate with 

respect to control, however accuracy may be lower in other areas and 

particularly on sloped terrain and under dense vegetation. 
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Table  C.1 

Summary of differences for surface elevation subtracted from monument 

elevation. * indicates no LiDAR data in corresponding cell, ° indicates a 

destroyed monument.  

Monument LiDAR (m) SNBf (m) CoF (m) 

6294 -0.313 -1.768 -0.977 

4192 -0.283 2.652 0.002 

4310 -0.232 0.754 -0.240 

7028 -0.215 1.128 -0.037 

6295 -0.166 -1.241 -0.884 

7131* -0.157 1.050 -0.524 

4178 -0.135 0.183 0.916 

7128 -0.133 1.392 0.052 

6296 -0.111 -1.634 -0.434 

23727 -0.103 0.416 -0.621 

7026 -0.096 0.012 -0.312 

7126 -0.078 -0.710 -0.535 

4305 -0.066 0.804 -0.103 

4308 -0.059 1.025 -0.320 

4311 -0.033 -0.183 0.391 

23726 -0.026 -0.525 -0.335 

7133 -0.022 0.660 -0.710 

7130 -0.021 -0.374 -0.441 

7127 0.018 0.763 -0.294 

4309 0.049 0.065 0.023 

6293 0.078 -0.353 -0.434 

23744 0.086 -1.018 -0.161 

4307 0.156 0.631 0.1914 

246 0.2029 4.2705 1.7376 

23743 0.242 -0.540 -0.108 

4300* 0.244 1.883 0.3124 

7027° 0.7195 1.5599 0.1027 

Mean -0.017 0.404 -0.139 

RMSE 0.204 1.288 0.541 

RMSE° 0.147 1.292 0.549 
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 C.3. POINT-TO-POINT 

As a final assessment of the LiDAR accuracy, a point-to-point comparison was 

conducted around each of the control monuments in the Odell Park study area. 

Figure C.3 and Table C.2 show the assessment around the destroyed monument, 

Monument 7027. Figure C.4 and Table C.3 show the assessment around 

Monument 7127, which is on sloped terrain. The first three columns in each 

table give the coordinates of the LiDAR point. The next column gives the 

planimetric distance (d) to the control monument, in 10-3 m. Points within 1 m of 

the control monument are indicated with bold font and points within 0.5 m of 

the control monument also have a green cell background. The fifth column gives 

the height difference (∆z), in m. Points within 0.3 m of the control monument 

elevation are indicated with bold font and points within 0.15 m of the control 

monument elevation also have a green cell background. The final column 

indicates whether or not the LiDAR point is a ground point.  



233 

 

 
Figure C.3 

LiDAR points within 1.5 m of Monument 7027 (destroyed) and their errors. 

Table C.2 
LiDAR points around Monument 7027  

X (m) Y (m) Z (m) d (10-3 m) ∆z (m) ground point 

2487741.68 7439691.61 11.735 9625 0.658 1 

2487740.99 7439691.10 11.714 14934 0.679 1 

2487740.81 7439692.19 11.705 6831 0.688 1 

2487742.62 7439692.01 11.686 13278 0.707 1 

2487741.56 7439692.97 11.645 4578 0.748 1 

2487740.69 7439693.51 11.631 12093 0.762 1 

2487742.80 7439692.17 11.617 14405 0.776 1 

2487741.05 7439692.66 11.612 3724 0.781 1 

2487742.50 7439693.33 11.581 13535 0.812 1 
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Figure C.4 

LiDAR points within 1.5 m of Monument 7127 and their errors. 

Table C.3 
LiDAR points around Monument 7127  

X (m) Y (m) Z (m) d (10-3 m) ∆z (m) ground point 

2487600.49 7439357.16 38.413 11040 -0.202 1 

2487601.25 7439356.73 38.403 6358 -0.192 1 

2487601.16 7439356.97 38.292 5249 -0.081 1 

2487602.30 7439356.74 38.257 8885 -0.046 1 

2487601.33 7439358.08 38.229 8506 -0.018 1 

2487600.98 7439358.40 38.209 12841 0.002 1 

2487602.37 7439357.38 38.206 7832 0.005 1 

2487602.38 7439358.07 38.124 11232 0.087 1 
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 C.4. HORIZONTAL ADJUSTMENT 

A proper assessment of horizontal alignment between two data sources can 

only be conducted when the data are sufficiently detailed to allow common 

features to be identified in both. For LiDAR data, or other point elevation data, 

this means an NPD of at least 1 pt/m2, preferably more. In Figure C.5, horizontal 

offsets can be observed between road centerlines and building footprints, and 

the LiDAR intensity image. The NPD of the LiDAR data is high enough that, for 

example, street intersections and building corners can be clearly located and 

used in georeferencing. 

In FigureC.6, a transformation has been applied to the LiDAR-derived image 

to bring it in alignment with the vector data. However, the transformation was 

only applied to the image product, not the actual LiDAR points. 
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Figure C.5 

Observed horizontal offsets between a LiDAR-derived image and vector data 
sets. 
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Figure C.6 

Improved horizontal alignment can be observed after a transformation is applied 
to the LiDAR-derived image.    
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