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ABSTRACT

The rigorous combination of terrestrial and satel;ite
geodetic networks is not easily accomplished. There are many factors
to be considered. The more important are how to deal with terrestrial
networks that are separated into horizontal and vertical components
which are not usually coincident; the relation of each component to
a different datum; and the existence of unmodeled systematic errors
in terrestrial observables. Satellite networks are inherently three-
dimensional and are relatively free of systematic errors. In view of
these facts, and with present practical considerations in mind, four-
teen alternate mathematical models for the combination of terrestrial
and satellite geodetic networks are investigated, catalogued and
categorized in this report.

To understand the reasoning behind the formulation of the
models presented and the interpretation of the results obtained, some
basic definitions and properties of datums, and satellite and
terrestrial networks are presented.

Based on previous investigations and the author's interpre-
tation of the problem of combining geodetic networks, the models under

study are split into two major groups. The first group treats datum
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transformation parameters as known, while the second includes them as
unknowns to be estimated in the combination procedure. Each model is
investigated in terms of its dimensionality, unknown parameters to be
estimated, observables, and the estimation procedure utilized.

The group of three-dimensional models that treat the datum
transformation parameters as unknowns to be estimated are themselves
separated into two parts. The Bursa, Molodensky, and Veis models
contain only one set of rotation parameters each,.while the Hotine,
Krakiwsky-Thomson, and Vanicek-Wells models each contain two sets of
unknown rotations. For the combination of terrestrial and satellite
networks, the latter three models represent physical reality.

The models that are not three-dimensional do not take
advantage of the inherent tri-dimensionality of satellite networks.
Thus, when the satellite network data is split into horizontal and
vertical components for combination with terrestrial data, the
covariance between the components is omitted. Even though the use
of two and one-dimensional combination models are required at present
due to the sparseness of adequate terrestrial data and the need for
the solution of practical problems, it is not recommended for the
future.

The Bursa model is recommended for the combination of two
or more satellite networks. However, when combining tefrestrial and
satellite networks, when datum transformation parameters are unknown,
none of the Bursa, Molodensky, or Veis models are adequate. 1In this
case, the Hotine or Krakiwsky-Thomson model which parameterize the

lower order systematic errors in the terrestrial network, should be
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used. To combine several terrestrial datums and one satellite
’datum and determine the orientation df these with respect to the
Average Terrestrial system, the Vanicek-Wells model should be used.

A combination of the Krakiwsky-Thomson and Vanicek-Wells
models is seen to be the best, from a theoretical point of view, for
the combination of a satellite and several terrestrial networks. Such
a solution will yield the datum transformation parameters between each
of the datums involved, the orientation of each datum with respect to
‘the Average Terrestrial coordinate system, and parameters representing
the overall systematic orientation and scale errors of each terrestrial
network.

No substantiative conclusions could be given based on the
numerical testing carried out. A sparseness of adequate data
‘prevented this. The numerical testing has not been wasted, however.
The type and quality of data :eduired for several models has been.
demonstrated. Further, the available data was utilized to substan-
tiate the fact that the proposed solution of the Krakiwsky-Thomson

model is possible.
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0. INTRODUCTION

0.1 Background

In the broad spectrum of activities covered by geodesy, one
of the primary tasks is the establishment of geodetic networks.

These networks, which may be of a local or regional nature( or even
of global extent, have a variety of uses in the realms of both scien-
tific and applied geodesy. The establishment of geodetic networks
and the datums to which they are referred are massive tasks. Using
only classical terrestrial observables, the problems encountered are
numerous. The 1927 North American Datum and associated horizontal
networks are an example of the results obtained using limited
terrestrial observables and limited computing facilities. Three-
dimensional satellite geodetic networks are a new tool that can be
used by geodesists in the establishment of terrestrial geodetic
datums and networks.

The notion of combining terrestrial and satellite geodetic
networks, for the purpose of solving some of the problems associated
with terrestrial datums and networks, began with theAestablishment
of the first geodetic satellite networks. Some of the first math-

ematical models for the combination process were applied in the



investigation of the position and orientation of the terrestrial net-
work datum with respect to that of the satellite network [Bursa, 1962;
Bursa, 1967; Lambeck, 1971]. In many instances combination models
were derived utilized in conjunction with other geodeﬁic invest-
igations [Veis, 1960; Molodensky et al, 1962; Badekas, 1969]. As

the accuracy and density of satellite determined geodetic networks
increased, the mathematical models used to combine them with their
terrestrial counterparts have become more varied and sophisticated.
For example, there are those that parametgrize both the position

and orientation of the terrestrial network datum with respect to

the satellite network datum and the unknown systemétic errors in

the terrestrial networks [Hotine, 1969; Krakiwsky and Thomson, 1974].
Another is useful in the combination of several terrestrial networks
with one satellite network in which the orientation of their datums
with respect to the Average Terrestrial coordinate system is deter-
mined [Wells and Vanicek, 1975]. In the future, as satellite
methods yield coordinates of centimetre accuracy, it is envisaged
that rigorously combined satellite and terrestrial networks, along
with the results of new technology such as VLBI, will be important
tools in the establishment of three-dimensional, time-varying,
geodetic coordinates that are necessary for geophysical and

geodynamic purposes.



0.2 Objective and Methodology

wWhat mathematical model should be used for the rigorous
combination of satellite and terrestrial geodetic networks? There
is no simple answer to this. There are many models available and
the use of one or another of them is dependent on several factors,
not the least of which are the ultimate objectives of the user.
To be able to choose a particular model to solve a certain problem,
the user should be aware of the implications of the choice. The
objective of this study is to outline how to choose an appropriate
mathematical model for the combination of satellite and terrestrial
geodetic networks and why certain models should be used in different
circumstances.

The main method used in this report is to catalogue, categorize,
analyse, and test several models. This approach of covering the
broad spectrum of thé combination of satellite and terrestrial
geodetic networks as opposed to intense investigation of one or two
mathematical models was arrived at because of certain circumstances.
After some preliminary research, it was found that various opinions
existed regarding the foundation, formulation, use, and interpret-
ation of several models. These points required clarification.
Further, it was found that there was insufficient data to adequately
investigate any one model in which the final analysis and conclusions
would be based on the solution of an actual combination of some
existing satellite and terrestrial networks. These facts lead to

the present format of the study.



To accomplish the stated objective using the aforementioned
methodology, several tasks have to be completed. One of these is
to substantiate why satellite geodetic networks should be combined
with their terrestrial counterparts and to set out the concepts
upon which the combination mathematical models are based. This
involves the definition, in terms of current geodetic thought, of
geodetic datums and the parameters that are used to define them.
Chapter 1 is devoted to this. In Chaper 2, geodetic netwdrks
(terrestrial and satellite), their relationships with their respec-
tive datums and their inherent properties, are described. Section
I is concluded by Chapter 3 in which the rationale for combining
geodetic networks is given, along with a classification and listing
of several models.

Another task is to examine several combination models in
detail in order that a logical scheme of categorization can be
produced. This involves the study of a priori assumptions, dimen-
sionalities of models, treatment of unknown parameters such as
datum transformation elements and systematic errors in the
terrestrial networks,and the interpretation of results. These
are the underlying considerations in Section II and Section III.

In the former, three separate chapters deal with the combination of
terrestrial and satellite networks when the transformation param-
eters between their respective datums are considered known, while
in the latter, two chapters deal with models in which datum trans-

formation parameters are treated as unknowns to be solved for in



the combination procedure. Section IV, TEST RESULTS, presents some
numerical tests using data from North American terrestrial and
satellite geodetic networks.

The fulfillment of the objective of this study is attained
in Chapter 9. Here, the various models are presented in three tables.
These outline the proper application and interpretation of the various
models considered for the combination of terrestrial and satellite

geodetic networks.

0.3 Scope

Several events in geodesy prompted this research. By the
late 1960's, the coordinates of terrestrial points were beiﬁg
determined with 5 m (1 0) accuracy using satellite méthods. Today,
1 m standard deviations are commonplace and decimetre accuracy is
predicted for the near future. The problems inherent‘in the North
American terrestrial geodetic network and the decision to redefine
it was another contributing factor. It was recognized that the
three-dimensional satellite networks could contribute invaluably
in the positioning and orientating of a new geodetic datum and in
the definition §f a more accurate and homogeneous terrestrial
geodetic network. Finally, there was the fact that. the geodetic
record, of which geodetic networks are an integral part, was being

utilized more frequently in the solution of related scientific and



practical problems. In order that this contribution be more
valuable, geodesists must move towards the so-called four-
dimensional system - a rigorous system of three-dimensional,
time-varying coordinates.

As explained previously, the aim of this study is to
cover the broad spectrum of the combination of geodetic networks.
However, it was carried out within a certain framework. To have
immediate practical value it was decided to devote a major portion
of the study to combination models in which the ultimate objective
was the positioning and orienting of a geodetic datum and the
definition of a more accurate and homogeneous terrestrial geodetic
network. Further, models in which presently available geodetic
network data could be realistically used were given priority. Due
to the inherently three-dimensional nature of satellite networks
and geodetic datums, a concentrated effort was made on the three-
dimensional models.

The aforementioned constraints have not inhibited this
study. Combination models and procedures utilized in other studies
are included. Several new models and variations of older ones.are
presented. Detailed explanations of previously used models, lacking
in  some studies, are given. The estimation techniques required
to obtain solutions for all models are explained. Test results,

and their interpretation, are given for several solutions.



0.4 Contributions

This study has resulted in several contributions to the
subject of the combination of satellite and terrestrial geodetic
networks. Nine of these, considered to be the most significant
are:

(i) a comprehensive description of classical and contemporary geodetic
network datums and their positioning and orienting in the
earth body;

(ii) an enumeration of the sources of systematic errors in the
observables used to define terrestrial networks;

(iii) the discovery of some shortcomings in several of the presently
used combination models;

(iv) an explanation of the differences amongst presently used three-
dimensional combination models;

(v) an alternative derivation of the Hotine combination model;

(vi) the development of a new model for the combination of
terrestrial and satellite networks in which the lower order
effects of systematic errors in the terrestrial network are
modeled by three rotations and a scale difference parameter;

(vii) the generation éf numerical results from the solution of
several models using the same data and an explanation of the
differences obtained;

(viii) the cataloguing and categorizing of fourteen models for the
combination of terrestrial and satellite geodetic networks;

(ix) the construction of tables that can be used to choose a correct
model, under a given set of conditions, for the combination of

satellite and terrestrial geodetic networks.



SECTION I

GEODETIC DATUMS, GEODETIC NETWORKS,

AND COMBINATION PROCEDURES



1. GEODETIC DATUMS

The word "datur is defined as "a real or assumed thing used
as a basis for calculations" [Webster's, 1951]. The definition of
a geodetic datum is then that "thing" to which geodetic computations
are referred. In the past there has been much confusion regarding
geodetic datums, particularly with regards to their relationship
with geodetic networks [e.g. Jones, 1973]. &his was brought on,
in part, by the mixing of the datum with its position and orientation
within the earth body, and with the mixing of the networks themselves
and the datum to which they were referred.

The aim here is to first define the geodetic datums presently
used in North America for terrestrial geodetic networks (horizontal
and vertical), to point out the relationships between them, and to
show the connection between present geodetic coordinates and those of
a unified three-dimensional coordinate system. Second, the classical
means of positioning and orienting a horizontal geodetic
datum in the earth body is presented. The classical parameters are
related to those of contemporary three dimensimal methods. The
vertical datum, and its position, is of no less importance. However,

due to the complexities of the problems related to it [e.g. Bomford,

1971], a detailed discussion was deemed beyond the scope of this work.
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Finally, the modern concept of a datum required for three
dimensional geodesy is presented. The means of establishing datums
for a satellite networks are given, with reférence to two specific
examples. The position and orientation of the two datums with respect

to each other are discussed in detail.

1.1 Classical Geodetic Datums

During the late seventeenth and early eighteenth centuries,
after having been considered in the past a plane, a convex disk, and
a sphere, the earth was determined to be ellipsoidal in shape. Further
work in the nineteenth and early twentieth centuries by mathematicians
and geodesists showed that the earth's shape is best represented by one
of its equipotential surfaces, the geoid.

The historical developments in the deﬁermination of the size
and shape of the earth, and numerous other physical problems, have led
to the traditional splitting of the triplet of coordinates used to
describe the positions of terrain points into horizontal and vertical
components. Further, due to the inherent differences between the
respective terrestrial observables used in the different mathematical
models for horizontal and vertical networks, two separate geoaetic
datums must be defined.

The geodetic datum used for classical horizontal terrestrial
networks is a rotational ellipsoid whose size and shape are traditionally

given by the lengths of its semi-major and semi-minor axes, a and b
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Figure 1-1

The Reference Ellipsoid, Geodetic Latitude and Longitude,
and the Geodetic Coordinate System



respectively (Figure 1-1) or its semi-major axis and flattening, f.
Horizontal network computations are carried out on the surface of
this reference ellipsoid. 1Its size and shape, and position in the
earth body is generally such that it is a "5est fitting" ellipsoid
which approximates the geoid most Elosely. This may refer to the
whole earth or a particular region of it [Heiskanen and Moritz, 1967}.
The determination of the dimensions of the reference ellipsoid is a
complex problem in its own right and is not covered in this report.

For this datum to be used for terrestrial network computa-
tions, its position and orientation with respect to some earth fixed
coordinate system must be given. This may be accomplished via some
observations and adherence to certain conditions at a terrestrial
network initial point (1.3). Thus, a classical horizontal geodetic
network datum is completely defined by the size and shape of the
reference ellipsoid and its position and orientation.

The geodetic datum used for vertical networks in North America
is nominally the geoid. The geoid is defined as that equipotential
surface of the earth which "most nearly coincides with the undisturbed
mean sea level” [Mueller and Rockie, 1966]}. The delimitation of the
geoid, as a base for vertical networks, is resolved via the determin-
ation of mean sea level at tide-gauge stations [Bomford, 1971; Ku, 1970;
Lennon, 1974]

The distance between the reference ellipsoid and geoid at
any point, the geoidal height N (Figure 1-2), is the "connecting

link" between classical horizontal and vertical geodetic network
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coordinates. That is, to express the position of a terrain point
relative to one datum, the aforementioned quantity must be known.
In the next chapter (1.2), the use of the geoidal height in relating
ellipsoidal geodeﬁic coordinates and orthometric height to Cartesian

coordinates is given.

1.2 Ellipsoidal Geodetic Coordinates, Orthometric Height, and the

Geodetic Coordinate System

The relationships amongst tlassical"geodetic coordinates,
and between them and Cartesian coordinates are important to the dis-
cussions of the positioning and orienting of a classical horizontal
network datum and the relationship of this with three-dimensional
geodetic concepts.

The horizontal position of a terrain point i is given on the
surface of the reference ellipsoid as a set of curvilinear coordinates,
the geodetic latitude (¢i) and longitude (Ai) [Krakiwsky and Wells,
1971] (Figure 1-1). With respect to the Geodetic Coordinate system, the
point can be expressed as a triplet of Cartesian coordinates (xz, y;, z;)
in terms of the ellipsoid curvilinear coordinates by [Heiskanen and

Moritz, 1967]

xX* N* cos ¢. cos A
i ¢1 1

y*¥| = N; cos ¢i sin Ai (1-1)

2
* * - i
z¥ Ni (1-e”) sin ¢i
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where N; is the prime vertical radius of curvature and e2 is the
square of the first eccentricity of the ellipsoid.

The vegtical coordinate of a terrain point is given by its
orthometric height, H [e.g. Vanicek, 1972]. In order to relate this
quantity to the horizontal network datum, the geoidal height, N,
must be known. The two quantities are added together to yield the
ellipsoidal height, h (Figure 1-2). This simple addition procedure
neglects the curvature of the actual plumbline and introduces an
error of less than one millimetre in the ellipsoidal height [Heiskanen
and Moritz, 1967].

The triplet (¢i, Ai' hi) describes the position of a terrain
point with respect to one datum. In terms of Cartesian coordinates,

one obtains [Heiskanen and Moritz, 1967]

*y
xi (Ni hi) cos ¢i cos Ai
= * i -
yi (Ni+hi) cos ¢i sin Ai . (1-2)
2
* - 3
zi (Ni(l e )+hi) sin ¢i

The Cartesian system to which the triplet (xi, Yie zi) refers
is called the Geodetic coordinate system (Figure 1-1). It is a right-
handed coordinate system whose origin is coincident with the origin
of the reference ellipsoid. The Z axis is directed along the minor

G

axis of the ellipsoid, and the X ZG plane is in the plane of the

G
reference geodetic longitude. The YGZG plane is 90° east of the
XGZG plane, and the XGYG plane is coincident with the equatorial plane

of the ellipsoid. The orientation and position of this system is

discussed in 1.3.
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It is easily seen that via the geoidal height N, and
equation(l-2),one has the relationships between coordinates expressed
on classical datums (¢i, Ai, Hi)' and those expressed in terms of a
three dimensional coordinate system (¢i, Xi, hi)or (xi, Yo zi). The
latter are used extensively in this report in a contemporary and
clear definition of a geodetic datum (1.4) and the formulation of
several mathematical models for the cqmbination of terrestrial and

satellite geodetic networks (Section III).

1.3 Positioning and Orienting of a Terrestrial Horizontal Network

Datum
A body in three-dimensicnal space has six degrees of
freedom with respect to some fixed reference. An ellipsoid of
rotation, used as a terrestrial horizontal network datum, is located
in the earth body by six parameters with respect to some physical
properties of the earth represented by the Average Terrestrial (AT)
coordinate system (Figure 1-3). The Average Terrestrial system,
conventionally right handed, is defined as having its.origin at the
earth's centre of gravity, its third (ZAT) axis oriented towards the
Conventional International Origin (CIO) defined by the International
Polar Motion Service, and its first (Xpxp) axis oriented towards the
Greenwich Mean Astronomical Meridian as defined by the Bureau Inter-
national de 1'Heure [e.g. Mueller, 1969]. The condition to be

fulfilled when positioning and orienting the reference ellipsoid is
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that its axes (Geodetic Coordinate system) be parallel wifh those

of the earth fixed system (Average Terrestrial system). The fulfill-
ment of this condition is convenient since it tends to simplify
several geodetic equations.

Before proceeding further with the accepted procedure of
positioning and orienting a horizontal terrestrial network reference
ellipsoid, it is necessary to distinguish between geodetic and
geocentric datums. Strictly speaking; a geocentric datum is one whose
origin is coincident with the earth's centre of gravity, and whose
third (2) axis is coincident with the earth's polar axis of inertia
[e.g. Vanicek, 1975]. Such a system can be attained by developing
a set of data such as gravity anomalies, geoidal heights, or defiec-
tions of the vertical, into an infinite series of spherical harmonics
and dropping out the first degree terms [Heiskanen and Moritz, 1967].
Another possibility lies in the use of dynamic satellite geodetic
observations in the establishment of satellite geodetic networks
[Anderle and Tanenbaum, 1974].

Ideally, three translation components and three rotations are
the simplest elements with which to express the position and orienta-
tion of the reference ellipsoid with respect to the Average Terrestrial
coordinate system (l1.4). The ffaditional approach does not do this
directly. First a terrestrial point is chosen and designated as
the network "initial point" (k). At this point, a set of computed
(via terrestrial geodetic observables) and defined quantities are
combined to yield the réquired six orieniing and positioning

parameters.
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Using astronomical observatidns, one determines the astro-
nomic latitude (Qk) and longitude (Ak) of the initial point, and
the astronomic azimuth of at least one emanating line (Aki). The
standard deviations of these quantities will be of the order 0.1 to

0.3 .arc seconds for ¢ and Ak and 0.2 to 0.4 arc seconds for A

k ki

[Mueller, 1969]. The orthometric height of the initial point, Hk,
can be determined via geodetic leveling. Its standard deviation,
Oy will be a function of several factors affecting geodetic levelling.

k .
For example, using a recommended formula for approximating standard

deviations of levelling network points in North America (E = 1.8 K2/3

where K is the distance from the reference stations(s)* in km) [NASA, 1973],
the uncertainty of the orthometric height at Meade's Ranch, Kansas

(the initial point of the present North American geodetic networks)

can be estimated to be 0.2 m to 0.3 m. Finally, one is able to

measure the zenith distance (zki) in the Local Astronomic coordinate

system [e.g. Krakiwsky and Wells, 1971] on any emanating line with a
minimum standard deviation of the order of 1 arc second [Heiskanen

and Moritz, 1967]. The observed values are used in the positioning

and orienting of the network datum.

The quantities that are required in order to start a
terrestrial geodetic network are the geodetic coordinates of the
initial point (¢k, Ak’ hk)' and the geodetic azimuths (aki) and
zenith distances(zki)of'two emanating lines. Note that the deter-
mination of the above quantities must be carried out in such a way

as to adhere to the condition of parallelity of axes. Further, it

may be required that the ellipsoid be "best-fitting" in terms of

* Mareograph Station (s)
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geoid-ellipsoid separation over a certain region. The latter problem
is not considered here.

One approach to datum establishment is to assign some
"errorless" geodetic coordinates to the initial point (o¢k = oxk =0 k= 0)
such that the differences (¢k - ¢k) and (Ak - kk) are sufficiently
small in order that their second powers can be neglected [Bomford,

1971; Heiskanen and Moritz, 1967; Vanicek and Wells, 1974]. As a
consequence the components of the astrogeodetic deflections of the

vertical and geoidal height at the initial point are expressed by

[Heiskanen and Moritz, 1967]

Ek = ¢k = ¢k r (1"'3)
N, = (Ak—kk) cos ¢k , (1-4)
Nk = hk - Hk . (1-5)

These expressions are valid if the conditions for parallelity of

axes, expressed via [Hotine, 1969; Vanicek and Wells, 1974]

2, = Zki + (Ak—kk)cos ¢k sin Aki + (®k—¢k) cos Aki’ (1-6)
a ;= Aki - (Ak—kk)SLn ¢k - [(Qk-¢k)31n Aki - (Ak—Ak)cos A, ; cos ¢k] cot zki
(1-7)
are fulfilled.
Using this approach, the values of Ek' nk, Nk' zki' and

o each have standard deviations as a result of error propsgation in
the respective equations. This implies that while the origin of the

ellipsoid is fixed in space via the assigned geodetic coordinates,

the orientation of its axes is not. Hence, due to errors in the
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geodetic observations at the initial point, the axes of the ellipsoid
may not be parallel with those of the Average Terrestrial coordinate
system.

An alternative procedure is to define the values of the
deflections of the vertical (Ek, nk) and geoidal height (Nk) at the

terrestrial initial point [Heiskanen and Moritz, 1967] (0E = cn =
k k

ON = 0). In this case, the initial point geodetic coordinates will
k .

have some standard deviations as a result of error propagation in

(1-3) through (-9, and Zs and @ asa result of error propagation in
(1-6) and (1-7 respectively. Again, the uncertainties are due to the
errors in the original geodetic measurements used

to determine ¢k' Ak' Aki’ Hk and Zki' The result again is the possible
misalignment of the ellipsoidal axes with those of the Average
Terrestrial coordinate system. A further complication of this

approach is that the geodetic coordinates of the initial point can

not be considered as fixed quantities since they do have some
uncertainty.

The six parameters that are traditionally chosen to rep-
resent the position and orientation of the reference ellipsoid are
(¢k, Ak’ Nk' Ek' nk, aki) [Vapicek, 1975; Krakiwsky and Wells, 1971;
Mueller, 1974 (a)]. However, these parameters are regarded as fixed
quantities with no regard for the errors previously outlined. Only
one of the parallelism conditions is applied, namely 1-7, which is
known as the Laplace equation. Further, since an attempt is
usually made to keep zki = 90°, a truncated version of the Laplace
equation is used [Mueller, 1974(a)],
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Aki T L tan ¢k . (1-8)

Horizontal network computations are then initiated assuming parallel-
ity of axes has been achieved by the truncated version of‘the Laplace
equation. The truncated version of the Laplade equation is applied
intermitently throughout the network with the hope of maintaining the
parallelity of the reference ellipsoid and Average Terrestrial system
axes. If one views the geodetic network as a separate but intricately
connected entity from the datum and its position and orientation, the
aforementioned claim is impossible. 1In this case, the astronomic
azimuths, introduced via the Laplace equation, serve only to control
the orientation of the geodetic network. On the other hand, if one
assumes that the datum is represented by the geodetic network itself
[Mueller, 1974 (a), Vanicek, 1975], the claim may have some validity.
To the author's knowledge, this has never been proven theoretically
and this doubt is also upheld in [e.g. Hotine, 1969; Mueller, 1969].
The neglect of the second parallelism condition (1-6),
the application of a truncated Laplace equation, and the assumption
of fixed parameters at the initial point, were perhaps adequate
in the past. Such datum establishment procedures may still suffice
for the initial iteration of the several required for the establish-
ment of a terrestrial horizontal network datum and related geodetic
network (2.1). However, with the advent of more precise
measurements, greatly increased data gathering and computing
facilities, and the establishment of three-dimensional geodetic

networks, a geodetic datum must be better defined. The non-
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parallelity of axes can create problems for three-dimensional
terrestrial networks [Hotine, 1969; Vanicek and Wells, 1974]. The
rigorous combination of terrestrial networks with those networks
defined by satellite observations and inertial positioning éystems
requires that the transformation parameters between respective

datums be known.

1.4 Contemporary Concepts

The intrinsic three-dimensional character of the problem
of describing the position of a terrestrial poini, and the recently
acquired ability to directly determine the Cartesian coordinates of
any point using observations of artificial earth satellites, have given
rise to the necessity of an expanded concept ofva geodetic datum,
its positioning and orienting. The geodetic coordinates of any
terrain point (¢i, Ai' hi) are equivalent to the Cartesian triplet
(xi, Yy’ zi)G. The Geodetic Coordinate system is then the reference
frame, or datum, of a homogeneous three-dimensional terrestrial
network. The reference frame used for a satellite geodetic network
is a set of Cartesian axes. Using dynamic satellite procedures,
an earth centred coordinate system is implied [Anderle, 1974(a)],
while using geometric methods, the position of the origin of the

reference ffame is chosen arbitrarily [Schmid, 1974].
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The datum for a gegdetiéknetwork can be defined as a
particular reference coordinate system. For example, the Geodetic
Coordinate system is the datum of a unified terrestrial geodetic
network, and its six position and orientation parameters are
expressed with respect to the Average Terrestrial system. These
are the three components (xo, yo, zo) of the translation vector, ;o,
and three rotations (ex, ey, ez) (Figure 1-4). 1In order that the
axes be parallel, it is obviously necessary that € = ey =€, = 0.
The translation components may assume any value, but will be
dependent on other specified criteria. The position and orientation
elements (xo, Yor Zg0 ex, Ey' ez) may or may not have associated
standard deviations, depending on how they are determined. .

The relationship between the Geodetic and Average Terres-

trial coordinates of any terrain point i is given by (Figure 1-4)

> - >
(Ri)AT = (ro)AT + Rl(ex)Rz(ey)R3(€z) (ri)G (1-9)
or
X 1 xO xl
Y5 =Y.l * Rl(ax) Rz(ey) R3(ez) Y, (1-10)
203 Zo|aT Zil g

AT

e

The quantities Rl(ex), Rz(ey), R3(Ez) are the well-known rotation

matrices

1 0 0
Rl(e ) = |0 cos € sin € (1-11)
x x x

0 -sin € cos €
X X
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[cos € 0 -sin € |
y y
. R2(e ) = 0 1 0 ' (1-12)
Y
sin € 0 cos ¢
= y —
rcos,ez sin e, 0 7]
R, (e ) =]-sin ¢ cos € 0 . (1-13)
3 7z z z
) 0 1 _|

The main problem with the aforementioned approach is the
estimation of the Average Terrestrial coordinate system. One way of
doing this is through the definition of a satellite network using
dynamic procedures, combined with terrestrial determinations of the
longitude origin and CIO [Anderle, 1974(a)]. Through the coordinates
of the network points, the system is then recoverable. It is
estimated that the geocentre may be estimated with a standard deviatior
of 1 m, the orientation of the spin axis with respect to the CIO
pole to 5 m [Anderle, 1974(b)]. It should be noted that tﬁis
coordinate system is "dynamic." However, it can be used
for present geodetic networks since the time-variations are
below the level of position errors [Anderle and Tanenbaum, 1974].

The use of the coordinates of geodetic network points for
the recovery of datum parameters appears to be in contradiction with
previous concepts (1.1, 1.3). This is not so. As before, the
datum, or reference coordinate system, and associated network, are

separate but intricately related. The coordinates of network
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points are used to recover the origin, position, and orientation of

the datum. They are not used to define the datum. This approach

is completely consistent with that presented previously. In addi-

tion, it is a substantial part of the foundation of several mathe-

matical models used for the combination of terrestrial and satellite

geodetic networks (Section III).

The adoption of a Cartesian coordinate system as a
geodetic network datum, and the use of the parameters (xo, yo,
ex, Ey' ez) for position and orientation, are consistent with
contemporary geodetic goals. The next obvious step is to move
time-varying three-dimensional system required for geodynamics

[Mather, 1974], although this step is beyond the scope of this

report and not treated herein.



2. TERRESTRIAL AND SATELLITE GEODETIC NETWORKS

A geodetic network can be said to be a geometric objecf in
which the various network points are uniquely defined by their coor-
dinates. The coordinates are not directly observable but are derived
via some observables amongst various network points. Using appropriate
functional relationships, the observables are used to compute a
homogeneous set of coordinates of the network points. Geodetic net-
works afe intricately tied to their geodetic datums, thus the coordinates
of the network points can, under certain conditions, be utilized to
recover the parameters used to determine the datum position and orien-
tation.

Geodetic networks may be regional or global in extent. The
set of precisely coordinated terrestrial points can be used for
geophysical studies or the tracking of artificial satellites, the
location of national or international boundaries, the making of maps
or the exploration for natural resources, and numerous other tasks.
Thus, they must satisfy the requirements of both scientific investi-
gators and the geodetic engineers.

The precision and homogeneity of a set of network point

coordinates are basically dependent on the observables and the

28
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completeness of the mathematical models employed in subsequent net-
work computations. One of the fundamental problems with terrestrial
geodetic networks is the accumulation of unaccounted for systematic
errors. Satellite networks are not as susceptible to this type of
problem. Used in combination with their terrestrial counterparts,
they offer a means of recovery and control of accumulated systematic
errors in the terrestrial networks.

The aim of this chapter is to describe the natures of
terrestrial and satellite geodetic networks with particular reference
to the national and continental networks in North America. This
includes a summary of the observations that are made and the functional
relationships and computing techniques that are used to obtain rigorous
solutions. The connections of the networks with their respective
datums, the expected precision of network coordinates, and examples

of the sources of systematic errors are enumerated.

2.1 Terrestrial Geodetic Networks

Traditionally, the triplet of coordinates used to describe
the position of a terrain point has been split into horizontal and
vertical components. The result of this is the development of
separate horizontal and vertical geodetic networks. In general, the
reasons for such a practice may be classed as psychological, historical,
physical, and mathematical [Krakiwsky, 1972; Marussi, 1974]. The

continuation of this custom is now based on practical issues. While
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new networks could be established in a three-dimensional mode, the
required data to transform older networks is not presently available.

In North America, adherence to this classical geodetic custom
has led to the present horizontal and vertical networks [McLellan, 1974;
Baker, 1974; Villasana, 1974). Horizontal networks are obtained by
projecting the actual geodetié network to a mathematical surface, the
reference ellipsoid, while vertical networks are nominally treated in the
natural environment of the earth's gravity field without reference to any
ficticious surface. BAlthough some experimental work towards the
establishment of three-dimensional terrestrial geodetic networks has
been carried out in North America [Fubara, 1972; Hradilek, 1972;
Vincenty, 1973}, the redefined North American networks will be

separated into horizontal and vertical components.

2.1.1 Horizontal Geodetic Networks

The datum used for horizontal geodetic networks is a
reference ellipsoid (1.1). The network initial point, where datum
position and orientation parameters are determined (1.3), is the
starting point for network computations. The networks have been, and
are presently, established by triangulation, trilateration, and
traversing. The observables are horizontal directions, distances, and
zenith distances between various network points. At certain intervals,
astronomic observations are made for the determination of astronomic

latitude, longitude, and azimuth. Each of the aforementioned ig
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subject to some estimable errors and unknown systematic errors. The
former are accounted for in the network adjustment in the variance-
covariance matrix of observations, the latter tend to propagéte
systematically through the network causing some distortions.

Horizontal directions contain unaccounted for errors due to
lateral refraction which can amount to 2 arc-seconds in extreme circum-
stances [Kukkamaki, 1961; Kukkamaki, 1949; Bomford, 1971]. Distances
measured with electronic and electro-optical inétruments are subject
to unknown systematic errors due to inadequate atmospheric daﬁa and
incomplete refraction models. This type of error has been determined
to amount to 4 ppm in some instances [Jones, 1971]. Zenith distances,
used to compute height differences in horizontal networks, may yield
accuracies of 2 cm under experimentally controlled conditions
[Hradilek, 1972]. 1In normal circumstances, zenith distance measurements
have standard deviations of the order of 1 to 5 arc-seconds, yielding
accuracies in heights much larger than that quoted above [Heiskanen
and Moritz, 1967]. The astronomic quantities (¢, A, a) can be deter-
mined with standard deviation of the order of 0.3 arc-seconds. 1In
the North American geodetic networks, standard deviations of astronomic
latitude and longitude are not expected to be below 0.5 arc-seconds,
while in many determinations unknown systematic errors due to timing
and the use of various star catalogues are estimated to be 1.5 and
0.4 arc-seconds respectively [Merry, 1975]. Astronomic azimuths, used
in the Laplace equation (1-7) to control orientation of the network,

are subject to unknown errors due to a lack of knowledge of plumbline
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curvature, atmospheric refraction, and the use of yarious star
catalogues.

The observed quantities are projected, using a series of
reductions [Mueller, 1974(a)], to the reference ellipsoid for network
computations. To do this, the orthometric height (H), geoidal height
(N), and components of the astrogeodetic deflections of the vertical
(E, n) are required at each network point. These quantities are
éubject to errors, random and systematic, which propagate into the
reduced measurements. The problems with trigonometric heights have
already been given above. When ve;tical network points are coincident with
horizontal network points,'the more precise heights are utilized. However,
they too are subject to error, albeit of a lower magnitude (2.1.2).

N, £, and n are subject to errors due to those in the observations used
to compute them. Further, the data required for direct computation of
N, £, and n at each network point are not generally available, thus'
alternate procedures must be used. For example, using a least-squares
surface fitting technique [Vanicek and Merry, 1973], errors in geoidal
heights are estimated to be 2 m or greater [Merry, 1975].

The rigorous computation of an extensive terrestrial horizon-
tal geodetic network is a complex problem [Thomson and Chamberlain,
1975]. The distortions created due to non-rigorous adjustment
techniques, the lack of proper reduction procedures, and so on, in
the present North American horizontal geodetic network have been
studied [Thomson, 1970; Merry and Vanicek, 1973; Thomson et al.,

19741. 1In any new adjustment using only terrestrial data it is



33

expected that a rigorous solution would be computed. The resulting
coordinates (¢, A), and associated variance-covariance matrix, would

be free of errors of the magnitude in the present North American frame-
work.

However, such a solution would still contain unknown systeﬁ-
atic errors. While these may'not be detectable over limited regions,
they would be evident in a continental context. The reasons for the
existence of these errors are four-fold:

1) Unknown and unmodelled errors in direction, distance and zenith
distance measurements;

2) Unknown errors in the astronomic azimuths used for the control of
network orientation;

3) Errors in H, N, £, n propagate into the reduced observations;

4) The initial discordant geodetic coordinate §ystem results in the
errors of 3).

Using only terrestrial data, there appears to be no way to
completely eliminate, or at least model, all of the above. It is
expected that the standard deviation of any network point coordinates,
0¢’ N (m) , with respect to the initial point, resulting from a
rigorous computation process will be equal to or less than\[NASA, 1973]

o = 0.020 K2/3

6, A (2-1)

where K is the distance, in kilometres, of the point in question from the
initial point. The high precision geodimeter traverse surveys being
carried out in the United States of America [Meade, 1967] are expected

to yield more precise results. However, even these are expected to
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contain some residual systematic errors due to unknown errors in

distances and astronomic azimuths [NASA, 1973].

2.1.2 Vertical Geodetic Networks

In Canada and the United States of America, the aim is to
express the coordinates of points comprising the vertical geodetic net-
works as orthometric heights. The datum for the networks is the geoid.
The position of the datum is determined via the monitoring of mean sea-
level at several mareograph stations [McLellan, 1974). Such networks
should be established using precise spirit levellinq and measured
gravity [Krakiwsky and Mueller, 1966; Vanicek et al., 1972; Heiskanen
and Moritz, 1967]. The orthometric height differences, obtained through
appropriate computation procedures [Vanicek, 1972), are utilized in a
suitable adjustment model to yield a homogeneous set of vertical
coordinates (Hi) and associated variance-covariance matrix (ZH). As
with horizontal terrestrial networks, the establishment of a vertical
network is fraught with problems. Neglecting the current state of
affairs in the present North American vertical networks in which,
amongst other things normal gravity is used in place of measured
gravity [Nassar and Vanicek, 1975], there are several sources of
errors which are much more difficult to isolate and model.

The use of mean sea-level, as determined from tide-gauge
observations at various coastal locations, is a source of error. Mean
sea level is not completely coincident with the geoid, departing from

that equipotential surface by 1 to 2 metres under various conditions
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[Lisitzin and Pattulo, 1961; Lennon, 1974]. Further, there are
problems with the tide gauges themselves [Ku, 1970; Lennon, 1974].
All of this leads to the question of the stability of the definition
of the datum position, and the propagation of unknown errors into
the vertical network coordinates.

The orthometric height differences used in an adjustment
process are subject to several sources of error. The observed spirit-
levelled height differences are subjeét to errors due to thermal
effects on the level and the effects of atmospheric réfraqtion [Entin,
1959]. 1In reducing the measured height differences, the astronomic
effect, which can amount to 0.1 mm per kilometre,should be accounted
for [Holdahl, 1974].

Some of the above errors can be entirely eliminated. Reliable
estimates for other errors can be obtained and accounted for in the
‘ rigorous computation of a vertical network. There will be residual
erroré, however, that can not be removed, such as the unknown refraction
effects. These unknown errors will tend to affec£ the orientation of
the network with respect to its datum. While the resulting network
distortion (tilt) may be concealed over a small area, the effects may

be detectable and significant when working with a continental network.
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2.1.3 Three-Dimensional Terrestrial Geodetic Networks

Although it may presently be impractical to subject the
entire North American geodetic framework to a three-dimensional compu-
tation procedure, the advantages of such a system should not be
ignored. The major benefit to geodesists, geophysicists, and many
other users of geodetic neﬁwork data, is the complete definition in
space of each network point by the triplet (x, y, z)g or (¢, A, h) and
the associated variance-covariance matrix.

In establishing a three-dimensional network, all terrestrial
observations of horizontal directions, slope distances, and zenith
distances or spirit-levelled height differences, plus the astronomic
latitude, longitude, and azimuth are used in the network adjustment.
The mathemgtical models required for this are available [Hotine, 1969;
Heiskanen and Moritz, 1967] and have been tested [Fubara, 1972; Vincenty,
1973]). The advantages of such an approach are that observed quantities
do not have to be reduced to a reference ellipsoid, fewer astronomic
observations are required, the degrees of freedom of the solution is
increased by combining horizontal and vertical adjustments, and the
method as a whole is more rigorous and straightforward [Chovitz, 1974;
Vincenty, 1973; Fubara, 1972].

Opponents of three-dimensional terrestrial networks invariably
point to the inpracticality of the required spirit-levelling and the
problem of vertical refraction. As pointed out by Vincenty [1973],
using zenith distance measurements "the vertical component of spatial

positions can be determined with the same accuracy as the horizontal
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components, provided that we use suitable observational procedures and
a sound theoretical approach". Evidence of this is given by results
in which the vertical coordinates, determined in a three-dimensional
adjustment, agreed with spirit levelled heights to within 2.2 cm
[Hradilek, 1972].

The basic problem iﬁ North America is that the networks have
not been designed or observed with an eventual three-dimensional system
in mind. Only 2% of the horizontal network points are coincident with
vertical network points and only 10% of the former have measured
zenith distances, many of which are of questionable accuracy [Chovitz,
1974]. An exception to this are the precise geodimeter traverses in the
United States of America [Meade, 1967] in which the observations
required for a three-dimensional network adjustment are available.

In order to make full use of the three-~dimensional satellite
networks in North America (2.2), a set of homogeneous three-dimensional
terrestrial network coordinates for points coincident with Satellite
network points is desirable. This can be easily achieved by combining
readjusted horizontal and vertical network coordinates and geoidal
heights. The ellipsoidal heights are obtained by the addition of

orthometric and geoidal heights and the variance-covariance matrix by
L, = +L_, (2-2)

where ZH and EN are the variance-covariance matrices of the readjusted
orthometric heights and recomputed geoidal heights respectively. The

result of this is the set of coordinates (¢i, A

i hi), with a variance-

covariance matrix Z¢Ah in which there is no correlation between the
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horizontal and vertical components. When Cartesian coordinates

(xi. Y.

i zi)G are required, they are computed using (1-2). The asso-

ciated variance-covariance matrix, Zx _— is computed using the

covariance law by

Zx vy z = C Z¢ X h c . (2-3)

The transformation matrix C is composed of 3x3 submatrices, Ci' of the

form
g Ca—
9x, 90X, 09X,
i i i
3¢. dA., O9h,
i i i
C., = BYi 3Yi 3Yi (2-4)
i 3¢, 93X, 3h, '
i i i
Bzi Bzi 3z
3¢i axi Bhi
- -
_ . o .
(Mi+hi)51n ¢icos Ai (Ni+hi)cos ¢i31n Ai cos ¢icos Ai
1. . . N .
Ci (Mi+hi)51n ¢i81n Xi (Ni+hi)cos ¢i cos)\i cos ¢i51n Ai '
(Mi+hi) cos ¢i 0 sin ¢i
(2-5)

where Mi Is the meridian radius of curvature of the reference ellipsoid.

The aforementioned approach is not intended to replace an
eventual rigorous three-dimensional terrestrial geodetic network
adjustment. It is, however, a rigorous procedure to obtain three-
dimensional terrestrial coordinates, although the model is incomplete
in that the statistical covariance between horizontal and vertical

components is not present.
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Three-dimensional networks are subject to many of the
same unknown errors as those in the classical geodetic networks. The
only ones that are eliminated in a three-dimensional adjustment are
those attributable to the reduction of observations to their respective
datums. If the procedure outlined above is used, all of the errors
previously described (2.1.1, 2.1.2) will be present to cause

unknown orientation and scale errors in the network.

2.2 Satellite Geodetic Networks

The methods of analysis of observations of artificial earth
satellites, for the purpose of computing terrestrial positions, can
be placed in two general categories: geometric and dynamic.

In a geometric analysis, the satellite is used strictly
as a high elevation active or passive target. A satellite position
at any instant of time is treated as an unknown sét of parameters,
independent of all other positions, to be determined on the basis
of observations made at that instant. Computations for this
approach are not subject to errors in the adopted force field such
as uncertainties in the earth's gravity field, atmospheric drag,
radiation pressure, and tidal effects. Tracking station coordinates,
computed using the geometric method, are subject to errors due to
uncertainties in the effects of tides, crustal motion, and polar
motion. The origin of the datum of the coordinated terrestrial

points is dependent on definition from external sources.
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The orientation of the Cartesian axes, and the scale of the system,
are dependent on the observing techniques employed. For example, an
optical network has to be given scale from some external source while
the orientation of the datum axes is inherent in the observed spatial
directions measured with respect to a star background. On the other
hand, a range network provides'no information on the orientation of
the reference frame. The observations generally used in geometric
solutions are those of simultaneous spatial directions obtained by
photographing the satellite against the background of the stars, and
simultaneous satellite ranges using electronic range and laser range
equipment;

In a dynamic analysis, the satellite is considered subject
to the forces affecting its motion, thus successive satellite positions
are functionally related. Dynamic methods are considered to be-
statistically stronger than geometric methods because of the vast
increase in the number of degrees of freedom in the former arising
from the reduction of the number of unknowns required to define
satellite positions over a certain time span. This procedure is,
however, also subjéct to errors due to uncertainties in the effects
of tides, crustal movement and polar motion. The origin of the datum of
the resulting three-dimensional satellite network is the earth's
centre of gravity. This'is achieved by setting the first degree
gravity field coefficients, used in orbit computations, to zero.

The direction of the X-axis is defined using external information.

The orientation of the Z-axis may be defined in the dynamic analysis.
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However, in most solutions, this is usually carried out using a com-
bination of satellite determined and terrestrial data. The source of
scale for dynamic solutions is primarily the earth's gravitational
constant. However, in the case of electronic range and range-
difference and laser range observing systems, the adopted value of
the velocity of light and the earth's gravitational constant are used
to introduce scale.

In addition there are a variety of methods that are
derived directly from the aforementioned such as quasi-geometric, semi-
dynamic, short-arc, and translocation. These are sometimes used to
gain some benefits from the general methods. In many instances, a
combination of several techniques are used in a simultaneous solution
for terrestrial station positions and other geodetic parameters.

There have been several tens of satellite geodetic networks
established throughout the world to serve various functions. 1In
recent years, several satellite solutions for terrestrial station
coordinates have been completed. BAmongst these are the geometric
WN-12 and WN-14 solutions [Mueller, 1974 (b)], the Doppler dynamic
solution NWL-9D (Anderle, 1974 (b)], and the World Geometric Satellite
Triangulation (BC-4) Network [Schmid, 1974]. Of greater importance
to the present situation in North America are the Canadian and
American Doppler networks and the North American densification of
the BC-4 global network. The stated role of these latter networks is
the support of the redefinition of the North American
datum and terrestrial geodetic networks [Schmid, 1970;
McLellan, 1974; Strange et al., 1975]. For this reason, the establish-

ment of these networks are analysed in more detail (2.2.1, 2.2.2).
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2.2.1 North American Densification of the World Geometric

Satellite Triangulation (BC-4) Network

The results of the completed World Satellite Triangulation
(BC-4) Network were published in late 1974 [Schmid, 1974]. The mean
positional error of the forty-five stations is 4.5 m (lo). The
twenty-three station North American Densification (Figure 2-1) of the
global network was completed early in 1975 [Pope, 1975]. The solution
of the densification network was carried out independent of the world
net solution, although there are six common stations between the two
of them. The reduction of observations and the adjustment of the
latter network Qere done in the same manner as for the world network
[Pope, 1975].

The datum of the North American Densification Network is a
set of near-geocentric Cartesian axes. The Z-axis was made parallel
to the mean rotation axis of the earth for a certain epoch (CIO) by
virtue of the orientation of the interpolated satellite directions.
The orientation of the X-axis (longitude origin) and position of the
origin were determined by assigning near-geocentric coordinates to
one station in the network. A comparison of the World BC-4 Network
reference frame with that of the WN-14 Global Satellite Results
[Mueller, 1974 (b)] indicates that they are separated by a 14 m
translation vector, and that the two systems are rotated by OV1l in
longitude with respect to each other. In a similar test, this time .
with respect to the Doppler NWL-9D system, the translation vector BC-4
to NWL9-D was found to be 30 m and the difference in X-axis

orientation 0Y61 [Schmid, 1974].
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North American Densification of the World Geometric
Satellite Triangulation (BC-4) Network
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Now, the sources of error in the BC-4 network are examined.
The principle of satellite triangulation is to combine spatial
directions to satellites and one or more spatial distance measurements
in a three-dimensional triangulation adjustment. In the network
being discussed here, the directions, expressed in terms of right-
ascension and declination were obtained, via a complex procedure, from
photographs of satellites against a star background. The required
spatial distances were determined from precise terrestrial traverses.
The standard deviation of such a spatial direction is estimated to be
0.24 arc-seconds [Schmid, 1972; Schmid, 1974], while the two North
American base lines have standard deviations of 3.53 m and 1.59 m
over distances of 3.5 x ;Osm and 1.4 x 106m respectively [Schmid, 1974].
There are several sources of errors in the observations.
The terrestrially measured base lines are subject to the errors found
in any terrestrial network (2.1). The direction measurements, which
make up the greatest percentage of observations, have error sources
that may be summarized as being dependent on [Schmid, 1965}
(i) the comparator measurements of stars and satellite images;
(ii) the star catalogue data;
(iii) the time determination associated with star and satellite image
exposures;
(iv) atmospheric scintillation;
(v) emulsion distortion occurring during development.
The positional accuracy resulting from rigorous satellite

triangulation is indepdendent of station location [Schmid, 1965].
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Internal and external consistency checks have been carried out with
the global BC-4 results. 1In one internal test, the computed spatial
distances from the adjusted network (one fixed point, one constrained
base line) were compéred to precisely determined terrestrial spatial
distances. The total distance difference for the six lines was 9.16 m
in a total distance of 17.5 x 106m, or 1.9 ppm [Schmid, 1974].
External checks showed that the network is scaled 2 ppm smaller than
the Doppler NWL-9D solution [Schmid, 1974], and 2.3 ppm smaller than
the WN-14 solution [Mueller, 1974(b)].

Although there are possibilities of unknown systematic errors
in the global BC-4 network, Schmid [1974] stated "error theoretical
investigations indicate that the result, derived in principle by inter-
polation into the astronomical right ascension-declination system, is
essentially free of systematic errors”. Since the North American
Densification Network was established by the same procedures, it is
logical to assume that the aforementioned statement applies to this
network as well. It was expected that the three-dimensional positions
of the Densification could be determined with an accuracy of 3 m to
4 m in all components [Schmid, 1970]. The final results yielded mean
standard deviations of 3.4 m, 4.2 m, and 4.7 m in the X, Y and 2
components respectively. Computed spatial distances, azimuths, and
vertical angles, on lines .83 x 106_m and greater in length, have
standard deviations of the order of 5.5 m, 0.8 arc-seconds, and 1.0

arc-seconds respectively [Pope, 1975].
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2.2.2 North American Doppler Networks

The geodetic Doppler networks in Canada and the United
States are expected to contain a total of 350 points upon completion.
In Canada, Doppler points have been established at intervals of 250 km
to 500 km, and by the end of 1974 had numbered 76 (Figure 2-2). These
networks are to be used in the redefinition of the North American
horizontal terrestrial geodetic networks [McLellan, 1974; Strange et al.,
1975].

The nominal reference frame for the Doppler network is the
Average Terrestrial Coordinate System. Studies have indicated that
the origin is within 1 m of the geocentre and that the primary pole
(Z-axis) is oriented such that it is within 5 m, or 0.15 arc-seconds,
of the CIO ([Anderle, 1974(b)]. The errors in position and orientation
are largely due to unknown errors in the coefficients used to
represent the earth's gravity field [Anderle, 1974(b)]}. The correct
orientation of the longitude origin (X-axis) has not been resolved.
Comparisons with other satellite network reference frames have
yielded relative longitude rotations of up to 1.1 arc seconds (34 m
on the equator) [Mueller, 1974(b)].

The observations being used in the establishment of these
networks are Doppler shift measurements of signals emitted by
satellites of the United States Navy Navigation system. Using
geodetic receivers and a precise ephemeris, recent studies have shown
that three-dimensional coordinates of points can be determined with an

accuracy (lo) of 1 m or less in all three components [Kouba, 1975;
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Hothem, 1975]. The Doppler measurements are subject to several

sources of errors. Typically, the random error in the measurement of
a range difference is in the order of 10 cm [Anderle, 1974(b)]. The
main sources of observation errors are due to instrument noise, timing,
and ionospheric and tropospheric refraction. In the computation of
coordinates, several effects must be accouﬁted for in order to produce
precise positions. These include orbit determinatioﬁ uncertainties,
data rejection criteria, and the direction of satellite motion

[Kouba, 1975; Hothem, 1975]. The methods used for position computation
are such that several of the unknown errors (orbital biases, timing,
unknown tropospheric refraction) are modelled and solved for simultan-
eously with the position determination [e.g. Brown, 1970; Kouba and
Boal, 1975; Wells, 1974}.

The internal and external consistency of the Doppler networks
have been investigated. For example, a Doppler network in Atlantic
Canéda was found to have an RMS standard deviation of O.9Am.
This is compared to 1.2 m and 6.7 m for readjusted terrestrial and
preliminary Geometric Satellite Triangulation in the same area [Wells
et al., 1974]. The scale of the Doppler network in the United States
has been tested against some external standards. When Doppler network
distances were compared to four VLBI distances (0.8 x 106m to 5.0 x 106 m
in length), the maximum difference (Doppler minus VLBI) was 5.1 m.
After scaling down the Doppler distances by 1 ppm, the maximum
difference was 2.1 m [Strange et al., 19751.

As with Satellite Triangulation, the accuracy of a Doppler

network point is not dependent on terrestrial position. Although
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many solutions yield only point positions with no correlation between
neﬁwork points, a multistation solution, with . a full covariance
matrix, is possible (Kouba and Boal, 1975]. This type of solution
yields a homogeneous Doppler network in which coordinate standard

deviations are in the order of 1 m or less.



3. GENERAL CONCEPTS REGARDING THE COMBINATION OF GEODETIC NETWORKS

The problem of the redefinition of the North American geodetic
networks and the existence of several satellite networks on the cont-
inent requires that some guidance be available to indicate how to use
éll available data to solve the aforementioned problems. In view of
this, a general flow chart for the study of the problem of network
combinations has been devised (Figure 3-1) [Krakiwsky and Thomson,
1974]. Investigations involving each of the elements and comple-
tion of the flow is felt to constitute a logical approach to this
study.

The reasons for the combination of terrestrial and satellite
networks are given in 3.1 in the context of how the satellite network
data can be used to supplement classical terrestrial data in the
solution of problems related to the latter networks. A set of parame-
ters by which to classify the mathematical models, in the general
sense, is given in 3.2. The classifications presented are used as
the basis for the separation of the various combination models given

in this report.
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3.1 Rationale

Satellite networks provide new and independent sources of
data. Whether or not this data will in fact yield a significant con-
tribution to the solution of terrestrial network problems is dependent
on factors such as the accuracy and homogeneity of the satellite net-
work data and the mathematical model employed in the combination
procedure.

Geodetic datums for terrestrial networks are established
independent of their networks (1.1). The terrestrial networks are
intricately tied to their respective datums, but are in fact separate
entities (2.1). The datum of satellite networks are implied via

‘various phenomena such as the physics of the model used, the observa-
tions used, and the estimation process (2.2). 1In this case, the
coordinates of network points can be used to recover the position and
orientation of the datum with respect to some other reference frame.

Due to differences in the establishment of satellite and terrestrial
network datums, their origins will generally not be coincident nor

will their reference frame axes be parallel. 1In order to be able to
use data from one network as observables in the other, one must use
only that data which is invariant of the coordinate system (spatial
angles and spatial distances) or the datum differences must be modelled.

Datum transformation parameters can be solved for in the
combination of satellite and terrestrial networks. 1In cases where
the satellite network is the result of dynamic analyses of satellite

observations, the data can be used to assist in the positioning and
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orienting of the terrestrial network datum with respect to the Average
Terrestrial coordinate system. Further, if the satéllite network is
one of global extent, it can be used to relate several regional
terrestrial datums.

Satellite networks are inherently three-dimensional. They
are comparatively free of systematic errors and the relative accuracy
of station coordinates are not dependent on station separation (2.2).
Due to the sequential nature of the establishment of terrestrial
geodetic networks; the relative standard errors of coordinates increases
with interstation distance. There are many unresolved errors in
terrestrial networks as a result of misoriented datums, and scale and
orientation problems in the networks. Satellite data can serve to
strengthen terrestrial networks.

Good quality satellite network data can be used in a terres-
trial network in place of further terrestrial observables. For
example, the older horizontal networks in North America had only
limited numbers of observed base lines and astronomic azimuths for
scale and control of orientation of the network. In addition to
adding scale and orientation control, the use of the satellite network
data in a terrestrial network adjustment will constrain the usual
build-up of random and systematic errors. Intuitively, the result
should be a more internally consistent terrestrial network.

Combination models in which terrestrial network systematic
errors in scale and orientation are modelled are available. These
types of mathematical models do not treat individual systematic
errors of terrestrial observables. Their function is to model, in a

mean sense, the overall effects in a few parameters.
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In summary, the main reasons for combining satellite and
terrestrial geodetic networks can be given as:
(1) independent source of reliable data;
(ii) strengthening of classical terrestrial networks;
(iii) control of or modelling and removal of systematic errors in
terrestrial networks;

(iv) relating various terrestrial and satellite datums.

3.2 Classification of Mathematical Models

The alternative procedures for the combination of satellite
and terrestrial geodetic networks can be divided into two broad groups:
(1) those in which the datum transformation parameters are considered

known;

(ii) those which treat the datum transformation parameters as unknowns
to be solved for in the combination solution.

Within each of the aforementioned groups, there are four classification

parameters used. They are the dimensionality of the models, the type

of observables required, the parameterization involved in any particular

model, and the estimation procedure used to solve the model.

Due to the traditional splitting of terrestrial geodetic networks,
combination models are available that reflect the division. This means
that the three-dimensional satellite data has to be split also. There
are three common types of models - one, two, and three-dimensional.

Table 3-1 is structured around the aforementioned divisions.
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Several types of observables are used when combining satellite and
terrestrial geodetic networks. One may use all of the original obser-
vables from both networks, or quasi-observables from one and the
original observations from the other (Bursa; Table 3-1). Still other
procedures require quasi-observables from two or more satellite and
terrestrial networks.

The unknown parameters in any combination model are important
in its use and the interpretation of results. Some models contain no
additional unknown parameters due to the combination process (Anderle, Meade;
Table 3-1). Others contain unknown datum transformation parameters
(Bursa, Wells and Vanicek, Tscherning, Mueller, Lambeck; Table 3-1),
and still others contain these plus parameters to model unknown errors
in one network (Hotine, Krakiwsky and Thomson; Table 3-1).

The estimation procedures vary from one mathematical model
to the othef. In many cases the estimation technique used could be
replaced by another method to yield the same results. Some investiga-
tions require only certain results, thus very simple estimation tech-
niques are employed.

Many studies of the combination of terrestrial and satellite
geodetic networks have been completed. Each of these have employed
only one specific mathematical model. In most instances, little
attention has been paid to whether or not certain models should have
been used. As will be shown later in this report, some of the

accepted combination procedures have been improperly used.



Investi- Datum Dimen- No. of Estimation
gator (s) Transfor- | sionality Observables Unknown Procedure Remarks
mation Parameters
Parameters
Bursa Unknown 3 Quasi-observables 3 rotations Least-Squares | Terrestrial network
(1967] from terrestrial Parametric direction cosines
networks Adjustment computed from geode-
tic coordinates;
those from satellite
network obtained from
optical observations
directly.
Anderle Known 2 Quasi-observables 0] Least-Squares | Terrestrial network
[1974c]) from terrestrial Parametric measurements computed
network; weighted Adjustment from precise geodi-
Doppler coordi- meter traverses.
nates
Wells and |Unknown 3 Quasi-observables 3 translation| Least-Squares | Network-coordinates
Vanicek from both components Parametric used as observables;
[1975] satellite and 4 rotations Adjustment data from several
terrestrial 1 scale datums is used in
networks difference a solution.

Classification of Mathematical Models

Table 3-1.
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Investi- Datum Dimen- No. of Estimation
gator(s) Transfor- sionality Observables Unknown Procedure Remarks
mation Parameters
Parameters

Tscherning| Unknown 3 Quasi-observables 3 translation | Least-Squares | Terrestrial observables

[1975] from both sat- components Collocation included free-air
ellite and gravity anomalies,
terrestrial deflections of the ver-
networks plus tical and height
some terrestrial anomalies.
observables

Mueller Unknown 3 Quasi-observables 3 rotations Least~Squares | Translation compon-

et al (coordinates) 1 scale Parametric ents were considered

{1970] from both sat- difference Adjustment to be known.
ellite and
terrestrial
networks

Merry Known 1 Quasi-observables 1 geoidal Least-Squares | Geoidal height deter-

{1975] from both sat- height Estimation mined from satellite

' ellite and ellipsoidal height
terrestrial and terrestrial ortho-
networks metric height used as
constraints in geoid
determination.

Lambeck Unknown 3 Quasi-observables 3 translation | Least-Squares | Model yields

(1971] from both sat- components Combined adjusted coordinates
ellite and 3 rotations Adjustment of common network
terrestrial 1 scale points.
networks difference

Table 3-1 (cont'd)

LS



Investi- Datum Dimen~ I No. of - Estimation
gator (s) Transforma- sionality Observables Unknown Procedure Remarks
tion Parameters
Parameters

Meade Known 2 Quasi-observables 0 Least-Squares | Distances and

(19741 from satellite Parametric azimuths computed
network Adjustment from Doppler net-

work coordinates.

Hotine Unknown 3 Quasi-observables 3 translation | Least-Squares | 2 rotations and

[1969] from both sat- components Combined scale difference
ellite and 3 rotations Adjustment are used to model
terrestrial 2 orientation overall systematic
networks parameters errors in terrestrial

1 scale diff. network.

Krakiwsky Unknown 3 Quasi-observables 3 translation | Least-Squares | 3 rotations and scale

and from both sat- components Combined difference are used

Thomson ellite and 6 rotations Adjustment to model overall

[1974] terrestrial 1 scale systematic errors
networks difference in terrestrial

network.

Table 3-1 (cont'd)
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SECTION 1T

COMBTNAT LON PROCEDURES WHEN DATUM

TRANSFORMATION PARAMETLRS ARE KNOWN



4. THREE-DIMENSIONAL MODELS

The natural approach to utilizing satellite data is in a three-
dimensional model. With respect to present terrestrial geodetic networks
in North America, this is not possible. However, with a view towards
the future design of terrestrial networks, it is important to investi-
gate how satellite network data can be used in this mode.

There are several approaches to entering the satellite data
into the solution of a terrestrial network. One can use the original
observations - directions, ranges, range differences - or some quasi-
observable such as direction cosines derived from this data. Some inves-
tigators have opted for this approach in their investigations [Bursa,
1967]. However, the easiest approach is to take the results of the
completed satellite network - coordinates and associated variance-
covariance matrix - and use this information, or some quasi-observables
derived from it, in the combination solution with terrestrial network
data.

Since the datum transformation parameters are assumed to be
known in this instance, the satellite network data can be used in

several ways. For example, one can use the data in a simple model to

60
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parameterize unknown systematic errors in a terrestrial network. The
data can be added to a network adjustment to supplement the terrestrial
observables and to control the build-up of random and systematic errors.

Several estimation procedures may be cmployed. For reasonsof
expediency, cofficiency, and case of application, the mephod of least
squares 1is suggested here. Of course, different situations may requife
either a batch or stepwise approach. Within these bounds, one is free
to choose a parametric, combincd, collocation, or any other well known
least squares procedure.

Obviously, many satellite-terrestrial network combination
models within the stated limitations are possible (known datum trans-
formation parameters, three-dimensional models) . Given here are several
models which are considered to be practically feasible at the present

time.

4.1 A Parameterization of Scale and Orientation Errors in a Terrestrial

Network
The data required for the model are the Cartesian coordinates
of both the satellite (Xi, Yi' Zi) and terrestrial (xi, Yy zi) networks.
These coordinates are assumed to be the results of independent network
adjustments so that each set of coordinates has associated variance-
covariance matrices ZXYZ and nyz. The satellite coordinates and their
variance~covariance matrix are transformed to the terrestrial network

coordinate system using the known datum transformation parameters (xo,

Yo zo, ex, ey, ez) using the relationship (1-9).
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The combination model is given by (Figure 4-1)

> > + e > 3
F = (rk)G (1+x) R(rki) - (pi)G =0 (4-1)

G

> . : L T .
where pi 1s the transformed position vectcr (xi, Yi' Zi)G cf the satellite

> -»
point, o, (= pk) is the porition vector of the terrestrial network

R . T . . L.
initial point (xk, yk, Zk)G' rki 15 the terrestrial network position

. L . . . . i
vector with respect to the initial point (xkl, ykl, Zkl) K 1s an

GI
unknown scale difference to be estimated, and R represents'a product of

three rotation matrices containing unknown network crienteticn parameters

to be estimated. The matrix R is given by
R = Rl(wx), R2(¢y). R3(wx) (4-2)

where Rl’ R2, R3 are the well known rotation matrices ((1-11), (1-12),

(1-13)), and wx, wy' wz are small rotations about the x, y, and z axes
respectively of a local geodetic coordinate system at the initial point
k, whose axes are parallel to those of the Geodetic system (Figure 4-1).

Assuming differentially small values for wx' wy' wz, and neglecting

higher than first order terms, (4-2) reduces to

Lo, ey
R=|-y 1 |- (4-3)
b, b, 1

The reasoning for this model is as follows. First, it is
assumed that after transformation, the differences in the coordinates
of common network points are statistically significant. Second, it is
presumed that the incompatability is caused by the presence of unknown

systematic errors in the terrestrial network. Finally,
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the unknown. errors are parametericed by four paramceters - one scalo
difference and three rotations.
The solution to this model can be obtained using a combined

method least squares estimation procedure, expressed functionally as

F(X, L) = O, (4-4)
where X represents the unknown parameters (scale and orientation) and L
the observables (coordinates of common network points). A linearization

of the non-linear model (4-1) yields the matrix expression

AX + BV + W° =0 , (4-5)
in which A and B are design matrices, X is an estimate of the unknown

~

. o .
parameters, V the residuals of the observables, and W the misclosure

vector.
Expansion of (4-1) gives
Fx xk L lbz -wy xki Xi
= 1+ - - . -
Fy Yy +(1+x) wz 1 wx Yy i Yi (4-06)
F - .
z % g L SR Zyi %il o

. C o

Now, assuming that the initial values of the unknown parameters (X ) are
. . . o .

zero, the design matrices, A and B, and misclosure vector, W , are given

by

0 -z Y.

| )
_ ki ki | ki
F
A==z . 0 x . | y.l, (4-7)
X k1 ki | k1
Vi % O ! 2y
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1 o o |-1 o o
= |
3F
= -lo 1 o o -1 o] , (4-8)
BT :
o 0o 1 1 0 o0 -1
xk + xki - Xl
w=rix>, L) =]y +y.-Y (4-9)
’ k ki i ’
+ -—
Zk zki Zl

where L are the observed values of the observables. The solution to

(4-5) is given by ([Kouba, 1970; Krakiwsky, 1975]

: T -1 -1 -1
X = -(a (BZLBT) LN (BZLBT) W, (4-10)
- T
v=ELBXK , (4-11)
L .
A _ (a7 T -1 -1 _
0% = (A (BZLB ) A) , (4-12)
- T ST -1 . T -1 T . T -1 _.
oL = (XL XLB ((BLLB ) (BXLB ) AOLA (B B") ’B“L) '
(4-13)
where the correlate vector, K is given by
K = -(BZLBT)—l (AX + W) . (4-14)

In the above equations, ZL is the variance-covariance matrix of the
observables, the coordinates (satellite XXYZ and terrestrial nyz) of

the common network points. Qi and Qi are the weight coefficient matrices
of the estimated parameters and agjusted observables respectively. The

associated variance-covariance matrices are given by

'3

2
9, Qi ’ (4-15)
and

£2 = ¢° o- , (4-1¢)
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2 . . . -
where ¢ is the a priori variance factor. The least squares estimate of
o

the unknown paramcters is given by

X =x7 +x, (4-17)
and the adjusted obscrvables (coordinates) by

L=1L+V. (4-18)

This model, and its proposed solution, is similar to one in
which the datum transformation parameters are considered to be unknown
(7.2). Variations on this theme are possible. If the terrestrial
coordinates are expressed as ellipsoidal (¢, A, h), one may wish to
express the orientation unknowns in terms of an azimuth roﬁation (da),
and prime vertical (du) and meridian (dv) tilts about the Local Geodetic
coordinate system at k. As shown in (7.3), the results are equivalent

to using wx, wy, and wz as has been presented here.

4.2 Satellite Coordinates as Weighted Parameters

This is the most straightforward and simple method to combine
geodetic networks. The satellite network data is used directly in a
three-dimensional terrestrial network adjustment, such as that proposed
by Vincenty [1973]. This model fequires the adjusted satellite network
coordinates and associated variance-covariance matrix transformed to
the desired coordinate system, and the usual terrestrial observables.

Assuming that a least squares parametric estimation procedure

is used for the network computation, given by
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F(X) =L , (4-19)
then the satellite network coordinates are used as initial approximate
coordinates in the formation of the design matrix A and misclosure vector
W. The usual matrix expression for the solution vector is given by

o T.-1 -1 T.-1
, 4-20
X = (A"Z_"A) AL "W ( )

-1 . . . : . s
where ZL is the weight matrix of the observables. However, in this case
there is information regarding the a priori coordinates, which is
characterised by its variance-covariance matrix XXYZ' The solution vec-

tor 1s now given by

Tolay™t aTs 7y L (4-21)
L L

~ _l
= - +A
X (ZXYZ
The final network coordinates are given by
X=X + X , ) (4-22)

and the adjusted terrestrial observables by

L

I
o
+
<

(4-23)

where

V=RAK + W . (4-24)

1

The variance-covariance matrix of the adjusted network coordinates is
computed as

2 -1 To-1. -1
I— = + A
xvz = %o Txyz YR IL W

(4-25)
Through equations (4-21) and (4-25) it is easily seen how the contribu-
tion of the satellite network coordinates are entered into the solution

of the problem. It should be noted that this effect must also be

accounted for in the estimated variance factor (02) by
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~ XTZ)—QI(ZX + VTE;lV ‘
UO = , (4-206)

n-u-n
X

where n is the number of unknown parameters in the network (coordinates
of every point, refraction cocfficient, etc.), u represents the number
of observation cquations, and nx the number of known satellite determined
coordinates in the network.

This model has several effects on the computation of the network
and its results. First, the knowledge of the coordinates reduces the
number of unknowns in the estimation procedure. If the standard devia-
tions of the satellite determined network coordinates are less than
those of the terrestrial network as computed using only terrestrial
data, the combination of satellite and terrestrial data will constrain
the solution to conform with the weighted satellite coordinate data.

The effect of the constraints is to prevent the build-up of random and
systematic errors in the network . The problem is that if the

errors are large, they will propagate into the residuals of the
terrestrial observables. Existence of problems like this will

show up in a statistical analysis of the results of the network
adjustment.

Such an analysis may lead to an attempt fo model suspected
systematic errors in the terrestrial observables. This may include
one or more unknown parameters in scale and orientation. However,
since this type of modeling is not dependent on th= use of satellite
network data, it is not covered herein.

When using this model for combining satelli;e and terrestrial

networks, one must take care with the "fixing" of a terrestrial initial
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point. It is necessary to realize that the variance-covariance matrix
of the satellite network points gives an estimate of the accuracy of
the network coordinates with respect to the datum origin. If one
satellite point (;k) is chosen to be fixed, the variance-covariance
matrix nyz must be altered to reflect the fact that the satellite
coordinates will have variances, and covariance amongst them, with
respect to the fixed point. .This is done using the equation

> >

_ 2 (4-27)
ik T T %k

and the covariance law to yield a matrix Z(Ax Ay Az)-k by
i

L cx(xyz)cT (4-28)
(Ax Ay Az)ik ik
in which
-1 o0 o : 1 0 O
!
G=f0 -1 o } o 1 o |, (4-29)
| -
.o o -1 | o o 1
and
x(x 2) | cov( 2)
5 = Y2hix | XYz) ik (4-29a)
(xyz) ) | )
COV(x 20 | X(x 2)
| Y2ki 1 Y27 ik

This procedure propagates the errors of the fixed satellite point into
all others rather than simply, and incorrectly, discarding it.

An alternative to the above is to accept the satellite net-
work datum as the one to be used and let the weighted satellite
network coordinates define it in the network adjuétment process. In
this case, no terrestrial points can be held fixed. This is considered
to be a logical solution due to the nature and relationship

of and between satellite networks and their datums.
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4.3 Satellite Coordinate Diffcrences as Observables

As in the case of using satellite network coordinates as
weighted parameters, the satellite coordinates arc first transformed,
using the known datum transformation parameters, to the desired

coordinate system. Then, observation equations of the form

X.. = X. - X,
ij 3 i

Y.. =Y, - Y, (4-30)
ij j i

Z..=12. - 2.
ij j i

or equivalently

¢ij = ¢i Y

R S (4-31)
ij j i

h.., = h. - h,
ij J i

are formed. These equations are used to compute elements of the design
matrix (A) and misclosure vector (W). The associated variance-covariance

matrix of the observations is given by the covariance law as

T
ZA = GZXYZ G, (4-32)
where the elements of G are given by
1 0o o |=-1 o0 O
I
G=1{0 1 o0 | 0o -1 o0o]. (4-33)
l
0 0 1 | o 0 -1

The matrix ZA then becomes part of the variance-covariance matrix of
the observables. The network can be solved using a simple least

squares parametric estimation.
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The major drawback with this approach as compared to that
presented in 4.2 is the extra computational effort reguired tq enter
the same amount of satellite data into a terrestrial network adjustment.
In order to ggt all information into the solution, it is necessary to write
observation equations of the form (4-30) or (4-31) amongst all satellite
points. Then, the associated variance-covariance matrix must be
generated using (4-32). The comments given in 4.2 regarding the
constraints imposed on the terrestrial network apply here as well.
Another disadvantage of this procedure is that the s ' 2llite network

coordinates can not be used to define a datum.

4.4 Computed Spatial Distances, Azimuths, and Vertical Angles as

Observables
This model requires that the spatial distances, azimuths,
and vertical angles computed from the transformed satellite network
coordinates be entered as observables in the three-dimensional
terrestrial network computation procedure. The spatial distances are
given by

2,1/2

S.. = ((X.-X)2 + (Y.-Y) 2 + (z.-2.) (4-34)
J 1 J 1 J i

ij
The azimuth (aij) and vertical angle (Vij), expressed in the Local

Geodetic coordinate system at i, are given by [Krakiwsky and Thomson,

1974]

a = tan—l (iilo , (4-35)

ij ij
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Z. .
V.. = sin ¥ (=3 . (4-36)
i 5.

In (4-35) and (4-36), the coordinate differences (Xij' Yij' Zij) are
expressed in the Local Geodet ic Coordinate system.  For gencration
of the associated variance-covariance matrix, which requires the usc

of coordinate differences in the chosen Geodetic coordinate system,

the equation

— -
X.W -sin ¢. cos A, -sin ¢, sin A, cos ¢. X, .
iJ 1 i i 1 1 1]
Y. . = -sin A, cos A, 0 Y..|(4=-37)
1] 1 1 1]
L?ij oG cos ¢i cos Ai cos ¢i sin Ai sin ¢i_lh?iijc

must be used. This leads to the transformation matrix, GSaV' to be

used in the covariance law (4-32), given by

“‘45,j nsij osij [ nsjj as.j ;)sjj_'1
1 : 5 i ]
X, AY . 7. | aX. JY . 7.
1 1 1 I J 3 J
8ai. Baij aai;j | Baij aaij Baij
Ssav T | 3% Bv. 3z, | 3x. 3y. 3z, : (4-38)
i i i I J J J
BVi. BVi. BViA l BVi. BVi. BVi.
J J J l J J J
oX. Y. 97Z. . 9X. Y. 7.
L i i i l j j i

Obviously, this model inputs an equivalent amount of information as
compared to the previous two procedures (4.2 and 4.3) if distances,
azimuths, and vertical angles between all satellite network points are
used. Again, the major problem is the extra effort to be expended to

get the same results.
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Anderle [1974(c)l used a combination of this model and that
presented in (4.2) in combining portions of the United States Doppler
network and geodimeter traverses.  The Doppler coordinates werce usced
as weighted parameters, and distances, azimuths and vertical angles
were computed from geodimeter traverse data. The recommendations as
a result of this test were as follows:

"The North American Datum readjustment should be based upon
simultaneous adjustment of Doppler satellite and terrestrial
data ..... The vertical adjustment should be made prior

to or simultaneously with the horizontal adjustment in
order that the strength of the Doppler determinations of
absolute height can be used to prevent distortion of the
vertical datum at the edges or along spurs which would
transfer errors into the horizontal adjustment."”

It should be noted that a variation of this procedure 1is
possible in which knowledge of the datum transformation parameters
is not needed. Spatial distances and spatial angles amongst three-
dimensional network points are independent of any coordinate system.
Satellite network spatial distances are computed via (4-34), while
the spatial angle between any two satellite network interstation

vectors pij and‘piﬁ is given by

e
L
- 2
6.., = cos l(-—£3—~~ L
Jjig

) ' (4-39)

> >
851 15,

In the present;y used three-dimensional terrestrial network adjustments
[Vincenty, 1973; Fubara, 1972] the spatial angle data can not be
utilized. If changes were made to accommodate the use as observables
of both distances and spatial angles derived from the satellite net-

work, the effects on the terrestrial network would be similar.



5. TWO-DIMENSIONAL MODELS

While any two-dimensional approach to the combination of
satellite and terrestrial networks is not as desirable asvthe three-
dimensional procedures, there are some practical considerations
involved. In North America a three-dimensional approach is not
possible at pfesent due to the distribution of terrestrial data. It
is therefore necessary to eliminate the height component and associated
variances and covariances from the satellite network data to use the
latter in a horizontal terrestrial network adjustment.

The basic drawback of the two-dimensional procedures is the
partial loss of satellite network information. Covariance amongst the
horizontal (¢, A) and vertical (h) components of each network point,
and covariance between the horizontal coordinates of one point and
the height components of all other points, is not taken into account.

Three alternative two-dimensional procedures are presented.
They have been used in this and other studies to generate test results
and-are considered to be feasible two-dimensional combination
approaches. The assumptions are that proper datum transformations

are to be applied to work in the chosen Geodetic coordinate system,

74
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and that the terrestrial network computations are to be carried out

on the surface of a reference ellipsoid.

5.1 Satellite Coordinates as Weighted Parameters

The satellite network coordinates, coincident with the
horizontal terrestrial network points, are used as weighted parameters
in a least-squares parametric adjustment of the latter network.
Aséuhing that the computations will be carried ouﬁ in the chosen
Geodetic coordinate system, the satellite network coordinates and
associated variance-covariance matrix must be transformed to the
former system using the known transformation parameters.

The procedure to prepare the satellite network data is as
follows. First, compute (¢i, Ai, hi) from (Xi, Yi' Zi) (if required)

by the iterative procedure for hi and ¢i (Heiskanen and Moritz, 1967]

p = x2+ Y%, (5-1)
i i .
VA N¥*
_ i A
tan ¢i =3 (1 e N*+h) , (5-2)
i1
P
P e——— * . -
hi cos ¢. Nl (5-3)
1
Note that in the first iteration, one sets h = 0 so that
tan ¢, = gi (1-e3y71 | (5-4)

The longitude is given directly by

_ -1
Ai = tan (Yi/xi). (5-5)
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Alternately, one may use a closed form solution for the above as

suggested by M.K. Paul [1973]. After this, X¢ . h is computed using
r 1

the covariance law by

T
= T G -
Z¢ X h G XY , (5-6)
where for ecach point i
i A i . sin A, : o
] sin ¢i cos i ) sin ¢1 sin i cos ¢l
M. +h, M. +h. M. +h.
i i i i i i
sin Ai cos Ai
G =|- : 0 . (5-7)
*+h, . *+h, P
(Nl hl)cos ¢l (N1 l)cos ¢l
L-cos ¢, cos Ay cos ¢, sin A, sin ¢i_

The result of 6-6)is a fully populated variance-covariance matrix

E¢Ah whose elements, for each set of points i and j, are
[ )
o o o | o U o -W
% A, %) .n, | Wy Y %%.h
i'i i il | i*j i3 i
2
= -8
Loan = % .n. “\.n, ., | “h.o. %h. A Op n, | 7B
SR SIS S SR SE R 2 EES 1 I .
2
l o o o]
. A h
| ¢J ¢J j ¢J 3
cOvyi | Y%o.x. % 9 .h
| "33 J 33
l o g 02
| ¢.h A.h h,
L H J 3] 33 ]
. . .. . . . -1
This matrix, Z¢Ah (5-8), is inverted to yield a weight matrix, Z¢Xh'

pertaining to the satellite network coordinates. To be used in the

two dimensional terrestrial network adjustment, the rows and columns
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pertaining to the ellipsoidal height are rigorously eliminated during
the inversion process.

The idea of this model is to use satellite coordinates that
have an accuracy that will tend to constrain the usual build-up of
random and systematic errors in a terrestrial network. These errors
will now overflow into the residual and solution vectors. Unfortunately
if the residuals increase too much, the adjustment may not be
accepted as a result of some statistical testing (such as an analysis
of variance).

The two-dimensional model has been used in some studies of
the combination of North American horizontal terrestrial and Doppler
geodetic networks. In one United States study [Dracup, 1975], five
weighted* Doppler positions were used in a 1566 station network. The
results of several adjustments, with and without the Doppler network
data, were compared to see what the effects were on the network. 1In
his conclusions, Dracup {1975] stated

" ... geodesists have a powerful and accurate tool, in
the form of Doppler positions, for strengthening
existing networks and for establishing the fundamental
framework in those areas which are now devoid of
control, to which conventional geodetic networks may

be fitted. Although the inclusion of Doppler positions
cannot eliminate observational problems, there are
occasions where it might be possible to uncover poor
observations or network geometry not previously
suspected".

In a similar study [Chamberlain et al., 1976] weighted Doppler

positions helped to determine network scale differences of 2.3 ppm

* No information regarding the computation of Z-l was available.

dA
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when using geodimeter or tellurometer measurements, and an azimuth
orientation discrepancy of 0.5 arc-seconds. Further discussion
regarding some test results when using this procedure is given in
10.1.

As with the three-dimensional model of this type, variations
of it can be'imélemented. Fof example, the chosen terrestrial
geodetic coordinate system may be that of the satellite network
thus eliminating the need to transform the coordinates and their
variance-covariance matrix. Again, the argument of whether or not
to "fix" one point as a terrestrial network initial point enters
the situation. The steps to be taken, and the implications, are

the same as those given in 4.2.

5.2 Satellite Coordinate Differences as Observables

The steps outlined in 5.1 regarding the application of
transformation parameters to the satellite network coordinates and
their variance-covariance matrix must be carried out. Observation

equations of the form

¢ij = .¢j -4 (5-9)

Ao = AL - A,
ij j i

are computed. Weights of the quasi-observables are computed via the
covariance law in the same manner as described in 4.3. These weights

are added, in appropriate locations, to the weight matrix of observables,
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ZL’ to be used in the least-squares parametric adjuétment of the
terrestrial network.

This procedure adds ecquivalent information to the terrestrial
network as the method of weighted parameters as long as coordinate
differences amongst all network points are included. As with the
three-dimensional model of this type, the added quasi-observables will
constrain and strengthen the network. This can help to determine
weak points in the terrestrial network,.and add some scale and
orientation information.

The major drawback with this approach is the extra compu-

tational effort required to obtain the same results as those of 5.1.

5.3 Computed Distances and Azimuths as Observables

The major problem here is to compute the required ellip-
soidal distances and azimuths and their variance-covariance matrix.
The most rigorous approach is to compute the ellipsoidal coordinates
of the satellite network points (¢i, Ai) and their variance-covariance

matrix I Then, using rigorous ellipsoidal formulae [e.g. Bomford,

oA "
1971; Krakiwsky and Thomson, 1974], compute the geodetic distances

Sij and azimuths o amongst ali satellite network points. It should
be noted that the aij are geodetic, and not astronomic azimuths. This
means that they are not subjéct to computation-via the Laplace
equation (1-7). The quantities are then used in the formulation of

distance and azimuth observation equations for the least-squares

parametric terrestrial network adjustment.
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The associated variance-covariance matrix of the quasi-

observables, YN, 1s obtained via
v

5 o=G. %G, 5-11
Sa Sa ¢A “Sa . ( )

in which ¥ is obtained simply by eliminating from I (5-8) thosc

oA $Ah

elements that pertain to the cllipsoidal heights. The elements of GSa

are given adequately by using spherical approximations for Sij and ai.,

J
namely
S.. = RO (5-12)
1]
a,. = cot 1 (5-13)
ij
in which
R = (R +R. )/2 , . (5-14)
T ]

where R; and Ry are the Euler radii of curvature, and

-1 . . '
0 = cos (sin ¢i sin ¢j + cos ¢i cos ¢j cos (Xj—ki)), (5-15)

tan ¢j cos ¢i - sin ¢i cos (Aj—ki)

B = . (5-16)
sin (A.-\.)
j o1
GSa 1s computed by
(5S..  9S.. | 3S.. 93s.. |
ij ij ij ij
36, ax, } 3, 2
Gsa = l ’ (5-17)
. . aa, . 3u . . 3, .
ij ij | i3 ij
3¢, X, 30 . 3N,
| %% i ] %% j ]

where
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39S, . -R
1) . . .
_— = - - , -18
a¢i sin © (cos ¢i sin ¢j sin ¢i cos ¢j cos (Aj Ai)) (5-18)
'c)Si. -R
S~ “sin 0 (cos b; cos ¢ sin O = A) (5-19)
1
IS .. -k :
._—lJ :“_.—’-'— 5 -— . 3 - - {-
3¢j sin O (51n¢>i cos ¢j cos ¢i sin ¢jcos()\j Ai)) , (5-20)
L -R
S =5in 0 (-cos ¢ cos ¢ sin (A, = X)) . (5-21)
5 .
da, . 5 tan ¢.sin¢. cos ¢.cos (A.-X.)
5?1—3 =Sin‘-aij . . — =, (5-22)
i sin (A.-=X.)
j i
BaiA 5 sin (A.—Ai)sin ¢i
= L = —sin% J 5 (5-23)
i (sin (A,-X.))
J i
+ cos (Xj—Ai) (tan ¢i cos ¢i - sin ¢icos(k.-k.)) (5-23)
2
Baij sec ¢ijcos,¢i
a¢ = —Sin alé ‘ \ ) ) ’ (5-24)
] sin ( 57 i)
da. . sirf(A.-A.) siné, -
2) - —sin%x ( ] = J
A3 12 (sin (A.=A.))°
J 1
- cos{(A.-A.) (tan ¢. cos ¢. - sin ¢.cos (A.-X.))
j i 3 i i ). (5-25)

An alternative approach is to compute the spatial distances
and azimuths, in the geodetic coordinate system, amongst all network

points using (4-34) and (4-35) respectively. These computed quantities are
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then projected to the reference ellipsoid using rigorous methods fe.qg.
Bomford, 1971; Krakiwsky and Thomson, 1974}, noting that the nzjmgrhﬁ
need no correction for the deflection of the vertical. The trans-
formation matrix Ggu required for crror propagation is generated via

equations (4-34) and (4-35) to yicld

e

X. . Y. . Z,
- 4] - _ 13
S.. S.. S..
ij i) 1]
G*:
Sa
sin A.X. . -cos ¢.cos A.Y. . cos A.X. -sin ¢.sin A Y . cos ¢.Y ..
i7i9 i 1719 iij i i ij 1717
2 2
X, . + Y?. X?. + Y?. X?.+Y..
1] 1] 1] 1) 1] 1]
X Y. .
; ij ij Zi.
Sl Si g_l
| sin A . X,.+sin ¢.cos A.Y, . cos A.X..+sin ¢.sin A Y, . cos g
I i"ij i iij 1713 i iiy i
2 2
| X2, + v, X2+ v, 2 +v?
I ij ij ij ij i3 i
(5-26)

in which the coordinate differences (Xij' Y..., Zij) are expressed in

i)
the chosen Geodetic coordinate system. The variance-covariance matrix

is then given by

*
5 =G* I *T . (5~27)
Sa Sa XYZ Sa

This approach is based on the assumption that the projections of Sij
and aij are carried out without introducing any errors, and that the
distances and azimuths so deduced will not differ significantly from
the quantities computed using ellipsoidal coordinates in rigorous

ellipsoidal geodetic formulae. In some test computations (10.2) in

which satellite station separations of up to 1000 km exist, maximum
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differences in the distances and azimuths computed via the two afore-
mentioned procedures were found to be 0.29 m (0.3 ppm) and -0.842 arc-
seconds respectively.  The maximum difference in standard deviations
of the quasi-obscrvables, computed using Gsu>and Ggﬂ were found to be
-0.01 m for distances and -0.204 arc-seconds for azimuths.

The effects of this model in a terrestrial horizontal
geodetic network are the same as those of 5.1 and 5.2, as long as all
data is utilized. The extra computational effort over either of the
previous two alternatives is obvious.

Meade (1974] used this two-dimensional model in a combination
of portions of the United States terrestrial and Doppler geodetic net-
works. In two separate network adjustments, one controlled by
conventional terrestrial base lines and astronomic‘azimuths and the
other by azimuths and distances computed from four Doppler positioné,
he found mcan differences of 10 ppm in scale and 0.45 arc-scconds
in azimuth. Further investigations, using the aforementioned com-
parison of network adjustment results, brought to light an azimuth
discrepancy of 3 arc-seconds in a portion of the terrestrial network

[Dracup, 1975].



6. ONE DIMENSIONAL MODELS

As pointed out in 5, horizontal coordinates (4, ?) and thcir
variance-covariance matrix can boe casily extractad from thoe throee-
dimensional cartesian coordinates and associatod variance-covariance:
matrix of a satellite network.  Similarly, the height components  (h)
and theitr variance-covartance matrix can be split from the original
data. The objective here is to examine briefly the possibilitics of
utilizing this height data in combination with terrestrially detcrmined
height information.

Again, the loss of covariance can be detrimental to this type
of approach. Whether or not the discarded covariance between height
and horizontal coordinates 1s significant i dependent on the degreoe
of corrclation bhetween them.  This could only be detoermined throwg':
some numerical testing in which the same data 1s used for both a throo-
dimensional combination and then separate two-dimensional and one-

dimensional combinations.
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6.1 Vertical Networks and Geoidal Heights

The information used in the combination of satellite and

terrestrial height networks comes from the equation
h=H+N . (6-1)

The ellipsoidal height (h) is obtained directly from satellite
networks. Using known datum transformation parameters in equation (1-9),
the satellite network coordinates are transformed into the desired
geodetic coordinate system. Then, using the procedures outlined in
S.1, the satellite network coordinates (¢, A, h) and associated variance-
covariance matrix are computed. From these, the ellipsoidal heights
and variance-covariance matrix are extracted. In satellite networks
already completed, such as the North American Densification of the World
Geodetic Satellite Triangulation, the mean standard deviation of the
ellipsoidal height is of the order of 7 m [Pope, 1975]. The results
in Doppler networks are much better, yielding standard deviations for
h of 0.6 m to 1.6 m [Kouba, 1976(b)]. In a recent paper, Kouba [1976(a)].
has described a procedure termed "Doppler Levelling" by which height
differences between stations 50 km apart can be determined to 0.4 m
(1 o). Further, he proposes that with improvements in instrumentation
and error modelling Doppler Levelling will yield height differences
with standard deviations of 0.2 m or less for the previously mentioned
station separation.

The orthometric heights, H, of points in the North American
networks are determined as outlined in 2.1.2. Using the rule of thumb
given in 1.3, the standard deviation of the orthometric height difference

between stations 50 km apart would be of the order of 0.02 m. This is
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one order of magnitude better than the predicted results for clhipsoidal
height ditfterences using Doppler Level bing.,

There are several approaches to the computation of Lhe qgoeoid,
The results of some recent astrogravimetric geoid computations at the
University of New Brunswick indicate that the geoidal height difference
can be determined with a standard deviation of the order of 0.5 m for
stations 50 km apart {Merry, 1975]. This accuracy is of the same order
as those presently attainable for ellipsoidal height differences by
Doppler Levelling.

In combining terrestrial and satellite vertical networks
there are basically two possibilites Lo be congidered.  First, using
terrestrially determined orthometric hetghts and satellite determined
cllipsoidal heights (transformed to the desired geodetic coordinaters
system via known transformation parameters) (6-1) yields geoidal
heights. These geoidal heights, with ON = 0.5 m, can then be used as
constraints in geoid computations [Merry, 1975]. The second approacn
is to use geoidal heights combined with satellite network ellipsoidal
heights to vield orthometric heights. The resulting orthometric heignh=:
with standard deviations of the order of 0.5 m, could be used for thc

reduction of observables in terrestrial horizontal networks. They woild

also be of sufficient quality to be used as part of an orthometric height
network. For example, such heights would have sufficient accuracy to
be used in a 1:50000 mapping program.
The conclusion here is that the combination of terrestrial
and satellite vertical networks are best utilized in supplying cor-

straints for geoid computations. The accuracies of satellite determir:.d



87

ellipsoidal heights and geoid computations have not reached the stage
where the resulting orthometric heights can be used for more than

"lower" order vertical information.
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SECTION III: COMBINATION PROCEDURES

WHEN DATUM TRANSFORMATION

PARAMETERS ARE UNKNOWN
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7. STANDARD MODELS

The determination of datum transformation parameters is a
three-dimensional problem. The rigorous combination of terrestrial
and satellite geodetic networks will yield the transformation para-
meters between their respective datums. Satellite networks are
immediately ready to be combined, while classical terrestrial net-
works must first be made three-dimensional (1.4) before they can be
utilized.

Several models have been developed which describe the
functional relationships between pairs of three-dimensional coordi-
nates. In each, the network Cartesian coordinates are used as quasi-
observables and thus receive corrections as a result of the combination
estimation procedure.

Three mathematical models, noted as "standard" due to their
extensive use over a number of years, are given herein.* The models
differ from each other in several ways, including a priori conditions,
the type of coordinates used, and the interpretation of results. These

differences, and others, are examined fully in 7.4.

* The names given to these three models - Bursa, Molodensky, Veis -
have already been used by several authors. This practice is followed
here and is not meant to indicate who may have been responsible for

the original derivation of the models.
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7.1 Bursa

The Bursa model [Bursa, 1962; Wolf, 1963; Badeckas, 1969;
Lambeck, 1971] expresses the rclationship between two coordinate
systcms by three translations (xo, Yo zo), three rotations (cx, Cy'
hz), and a scale change (k). The two sets of network coordinates for
any terrain point i arc used as observables in the model given by
(Fiqure 7-1)

» “r > >
o= (ro)1 + (l+k) RE (ri)2 - (pi)l =0 . (7-1)

RO . .
In the above, r  is the translation vector between the origin of

coordinate systems 1 and 2, Rr is the matrix given by

RE = Rl(fx), Rz(uy), R3(tz) , (7-2)

where R and R, are the rotation matrices given by eqguations

17 By 3
(I-11), (1-12) and (1-13), and Ki and ;i are the position vectors of

the terrain point 1 in coordinate systems 1 and 2 respectively.

Expanding (7-2) as in 4.1, and substituting in (7-1) vyiclds

F X 1 IS - X .
X [6) z Yy 1
r = + (1+ - 1 . 1 = 7-3
y Yo (l+k) £, o 1Yy 0 ( )
F z € -€ 1 z,
z ° 1 y X il

This model 1s solved easily using a combined case least sguares
estimation procedure (4.1). The elements of the design matrix A

are given by
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N 1 o ol 0
i |
i = a—x—’x L = |0 1 0 ; (Z +K Z. )
0 O 1 l‘(y +K y)

. o
where the superscript

[e} e} | o o
-(z .+ + + I
(zi K zi) (yi K yi)(xl €,¥i~ yzl)
(o] (o] o)
-(x.+ + - .
0 (xi K xi)l(yi €24 ele)
o o
+ + —ely.
(xi K xi) 0 l(zi Ey xg exyl)

unknown parameters, X. Similarly, the design matrix B is g
(14 (94¢%60)  (24%0) | -
9F z oz y v
i O, 0.0 o o o o
., = = |- + + - + 0
B, BLil (ez K EZ) (1+k ) (ex K Ex :
—(eO+KOe° (EO+K°€0) (l+K ) 0
| -terey |
If the point of expansion is taken as
o, T o ) o [e} [e} o
(X)) =x,y,2z2,¢€e ,€,¢e,x)=0,
o o X Y z
then A and B reduce to
10 0] 0o -z vy | x
' 1 lll
A. = {0 1 0 z, 0 -X, .
i | i *i I Yy !
0O 0 1 | -y. X. 0 I zZ.
| 1 1 | 1
1 0 0 i -1 0 o
B, =10 1 O I o -1 0
! |
0o 0o 1] o0 o0 -1
The misclosure vector is given by
W, = Fx°, 1),

(7-4)

indicates initial approximate values of the

iven hy

0

-1 0 .

0 -1

(7-5)

(7-6)

(7-7)

(7-8)

(7-9)

’
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which in this case is

X, - X,
i i
W=y, -~y | . (7-10)
i i i
z, - 2
i i

~

The results of the estimation procedure are the solution vector, X,

~

the residual vector, V, and their associated variance-covariance matricc:,

Zi and ZQ. The final results are the transformation components, i,

given by
X=X +X , (7-11)
and the adjusted common network coordinates,

(7-12)

(e B
1]
[
+
<

Their respective variance-covariance matrices are given by (4-15) and
(4-16) .

The use of the coordinates of common network points as
observables is important in the analysis of this model. This is
valid when the networks are relatively free of systematic errors. If,
however, one of the networks contains systematic errors,
these unknown errors will be confused with the datum transformation
parameters. Furthermore, this approach assumes that the network
coordinates can be used to recover a datum. As explained earlier
(3.1), this is true for satellite networks and their datums. The
conclusion drawn here, as a result of a study of the model and the
generation of several sets of test results, is that the Bursa model
is adequate for the combination of two satellite networks, but not

for a terrestrial and a satellite geodetic network.
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Variations of the Bursa model can be achieved by solving
for fewer unknown parameters. For example, if it is suspected that
the two coordinate systems involved have a scale difference, and arc
translated parallel to each other, one nced only solve for these
four paramcters. Other combinations of unknowns arce possible and in
many instances tests should be carried out so as not to try and solvc

for more unknown transformation parameters than are really present.

7.2 Molodensky
This model is given by [Molodensky et al., 1962; Badekas,

1969; Mueller et al., 1970])

> > -> >
S = - 4 | 'S . . = . -1
Fy (ro)1 + (rk)2 (1+k) Rq’(rkl)2 (01)1 0 ‘ (7-13)
4
The newly introduced vector ry is that of the "initial point" of the
second network. The quantity Rw is a combined rotation matrix
Rw = Rl(wx) thwy) R3(wz) ’ (7-14)

where Rl, R2 and R3 are the rotation matrices given previously (4.1).

>
The vector r represents the position vector differences of the

ki
second network (Figure 7-2). In an expanded form, (7-13) becomes

e ., ¥ - _ o My ]

Fx xo (kk ! 11)z lby Xy xk Xi

F = + + + - - - = . -

¥ yo yk (1+4k) wz 1 wx YTy Yl 0] (7-15)
F A z v -y 1 b AR A 7z,

z ofl k x i k(2 [7ir
- J L. -J b Jz - y . L

The solution of this model is easily obtained using a

combined case least squares estimation procedure (4.1). The solution
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vector yields up to seven parameters (three translations, three
rotations, and a scale difference), and a residual vector whose
elements are corrections to the "observed" coordinates and coordinate

differences. The design matrix A is given by elements

> Lo o] o -~z v,lx,
IO l I
E 1
= — = - . 7-16
MTAR CL T O3y O xkilykl ’ ( )
0o 0 1 I—yki xkl 0 |zki
where
o, T o o o o0 o
(X7)" = (x_, YO' ZO' lllx, wyr wzr K)= 0. (7-17)
Similarly, B is given by
1 0 0 |-1 0 O
SF |
B, = aLl| o =010 | 0-1 0}, (7-17)
' 1'X,L
0 01| 0o o-1
and the misclosure vector W® by
Xt X T
(o]
= = - - —.9
W Fi(x , L.) Yy yki (7-1.9)
Zk + Zkl -

The model requires the position vector of the initial point of the
second network and coordinate data for at least three other common
points.

The rotations and scale difference in this model refer to
the geodetic network. This fact is obvious upon examination of the
design matrix A, whose elements are the coordinate difference vectors,

N
rei- The main problem is that coordinate systems one and two are



97

assumed to be parallel. This means that all rotation errors are

N )
attributed to the network difference vectors r As with the Bursa

ki’
model, this type of approach leads.to the confusion of two sets of
rotations - those between the coordinatce systems and those associated
with the second network. Also, it should be emphasized that the scale
difference in this model is a network scale difference (note the last
column of the design matrix Ai (7-16) which refers to the network

).

position vectors ;ki
This model is not used to combine two satellite networks
since in most cases these networks have no network initial points.
Furthermore, in the transformation between two satellite networks, no
a priori assumption regarding parallelity of axes is made.
If the Molodensky model is used to combine a terrestrial and
a satellite geodetic network, the a priori assumption of parallelity of
datum axes may be erroneous. Further, the rotations referring to the

misaligned coordinate axes and those referring to the misoriented

terrestrial network will be confused.

7.3 Veis
The Veis model [(Veis, 1960; Badekas, 1969] is mathematically

equivalent to the Molodensky model. The rotations, denoted da,

dp, dv, are referred to the Local Geodetic coordinate system

at the initial point k (Figure 7-2). A rotation about the 2

LG

axis, dA, corresponds to a rotation in azimuth, about the YLG

axis, du, a tilt in the meridian plane, and about the XLG axis,
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dv, a tilt in the prime vertical plane.

The model is expressed as

my
I

T+ (T). + (1 Z ). - @).=0 (7-20)
i = () )yt Ak R, (ry ), = (05047 0

where

R, = Ry(180-A) R, (90-¢ ) P,R (dv) R,(du) Ry (dA) P,R, (4, ~90)R, () -180).

(7-21)
In (7-21), the new quantitics (¢k, Ak) arc the geodetic coordinates of
the initial point, and P2 is a reflection matrix given by
1 0 0
P2 =10 -1 o]. (7-22)
0 0] 1

The first set of rotations, R2 (¢k-90) R3(Ak-180) and the reflection
PZ, are required to transform the difference vector ;ki to the

Local Geodetic system at k from the coordinate system (2) in which
they are formulated. The rotations Rl(dv) Rz(du) R3(dA), in which

dA, dp, dv are the unknown rotation parameters to be determined,

yield a matrix

1 dAa -du
Rl(dv) Rz(du) R3(dA) ={-da 1 dv . (7-232)
duy -dv 1

The final set of orthogonal transformation matrices in (7-21) are
->
required to rotate the transformed difference vectors Iy back to

the second coordinate system. The final expanded result of (7-21)

is given by
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I

I

Rv = sin ¢de + cos ¢kdv l
-CoSs ¢k sin Xde - cos Akdn + sin ¢ksin Akdvl

sin |]>kdl\ - oS (!;k(lv

l
|
' |
l

cos ¢kcos kde - sin Akdu - sin ¢kcos Akdv

'SlnAkCOS ¢de + cos Akdu - sin ¢k51n Akdv

I- cos ¢kcos Ade + sin Akdu + sin ¢kcos Akdv . (7-24)

| 1
The solution of the Veis model is the same as for the

Molodensky model (combined case least-squares estimation). The design
matrix Bi and misclosure vector Qz are equivalent to (7-18) and (7-19),

respectively.  The design matrix Ai has the form

§§ 1 0 O l -s1in ¢kyki + sin Akcos ¢kzki
A. = — =10 1 O sin ¢, x . - cos ¢ cos Az
- k
i |X L | ki k“ki
- i .+ .
0 0 1 ! cos ¢k51n Akxkl cos ¢kcos Akykl
- - A
cos Ay Zyy cos ¢,y ; = sin ¢ysin Az, :xkl
i +
sin Ak Z) 4 cos ¢ xkl sin ¢kcos Akzkl lyk1 ,
-cos Ak X, ; ~ sin Xk Yii sin ¢ sin kak -~ sin ¢ cos A y z Ki
(7—25)
where
oT .
X = [xo, Yor Zgv da, du, dv, ] = 0 . (7-26)

The interpretation of the results are the same as for the

Molodensky model. The Molodensky rotations can be derived from the
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Veis model. The functional relationships are

wx = -cos ¢k cos Ade + sin Akdu + sin ¢kcos Akdv , (7-27)

wy = -cos ¢, sin A\ dA - cos A du + sin ¢, sin A dv , (7-28)

¢, = -sin ¢de - cos ¢kdv . (7-29)
The inverse of the above yields the Veis rotations in terms of those of

Molodensky, namely

dA = -cos Akcos ¢kwx - sin Akcos ¢kwy - sin ¢sz ' (7-30)

du = sin Akwx - cos Akwy . (7-31)

sz . (7-32)

dv = -cos A si + si i -
s ksm ¢kwx sin Ak51n ¢kwy cos ¢
The problems encountered when using the Veis model for the
combination of terrestrial and satellite networks are the same as those

of the Molodensky model. This model should not be used for the combina-

tion of satellite networks.

7.4 Comparison of Bursa, Molodensky and Veis Models

Based on the comparisons of the models, and the knowledge of the
properties of térrestrial and satellite networks, conclusions can be drawn on
their respective advantages in the combination of terrestrial and

satellite geodetic networks.

All three models contain a maximum of seven unknown trans-

formation parameters. A solution for each of the models is easily
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obtained via a combined case least squares estimation procedure. The
Molodensky and Veis models are based on the same a priori assumption
of parallelity of coordinate system axes, and contain explicit provisions for
a network initial point for the second network. These latter two
models use the same observables - ?ki and 31. As was shown in 7.3, the
Molodensky and Veis rotations are easily related to one another.

There are several significant differences in the three
models, particularly between the Bursa model,and the Molodensky and
Veis models. The Bursa rotations and scale difference refer directly
to the coordinate systems as is indicated by the elements of the A
matrix (7-4). This interpretation is based on the fact that the two
networks involved can be used to recover thé origin and orientation
of their respective datum axes. As argued previously (3.1), this is
only possible in the case of satellite networks. On the other hand,
the Molodensky -and Veis models use only one network in this fashion
(the first). The second network observables are network coordinate
differences, and the rotations and scale difference apply to these
quantities. The Bursa model has no provision for an initial point of
the second network at which there are no second network coordinates.
In contrast to the Molodensky and Veis models, all network points in
the Bursa model are treated equivalently. Between the Molodensky and
Veis models, the only difference is the orientation of the coordinate
system at the initial point k. This fact has no bearing on the
solution or interpretation of results.

Comparing the Bursa and Molodensky models mathematically, one

obtains the difference
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> > > > - >
roo-r o+ (QM - QB) Arik - QBrk + (KM - KB) Ar - KpT) = 0, (7-33)
M B
in which
QM = Rw -1I, (7-34)
QB = RP - I, (7-35)

and the subscripts B and M refer to the Bursa and Molodensky models.

If one assumes the two solutions will he the same (i.e. ;o = ;o ;
M B
O = 0_; k= ¥_), then one ohtains
M B M B
5>
(QB + KBI) rk =0 (7-36)

This expression (7-36) is satisfied if and only if QB =0
and Kg = 0. This is further proof of the differences between the Bursa

and Molodensky (or Veis) models.

The main problem with all three models is the assumption of
only one set of rotation parameters. As has been discussed previously,
it is unlikely that two coordinate systems, either satellite and
terrestrial datums, or two satellite or terrestrial datums, would be
parallel. Thus, in any combination procedure, some or all of the Bursa
rotations would be present. When a terrestrial network is involved,
it is known that it would contain errors which may be modelled by
either the Molodenskv or Veis rotations and a scale difference.

It should be noted that when combining a terrestrial and a
satellite network using the Bursa and Molodenskv models, identical
numerical values for the rotations are obtained (see 11.0 and 11.2).
However, the translation components will differ. The reason for this is
that the scale difference parameter, k, is aoplied only to the coordinate
differences in the Molodensky model (7-13), while in the Bursa model
(7-1), it is applied to all position vectors, including that of the

terrestrial initial point.
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The conclusions to be drawn are first that two satellite
networks, relativelv free of systematic errors with respect to each other,
can be combined using a Bursa model. This has been done by several
investiqators [Anderle, 1974(b); Mueller, 1974(b)]. The Bursa model
is not adequate for the combination of a satellite and a terrestrial
network, mainly because the one set of rotations does not adeguately
model the true situation. The Molodenskv and Veis models can not be
used to combine two satellite networks due to the a priori assumption
of parallelity of datum axes and the necessity éf having a network
initial point for one of the networks. The latter models may be used
to combine terrestrial and satellite networks since an initial point
would be available for the terrestrial network, and the rotations and
scale difference can model the errors in this latter network. However,
the assumption of axes parallelity again makes the models unacceptahble.

Basically, ‘all three models - Bursa, Molodensky and Veis -
are inadequate for the combination of terrestrial and satellite networks
for one fundamental reason: they do not contain sufficient transformation
unknowns to adequately describe the relationship between the two networks
and their datums. This inadequacy led to the study and development of

the more complex models of 8.1, 8.2 and 8.3.



8. RECENT MODELS

In 1.3 the problems related to the positioning and orienting
of a terrestrial datum were enumerated and in 2.1 the existence of
systematic errors in the terrestrial networks themselves were pointed
out. When terrestrial and satellite networks are combined and the
datum transformation parameters ére known (SECTION II), the datum
orientation and position problems are not involved, and systematic
errors are assumed to have been removed in some acceptable manner.
However, when datum position and orientation parameters are unknown,
the combination of networks becomes complex. Further, if one attempts
to model the systematic errors in the terrestrial network or to
investigate the parallelism of Geodetic and satellite coordinate sys-
tems with respect to the Average Terrestrial system, other compli-
cations arise.

The Bursa, Molodensky and Veis models (7) are not adequate
for the treatment of the above mentioned problems. The predominant
inadequacy of the aforementioned models is the existence of only one
set of rotations in each. The Hotine (8.1), Krakiwsky-Thomson (8.2),
and Vanicek-Wells (8.3) models do not have this inadequacy as the

models contain two sets of rotations. The first two models are

104
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formulated such that in the network combination process the systematic
errors in the terrestrial network are modelled by up to three orientation
parameters and a scale difference. The third model (Vanicek-Wells) is
concerned partly with the lack of parallelism of Geodetic and satellitc
system axes with those of the Average Terrestrial system.

The data used in each of these models are the adjusted
coordinates of three—dimensional terrestrial and satellite networks.
It may be argued that the Geodetic coordinate system axes can be made
"nearly" parallel to those of the Average Terrestfial system using
classical methods, and that the systematic errors in a terrestrial
network can be effecti&ely modelled and removed during the estimation
process. However, due to the many problems involved, it is‘unlikely
that Lhe above will be the case and it is the common belief amongst
several geodesists that residual model errors will remain in the
datum transformation parameters and the orientation and scale of the
terrestrial network. The models presented herein are proposed as

possible solutions to the removal of the above mentioned residual errors.

8.1 Hotine
In his monograph Mathematical Geodesy, Hotine [1969] argues
that there should be two sets of rotations in a model intended for
the combination of geodetic networks. His argument for this is
stated as:
"In addition to the initial choice of a discordant system

of geodetic coordinates, the network itself may have
systematic errors of scale and orientation for which an
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allowance should be made before we adjust the network to

adjacent work or into a fixed system of a worldwide

triangulation."
He goes on to state that if there is only one set of rotations in the
combination model, namely those pertaining to the discordant geodetic
coordinate system,

"...the effect of a systematic orientation error in the network

could be concealed by evaluating false values of the rotation

ar .I'*
parameters Wyr Wor Wy

Thus, he makes a separation of rotation parameters (w,, w,, w3) for the

1 2

discordant geodetic coordinate system from the orientation parameters for
the systematic errors in the terrestrial network. The two parameters are
da, a change in azimuth, and dB, a change in zenith distance. The azimuth
parameter, da is a rotation about the z-axis of the local geodetic
coordinate system at the terrestrial initial point k. The zenith distance
paraméter, dB, is a constant applied to all lines radiating from the
terrestrial initial point, k. 1In addition, network scale error is accounted
for by a scale difference parameter, «. Counting the datum translation
parameters, this gives a total of nine unknown parameters in a combin-

ation model expressed as (Figure 8-1)

-E*‘—(—*)+R{(+)+(l+)R(180)\)R(9O )
i el et i’ 2 K73 k' "2 o) Py Ry
R. (6. -90) R_ (X -180) (r. ).} - (.). =0 (8-
P2 2¢k 3k rki?_ pil- - (8-1)
(r )., R (r.) a (s.) defined in 7.1. (r..) th it
ro 17 e, r),, an pi 1 are defined in 7.1. (rki ) the position

vector of i with respect to the initial point k, is defined in terms
of the vector length I;kil’ and the azimuth (aki) and zenith distance
(Bki) in the local geodetic coordinate system at k. The matrix RH
contains the unknown parameters x, da, dB, and is derived below.

The Hotine model as given by (8-1) is expanded as follows:

>
First, x is expressed by

ki

*Hotine's rotations w_., w,, w,-are equivalent to the values ¢ €

and 63 used in this work. 3

17 T2
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COS(’..T

ki

=

|

+ .
Tl sin B

l; | sin B . sin a
ki ki ki

[; | cos B
ki ki

**i
_> —_— —
Tvi = PYki| T
Zxi

.

-

(8-2)

. . . . -+ - >
After evaluating the partial derivatives 3rki/3|rki[, arki/aaki,

> -
nrki/nﬂki, the change in coordinates due to the changes in ‘rkil’

and Hkx can be expressed by
EX'.ﬂ ;;n g cos a LIZ lsin B. .sin
ki ki ki‘ ki ki
dy, , |- |stn 8, ; si ¥, ;lsin 8
Yii |7 [sin Ki sin akil rki sin xicos
dz. . .
_zkfj B cos Bkl I 0
Using the expressions
.= .+
Xei T Xi X
'o= + .
Yig = Vi Ty
‘o=z .+ .
Zkl Zkl dzkl

N
kll
|
ki |
I
|

o

I
l

Yy

N | 6 - E
rki coSs kicos aki r
rki cos Bki81n aki a
£, ;| si d
“lregl sin By | |28

e e

(8-3)

(8-4)

wherc the prime (') indicates the changed values of coordinates duc

to drki' daki, and dBki' and setting

dry ;

T
z, |
the matrix RH is

_
(1+<) | -da

I
da ' (1+k

RH=
as {O

|
I
"
l
|
|

ki |

—

(8-5)
cos akidB
sin akidB . (8-6)
(1+x)
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The expanded model (8-1) is now written as

LM - — _ - vd _ ’ b ¥ sudiiinee BN o=Pillam
fo X 1 éZ ey }xk (1+x) l da }cosakidB ES N
Fy = Yol Y1y, 1 € lyk + da (1+K1sinakid8 Yiei|™ Yi =
_ | a8 | |
Fz “o 1 Ey x 1 |zk cosa, | o | (1+<) ki 2 zi 1
S L _ | - - kll | ~S L g L
(8~7)

Hotine [1969] also mentions the possibility of including two more
parameters in his model - da and de which are changes in the size and
shape of the reference geodetic ellipséid. These have not been
included herein for two reasons. The inclusion of da and de may be
QSed if one were working with the problem of determining the "Figure
of the Earth"(defining the Geodetic coordinate system which best fits
éhe Astronomic system which is beyond the scope of this work). Further,
the inclusion of da would tend to eliminate the systematic error in
scale of the terrestrial network since the ellipsoid would be
gescaled to absorb scale errors. As stated by Hotine [1969]

"this procedure would vitiate the height dimension and would

result in some inaccuracy even in a two-dimensional adjustment

which ignores geodetic heights ....".

Since there are only two networks involved in this combina-
tion procedure the estimation procedure for its solution is not
easily formulated. Hotine dié'not propose any estimation
procedure for the solution of his combination model. Regarding
éhe model and its solution, he stated [Hotine, 1969]:
| "This procedure assumes that the parameters are independent

and that second-order effects can be either neglected or
removed by some process of iteration, although in some

cases, the parameters, especially the rotations, will be
strongly correlated".
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The estimation procedure proposed for the Krakiwsky-Thomson
model can be used for the solution of the Hotine model. The design
matrices and misclosure vectors are the same as those given in 8.2

except for A,, which pertains to the unknown orientation and scale

1
parameters in the second (terrestrial) network. For the Hotine‘model,

A221 is given by
~ —
Vsl 05 oz | %y
o8 | |
Azzi - a_5<—lx° L = %l sinaz |yt (8-8)
2172772 | |
_-Ol-x i/cosaki l ZkiJ
where
X] = (da, a8, KT =0 . (8-9)

The solution is obtained using the matrix equations given in 8.2.
The Hotine model can be used to combine a terrestrial and a
satellite geodetic network. The solution yields the datum transforma-

and L , three

adjusted network coordinates il 5

tion parameters il'
parameters (iz) which represent the systematic errors in the terrestrial
(second) network, and their associated variance-covariance matrices. The
one drawback of this model is the parameterization of the network
orientation errors. The parameters da and df can not be split to

give either the.Molodensky (wl, wz, ¢3) or Veis (dA, du, dv) types of
representation. The latter are particularly desirable if one is going

to compute the changes in the deflection components of the vertical

at the initial point that have occurred due to the combination process.
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8.2 Krakiwsky-Thomson

Like the Hotine model, this one contains two sets of rota-
tions - a first set (cx, cy, ¢ ) for the misorientation of the second
coordinate system with respcct to the first and a second set (Wx, Wy,

wz) or (dA, du, dv) for the misorientcd network. When first published

[Krakiwsky and Thomson, 1974}, it was given as

-> _ -> > > _ - _
F, = (ro)l + (l+k) RE{(rk)z + Rw(rki)z} ?ﬁ 0. (8-10)

The scale difference in the above is interpreted as a system scale
difference. Thus, (l+k), along with the system rotations in Re (7-2),
yields a totally redefined initial point.(;k). Also, the systematic
scale error in the terrestrial network, represented by the vectors

-
(r,.), will be absorbed in the system scale difference. To have the

ki
scale difference parameter apply to the second network and obtain a
parameterization of network orientation errors in terms of azimuth
and tilts in the prime vertical and meridian planes, the Krakiwsky-

Thomson model is written as [Thomson and Krakiwsky, 1975] (Figure

8-2)
g — —> - - } _ _ _
F. = (ro) + RE{(rk)z + (+k) RO (T, ), Bl = 0. (8-11)

Expanding (8-11) with quantities previously defined yields
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p
il T o — 1lr
F 1 -
X *s ez ey ka
F | = + |- 1 +
y Yo ‘2 “x 1 Yk
I b2 1 -1 | z.
L :j ¢ ' Y X . L P- ¢
\
1

+ (1+x) sin ¢de + cos ¢kdv

-cos ¢ksin Ade - cos A dy + sin ¢ksin A dv

k k

—-— 1 —-— Ay + - . .
51n¢de cos¢kdv 51nAkcos¢de coskkdu 51n¢k51nkkdv
1 -cox¢kcosxde+51nAkdu+51n¢kcosAkdu
00u¢kc05Ade—uinAkdu-sin¢kcosAkdv 1 _
N
. X,
xkl 1
. -lY.]| = 0. 8-12
Yei |t i ( )
ki Zil
J

This model contains ten unknown parameters, of which six
are rotations. In order to compute a solution, there must be at least
four network points for which Cartesian coordinates are available in
the two coordinate systems.

Since there are two sets of unknown rotations and only two
networks (one satellite, one terrestrial) are being combined, a special
least-squares estimation procedure is required to obtain a solution.

The estimation model, in functional form, is
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(8-13)

!
et
=<t
[
[
1
(=]

L)=0, (8-14)
where il are the coordinate system transformation pataméters (xo, Yor

z € € € ;
o' %’ y/ Z)'

X2 are the rotation and scale differences parameters pertaining
to the second network (kx, dA, dt, dv);

L. are the observables (coordinate differences'(xik, y )

ik’ Zix’2

and coordinates (Xi, Yi, Z.)

i1 of the "inner zone" )(Figure

8-3);

)

L., are the observables (coordinate differences (xik, yik' zik 5

and coordinates (Xi' Yi’ Z.), of the outer zone)(Figure 8-3).

11

The reason for the sgplitting of the coordinates of
common points into inner and outer zones 1is to make the solution
possible for the two sets of rotation parameters in the Krakiwsky-

Thomson model. The inner zone contains sufficient observables (Ll)

A

to solve for the unknown parameters (Xl). The common network points
of the inner zone should be sufficiently close to the terrestrial
initial point so that the observables (coordinates) of the second
(terrestrial) network will not contain significant systematic errors.
The outer zone then contains the remaining common network stations.

The observables Ll and L2 are correlated. Thus,

the variance-covariance matrix of the observables is given

by

COVL L
12 . (8-15)

'L

|
|
| 2
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(OUTER ZONE)
LZ

Figure 8-3

Estimation Procedure for the Krakiwsky -Thomson Model
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Linear Taylor series expansions of F_ (8-13) and F_ (8-14) yields the

1 2
matrix equations
A X 4+ B .V +ul=0 (8-16)
1171 111 1 !
~ -~ - O
A + + + = -
1%y T RppXy * ByVy W, =0 (8-17)
where
oF oF
A, = —= = —=
11 .- ;.0 11 .- .o !
axlixl, L, L |x, L
aF F OF
2 2 2
AL = —= , A = —= , B._ = —=% . (8-18)
21 - o 22 = o 22 - o
ax, [X], L, 3, [X5, L, 3L |X,,L,

~

The least squares normal equations relating the unknown quantities (Xl,

O
2

> .
<

1 } i w A ’ ’ ’
1 V2) to the known quantities (Al B 2 A22 822 W

NS

l, lll lI
XF) are normally obtained from the variation function [Krakiwsky, 1975]

5 | cov Loy
L I. L 1

AT AT 1 | 172

= v

0 [Vl 2]

—-
| = v
L2Ll | L2 2

cov

~
~ ~

T > o T 5
—2Kl(Alle + Bllvl + Wl) 2K2(A12X1 + A22X2 + B22V2). (8-19)

However, due to the form of the variance-covariance matrix ZE and the
need to invert it for the development of the normal equation system, an
alternate approach has been chosen.

The development given here of the matrix equations required
for the solution of the proposed least-squares estimation model is
similar to that used to derive the stepwise collocation equations

[Moritz, 1973; Krakiwsky, 1975]. A new, and simplified, model
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F(X*, L*) = 0O (8-20)

in which X* contains )(1 and X, and L* contain: I.I and L, as will be

..

shown shortly, is used to develop the well known combined-casne least-
squares matrix cquations (sec equations (4-10) to (4-14) inclusive in

Chapter 4)

X* = —(A*T(B*XEB*T)—lA*)—l A*T(B*ZEB*T)—l W, (8-21)
vr = o B*T k* , (8-22)
. -1 .~
K = = (B¥DX B*1) 1 (ARX* + WA) (8-23)
-1 _
0° = (a*T(p*zx B*T) T a%) L, (8-24)
X L
T T -1 o T -1 N T T
2 = *_TRB* KTk —(B*L*B* * * *T AR * kT kY | -2
Q2 = (Lf-E2B*’ ((B*IXB')  —(B¥LB*') TA*Q-AX’ (BXIFB*'))BI). (8-25)

Now the matrices, denoted by * above, are split to take into account the
stepwise procedure required for the solution while maintaining the
covariance between the inner and outer zone obscrvables.  The unknownts

and residuals are given by

%) A
x¢ = [==[ ana  vx = [-—| . (8-26)
%) V2

0x | cove -
X | XX,
Q; o D (8-27)
covs -~ ' o=
X2Xl | X2

and
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= wvoon
QLl I e LlL” ,
| - ' (8-28)
o= = [———— |
L P -
Cov= - Q=
Ly |
and the final variance-covariance matrices by
A _ 2
L™ % Qx1 , (8-29)
e = 02 0= (8-30)
* o "L
The misclosure and correlate vectors are
17) - K
R e T I Tt - (8-31)
" )
The hyper-design matrix A* has the form
A 0
11 :
N e (8-32)
|
A21 | A22

N . o o
When the initial approximate values, Xl and X2 are set to zero, then

| _
1 0 0 | 0 (z 42, ) (v v, §)
Alli =lo 1 o ’ (z, +2, ) 0 - (o, +x ) , (8-33)
| (v + +
0 0 1 | (yk yki) (xk xki) 0

for the rl observations and ul unknowns of the inner zone, the elements

of A2l are computed just as those of All for the r, observations and uy

unknowns of the outer zone, and



119

F:sin ¢kyki + sin Ak cos ¢k z cos Ak z
A22i = sin ¢k Xy~ cos ¢k cos Ak zki sin Ak z
_:cos ¢k sin Ak X i + cos ¢k cos Ak Y, ; ~cos Akxki - sin Akyk
“cos ¢ Yy T sin ¢y sin Ak 24 { xki._1
cos ¢, X . * sin ¢k cos Ak z2,4 : Yei | v (8-34)
sin ¢k sin Ak xki - sin ¢k cos Ak yki ; Zki_

for the r, obscrvations and u, unknowns of the outer zone. The hyper-

design matrix B* is given by

B | 0
11 |
B* = |————fp——— , (8-35)
0 { Byo
where
1 0 0o 1 0 o i -1 0 o©
|
B =lo 1 0lo1 o0l o -1 o ) (8-36)
11. | |
0o 0o1}o0oo 1] o 0 -1

>
The three sections of Bll pertain to the initial point (rk), the

- >
coordinate differences (rki), and the coordinates (pi). If there are

. - . .
coordinates (pk) at the initial point, then

B = [,I_ 1

lli 313 313] (8-37)

-5
since rkk = 0. The full design matrix, which has dimensions (rlx2r1)

is given by

1
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- 0 e
313 l 315 0 0 0
I 0 -1 0 0 .... . 8-38
373 | 313 73 3 ( )
= 0 0 0 I, -.I_ ....
By 313 ! 373 7373
- [ : : : : : -
822 1s given by
= . ’ 8"39
Bzzi (I3 13151 (8-39)
and the full matrix is
~ _ -
315 3, 0 0 0 0 e
0 0 315 —3I3 0 0 . (8-40)
B.. = - e
22 0 0 0 0 313 515
- . . . . . |

The misclosure vector, for inner zone points, is

+x . -
xk xkl Xl
2 8-41
LT T Y T Y | (8-41)
1
z + z - 2

and the elements of wz are evaluated for the outer zone points using
the same expression.

The solution is now generated using the expanded matrices in
equations (8-21) through (8-25) inclusively. For example, (8-21) is

now



L2

B N EX o Lo Jef-t
A 0 0 ¥ cov 0
1 11 11 L L.L 11
L= - _._:__ _._=__ __.1__:____12. _....:.__
X A A 0 B JCcov L 0 B
: 22
i 2 b2l l 22 | 22 L2Lll L2 | -
NEIE! (. l | | o) -2
A . 0 A (6} B 0 z Ccov B 0 W
] 1 L 11 1
2 :.__ A ..l._:.__ Iil_._:..._LLZ. Jioiell J .
A A A A o 's cov 0 |B W
2 2 2 22 2
‘-2 l 2-‘ 21' 2 l 22 LZLl. L2 ) 4]
(8-42)

This expression for the unknown

~

scquential expressions in which 1

separate matrix cxpressions.

X, and X

2

parameters is equivalent to a set of

are solved for in explicitly

The Krakiwsky-Thomson
using Molodcnsky type rotations
network, can be used to combine
network. If the quantities da,

can be computed using (7-25) to

(7-30).

model as developed here, or expandced
to express the misorientation of a

a satellite and a terrestrial geodetic
dp, dv are computed, then wl, wz, w3

(7-25), or vice-versa via (7-28) to

Test results of the combination of a terrestrial and a
satellite network have been gencrated (12) using the Krakiwsky-

Thomson model as developcd herein.
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8.3 Vanicek-Wells

The stated objective of this model is to enable one "to examine
numerically the parallelism of geodetic systems (based on terrestrial
observations) and satellite systems (baéed on satellite observations)
and the average terrestrial system” [Wells and Vanicek, 1975]. The
model is given by [Wells and Vanicek, 1975] (Figure 8-4)

-» »

- -> S
F.=r + R, k(r +r_ .)

) - + R . =0 8-
i G A K ki s wve” i ' (8-43)

where fG is the translation vector between the Average Terrestrial and
-

Geodetic systems, rS is the translation vector between the Average

Terrestrial and the satellite systems, k is the scale difference in the

Geodetic system, R, and R are rotation matrices (see below), and
w

Ve

R
and pi are as previously defined.

A

> ->

k' Tki’

, which contains the three rotations

Ye

of the three satellite system axes with respect to the Average

The rotation matrix R
w

Terrestrial axes is given by

1 ¢ -
= - 1 8'4 \
wae € 1 w ( 4
1 -w 1

The originators of this model have proven that under certain
conditions only four datum position and orientation parameters exist
(three translations, one azimuth rotation) (Vanicek and Wells, 1974].
This occurs when the orientation and position of the datum is defined
at a terrestrial initial point, at which point equations (1-3) and (1-4)
are accepted by definition. Under this condition, equation (1-6) is
satisfied. This then leaves only the azimuth orientation condition (1-7)

to be satisfied. Thus, the rotation matrix, R pertaining to the

A’
Geodetic coordinate system contains only the azimuth orientation unknowr:

A and is given by [Wells and Vanicek, 1975].
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Figure 8-4

Vanicek - Wells Model
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1 A sin ¢k -A cos ¢k sin Xk
RA= -A sin ¢k 1 A cos ¢k cos Ak . (8-45)
A cos ¢k sin Xk -A cos ¢k cos Ak 1
There are eight unknowns to be solved for using this model -
w, Y, v, A, v, r The last quantity, the difference vector r P

SGT SG

replacces ;S and ;G since the centre of gravity (origin of the Average
Terrestrial system) is unknown. As with the previous two models
presented (Hotine and Krakiwsky-Thomson), this one contains two
unknown sets of rotation parameters. One satellite network and
several geodetic networks, having common points, are combined in one
parametric least—squares solution. Details of the development of the
model and its solution are given in [Wells and Vanicek, 1975].

In some test computations, Wells and Vanicek [1975] have
shown how this model is used to combine one satellite network with up
to five geodetic. Their conclusions include the comment that care

should be taken in the sclection of both data points and datums used

in the application of this model.

8.4 Comparison of the Hotine, Krakiwsky-Thomson, and Vanicek-Wells Models

All three models contain two sets of unknown rotation para-
meters. The observables used in each of them are the Cartesian
coordinates of points common to the satellite and terrestrial networks

involved. The estimation procedure used in each case is the method of
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least-squarcs, although different cascs are uscd for the lotine
and Krakiwsky-Thomson models from the Vanicek-Wells model. Each
model yields the three components of the position vector ;0 (ESG

in Vanicek;Wells) ~ the translation vector between the origins of the
satellite and Geodetic coordinate systems.

In the Hotine and Krakiwsky-Thomson models, the first set
of rotations (ex, £ ez) expfesses the alignment of the Geodetic
system axes with respect to those of the satellite system. The Vanicek-
Wells rotations (w, Y, €) express the alignment of the satellite axes
with respect to those of the Average Terrestrial system.  The second
Vanicck-Wells rotation, A, is that which relates the Geodetic system
with the Average Terrestrial, whereas the Hotine (da, dB) and Krakiwsky-
Thomson (d®, du, dv) parameters are a parameterization of the systematic
errors in the terrestrial network.

The scale difference parameter, x, 1s a Geodetic coordinate
system scale factor in the Vanicek-Wells model. In the Hotine model,
it (k) 1is an expression of the systematic scale error in the terrestrial
network. The Krakiwsky-Thomson model is such that « can be entered to
express either of the above. In the development of the model herein
(8.2), it is treated as an expression of systematic scale distortion
in the terrestrial network.

The Hotine and Krakiwsky-Thomson models have been developed
for the combination of one satellite and one terrestrial network, thus
only two coordinate systems are involved. Both of these can be easily
expanded to accommodate more satellite networks in the combination

procedure [Krakiwsky and Thomson, 1974]. There are several coordinate



126

systems involved in the Vanicek—Wells model - the Average Terrestrial,
one satellite and several Geodetico,

ALl of the above ment ioned similarvitics and differences stem
from Lhe different objectives of the models. The llotine and Krakiwsky-
Thomson are concerned with the combination of a satellite and a
terrestrial network, the orientation and position of the Geodetic
system with respect to the satellite system, and a parameterization of
systematic errors in the terrestrial network. The objective of the
Vanicek-Wells model is the determination of the orientation of a set
of satellite system axes, and that of several Geodetic systems, with
respect to the Average Terrestrial system. Also included are para-
meters that yield the position and scale of the Geodetic system with

respect to that of the satellite notwork.

8.5 Comparison of Hotine, Krakiwsky-Thomson, Vanicek-Wells Models with

those of Bursa, Molodensky, and Veis

This comparison of models is made on the basis of combining
satellite and terrestrial geodetic networks. This does not preclude
the fact that none of the Bursa, Veis, or Molodensky models are con-
sidered to be adequate for the task (7.4).

All of the models covered in 7 and 8 are three~dimensional.
Datum transformation parameters are treated as unknowns. The obser-
vables utilized in each model are the Cartesian coordinates of points
common to the satellite and terrestrial networks under consideration.

The solutions are obtained using a least squares estimation procedure.
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In each model, the translation vector, ro (;SG in the Vanicek-
Wells model), between the satellite and terrestrial network datums
appears explicitly. The Bursa, Hotine, and Krakiwsky-Thomson models
have an explicit set of unknown rotation parameters between the satellite
and gcodetic coordinate systems, while the Vanicek-Wells models solves
for rotatioms between these two systems and the Average Terrestrial
coordinate system. The Molodensky and Veis models have no provision for
a discordant geodetic coordinate system.

The parameterization of systematic errors in the terrestrial
network is accomplished via three rotations (da, du, dv or wx, wy, wz)
and a scale difference in the Molodensky, Veis, and Krakiwsky-

Thomson models. The Bursa and Vanicek-Wells models do not have this
provision.

In the Bursa and Vanicek-Wells models, the terrestrial
initial point is totally redefined, that 1is, scaled and rotated. The
terrestrial network initial point is rotated but not scaled in the
presented versions of the Hotine and Krakiwsky-Thomson models. As
pointed out in 8.1 and 8.2, the inclusion of (da, de) in the Hotine
model, or having « as a system scale in the Krakiwsky-Thomson model,
would cause a total redefinition of the terrestrial network initial
point.

The major differences in the models are that the first set -
Bursa, Molodensky, Veis - contains only one set of unknown rotation
parameters, while the second set - Hotine, Thomson-Krakiwsky, Vanicek-

Wells - contains two sets of unknown rotation parameters. For this

reason, more complex least squares estimation procedures are required
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for two of the latter set (Hotine, Krakiwsy-Thomson) while the third
(Vanicek=-Wells) involves several terrestrial geodetic datums.
Finally, it should be noted that the latter three models e

Far more Clexible than the Bursa, Molodensky, and Veis models, and

will thus more casily reflect physical reality.



9. SUMMARY

Fourtceen mathematical models for the combination of
terrcestrial and satellite networks have been examined. The examination
of each model has been carried out under the terms spelled out in 3.2.
Where necessary, a complete development of the models has been presented.
The purpose here is to summarize, in three Tables (9-1, 9-2, 9-3), the

characteristics and recommended uses of each of the models.

The Tables arce split into two major segments.  The first
(Table 9=1) covaers seven ot the cight models studied in which the datum
Lransformat ton parameters (saltollite-Lerrestrial) must be known before
the models can be usced. The second segment (Tables 9-2 and 9-3)

includes all six models investigated in which some or all c¢f the datum
transformation parameters are solved for during the combinaticn proce::.
For the six models given in Table 9-1, there are four major

features outlined for each model. These are Dimensionality, Unknown

Parameters, Observables, and Estimation Proceduré. The use of each

model is the combination of a satellite and a terrestrial network.
The implementation is given by the name of each model and the c¢stimation

procedure recommended. The major drawbacks are given in the kenmar s

column of Table 9-1. In the case of the two-dimensional models, one

129
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obvious negative factor is the loss of one dimension of the three-
dimensional satellite network information.

The one-dimensional combination proccdures covered in
Chapter 6 are not given in Table 9-1. The reason for this is that the
coverage herein is recognized as being superficial. Details regarding
the usc of satellite network data in combination with terrestrial vertical
network data are covered adequately in other reports [e.g. Merry, 1975;
John, 1976].

Tables 9-2 and 9-3 summarize the characteristics and uses of
six three-dimensional models contained in this report. These six models
are those in which some or all of the datum transformation parameters
(satellite-terrestrial) are treated as unknown parameters. In addition
to indicating which datum transformation parameters are treated as
unknown parameters in the combination procedures, Tahle 9-2 also points«
out in which models the overall systematic crrors in the terrcstrial
network are parameterized, and by how many parameters. The estimation
procedure utilized for each model is also given.

Table 9-3 deals specifically with the recommended uses of the
models covered in Table 9-2. The recommended uses given are the reruit
of the in depth analysis of these models for this study. The recommondea
uses of several of the models were tested for this report (Chapters
11 and 12), while others have been tested elsewhere [e.g. Wells and
Vanicek, 1975].

One combined use of the Hotine and Vanicek-Wells or Krakiwsky-
Thomson and Vanicek-Wells models has not been given elsewhere. This

proposed combination of two models (Table 9-2) is seen to be beneficial



in several ways. First, sevcral terrestrial datums will be tied
together rigorously via one global satellite network. Second, the
orientation of the safellite and terrestrial datum axes with respect
to those of the Average Terrcstrial coordinate system will be solved
for. Finally, the overall effects of the systematic errors in scale
and orientation in each of the terrestrial networks will be parameter-
ized. Thus the combination procedurce yiclds a system of globally
comncected terrestrial networks whose datums will be correctly oricnted
and whose systematic orientation and scale crrors will have becn
modelled. Of course, such a solution is not practical at present,

but it will be worth serious consideration in the future.



Model Dimension- Unknown Observakles Estimation Remarks
ality Parameters Procedure
(4.1) Parameter- 3 3 rotation Cuasi-observables | Combined Case Parameterization of
ization of Terr- parameters (coordinates and Least-Squares overall effects of
estrial Network 1 scale coordinate differH scale and orientation
Scale and Orien- difference ences) from both systematic errors in
tation satellite and the terrestrial network.
terrestrial net-
works
(4.2) Satellite 3 Coordin- Quasi-observables| Parametric Case| No parameterization of

Coordinates as
Weighted Para-

ates of the
terrestrial

(coordinates)
from satsllite

Least-Squares
with Weighted

systematic errors in the
cerrastrial network. Any

meters network network; original | Parameters errors vresent overflow
points terrestrial into the solution and
observables residual vectors during
the estimation.
(4.3) Satellite 3 Coordinates | Quasi-observables| Parametric Case| No parameterization of
Coordinate Diff- of the ter~| (coordinate diff-| Least-Squares systematic errors in the
erences as restrial erences) from terrestrial network. Any
Obs=2rvables network satellite net- errors present overflow
points work; original into the solution and

atunm

¢ the Combination

terrestrial residual vectors during
observables the estimation procedure.
Same results as (4.2)
with more computational
effort.
Table 3-1

Models Studied.

Mransformation Parameters Known - General Characteristics



Model Dimension- Unknown Observables Estimation Remarks
ality Parameters Procedure
(4.4) Satellite 3 Coordinates | Quasi-observables| Parametric Case | No parameterization of
Distances, Azi- of terres- (computed dis- Least-Squares systematic errors in the
muths, and Zen- trial net-~- tances, azimuths, terrestrial network. Any
ith Distances work points| zenith distances) errors present overflow
as Observables from the satel- into the solution and
lite network: residual vectors during
original terres- the estimation procedure.
trial observables Same results as (4.2)
and (4.3) with more
computational effort.
(5.1) satellite 2 Coordinates | Quasi-observables| Parametric Case | No parameterizzzion of
Coordinates as of the (coordinates) Least-Squares systematic errors in
Weighted Para- terrestrial | from the satel- with Weighted the terrestrizl network.
meters network lite network; Parameters
points original obser-
vables from the
horizontal ter-
restrial net-
work
(5.2) Ssatellite 2 Coordinates| Quasi-observables| Parametric Case | No parameterization of
Coordinate Dif- of the (coordinate Least-Squares systematic errors in
ferences as terrestrial | differences) from the terrestrial network.
Observables network the satellite netH Same results as (5.1)
points work; original with more comgutational

observables from
the horizontal
terrestrial net-
work

effort.

Table 9-1

(Cont'd)

€ET



Model

Dimension- Unknown Coservables Estimation remarks
ality Parameters Procedure

(5.3) satellite 2 Coordinates | Quasi-observables| Parametric Case | Mo zarameterization of
Distances and of the ter-j| (distances and Least-Squares systematic errors in the
Azimuths as restrial azimuths) from terrzstrial network.
Observables network the satellite Same ra=sult as (5.1) and

points retwork; orig- (2.2) with more compu-~

inal observables tationzl effort

from the hori-
zontal terres-
trial network

Table 9-1 (Cont'qd)

beT



Datum Transformation
Parameters (Terr.-Sat.)

Parameterization of Sys-
tematic Errors in the
Terrestrial Network

Orientation of Datums
w.r.t. A.T. System

3-D Estimation
Model . .
Trans- | Rota- Scale Rotations Scale Satellite | Terrestrial] Procedure
lations| tions |Difference Difference

(7.1)

Bursa 3 3 1 Combined Case
Least-Squares

(7.2)

Molodensky 3 3 1 Combined Case
Least Squares

(7.3)

Veis 3 3 1 . Ccmbined Case
Least Squares

(8.1) 1 azimgth

Hotine 3 3 rotation 1 Stepwise Least

1 zenith disy. Scuares
parameter

(8.2)

Krakiwsky- 3 3 3 1 Stepwise Least

Thomson Scuares

(8.3)

Vanicek- 3 1 3 1 Farametric Case

Wells Least Squares

Table 9-2.

Datum Transformation Parameters Unknown - General Characteristics of the

Combination

Models Studied.

SET



MODEL

USE

Bursa

Molodensky

~Vels
Hotine
Krakiwsky-
Thomson

Vanicek-
Wells

Combination of two or morc
satellite networks

Combination of a terrestrial

and onc or more satellite
networks

Combination of several
terrestrial datums and
a satellite datum via
nctwork coordinates

Combination of scveral
terrestrial and satellite
network (overall systcmatic
terrestrial network errors
parameterized)

X and

A

arnd

Y

Combination of a terrestrial
and a satellite network -
geodetic and satcllite
coordinate system axcs arc
parallel

e

Table 9-3.

Summary of the Uses of the Three-Dimensional

(Unknown Datum Transformation Parameters)

Models Studied.
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SECTION IV

TIST RESULTS



10. MODELS FOR WHICH DATUM TRANSFORMATION PARAMETERS ARE KNOWN

Eight procedures for the combination of satellite and
terrestrial networks, when datum transformation parameters are con-
sidered known, have been presented. A lack of adequate terrestrial
data has prevented the testing of the three—dimensionalAmodels. The
testing of the one-dimensional procedures are being carried out and
repofted by other investigators {e.g. Kouba, 1976(a); John, 1976].

The combination of a horizontal terrestrial network and the
equivalent components of a satellite network can be accomplished by
any one of three procedures (5.1, 5.2, 5.3). The preferred approach,
that of using satellite coordinates as weighﬁed parameters in a
terrestrial network adjustment, was tested for this report (10.1).
The preparation of computed satellite network azimuths and distances
for use as observables in a terrestrial network adjustment is also
included (10.2).

The effects of satellite network distances on the adjust-
ment of a terrestrial network have been reported previously [Thomson
and Krakiwsky, 1975]. 1In the aforementioned computation, 28 distances
from a Doppler network and 3 distances from the North American

Densification of the Worldwide Geometric Satellite Triangulation
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(BC-4) networkrwere added as observables to the rigorous adjustment of
a portion of the Canadian geodetic network in Eastern Canada. When
compared to ;esults generated without these extra distances, it was
found that the satellite network distances caused an inérease in ;he
scale of the network of 2.3 ppm, and a mean rotation of -0Y10 arc-

seconds.

10.1 Satellite Coordinates as Weighted Parameters

Parts of the Canadian horizontal terrestrial geodetic and
Doppler networks were used in this test (Figure 10-1). There are 53
terrestrial network stations, of which five have Déppler determined
coordinates (Figure 10-1). The networks cover an area of approximately
28110 km2. The terrestrial observables used were 249 direction
measurements, 94 distances (geodimeter and tellurometer measurements),
énd 2 astronomic azimuths. The observations, and their variances,
were supplied by the Geodetic Survey of Canada [McLellan, 1973]. The
Doppler coordinates are given in Table 10-1. The distances between
Doppler points vary from 60 km (UNB-PLEASANT) to 280 km (UNB-BIO).
The full variance-covariance matrix, ZXYZ' for the five sets of
Doppler coordinates was obtained from the Geodetic Survey of Canada
[Kouba, 1976(b)].

The Doppler data was treated as follows. First,

it was scaled down by 1 ppm. This has been advocated by several

investigators {e.g. Strange et al., 1975; Meade, 1974], and is

compatible with the results of tests carried out by the author (11
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Sta. Name X Y VA Ox oy OZ

& No. (m) (m) (m) (m) (m) (m)

3 UNB 1761276.50 -4078247.17 | 4561415.33 1.34 1.35 1.26
6 PLEASANT 1765429.45 -4121681.36 | 4521317.48 1.35 1.32 1.18
11 WHITE 1848533.19 -4046217.11 | 4555689.58 1.36 1.21 1.13
21 HOFFMAN 1908996.09 |1 -4093297.58 ] 4488666.55 1.32 1.20 1.15
42 BIO .2018844.69 -4069146.31 | 4462376.69 1.28 1.20 1.14

TABLE 10-1.

DOPPLER COORDINATES USED AS WEIGHTED PARAMETERS
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and 12). The variance-covariance matrix, ZXYZ' was augmented by

an external variance-covariance matrix, XFXT to yield
nE =) + N (10-1)
XYZ XYZ EXT

which expresses the accuracy of the Doppler coordinates with respect to

their coordinate system. ZEXT is given by
Zb Zb Zb . e
Xb Zb Zb
= D | -
ZEXT Zb Zb b (10-2)
L .

in which, for this test, Zb are 3x3 diagonal submatrices with elements
2

1 m  [Kouba, 1975]. The Doppler data was then transformed to the

desired Geodetic coordinate system using the inverse of equation (1-9),

with x = -25.4m, vy =152.4m, z =177.7m, and e =¢ =¢ =20
o o o x Y z
[Boal, 1975]. The ellipsoidal coordinates for the Doppler stations,

and their associated variance-covariance matrix, I were generated

L2
using the procedures outlined in 5.1.

To test the overall effects of the Doppler network infor-
mation, two parametric least-squares adjustments were performed. The
adjustment procedure and software used are described in [Thomson and
Chamberlain, 1975}. The first adjustment contained only the terres-
trial observables. One point was fixed (transformed Doppler coordinates

of 3 UNB), and the datum was the Clarke 1866 ellipsoid with axes

oriented parallel to those of the Doppler datum. The position of the
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reference ellipsoid rélative to the Doppler datum origin are given
above. The second adjustment contained the Doppler network coordinates
as weighted parameters. The Clarke 1866 ellipsoid was the reference
surface. However, the final position and orientation of the datum

were determined by the Doppler coordinates and their associated
variance-covariance matrix.

The results of the adjustment of the terrestrial observables
are given in Table 10-2. The x2 analysis of variance at 95% was not
rejected. As a result of a normal test of the individual
residuals, only two direction observations were rejected.

The results of the adjustment in which the'Doppler coordi-
nates were treated as Qeighted parameters are given in Table 10-3.

The x2 analysis of variance at 95% was not rejected. Based on a
normal distribution test of individual residuals, six directions were
rejected. Two of the rejections were the same as those rejected when
only terrestrial observables were used. The remainiﬁg four are all
associated with the short iines used to tie 3 UNB (Doppler tracking
station) to the main framework (Figure 10-1).

The overall effect of the Doppler network data is depicted
in Figure 10-2. The network did not undergo changes in scale and
orientation. The effect of the weighted Doppler coordinates was to
shift the entire network in a northeasterly direction by approximately
1.3 m. |

Table 10-4 shows what changes occurred in the Doppler
coordinates and their standard deviations as a result of the adjust-

ment. As can be seen, there was virtually no change in the standard
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Network Points: 53
Observations: Directions: 249
Distances: .94
Azimuths: 2

Fixed Points: 1 (3 UNB)

T 2

oi =1.00 VTPV = 190.00 df = 170 6 = 1.12

2 .
X ANOVA (95%): 0.91 < 1.00 < 1.40 (not rejected)

Residual Rejection: P _(-Co, < V., < Co,) = 95%%
r i i it

2 rejected observations (2 directions)

from standard normal distribution
#tandard deviation of the observable
residual
TABLE 10-2
RESULTS OF LEAST-SQUARES ADJUSTMENT USING

TERRESTRIAL OBSERVABLES
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Network Points: 53
Observations: Directions: 249
Distancces: 94

Azimuths: 2

Doppler Coordinates: 5 points (3 UNB, 6 PLEASANT, 11 WHITE,

21 HOFFMAN, 42 BIO)

0(2) = 1.00 VTPU = 197.25 XTPXX = 6.15 df = 178 62

]

1.14

x2 ANOVA (95%): 0.94 < 1.00 < 1.42 (not rejected)

Residual Rejection: P (-Co.< V, < Co,) = 95%*
r i i i

6 rejected observations (6 directions)

* C: from standard normal distribution
oi: standard deviation of observable

Vi: residual

TABLE 10-3
RESULTS OF LEAST-SQUARES ADJUSTMENT USING TERRESTRIAL

OBSERVABLES AND DOPPLER COORDINATES AS WEIGHTED PARAMETERS
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g

g

Station ¢ A $ A
(arc-secs) | (arc-secs)
3 UNB 45°57'00v825 -66°38'32v647 0.042 0.064
6 PLEASANT 45°25'50v858 -66°48'49%306 0.039 0.066
11 WHITE 45°52'28v526 -65°26'49%255( 0.038 0.064
24 HOFFMAN 45°00'53Y930 -64°59'517252 0.038 0.062
42 BIO 44°40'59Y210 -63°36'46'690 0.038 0.060
Doppler Coordinates Prior to the Adjustment
°¢ Sy
Station o A (arc-secs) | (arc-secs)
3 UNB 45°57'00v861 -66°38'32"626 0.037 0.042
6 PLEASANT 45°25'50V853 -66°48'49Y302 0.037 0.041
11 WHITE 45°52'28Y542 -65°26'49v271 0.036 0.041
24 HOFFMAN 45°00'53%927 ~64°59'51'208 0.036 0.039
4i BIO 44°40'59'220 -63°36'46"725 0.037 0.039

TABLE 10-4

Coordinates of Doppler Points After Adjustment

EFFECTS ON DOPPLER COORDINATES AS A RESULT OF COMBINATION WITH

TERRESTRIAL DATA
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deviations of the latitudes. However, the terrestrial data caused a
significant improvement in the standard deviations of the longitudes.
The standard deviations of all coordinates resulting from this adjust-
ment were in the ranges 0Y036G to 0v038 for latitudes and 0Y039 to
0Y043 for longitudes. When no Doppler coordinates were used as
weighted parameters, the standard deviations varied from 0V00 for the
latitude and longitude of thé fixed point to 0Y046 and 0Y041 in
latitude and longitude respectively for other points. Thus, by
allowing the Doppler coordinates and their associated variance-
covariance matrix to define the coordinate system and constrain the
terrestrial observables, the result is a more uniform variance-
covariance matrix of adjusted coordinates.

The conclusion reached as a result of this test is that
the two sets of data (terrestrial obsecrvables and transformed Doppler
coordinates) are compatible. The shift of the network was due
entirely to the fact that the weighted Doppler coordinates defined
a new position of the datum from that given by the one fixed point in
the first adjustment. The rejection of the extra direction observa-
tions in the scecond adjustment was the only sign of incompatibility
of data. It is likely that the Doppler coordinates of 3 UNB are the
problem since these direction observables were not rejected in the
first adjustment.

A third adjustment of the test network was performed to
investigate the effects of neglecting the covariance amongst and
between the weighted Doppler coordinates. The correlation coefficients

amongst the latitude components varied from 0.7 to 0.8, and amongst
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longitude components from 0.5 to 0.6. The correlation coefficients
between the latitudes and longitudes were very small, never exceeding
an absolute value of 0.03. Correlation between the latitude and longi-
tude elements before the addition of ZEXT is much greater than the
value given above.

The results of the édjustment, using only the diagonal
elements of the weight matrix, PX' are ‘given in Table 10-4. The x2
analysis of variance at 95% was not rejected. Only two observables
were rejected, and these were the same two directions as were rejected
when no weighted Doppler coordinates were used.

The total effect on the network was to shift it approximately
1.0 m in a northeasterly direction. The mean shifts in latitude and
longitude were -0.9 m and -0.6 m respectively (adjustment with
terrestrial observables minus the adjustment with Doppler coordinates
as welghted paramcters). These values are somewhat less than the
shifts that took place when the full weight matrix was used (Figure
10-2). There wcre no changes in the scale and orientation ofvthe
network.

The neglect of the covariance also appears to mask problems
of compatibility between the two seté of data. This is indicated by
the fact that in this adjustment, the direction_observables rejecﬁed
when a full weight matrix was used are not rejected. Overall, it
appears as if the use of Doppler coordinates as weighted parameters
in the adjustment of terrestrial data is a viable approach to the
combination of the horizontal components of the networks when the

required transformation parameters are known. It is recommended
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Network Points: 53
Observations: Directions: 249
Distances: 94
Azimuths: 2

Doppler Coordinates: 5 points (3 UNB, 6 PLEASANT, 11 WHITE, 21
HOFFMAN, 42 BIO)

2 c°

02 =1.00 VPV = 190.93 xT

Pxx= 5.01 df = 178 9, = 1.10
x2 ANOVA (95%): 0.90 < 1.00 < 1.37 (not rejected)

Residual Rejection: P_ (-Co, < V., < Cog,) = 95%*
r i i i

2 rejected observables (2 directions)

* C: from standard normal distribution
oi: standard deviation of observable

Vi: residual

TABLE 10-5
RESULTS OF LEAST-SQUARES ADJUSTMENT USING TERRESTRIAL OBSERVABLES

AND DOPPLER COORDINATES AS WEIGHTED PARAMETERS (DIAGONAL ELEMENTS ONLY OF Px)
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that a full weight matrix (PX) be used to avoid masking any probloms

that may exist in either of the two scts of data.

10.2 Computation of Satellite Network Distances, Azimuths and

Associated Variance-Covariance Matrix

In 5.3, it was showh how satellite network distances and
azimuths can be utilized as observables in a terrestrial network
adjustment. While this procedure requires more computational effort
to input an equivalent amount of satellite network data as when the
satellite network coordinates are used as weighted pafametersz there
may be cases where the use of computed distances and azimuths is
desirable [Anderle, 1974 (c); Meade, 1974]}.

To treat the observables (computed distances and azimuths)
rigorously in a two-dimensional network adjustment, it is necessary
to have their full variance-covariance matrix, ZSa' Two procedures
for computing Zsa are given in 5.3. The first, given by equation
(5-11), is rigorous. The second, computed via (5-27), is an
approximate method. Computationally, the latter procedure has some
advantages. However, these advantages can be overridden by the
introduction of significant errors in the computed distances,
azimiths, and associated variance-covariance matrix.

A portion of the Canadian Doppler network in eastern Canada
[Kouba, 1976 (b)] has been used to demonstrate the magﬁitude of the
differences, of both the computed observables and their standard

deviations, that can be expected when using the approximate method
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instead of the rigorous one. Table 10-6 gives the Doppler coordinates,
and their standard deviations, that were used. Table 10-7 lists the
computed ellipsoidal distances, azimuths, and associated standard
deviations as computed via the rigorous ellipsoidallprocedure. Values
for the same quantities, computed via the Cartesian coordinates and
then projected to the ellipsoid, are given in Table 10-8. The
comparison of the two sets of results is given in Table 10-0.°

The largest distance difference (S*-S, Table 10-7) determined
was 0.29 m for a line of length 1111.5 km, which is 0.3 ppm. For the
two shortest lines, 326.5 km and 276.1 km, the distance differences
were zero. For five of the distances, the distance differences (S*-S,
Table 10-9) were greater in magnitude than 10% of the values of the
associated standard deviations of those distances (os, Table 10-7).
Such errors propagate systematically in a terrestrial network. The
differences in the standard deviations of all distances were
insignificant (og—os, Table 10-9). Thus, it can be concluded that for
this practical example, the effects of the approximations introduced
by using (5-27) are insignificant with respect to the satellite
network distances.

The errors introduced into the azimuths are significant.
Eight of the azimuth differences (0*-a , Table 10-9) are greater by
a factor of 2 (approximately) than the standard deviations of the
rigorously computed azimuths (Oa' Table 10-7). Onlyvthe azimuths of
the two shortest lines (326.5 km and 276.1 km) have differences that
are less than 10% of their standard deviations. All of the standard

deviation differences (Ga—oa' Table 10-9) are large relative to their
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STA. NAME X Y z %% oy | 9,

& NO. (m) (m) (m) (m) (m) (m)
1 GOOSE BAY | 1888555.65 | -3319617.94| 5091144.81| 1.34 | 1.22| 1.16
2 ST JOHNS | 2612796.34 | -3429075.79| 4684923.87| 1.44 | 1.34| 1.21
3 BIOANT 2018845.72 |-4069145.92| 4462375.70| 1.42 | 1.24| 1.17
4 MATANE 1606493.42 |-3888716.94| 4777519.73| 1.40 | 1.34| 1.26
5 UNB 1761273.74 |-4078249.66 | 4561416.97| 1.40 | 1.25| 1.20

TABLE 10-6

COORDINATES OF DOPPLER TRACKING STATIONS
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ELLIPSOIDAL OS GEODETIC Ua

FROM TO DISTANCE (m) AZIMUTH (")

(m)
GOOSE BAY ST JOHNS B38154.4% 1.13 136°29'36V604 0.314
GOOSE BAY BIOANT 987950.88 0.83 195°09'46V699 0.300
GOOSE BAY MATANE 708724.62 1.12 228°06'59Y046 0.393
GOOSE BAY UNB 934811.57 0.97 211°25'57v142 0.312
ST JOHNS BIOANT 901842.76 1.34 253°10'15%412 0.338
ST JOHNS MATANE 1111552.61 1.38‘ 282°40'51%'811 0.275
ST JOHNS UNB 1079118.45 1.39 265°32'21%v281 0.287
BIOANT MATANE 549620.96 1.10 328°12'337489 0.473
BIOANT UNB 276126.24 1.27 301°43'53'562 0.593
MATANE UNB 326496.30 1.02 167°29'27v602 0.834

TABLE 10-7

RIGOROUSLY COMPUTED DOPPLER NETWORK ELLIPSOIDAL DISTANCES

AND AZIMUTHS.
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REDUCED 0; REDUCED 0;
FROM TO SPATIAL (m) SPATIAL (m)

DISTANCE S* (m) AZIMUTH o*
GOOSE BAY ST JOHNS 838154.28 1.13 136°29°'357840 0.284
GOOSE BAY BIOANT 987950.82 0.82 195°09'477233 0.273
GOOSE BAY MATANE 708724.53 1.12 228°06'597588 0.321
GOOSE BAY UNB 934811.40 0.96 211°25'57'988 0.266
ST JOHNS BIOANT 901842.55 1.33 253°10'16Y080 0.237
ST JOHNS MATANE 1111552.90 1.37 282°40'51v268 0.201
ST JOHNS UNB 1079118.29 1.38 265°32'21Y657 0.197
BIOANT MATANE 549620.98 1.09 328°12'337V107 0.450
BIOANT UNB 276126.24 1.27 301°43'537465 0.748
MATANE UNB 326496.30 1.02 167°29'27V545 0.801

TABLE 10-8

DOPPLER NETWORK SPATIAL DISTANCES AND AZIMUTHS REDUCED TO THE

REFERENCE ELLIPSOID
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S* - S
FROM TO c*-g a*-q g*-g
s s a a
(m) (ppm) (m) (") (")

GOOSE BAY 2 ST JOIMNS -0.17 -0.2 0.00 0.758 -0.034
GOOSE BAY 3 BIOANT -0.05 0.0 -0.01 -0.533 -0.034
GOOSE BAY 4 MATANE -0.10 -0.1 0.00 -0.535 -0.072
GOOSE BAY 5 UNB ~-0.18 -0.2 -0.01 ~0.842 -0.045
ST JOHNS 3 BIOANT -0.20 -0.2 -0.01 -0.666 -0.101
ST JOHNS 4 MATANE 0.29 0.3 -0.01 0.541 -0.075
ST JOHNS S5 UNB -0.17 =0.2 -0.01 ~0.375 -0.090
BIOANT 4 MATANE 0.02 0.0 -0.01 0.377 -0.023
BIOANT 5 UNB 0.00 0.0 0.00 0.093 -0.204
MATANE 5 UNB 0.00 0.0 0.00 0.055 -0.032

TABLE 10-9

DIFFERENCES IN DISTANCES, AZIMUTHS, AND ASSOCIATED STANDARD DEVIATIONS




standard deviations (oa, Table 10-7;. At present, thege is no
satisfactory explanation for the two extremely large standard

deviation differences of -0V101 and -0V204 (oa—oa, Table 10-9;.
Differences in azimuths and their standard deviations of the magnitudes

found in this example are not acceptable.



11. STANDARD THREE-DIMENSIONAL MODELS - UNKNOWN

DATUM TRANSFORMATION PARAMETERS

The numerical testing carried out using the Bursa, Molodensky,
and Veis models has been done for two major reasons. First, a proper use
of the Bursa model is indicated. Second, the different results
obtained using the Bursa or Molodensky and Veis models, when the same
data is used in each, is pointed out.

Unfortunately, a lack of sufficient data hindered the solution
of any major network combinations. However, the type of data required

for rigorous three-dimensional procedures is shown.

11.1 Bursa Mbdel

As pointed out in 7.1, the Bursa model should be used for the
combination of two satellite networks. 1In this instance, the networks
define the coordinate systems involved. The rotations solved for
(e#, Ey’ ez) can not be confused with any systematic errors in
either network and thus represent the orientation of one coordinate

system with respect to the other. Further, the scale difference

parameter, kK, is a system scale factor that can not be confused with

158
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either a change in the size of a reference ellipsoid or systematic
scale errors in one satellite network or the other. 1In this case,
Kvis the difference in scale due to the different approaches used to
scale the networks.

The Bursa model has been used by several investigators.
Anderle [1974(b)] combined 37 stations of the World Satellite Triangu-
lation Network (BC-4) with a nétwork determined dynamically using
Doppler measurements to Transit satellites. Schmid [1974]) carried out
a similar combination computation.

In order not to duplicate this type of solution, and since
sufficient data (coordinates and variance-covariance matrices) for the
United States or Canadian Doppler networks and North American Densifi-
cation of the World Satellite Triangulation (BC-4) Network was not
readily available, an example of another use of the Bursa model is
gi?en in the following.

The Geodetic Survey of Canada computes several sets of
Cartesian coordinates for each point in a Doppler network. For example,
one set may be the results using the broadcast ephemeris of the Transit
satellites, while others are the results using the precise ephemeris
from one or more satellites {[Kouba, 1975]. 1In order that the full
benefit of all data can be obtained, or to study the differences
between the broadcast and precise ephemeris coordinate systems, the
Bursa model is used to combine the two networks. An example, for five
stations in Atlantic Canada, is given (Figure 11-1).

The data for this test - Cartesian coordinates (Table 11-1)

and full variance-covariance matrix - were supplied by the Geodetic
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Figure 11-1

Five Doppler Tracking Stations in Atlantic Canada
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STA. NAME X Y Z ag* a¥ g*
& NO (m) (m) (m) x Y z
: i (m) (m) | (m)
GOOSE BAY {1888563.50 |-3319612.36| 5091145.80{ 4.57| 4.67] 4.54
ST. JOHNS [2612805.27 |-3429070.10| 4684925.21| 4.52| 4.71} 4.56
BIOANT 2018852.49 |-4069145.29 | 4462379.60( 4.49| 4.63] 4.53
MATANE 1606501.10 |-3888717.43 1 4777524.76| 4.51} 4.63] 4.52
UNB 1761283.05 —4078248.72 4561419.76| 4.53| 4.61] 4.56
DOPPLER COORDINATES - BROADCAST EPHEMERIS OF SATELLITES
12 & 13 FOR DAYS 147 - 151/1974.

STA. NAME X Y Z o* a* o*
& NO. (m) (m) (m) (m¥ (m¥Y (m¥
GOOSE BAY [1888555.65 |-3319617.94 1 5091144.8] 1.341 1.221 1.1¢4
ST. JOHNS [2612796.34 [-3429075.79 | 4684923.87( 1.44| 1.34} 1.21
BIOANT 2018845.72 {-4069145.92 | 4462375.70( 1.42} 1.24| 1.17
MATANE 1606493.42 |-3888716.94 | 4777519.73| 1.40] 1.34} 1.26
UNB 1761273.74 |-4078249.66 ) 4561416.97| 1.40} 1.25] 1.20

DOPPLER COORDINATES - PRECISE EPHEMERIS OF SATELLITE 14

DAYS 148 - 151/1973.

o, with respect to the coordinate system.

TABLE 11 - 1.

COMBINATION OF TWO SETS OF DOPPLER COORDINATES
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Survey of Canada [Kouba, 1976(b)]. The variance-covariance matrices
(EXYZ) for the broadcast and precise ephemeris results reptesent the

accuracy of the solutions. The accuracy of the coordinates with

respect to their respective coordinate systems is given by

x = + 11-1
Lovz = Ixyz * Texr ( )

where ZE has the form [Kouba, 1975]

XT
z L. ieee..
Zb b b
L ... ) ' -2
Zb )b Zb (11-2)
Lext = Zb Lb Xb ......
— . p—

where Zb is a 3x3 submatrix. At present, only the diagonal elements
of Xb are available, and they are 1 m2 for precise ephemeris results
and 16 m2 for broadcast ephemeris results [Kouba, 1975]. This results
in incorrect correlation amongst and between the coordinates. Since
Z;;; is used as the weight matrix of observations in the estimation
procedure of the Bursa model, this lack of information could have an
effect on the results.

The Doppler tracking stations are separated by between 276 km
(FREDERICTON-U.N.B. to HALIFAX-BIO) and 1078 km (FREDERICTON-U.N.B.
to ST. JOHN'S). Four tests were carried out in which the precise
ephemeris data was treated as referring to coordinate system 1 and the
broadcast data to system 2 of the Bursa model (7-1). In each compu-

tation, different numbers and combinations of unknown datum trans-

formation parameters were solved for (Table 11-2).
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Of the four tests, only two solutions (Tests #l1 and #2,
. 2 . .
Table 11-2) were not rejected based on a ¥ analysis of variance at
95% probability. Test #1 had seven unknown parameters (xo, Y r Z

o] (o]

€t Ey' €, K) thle Test #2 had only six (xo, Yor 2ot Ey ey. ez).
The elimination of the scale difference parameter, which in the results
of Test #1 was significant (x = 2.0 ppm, OK = 1.0 ppm), caused a

marked change in the translation components of Test #2. The rota-
tions were not affected by the elimination of k. In both solutions,
the estimates of ey were found to be equal to or less than their
respective standard deviations. Although neither solution was
rejected, %TPQ of Test #2 (15.80) was much greater than that of

Test #1 (11.85) while the increase in df was only 1. Thus, in
addition to the changes in the translation components caused by the
elimination of « from the Test #2 solution, there was also an overall
increase in the magnitude of the residuals. However, in both

Test #1 and Test #2, the residuals for this small sample were found

to be normally distributed, and no residuals were outside the range

~

- c < V. < c -
OL. i JL. , (11-3)
1 1

where OL. is the a priori standard deviation of the observable and ¢
is the v;lue of the standard normal distribution at 95% probability.
The adjusted coordinates of the five points (Test #1) are
given in Table 11-3. As can be observed by comparing these values
(Table 11-3) with those before the adjustment (Table 11-1), changes

have taken place as a result of the combination process. The

maximum coordinate changes for the precise ephemeris data was -1.11 m
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BURSA MODEL TESTS

Test #1
=14.8 m o = 10.7 m Ex = -0Y90 0E = QY25
o X .
=16.7m o = 8.8 m e = 0vY26 0€ = 0V26 k=-2.0 ppm 0K=l.0 ppm
o Y y
=20.1lm o = 8.6 m £, = 0v70 a. = 030
o ‘z
6 = 1.00 df = 8 5% = 1.48
o o
Test #2
= 10.3 m o© = 10.4 m € = -0'88 ¢ = 0¥25
X X €
o X
=24.0m o© = 8.0 m e = 0Y23 o = QY26 «k: eliminated from
Yo Y Ey ‘ the solution
= 10.3 m o© = 7.1 m e =0v71 o = 0%30
z z €
o z
0% = 1.00 af = 9 % = 1.76
o o
Test #3
=-4.8m ¢ = 4.0 m £
fe) eliminated
=-9.0m o0 = 6.0 m € from the kK = -1.9 ppm O, = 1.0 ppm
o solution
= 5.9m ¢ = 6.7 m cz
o
o2 = 1.00 df = 11 5% = 2.65
o o
Test #4
= 8.6m 0O = 4.6 m [
X X )
© eliminated .
=-2.0m o =4.7 m € ] K: eliminated
Yy y from the £ h
° solution rom F €
=-3.0m o = 4.6 m z solution
Z5
0® = 1.00 af = 12 5% = 2.71
o o
Table 11-2

COMBINATION OF TWO SETS OF DOPPLER DATA
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Stat:l Name (X) (Y) (Z) ox Oy oz

& No. m m m (m) (m) (m)
1 GOOSE BAY 1888564.64 -3319610.72 5091146.87 4.52 4.64 4.5]
2 ST JOHNS 2612804.61 -3429069.93 4684925.44 4.49 4.67 4.55
3 BIOANT 2018853.32 -4069144.70 4462380.00 4.46 4.60 4.52
4 MATANE 1606501.21 -3888716.19 4777524.81 4.47 4.61 4.51
5 UNB 1761282.39 -4078248.54 4561420.96 4.48 4.59 4.53

ADJUSTED DOPPLER COORDINATES - BROADCAST EPHEMERIS
OF SATELLITES 12 & 13 FOR DAYS 147-151/1973

Sta. Name X Y A ox a Gz

& No. (m) (m) (m) Y
1 GOOSE BAY 1888556.06 -3319617.61 5091144.63 1.28 1.20 1.14
2 ST JOHNS 2612796.60 -3429075.63 4684924.11 1.36 1.30 1.20
3 BIOANT 2018844.61 -4069146.12 4462375.92 1.29 1.19 1.14
4 MATANE 1606493.55 -3888717.95 4477520.35 1.28 1.24 1.18
5 UNB 1761274.29 -4078249.51 4561416.31 1.28 1.19 1.15

ADJUSTED DOPPLER COORDINATES - PRECISE EPHEMERIS OF

SATELLITE 14 FOR DAYS 148-151/1973

TABLE 11-3

ADJUSTED COORDINATES AS A RESULT OF THE COMBINATION OF TWO

SETS OF DOPPLER COORDINATES
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in X (BIOANT), -1.01 m in Y (MATANE), and -0.66 m in Z (UNB}. The
maximum coordinate changes for the broadcast ephemeris data was
1.14 m in X and 1.64 m in Y, both of which occurrced at the point
GOOSEBAY, and 1.20 m in Z (UNB). In all instances, there was no
significant change in the standard deviations of the coordinate
values.

A second test was made using the Bursa model for the com-
bination of a satellite and a terrestrial network. This model is

not recommended for use in this way. The test was run solely for the

sake of comparing results with those of the Molodensky and Veis
models. The results are presented to illustrate numerically
the fact that the Bursa and Molodensky or Veis models are not
equivalent.

The data used is given in Tables 11-4 and 11-5. These arc
the coordinates - preliminary terrestrial results for the Transcon-
tinental Traverse and Doppler - for twenty;one stations in the
United States of America (Figure 11-2). This data was supplied by the
National Geodetic Survey of the United States [Meade, 1975; Strange,
1975]7.

Of the twenty-one triplets of Doppler coordinates, only fifteen
had recorded standard deviations resulting from the‘solutions for
these coordinates. The remaining six points were given standard

deviations equal to the means of the values (o0,, ©

0 NG ch) of the

other fifteen. No covariance was available, either amongst station
coordinates or between various stations. No estimate of external

accuracy was given. Values of 0.504 m2, 0.518 m2, 0.533 m2
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STA. NAME| LATITUDE LONGITUDE h or | ot |9

MDS. RCH. ‘ :

10006 39°13'26"642 | 261°27'27477 | 566.60 | 0.12 |0.17 [0.11
BLTSVLE

53002 39°01'39:288 | 283°10'27Y262 1.00 | 0.12 |0.20 [0.12
NEWTON

51025 30°54'24"714 | 266°23'56765 | 44.90 | 0.17 |0.28 [0.16
IRAAN

51039 30°52'15%370 | 258°03'58Y284 | 866.97 | 0.15 |0.25 |0.15
ARTHUR

51041 41°38'26"726 | 258°24'01%345| 1151.98 | 0.13 [0.19 [0.12
LOVELL

51043 44°48'01"457 | 251°39'16Y310 | 1193.35 | 0.12 [0.20 |0.12
HORSE

51044 41°36'44"678 | 252°12'53"888 | 2208.72 | 0.11 [0.20 [0.1l
ALBQUE

51048 34°56'43v490 | 253°32'23%305 | 1800.36 | 0.15 |0.25 |0.15
TERBON

51066 44°23'311282 | 238°42'12%208 | 861.28 | 0.14 [0.23 |0.14
MINWEL v

51067 32°57'44%997 | 261°54'35Y104 | 323.84 | 0.15 [0.23 |0.14
YOLEE

51068 30°41'46Y311 | 278°15'59%¥114 | -16.24 | 0.12 |0.19 [0.12
ASHEPO

51069 32°45'31%674 | 279°26'361774 | -38.68 | 0.13 |0.20 |0.12
RIOVIST

51089 38°08'31Y754 | 238°16'33Y529 | 10.23 | 0.16 |0.24 |0.15
DACOUNT

51103 32°04'19%495 | 253°31'03%740 | 1239.34 | 0.15 [0.25 |0.15
OPELOUS

51121 30°37'55v231 | 267°50'02¥412 | =-15.99 | 0.15 [ 0.25 [0.15
FT DAVIS -

51123 30°40'16%420 | 255°58'36%396 | 2307.58 | 0.15 |0.25 0.15

Table 11-4
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STA. NAME LATITUDE LONGITUDE h ag* o* a*
& NO A (m) ¢ . b
: ¢ @ | @ | @
PILLPT
10055 37°29'53'123 | 237°30'04v985 13.51 0.15 1 0.25 |0.15
CASH
10021 37°33'06Yv952 | 273°55'09"'742 229.40 0.19 {0.29 [0.17
UKAMISS
10022 34°47'15%796 | 271°45'29'375 211.70 0.26 [0.41 10.22
TERMISS
10023 33°33'547992 | 270°50'03v480 103.60 0.20 10.30 {0.18
OXALIS
53063 36°54'50Y7431 239°26'44"530 -1.44 0.14 10.22 {0.13
a = 6378145.0 1/f = 298.25
NOTE : 0¢, OA, Oh were not given for stations 4, 18, 15, 16, 17. The
values given here are the means of the values o, OA, oy of
all other 15 stations.
* u¢, “A' Uh represent the internal accuracy of the solution.

TABLE 11-4 (cont'd)

DOPPLER COORDINATES COINCIDENT WITH TRANSCONTINENTAL

TRAVERSE POINTS
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STA. NAME LATITUDE LONGTTUDE 0 H 9y N o
& NO. ¢ A (m) (m) (m) (m)
=
(m§
MDS. RCH.
10006 39°13'26"686 | 261°27'29V494| 0.0 599.40 | 0.0 0.0} 0.0
BLTSVLE
53002 39°01'39%261 | 283°10'26v899| 3.0 42.801] 0.3 -2.715.9
NEWTON
51025 30°54'24"080 ] 266°23'57V1341 2.0 85.70 1} 0.2 2.14 3.9,
TRAAN
51039 30°52'14v847 | 258°04'00Y426| 2.0 898.90 1 0.2 0.6} 3.8
ARTHUR
51041 A41°38'27V013 | 258°24'03'8441 1.0 1179.40 1 0.1 4.6 2.2
LOVELL
51043 44°48'027028 | 251°39'19V733| 2.0 1213.551 0.2 6.81 3.9
HORSE :
51044 41°36'56Y136 | 252°12'57v024| 1.8 2231.30} 0.2 5.21 3.4
TERBON
51066 44°23'32'167 | 238°42'17Y070( 3.1 891.30j 0.3 }1-16.416.1
ALBQUE
51048 34°56'43V351 | 253°32'25Y929| 1.8 1829.60 | 0.2 0.5 3.5
MINWEL
51067 32°57'447602 | 261°54'36Y968| 1.6 359.60 1| 0.2 -2.01} 3.1
YULEE
51068 30°41'45Y626 | 278°15'59%246] 3.0 17.00§ 0.3 4.4 (5.7
ASHEPO
51069 32°45'317194 ) 279°26'36Y789| 2.9 2.201 0.3 -0.31 5.6
RIOUIST
51089 38°08'32V353 ] 238°16"'37Y829] 3.2 51.80| 0.3 | -30.7 | 6.2
DACOUNT
51103 32°04'19V097 | 253°31'06%Y299] 2.1 1271.60) 0.2 -3.514.0
OPELOUS
51121 30°37'54?595 267°50'05v405| 2.2 19.50} 0.2 3.114.1
FT. DAVIS
51123 30°40'15v872 | 255°58'44:120( 2.1 2065.601| 0.2 1.114.0

Table

11-5
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STA. NAME LATITUDE LONGITUDE O¢ H OH N OH
& NO. (m) (m)
A ¢ (m) (m)
¢ (m;‘

PILLPT

10056 37°29'53%7441 | 237°30'09v749] 3.3 53.821 0.3 {-32.8] 6.4
CASH

10021 37°33'06%Y818 | 273°55'10%v341| 2.1 267.00 | 0.2 -1. 4.1
UKAMISS

10022 34°47'15%482 | 271°45'30'184¢ 2.0 247.10| 0.2 3. 4.0
TERMISS

10023 33°33'54%"598 | 270°50'04"%408| 2.1 138.60 1) 0.2 4.0
OXALIS

53063 36°54'51"184 | 239°26'48%612] 3.1 40.08 | 0.3 |-30.4 | 6.0

a = 6378206.4 1/f 294.98525
*STN. MDS RCH. (10006) IS THE TERRESTRIAL NETWORK INITIAL POINT

TABLE 11-5 (cont'd)

U.S.A. TRANSCONTINENTAL TRAVERSE COORDINATES



A51066
£51043 ’
A51044 /
A51041
: 530022
A10055
A 51089 A MDS RCH
A53063 10006
A10021
AH10022
A 51048
112 As1067 A10023 51069
A:’ A 51103
A51039 510684
510252 A51121
Figure 11-2

Twenty -one Doppler Tracking Stations in the United States of America

LT
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2 2 .
, 0, for each station

2
[Beuglass, 1974] were added to each of o \ h

¢

to yield realistic variances for the Doppler coordinates with

, O

respect to their coordinate system.

No estimates of the accuracy of the Transcontinental
Traverse coordinates (¢, A) were given since they represent prelim-
inary results [Strange, 1975]. 1In lieu of this, the rule of thumb
[NASA, 1973]

o¢ = OA = 0.020 K2/3m (11- 1)

was used, where K is the distance of (¢, A) from the terrestrial

initial point. 1In this test, (o ) have been assumed to be

, a
A

¢k k v

equal to zero, although as explained previously (1.3), this need not

be the case.

Similarly, no accuracy estimates were given for either H
or N. Again, some rules of thumb were adopted to have some standard
deviations. Assuming that all heights were determined by spirit

levelling, the relationship [NASA, 1973]
o .=1.8K - 10 m (1+ 5)

was used. For N, assuming that astrogeodetic methods had been used,

oy was approximated by [Badekas, 1969]

N + 0.075 K

+ 3.88-10 K (11-6)

In this test, the ellipsoidal height (hk = H + Nk) at the terrestrial

k

network initial point has been assumed to have oy = 0. Again{ this
will most likely not be the case in practice (1.3).

The Doppler network coordinates are referred to system 1 in

the Bursa model (7.1), while the Transcontinental Traverse is related
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to system 2. Since the Doppler coordinates were given in terms of
geodetic coordinates (¢, A, h), they, and their variance-covariance
matrix, were transformed to a Cartesian coordinate system using (1-2)
and (2-3) respectively. The Transcontinental Traverse (terrestrial)
coordinates were expressed in terms of (¢, A, H, N), and they too
were transformed to a Geodgtic Cartesian system using the procedure
outlined in 2.1.3. The semi-major axes and flattenings of the two
ellipsoids involved are given in Tables 11-4 and 11-5.

Four test runs were made using the data described. The
resulting transformation parameters are given in Table 11-6. 1In
all cases, the x2 analysis of variance failed at the 95% confidence
level. Although no indepth analysis of the reasons for the failures
could be carried out, it is the author's opinion that the approximate
method by which variances were generated for the terrestrial coordi-
nates was the major problem. This is particularly evident for Test
#3 (Table 11-6) in which all transformation parameters were
significant. The other reason, which is of greater consequence, is
that the model (Bursa) is not suitable for the combination of
terrestrial and satellite networks.

A brief examination of the results of Tests #1 and #2
(Table 11-6) shows that the rotation parameters generated are all
insignificant. 1In all tests, the translation components are signif-
icant, and Tests #1 and #3 show the scale difference to be of
significant magnitude.

In comparing the results reported here with those of

Strange et al. [1975], it was found that the translation components
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Test #1
-22.6m o = 6.3 m ! = 0v10 o = 0'29
X X ¢
fe} X
154.4 m o = 5.8 m vt =002 o = 0Y16
Y Y €
o y
172.6 m o = 7.3 m £ = 0v10 o = 0'17 «x=1.1 ppm ¢ =0.4 ppm
z z € K
o z
62 = 1.00 df = 56 5% 0.54
o o
Test #2
-22.7m o = 6.3 m e =007 o = 0Y29
X x €
o X
150.0 m @ =5.5m e = 0Y03 o = 0V1l6
Yo Y Ey

177.6 m oz =7.0m e = 0v12 oE = 0V17 «k: eliminated from
fe) z z the solution.
0% = 1.00 af = 57 ' 5% = 0.64
o o
Test #3
-25.3m o =0.8m € :
x .
o eliminated
156.6 m o© = 2.1m € from the
Yo Y solution Kk = 1.1 ppm o, = 0.4 ppm
174.8 m o =1.9m €
z z
o
o2 = 1.00 df = 59 82 = 0.52
Test #4
-26.0 = 0.7 : ..
m Oxo 0 m Ex eliminated
from the
151.7 =0.7 : R L.
>1 " qyo 0 m Ey solution k: eliminated from the
179.1m 0 =0.7m € : solution
z z
o
2 ~2
o = 1.00 df = 60 o= 0.62
o o
TABLE 11-6

BURSA MODEL TESTS

COMBINATION OF A DOPPLER AND A TERRESTRIAL NETWORK
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(Test #1, Table 11-6) agreed to within 2 m in all three components.
The scale difference of 1.1 ppm compares favourably with the 1.0
ppm. However, Strange et al. [1975] found significént rotations
Ey (=010, o = 0Y04) and ez (0Y19, o = 0Y04). This latter difference
is most likely due to the somewhat different data usea and the
different variances attributed to the terrestrial coordinates.

For each test run, the adjusted coordinates of each net-
work and their variance-covarinace matrices were computed. 1In
all cases, there was a significant decrease in the standard devia-
tions of the terrestrial coordinates. For example, before the net-
work combination, the standard deviations of the Cartesian
coordinates of point 51068 (YULEE) were 3.06 m, 5.11 m, and 3.89 m
in the x, y, and z components respectively. After the combination
they were 0.69 m, 0.36 m, and 0.36 m. There was little change in
the standard deviations of the Doppler coordinates. |

There were significant changes in the terrestrial coordi-
nate values in all tests. For example, the adjusted terreétrial
coordinates for Test #4 experienced changes of -2.77 m to 2.76 m in
X, -2.54 m to 4.01 m in y, and -3.70 m to 0.39 m in z. There were
no changes greater than + 0.2 m (Test #4) in any Doppler
coordinates.

Comparisons of the Bursa model results with those of the

Veis and Molodensky are given in 11.3.
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11.2 Veis and Molodensky Models

These models have been used in some studies in which the
combination of terrestrial and satellite networks were carried out
[e.g.’Badekas, 1969; Mueller and Kumar, 1975]. The test computations
reported herein have been carried out solely for the purposes of
comparison with results generated via the Bursa model.

The Doppler and terrestrial data used is given in Tables
11-4 and 11-5 respectively. Five test runs were made, each of which
contained different sets of unknown parameters. The'resulting
translation components and network scale and orientation parametefs
are given in Table 11-7.

None of the test runs were acceptable on the basis of a x2
analysis of variance at 95%. One of the reasons for this, as stated
regarding the Bursa model test, is most probably the approximate
methods by which terrestrial coordinate variances were generated.

The fact can not be discounted, however, that the failure of the

x2 analysis of variance 1is an indication that the Veis (or Molodensky)
model is not adequate for the combination of terrestrial and
satellite networks.

In all five test computations, only the translation com-
ponents and scale difference were found to be significant. As with

the Bursa model tests, there was little change in the Doppler
coordinates or their associated variances. Significant changes in
terrestrial coordinates and their variances occurred as a result of
the Veis (or Molodensky) combination procedure.

Comparisons of the results generated for this report could
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Test #1
X = =26.2m ¢ =0.7m dA = -0.04 o = 0Y09
fe) xO da
= . = 0. = -0¥ = 0V
yo 151.2 m GyO 0.7 m du ovo9 odu 29
= . = . ::-—'.' = '_' =1. =,4
zO 179.3 m OZO 0.7 m dv 0v10 Odv 0Y20 «k=1.1 ppm oK 0 ppm
Molodensky Rotations:
= o = 0v02 = 0v10
wx 10 qJy vwz
2 ~2
o = 1.00 df = 56 g = 0.54
o o
Test #2
X =-26.1lm o = 0.7 m dA = -0Y04 o = 0Y09
o) xo da
= 151. = 0.7 dy = -0%06 = 0'29
yO 1 8 m UYO m U odu
z =179.2 m o = 0.7 m dv = -0V12 o = 0%V20 K: eliminated from
o z dv .
o the solution
Molodensky Rotations:
= oY = 0" = 0"12
wx ovo7 wy 0703 wz 1
2 ~2
o~ =1.00 df = 57 g = 0.64
o o
Test #3
X = -26.1lm g =0.7m dA: eliminated
e} X.
© from the
yo =151.2 m oy = 0.7 m du: solution
o
= 179. = 0. : =1. =0.4
zo 179.3 m aZo 0.7 m dv k=1.1 ppm o, ppm
0% = 1.00 df = 59 5% = 0.52
o o

Table 11-7
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Test #4
xO = -26.0 m oxo = 0.7 m da eliminated
y =151.7m o =0.7m  du: Cromthe
o Yo solution
z = 179.1 m o = 0.7 m dv: ¥ : eliminated from the
zo solution
"2
02 = 1.00 df = 60 o = 0.62
(o] [o]
Test #5
X = -26.1lm o = 0.7 m dA = -0Y04 © = 0Y09
o X da
y =151.2 m o =0.7m dy: eliminated from
o y .
o the solution
z0 =179.3m o =0.7m dv k=1.1 ppm 0K=0.4 ppm
%o
Molodensky Rotations:
= -0 = -0 = o
v, 0"02 lby 0"03 v, 02
0® = 1.00 df = 58 5% = 0.53
o o
TABLE 11-7 (cont'd)

VEIS AND MOLODENSKY MODEL TESTS

COMBINATION OF A TERRESTRIAL AND A DOPPLER NETWORK
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not be compared with those of other investigators. The reason for
this is that no outside investigators have attempted to combine the
U.S. Transcontinental Traverse and Doppler networks using either a

Veis or a Molodensky model.

- 11.3 Comparison of Results

In 7.4, it was shown that the Bursa and Veis (or Molodensky)
models are not mathematically equivalent. This was brought to light
in a comparison of the treatment of a terrestrial initial point in
the formulation of each of the models, and in a comparison of the
elements of the design matrices Ai in the estimation procedure. As
has been shown in other investigations, the models can be made to
be equivalent under certain conditions concerning the terrestrial
initial point and the formulation of the mathematical models
[Krakiwsky and Thomson, 1974; Mueller and Kumar, 1975].

A comparison of the test results generated using the same
data in each of the models helps to further illustrate the differences
in the models. 1In each of Tests #1 and #2 (Tables 11-6 and 11-7),
the translation components of the Bursa model solution are different
from those of the Veis (or Molodensky) model solution, while the
scale difference parameters and rotation parameters are equivalent
numerically. The latter is easily understood. Since there is only
one set of rotation parameters and one scale difference parameter in
each model all rotation and scalé errors, whether they are the result

of discordant, mis-scaled coordinate systems or misoriented mis-scaled
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networks, are represented by these parameters. The results of Tests

#3 (Tables 11-6 and 11-7), from which all orientation parameters
were eliminated, show that the two sets of translation components

(Bursa and Veis or Molodensky) are still significantly different -

0.8 m in xo, 5.4 m in yo, and -4.5 m in z- The scale difference
parameters are, however, equivalent. Only in Test #4 of each

model, in which all rotation and scale parameters have been

eliminated from each solution, are the results (translation components)

equivalent.



12. RECENT THREE-DIMENSIONAL MODELS - UNKNOWN DATUM TRANSFORMATION

PARAMETERS

Each of the three models in this category - Hotine, Krakiwsky-
Thomson, and Vanicek-Wells - contain two sets of unknown rotation
pa;ameters. The separation of the two sets of rotations in the former
twé models is achieved via a specific least-squares estimation procedure,
while the latter involves several terrestrial networks in a single
parametric least-squares solution. 1In all three instances, final
conclusions regarding the validity and usefulness of the models will
only be possible when the proper data is available for numerical testing.
Proper data is considered to be‘two or more sets of terrestrial and
satellite network coordinates that are the result of rigorous but sep-
arate network computation procedures. Unfortunately, this type of data
is not readily available at present. Thus, the tests carried out
merely indicate that the models proposed, and their methods of solution,
are feasible.

Contained herein are test results of the combination of a

Doppler and a terrestrial network using the Krakiwsky-Thomson model.

181
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The Vanicek-Wells model was not tested for this report.
Teét results for this model have been reported elsewhere [Wells and

Vanicek, 1975].

12:1 Krakiwsky-Thomson Model

The data given in 11.1 (Tables 11-4 and 11-5) was used to

geherate some test results for the combination of a Doppler and a

i
.

te?restrial network. The estimation procedure outlined in 8.2 was
utilized.

Three sets of results are given in Table 12-1. Based on a x2
analysis of variance at 95%, none of the results were accepted. Several
as;umptions may be made regarding this, none of which can be investi-
ga?ed at present. The data used was not complete. There was no
co&ariance information amongst and between the Doppler coordinates. The
variances of the terrestrial coordinates were generated using some rules
of thumb (11.1), and therefore there was no covariance amongst and
between coordinates. Of course, there is the possibility that the model
and/or the estimation procedure may be inadequate. However, with the data
used, no conclusive evidence of this could be deduced.

As required for the estimation procedure, the observables
(network coordinates) were split into two parts (inner and outer zones).

The inner zone consisted of 5 points that were all with 1000 km of the

terrestrial network initial point. The remaining observables (Doppler
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Test #1

Datum Transformation Parameters

x =-25.1m o =6.5m ¢ = -0Y01L g = 0YS53
o : x . bY ¥
o X
y =152.2m o = 10.3 m e = 0V29 o = Qv22
o y y [
le) Y
z =180.6m o =12.8 m e = -0V'19 o = 0v21
c z z ‘€
o ‘z
Network Parameters
= -Q%2 = 0'2
da ov25 UdA _ 8
= -0% = 0'64
du ovls Odu 0ve
dv = -0V30 Oav = 0723 Kk = 1.1 ppm q( = -.5 ppm
Molodensky Network Rotations
y = 018 = -0Y03. = 0
Vo wy 0 wz 39
6% = 1.00 af = 53 5% = 0.46
o : o
Test #2
Datum Transformation Parameters
x = =-30.6m g =50m € : eliminated
(o] X X
o) from the
y =152.0m g =1.0m € : solution
° Y, y
z =179.3 m o = 0.7 m e =-0V18 [+ = Q'21
(e} zo z EZ
Network Parameters
= oV = QY2
da ovol UdA 021
= -0"21 ) = Q35
du Odp
= -0V34 = Q¥ = 1. = 0.
dv ov3 %3 ov23 K 1.1 ppm o, 0.5 ppm
Molodensky Network Rotations
b = 0V24 = 0'18 = 0¥26
Yo 0 'JJY ‘bz ov2
02 = 1.00 af = 55 02 = 0.47
o o

TABLE 12-1
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Test #3

Datum Transformation Parameters

-26.2 m o = 0.7 m €

x
]

°© Xs X eliminated from
y =151.3m o] =0.7m € the solution

o yo y

z =179.3 m g =10.7m e

o z 2

Network Parameters

da = -0v12 o) = 0V10
da

du eliminated from
the solution
dv kK = 1.2 ppm 0K= 0.5 ppm

. Molodensky Network Rotations

= -Q" = -Q" | . "
v, = -0%01 b, = -009 g, = 0%07
6% = 1.00 af = 58 5% = 0.50
fe) 0

TABLE 12-1 {(cont'd)

TEST RESULTS OF THE KRAKIWSKY-THOMSON MODEL
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and terrestrial coordinates of 16 points) were in the outer zone. This
split was purely arbitrary since, due to a lack of sufficient data, no
conclusive testing could be carried out regarding the optimal separa-
tion of observables.

In all three sets of test results (Table 12-1), the system
and network rotation parameters were insignificant. Attempts to
isolate significant rotations, such as longitudinal (ez) sYstem
rotation (Table 12-1, Test #2) and an azimuthal (dA) network rotation
(Table 12-1, Test #3) did not improve the solution. Only the datum
translation components (xo, Yor zo) and the network scale difference
(k) proved to be significant.

It should be noted that the network rotations determined
are expressed in three ways. The Krakiwsky-Thomson model developed
herein is in terms of Veis-type network rotations. As pointed out in
7.3, Molodensky—type network rotations are easily'computed.from
these.

As expected, the variances of the terrestrial network
coordinates improved (decreased) as a result of the combination pro-
cedure. Changes in the terrestrial coordinates of up to 2.8 in- x,

3.3 m in y, and 3.5 m in z took place. All Doppler coordinates
changed by 0.2 m or less.
No further analysis was carried out. As indicated. earlier,

the lack of data was a major problem and hindered adequate testing.
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS



13. CONCLUSIONS AND RECOMMENDATIONS

As a result of the research and analyses carried out for
this study, the following conclusions have been arrived at:

1. No matter what methodology is used to establish a datum for
terrestrial geodetic networks, the quantities and procedures used
must be stated clearly and explicitly. Assuming that the practice
of using a reference ellipsoid as a horizontal network datum will
be continued, it should be remembered that it is a three-dimensional
object and must be positioned and oriented as such in the earth
body. This means that the conditions for parallelity of
axes must be applied at the terrestriad network initial
point. Further, the manner by which the initial point geodetic
coordinates are obtained must be clearly defined. Only then will
the rigorous propagation of errors, into appropriate quantities,
be possible.

All of the information mentioned above is essential for

a total understanding of how a particular datum has been chosen,

positioned, and oriented. This will be particularly crucial, for

example, for an in depth analysis of the preliminary results of the

redefined Canadian geodetic networks.
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Precise and homogeneous satellite networks, such as the Canadian
Doppler network, contain errors that are of a lower order of
magnitude than those that could be expected in a terrestrial net-
work of similar extent. Such networks can provide essential
information for:
(i) the establishment of a terrestrial datum;
(ii) the modelling of syétematic errors in terrestrial networks;
(iii) the establishment of a homogeneous, three-dimensional,
terrestrial geodetic network.
To utilize a maximum amount of satellite network data with the
least amount of computational effort in the adjustment of terres-
trial network, the use of satellite network coordinates as
weighted parameters is the most practical. The basic disadvantages
of this type of approach are that:
(i) the datum transformation parameters must be known;
(ii) unmodelled systematic errors will affect the solution and
residual vectors.

Three dimensional models for the combination of satellite and
terrestrial geodetic networks are preferable. The advantages are:
(i) no loss of covariance information such as when the data is

split into horizontal (4, A) and vertical (h) components;
(i1) datum transformation parameters can be solved for rigorously;
(iii) the overall effects of systematic errors -in the terrestrial
network can be modelled;
(iv) given sufficient terrestrial data, the orientation of the
satellite and terrestrial datums with respect to Average

Terrestrial axes can be determined.
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Arguments regarding the insignificance of correlation
between (¢, A) and (h) components in networks such as the Canadian

Doppler can not be assumed, particularly on a continental basis.

5. The Bursa and Veis (or Molodensky) models are not mathematically
equivalent. Under certain conditions, they give equivalent
numerical results. None of these three models are considered to
adequately model the unknowns in the combination of terrestrial
and satellite networks.

6. The Bursa model is adequate for the combination of two or more
satellite networks.

7. The Krakiwsky-Thomson and Hotine models reflect more
adeguately than the other models the real physical situation.
that exists when combining a satellite and a terrestrial
network.

8. The Vanicek-Wells model is the only model that relates the orienta-
tion of the axes of a satellite datum and those of several
terrestrial datums to the Average Terrestrial coordinate system.

9. Theoretically, a combination of the Krakiwsky-Thomson and Vanicek-
Wells models can be used to combine several terrestrial datums and
their related networks and a satellite datum and its network. Such
a procedure will yield the orientations of each datum with
respect to one another and the Average Terrestrial coordinate
system, the position of each datum with respect to the other, and
a parameterization of the overall effects of systematic scale and
orientation errors in each terrestrial network.

This study has led to four recommendations that, in the




190

author's opinion, are important in the Redefinitidn of the North

American geodetic networks.

1. The North American Densification of the Worldwide Satellite
Triangulation (BC-4) Network should be investigated, once sufficient
terrestrial survey ties become available, with respect to the
Canadian and U.S. Doppler Networks. Such an investigation should
lead to the eventual use of this data in the redefinition of the
North American geodetic networks.

2. The Krakiwsky-Thomson model should be fully tested when adequate
data becomes available. The data should consist of:

(i) the complete definitions of the terrestrial and satellite
datums;

(ii) the coordinates and associated variance-covariance matrix of
a homogeneous satellite network, such as that of the
completed Canadian Doppler network;

(iii) the coordinates and associated variance-covariance matrix of
a readjusted, homogeneous, three-dimensional terrestrial
network with several hundred network points common to those
in (ii) above;

or
The readjusted horizontal (¢, A) and vertical (H) network
coordinates and associated variance-covariance matrices,
plus_the geoidal heights (N) and associated variance-
covariance matrix with several hundred network points
common to those in (ii) above.

3. Serious consideration should be given to the three-dimensional
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combination of the satellite (Doppler, BC-4) and readjusted
terrestrial networksiin the redefinition of the North American
geodetic networks. The several hundred network points involved
would form the basis of future three-dimensional networks.

There should be efforts made towards the rigorous establishment

of a three-dimensional terrestrial network in North America.

This will permit, in the fﬁture, an unadulterated use of inherently
three-~dimensional information, such as that obtained via satellite

and inertial positioning.
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