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Abstract 

     Currently, most autonomous mobile robot indoor navigation systems are unable to 

provide absolute state information (e.g., coordinates in a reference frame) and rely on 

expensive sensors. The goal of this research is to develop a low-cost, high-accuracy, 

autonomous mobile robot indoor navigation system. The robot starts from an unknown 

location in a corridor environment and arrives at a selected target point with certain 

accuracy by following the centre line or virtually any lane of the corridors. The core 

research of this autonomous navigation system is in the development of reliable indoor 

orientation and position estimation algorithms. 

     Integrating MEMS inertial and magnetic sensors improves overall performance of 

orientation estimation. However, challenges exist in dealing with the large gyro sensor 

errors and the large measurement noises of the accelerometers and magnetometers. A 

quaternion-based Kalman filter has been developed, which applies tightly-coupled and 

closed-loop integration strategies. It incorporates an online sensor calibration procedure 

for modelling time-varying sensor biases of the accelerometers and magnetometers, and 

a mechanism for adapting the measurement noise in the presence of motion and 

magnetic disturbances. In static mode, the integration algorithm can provide an 

estimation accuracy of less than o1  when there is no magnetic anomaly. Even with the 

existence of significant magnetic disturbances, the orientation estimation error is 

reduced from up to 
o131.6  to 

o4.7 . In kinematic mode, the solutions show as much as 

40%  error reduction compared to those without applying the integration strategy. 
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     A novel indoor positioning system based on radio frequency identification 

technology has been developed, which can deal with complicated indoor radio signal 

environments due to multipath, non-line-of-sight, and signal interference. A regularized 

particle filter has been built by employing a non-parametric, probabilistic observation 

model. An effective online measurement quality control algorithm has been developed, 

which can identify and reject non-line-of-sight and/or multipath corrupted 

measurements. The developed indoor positioning system achieved a mean positioning 

error of 1.64 m, which is about 49% or more improvement in accuracy compared to 

other conventional methods. 

     To successfully guide a robot to a target position, a sonic-vision system that can 

profile the local environment has been developed and two intelligent controllers have 

been designed. An efficient autonomous navigation algorithm has been developed, 

which choreographs all sub-system components comprising the orientation estimation 

module, the positioning module, the sonic-vision, and the intelligent controllers. The 

results showed that the robot is able to autonomously navigate to a pre-specified target 

point with a mean offset of 2.38 m. The average cross-track error was about 0.1 m 

which indicates the controllers’ autonomous capability in tracking and guidance. Overall 

results have confirmed the significant performance improvements of the developed 

orientation and position estimation methods, the benefits of applying them for indoor 

navigation, and the effectiveness of the autonomous navigation algorithm. 
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Chapter 1  Introduction 

     Today, mobile robots are widely employed as an alternative to human operations in 

industry, agricultural, medical, and military environments. They also appear as consumer 

products for entertainment or to perform certain household tasks such as vacuum cleaning 

and gardening. One of the fundamental requirements for mobile robot operations is 

navigation. Originally, a mobile robot was manually operated using a remote controller. 

Over the past few decades, research on autonomous navigation has gained considerable 

interests [Dai et al., 2007]. An important issue associated with autonomous mobile robot 

operations is to maintain reasonable navigation performance along with the cost demand. 

This dissertation investigates a low-cost, sensor fusion approach to realize autonomous 

mobile robot navigation in indoor environments. 

 

1.1 Background 

     Autonomous navigation is a process of understanding and modelling dynamic world 

for safe navigation (i.e., obstacle avoidance), planning motion/path in dynamic 

environments, monitoring the state (e.g., position, orientation) of a mobile robot, and 

controlling its movement without human intervention. However, in this dissertation, the 

term “autonomous navigation” refers to a narrow concept, that is, the automation of state 

perception as well as intelligent controlling. The easiest way to navigate a mobile robot to 

its destination is to follow painted lines [Yi, 2009] or induction wires [Kim and Ryoo, 

2007]. Alternatively, some studies have been conducted to navigate a robot with respect 

to surrounding features like doors, wall edges, artificial landmarks, etc. The motions of 
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the robot are determined by observing the relative position between the selected features 

and the robot [Santos-Victor et al., 1993; Gueaieb and Miah, 2008]. Currently, more 

research efforts have been given towards building absolute navigation systems on which 

a mobile robot relies to travel to a target point by examining its state in absolute terms, 

for example, determining coordinates in a reference frame. 

     To build a goal-oriented autonomous indoor navigation system, several sub-system 

components should be developed, including an orientation estimation module, a 

positioning module, and an intelligent logic controller. In other words, this dissertation 

focuses on tracking the state (i.e., orientation and position) of a mobile robot in indoor 

environments and realizing autonomous navigation using the obtained state information. 

For system state estimation, generally, the use of multiple sensors may reduce 

uncertainties associated with each sensor and provide sufficient and reliable information 

of the environment [D’Orazio et al., 1993].  

     For orientation estimation, amongst many technologies that have been considered, 

gyroscopes (usually abbreviated to gyros) have become the most promising approach in 

terms of being self-contained, compact, and robust [Welch and Foxlin, 2002]. Typically, 

orientation is determined by integrating the output from a rate gyro which shows good 

short-term accuracy. However, gyro-derived orientation error tends to grow over time 

due to inherent sensor biases. This orientation drift cannot be removed without external 

references. Orientation can also be computed using the combination of accelerometers 

and magnetometers. A tri-axis accelerometer measures the vector sum of body 

acceleration and gravity. In most situations of robot movement, the gravity vector is 

dominant. Thus, the accelerometer is able to provide inclination (pitch and roll) 
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information. This inclination estimate has long-term accuracy. A tri-axis magnetometer 

responds to the vector sum of the Earth’s magnetic field and other local magnetic fields. 

It offers direct and drift-free heading information if it is not subject to local magnetic 

disturbances. 

     Research is currently being carried out in many laboratories for estimating robot 

orientation by fusing the two types of sources (i.e., gyros only and the combination of 

accelerometers and magnetometers). The orientation drift resulting from the integration 

of gyro biases can be corrected by incorporating the drift-free solutions from 

accelerometers and magnetometers. Such an orientation system is usually known as an 

attitude and heading reference system (AHRS). A successful AHRS requires very 

expensive sensors that have exceptionally long-term bias stability. The cost demand has 

limited such an AHRS to high-end applications. Recently, advances in micro-electro-

mechanical systems (MEMS) technology have made cheap inertial sensors (i.e., gyros 

and accelerometers) available for cost-sensitive applications. A considerable amount of 

effort then has been directed in developing a low-cost AHRS based on MEMS 

technology. The challenge is to develop a robust integration algorithm to deal with the 

large sensor errors of the gyros as well as large measurement noise of the accelerometers 

and magnetometers. Specifically speaking, for the accelerometers, the body acceleration 

will corrupt the inclination estimates as they are determined by measuring the gravity 

vector, while the presence of magnetic anomalies generated by nearby ferromagnetic 

materials will bring heading errors for the magnetometers. 

     For position estimation, the success of outdoor positioning applications based on 

global navigation satellite systems (GNSS) motivates its extension to the development of 
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indoor positioning systems. Unfortunately, the poor reception due to weak signals 

prohibits GNSS from being used effectively in dense urban areas or inside buildings 

where the visibility of the GNSS satellites is very limited. For indoor applications, a 

number of positioning strategies have been proposed in the literature: e.g., exploiting 

visual landmarks [Makela and Koskinen, 1991; D’Orazio et al., 1993; Matia and Jimenez, 

1998; Samuelsson, 2005] and map-matching [Luo et al., 2008]. The common problem 

pertaining to these techniques is that they depend on complex image processing 

algorithms, expensive hardware, and prior models of the environment. Over the past few 

years, there has been astonishing growth of wireless technologies which opens a new 

opportunity for indoor positioning applications [Benet et al., 2002; Yi and Choi, 2004; 

Liu et al., 2007]. Compared with other types of wireless technologies (e.g., infrared and 

ultrasonic), radio frequency (RF)-based positioning systems are predominant today due to 

their availability and low cost. Because radio waves of sufficient power can penetrate 

walls and human bodies, they are able to provide more ubiquitous coverage with less 

hardware cost. However, indoor radio propagation is very complicated due to multipath, 

non-line-of-sight (NLOS), and signal interference [Liu et al., 2007], which pose 

significant challenges for accurate position estimation. 

 

1.2 Literature Review 

     In the following sub-sections, current research activities regarding orientation 

estimation using inertial sensors and magnetometers will be discussed first. Also, 

methods and approaches to deal with sensor errors and measurement noise will be 

examined. Then, existing indoor positioning systems and algorithms using wireless 
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technologies will be reviewed, followed by the discussion of sensor fusion for 

autonomous navigation. 

 

1.2.1 MEMS Attitude and Heading Reference System 

     Integration of inertial and magnetic sensors for orientation estimation has been 

investigated in the literature for decades [Foxlin, 1996; Bachmann, 2000; Roetenberg et 

al., 2005; Tome and Yalak, 2008; Han and Wang, 2011]. The Kalman filtering 

methodology is usually applied for system integration. Different integration strategies 

have been developed by appropriately weighting the three sources of information (i.e., 

measurements from gyroscopes, accelerometers, and magnetometers) in order to make 

the best use of the data from each sensor. 

     Foxlin [1996] investigated the performance of an adaptive algorithm that roughly 

adjusts the noise covariance matrices (the accelerometer measurements are ignored when 

they are erroneous). The accelerometer-derived inclination angle is used for updating the 

orientation of a test platform while it is in a static mode. Because the update from the 

accelerometer is sparsely applied, the gyro bias terms are also included in the state vector 

in order to improve the accuracy of gyro integration. Experiment results have shown that 

the incorporation of measurements from the accelerometer can effectively correct the 

drift in roll and pitch estimation. However, a certain amount of error accumulates at every 

update. The procedures to remove the heading drift under environments with magnetic 

disturbances were not described in detail. In the work of Roetenberg et al. [2005], the 

state vector was augmented with a magnetic disturbance vector and the gyro bias terms. 

The disturbance was modelled as a Gaussian Markov process. When a magnetic 
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perturbation was detected, the magnitude of the driving noise was adjusted adaptively 

proportional to the magnetic amplitude and dip angle variations. Sabatini [2006] 

presented interesting results using a total state (orientation was estimated in the filter) 

extended Kalman filter with an attempt to model and capture the sensor biases for both 

accelerometers and magnetometers. Rather than modelling and including the body 

acceleration and magnetic disturbance in the state vector, the measurement noise 

covariance is changed at run-time. The purpose of this strategy is to disregard unreliable 

aiding measurements. Experimental results have demonstrated that the performance has 

been significantly improved through online bias compensation and an adaptive data 

fusion algorithm. However, all these approaches are designed for human motion study. 

The filter performance degrades in magnetically disturbed indoor environments where a 

mobile robot will be deployed.  

     Recently, an adaptive extended Kalman filter has been investigated by Tome and 

Yalak [2008] to improve orientation estimation for indoor and outdoor pedestrian 

positioning. The measurement of each sensor is verified against certain conditions to 

detect the occurrence of a magnetic disturbance and the immobility condition of the 

system. The system model and measurement covariance are adapted according to some 

specific rules. By integrating estimated orientation with step length estimates, significant 

improvements have been made in positioning accuracy. However, the experiments have 

exposed the fact that the adaptability feature of the filter is sensitive to the 

parameterization and the selection of the thresholds in the adaptability rules. This 

approach has shown quite variable performances with different data sets. The accuracy 

could also decrease if the magnetic field is constantly disturbed. In addition, the way to 



 

 

7 

deal with an unobservable system was not well addressed. As a matter of fact, they tried 

to estimate twelve states with only six measurements. The work on the fusion of low-cost 

inertial and magnetic sensors in signal-degraded indoor environments still requires more 

exploration. 

 

1.2.2 Wireless Positioning Systems 

     An astonishing growth of indoor positioning systems using wireless technologies has 

been witnessed recently. Those systems can be classified based on their system 

topologies, sensor technologies, measuring techniques, and positioning algorithms. 

     The wireless positioning system usually consists of multiple base stations (BS) 

installed in the test environment with known coordinates and a mobile station (MS) 

carried by the object to be tracked. There are two main different topologies for designing 

the system. The first one is the so-called receiver positioning system. In this topology, a 

receiver acts as an MS while a transmitter acts as a BS. The receiver is able to determine 

its position using the measured signals. The second topology is known as the transmitter 

positioning system, which has the opposite system configuration to the receiver 

positioning system. The position of the transmitter has to be computed at a central server 

with the measured signals obtained from the receivers. 

     The sensor technologies refer to the type of wireless signals used by sensors. The 

wireless signals commonly used for positioning can be divided into three main 

categories: i.e., infrared, ultrasound, and RF. The infrared signal has the same properties 

as visible light. It cannot pass through obstructions and thus has limited range (< 5 m) in 

indoor environments; moreover, the infrared signal is susceptible to interference from 
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sunlight and fluorescent lights. Ultrasound cannot penetrate walls either and has a short 

range (3~10 m). However, a high resolution (1 cm) of distance measurement makes it a 

good candidate for positioning in open areas. The RF signal covers a potential wide range 

of frequency (3 kHz to 300 GHz) and can pass through most indoor building materials 

given sufficient signal power. Thus, it has the longest range and is able to provide a more 

ubiquitous coverage in comparison with the other two wireless signal technologies. 

     The measuring techniques refer to the various physical parameters of the signal 

measured by the receiver. These parameters include time-of-arrival (TOA), time-

difference-of-arrival (TDOA), angle-of-arrival (AOA), and received signal strength 

(RSS). The TOA technique measures the one-way propagation time from which the 

distance between the transmitter and the receiver can be computed. Rather than 

measuring the absolute arrival time like TOA, the TDOA technique measures the time 

differences when the signal from a transmitter arrives at multiple receivers or from 

multiple transmitters at a signal receiver. The main drawback of these time delay-based 

techniques is that all transmitters and receivers in the system have to be precisely 

synchronized. The AOA techniques determine the angle of incidence of a signal. It has no 

time synchronization requirement, but may need relatively large and complex hardware 

(e.g., directional antennas or antenna arrays). RSS is a measure of the power of a received 

radio signal. It provides a low-cost and easily-implemented solution. 

     Besides the system topologies, sensor technologies and measuring techniques, 

wireless positioning systems can also be categorized by the positioning algorithms used. 

They refer to the mathematical approaches used to derive position using the different 

measurements of the signal mentioned previously. Trilateration determines the position 

http://en.wikipedia.org/wiki/Electric_power
http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Signal_%28electrical_engineering%29
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of the mobile object by measuring its distances from at least three reference positions. 

The distance can be calculated based on time delay (e.g., TOA) or from RSS using a 

path-loss model. For the triangulation technique, the position of the mobile object is 

found to be at the intersection of multiple angle direction lines. Apart from the traditional 

techniques (i.e., trilateration and triangulation), algorithms using fingerprinting and 

proximity have been developed as well. Fingerprinting refers to the type of algorithms 

that collect features (i.e., fingerprints) of an environment and then estimate the position of 

the mobile object by matching online measurements with the pre-stored fingerprints. 

Usually, RSS or other non-geometric features are used as fingerprints. Proximity-based 

positioning techniques determine the position of the mobile object based on its closeness 

to a reference point (e.g., a wireless transmitter). The position of the object is assumed to 

be either the position of the reference point, or an average of the positions of multiple 

reference points within range. Thus, the positioning accuracy of this technique relies on 

the density of the reference points. 

     Various indoor wireless positioning systems have been developed by choosing 

different wireless signals with appropriate measuring techniques and positioning 

algorithms. A wireless positioning system can be built in two ways: design a special 

signaling system or take advantage of existing wireless network infrastructures. A 

comprehensive survey of wireless positioning systems can be found in Liu et al. [2007], 

and a special focus on indoor positioning technologies is provided in Torres-Solis et al. 

[2010]. A subset of these systems is reviewed as examples herein. 

     The Active Badge system [Want et al., 1992], developed at Olivetti Research 

Laboratory, is one of the earliest indoor positioning systems. The user to be tracked is 
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tagged with an infrared badge which has a unique ID. The badge regularly transmits its 

ID using infrared. Receivers placed at known locations pick up the signal if the badge is 

within a detectable area. The receivers relay the proximity information to a central server 

from where the position of the badge is determined. The accuracy of this cell-based 

positioning system is in general coarse with room-sized granularity. 

     Instead of using infrared, the Active Bat [Harter et al., 1999] improves the accuracy by 

using both ultrasound and RF. This approach takes advantage of the fact that the speed of 

sound is much slower than the speed of light (RF) in air. The system consists of a set of 

ceiling-mounted ultrasonic receivers, an Active Bat attached to the user, and an RF base 

station. The Bat contains a radio transceiver and an ultrasonic transducer. The receivers 

are connected to the base station via a wired network. The base station sends out a radio 

message periodically causing the Bat to emit an ultrasonic pulse. Simultaneously, the 

receivers are reset (triggered by the radio message) and start to record the time of arrival 

of any ultrasonic signal from the Bat. The Bat-receiver distance could be derived by 

multiplying the time-of-flight of the ultrasound from the Bat to the receiver with the 

speed of sound in air. In open areas, a positioning accuracy of 3 cm, 95% of the time 

could be achieved.  

     Cricket [Priyantha et al., 2000] is another location-support system using a combination 

of ultrasound and RF technologies. But it has no centralized controller. Beacons 

(transmitters) fixed in a building send out information over RF together with an 

ultrasonic pulse. A listener (receiver) attached to a user records the time elapsed between 

hearing the RF signal and receiving the ultrasonic pulse. It uses this time difference to 
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estimate the beacon-listener distance and adopts the multilateration method to calculate 

its position. 

     SpotON [Hightower et al., 2000] is also a range-based positioning system, but the 

distance is derived from signal strength attenuation instead of time-of-flight. The 

designers used radio-frequency identification (RFID) technology for the development. A 

path-loss model is built based on empirical data that maps an RSS to a tag-reader 

distance. RADAR [Bahl and Padmanabhan, 2000], developed by Microsoft Research 

Group, is based on signal strength of a wireless local area network (WLAN). The authors 

evaluated two approaches for positioning: the fingerprinting technique by creating a 

database of RSS fingerprints, and the trilateration method by using a signal propagation 

model. RADAR determinates objects’ position to within around 5.9 m of their actual 

position with 90% probability. 

     Indoor positioning based on broadcast and wide area networks (e.g., television 

broadcast signals and cellular phone networks) is also possible if the building is covered 

by several base stations. Otsason et al. [2005] presented a GSM-based indoor positioning 

system using the fingerprinting technique. The fingerprints database is created by 

collecting RSS from access points at a number of calibration points covering a multi-

floor building. Position is estimated using the weighted k-nearest-neighbour technique 

during the online positioning phase. The system is robust in differentiating floors and is 

able to achieve a within-floor median accuracy of around 2.5 m.  

     Aside from the systems mentioned above, much pioneering work has been done in this 

area [Liu et al., 2007; Gu et al., 2009; Torres-Solis et al., 2010]. The infrared and 

ultrasonic techniques both require line-of-sight (LOS) because the signal cannot penetrate 
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the walls and floors, and furthermore they have a short communication range. These 

conditions have limited their wide applications in indoor environments. 

 

1.2.3 RF-based Positioning Methods 

     For positioning using RF technologies, most direct range-based trilateration 

techniques are not feasible because the hardware is typically not designed for accurate 

TOA measurements. Instead, position has to be indirectly inferred from the RSS 

measurements. Although RF technologies show great potential for indoor positioning, 

their performance is limited by radio signal propagation errors caused by: (1) multipath 

induced by radio signals reaching the receiving antenna via two or more paths, (2) NLOS 

situation where radio signals transmit across a path that is partially or completely blocked 

by obstacles like walls or people, and (3) interference by radio signals from other 

electronic devices. Various methodologies have been studied for RSS-based positioning 

to deal with the unpredictability of signal propagation in indoor environments. They are 

grouped into: the geometry-based approach, fingerprinting, and Bayesian filtering. 

     The geometry-based approach triangulates the position of a mobile robot based on 

multiple range measurements. In this approach, the relationship between RSS and range 

can be parameterized through a path loss model [Hightower et al., 2001; Retscher and Fu, 

2007; Tsai et al., 2008; Chen et al., 2009] whose parameters are pre-determined from a 

set of training data. However, fixed signal attenuation parameters may not be able to 

accurately model signal fading effects under dynamic indoor environments. To increase 

system robustness, Kao and Lin [2010] proposed an environmental adaptive model to 

tolerate parameter variations caused by environmental changes. Kaemarungsi and 

http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Signalling_%28telecommunications%29
http://en.wikipedia.org/wiki/Antenna_%28electronics%29
http://en.wikipedia.org/wiki/Radio
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Krishnamurthy [2004] investigated a more accurate model that accounts for the presence 

of walls, floors, and furniture along the propagation path of the RF signal. Even so, the 

geometric method still suffers from several drawbacks: (1) it is a challenging task to 

precisely model the RSS-range deterministic relation due to severe multipath and 

interference in indoor environments; (2) this method is not particularly able to detect 

outliers caused by NLOS; and (3) the geometric arrangement of BS should guarantee low 

values of the dilution of precision [Seco et al., 2009]. Therefore, the performance of this 

approach could be degraded in practice due to the susceptibility of RSS to multipath and 

interference over time and location. 

     Another widely applied method is so called fingerprinting technology [Bahl and 

Padmanabhan, 2000; Kaemarungsi, 2005; Moghtadaiee et al., 2011]. This approach 

creates a database of RSS data collected at pre-specified positions (usually at a grid of 

dense points) during a training phase. Then, an estimate of position is determined by 

comparing the online RSS measurements with the entries of the database using statistical 

learning methods (e.g., k-nearest neighbours, neural networks, support vector machines, 

etc.). In the simplest case, the sampling data at each calibration point is averaged to a 

scale value and stored as a fingerprint in the database. The Euclidean distance between 

the online observed RSS and each fingerprint is evaluated in signal strength space. The 

grid point (nearest neighbour method) [Retscher and Fu, 2008] or the average of k closest 

grid points (k-nearest neighbours method) [Bahl and Padmanabhan, 2000] that minimizes 

the Euclidean distance is chosen as the current position estimate. 

     On the basis of the above generic fingerprinting approach, most recent systems have 

opted for probabilistic techniques which take the variability of the RSS training data into 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Bahl,%20P..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Bahl,%20P..QT.&newsearch=partialPref
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account. They estimate the probability distribution of the signal strength variable over 

different locations. Bayesian inference is then used to search for the maximum likelihood 

estimator of the position. The likelihood function (i.e., the observation model) can be 

derived through either parametric [Haeberlen et al., 2004] or non-parametric methods 

[Ladd et al., 2002; Roos et al., 2002; Schwaighofer et al., 2004; Youssef and Agrawala, 

2005; Seco et al., 2010]. In Ladd et al. [2002], the authors developed a probabilistic 

positioning system by directly working with histograms of signal strength measurements 

for creating the database. Later, Haeberlen et al. [2004] showed that fitting the histograms 

with Gaussian distributions requires smaller training sets and results in better positioning 

performance. More recently, the Gaussian process has been applied to model the 

relationship between RSS and position [Seco et al., 2010]. Such a regression technique 

makes it more flexible to select the calibration points (wherever possible) and enables 

one to predict the RSS at different locations from the calibration points.  

     By utilizing signal characteristics at each location for positioning, fingerprinting 

methods turn out to be more robust to NLOS and multipath effect, and they provide the 

highest positioning accuracy if the training data set is sufficient. However, the major 

disadvantages of fingerprinting methods are: (1) the off-line training phase is usually 

time-consuming and labour-intensive; (2) any changes in the environment would affect 

signal strength distribution and subsequently require re-training; and (3) poor 

extrapolation is unavoidable in untrained areas. 

     More recently, the Bayesian filtering method as an extension of the Bayesian 

inference previously mentioned has gained greater attention. This approach treats the 

position and RSS measurements as random variables. The position estimate is 
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sequentially improved from noisy measurements using a dynamic model and an 

observation model. For RSS-based indoor positioning, the first challenge in employing 

the Bayesian filtering method is to build a realistic observation model that can capture 

any localized, site-dependent effects. The observation model can be produced from either 

a path-loss model or fingerprinting training as explained previously. More investigation is 

required to build an efficient observation model that inherits the advantages of those two 

modelling techniques. The second challenge is to design an optimal estimator for 

nonlinear/non-Gaussian models. Kao and Lin [2010] designed an extended Kalman filter 

to estimate user positions by integrating measured RSS and relative displacements 

obtained from dead-reckoning systems. Paul and Wan [2009] presented a sigma-point 

Kalman smoother that fuses IEEE 802.11 (known as Wi-Fi) RSS, binary infrared motion 

sensors and foot-switches to track a pedestrian’s position. However, the Gaussian 

distribution assumption inherent in the Kalman filter and its variants may restrict their 

performance when non-Gaussian behaviour is involved.  

     Our approach to Bayesian filtering is based on a particle filter. The particle filtering 

approach has recently become a popular alternative to the extended Kalman filter in 

dealing with nonlinear/non-Gaussian models, and it especially outperforms the extended 

Kalman filter in terms of efficiency, robustness, and accuracy for indoor positioning 

applications [Letchner et al., 2005; Seshadri et al., 2005; Ferris et al., 2006; Koutsou et 

al., 2007]. More details of the particle filtering approach are described in Chapter 3 and 

Chapter 5. The efficiency and robustness of the particle filter applied for RSS-based 

indoor positioning requires further validation. 
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     For mobile robot autonomous navigation, most of the developed systems rely on 

expensive and accurate sensors [Tsai et al., 2008]. It is interesting to investigate the 

performance of sensor fusion that integrates wireless technologies with different motion 

sensors for mobile robot navigation applications. 

 

1.3 Research Objectives and Contributions 

     The main objective of the research reported in this dissertation was to design a low-

cost, high-accuracy, autonomous indoor navigation system using commercial off-the-

shelf sensors. Because of the lack of research and the challenges in integrating a low-cost 

orientation system with an RF based positioning system for indoor autonomous 

navigation, the research was devoted to developing effective integration algorithms that 

provide reliable and accurate solutions for autonomous navigation. An RF-based 

positioning system using RFID technology has been built because of its competitive 

advantages described in Chapter 2.  

     The major contributions of this dissertation can be summarized as follows: 

1. Development of a low-cost AHRS. An intelligent integration algorithm using the 

Kalman filter methodology has been developed by incorporating two independent 

orientation information sources: MEMS gyros and the combination of MEMS 

accelerometers and magnetometers. This algorithm is capable of improving the 

performance of the orientation estimation by dealing with large sensor errors in 

the presence of motion and magnetic disturbances. 

2. Development of a range-RSS probabilistic observation model. This model is 

developed through an off-line calibration that can capture the effects of multipath 
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on LOS signal propagation in indoor environments. Instead of building a location-

based model, the range-based one has been investigated to eliminate the 

environment dependency. 

3. Development of a probabilistic filtering technique for the RSS-based indoor 

positioning system. The efficiency and robustness of the variants of the particle 

filter have been investigated. The observation model developed above has been 

implemented in this estimator. A novel online (i.e., real-time) measurement 

quality control algorithm has been applied to reduce performance deterioration 

mainly caused by NLOS measurements.  

4. Development of a sonic-vision system using measurements from ultrasonic range 

finders. This system is designed to build a local map of the environment during 

the online operation stage which helps the robot navigate safely. 

5. Development of intelligent logic controllers. The heading, the position, as well as 

the corridor profile information obtained above are used as inputs for goal-

oriented autonomous navigation. In particular, a controller based on fuzzy logic 

technology is developed for centre line tracking in a straight corridor. Apart from 

the fuzzy logic controller, an intersection controller has been specially designed 

for intersection maneuvers.  

6. Development and validation of a software program implementing all of the 

navigation modules, including the Kalman filter-based orientation estimation 

module, the particle filter-based positioning module, the sonic-vision system, as 

well as the logic controller module. The navigation performance has been verified 

through field experiments under typical indoor environments. 
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1.4 Dissertation Outline 

     Chapter 1 presents the motivation, objectives, and major contributions of this 

dissertation to the integration of low-cost orientation sensors with an RF positioning 

system for mobile robot indoor autonomous navigation. 

     Chapter 2 provides an overview of the navigation sensors used in this dissertation, 

including gyros, accelerometers, magnetometers, RFID, wheel encoders, and ultrasonic 

range finders. The principle, the error sources, and the characteristics of each sensor are 

addressed. 

     In Chapter 3, the two different filtering approaches that have been used in the 

dissertation are described. They are the Kalman filter and the particle filter. In addition, 

the fundamentals of fuzzy logic control technology are also presented. 

     In Chapter 4, the principles for orientation estimation using gyros, accelerometers, and 

magnetometers are described. Then, the Kalman filter used for integrating those 

orientation sources is presented. The test and performance analysis of the orientation 

system are given in this chapter. 

     Chapter 5 describes the development of the RFID positioning system. This chapter 

gives a comprehensive description of the development of the probabilistic observation 

model and the online measurement quality control algorithm. The particle filtering 

approach is illustrated that integrates RSS measurements from RFID, ground speed 

provided by the wheel encoders, and the heading determined in Chapter 4. The 

performance of the positioning system is validated and the discussion of test results is 

presented.  
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     Chapter 6 presents the idea of the sonic-vision system and the design of the intelligent 

logic controllers for mobile robot autonomous navigation. 

     In Chapter 7 the overall test and results analysis of the autonomous navigation system 

under typical indoor environments is presented. 

     Finally, Chapter 8 concludes the major results and findings obtained in this research 

and gives recommendations for future work.  



 

 

20 

Chapter 2  Overview of Navigation Sensors 

     A multi-sensor system can provide more reliable and accurate navigation solutions 

than a system relies on one type of sensors by integrating redundant or complementary 

information. In this dissertation, several navigation sensors are used for indoor mobile 

robot applications, including inertial sensors (i.e., rate gyros and accelerometers), 

magnetometers, RFID, wheel encoders, and ultrasonic range finders. Based upon 

measurements from those sensors, our mobile robot indoor navigation algorithm will 

perform three layers of integration: (1) estimating orientation by fusing the inertial and 

magnetic sensors; (2) positioning based on the estimated orientation, wheel encoder-

derived ground speed, and RFID RSS measurements; and (3) integrating the information 

obtained from the previous two layers with ultrasonic sensors for autonomous navigation. 

Prior to designing multi-sensor data fusion algorithms, it is very important to understand 

and analyze the characteristics of each sensor. An overview of the selected navigation 

sensors in terms of their principles and error characteristics is presented in this chapter. 

 

2.1 Overview of Orientation Sensors 

     To build an attitude and heading reference system, three types of orientation sensors 

have been used in this research, namely, gyroscopes, accelerometers, and magnetometers. 

The principles and error sources of each sensor are presented in the following sections. 
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2.1.1 Gyroscopes 

     Gyro(scope)s are electronic devices for detecting and measuring angular motion 

relative to an inertial frame. They have a number of unique properties such as being 

completely self-contained and insensitive to electromagnetic and ferromagnetic 

anomalies. Since the advent of gyros in 1852 [Sorg, 1976], they have been widely applied 

in various applications such as the development of inertial navigation systems, the 

stabilization of flying vehicles, and the maintenance of direction in tunnel mining. The 

principles of three broad categories of gyros (i.e., mechanical, optical, and vibratory) are 

discussed herein. The definition of a gyro was originally restricted to the mechanical 

type, but now encompasses all angular-rate sensors that do not require an external 

reference [Groves, 2008], including optical gyros and vibratory gyros. 

     Mechanical gyros operate on the basis of conservation of angular momentum. This 

theorem states that the angular momentum of a body with respect to inertial space will 

remain constant unless acted upon by a torque. This type of gyro usually consists of a 

spinning mass that is mechanically isolated from the instrument case using a set of 

gimbals. Therefore, the direction of the spin axis of the mass will remain aligned with 

inertial space even when the case is rotated. The orientation of the instrument (i.e., the 

case) with respect to inertial space (i.e., the direction of the spin axis) could be measured 

with angle pickoff devices mounted on the gimbals. The main disadvantage of the 

mechanical gyros is that they contain moving parts which will cause friction leading to 

drifting outputs. To minimize the friction, high-precision bearings and special lubricants 

are needed which increases the cost of the devices. Even so, mechanical gyros are still in 

http://en.wikipedia.org/wiki/Inertial_navigation_system
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common use, particularly for applications requiring very accurate solutions, such as 

navigation of ships and submarines. 

     With the development of photovoltaic technology and nanotechnology, new types of 

gyros have emerged. Optical and vibratory gyros have been under development as 

replacements for their mechanical counterparts for over three decades [Everett, 1995]. 

They are made based on modern principles of physics, but broadly speaking, still use the 

gyroscopic effect. Being different from the traditional mechanical gyros, they have no 

moving parts (i.e., a high-speed rotor). Thus, they are known as solid-state gyros. The 

basic components of the optical gyros are two counter-propagating beams travelling in a 

close-loop path. The rate and direction of the sensor rotation rely on the effective 

detection of the path length difference between the two beams. Vibratory gyros sense 

angular rotation by detecting the Coriolis acceleration of a vibrating element when it is 

rotated. The Coriolis acceleration instigates a harmonic motion whose amplitude is 

proportional to the angular rate [Groves, 2008]. 

     A number of other gyro technologies have also been studied, including nuclear 

magnetic resonance, fluidic sensors, angular accelerometers, and atom interferometry 

techniques [Titterton and Weston, 2004]. It should be noted that the gyro, no matter what 

principle it uses, belongs to one of the two basic rotation-sensing gyros: (1) rate gyros 

which have an output proportional to the angular rate (e.g., optical gyros), and (2) 

displacement gyros that sense the actual turn angle with respect to an initial orientation 

(e.g., mechanical gyros). 
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2.1.2 Accelerometers 

     An accelerometer is a device that measures specific force along a single sensitive axis. 

Note that specific force is not actually a force, but a type of acceleration. It is defined as 

the non-gravitational force per unit mass, the acceleration produced by forces acting on 

the object through physical linkage (i.e., relative to free-fall acceleration); for example, 

accelerometers on the surface of the Earth measure a constant 9.8 m/s
2
 when they are 

static. A single-axis accelerometer typically contains a proof mass restrained by springs 

or other supports. The mass is free to move along the sensor’s sensitive axis. The 

displacement of the mass with respect to its zero position is proportional to the specific 

force acting on the mass in the direction of the input axis. By measuring this with a 

pickoff system, a measurement from the accelerometer is obtained. 

     The design of all accelerometers is based on this conceptual principle. Actual 

accelerometers are different in the ways in which they convert mechanical motion into an 

electrical signal. Mostly, accelerometers follow either a pendulous or vibrating-beam 

design. For a pendulous accelerometer, the proof mass is attached to the case of the 

sensor via a pendulum (i.e., a pendulous arm and hinge) [Groves, 2008]. The vibrating-

beam accelerometer retains the pendulous arm from the pendulous accelerometer. 

However, the proof mass is supported by a vibrating beam which is driven to vibrate at 

its resonant frequency. When a force is applied to the accelerometer along the sensitive 

axis, the proof mass pushes or pulls the beam, causing the beam to be compressed and 

stretched. Compressing or stretching the vibrating beam will cause the resonant 

frequency to decrease or increase accordingly. Therefore, by measuring the resonant 

frequency, the specific force along the sensitive axis can be determined. 

http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Mass
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     Different grades of performance could be achieved by varying the quality and design 

of the different components, such as the pendulum, beam, proof mass, pickoff system, 

and control electronics. By mounting three single-axis accelerometers perpendicularly to 

each other, a tri-axis accelerometer can be constructed. Since the earliest development of 

the accelerometer in 1923 [Walter, 2007], it has found broad applications in navigation, 

orientation sensing, building structural monitoring, etc. 

 

2.1.3 Magnetometers 

     A magnetometer is a device for measuring the intensity of a magnetic field along its 

sensitive axis. Magnetic sensing techniques exploit a broad range of physics and 

chemistry disciplines, and they are based on a number of different principles. A detailed 

description of those different magnetic sensing technologies can be found in the literature 

[Lenz, 1990]. For heading estimation applications, the magnetometers commonly used 

are based on the magneto-resistive (MR) effect. The MR magnetometers are made of thin 

strips of permalloy (a ferromagnetic film) whose electrical resistance varies with the 

amplitude of the magnetic field applied. The MR sensors typically have a sensitivity 

range of 10
-2

 gauss to 50 gauss. The minimum detectable field can reach 10
-6

 gauss for 

limited bandwidths [Lenz, 1990]. Magnetometers have a diverse range of applications 

such as detecting buried or submerged objects (e.g., shipwrecks), mapping hazards to 

coal mining, providing azimuth in directional drilling as compasses, etc. 

 



 

 

25 

2.1.4 Sensor Errors Characteristics 

     Due to sensor manufacturing imperfections or installation errors, the output from the 

sensors can be corrupted by errors such as biases, scale factor errors, cross-coupling 

errors, and random noise to a certain extent [Groves, 2008]. In this section, the errors 

arising in gyros and their effects on integrated orientation will be examined. The sensor 

errors for accelerometers and magnetometers have similar characteristics. 

     A bias is an average output from the gyro when it is not experiencing any rotation. 

Generally, it consists of four components: i.e., a fixed term, a temperature-dependent 

variation, a run-to-run variation, and an in-run variation [Groves, 2008]. The fixed 

contribution is present each time the sensor is used. It can be captured and corrected 

through the laboratory calibration process. Environment temperature fluctuations and 

sensor self-heating could introduce a drift of the sensor bias. The relationship between the 

bias drift and the temperature variation can be determined through intensive lab thermal 

testing. The calibration parameters could be stored for online compensation provided the 

gyro contains a temperature sensor. Those two error sources, corrected within the gyro 

processor, are usually not the main concerns. In general, the bias refers to the last two 

terms (i.e., the run-to-run and in-run variation) and the residual effects of the fixed and 

temperature-dependent contributions that left over from the calibration process. It can be 

split into static and dynamic components. 

     The static component, also called a bias offset, consists of the run-to-run variation and 

the residual bias after sensor calibration. It remains constant throughout an operation 

period, but varies from run to run. The integration of a constant bias causes an angular 

error which grows linearly with time. The bias offset can be roughly determined by 
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averaging static measurements taken over a long period. Once the bias is known, 

eliminating this type of error is trivial by simply subtracting it from subsequent 

measurements. 

     The dynamic component, also known as a bias drift, comprises the in-run variation 

due to flicker noise in the electronics and the residual of the temperature-dependent bias. 

It changes slowly during the course of a run, which would produce a second-order 

random process in the integrated orientation [Woodman, 2007]. The bias drift is random 

in nature and cannot be eliminated from the measurements using deterministic models. It 

is usually observed at low frequencies compared to the white noise. Therefore, the bias 

drift can be modelled by a stochastic process, such as the random walk process or the 

Gauss-Markov process.  

     Scale factor error is the departure of the input-output gradient of the sensor from unity. 

Ideally, the three gyros that make up the sensor triad are identical sensors. In reality, each 

sensor will have a different sensitivity. That is, when all three gyros are exposed to an 

identical angular rate, the observed output from each will be different due to the scale 

factor error. Cross-coupling error arises from the misalignment of the three sensitive axes 

with respect to the orthogonal axes of the body frame due to manufacturing limitations. 

As a result, each axis is affected by the measurements of the other two axes in the body 

frame. The scale factor error is deterministic in nature and can be determined by 

calibration. The calibration involves determining the multiplicative factor that has to be 

applied to each sensor so that the output will be the same given the same input. For the 

cross-coupling error, if care is taken during the calibration of the gyro triad during 

manufacturing, this type of error can be minimized. 
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     Random noise is an additional signal resulting from the sensor itself or other 

electronic devices that interfere with the output signals being measured. Noise fluctuates 

at a rate much larger than the sampling rate of the sensor, and usually it is non-systematic. 

The magnitude of the noise level can be described by the standard deviation of static 

measurements over a few seconds [Wang, 2006]. Typically, noise cannot be removed 

from the data using deterministic methods. 

 

2.1.5 MEMS Sensors 

     Despite years of development, conventional mechanical sensors still have complex 

mechanical parts and a requirement for parts with high-precision tolerances and intricate 

assembly techniques [Woodman, 2007]. Therefore, the cost has remained high. These 

factors impede their adoption for applications where cost, size, and power consumption 

are the governing parameters. Recent advances in MEMS technology enable the use of 

silicon as the base material in the production of low-cost sensors. This progress 

overcomes many of the issues considered above for the conventional mechanical sensors.  

     The gyros manufactured with MEMS technology operate on the vibratory principle. 

They take advantage of the Coriolis effect for detecting inertial angular rotation [Titterton 

and Weston, 2004]. A MEMS accelerometer typically has a spring mass damper 

mechanism. It consists of a proof mass suspended by a beam, both made of silicon. 

Capacitive sensing is usually used to measure the motion of the mass. The displacement 

of the mass is proportional to the change of capacitance. By measuring the change in 

capacitance, the amplitude of the force that led to the displacement can be derived [Kraft, 

1997]. 
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     Currently, MEMS sensors offer relatively poor stand-alone accuracy and run-to-run 

stability. They can result in large errors over short time intervals if the sensor errors are 

not compensated, especially for MEMS gyros where an integration step is involved in the 

orientation computation [Shin, 2005]. Because the level of sensor errors and noise is high, 

some input signals (e.g., the Earth’s rotation rate) and error terms (e.g., the cross-

coupling error) are relatively small and negligible compared to other error sources. The 

bias drift and random noise are usually the two dominant terms in the overall error budget 

for a MEMS sensor. 

     Even though MEMS sensors currently offer relatively poor performance, they are 

expected to be quite promising in the future due to the following advantages: small size, 

low weight, rugged construction, low power consumption, low cost, and high reliability. 

In this dissertation, I am interested in evaluating their performance of orientation 

estimation for mobile robot navigation in indoor environments.  

 

2.2 Overview of RFID 

     RFID is a rapidly developing technology that uses short-range radio communication 

for automatic identification of objects. This technology has been around for decades. It 

was invented in 1948 but was not mainstreamed for commercial applications until the 

1980s due to its high-cost [Landt, 2005]. RFID is particularly attractive for applications 

in asset tracking, industrial automation, homecare, and healthcare systems. A detailed 

description of RFID will be presented in the following sections. The RFID principles are 

presented first, followed by the discussion of applying RFID for positioning and the 

signal propagation error sources. 
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2.2.1 RFID Technologies 

     RFID is one of the RF technologies that use electromagnetic fields to transfer data. It 

is mainly used for automatically identifying and tracking tagged objects. A typical RFID 

system comprises three basic components: a tag (i.e., transponder), a reader (i.e., 

interrogator), and a controller. The tag consists of an integrated circuit, an antenna coil, 

and sometimes a battery. The circuit is mainly used for storing and processing, 

modulating and demodulating an RF signal. The antenna enables the tag to receive and 

respond to RF queries from an RFID reader [Weis, 2003]. The reader is composed of an 

antenna, an RF electronics module for communicating with tags, and a control electronics 

module for communicating with the controller. The controller usually appears in the form 

of a PC running control programs. A tag is mounted to the object to be identified and can 

be queried by a reader through radio communication. When a tagged object enters the 

read zone of a reader, the reader signals the tag to transmit its stored data. The data may 

contain a unique ID and some other product-related information such as a stock number, 

batch number, or production date. Once the reader has obtained the tag’s data, it will 

transfer the data back to the controller via serial interface or network communication. 

Then, the controller uses this information for various purposes such as for an inventory of 

the object in a database. 

     Depending on power supply options, passive and active tags can be distinguished. A 

passive tag has no battery embedded. Generally, it draws power from the signal 

transmitted from the reader. Therefore, the reader must be powerful and close in order to 

make the RF field strong enough to activate the tag. The effective range for passive tags 

is usually short in the range of about a few millimetres up to several metres. On the other 

http://en.wikipedia.org/wiki/Electromagnetic_field
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hand, an active tag is battery-powered. Therefore, compared to passive tags, they usually 

can transmit and receive data from a distance of up to tens of metres. Additionally, active 

tags may have larger memories. Additional information apart from ID (e.g., the tag’s 

position information) can be directly stored on the tag which eliminates the need of a 

central database. However, they are much larger and more expensive than their passive 

counterparts. Further information about the underlying technology can be found in Hunt 

et al. [2007]. For our application, the active tags are the more appropriate choice. 

     The frequency requirement of wireless communication significantly restricts the 

frequency range for an RFID system. Frequency bands specifically reserved for 

industrial, scientific or medical applications (100 kHz ~ 5.8 GHz) have also been used for 

RFID technologies [Finkenzeller, 2010]. In North America, five frequency bands are 

available centred on: 125 kHz (low frequency), 13.56 MHz (high frequency), 433 MHz 

(ultra-high frequency (UHF)), 915 MHz (UHF), and 2.45 GHz (microwave). In general, 

RF radiation has more energy at higher frequencies and thus can have longer 

communication ranges. However, higher frequencies can introduce a number of 

limitations, more significantly, the signal can be more easily obstructed or absorbed by 

objects along the propagation path. Choosing a proper operating frequency to fit the 

application is necessary. 

 

2.2.2 RFID Positioning 

     RFID technology was originally designed for automatic identification of tagged 

objects [Landt, 2005]. Recently, the large number of applications has driven a significant 

decrease in the price of RFID. Low-cost, together with other favourable features such as 



 

 

31 

high data rate, reliable performance, NLOS readability, and compactness, makes it an 

attractive candidate for indoor positioning applications. 

     RFID positioning can be classified into tag positioning and reader positioning. For the 

tag positioning, RFID readers are installed at certain waypoints (e.g., the entrance of a 

room), and an RFID tag is attached to the object to be tracked. The reader is able to detect 

any tagged object when it passes by. This strategy is suitable for many applications 

spanning from locating books in the library to tracking patients in the hospital. The reader 

positioning approach is to attach the reader to the mobile object while the tags are 

installed at known locations (i.e., active landmarks). When the mobile object passes by a 

tag, the reader retrieves its ID and other information (e.g. its coordinates). Mobile robot 

autonomous navigation usually benefits from the second configuration. With a number of 

tags mounted in the workspace, a robot carrying a reader communicates with the tags to 

estimate its own position. 

     RFID-based positioning techniques bear great similarities to other wireless positioning 

technologies as described in Chapter 1. The reader determines its position using different 

signal measuring techniques and positioning processing. Time-based range estimation 

could be promising if ultra-wide band techniques are used [Dardari et al., 2010; Lee et 

al., 2011]. However, for a conventional narrowband RFID system, applying time-based 

techniques for positioning is often challenging due to poor time resolution limited by the 

frequency bandwidth [Zhang et al., 2010]. Other RFID signal sensing techniques such as 

phase-difference-of-arrival [Knox and Bridgelall, 2006] or angle of arrival [Wang et al., 

2006] have also been investigated. Typically, RFID positioning is performed by utilizing 

the received signal strength (RSS) measurements obtained by the reader. Signal strength 
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decreases as the reader moves away from a tag. Theoretically, in the far field, signal 

strength is inversely proportional to the square of the distance travelled. The relation can 

be expressed by the Friis transmission equation assuming the antennas have an 

impedance and polarization match [Foina et al., 2007]: 
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where rP  is the power received by the reader in watts; tP  is the radiated power from the 

active tag in watts; rG  is the antenna gain of the reader; tG  is the antenna gain of the tag; 

  is the wavelength of the radio signal in metres; and d  is the distance between the 

reader and the tag in metres. 

     The signal frequency, the antenna gains, and the transmitting power are determined by 

the devices used. The quantity that can be varied is the tag-reader distance. Hence, the 

RSS could potentially be used as an indicator of the distance at which the tag is located 

from the reader. For RFID technology, the RSS is usually indicated by received signal 

strength indication (RSSI) values. RSSI is defined as ten times the logarithm of the ratio 

of the received signal power rP  and a reference power 0P  (e.g., 1 milliwatt), given as: 

 10
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The relationship between the RSSI and the distance can be derived from Eq. (2-1). By 

dividing both sides with the reference power 0P  and taking the logarithm (i.e., 

transferring the unit of power from watts to dBm), Eq. (2-1) can be simplified as: 
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where the constant A  is written as:  
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Substituting Eq. (2-2) into Eq. (2-3) gives: 

 10A 20 logRSSI d   , (2-4) 

where RSSI is the measured signal strength value in the unit of dBm and A is a constant. 

If the observation equation (i.e., Eq. (2-4)) could be accurately determined, then the tag-

reader distance can be obtained from the measured RSSI. When the RSSI measurements 

from at least three tags are combined, the position of the reader can be determined using 

trilateration. However, accurately modelling the radio propagation in indoor 

environments is not easy due to a number of challenges that will be discussed in the 

following sections. More complex and efficient observation models and algorithms are 

required to improve the accuracy of RSSI-based indoor positioning methods. 

 

2.2.3 Radio Signal Indoor Propagation 

     Although RFID technologies show great potential for indoor positioning, the quality 

of the signal strength measurements is affected by various factors such as multipath, 

NLOS, and interference. Details of these errors and their characteristics are addressed in 

the following sections. 

 

 

 



 

 

34 

2.2.3.1 Multipath 

     Multipath occurs when a radio signal arrives at a receiving antenna via two or more 

routes [Misra and Enge, 2001]. It occurs on all terrestrial radio links, and is especially 

common for indoor environments. When radio waves are emitted from an omni-

directional antenna of a transmitter, the signal propagates in all directions from the 

antenna. One or more components of the original RF wave front may travel straight to the 

receiving antenna, while other components may get diffracted or reflected off various 

objects along its propagation route such as walls, ceilings, furniture, and people. One or 

more of those components may reach the antenna together with the direct signal 

producing a composite multipath signal.  

     When multipath signals converge with the direct signal at the receiving antenna, the 

consequences are generally not favourable. Depending on the phase of the multipath 

signal with respect to the direct signal, it can introduce both destructive and constructive 

errors. Effects of multipath distortion on the signal strength measurement can be 

categorized into four types: 

1. Data corruption: this happens when multipath is so severe that the receiver is 

unable to detect the transmitted information. 

2. Signal nulling: it occurs when the multipath signals arrive exactly out of phase 

with the direct signal and completely cancels it. 

3. Constructive effect: the multipath signals arrive in phase with the direct signal and 

add on to the direct signal, causing an increase in the magnitude of signal 

strength. 
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4. Destructive effect: the multipath signals reach the antenna out of phase with the 

direct signal to some extent reducing the signal’s magnitude. 

     A number of techniques are available for mitigating multipath errors. It can be 

reduced to a certain extent by careful selection of the antenna site. Of primary importance 

is to place the receiving antenna at a site that has unobstructed LOS reception from the 

transmitting antenna at all bearings and elevation angles. However, this ideal setup is 

impossible for practical implementations, especially for indoor kinematic applications. 

The second approach is to incorporate a metallic plate under the antenna. This ground 

plate can direct the gain in the zenith direction and exhibit a shielding effect against 

reflections from the ground beneath the antenna. An optimum diameter for the plate is 

approximately 0.6   [Granger and Simpson, 2008]. For RFID UHF bands, this 

corresponds to about 20 cm. However, the performance of this mitigation strategy may be 

limited, because in indoor environments, multipath signals may arrive at the receiver not 

only from the bottom but also from above; for example, they could be reflected by the 

ceilings. 

 

2.2.3.2 Non-line-of-sight 

     Typical radio signals are designed to be operated in a LOS configuration. Only under 

this condition, can the signal propagation follow well-proven methodologies refined over 

many decades. LOS clearance requires that a path remain obstruction-free not only along 

its visual LOS path, but for an expanded space called the Fresnel zone [Green and 

Obaidat, 2002]. In practice, satisfying this strict condition is difficult especially in indoor 

environments. 
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     NLOS is the occurrence of a radio signal transmitting across a path that is partially or 

completely blocked by obstructions like walls. Therefore, an NLOS signal arrives at the 

receiving antenna by either passing through impeding objects or as a reflection from 

other objects. NLOS propagation produces further fading of the received signal in respect 

to the LOS case. The extent of attenuation varies depending on the material composition 

of the obstructions [Sarkar et al., 2003]; Such as, for a radio signal centered at 900 MHz, 

one layer of wood plate (7.6 cm) would cause a signal strength decrease of 2.8 dB, and a 

concrete wall (20.3 cm) may bring an approximate loss of 15~30 dB. 

     Intensive NLOS error mitigation techniques have been investigated [Wylie and 

Holtzman, 1996; Wylie and Wang, 2001]. Most of these techniques assume that only a 

small portion of the measurements are impaired by NLOS propagation. Those NLOS 

measurements are treated as outliers, as they are inconsistent with their LOS counterparts. 

More sophisticated techniques based on the knowledge of NLOS error statistics are able 

to handle the case where most measurements are NLOS measurements [Cong and 

Zhuang, 2005]. However, this research only study the NLOS error mitigation techniques 

for time-based positioning systems. So far, no significant contribution has been made for 

mitigating NLOS errors in RSS measurements. Challenges still exist in identifying the 

NLOS propagation and mitigating their effects on signal strength measurements in a real-

time processing scenario.  

 

2.2.3.3 Signal Interference  

     Signal interference is due to the presence of disturbances that affect an electrical 

circuit through electromagnetic induction. Interference may be introduced by any object 

http://en.wikipedia.org/wiki/Radio
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carrying rapidly changing electrical currents which share common or closely adjacent 

frequency bands. Signal interference negatively affects overall system performance. 

These effects can range from a degradation of the desired signal to a total loss of data.  

     The operation of an RFID positioning system typically involves a situation in which 

numerous tags are concurrently located within the reader’s read zone. Interference 

between tags may occur when all tags try to access the reader. This situation is the so-

called multi-access interference [Finkenzeller, 2010]. Highly sophisticated algorithms 

should be developed to enable the reader to simultaneously communicate with more than 

one tag. Fortunately, various anti-collision algorithms have been studied to separate the 

individual tags from each other so that they can access the reader without mutual 

interference [Finkenzeller, 2010; Klair et al., 2010]. By far, the time domain multiple 

access technique is the most widely accepted procedure. A special algorithm is used to 

enable the reader to communicate (e.g., authentication, read and write of data) with the 

tags within its read zone one by one. Only one communication relation is initiated at a 

time, and the tags can be operated in a rapid succession. At the present state of 

technology, an RFID reader can simultaneously communicate with thousands of tags per 

second with accuracy over 98% [Klair et al., 2010]. Apart from the among-tag 

interference, the spectrum of the RFID devices is shared among different systems and 

services such as WLANs or personal area networks (e.g., Bluetooth). The composition of 

all these signals makes for a very complex environment, which must be routinely 

monitored in order to maximize service performance. 
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2.3 Overview of Auxiliary Sensors 

     Today, most indoor mobile robots are equipped with wheel encoders. They measure 

the rotation of the robot’s wheels, from which the motion of the robot (e.g., the ground 

speed) can be easily determined. They are inexpensive sensors and can provide accurate 

solutions assuming there is no wheel slip. In this dissertation, they are involved in the 

positioning module by providing the dynamic information (i.e., ground speed). Besides 

the wheel encoders, ultrasonic range finders are used for the purpose of safe navigation in 

the indoor environment with minimum cost. The basic principles of those two aiding 

sensors are described. 

 

2.3.1 Wheel Encoders 

     Wheel encoders are sensors that generate digital signals in response to rotation 

movement. Encoders are operated based on either optical or magnetic sensing technology. 

Optical encoders use a glass or metal disk with a pattern of lines deposited on it. Light 

from an LED shines through the disk onto one or more photo-detectors, which produce 

the encoder’s output. For magnetic encoders, there are several types but all share the 

basic operation principle. That is, the sensor detects changes in the magnetic field caused 

by the presence or movement of a ferromagnetic object. Optical encoders provide high 

resolution, high speed, and reliable operation so that they are widely adopted for 

industrial applications. 

     There are two basic types of optical encoders: i.e., absolute and incremental. An 

absolute encoder directly measures the actual angular position of the shaft, while an 

incremental encoder measures rotation velocity by producing a certain number of pulses 
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for each shaft revolution [Everett, 1995]. The greater the number of pulses is, the higher 

the resolution of the unit is (and subsequently the cost). Rotation speed can be determined 

by counting the number of pulses recorded with respect to the reference index. Wheel 

encoders are typically used in robots for odometry [Patric, 2001]. 

 

2.3.2 Ultrasonic Range Finders 

     Ultrasonic range finders are sensors using sound pulses to measure distance. By 

emitting an ultrasonic pulse and timing how long it takes to travel to a reflecting object 

and echo back to a receiver, the ultrasonic range finder can determine the distance by 

multiplying the velocity of a sound wave with the one-way trip time. The absolute range 

to an observed point is directly available as an output with no complicated analysis 

required. Today, ultrasonic range finders are the most common sensors employed in 

indoor mobile robot systems, primarily due to their low-cost and easy interface. Over the 

past decades, much research has been conducted for investigating applications in areas 

such as environment modelling, collision avoidance, position estimation, and motion 

detection. 

     The sensors maintain range accuracy in a linear pattern as long as echo detection is 

sustained. Potential error sources may include variation in the propagation speed due to 

temperature changes and reflecting surface interaction [Everett, 1995]. Specifically, when 

sound waves strike an object, the detected echo represents only a small portion of the 

original signal, with the remaining energy reflected in scattered directions. Instances that 

no return signal is received at all can occur when the reflected signals are deflected 

outside of the sensing envelope of the receiver [Yata et al., 1999]. Scattered signals can 
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reflect from secondary objects as well, returning to the receiver to generate false signals 

that can yield questionable or otherwise noisy data. 

 

2.4 Chapter Summary 

     In this chapter, an overview of the selected navigation sensors (i.e., the inertial and 

magnetic sensors, RFID, wheel encoders, and ultrasonic range finders) has been 

presented. Their principles and error characteristics have been discussed. Their 

application for the development of the navigation system and the approaches for handling 

the various sensor errors will be delivered in the following chapters. 
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Chapter 3  Data Processing and Control Methodologies 

     In general, mobile robot autonomous navigation is involved with both sensing and 

control technologies. Measurements from various sensors need to be properly interpreted 

and processed in order to produce the navigation information of interest. Therefore, the 

first problem is to estimate the state of a dynamic system using a sequence of noisy 

measurements observed over time. This problem can be solved using recursive Bayesian 

estimation. Within the generic framework of the Bayesian filtering, various 

implementations are derived to solve practical issues; for example, the Kalman filter and 

its variants are typically applied for a linear system with Gaussian noise, while particle 

filters perform better for nonlinear and non-Gaussian situations. The second problem is to 

apply the obtained navigation information to an intelligent controller that determines the 

control parameters to drive the navigation system. Recently, increased efforts have been 

given towards developing intelligent control systems that do not require a precise 

deterministic model of the world: e.g., a non-analytical method based on fuzzy logic. 

This dissertation applies the Kalman filter for orientation estimation, a particle filter for 

positioning, and a fuzzy logic technique for intelligent control. This chapter will present 

the fundamentals of these algorithms. 

 

3.1 Bayesian Filtering 

     Bayesian filtering applies Bayesian statistics and Bayes’ theorem to solve stochastic 

filtering problems. In the following sections, firstly, sequential Bayesian filtering will be 
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reviewed. Then, the Kalman filter as an analytical realization and the particle filter as a 

sample-based implementation of Bayesian filtering will be introduced. 

 

3.1.1 Recursive Bayesian Filtering 

     To define a generic nonlinear filtering problem, the following discrete-time stochastic 

model is considered: 

  1 1 1,  k k k k  x f x w , (3-1) 

where 1kf  is a known, possibly nonlinear function of the state 1kx ; and 1kw  represents 

a system noise sequence. At discrete times, measurements kz  become available, which 

are related to the target state kx  via the measurement equation: 

  ,  k k k kz h x v , (3-2) 

where kh  is a known measurement function and kv  is referred to as a measurement noise 

sequence. The objective of nonlinear filtering is to seek an optimal estimate of the state 

kx  based on all available measurements up to time kt , which essentially is to construct a 

posterior probability density function  1:p |k kx z . Here, 1:kz  denotes a sequence of 

measurements taken from the first epoch up to time kt . It will be shown that the posterior 

density can be recursively computed through two stages: i.e., prediction and update. 

     Suppose that the posterior density  1 1: 1p |k k x z  at time 1kt   is available, the 

prediction stage involves using the system model (Eq. 3-1) to obtain the prediction 

density  1: 1p |k kx z  at time kt  via the Chapman-Kolmogorov equation: 
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      1: 1 -1 1 1: 1 -1p | = p | p | dk k k k k k k  x z x x x z x , (3-3) 

where  -1p |k kx x  represents the probabilistic model of state evolution (i.e., transitional 

density) which is defined by the dynamic model of Eq. (3-1). At time kt , when 

measurements kz  are available, the update stage is carried out according to Bayes’ 

theorem, which gives the posterior density of the state as: 

      1: 1: 1p | = p | p |k k k k k k ka  x z z x x z , (3-4) 

where ka  is a normalization constant which ensures that the posterior density over the 

entire state space sums to one. The observation model  p |k kz x  describes the 

probability of obtaining observations kz  when the current state is given as kx . The 

observation model can be obtained from empirical formulae or through site calibrations. 

To compute the posterior density  1:p |k kx z  recursively, the boundary condition (i.e., 

the initial probability density function of a state vector  0 0p |x z ) should be specified, 

where 0z  is a set of no measurements. Knowledge of the posterior density  1p |k :kx z  

enables us to compute an optimal state estimate with respect to any criterion; for 

example, the minimum mean-square error (MMSE) estimate is the conditional mean of 

the state kx  [Ristic et al., 2004]: 

    MMSE

1: 1:
ˆ = E | = p |k k k k k k kdx x z x x z x . (3-5) 

     Although the posterior density provides a complete solution for the nonlinear filtering 

problem, in general it cannot be determined analytically because the implementation of 

the conceptual solution needs full knowledge of the posterior density function, which 
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means the storage of an infinite dimensional vector [Ristic et al., 2004]. Under restrictive 

conditions with respect to the system and measurement models, the posterior density can 

be exactly and completely characterized by sufficient statistics with a finite dimension; 

for example, the Kalman filter is a special implementation of Bayesian filtering which 

provides an efficient and analytical solution under linear quadratic Gaussian 

circumstances. However, in most practical situations, the problem is analytically 

intractable because of nonlinear, non-Gaussian, and non-stationary characteristics; and 

one has to use approximations resulting in a suboptimal Bayesian filter. 

     A number of approximation methods have been proposed. They can be categorized 

into four main classes [Ristic et al., 2004]: (1) analytical approximations (e.g., extended 

Kalman filters), (2) numerical approximations (e.g., approximate grid-based methods), 

(3) multiple model filters (e.g., Gaussian sum filters), and (4) sampling approaches (e.g., 

particle filters). In this dissertation, I am interested in developing an orientation system 

using the Kalman filter and a positioning system by applying the particle filter. More 

details of these two filtering methods are described in the following sections. 

 

3.1.2 The Kalman Filter 

     The Kalman filter, also known as linear quadratic estimation, is an algorithm that 

incorporates all available measurements, regardless of their precision, to estimate the 

variables of interest. The estimation is based on the use of: (1) knowledge of the system 

and measurement dynamics, (2) the statistics of the system and measurement noises and 

uncertainty in the dynamic models, and (3) initial conditions of the variables of interest 

[Maybeck, 1979]. The Kalman filter can provide an optimal solution, in a minimum 

http://en.wikipedia.org/wiki/Algorithm
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variance sense, if the strict assumptions hold. That is, the system can be described by a 

linear model, and the system and measurement noises are white, Gaussian, and 

independent of each other [Gelb, 1974]. The Kalman filter has been the common 

technique for numerous applications, especially for navigation of vehicles [Wang, 2006]. 

The algorithms of the discrete Kalman filter are presented in the following sections, 

followed by the illustration of the implementation strategies for inertial and magnetic 

sensors integration. 

 

3.1.2.1 The Discrete Kalman Filter 

     For a linear system, the dynamics of the continuous physical system can be 

represented by the differential equation [Gelb, 1974]: 

  + x Fx Gu , (3-6) 

where x  is the state vector; u  is the random forcing vector function; F  is the known 

system dynamics matrix; and G  is the design matrix. Because the measurements are 

observed and the estimation is implemented on a computer at discrete points in time, Eq. 

(3-6) should be transformed to its discrete form (i.e., difference equation), written as: 

 1 1 1 + k k k k  x Φ x w , (3-7) 

where kx  and 1kx  are the state vectors at time kt  and 1kt  , respectively; 1kΦ  is the state 

transition matrix; 1kw  is the driven response at kt  due to the random noise input u  

during the interval 1k kt t t    . 

     For a stationary system, the transition matrix 1kΦ  is calculated as a power-series 

expansion of the system matrix F  and sampling interval t  [Gelb, 1974]: 
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If the sampling time interval t  is very small, Eq. (3-8) could be approximated to: 

 1k t   Φ I F . (3-9) 

     The process noise 1kw  is assumed to be drawn from a zero-mean multivariate normal 

distribution with covariance 1kQ : 

 1k k k t  Q Φ GQGΦ , (3-10) 

where    
T

E t t 
 

Q u u  is the spectral density matrix for the forcing function input u .  

     At time kt , measurement kz  is made according to: 

 k k k k z H x v , (3-11) 

where kH  is the measurement matrix which maps the state space into the observed space, 

and kv  is the measurement noise which is assumed to be zero mean Gaussian white noise 

with covariance kR . In addition, the process noise kw  and the measurement noise kv  are 

assumed to be mutually independent. 

     The Kalman filter assumes that the conditional probability density function (Eq. (3-3) 

and Eq. (3-4)) is Gaussian at each epoch. The Gaussian distribution can be completely 

characterized by the mean vector and the covariance matrix. By propagating the first two 

moments of the distribution, the Kalman filter recursively estimates the state of the linear 

dynamic system. There are two distinct phases involved in the iteration of the filtering. 

The predict phase uses the state estimate from the previous epoch to produce a prior state 

estimate 
| 1

ˆ
k kx . In the update phase, the current prior prediction is combined with current 

http://en.wikipedia.org/wiki/White_noise
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observation information to refine the state estimate. This improved estimate is termed the 

posterior state estimate 
|

ˆ
k kx . Additionally, the corresponding estimate error covariance 

| 1k kP  and 
|k kP  are also produced. The block diagram of the discrete Kalman filter 

algorithm is shown in Figure 3.1. 

 

 

Figure 3.1 Block diagram of the Kalman filter. 

 

In the block diagram, 0x  and 0P  are initial condition inputs; kK  is the optimal Kalman 

gain matrix which is determined by minimizing the mean-square estimation error (i.e., 

the trace of the estimate covariance matrix) [Gelb, 1974].  

     In the Kalman filter, the system and measurement models are assumed to be linear 

functions. However, in most engineering applications, nonlinearity could be associated 

with either model or both. A number of approaches have been proposed to apply the 

Kalman filter for nonlinear systems. Two linearization approaches have been widely 

applied in situations with nonlinear dynamics and/or measurement relations. One is to 

linearize the models about the nominal trajectory in state space, while the other method is 
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to linearize about a trajectory that is continuously updated with the state estimates 

resulting from the measurements [Brown and Hwang, 1997]. The former is called a 

linearized Kalman filter and the latter is referred to as an extended Kalman filter. Both 

methods have benefits and limitations. To apply the linearized Kalman filter, the nominal 

trajectory should be known as a prior that usually is impossible for most applications. For 

the extended Kalman filter, it is sensitive to the tuning of the initialization of the estimate 

error covariance [Groves, 2008]. The filter may diverge if the initial uncertainty and 

measurement errors are large [Brown and Hwang, 1997]. 

     In many navigation applications, perturbation techniques are extensively used to 

linearize the nonlinear differential equations [Britting, 1971]. The perturbation analysis 

produces linear differential equations involving only the error quantities. Products of the 

error variables and other small quantities are negligibly small and consequently could be 

safely neglected. Therefore, the error behaviour is described by a relatively simple linear 

equation and is analytically more tractable. Perturbation analysis is preferred over direct 

studies because only the linear error response is examined to analyze the system 

behaviour. The developed linear system models are suitable for the application of the 

standard Kalman filtering techniques. In this dissertation, the perturbation techniques are 

applied for the model linearization process. However, it must be kept in mind that small 

perturbations around the true states should be guaranteed in order to get good 

performance out of the filtering. 

 

http://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Kenneth+R.+Britting%22
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3.1.2.2 Implementation Strategies 

     The Kalman filtering methodology has been extensively applied for optimal fusion of 

data from inertial and magnetic sensors for orientation estimation applications [Foxlin, 

1996; Bachmann, 2000; Roetenberg et al., 2005; Tome and Yalak 2008; Han and Wang, 

2011]. The most commonly used integration schemes in the literature are loosely- and 

tightly-coupled integration strategies. For the loosely-coupled integration algorithm as 

shown in Figure 3.2, the two types of orientation sources operate as independent systems 

and process data in a parallel way to derive respective orientation information. The 

differences between the gyro-derived roll, pitch, and heading and those obtained from the 

accelerometer and magnetometer together are input to the Kalman filter as the 

measurements. The dynamic model is built based on the gyro error equations. When 

accelerometer and/or magnetometer data are available, the Kalman filter estimates all 

observable orientation and sensor errors to compensate system outputs. When the aiding 

source is unavailable, the states of the filter will be predicted based on the dynamic 

model.  

 

 

Figure 3.2 Loosely-coupled orientation integration scheme. 
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     In the tightly-coupled integration scheme, a Kalman filter is applied to process the raw 

measurements of the two types of orientation sources together as shown in Figure 3.3. 

Similar to the loosely-coupled integration strategy, the orientation states are first derived 

by integrating the gyro raw measurements. Then, in the Kalman filter, the orientation and 

sensor errors are estimated using the measurement differences between the ones predicted 

by the gyros and the actual ones measured by the accelerometer and magnetometer. The 

estimated orientation errors are applied to correct the gyro-predicted orientation. 

 

 

Figure 3.3 Tightly-coupled orientation integration scheme. 

 

     Both integration strategies have advantages and disadvantages. In the aspect of system 

implementation, loosely-coupled integration has higher flexibility and modularity due to 

the independent operation. In the aspect of system accuracy, the tightly-coupled 

integration system provides optimal estimation accuracy, because all the states for the 

entire system are defined in one state vector with a corresponding description of the 

process noise [Wang, 2006]. In our applications, estimation accuracy is the main interest. 

Therefore, the tightly-coupled integration scheme is considered to be a more suitable 

approach. 
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     Apart from the integration schemes, a Kalman filter has two different implementation 

forms: i.e., the direct (total state) and the indirect (error state) formulation [Maybeck, 

1979]. In the direct formulation, total states (e.g., orientation) are the variables included 

in the state vector. The measurements are direct sensor output, such as the angular rate 

measurements from a gyro. On the other hand, the indirect form estimates errors in 

orientation using the measurement difference between the gyro and the aiding sensor 

data. The main benefit of the indirect formulation is that complex dynamic modelling of 

the system is avoided [Maybeck, 1979]. The dynamics of the error-state Kalman filter are 

represented by a set of error propagation equations which are usually linear. Another 

advantage of the indirect formulation is that if the filter fails, the orientation estimation 

algorithm still can provide estimates by integrating the gyro measurement. For these 

reasons, the error-state formulation is chosen. 

     According to whether the estimated states are fed back to correct the system, both 

loosely- and tightly-coupled integration algorithms can be implemented with an open 

loop or closed loop. In the open-loop implementation, all state estimates are retained in 

the Kalman filter algorithm. Without feedback, the states will generally get larger as time 

progresses. As explained previously, to get the best performance out of an error-state 

Kalman filter, the states should be small. Therefore, the open-loop implementation 

usually produces poor performance. Conversely, the closed-loop implementation feeds 

back the errors estimated by the Kalman filter to correct the system itself. This feedback 

process keeps the Kalman filter states small, minimizing the effect of neglecting higher 

order products of states in the system model [Groves, 2008]. Therefore, it generally 
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enhances the estimation performance and becomes a common technique for 

implementing an error-state Kalman filter. 

     The closed-loop and open-loop implementations of the Kalman filter may be mixed 

such that some state estimates (e.g., orientation errors) are fed back as corrections, 

whereas others (e.g., aiding sensor errors) are not [Groves, 2008]. This configuration is 

useful for applications where feeding back some states is desirable, but others cannot be 

fed back as there is no way of applying them as corrections to the system. 

 

3.1.3 The Particle Filter 

     A particle filter, also known as a sequential Monte Carlo method, is a technique to 

implement a recursive Bayesian filter by Monte Carlo sampling. The basic idea of Monte 

Carlo sampling was introduced in the 1950s [Hammersley and Morton, 1954]. It 

performs sequential Monte Carlo estimation based on particle representation of 

probability density functions. Particle filters have a number of characteristics: e.g., they 

are non-parametric estimation approaches; they can deal with nonlinear models, non-

Gaussian noises; and they are easy to implement [Gordon et al., 1993]. Those advantages 

coupled with ever faster computers make them attractive for numerous applications 

[Thrun et al., 2001; Aggarwal et al., 2006; Fang et al., 2011]. This section reviews the 

theoretical basis of the generic and regularized particle filter (RPF). 
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3.1.3.1 The Generic Particle Filter 

     The key idea of the particle filter is to use a set of N  independent random particles 

 
1

N
i

k i
x , directly sampled from the state space, to represent the posterior density and to 

update the posterior density (i.e., the particle system) by involving new observations. 

Once a numerically-approximated posterior density becomes available, the complex 

integrals from Eq. (3-3) and Eq. (3-5) can be solved via the Monte Carlo integration 

method [Gould et al., 2006]. 

     It is desirable to directly generate particles from the true posterior density. The higher 

the probability, the denser the particles’ concentration is. The particle system evolves 

over time according to the state models. However, in fact, the true posterior density is 

unknown or difficult to sample as it may be multivariate, nonstandard, or multimodal 

[Aggarwal et al., 2007]. Therefore, the particles are usually sampled from a proposal 

density associated with weights  
1

N
i

k i
w


 which reflect the difference between the true 

posterior density and the proposal density. The weights are chosen using the principle of 

importance sampling [Ristic et al., 2004] and can be updated using the following 

equation: 

 
   

 
-1

1

-1

p | p |

q | , 

i i i

k k k ki i

k k i i

k k k

w w 
z x x x

x x z
, (3-12) 

where  -1q | , i i

k k kx x z  is the proposal density. Then the true posterior density can be 

approximated as follows: 

    1:

=1

p | δ
N

i i

k k k k k

i

w x z x x , (3-13) 
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where  δ   is the Dirac delta function which is zero everywhere except at = i

k kx x . As 

the number of particles increases toward infinity, the particle distribution approaches the 

true posterior density according to the law of large numbers [Ristic et al., 2004]. 

     This is the algorithm of the generic particle filter, named the sequential importance 

sampling technique. Filtering based on the sequential importance sampling technique 

thus consists of sequential propagation of particles using a dynamic model and their 

weights updated when new measurements are received. It has been shown that the 

sequential importance sampling technique has a common problem called “particle 

degeneracy”. That is, after a few iterations, all but one particle will have a negligible 

weight, which implies that a large computational effort is devoted to updating particles 

whose contribution to the approximation is almost zero [Arulampalam et al., 2002].  

     A sampling importance resampling technique has been proposed by Gordon et al. 

[1993] to reduce the effect of degeneracy by adding a resampling between two 

importance sampling steps. It aims to eliminate particles with low weight and duplicate 

those with high weight. This step generates a new particle set  *
=1

N
i

k i
x  by resampling N  

times from the previous discrete set  
1

N
i

k i
x . The probability of resampling from a certain 

particle i

kx  is proportional to its weight i

kw . After the resampling step, the previous 

particle set  
1

= , 
N

i i

t k k i
w


S x  is replaced by the new set  * *

=1
,  

N
i i

k k i
wx  with equal weight (i.e., 

* 1/i

kw N ).  

     The resampling step used in the sampling importance resampling technique is 

prevalent and useful in particle filtering to reduce the degeneracy problem. However, it 
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introduces other problems like “particle impoverishment”. In this case, the resampling 

step causes particles with high weight to be selected many times. After several 

resampling steps, all resultant particles occupy the same point in the state space and thus 

the particle set loses diversity and gives a poor representation of the true posterior 

density. This problem becomes severe when the system noise is very small [Oudjane and 

Musso, 2000].  

     Various particle filters have been proposed by researchers based on the generic 

sequential importance sampling algorithm. They differ from each other by choosing an 

appropriate proposal density and/or modifying the resampling step. 

 

3.1.3.2 The Regularized Particle Filter 

     A modified-resampling particle filter known as a RPF has been proposed by Musso et 

al. [2001] as a potential solution to the particle impoverishment problem. The RPF is 

derived from the sequential importance sampling algorithm by choosing the proposal 

density  -1q | , i i

k k kx x z  to be the transitional density  -1p |k kx x . Therefore, the weight 

update in Eq. (3-12) can be simply reduced to: 

  -1p |i i i

k k k kw w z x . (3-14) 

     Differing from the sampling importance resampling technique which resamples from a 

discrete approximation of the posterior density, the RPF resamples from a continuous 

approximation. Specifically, resampled particles are drawn from the approximation as 

[Ristic et al., 2004]: 

    1: h

i=1

p | K
N

i i

k k k k kw x z x x , (3-15) 



 

 

56 

and 

  h

1
K = K

xn

x
x

h h

 
 
 

, (3-16) 

where  K   is the kernel density; 0h   is the kernel bandwidth; and xn  is the dimension 

of the state vector. The kernel density and bandwidth are chosen to minimize the mean 

integrated square error between the true posterior density and the corresponding 

regularized empirical representation in Eq. (3-15). 

     In a special case that all particles have the same weight (after each resampling step) 

and the underlying density is Gaussian, the optimal choice of the bandwidth becomes: 

  
   1/ +4 -1/ +4

opt = 4 / + 2
x x

n n

xh n N   . (3-17) 

where N  is the number of particles. Although the above choice is made in a special case, 

it can be generally used to obtain a suboptimal filter. 

 

3.2 Fuzzy Logic 

     The concept of fuzzy logic was conceived as a better method for sorting and handling 

data [Zadeh, 1965]. It is a convenient tool for handling real world uncertainty and 

knowledge representation. Since the 1970’s, fuzzy logic has been proven to be an 

excellent choice for many control system applications [Jamshidi et al., 1997; Rodriguez-

Castano et al., 2000; Peri, 2002]. Compared to conventional control methods, fuzzy logic 

incorporates an if-then rule-based approach by resembling human reasoning rather than 

attempting to mathematically model a system. It provides a simple way to derive a 
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definite decision based upon ambiguous input information. In this dissertation, fuzzy 

logic has been applied to the design of an intelligent controller for robot manipulations.  

 

3.2.1 Basic Concepts of Fuzzy Logic 

     In this section, the basic terminology of fuzzy logic is discussed, followed by a 

description of all the aspects involved. 

 

3.2.1.1 Fuzzy Sets and Membership Functions 

     Linguistic variable is a variable whose values are words or sentences in a natural or 

artificial language [Zadeh, 1975]. It is represented by a universe of discourse denoted as 

X  and a term set; for example, water temperature is a linguistic variable if its values are 

linguistic rather than numerical, and the term set could be {cold, warm, hot} where each 

term is characterized by a fuzzy set in the universe of discourse  0 ~100X    . 

     Fuzzy set theory was proposed by Zadeh [1965] for reasoning under vagueness. A 

non-fuzzy set is defined that all the elements should either belong or not belong to the set. 

In reality, many situations exist where the transition from member to non-member is 

gradual rather than abrupt. In Zadeh’s approach, for each element x X , it can belong to 

a set with a degree k  ( 0 1k  ), in contrast to non-fuzzy set theory where an element 

must definitely belong to a set or not. A fuzzy set A  in the universe of discourse X  is 

defined as follows: 

    ,  |AA x x x X  , (3-18) 
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where  A   is called the membership function of the fuzzy set A . It maps each element 

x  in X  to a value between 0 and 1. This value  A x  quantifies the degree of 

membership of the element in the fuzzy set A . Membership functions allow us to 

graphically represent a fuzzy set as shown in Figure 3.4. The x-axis represents the 

universe of discourse, whereas the y-axis represents the degree of membership in the 

interval [0, 1]. The degree of membership is determined by plugging the selected input 

element 0x  into the horizontal axis and vertically projecting to the upper boundary of the 

membership functions. The value 0 means that 0x  is not a member of the fuzzy set; the 

value 1 indicates that 0x  is fully a member of the fuzzy set; while the values between 0 

and 1 characterize that 0x  only partially belongs to the fuzzy set. 

 

 

Figure 3.4 Features of the membership function. 

 

     The design of membership functions can be simply derived from human knowledge or 

common sense reasoning or more sophisticated techniques, e.g., neural networks [Jang, 

1993] or genetic algorithms [Karr and Gentry, 1993]. Different functions can be used to 
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build membership functions. In practice, simple functions (e.g., the triangular or the 

trapezoidal function) are usually used. 

 

3.2.1.2 Fuzzy If-Then Rules 

     A fuzzy control rule is a fuzzy conditional statement in which the antecedent is a 

condition in its application domain and the consequent is a control action for the system 

under control [Peri, 2002]. Once the linguistic variables and their values are defined, the 

fuzzy rules can be specified to map the fuzzy inputs to fuzzy outputs. It usually takes the 

if-then conditional form as: 

 If x is A , then y  is B , (3-19) 

where x  and y  are the name of the input and output linguistic variables, respectively; 

and A  and B  are linguistic values defined by the input and output fuzzy sets on their 

corresponding universe of discourse. Here, “ x  is A ” is called the antecedent, and “ y  is 

B ” is called the consequent.  

     If several linguistic variables are involved, the fuzzy system is of the type multi-input-

multi-output. The antecedent takes the form: 

  is ,  with 1,   , j = 1,  j

i i ix A i m M , (3-20) 

where  j

iA  is the 
thj  linguistic value (fuzzy set) of the input linguistic variable ix  defined 

over the universe of discourse iX ; m  is the number of linguistic variables; and for each 

variable ix , the number of linguistic values is iM . The various parts of the antecedent are 

connected with each other by the logical connective AND and OR. The consequent takes 

the form: 
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  is ,  with 1,   ;   = 1,  p

k k ky B k n p N . (3-21) 

Similarly, ky  is the thk  output linguistic variable; p

kB  is its thp  linguistic value; n  is the 

number of output linguistic variables; and kN  is the number of its linguistic values. 

     Assuming all antecedent terms are used in every rule and a rule is generated for each 

possible antecedent combination, the total number of rules will be: 

 
1 2

1

m

i m

i

M M M M


   . (3-22) 

 

3.2.1.3 Logical Operators of the Inference Mechanism 

     By applying the fuzzy inputs to the antecedents of the fuzzy rules, a fuzzy inference 

module derives fuzzy outputs by performing fuzzy logical operations through rules 

evaluation. To complete such a process, a set of logical operators are involved. In order to 

explain their concepts, a simple two-input-two-output example is given herein. The 

system has two input linguistic variables ( 1x  and 2x ) and two output variables ( 1y  and 

2y ); each has two membership functions ([
1

1

xA , 
1

2

xA ], [
2

1

xA , 
2

2

xA ], [
1

1

yB , 
1

2

yB ], and [
2

1

yB , 

2

2

yB ]) and consists of two rules defined as follows: 

 
1 2 1 2

1 2 1 2

1 1 1 1

1 1 2 1 2

2 2 2 2

2 1 2 1 2

R :  IF  is     OR    is  , THEN  is  ,   is  

R :  IF  is   AND   is  , THEN  is  ,   is  

x x y y

x x y y

x A x A y B y B

x A x A y B y B
 

For the actual crisp inputs values (the exact inputs measured by sensors) *

1x  and *

2x , their 

degree of membership for the corresponding fuzzy set is denoted as 

       1 2 1 2

1 1 2 2

* * * *

1 1 2 2,  ,  ,  
x x x xA A A A

x x x x    , respectively. 
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     Firstly, if the antecedent of the rule has more than one part, a fuzzy operator is applied 

to obtain a single membership value that represents the result of the antecedent 

evaluation. That is, the fuzzy operator is executed to find the firing level   for each rule. 

To evaluate the disjunction (OR connective) of the various parts of the antecedent, the 

classical fuzzy operation union is used: 

       1 1 1 1
1

1 2 1 2

* *

R 1 2max ,  
x x x xA A A A

x x x   


  . (3-23) 

Similarly, if the two or more parts of the antecedent are joined by a conjunction (AND 

connective), the intersection is applied to the various individual membership values: 

       2 2 2 2
2

1 2 1 2

* *

R 1 2min ,  
x x x xA A A A

x x x   


  . (3-24) 

     Secondly, the causal link from the input variables to each output variable is 

represented using an implication operator I . For each rule (e.g., 1R ) and each output 

variable (e.g., 1y ), the implication operator is applied between the antecedent value (e.g., 

1R ) and the consequent membership function (e.g., 
1

1

yB ). This operation results in a 

truncated or scaled membership function for the output variable denoted as 
1

1

yB 
  . There 

are many implication operators that can be applied while designing a fuzzy control 

system. The most commonly used is the so-called Mamdani implication operator MI  

(i.e., minimum operator) [Mamdani, 1977]. It is given as: 

    
1 1 1 1 1

1 1 1

R R,  min ,  y M y yB I B B      . (3-25) 

     Finally, a fuzzy system may involve more than one rule. In this case, after applying 

the implication operator for each rule, the resultant fuzzy output from each rule (e.g., 
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1

1

yB 
  , 

1

2

yB 
  ) is combined into a single fuzzy set using an aggregation operator U . In 

other words, the input of the aggregation process is a list of truncated or scaled 

consequent membership functions, and the output is an overall fuzzy set for each output 

variable (e.g., 1y ). Some of the most commonly used aggregation operators are the 

maximum, the sum, and the probabilistic sum [Iancu, 2012]. For example, the maximum 

aggregation operator can be expressed as: 

    
1 1 1 1 1

1 2 1 2,  max ,  y y y y yB U B B B B                . (3-26) 

 

3.2.2 General Structure of a Fuzzy Logic Controller 

     The seminal work by Zadeh [1965] on fuzzy set theory introduced the idea of 

formulating the control algorithm by fuzzy logic rules. Fuzzy logic controllers, initiated 

by Mamdani and Assilian are now considered as one of the most important applications 

[Cordon et al., 1997]. 

     A fuzzy logic control system is a computing framework for mapping crisp inputs to 

crisp control outputs based on the concepts described in the previous section. It usually 

consists of four major modules: i.e., fuzzification module, inference engine, knowledge 

base, and defuzzification module, as shown in Figure 3.5. 

     The fuzzification module converts the crisp inputs to fuzzy sets using the membership 

functions. The knowledge base comprises if-then rules provided by experts. The fuzzy 

inputs are mapped to the fuzzy outputs by the inference engine through evaluating the if-

then fuzzy rules. The inference process is involved with the following procedures: (1) 

find the firing level of each rule using the fuzzy operator, (2) derive the output of each 
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rule with the implication operator, and (3) aggregate the output from individual rule to 

obtain the overall system output by applying the aggregation operator. After getting the 

overall fuzzy output, the defuzzification module transforms the fuzzy output into a crisp 

control action. 

     Several defuzzification methods have been investigated [Hellendoorn and Thomas, 

1993], including max-membership principle, centroid method, weighted average method, 

centre of sums, etc. The most commonly used defuzzification method is the centroid 

technique. It finds a point representing the centre of gravity of the overall fuzzy set, given 

as: 

 

 

 

1

1

* 1
1

1

y

y

N

i iB
i

N

iB
i

y y

y

y













, (3-27) 

where *

1y  is the defuzzified crisp output quantity and  
1y

iB
y  is the membership 

function of the overall fuzzy output. 

 

Figure 3.5 Block diagram of the fuzzy logic controller. 
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3.3 Chapter Summary 

     This chapter describes the fundamentals of the mathematical algorithms used in this 

research, including the Kalman filter for orientation estimation, a particle filter for 

positioning, and fuzzy logic technique for intelligent control. Their specific applications 

in the system development will be further illustrated in Chapter 4 through Chapter 6. 
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Chapter 4  Development of Attitude and Heading Reference System 

     Various orientation sensors have been described in Chapter 2. Orientation produced by 

gyros has a significant drift especially for MEMS gyros. In contrast, with long-term 

accuracy, orientation computed from the combination of accelerometers and 

magnetometers is considered particularly suitable for correcting the gyros’ drift. 

However, this type of aiding source is susceptible to external disturbances, resulting in 

the degradation of performance in practice. In this chapter, I have embarked on the 

development of an AHRS by integrating the two types of orientation sensors using the 

Kalman filter methodology described in Chapter 3. The fundamental ideas for developing 

an orientation system are given first, followed by the introduction of orientation 

determination methods. Then, an optimal approach to integrate various measurements in 

the Kalman filter for mobile robot indoor applications is discussed. Finally, a series of 

experiments are conducted to validate the performance of the proposed algorithm. 

 

4.1 Fundamentals of Orientation System 

     In this section, the various frames of reference used in this research will be given and 

the fundamentals of the three orientation parameter sets are represented. 

 

4.1.1 Reference frames 

     Several reference frames are involved in the development and analysis of an 

orientation system; for example, the inertial and magnetic sensors measure quantities in 
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the body frame, while the orientation solution should be resolved in the navigation frame. 

The reference frames that will be used in this dissertation are: 

1. Inertial frame: it is a non-rotating frame of reference. The origin of the inertial 

frame is the centre of the Earth’s mass. The x-axis points toward the First Point of 

Aries. The z-axis is parallel to the spin axis of the Earth, pointing toward the 

North Celestial Pole. The y-axis completes a right-handed orthogonal system as 

shown in Figure 4.1. This is a frame in which ideal accelerometers and gyros have 

zero outputs. The superscript “i” is used to denote a quantity measured in this 

frame. 

 

 

Figure 4.1 The inertial frame, the navigation frame and the horizontal frame. 

 

2. Navigation frame: this is a local geodetic frame having its origin at the object, 

with the x-axis pointing toward geodetic north (i.e., true north), z-axis lining-up 
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with the direction of gravity, and the y-axis completing a right-handed system (see 

Figure 4.1). In equations, vector quantities expressed in this coordinate frame will 

have the superscript “n”.  

3. Horizontal frame: this frame has its origin at the object with the z-axis defined as 

the negative direction of gravity. The x- and y-axis, perpendicular to each other, 

lie in the horizontal plane normal to the gravity vector. Three axes are arranged in 

a right handed helix indicated with the superscript “h” (see Figure 4.1). 

4. Body frame: it is a strapdown inertial sensor coordinate system with axes parallel 

to nominal right handed orthogonal sensor input axes. This frame has its origin 

coinciding with that of the navigation frame with the x-axis along the object’s 

forward direction, the y-axis out to the right side, and the z-axis completing the 

right-hand system (see Figure 4.2). The superscript “b” indicates a quantity 

expressed in the body frame. 

 

 

Figure 4.2 The body frame. 
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4.1.2 Orientation Representations 

     A survey conducted by Diebel [2006] shows numerous mathematical constructs being 

used for parameterizing the relative orientation between two coordinate frames. Amongst 

those parameters, the direction cosine matrix, Euler angles, and the orientation quaternion 

are commonly used. This section describes the analytical properties of each parameter set, 

as well as the equivalencies between them.  

 

4.1.2.1 Orientation Parameters 

     The direction cosine matrix is a matrix used to perform a rotation in Euclidean space. 

It is defined between two coordinate frames. The multiplication of the rotation matrix 

with a vector will transform this vector from one frame to the other one. Hereafter the 

dimension of a matrix or vector is given in the round brackets for clarification. A rotation 

matrix  
A

B 3 3
C  that maps vectors from frame B to frame A can be expressed as: 

 

11 12 13

A

B 21 22 23

31 32 33

c c c

c c c

c c c

 
 


 
  

C . (4-1) 

If  
A

3 1
x  is a column vector in the frame A and  

B

3 1
x  is the same vector expressed in the 

frame B, then the following relation holds: 

 A A B

Bx C x . (4-2) 

It provides a simple algebraic operation for transforming vectors between two frames and 

is extensively used for computations in strapdown inertial system analysis. 

     The second method for representing the spatial orientation between two coordinate 

frames is through an Euler angle rotation sequence. An Euler angle sequence is a set of 

http://en.wikipedia.org/wiki/Rotation_%28mathematics%29
http://en.wikipedia.org/wiki/Euclidean_space
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sequential rotations of a given frame about the frame’s coordinate axes. After the rotation 

sequence is completed, the original frame will be positioned at a new orientation. There 

are several conventions for Euler angles depending on the axes about which the rotations 

are carried out. The most common rotation sequence is the one used to describe the 

orientation of “aircraft axes” (i.e., the body frame) relative to the navigation frame. It 

consists of a “yaw  ” rotation about the z-axis (i.e., the direction of gravity), followed 

by a “pitch  ” rotation along the displaced y-axis, followed a “roll  ” rotation about the 

displaced x-axis [Savage, 2000]. The Euler angle sequence is the most popular 

representation because of its easy concept and implementation. 

     Another way of describing the rotation from one frame to the other is through the 

orientation quaternion. It is based on the “rotation vector” concept. The Euler angles 

provide one way to bring a coordinate frame to any desired orientation by sequentially 

making rotations about an axis fixed relative to the frame. However, this can also be 

achieved with one single rotation about an axis. This is the concept of the rotation vector. 

The rotation vector defines an axis of rotation and the magnitude of the rotation based on 

the standard right hand convention [Savage, 2000]: 

 φ u , (4-3) 

where 
 

T

3 1
  x y z  


   φ  is the rotation vector;   represents the magnitude of the 

rotation vector; and  3 1 
u  is the unit vector in the rotation vector direction. Because the 

rotation vector from the frame A is the same as that from the frame B [Savage, 2000], the 

superscript notation is dropped. 

http://en.wikipedia.org/wiki/Rotations
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     Orientation quaternion encodes the axis-angle representation of the rotation vector in a 

four-element column array: 

 

1

2A

B

3

4 ,

q

q

q

q

 
 
 
 
 
 

q  (4-4) 

where 1q  is a scalar quantity; and 2 3 4,   and q q q  are the vector portion. The relationship 

between the rotation vector φ  and the orientation quaternion  
A

B 4 1
q  is expressed as: 

 

1

2

3

4

cos
2

sin
2

sin
2

sin .
2

x

y

z

q

q

q

q



 



 



 



  
  

 
  

  
 


      


      

 (4-5) 

 

4.1.2.2 Conversions between Different Orientation Parameters 

     The relations between the various representations of the orientation are given in this 

section. For Euler angle representation, the final orientation of the displaced coordinate 

frame depends on both the magnitude of each rotation and the order of the rotation 

sequence [Savage, 2000]. In this dissertation, the aircraft axis Euler angle sequence is 

adopted. As explained previously, the aircraft axis Euler angle sequence is a set of 

sequential rotations (yaw    pitch    roll   ) that transforms from the navigation 

frame to the body frame. The function that maps Euler angles to its rotation matrix are: 

http://en.wikipedia.org/wiki/Axis-angle_representation
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      b

n x y z  C R R R , (4-6) 

where  
b

n 3 3
C  is the direction cosine matrix that converts vectors from the navigation 

frame to the body frame;  x R ,  y R  and  z R  are three basic rotation matrices 

 

1 0 0

0 cos sin

0 sin cos

x   

 

 
 


 
  

R ,  

cos 0 sin

0 1 0

sin 0 cos

y

 



 

 
 


 
  

R ,

 

cos sin 0

sin cos 0

0 0 1

z

 

  

 
 

 
 
  

R  that rotate vectors about the x-, y- or z-axis in three 

dimensions. For applications using inertial sensors, the measurements are measured in the 

body frame, while the solutions are usually required in the navigation frame. Therefore, 

the inverse rotation matrix  
n

b 3 3
C  is typically applied, given as: 

        
T

n b

b n

c c c s s s c s s c s c

c s c c s s s s c c s s

s s c c c

z y x

           

           

    

  

   
 

         
  

C C R R R ,(4-7) 

in which cosine and sine are denoted as “ c ” and “ s ” for compact notation. 

     The inverse mapping of Eq. (4-7) gives the Euler angles as a function of the rotation 

matrix: 

 

 

 

32 33

1 31

2 2

32 33

21 11

atan2 ,  

tan

atan2 ,         .

c c

c

c c

c c












 
  
   




 (4-8) 
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Note that the magnitude of the pitch angle   is between  and 
2 2

 
 ; the function atan2  

is the arctangent function with two arguments, and it is used in order to get a four 

quadrant result, that is, the range of roll   and yaw   is  ,    . 

     The direction cosine matrix A

BC  corresponding to a rotation by the orientation 

quaternion is given by [Savage, 2000]: 

 

   

   

   

2 2 2 2

1 2 3 4 2 3 1 4 2 4 1 3

A 2 2 2 2

B 2 3 1 4 1 2 3 4 3 4 1 2

2 2 2 2

2 4 1 3 3 4 1 2 1 2 3 4

2 2

2 2

2 2

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

     
 

      
      

C . (4-9) 

     Several ways could be used to extract the quaternion elements from the rotation matrix, 

and the following algorithm has been proven to be the most robust. Firstly, four 

intermediate quantities are computed [Savage, 2000] as: 

 
11

22 33

1                         1 2

1 2               1 2 ,

a r b r

c r d r

p t p c t

p c t p c t

    

     
 (4-10) 

where rt  is the trace of the rotation matrix A

BC . Four sets of equations are available for 

computing the quaternion elements depending on the maximum of the above four 

quantities [Savage, 2000]. For example, if  max , ,  , a a b c dp p p p p , then: 

 32 23 13 31 21 12
1 2 3 4

1 1 1

0.5                    
4 4 4

a

c c c c c c
q p q q q

q q q

  
      (4-11)

 
Note that the positive square root solution has been selected for the computation. If the 

negative square root solution is used (i.e., 1 0q  ), then, the subsequent elements will just 

need to change to their inverse. The other three equation sets are [Savage, 2000]: 

If  max , ,  , b a b c dp p p p p , then: 

http://en.wikipedia.org/wiki/Arctangent
http://en.wikipedia.org/wiki/Orthogonal_matrix
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 32 23 13 3121 12
1 2 3 4

2 2 2

      0.5             
4 4 4

b

c c c cc c
q q p q q

q q q

 
      (4-12) 

If  max , ,  , c a b c dp p p p p , then: 

 13 31 32 2321 12
1 2 3 4

3 3 3

            0.5       
4 4 4

c

c c c cc c
q q q p q

q q q

 
    . (4-13) 

If  max , ,  , d a b c dp p p p p , then: 

 13 31 32 2321 12
1 2 3 4

4 4 4

                  0.5
4 4 4

d

c c c cc c
q q q q p

q q q

 
    . (4-14) 

     Among those orientation representations, the quaternion is chosen for orientation 

integration because of its two distinct advantages: (1) quaternion representation is more 

compact and efficient in computation than matrix implementation; and (2) it eliminates 

the singularity problem inherent in the Euler angle representation. Even though the Euler 

angle representation is easy to understand, it has a mathematical singularity at certain 

angles (i.e., pitch angle of 90
o
), which causes poor numerical results in three-dimensional 

orientation applications.  

 

4.2 Orientation Determination 

     A tri-axis gyro is able to determine orientation. An accelerometer triad and a 

magnetometer triad together could also be applied to derive orientation. The principle of 

each method is described in the following sections. 
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4.2.1 Gyro-based Orientation Determination 

     Integration of the angular velocity measurements from a gyro triad provides the 

orientation of an object when its initial condition is given. An equation for the rate of 

change of the orientation quaternion  
n

b 4 1
q  is given in a four-vector matrix form as 

[Savage, 2000]: 

 n n b n n

b b ib in bq q

1 1

2 2
         q q ω ω q , (4-15) 

where 
 

T
b b b b

ib ib ib ibq 4 1
0

x y z
  



      
ω  is the quaternion form (that is, indicated by 

subscript ‘q’) of the angular rate of the body frame relative to the inertial space expressed 

in the body frame, and its components are measured by gyros; 
 

n

in q 4 1
  ω  is the 

quaternion form of the angular rate of the navigation frame relative to the inertial space 

expressed in the navigation frame; and   is the product of quaternions; for example, if 

two quantities u  and v  are defined in the quaternion form as    
 

T

q 4 1
a b c d


u  

and    
 

T

q 4 1
e f g h


v , respectively, their product  

 q 4 1
w  is computed as: 

      
q q q

a b c d e

b a d c f

c d a b g

d c b a h

     
   


    
   
   

   

w u v . (4-16) 

Note that the term n

in q
  ω  represents the motion of the navigation frame caused by 

Earth’s rotation and the displacement of the robot over its surface. For mobile robot 
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navigation based on MEMS sensors, n

in q
  ω  can be safely neglected compared to other 

systematic errors (e.g., sensor errors). Eq. (4-15) then reduces to: 

 
n n b

b b ib q

1

2
    q q ω . (4-17) 

     As will be explained in section 4.3.1, instead of estimating the orientation itself, the 

orientation error is estimated in the error-state Kalman filter. The gyro integration 

equation (4-17) is implemented outside the filter loop generating the predicted orientation 

at each epoch. The updated orientation is obtained by correcting the predicted one with 

the estimated orientation error from the filter. The real-time implementation of the above 

orientation equation can be realized as follows [Savage, 2000]: 

 1

1

bn n

b b b
k

k k k




 q q q , (4-18) 

where 
n

bk
q  and 

1

n

bk
q  represent the orientation of the body frame axes to the navigation 

frame axes at the time kt  and 1kt  , respectively; the term  
1b

b 4 1
k

k




q  denotes a 

transformation from the previous orientation of the body frame 1bk  to an instantaneous 

orientation bk  at time kt . According to Eq. (4-5), the transformation is associated with a 

rotation vector φ  which is formulated as: 

 1b

b

cos
2

sin
2

k

k









  
  
  

  
  

  

q
φ

, (4-19) 

where   is the magnitude of the rotation vector φ , that is defined as: 

 
1

b

ib

k

k

t

t
dt



 φ ω , (4-20) 
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where  
b

ib 3 1
ω  is the rotation angular rate of the body frame which is measured by gyros. 

 

4.2.2 Accelerometer and Magnetometer-based Orientation 

Determination 

     An orthogonal tri-axis accelerometer in its horizontal steady state can be used to 

measure the gravity vector but in the upward direction, expressed as 

 
 

Tn

3 1
0 0 g


 a . The same vector measured by accelerometers in the body frame is 

denoted as 
 

T
b b b b

x y z 3 1
a a a


   a . Here, we define that the object reaches its steady 

state conditions when its body acceleration is zero or negligible compared to the gravity 

vector. The relationship between na  and ba  is formulated as: 

 b b n

n a C a . (4-21) 

By substituting Eq. (4-6) and Eq. (4-7) into Eq. (4-21), the inclination (pitch   and roll 

 ) is determined as [Han and Wang, 2011]: 

 

b
1 x

b

y1

b

z

sin

tan .

a

g

a

a









  
  

 


 
    

 

 (4-22) 

     No heading information (yaw angle) could be obtained by the accelerometers as it is 

not associated with the gravity vector. Heading could be derived from magnetometers 

which measure the Earth’s magnetic field. By arranging two magnetometers at right 

angles on a horizontal platform, each sensor could measure one component of the 



 

 

77 

horizontal geomagnetic field along the x- and y-axis of the platform, respectively, 

denoted as h

xm  and 
h

ym  (see Figure 4.3).  

 

 

Figure 4.3 Determination of heading in two dimensions. 

 

The heading of the platform with respect to the magnetic north is calculated by the 

equation given below: 

 

h h

x y

h h

x y

h

y1 h

xh

h

y1 h h

x yh

x

h

y1 h h

x yh

x

0.5            , 0,  0

1.5            , 0,  0

tan , 0

tan            , 0,  0

2 tan            , 0,  0

x

m m

m m

m
m

m

m
m m

m

m
m m

m

















  


 
  
      

 
      
 

  
       

 (4-23) 

     This two-magnetometer arrangement performs well as long as it is kept horizontal. 

Operation of the platform while it is not level, can result in a considerable amount of 

heading errors. One approach for solving this problem is to gimbal the magnetometers to 
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constantly keep them in the local horizontal plane [Caruso and Withanawasam, 1999]. 

For strapdown systems, three perpendicularly mounted magnetometers should be used. 

By utilizing the inclination from the accelerometers in Eq. (4-22), the horizontal magnetic 

components can be mathematically calculated from the tri-axis magnetometer’s output by 

[Caruso, 2000]: 

 

h b b b

x x y z

h b b

y y z

cos sin sin cos sin

cos sin                                   ,

m m m m

m m m

    

 

   


 

 (4-24) 

where 
 

T
b b b b

x y z 3 1
m m m


   m  denote the magnetic vector measured in the body frame 

by the tri-axis magnetometer, while h

xm  and 
h

ym  are the components projected on the 

horizontal plane (see Figure 4.4). By adding a proper declination to correct for true north, 

the heading can be determined. 

 

 

Figure 4.4 Determination of heading in three dimensions. 
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4.3 System Integration 

     It should be noted that the above sensors are corrupted by various errors that can result 

in the degradation of performance in orientation estimation. For gyros, the estimation 

errors are mainly due to the sensor biases which include the offset and bias drift as 

explained previously in Chapter 2. For accelerometers, the inclination could be accurately 

estimated if all systematic errors (e.g., sensor biases and axes misalignment) have been 

compensated for and the body acceleration is negligible with respect to gravity. Any 

residual sensor errors and body acceleration would introduce inclination errors. For 

magnetometer-derived heading, the error sources may include the sensor errors, 

transformation error, and measurement errors. The transformation error is brought by 

using inaccurate inclination information while projecting the three axes measurements 

onto the horizontal plane (see Eq. (4-24)). On the other hand, magnetometers respond to 

the vector sum of the Earth’s magnetic field and all local magnetic fields. Any unwanted 

disturbing fields that superimpose themselves on the geomagnetic field will introduce 

measurement errors. Detailed description will be given in section 4.4. 

     These two types of orientation sources show different performance due to respective 

sensor characteristics. Each has its own advantages and disadvantages. To integrate them 

by complementing each other is desirable to mitigate the limitations of individual sensor 

technology and achieve improved accuracy and robustness. As stated in Chapter 3, a 

tightly-coupled, closed-loop Kalman filter is considered to be a suitable approach for 

low-cost orientation sensor integration and has been applied in this dissertation. The filter 

appropriately weights the two sources of information to make the best use of all the data 
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from each of the sensors. The block diagram of the orientation system is given in Figure 

4.5. 

 

 

Figure 4.5 Block diagram of the orientation estimation module. 

 

     The observations of the gyros, accelerometers, and magnetometers are fused in the 

system and measurement models for orientation estimation. Firstly, the orientation 

computed by the accelerometer and magnetometer triad is used for gyros’ initial 

orientation alignment. Secondly, the differences between the predicted and actual 

measurements of the accelerometers and magnetometers form new “measurements” to 

input to the Kalman filter. They are presented as a function of the orientation error as 

well as accelerometer and magnetometer sensor biases. Finally, the orientation error 

estimated by the Kalman filter are fed back to the closed-loop of the gyro system to 
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correct the predicted orientation derived from the gyros’ measurements. More details are 

given in the following subsections. 

 

4.3.1 State Vector 

     The state vector should include all variables of interest and any correlated errors 

which might affect the orientation estimates. In this dissertation, orientation must be 

included as they are parameters of interest. Besides the sensor biases, the main sensor 

errors that corrupt the measurements should also be properly modelled and estimated. 

The actual behaviour of the random bias for each sensor has been investigated using a 

long series of experimental data. The autocorrelation sequence plot of the gyro indicates 

that the sensor bias is purely Gaussian random noise. Therefore, gyro biases are excluded 

from the state vector to increase system observability.  

     As stated in Chapter 3, the error state (used for the perturbation technique) is preferred 

for orientation estimation in considering the nonlinearity and reliability issues. The state 

vector comprises a mixture of the error state and the total state. The orientation errors (i.e., 

the error state) are estimated and fed back to correct the system, while the sensor bias 

terms (i.e., the total state) are output directly. The 9-element state vector can be written as: 

 

n

b

A

b

M

 
 

  
 
 

ε

x b

b

, (4-25) 

where  
b

A 3 1
b  and  

b

M 3 1
b  are the sensor bias vectors of the three-axis accelerometer and 

magnetometer, respectively, both expressed in the body frame; 
 

T
n n n n

3 1    


   ε  



 

 

82 

are the three orientation errors (roll, pitch and yaw (i.e., heading) errors) defined as the 

angle over which the predicted orientation (through gyro integration) has to be rotated in 

order to coincide with the actual orientation. The predicted orientation  
n-

b 4 1k 
q  computed 

using Eq. (4-18) can be updated according to [Tome and Yalak, 2008]: 

 n+ n n-

b bqk k
   q ε q . (4-26) 

where 
 

n

q 4 1
  ε  is the quaternion form (that is, indicated by subscript ‘q’) of the 

orientation error. If expressed using the rotation matrix, the predicted orientation will 

have the form as follows: 

  n+ n n-

b b
ˆ ˆ

k k
    C I ε C . (4-27) 

where Ι  is a 3 3  identity matrix and 
 

n

3 3
  ε  is the skew symmetric (or cross-product) 

form of the orientation errors represented by the square matrix 

n n

n n

n n

0

0

0

 

 

 

 

 

 

 
 

 
  

. 

 

4.3.2 Orientation Initialization 

     The initial orientation alignment for the gyros is realized using the orientation 

computed by the accelerometer and magnetometer triad. This method has been described 

in section 4.2.2. Here, following the same principle, an alternative way is presented 

which is more feasible for programming purposes. As defined previously in section 4.2.2, 

suppose that the gravity vector sensed by the accelerometers is denoted as 

T
b b b b

x y za a a   a  (in the body frame) and  
Tn 0 0 g a  (in the navigation frame). 
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Similarly, the magnetic vector measured by the magnetometers is expressed as 

T
b b b b

x y zm m m   m  and 
T

n n n n

x y zm m m   m  in the two frames, respectively. Then 

the following relations hold: 

 n n b

ba = C a , (4-28) 

 n n b

bm = C m . (4-29) 

From vectors ba  and b
m , a third vector  

b

3 1
p  orthogonal to the plane generated by ba  

and b
m  in the body frame can be computed as: 

 

b

x b b
b b

y b b

b

z

×

×

p

p

p

 
 

 
 
 

a m
p =

a m
. (4-30) 

Note that no colinearity between two vectors ba  and b
m  is assumed in Eq. (4-30). 

Similarly, the third vector  
n

3 1
p  in the navigation frame could also be derived from na  

and n
m  as: 

 

n

x n n
n n

y n n

n

z

×

×

p

p

p

 
 
 
 
 

a m
p = =

a m
. (4-31) 

     Mapping the vector triad 
b b b[   ]a m p  from the body frame to the corresponding vector 

triad 
n n n[   ]a m p  in the navigation frame can be formulated as: 

  = n

bN C B , (4-32) 

where B  and N  are 3 3  matrices expressed as: 
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b b b

x x x

b b b b b b

y y y

b b b

z z z

[   ]

a m p

a m p

a m p

 
 

   
 
 

B a m p , (4-33) 

 

n n

x x

n n n n n

y y

n n

z z

0

[   ] 0

m p

m p

g m p

 
 

   
  

N a m p . (4-34) 

Note that vectors ba  and b
m  are measured by the accelerometers and magnetometers, 

respectively; vectors na  and n
m  usually are well approximated by one of the global field 

models (e.g., World Magnetic Model); and vectors 
b

p  and 
np  are computed using Eq. 

(4-30) and Eq. (4-31). Therefore, the orientation matrix can be solved from Eq. (4-32) as: 

 1 n

bC N B . (4-35) 

     An orthonormalization procedure is needed to make the orientation matrix n

bC  satisfy 

the orthogonality and normality condition [Kim and Langley, 2007]. Once the orientation 

matrix is obtained, the Euler angles can be derived using Eq. (4-8). Orientation directly 

computed using the measurements from the accelerometers and magnetometers averaged 

over 2 seconds in static mode provides the initial condition for the filter described in the 

following sections. 

 

4.3.3 Linearized System Model 

     The system error model can be derived based on perturbation analysis of the system 

dynamics. By perturbing Eq. (4-17), the differential equation of the orientation errors can 

be obtained as [Savage, 2000]: 

 n n b

b ib = ε C ω , (4-36) 
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where b

ibω  represents gyro errors, characterized as a band-limited white noise.  

     For most of the low-cost inertial and magnetic sensors, the 1
st
 order Gauss-Markov 

process is usually used to describe the random errors [Nassar, 2003]. The parameters for 

the process model are determined by fitting an empirical autocorrelation function to a 

long period of experimental data. However, the parameters determined through this 

method may be inaccurate because practically obtaining a long enough data set for 

accurately computing the autocorrelation function is impossible [Nassar, 2003]. In this 

dissertation, another method known as Autoregressive (AR) process modelling [Gelb, 

1974] has been investigated. There are three different methods for the adaptive estimation 

of the AR model parameters, namely, the Yule-Walker (autocorrelation) method, the 

covariance method, and Burg’s method. It has been reported that for small data samples 

Burg’s method generally provides better and more reliable residual estimates than the 

other two methods [Nassar, 2003]. Therefore, Burg’s method is chosen for the inertial 

and magnetic sensor error modelling. 

     The accelerometer bias b

Ab  and magnetometer bias b

Mb  are modelled as a first-order 

AR process, with the difference equation form [Gelb, 1974]: 

 
k k-1 Ak

b b

A A A b  b T b η  (4-37) 

 
k k-1 Mk

b b

M M M b  b T b η , (4-38) 

where AT  and MT  are 3 3  diagonal matrices with the coefficients of the model; and 

Ak
bη  and 

Mk
bη  are the process driving noise with spectral density 

Abq  and 
Mbq . The 

model parameters AT , MT , 
Abq  and 

Mbq  are estimated using Burg’s algorithm based on 
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five-minute static data. Increasing the AR model to a higher order may be more accurate. 

But the solution is not practical because each increase in the order of the AR model will 

increase the number of states by six. Therefore, for a large AR model order, the filter will 

be most likely unstable [Nassar, 2003]. 

     By augmenting the sensor error models, the final 9-state dynamic models can be 

constructed from Eq. (4-36) through Eq. (4-38) as follows: 

 

         

A

M

n n n

b G

b b

A A A b

b b

M M M b

9 19 1 9 19 9 9 9

                     

       
       

         
               

ε 0 0 0 ε -C 0 0 η

b 0 -T 0 b 0 Ι 0 η

b 0 0 -T b 0 0 Ι η

xx uF G

, (4-39) 

where 0  is a 3 3  zero matrix and Ι  is a 3 3  identity matrix. The spectral density 

matrix Q  has the form: 

  
Ax Ay Az Mx My MzGx Gy Gz b b b b b bdiag q q q q q q q q qQ , (4-40) 

where 
Gx Gy Gz,   and q q q  are the spectral densities of the gyro noises on each axis; 

Ax Ay Azb b b,   and q q q  are the spectral densities of the AR model driving noises for the 

accelerometer bias on each axis; and 
Mx My Mzb b b,   and q q q  are the spectral densities of the 

AR model driving noises for the magnetometer bias on each axis. 

     The spectral density of the gyro noises can be obtained from the specifications 

provided by manufacturers while the spectral densities of the accelerometer and 

magnetometer bias driving noises can be calculated using the Burg’s method as stated 

previously. However, in real applications under dynamic maneuvers, sensor noises and 

bias variations are strongly coupled with vibration and environmental effects especially 



 

 

87 

for low-cost sensors [Wang, 2006]. To take these effects into account, a larger spectral 

density of the input noise should be used, and in this dissertation it is empirically 

determined based on field tests. 

 

4.3.4 Linearized Measurement Model 

     The measurement model is typically written as: 

 k k k k z H x e . (4-41) 

The error input kz  and the measurement sensitivity matrix kH  can be determined by 

considering the effect of orientation errors as well as accelerometer and magnetometer 

biases in estimating the gravity and magnetic vectors. Specifically, suppose that the 

accelerometers experience only the gravity vector, then the gravity vector expressed in 

the body frame ba  can be determined by subtracting the accelerometer bias b

Ab  and 

measurement noise  
b

A 3 1
v  from the tri-axis accelerometer raw measurements  

b

3 1
a : 

 b b b b

A A  a a b v . (4-42) 

Alternatively, the gravity vector can be computed from the nominal gravity vector in the 

navigation frame  
Tn 0 0 g a  if the direction cosine matrix between the two frames 

is known, and can be expressed as:  

  
T

b n n

b     a C a , (4-43) 

where n  a  represents the skew symmetric (or cross product) form of the vector na  and 

n

bC  is the actual orientation matrix which can be derived using Eq. (4-27). Substituting 

Eq. (4-27) into Eq. (4-43) gives: 
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   
T

b n n- n

b
ˆ           a I ε C a , (4-44)

 

where 
n-

bĈ  is the predicted rotation matrix through the integration of the gyro 

measurements. Equating the right side of Eq. (4-42) and Eq. (4-44) and then reorganizing 

the terms produces the linearized measurement model for accelerometers as: 

    
T T

b n- n n- n n b b

b b A A
ˆ ˆ =      a C a C a ε b v . (4-45) 

     Following the same principle, the linearized measurement model for magnetometers 

can be derived as: 

    
T T

b n- n n- n n b b

b b M M
ˆ ˆ =      m C m C m ε b v , (4-46) 

where  
b

3 1
m  are the raw measurements of the magnetometers; n

m  is the nominal Earth 

magnetic vector in the navigation frame; and  
b

M 3 1
v  is the magnetometer measurement 

noise.  

     The measurement model in Eq. (4-41) can be specified by combining Eq. (4-45) and 

Eq. (4-46) as: 

 
 

 
 

 

 

     

nT T b
b n- n n

A
b

b

AT T
b n- n n b b

b M M

6 19 16 1 6 9

ˆ ˆ

=
ˆ ˆ

               





 

                
      

                 

n

b

n

b

ε va C a C a Ι 0
b

m C m C m 0 Ι b v

vxz H

. (4-47) 

where the matrices of 0  and Ι  are defined in Eq. (4-39). The covariance matrix of the 

measurement noise is given by: 

  2 2 2 2 2 2

Ax Ay Az Mx My Mzdiag      R . (4-48) 
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where 
Ax Ay Az,   and     are the standard deviations of the accelerometer measurement 

noises and 
Mx My Mz,   and     are the standard deviations of the magnetometer 

measurement noises. 

     For many applications, the a priori statistics are determined beforehand using 

laboratory measurements of the system, which will remain unchanged during the filtering 

process. However, it is difficult to accurately predetermine the measurement noise for 

indoor robotic applications with various signal degradation conditions. As mentioned 

previously, the accelerometer measurement is likely corrupted by body acceleration and 

random noises while the magnetometer measurement is continuously disturbed by local 

magnetic disturbances. Therefore, the accurate estimation of a priori knowledge about 

their measurement noise statistics becomes a challenge. For these cases, it is desirable to 

design an adaptive Kalman filter that estimates kQ  and kR  as it operates [Groves, 2008]. 

     Several adaptive schemes have been investigated by estimating the statistic parameters 

of the filter online from the actual measurements [Magill, 1965; Mehra, 1970; Mohamed 

and Schwarz, 1999]. In this dissertation, a mechanism for adapting the measurement 

noise in the presence of motion and magnetic disturbances has been developed: the so-

called online moving window scheme. The standard deviation of the actual measurements 

within the selected window is computed and input to the measurement covariance matrix. 

The window size needs to be properly determined so that the statistic of the measurement 

sequence is able to represent the actual measurement noise covariance. The choice of 

window size is usually application-dependent. For robotic applications the measurement 

accuracy is rapidly changing as the robot moves through the indoor environments. 
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Therefore, a small window size should be used to enable the Kalman filter to correctly 

trace high-frequency changes of the accelerometer and magnetometer accuracy. In this 

dissertation a window size of 10 epochs (10 Hz sampling rate) was chosen based on 

practical test performance inside a typical office building. 

 

4.4 Magnetometer Calibration 

     Errors in the measurements b
m  reduce the accuracy of the heading determined from 

Eq. (4-23) and Eq. (4-24). In Chapter 2, various sensor errors (e.g., scale factor error, 

misalignment error, etc.) that corrupt the measurements have been described. For 

magnetometers, besides the internal sensor errors, the measurements are also externally 

distorted. The magnetic field used in heading determination is the Earth’s magnetic field. 

In most practical applications there will be other unwanted magnetic fields distorting the 

measurements of the magnetometer triad.  

     The interfering magnetic fields can be generated by ferromagnetic materials (hard 

irons) with permanent magnetic fields. These unwanted magnetic fields are superimposed 

on the output of the magnetometers’ measurement of the Earth’s magnetic field. The 

effect of this superposition results in a bias in the magnetometer output. If the unwanted 

magnetic fields are time invariant (with a fixed magnitude and direction with respect to 

the sensor module), the induced bias will be constant and can be eliminated through 

calibration. The unwanted magnetic fields can also be introduced from materials (soft 

irons) that generate their own magnetic field in response to an externally applied field 

(e.g., the Earth’s magnetic field). The field generated by these materials can vary over a 

wide range depending on the magnitude and direction of the applied external magnetic 
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field. If the soft iron materials are fixed on the platform, their effect is similar to scale 

factor errors [Langley, 2003]. The process of magnetometer calibration involves 

identifying and removing the hard iron and soft iron errors in the measurements, as well 

as sensor errors. It should be noted that the unwanted magnetic fields can also be caused 

by items external to the platform. 

     The calibration method applied in this dissertation is known as a nonlinear, two-step 

estimation algorithm developed by researchers at Stanford University [Gebre-Egziabher 

et al., 2001]. It is based on the fact that the locus of error-free measurements from a 

magnetometer triad is a sphere. This sphere has its origin at the centre with a radius equal 

to the magnitude of the Earth’s magnetic vector. The various measurement and sensor 

errors will change the location of its centre and/or its shape. In particular, scale factor and 

soft iron errors will reshape the sphere into an ellipsoid centred at the origin; hard iron 

errors shift the ellipsoid away from the origin; misalignment errors rotate the ellipsoid; 

and the effect of random noise is to roughen the smooth surface of the measurement locus. 

Mathematically, this is given by: 

  

22 2bb b
2y yx x z z

T

x y z

m bm b m b
m

sf sf sf

     
       

    

, (4-49) 

where 
b b b

x y z,   and m m m  are the raw measurements of the magnetometers; 
x y z,   and b b b  

are the biases caused by hard iron effects; 
x y z,   and sf sf sf  are scale factors to account for 

sensor scale errors and soft iron effect; and Tm  is the magnitude of the Earth’s magnetic 

field. Here, it is assumed that the misalignment errors are minimized during installation 

thus not shown in Eq. (4-49). The calibration algorithm attempts to fit the best ellipsoid 
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(in the least square’s sense) to the measured data. The unknown parameters are the biases 

and scale factors which are estimated and then used to correct the raw measurements. The 

calibrated parameters will change with different test platforms or locations. Therefore, 

the calibration procedure should be performed once the sensor module is installed on a 

new platform or tested in a different location. As will be described in section 4.5.2, the 

sensor module is mounted on a robot for indoor kinematic tests (see Figure 4.6). Before 

the field tests, the magnetometers should be calibrated. The calibration data were 

collected by rotating the platform in three dimensions. Figure 4.7 shows the locus of the 

measured magnetic field before and after the calibration. The magnitude of the magnetic 

field measurements before and after the calibration is illustrated in Figure 4.8.  

 

 

Figure 4.6 Platform used for kinematic tests. 

3DM-GX1 

TG6000 
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Figure 4.7 Locus of measured magnetic field before and after calibration. 

 

Figure 4.8 Magnitude of magnetic field measurements before and after the calibration. 
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     According to the World Magnetic Model, the Earth’s magnetic vector has a magnitude 

of 0.53 gauss in the test area (UNB Fredericton campus). Ideally without any 

measurement error, all measurements should rest on a sphere with radius of 0.53 gauss. 

As illustrated in Figure 4.7, due to hard iron, scale factor, and soft iron errors, the data 

lies away from the sphere shown in dots. The calibration procedure estimates the biases 

and scale factors to place the data on the sphere represented by circles. The magnitude of 

the field vector before the calibration significantly differs from 0.53 gauss, while the post 

calibration field magnitude well approaches the nominal value. 

 

4.5 Experimental Tests 

     Several tests were conducted to validate the performance of the orientation estimation 

algorithm described previously. The raw measurements were collected from the 

commercial product 3DM-GX1 AHRS (MicroStrain, Inc., Williston, VT, USA). It 

combines three angular rate gyros with three orthogonal accelerometers and three 

orthogonal magnetometers. All sensors are manufactured based on MEMS technology. 

The specifications of the 3DM-GX1 can be found in Table 4.1. The device provides drift-

free three-dimensional orientation. However, without an efficient disturbances 

compensation algorithm, the performance significantly degrades when implemented in 

real environments. Unfortunately, the device cannot simultaneously output the raw 

measurements and the orientation solutions, thus the performance of our approach cannot 

be compared with the orientation solution provided by the 3DM-GX1. Therefore, a true 

reference is established for the comparison. The data was sampled at 10 Hz. All sensors 
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have been calibrated by the manufacturer with calibrated parameters saved in the internal 

memory. 

 

Table 4.1 3DM-GX1 Specifications. 

Sensor 
Gyros 

[degree/sec] 

Accelerometers 

[mg] 

Magnetometers 

[mGauss] 

Range +/-300 +/-5000 +/-1200 

In-run bias stability (over temp) 0.7 10 15 

Scale factor error (% of operating range) 0.5 0.5 0.7 

Nonlinearity 0.2 0.2 0.4 

Noise 0.06 0.4 unknown 

 

4.5.1 Static Test 

     The goal of the static tests is, on the one hand, to validate the design of the filter and, 

on the other hand, to assess its performance in dealing with magnetic anomalies. Because 

the establishment of an accurate absolute orientation reference system in indoor 

environments is difficult in practice, the static tests were performed in an outdoor open 

flat area, so that the inclination has approximately zero value and GPS-derived heading 

could be used as the reference. Two Topcon Hiper Lite GPS receivers were installed on a 

test platform (see Figure 4.9) with a baseline length of 1.44 m, and raw data was recorded 

at a 1 Hz data rate. The GPS positioning solutions were calculated using the Trimble 

Total Control software. The on-the-fly processing mode was chosen, which outputs a 

position solution with an uncertainty at every epoch. The heading can be directly 

computed from the positioning solutions using the equation Keong and Lachapelle [2000]: 

 
E

 = atan
N


 

 
 

. (4-50) 
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where E  and N  are the latitude and longitude differences between the two antennas.  

The standard deviations of the computed latitudes and longitudes are 

0.001 m 0.113   m and 0.001 m 0.1   m, respectively. Thus, the accuracy of 

the computed heading is 0.04
o
~4.06

o
, determined from Lu [1995]: 

 
   

 

2 2 2 2sin cos 180
 = 

 cosl

 



   


 





, (4-51) 

where l  is the baseline length and the pitch angle   is assumed to be zero as the test was 

assumed to be conducted in a horizontal plane. The inertial and magnetic solutions were 

time-stamped using the computer’s time synchronized with UTC through internet in 

order to synchronize with the GPS time for comparison. A wooden cart was used to 

exclude any magnetic materials that will cause disturbances to the magnetometers’ 

measurements. The test platform with the equipment mounted is shown in Figure 4.9. 

 

Figure 4.9 Platform used for static tests. 

3DM-GX1 attitude and heading reference system 

Topcon GPS receiver 
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     During the test, the platform was in a static mode for about 6 minutes. Around 4 

minutes later, an intentional magnetic disturbance was simulated by putting a metallic 

material (an iron wrench) near the sensor (about 2 cm away) for about 30 seconds. The 

raw measurements collected from the tri-axis gyro are shown in Figure 4.10.  

     A gyro senses the angular rate due to Earth rotation and the body movement-induced 

rotation. In a static mode, without experiencing any body rotation, the gyro should only 

measure noise with an approximate zero mean value, because the effect of Earth rotation 

(0.0042 deg/sec) is negligible compared to the noise of MEMS sensors. However, a 

significant measurement bias for each axis can be clearly seen from Figure 4.10. For this 

dataset, the bias has a magnitude of 0.06 deg/sec, -0.2 deg/sec, and 0.09 deg/sec for x-, y- 

and z-axis, respectively. The integration of the bias causes an angular error which 

continuously grows with time (see the bold curve in Figure 4.11). The orientation drift is 

about 7  after 1 minute. As discussed previously, this bias consists of an offset and a 

drift term. The bias offset is constant during each operation but varies from run to run. 

Therefore, it can be roughly determined by averaging a series of static measurements at 

the beginning of each run. Its contribution to the overall drift could be minimized by 

subtracting the offset from subsequent measurements. Obviously, there is no noticeable 

magnetic disturbance effect, since the gyros are not interfered with by ferromagnetic 

materials. 

 



 

 

98 

 

Figure 4.10 Raw measurements from the tri-axis gyros when the sensor is stationary. 

 

Figure 4.11 Performance comparison of different orientation estimation approaches. 
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     Figure 4.12 shows the magnitude of the magnetic and total acceleration vectors 

measured from the magnetometer and accelerometer triads, respectively. The top panel 

illustrates the measured magnetic field by the tri-axis magnetometer. In this clean outdoor 

environment without magnetic disturbance, magnetometers only sense the Earth’s 

magnetic field (0.53 gauss) with minor platform perturbations. The normalized magnetic 

field measurement varied from its nominal value when the wrench (i.e., artificial 

magnetic disturbance) disturbed the field. The variation observed during the 30-second 

period was about 200% compared to the periods without magnetic perturbations. The 

bottom panel of Figure 4.12 shows the magnitude of the total acceleration which is 

approximately 9.841 m/s
2
. The nominal average magnitude of the gravity vector is 9.81 

m/s
2
. The difference between the measured total acceleration and the nominal gravity 

indicates the existence of sensor biases. 

     The heading derived from gyro only, the combination of accelerometer and 

magnetometer, and the integration algorithm are illustrated in Figure 4.11. Actual 

orientation estimation was performed using the quaternion arithmetic, but for illustration 

purposes, the estimates were transformed into the Euler angles. As indicated by the fine 

line in Figure 4.11, the drift has been much reduced by removing the offset in the raw 

measurements of gyros. However, the result indicates that some residual error still 

remained. By examining a longer data set, I found that the remaining estimation error 

actually is not linearly accumulated. This time-varying error is caused by the bias drift 

that slowly varies during the course of a run. It is random in nature and cannot be 

deterministically eliminated from the measurements. The heading solution from the 

combination of accelerometers and magnetometers shows no drift with an estimation 
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error of about o0.7  when there is no magnetic anomaly. However, when the iron wrench 

was placed near the sensor module, the solution shows large errors up to o131.6  (r.m.s.). 

The solution obtained using the integration algorithm is also shown in Figure 4.11. The 

performance of the integration algorithm under the influence of magnetic disturbances is 

remarkable and robust. The orientation estimation error has been apparently reduced with 

an error of o4.7  (r.m.s.). 

 

Figure 4.12 Measurement norms of the magnetometers (top) and accelerometers (bottom) 

in a static mode.  

 

     Figure 4.13 illustrates the behaviour of the biases for the accelerometers and 

magnetometers captured by the filter. During the stage when no magnetic anomaly has 

happened, the filter quickly converges to the correct value and the sensor biases are 
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effectively picked up by the filter. As the integration algorithm effectively removes the 

influence of magnetic disturbances, the filter still converges to the right value during the 

magnetic disturbances. 

 

 

Figure 4.13 Sensor bias estimation. 

 

4.5.2 Kinematic Test 

     Indoor kinematic tests were performed with the sensors installed on a mobile robot. 

The robot was remotely controlled to move along the corridors of the department 

building on the UNB Fredericton campus. The goal of this kinematic test is to validate 

the orientation estimation algorithm in indoor environments with typical robot maneuvers. 
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The orientation computed by a fiber optic gyro (TG6000, a tactical-grade inertial 

measurement unit, KVH) was used as a reference for comparison. Even though it also 

suffers from sensor bias errors leading to orientation drift, but o1 /hour gyro bias stability 

enables it to be a good reference for short period operation. The test platform is shown in 

Figure 4.6 in section 4.4. 

     The gyro, accelerometer, and magnetometer measurements of the experiment are 

presented in Figure 4.14. The gyros signals show the angular velocities of the kinematic 

movements. The accelerometers show the three components of the gravity vector and the 

acceleration of the sensor. The components of the disturbed magnetic field vector as 

measured by the magnetometers are plotted in the bottom graph. 

 

Figure 4.14 Sensor measurements of gyros (top), accelerometers (middle) and 

magnetometers (bottom) during the indoor kinematic test. 
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     The norms of the magnetometer and accelerometer measurements are shown 

respectively in the top and bottom panels in Figure 4.15. Note that after the sensor 

module was installed on the robot platform, the magnetometers have been recalibrated in 

the field where the tests were conducted. The calibration procedure has been described in 

section 4.4. In the stage of movement, the geomagnetic vector has been continuously 

disturbed as indicated by the magnetic norm. There are two reasons for this occurrence. 

Firstly, even though a site calibration procedure has been implemented to capture the 

constant bias and scale factor errors, some residual errors may be still so significant that 

they can corrupt the magnetometers’ output. Secondly, both the hard iron and soft iron 

errors mentioned previously could also be caused by materials external to the robot such 

as iron or steel inside the building. Such dynamic interference is usually time-variant and 

thus cannot be removed through the calibration and subsequently results in continuous 

deterioration of the measurements. During the movement, the acceleration norm varies 

around the gravity value. No significant peak occurs because the robot has low dynamics. 

The increased measurement noise is mainly caused by the platform’s vibration.  

     The three-dimensional orientation derived from each approach is given in Figure 4.16. 

Their differences are shown in Figure 4.17. As expected, the gyro’s solution drifts over 

time. When the robot starts to move, the inclination (i.e., roll and pitch) derived from the 

accelerometers become noisier due to the movement-induced body accelerations. 

Similarly, during the kinematic operation, the heading is significantly deteriorated 

partially due to the transformation error using the noisy inclination. In fact, the dynamic 

magnetic disturbance from the test environment that corrupts the magnetometer 

measurements is the main reason for the deterioration. Orientation estimates from the 



 

 

104 

Kalman filter (i.e., the integration algorithm) are also shown. As can be observed, the 

drift has been removed, the noise level of the inclination has been slightly reduced, and 

about 40%  in improvements have been made in the heading estimates compared to the 

solutions without applying the integration strategy.  

 

 

Figure 4.15 Measurement norms of the accelerometers (top) and magnetometers (bottom) 

in the kinematic mode. 

 

Static Kinematic 
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Figure 4.16 Orientation computed from various approaches in the kinematic mode. 

 

Figure 4.17 Orientation estimation errors computed from various approaches in the 

kinematic mode. 
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     A number of kinematic tests have been conducted by moving the robot through 

corridors with different environmental conditions. Some of the typical test results are 

outlined in Table 4.2. While the performance of the sensor integration approach was 

always superior to other sensor approaches, it was found that the measurement quality of 

the aiding sensors has great impact on the integration performance. For test #3, the robot 

moved in a narrow corridor where metallic cabinets were aligned along one side of the 

wall. Figure 4.18 illustrates increased magnetic disturbance under this test setup. The 

norm of the magnetometer measurement is shown in the bottom panel of Figure 4.18. 

Compared with test #2, the norm of test #3 has higher variation, which indicates worse 

measurement quality. Not surprisingly, the heading error from the filter increases. 

 

Table 4.2 Roll, pitch and heading estimation error. 

Orientation 

[degree] 

Test #1 Test #2 Test #3 

A B 
Improved 

by [%] 
A B 

Improved 

by [%] 
A B 

Improved 

by [%] 

Roll 2.90 1.81 37.6% 4.31 3.20 25.8% 4.99 3.93 21.2% 

Pitch 1.43 1.39 2.8% 3.94 2.85 27.7% 3.42 2.41 29.5% 

Heading 19.61 10.32 47.4% 23.32 11.73 49.7% 35.21 21.98 37.6% 

 

Note: “A” represents results obtained from the combination of accelerometers and magnetometers, “B” 

represents results from the filter. 
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Figure 4.18 Comparison of the magnetometer measurement quality. 

 

4.6 Chapter Summary 

     In this chapter, a new method has been proposed for the fusion of gyros, 

accelerometers, and magnetometers to estimate the orientation of a mobile robot in 

indoor environments. Usually the performance of the orientation system degrades in the 

vicinity of ferromagnetic objects or when the magnetic field is constantly disturbed. In 

this work, a quaternion-based Kalman filter has been developed, which applies tightly-

coupled and closed-loop integration strategies. It incorporates an online sensor calibration 

procedure for modelling time-varying sensor biases of accelerometers and 
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magnetometers and a mechanism for adapting the measurement noise in the presence of 

motion and magnetic disturbances.  

     Static and kinematic tests were conducted in the presence of continuous magnetic 

disturbances. The test results confirmed that the proposed estimation algorithm 

significantly improves the accuracy of orientation estimates. The filter overcomes the 

integration drift due to gyro sensor biases and produces more accurate solutions in 

comparison with the conventional approach using accelerometers and magnetometers.  
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Chapter 5  Development of RFID Positioning System 

     In Chapter 4, an orientation system has been developed by integrating inertial and 

magnetic sensors using the Kalman filtering methodology. Besides the orientation 

information, the position of the robot should be reliably determined in indoor 

environments in order to realize autonomous mobile robot navigation. The most common 

positioning sensors used for indoor applications are based on RF technologies. One of the 

rapidly growing RF technologies is RFID, and it has been modified and evolved for 

positioning by utilizing the RSSI values as explained in Chapter 2. The particle filter 

methodology has been used for handling nonlinear or inaccurate models and non-

Gaussian noises in data processing. As is well known, Bayesian estimation turns out to be 

optimal if a sufficient number of measurement samples are used for estimation. This 

dissertation applies the particle filter for position estimation based on the RFID 

technology. The properties of the RSSI values received by the RFID reader are 

investigated first, followed by the description of the RPF for mobile robot indoor 

positioning based on the dynamic model and the observation model. The performance of 

the proposed method has been validated through a series of experimental tests which are 

presented in the last section. 

 

5.1 Properties of Received Signal Strength 

     Although radio propagation has been extensively studied in the recent literature, 

papers mainly focused on its impact on WLAN receiver design and coverage [Ladd et al., 

2002; Wang et al., 2006; Fink and Beikirch, 2011]. There is still lack of understanding 

http://en.wikipedia.org/wiki/Particle_filters
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about the properties of the RFID’s RSSI values from the perspective of indoor 

positioning systems. 

     Most RF technologies like WLAN and RFID share great similarities associated with 

the received signal strength. That is, the radio signal is affected by various factors such as 

the presence of a human operator nearby a reader, the maker of a reader, building type 

and material, etc. [Kaemarungsi, 2005]. Studying those facts are beyond the scope of this 

dissertation, I will mainly focus on studying the statistical properties of RSSI patterns 

(e.g., the stability of RSSI values and the distance dependency) and investigating the 

multipath effect on the antenna’s receiving capability. 

 

5.1.1 Stability of RSSI 

     For initial measurement investigation, a laptop computer (IBM ThinkPad R61i 1.86 

GHz) equipped with an RFID reader (919-921 MHz i-CARD CF-350, Identec Solutions, 

Inc., Addison, TX, USA) were primarily used to collect the sample measurements of 

RSSI values from several long range, active UHF RFID tags (i-Q350TL F, Identec 

Solutions, Inc., Addison, TX, USA). The reader was plugged into a PCMCIA slot on the 

laptop. The tags were installed on the wall of the Advanced Indoor Navigation 

Laboratory at UNB. A data recording program was developed to decode the radio signal 

transmitted from the beacon type tags and to archive the RSSI values. Data were 

collected at a fixed location for a period of 10 minutes at a rate of 1 Hz. No human 

operator was present during the period of data collection. Figure 5.1 illustrates a few 

example time series of the raw RSSI measurements. Their mean values and standard 

deviations are summarized in Table 5.1. 
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Figure 5.1 Sample RSSI values. 

 

Table 5.1 Statistics of the sample RSSI values. 

 Tag #1 Tag #2 Tag #3 Tag #4 Tag #5 

Mean [dBm] -57 -68 -70 -74 -77 

Standard deviation [dBm] 0.03 0.02 0.27 0.49 0.26 

 

 

     The RSSI reading reported by the reader is an integer value in the quantization step of 

1 dBm. Therefore, there will be some inconsistency in the RSSI values due to the 

rounding error of quantization and noise. This inconsistency can be observed as 

variations from the mean value in Figure 5.1. Sample standard deviation of the signal is 
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very small in comparison to the large value observed from the WLAN technology 

[Kaemarungsi, 2005]. Its variation increases for weaker signals but normally is less than 

1 dBm, which indicates that the RFID sensor has high measurement stability. Note that 

the radio spectrum used (i.e., 925 MHz) is shared by other equipment in the industrial, 

scientific, and medical frequency band. Although signal interference from other UHF 

electronic devices has not been detected in this test, drawing the conclusion that there is 

no interference is unreasonable as it may occasionally happen. 

 

5.1.2 Distance Dependency 

     A received radio signal is usually modelled by the combined effects of large-scale and 

small-scale fading [Sklar, 1997]. The large-scale fading component describes the signal 

attenuation as the signal travels over a distance and is absorbed by materials such as walls 

along the way to the reader. Usually it is referred to as a path loss. In the far field, the 

signal fades inversely to the square of the distance (see Eq. (2-1)). By scaling the signal 

power using logarithm (i.e., in the unit of dBm), the RSSI value will decrease linearly 

with the logarithmic distance (see Eq. (2-4)). On the other hand, the small-scale fading 

component explains the fluctuation of the signal due to disturbance such as multipath and 

interference. In order to study the characteristics of radio signal propagation under real 

environments, the reader was gradually moved away from a certain tag starting from a 

very close distance. Figure 5.2 illustrates the effects of signal fading to the received 

signal strength. The raw RSSI values are indicated with stars. 
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Figure 5.2 Effects of signal fading to the received signal strength. 

 

     Note that the sensitivity of the reader limits the resolution of the RSSI values. The 

experiments show that the minimum and maximum signal values that the reader can 

resolve is -96 dBm and -40 dBm, respectively. As illustrated in Figure 5.2, the overall 

trend of the RSSI values shows the large-scale fading effect. However, the signal 

fluctuation is considerably higher during the movement. This is typically due to multipath, 

which causes signal power to vary by as much as 10 dBm when the reader moves on the 

order of only a fraction of the signal wavelength (see the small-scale fading depicted in 

Figure 5.2). Moreover, for a given RSSI value, there are multiple corresponding distances 

and even worse, the difference between these distances is large; for example, an RSSI 

value of -69 dBm ranges from 3 m to 9 m. 

Small-scale fading 

Large-scale fading 
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5.1.3 Antenna Gain Pattern 

     Normally, an omni-directional RFID receiving antenna is chosen to receive radio 

signals from as many tags as possible for positioning. The receiving antenna gain pattern 

should be examined with an actual system set-up in a multipath-rich indoor environment. 

The main questions in this investigation are two-fold: (1) does any electronic device (that 

is, a laptop computer or robot) interfere with the antenna gain pattern; and (2) does 

multipath change the apparent gain pattern of the antenna under the test? The test 

antenna’s horizontal gain pattern is our primary interest because all tags are installed 

more or less at the same elevation. 

     The MDM-925OP ¼ wave vertical omni-directional antenna has been tested. Signal 

strength was measured from an RFID tag at about every 22.5
o
 (horizontal) angle at the 

same location on a table. The antenna was manually rotated at a step of 22.5
o
. Figure 5.3 

shows the test set-up. Mounting the antenna on a table of metal helps block multipath 

signals from the ground beneath the antenna. The same test was also performed on a 

wood table without the shielding plate.  

     Figures 5.4 and 5.5 show the horizontal gain patterns of the MDM-925OP on the 

metal and wooden table, respectively. Obviously, both have an omni-directional pattern. 

Regardless of the presence of the metallic ground plane, a similar horizontal gain pattern 

has been seen. In addition, the RSSI values have almost the same magnitude. Minor 

differences mainly come from the imprecision of the manual set-up for antenna 

orientation. 
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Figure 5.3 RFID receiving antenna gain pattern test set-up. 

 

 

 

Figure 5.4 Horizontal gain pattern of the ¼ wave vertical antenna: RFID signal strength 

was measured on a metal table. 
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Figure 5.5 Horizontal gain pattern of the ¼ wave vertical antenna: RFID signal strength 

was measured on a wood table. 

 

     This test results ensured us that interference or multipath does not seriously alter the 

antenna’s omni-directional characteristics. In addition, the use of the metallic shielding 

plate does not create much difference. This result suggests that most of the multipath 

signals arrive at the antenna from upper directions in indoor test environments. 

 

5.2 Regularized Particle Filter for Mobile Robot Positioning 

     The previous section presents an initial analysis of the RSSI values received by the 

RFID reader in an indoor environment. The RSSI value measured at a fixed location from 
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a certain tag is quite stable with a very small variation. Its relation with the reader-tag 

distance generally follows the path loss model. However, large variations due to 

multipath are dominant in indoor environments. The question is how to extract useful 

information from the noisy signal strength measurements for reliable positioning. 

     As stated in Chapter 3, a RPF is considered to be a suitable method for mobile robot 

positioning. Suppose that a mobile robot equipped with an RFID reader moves inside a 

building. Continuously, it receives a set of radio signals from M  tags that are installed 

inside the building with known locations. By decoding the tags’ messages, the reader 

obtains the tags’ IDs and signal strength measurements  
1

M
j

k k j
rssi


rssi  at each epoch k

, where j represents the tags. The goal is to estimate the robot’s current position kx  using 

the noisy RSSI measurements and the robot’s dynamic information.  

     For this specific nonlinear filtering problem, the transitional density  -1p |k kx x  in Eq. 

(3-3) is obtained with an additional known control input ku  (e.g., the robot’s odometry 

measurements), specified as a conditional density  -1p | ,  k k kx x u . The prediction density 

 1: 1p |k kx z  in Eq. (3-3) is then updated as [Dellaert et al., 1999]:  

      1: 1 -1 1 1: 1 1: 1 -1p | ,  = p | ,  p | ,  dk k k k k k k k k k   x z u x x u x z u x , (5-1) 

Such a motion model describes how the position of the robot changes based on dynamic 

information obtained from wheel encoders and/or other sensors (e.g., inertial sensors). 

The observation model (see Eq. (3-4)) is specified as  p |k krssi x  which describes the 

probability of obtaining the observation krssi  given that the robot is located at kx . More 
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details about the derivation of the motion model and the observation model are given in 

the following sections. 

     Initially, without prior position information, all N  particles (i.e., position candidates 

with coordinates   ,  y   1,i i i

k k kx i N x ) are randomly distributed over the whole 

space with equal weight =1/i

kw N  [Fox et al., 1999]. The location of each particle is 

propagated through the motion model  -1p | ,  i i

k k kx x u . According to Eq. (3-14), once a 

new set of signal strength measurements  
1

M
j

k k j
rssi


rssi  is received, the weight 

assigned to each particle could be updated based on the observation model  p |j i

k krssi x : 

  -1

1

p |
M

i i j i

k k k k

j

w w rssi


  x . (5-2) 

The weight  ,   = 1i

kw i N  is normalized after all particles are updated as follows: 

 *

1

i
i k
k N

i

k

i

w
w

w





  (5-3) 

     An estimate of the robot position can be directly calculated from the weighted mean of 

the particles as follows: 

 MMSE *

=1

ˆ =
N

i i

k k k

i

wx x . (5-4) 
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5.2.1 Robot Motion Model 

     For kinematic positioning, a system dynamic model can be used to improve the 

estimation. In general, a set of simplified, linear motion equations is used to describe the 

kinematics of a robot without slippage, written as: 

 1 v cosk k k kx x t θ     (5-5) 

 1 v sink k k ky y t θ    , (5-6) 

where the position of the robot at each epoch is denoted as  ,  k kx y ; vk  is the speed, kθ  

is the instantaneous heading; t  is the sampling time interval. Although this linear 

motion model is overly simplified in comparison with the Ackerman geometry [Gillespie, 

1992], which is typical for auto-steering vehicles, this approach is acceptable for such a 

small size test platform as our mobile robot because it has a very quick wheel response 

time. For a differentially driven vehicle, the ground speed vk  can be derived from the left 

and right wheel speeds, given as follows:  

 
L Rv v

v
2

k k
k


 . (5-7) 

where L Rv ,  vk k
 are the left and right wheel speed which can be determined from the wheel 

encoders’ output as: 

 
0

1
v

C

C T
  , (5-8) 

where C  is the number of pulses measured since the last index; 0C  is the number of 

pulses per metre; and T  is the time elapsed since the last index. 
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     Robot kinematics, addressed in such a deterministic form, describes the expected 

position the robot would attain given the previous position and a control input (i.e., the 

odometry measurements vk  and kθ ). However, in actual robotic implementations, the 

output of motion sensors is erroneous due to sensor noise or unmodeled exogenous 

effects, which means the actual position of the robot is uncertain. To generalize kinematic 

equations by taking account of the inherent uncertainties, the probabilistic motion model 

 -1p | ,  k k kx x u  is considered which is essential for the prediction step of the Bayesian 

filtering.  

     Specifically, for particle filtering, it suffices to sample from the probabilistic motion 

model instead of calculating the complete conditional density [Thrun et al., 2005]. That 

is, in sampling, one seeks to generate random samples distributed according to the 

density rather than determine the distribution in a closed form. The sampling motion 

model used in this dissertation is described in Table 5.2. The algorithm generates random 

position candidates (i.e., a new particle set)  
1

,  y
N

i i

k k i
x


 from the motion model 

 -1p | ,  k k kx x u  based on a prior particle set  1 1 1
,  y

N
i i

k k i
x   

 and a set of odometry 

measurements  : v ,  k k ku . The speed vk  is computed from the wheel encoders using 

Eq. (5-7); instantaneous heading k  comes from the orientation system illustrated in 

Chapter 4. The variance of the odometry measurement noise is 4 cm
2
 ( 2

v ) and 0.27 rad
2 
(

2

 ), respectively. Line 5 and 6 “perturb” the odometry measurements by random noise, 

drawn from the normal distribution (line 4). The noisy values are then used to predict 

each particle’s new position (line 8 and 9).  
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Table 5.2: Algorithm for sampling predicted particles from the probabilistic motion 

model  -1p | ,  ,  k k k kv x x .  

 
 

1: Algorithm: a sample motion model (SMM)    1 11 1
,  y SMM ,  y ,  ,  

N N
i i i i

k k k k k ki i
x x v   

   
      

 

2:  FOR 1:i N  

3:     Perturb sensor outputs with random Gaussian noise 

4:               Draw  0,  1i

k Ne  

5:               ˆi i i

k k v kv v   e  

6:               ˆi i i

k k k    e  

7:     Predict the position of the particle  

8:               1
ˆˆ cosi i i i

k k k kx x v t θ     

9:               1
ˆˆ sini i i i

k k k ky y v t θ     

10:  END FOR 

 

 

5.2.2 Empirical Observation Model 

     Based on the signal properties observed, a probabilistic observation model has been 

developed to capture the effect of multipath on LOS signal propagation in indoor 

environments. Instead of a location-based model used by other research groups, a range-

based model has been investigated with the intention of eliminating the environment 

dependency. A detailed procedure to build the observation model is described in this 

section. 

 

5.2.2.1 Calibration Design 

     The reader and tags (see Figure 5.6) used in the following experiments are the same as 

those tested in the previous section. The tags were configured to broadcast the message at 

a regular interval of 1 second. The reader carrying a ¼ wavelength omni-directional 
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antenna was installed on a CoroBot CB-D robot development platform (CoroWare 

Technologies, Inc., Kirkland, WA, USA). 

 

 

Figure 5.6 RFID system components. 

 

     A total of 24 tags were placed in the corridors of the Department of Geodesy and 

Geomatics Engineering at UNB (Figure 5.7). Tags were attached to the wall at a height of 

1.5 m. The reader decodes the messages transmitted from each tag and sends tags’ IDs 

and corresponding signal strength measurements (i.e., the RSSI values) to a data 

processing unit on the robot.  

 

Reader 
Antenna 

Tag 
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Figure 5.7 Test site lay-out: calibration were conducted in the shady area, fields 

experiments were carried out in the corridors where a number of RFID tags (indicated 

with squares) have been installed. A local reference frame has been defined with the x- 

and y-axis shown above. All coordinates are expressed in this frame. 

 

 

     The objective of an off-line calibration is to find a best fit of the theoretical 

observation model to a real environment [Barsocchi et al., 2009]. The accuracy of the 

calibrated observation model largely depends on the number of samples used. The whole 

procedure normally requires time-consuming manual operation. 



 

 

124 

     I have designed a semi-autonomous site-survey procedure. It aims to randomly select 

calibration points to cover the calibration area (i.e., the shaded area in Figure 5.7) as 

much as possible while reducing the amount of time and effort required. Our procedure is 

different from the one used for fingerprinting methods where the points are usually 

uniformly distributed [Retscher and Fu, 2008]. The robot is controlled to move along 

several straight lines (floor tiles were helpful to visually confirm its trajectory). The RFID 

reader mounted on the robot continuously records RSSI values from all accessible tags. 

Using known coordinates of the start and end points, the locations where RSSI values 

were received could be approximately determined by dividing the robot’s travelled 

distance by the number of epochs recorded. This approximation is reasonable because the 

robot moves with a constant speed and the RSSI measurements are recorded at a constant 

interval. In addition, because an RSSI value cannot be a decimal or a fraction, range 

calculation errors will not be large enough to cause a unit change in dBm of the signal 

power. The whole calibration procedure took about 0.5 hour to cover the above 

calibration area, whereas manual operation could usually take up to several hours to reach 

the same density of calibration points. 

 

5.2.2.2 Observation Model 

     Theoretically, the received signal strength is a function of the range between a reader 

and a tag (see Eq. (2-3)). In reality, the initial data analysis in the first section also 

validates its distance dependency. In this section, the first investigation was to see if such 

a path-loss model can be properly obtained from the calibration. 

     The recorded calibration data O  can be expressed as: 
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  O = ,  ,  =1, ... , , =1, ... , j j

l lr rssi l L j M , (5-9) 

where j

lr  is the range between the -thj  tag and the -thl calibration point, the received 

signal strength is represented by j

lrssi , L  is the number of calibration points. The 

calibration data consists of both LOS and NLOS signals, shown as stars and dots in 

Figure 5.8. Clearly, NLOS measurements, significantly impaired by obstructions (e.g., 

walls), are inconsistent with the majority of LOS measurements. Herein, they were 

excluded for the observation model development in order to have them detected during 

the online positioning stage as will be explained in more detail later. For LOS 

measurements, the plot indicates that the signal strength is dependent upon the range 

between a tag and a reader. A path-loss curve with parameters 52A    is determined to 

be the best fit to the data shown as line in Figure 5.8. Compared to this ideal path-loss 

curve, the actual signal propagation shows quasi-random characteristics. That is, 

multipath distorts the underlying physics severely and causes as large as 40 dBm RSSI 

variation for a given range. In general, if the measurement noise is small and normally 

distributed, a path-loss curve fitted from the data would be able to capture the 

characteristics of the signal propagation. However, the calibration result confirms that the 

noise assumption (small and normally distributed) is unrealistic and using a deterministic 

formula to convert RSSI values to ranges may be inefficient in indoor environments. 
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Figure 5.8 Relationship between RSSI values and ranges in multipath-rich indoor 

environments.  

 

     I propose to build a probabilistic observation model using non-parametric statistics. 

The idea of the non-parametric modeling is to derive a distribution based only on the real 

data. Without making any assumption of its structure or parameters, the non-parametric 

approach is capable of offering more accurate information. A histogram as a non-

parametric estimate of a distribution has been chosen for the model development. 

Specifically, the range was divided into a number of bins at 2 m intervals. The min and 

max ranges were 0 m and 60 m, respectively, which were determined from the limit of 

possible tag-reader ranges. The calibration data were grouped into the bins according to 

their ranges (i.e., column-direction grouping in Figure 5.8). Then a RSSI histogram was 

generated for each range bin with 2 dBm bin width. The size of each bin (i.e., the 2 m 
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range and 2 dBm RSSI bin) was chosen arbitrarily. Figure 5.9 shows normalized 

histograms for some range bins. 

 

 
Figure 5.9 RSSI histogram generated for each range bin. Five sample range bins centered 

at 1 m, 4 m, 8 m, 18 m, and 26 m are shown which cover short, medium, and long ranges. 

The bar indicates the normalized histogram, whereas the line represents the fitted 

bimodal normal distribution. 

 

     From the histogram plots (see examples in Figure 5.9), we noticed: 1) the distributions 

are widely expanded indicating large measurement noise; 2) most of the distributions do 

not follow the normal distribution. The majority of distributions has a long tail to the left 

called left-skewed or has two significant modes. Obviously, in typical indoor 

environments, multipath can easily increase the measurement noise and deteriorate its 

r = 1 m 

r = 4 m 

r = 8 m 

r = 18 m 

r = 26m 
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normality resulting in skewness/dual-mode characteristics. Furthermore, the calibration 

results indicate that in indoor environments, most measurements are less affected which 

explains why the main mode of the distribution follows the underlying physics (i.e., 

range-dependence), some are severely impaired introducing tails or even another mode to 

the distributions. 

     For the development of the probabilistic model, to increase its robustness, curve fitting 

was applied to smooth out the histograms. Because the histogram shows skewness and 

dual-mode characteristics, simply fitting a Gaussian distribution to the histogram may 

reduce the accuracy of the model. Instead, a bimodal normal distribution would be a 

better fit to capture this feature. Automatically fitting a bimodal normal distribution to a 

histogram (shown as curves in Figure 5.9) can be carried out by using the expectation-

maximization algorithm [Bilmes, 1998]. The probabilities for each range bin were 

normalized as: 

  
 

 
1

p |
p | ,  m =1,

p |

n m

n m

U
n m

n

rssi r
rssi r V

rssi r





, (5-10) 

where U  and V  are the number of RSSI bin and range bin, respectively; nrssi  represents 

the n -th RSSI bin; and mr  denotes the m -th range bin. 

     To apply this model for positioning in the course of particle filtering (i.e., for weight 

update), one practical issue that needs to be considered is the sample size for each range 

bin (see Figure 5.10). The sample size is much smaller for very short (< 1 m) and long 

ranges (> 40 m). A threshold (i.e., 15 samples) has been set to simply disregard those 

bins with fewer samples as they may produce inaccurate histograms. For the remaining 
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bins, the number of samples for each bin is different, which is due to the arrangement of 

the calibration pattern (i.e., square shape with tags sitting along the edges). I assume that 

15 or more samples are enough to capture the signal characteristics for a certain range.  

 

 
Figure 5.10 Number of samples for each range bin used to build the histogram. 

 

Once the bimodal normal distribution has been generated for each range bin, the cubic 

interpolation method was applied to estimate the probability for the intermediate range 

values (in the step of 0.1 m) based on the probability of the range bin center. Such an 

interpolation step was conducted to increase the density of data along the range direction. 

After the interpolation procedure was done for each RSSI value, a two dimensional 

smooth probability model was generated (see Figure 5.11). 
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(a) 

 
(b) 

Figure 5.11 Two dimensional (range-RSSI) probability model ((a) 3D view; (b) Top 

view).  

① 

② 
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    The observation model involves two distributions: the rssi probability distribution for 

each range (along the ① direction) and the range probability distribution for each rssi 

(along the ②  direction). To apply this probabilistic model in the RPF, the desired 

observation model  p |j i

k krssi x  in Eq. (5-2) should be transformed into the following 

range-based form, similar to that of Koutsou et al. [2007], as: 

    p | = p |j i j ij

k k k krssi rssi rx  (5-11) 

where  p |j ij

k krssi r  is the probability to receive the j

krssi  value from the -thj  tag and the 

range between the -thj  tag and the -thi  particle is given as ij

kr . When new RSSI 

measurements are received, the positioning algorithm (i.e., the RPF) refers to the 

observation model to extract the probability for each particle based on the particle-tag 

range. Accordingly, the weights for all particles are updated. Figure 5.12 illustrates that 

the weight of each particle (equally weighted at the initial stage) is updated when the 

RSSI measurement from tag #5 is obtained. 
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Figure 5.12 Range-RSSI probability model used for updating the weights of particles (the 

weight of each particle is indicated by its size, the bigger the size is, the higher the weight 

is). 

 

5.3 NLOS and Multipath Mitigation 

     One critical question that needs to be answered for indoor positioning is “How to deal 

with NLOS and multipath severely corrupted measurements?” Fingerprinting methods do 

not need to worry about this problem as the methodology itself already takes the various 

multipath and NLOS characteristics into account with the cost of much more training 

effort. More details about the fingerprinting technology have been given in Chapter 1. 

However, for our approach, failure to detect and handle those corrupted measurements 

will cause large position estimation error in the filtering stage. For example, in Figure 

5.13 (a), given the true location of the robot, a number of position candidates (i.e., 
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particles) distributed in two areas (A and B) are available. If the NLOS measurement 

from tag #1 (e.g., -80 dBm) is kept for filtering process, the particles in A will have 

higher weights than those in B, because such a weak signal as -80 dBm is more likely to 

be received at a longer distance according to the range probability distribution of RSSI 

value (Figure 5.13 (b)). Thus, wrong solution would be obtained. Similar results are 

expected if the multipath severely affected measurements are included. 

 

 

Figure 5.13 (a) Effect of NLOS measurements on position estimation, (b) the range 

probability distribution for RSSI value -80 dBm. 

 

     Several solutions have been proposed to mitigate those effects [Cong and Zhuang, 

2005]. However, they have been mainly discussed within TOA-based systems. Not much 

work has been done for systems using only RSSI values. Koutsou et al. [2007] proposed 

to build a different model for LOS and NLOS measurements. However, the question 
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“How to identify and exclude those corrupted measurements during the real-time 

processing?” was not well addressed. A simple and efficient measurement quality control 

scheme using the probabilistic observation model has been developed. As previously 

mentioned, a set of indoor RSSI measurements may consists of NLOS and LOS signals, 

furthermore, LOS signals may combine multipath-free measurements, less affected 

and/or severely corrupted ones. The aim of the quality control test is to exclude NLOS 

measurements and severely corrupted LOS ones as well. 

     The basic idea of the strategy is: if the range between the tag and the robot is known, 

based on the observation model, the probability of each RSSI measurement can be 

determined using the computed tag-robot range. A measurement with a lower probability 

indicates it is either a NLOS signal or a severely corrupted one, and thus should be 

removed. A threshold is set to be 
max0.5 rp , where 

max

rp  is the maximum probability of the 

rssi distribution for a specific range. 50% is an empirical choice. It could be higher or 

lower. However, there is a tradeoff between the possibility of rejecting high-quality 

measurements and the risk of including low-quality measurements. 

     The condition for applying this quality control strategy is a known robot-tag range. As 

a true reference range of the robot is not available typically, the estimated coordinates can 

be used to determine the approximate tag-robot range. In general, a positioning error of 1-

3 m is expected. The effect of such an error on the quality control approach is not 

significant. Suppose the true tag-robot range is 4 m, the estimated range is 2 m or 6 m 

considering the worst case for 2 m error. The rssi probability distribution for each range 

is shown in Figure 5.14. As explained previously, 50% threshold is chosen for rejecting 

low-quality measurements which is also indicated for all three cases. As can be seen, the 
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accepted and rejected RSSI zones for the 2 m or 6 m distribution overlap widely with that 

of the 4 m. As long as the measurement lies within the overlapped zone, the quality 

control result using the estimated range (2 m or 6 m) will be the same as that of the true 

range (4 m). However, wrong decisions could be made if the measurement is located in 

area I, II, or III. For example, if a measurement is in area I, it should be accepted but will 

be rejected if an estimated range is 2 m. Similarly, for a measurement in area II, it will be 

accepted if the estimated range is 6 m but actually it should be rejected.  

 

 

Figure 5.14 The rssi probability distributions for 2 m, 4 m, and 6 m ranges. The accepted 

zone is indicated with A whereas the rejected zone is represented by R. I, II, and III 

indicate areas where a wrong decision could be made if the quality control test relies on 

the estimated range. 
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     To trigger the quality control scheme, the necessary condition is that the filter should 

converge to an unbiased solution. At the initial starting stage without any prior position 

information, trusting stronger signals is reasonable because weaker signal is more likely 

to be low-quality measurements. Two strongest measurements are used for particle 

filtering if the filter converges. Theoretically, having more measurements for processing 

will bring more useful information to reduce the uncertainty as long as they are high-

quality measurements. However, there is no way to guarantee the quality of each 

measurement at the initialization stage. Therefore, the number of selected measurements 

should be minimized to lower the risk of including low-quality measurements. Even 

though there will be two symmetric positioning solutions with the first two 

measurements, the misleading one disappears quickly as soon as the robot starts to move 

and more measurements are obtained. Note that a strong signal does not necessarily mean 

it is a high-quality measurement, because constructive multipath can produce a strong 

signal which actually has low-quality. If the initialization stage completes in static mode 

and such low-quality strong signals are included, the filter will converge to a wrong 

solution. To avoid relying on such low-quality signals, kinematic initialization is 

implemented. That is, the filter converges while the robot is moving using dynamic 

measurements for filtering. 

     Once the filter has converged, the probability of each newly received measurement is 

evaluated by assuming the current position estimate as the true location. If the probability 

is smaller than a threshold, the corresponding measurement will be excluded; otherwise it 

is accepted. A flowchart of this quality control method is shown in Figure 5.15. 
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Figure 5.15 Flowchart of the quality control scheme. 

 

5.4 Experimental Test 

     To validate the performance of our approach described in previous sections, a series of 

tests were conducted in static and kinematic modes. The test area (Figure 5.7) is a typical 
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office environment with people walking around. Figure 5.16 shows the mobile robot 

platform used for the tests. 

 

 

Figure 5.16 Mobile robot test platform. 

 

5.4.1 Static Tests 

     Static tests were performed by keeping the robot stationary for about 10 minutes. 

Roughly 30,000 observations were recorded from 50 different locations (on average 

about 600 observations at each location). The static raw measurements from each tag 

have the similar pattern as presented in section 5.1.1. However, two practical issues in the 

measurements have been found that should be taken care of. Figure 5.17 shows a typical 
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example of the issues. Firstly, even though the tags were configured to broadcast 

messages every 1 second and the reader scanned at a 1 Hz data rate, it could not get all 

the messages transmitted from the tag, because the message transmission from all tags is 

not synchronized and the message lasts only 2 milliseconds. Apparently, the reader 

missed some messages (that is indicated as a -100 dBm value in Figure 5.17). This 

phenomenon is not shown in the initial data analysis because only one tag was tested at 

that stage. Secondly, sudden signal degradation occasionally occurred which had a much 

lower value than others. This may be caused by radio signal interference from other 

wireless devices working in the UHF frequency band in the test environment. It has been 

validated that those sudden signal degradations have no significant effect on static 

positioning. 

     A fixed particle set size (i.e., 1000 particles) was used for position estimation in using 

the RPF. Although not included in this dissertation, it will be worthwhile investigating an 

adaptive sampling strategy in the future. As explained in the “NLOS and Multipath 

Mitigation” section, the condition for applying the quality control scheme is movement as 

it is involved with the kinematic initialization step. Therefore, the quality control test is 

not implemented in the static mode. 
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Figure 5.17 Raw static RSSI measurements from one of the tags. 

 

     The top two panels of Figure 5.18 show a comparison between the estimated and 

reference coordinates. As can be seen, the RPF solution converges in a few seconds 

without any prior position information. As illustrated in Figure 5.19, the error is 

measured using the Euclidean distance and a 68% threshold of the cumulative 

distribution of static positioning errors is 1.79 m. However, at some test points, the 

positioning error reaches 5-6 m due to including NLOS and/or multipath corrupted 

measurements. This accuracy can be further improved in the kinematic mode by 

continuously updating new measurements and turning on the measurement quality 

control test as discussed in section 5.3. 

Signal degradation 

Signal missed 
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Figure 5.18 Comparison between the estimated and reference coordinates. 

 

 

Figure 5.19 Cumulative distribution function (CDF) of the static positioning error. 
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5.4.2 Kinematic Test 

     A series of kinematic tests were conducted in the corridors of our department building. 

During the test, the robot was remotely controlled (the operator was 20 metres away from 

the robot) to move along a predefined route at an approximate speed of 0.46 m/s. The 

robot travelled two routes (route #1: from point 1 to point 2, route #2: from point 3 to 

point 4) in both directions (see Figure 5.20).  

 

 

Figure 5.20 Route plan for kinematic tests. 

2 



 

 

143 

     The computer mounted on the robot continuously recorded the RSSI values from 

accessible tags, the ground speed from the wheel encoders at a rate of 1 Hz, and the 

heading from the orientation system at a rate of 10 Hz. All measurements were time 

stamped using the computer’s internal clock and synchronized for offline processing. The 

actual positions of the robot, marked on the floor when it was stopped intermittently, 

were used as reference points for comparison with the estimated positions. 

     In the first test scenario, the robot travelled from point 1 to point 2 (see the dotted path 

in Figure 5.20), and it took about 300 seconds to complete the path. As an example, the 

RSSI measurements from one of the tags (#5) as the robot moved along the corridors are 

shown in Figure 5.21. The point circle represents a measurement passed the quality test, 

while the hollow circle indicates one that failed. When the reader had LOS access to the 

tag (in the corridor A), it could receive most of the messages except those missed due to 

unsuccessful reader-tag synchronization. After the robot turned into the corridor B, the 

signal could still be picked up even though the LOS path had been blocked by the wall, 

but in this case, with much lower values compared to those obtained from the same range 

under LOS conditions. The reader could barely receive the signal as the robot approached 

the end of the route. As can be seen, the RSSI values approximately follow the signal 

propagation law except for a few degraded signals due to multipath and/or interference as 

indicated in Figure 5.21. 
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Figure 5.21 RSSI Measurements of tag #5. 

 

     The performance of the positioning algorithm is evaluated by comparing the estimated 

trajectory with the approximate ground truth. Figure 5.22 (a) presents the estimated 

trajectory obtained during one of five trials performed for the first test scenario. The 

results for the other four trials are consistent with the one presented here. The plot shows 

a reference route (solid line) and two PF-estimated solutions with (line with “+” sign) and 

without (line with “.”) applying the quality control algorithm. The numerical comparison 

is shown in the bottom panel of Figure 5.22 (b). The filter quickly converged within 6 

seconds as indicated by the shady band in Figure 5.22 (b). As can be observed, the 

position estimates using all available measurements without applying the quality test 
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significantly deviate at some spots. Those deviations are due to the inclusion of NLOS 

and/or multipath corrupted measurements as mentioned above. However, the quality 

control algorithm helped to exclude those degraded signals (indicated as hollow circles in 

Figure 5.21) and significantly improved the positioning result.  

     The number of RSSI measurements recorded at each epoch during the trip is shown in 

the top panel of Figure 5.22 (b). Normally there are 4 to 5 measurements available, 

occasionally increasing to 6 to 7, but sometimes only 1 to 2 measurements could be 

obtained. The PF is able to derive solutions with comparable accuracy using just one 

measurement, which confirms its efficiency for indoor RF positioning where normally 

fewer measurements are available. The corresponding distribution of error distance is 

shown in Figure 5.23. As expected, the accuracy has been improved quite significantly by 

applying the quality control scheme. 
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(a) 

 
(b) 

Figure 5.22 (a) Visual comparison between the estimated path and the reference route, (b) 

Numeric representation of positioning accuracy. 

Converging stage 
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Figure 5.23 Cumulative distribution function of the kinematic positioning error. 

 

     The second test scenario was designed to evaluate the performance of the observation 

model in untrained environments. The robot started from point 3, travelled 

counterclockwise along the rectangular track, and stopped at point 4 (see Figure 5.20). 

Figure 5.24 shows the positioning performance. 
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(a) 

 
(b) 

Figure 5.24 Positioning results in the untrained environment ((a) visual representation, (b) 

numerical comparison). 

Converging stage 
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     Compared to the first test scenario, it took longer (about 34 seconds) for the filter 

converge in this scenario. This is because the robot started from the corridor E, where it 

had access to only one LOS measurement which could also be corrupted. As described in 

section 5.3, the filter uses the two strongest signals for positioning if it is at the 

initialization stage for converging. Therefore, in this case, one NLOS measurement was 

included in the filtering which significantly biased the solutions. When the robot moved 

into the corridor D with more LOS measurements, the filter converged quickly.  

     The overall positioning result is found to be accurate, which indicates that our 

probabilistic observation model is less sensitive to environment changes. Even though the 

model is built using a set of calibration data, unlike the location-based approach (direct 

state), the range-based approach eliminates the environment restriction inherent in the 

calibration-based approach.  

 

5.5 Chapter Summary 

     In this chapter, a probabilistic approach for RFID RSSI-based indoor positioning 

systems has been demonstrated in an indoor environment. Instead of using the geometric 

method or the fingerprinting approach, a recursive Bayesian estimation approach has 

been developed. A statistical technique is applied to build a non-parametric, probabilistic 

observation model. To capture the effect of multipath on LOS signal propagation in 

indoor environments (i.e., skewness/dual-mode characteristics), a bimodal normal 

distribution is adopted. In addition, an online measurement quality control algorithm has 

been developed for identifying and rejecting NLOS and/or multipath corrupted 
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measurements which normally deteriorate the solutions. The robustness of the 

observation model to environment changes has also been demonstrated. 

     The advantages of the RPF for indoor position estimation has been investigated, 

including: (1) it is able to handle arbitrary noise distribution; (2) it can do positioning 

without initialization; (3) positioning solution converges quickly when measurements are 

available; and (4) it can get solutions using only one measurement with comparable 

accuracy. These features are especially beneficial for indoor positioning applications 

where the measurement noises are considerably varied. The performance of our approach 

has been validated empirically in our department building. A 2D positioning accuracy 

(distance error root mean square) of 1.64 m ± 1.03 m (1  ) could be achieved, assessed 

using a number of waypoints covering an area of 4200 m
2
.  
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Chapter 6  Development of Sonic-vision System and Intelligent Controllers 

     Tracking a pre-defined path is an effective way to guide the robot to a target position 

when two conditions are satisfied. Firstly, the assumptions made during the generation of 

the path are still valid at the execution stage. That is, the environment has been correctly 

modelled, and it has not changed. Secondly, the robot is able to accurately determine its 

state (i.e., position and orientation) with respect to the pre-defined path. However, those 

conditions could be rarely met in practice, because the path may be blocked by randomly 

moving obstacles whose existence was not considered when the path was planned or the 

state estimates may not be accurate enough for autonomous robot operation. Based only 

on the developed positioning and orientation systems discussed in the previous two 

chapters (i.e., Chapter 4 and Chapter 5), autonomously navigating a robot to a destination 

by tracking a predefined path is not sufficient.  

     To successfully guide a robot to a target position, a novel navigation strategy has been 

developed. An aiding system, so called “sonic-vision”, is also developed. This 

terminology was coined by the way we transform sonic measurements into vision 

information. It utilizes a set of ultrasonic sensors to build a dynamic local map of the 

environment. The sonic-vision works in parallel with the position and orientation system 

to realize autonomous indoor navigation. 

     In this chapter, the kinematic model of the robot is discussed firstly. Then, the general 

concept of the sonic-vision system is presented, followed by the description of the 

intelligent controllers. Finally, autonomous navigation algorithms are explained in detail. 
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6.1 Differential Drive Kinematics 

     The steering mechanism of the mobile robot used in this dissertation is based on 

differential wheels intended for indoor use. It has two rear drive wheels and two front 

support wheels. The speed and direction of the two drive wheels are independently 

controlled by two motors. Such a system is flexible for a mobile robot because it does not 

have a minimum turning radius. By changing the speed and direction of two drive 

wheels, the robot can take different trajectories. A curve turn is achieved by driving the 

left and right wheels at different speeds. Setting one wheel forward and the other 

backward will result in in-place turning.  

     To perform rolling motion by varying the speed of each wheel, the robot should rotate 

about a point that lies along their common left and right wheel axis [Dudek and Jenkin, 

2010]. The point is the so-called instantaneous centre of curvature (ICC). The steering 

model of the robot is shown in Figure 6.1. 

 

 

Figure 6.1 Differential drive kinematics. 

 

http://www.amazon.ca/s?_encoding=UTF8&field-author=Gregory%20Dudek&search-alias=books-ca
http://www.amazon.ca/s?_encoding=UTF8&field-author=Michael%20Jenkin&search-alias=books-ca


 

 

153 

Because the rate of rotation of the robot about the ICC is the same for both rear drive 

wheels, the following relation exists: 

 
 

 

L

R

v R L / 2

v R L / 2





 


 

, (6-1) 

where L  is the distance between the centres of the two drive wheels; Rv  and Lv  are the 

ground speeds of the left and right wheels (i.e., linear speed);   is the rate of rotation of 

the robot about the ICC; and R  is the distance from the ICC to the midpoint between the 

wheels. The angular speed of the left wheel can be computed from: 

 L
L_wheel

L_wheel

v

r
  , (6-2) 

where 
L_wheelr  is the wheel radius. The angular speed of the right wheel can be computed 

in the same way. 

     Inversely, given the linear speeds of the left and right wheels at any instance in time, 

the angular rate of the robot   can be solved as follows [Dudek and Jenkin, 2010]: 

 R Lv v

L



 . (6-3) 

The linear speed of the robot can be determined by simply taking the average: 

 R Lv v
v

2


 . (6-4) 

By combining Eq. (6-3) and Eq. (6-4), the linear speeds of the wheels can also be 

computed from: 

http://www.amazon.ca/s?_encoding=UTF8&field-author=Gregory%20Dudek&search-alias=books-ca
http://www.amazon.ca/s?_encoding=UTF8&field-author=Michael%20Jenkin&search-alias=books-ca
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     For a differential drive robot, its kinematic model in a local frame can be represented 

as: 
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, (6-6) 

where  ,  x y  is the coordinate of the midpoint of the drive wheel axis and   is the 

heading direction of the robot with respect to the horizontal axis of the local frame. Given 

the control parameters (e.g., linear speed v

 

and turning rate  ), the trajectory of the 

robot could be derived using the above kinematic equations. Essentially, this is a problem 

of what is called forward kinematics, which is the technique of predicting a system's 

behaviour based on the inputs to that system [Richard, 1981]. However, in this 

dissertation I am actually interested in the reverse process: i.e., how can we control the 

robot to reach a target configuration  ,  ,  x y   from the current state? That is, the control 

parameters need to be computed to achieve a specified position. This is known as the 

inverse kinematics problem. 

     As explained previously, steering a differential drive robot is just a matter of adjusting 

the speed of the left and right drive wheels. For example, to accomplish a left turn, the 

speed of the left wheel should be reduced while that of the right wheel needs to be 

increased. According to Eq. (6-5), wheel speeds are determined by the linear speed v  and 

the rotation rate 

 

  of the robot. Note that a differential drive robot is imposed to non-
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holonomic constraints in establishing its position. Specifically, the robot is constrained to 

move in a two dimensional workspace, and it cannot directly move sidewise. An efficient 

turning strategy should be developed to smoothly move the robot. In this dissertation, it is 

realized by the robot control algorithm as will be explained in more details in the 

following sections. 

 

6.2 Sonic-vision System 

     Without having a model of the environment, the robot is considered to be operating in 

a totally unknown area. In general, having a local map of its surroundings at the 

execution stage is helpful for safe maneuvers. Typically, a laser range finder is used to 

build a robust environment map, because it has the characteristics such as fast measuring 

speed, high accuracy, insensitive to the noise and light in the environment. However, the 

cost has prohibited their usage in our applications. Alternatively, ultrasonic signals are 

widely applied in many mobile robot applications thanks to their low cost and simplicity. 

They are adopted in this dissertation. 

     As stated in Chapter 2, an ultrasonic range finder can provide distance information by 

measuring the round-trip travelling time. Conceptually, a ring cluster of ultrasonic range 

finders can be installed on the robot to visualize all directions by directly measuring each 

sensor’s distance information. Typically this type of sensor is used for collision 

avoidance. At the current stage of our development, only the simple safety issue is 

considered. For example, the robot should stop to avoid collision against the wall or other 

obstacles. For this task, the ring-shape system configuration is not cost-effective. 

Moreover, the sensor’s real-time performance is not efficient because crosstalk or 
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interference among those sensors affect the reliability of the system [Zhao et al., 2007]. 

Therefore, our design solution is to have four ultrasonic sensors mounted at 90 degrees to 

each other to cover four main directions. The sensors communicate with the on-board 

processor through serial cables. The platform with the ultrasonic sensors is shown in 

Figure 6.2. 

 

 

Figure 6.2 The sonic-vision test platform. 

 

     Besides keeping the robot operating safely, the acquired distance information from the 

sonic-vision system can be processed to profile the local environment. Generally, the 

corridors can be classified into straight and intersection areas. The intersection can be 

further divided into three different shapes as illustrated in Figure 6.3. If the distance 

Ultrasonic range finders 
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between the side of the robot and the wall is within the detection range of the ultrasonic 

sensor, a valid measurement will be obtained. Otherwise, the sensor will return a null 

value. Based on this simple concept, the profile of the environment can be determined. 

The relationship between the ultrasonic measurements and the corridor types is listed in 

Table 6.1 

 

 

Figure 6.3 Three basic shapes of the intersection area (the arrow indicates the possible 

moving direction of the robot). 

 

Table 6.1 Mapping the ultrasonic measurements to the corridor types. 

Validity of sonic value 

Corridor type 
Left Front Right Back 

Straight Forward Yes No Yes No 

Cross-shape Any direction No No No No 

T-shape 

Rightward Yes No No No 

Leftward No No Yes No 

Upward No Yes No No 

L-shape 
Downward No Yes Yes No 

Leftward Yes Yes No No 

 

     As outlined in the above table, if the robot is moving along a straight corridor, the 

ultrasonic sensors on both sides will obtain valid distance measurements due to good 
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reflections from the wall. When the robot enters into an intersection, for example the 

cross-shape type, all measured values will become invalid (i.e., a null value) because all 

sides are an open space, and no reflected ultrasonic waves will be received. The profile is 

updated every time new range information is obtained. Note that, misjudgment may occur 

in some situations. For instance, if the robot is actually in a straight corridor but the door 

of an office is open, the profile created by the sonic-vision will be the same as the one 

obtained at a type of intersection. To solve this problem, the RFID positioning module 

should be incorporated, the details of which will be described in section 6.4. 

     In addition to identifying the corridor type, the sonic-vision system could also be used 

to locate the centre line (or virtually any specific lane) of the straight corridor with 

respect to its current location. That is, the offset between the robot and the centre line can 

be determined. The basic idea behind this is illustrated in Figure 6.4. 

 

 

Figure 6.4 Sonic-vision for locating the centre line of a straight corridor. 
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As shown in Figure 6.4, if the robot moves straight forward, the offset d  between the 

robot and the centre line is determined from: 

 R L

2

d d
d


  , (6-7) 

where Ld and Rd  are the ultrasonic distance measurements. Mostly, the heading of the 

robot is not perfectly parallel to the centre line but continuously varies. A more practical 

equation to compute the offset considering the heading error   is: 

 
   R L cos

2

d d
d

 
  . (6-8) 

Obviously, Eq. (6-8) is only applicable when the robot is in the straight corridor. At the 

intersection, the ultrasonic measurements will then turn out to be invalid. 

 

6.3 Controller Design 

     In general, mobile robot autonomous navigation involves both sensing and control 

components. Sensing is required to determine the state of the robot with respect to the 

desired path, while the controller translates the state deviation signals into control 

parameters to steer the robot to converge to the path to be tracked. A good control system 

is necessary irrespective of the navigation sensors used. In this dissertation, the goal is to 

navigate the robot from anywhere to a target point in a corridor environment. This 

general task is decomposed into two sub-tasks: centre line (or a specific lane) tracking in 

a straight corridor and intersection maneuvers (e.g., making a 90 degree turn). An 

independent control strategy for the intersection is designed because no centre line could 
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be found in this area as explained previously. Two independent controllers are developed 

to accomplish those two sub-tasks, respectively. 

 

6.3.1 Fuzzy Logic Controller for Centre Line Tracking 

     The adoption of the fuzzy logic technique is motivated by its advantages over 

conventional control methods such as simplicity of design, ease of implementation, and 

robustness properties. Specifically, fuzzy logic emulating human reasoning is tolerant to 

imprecision, uncertainty, and partial truth. In addition, it has more flexibility to apply 

convenient nonlinear control laws derived from an experienced human-driver and 

expressed in the form of IF-THEN rules. Moreover, the computational loads of typical 

fuzzy inference systems are relatively light. As a result, reactive fuzzy control systems 

permit intelligent decisions to be made in real time, thus allowing smooth and 

uninterrupted motion. 

     The controller inputs are the variables defining the state of the robot with respect to 

the centre line. Specifically, they are the offset and heading error between the robot and 

the nearest point on the centre line. The offset is provided by the sonic-vision and 

computed using Eq. (6-8). The heading information is obtained from the orientation 

system. The direction of a centre line is associated with the heading of the waypoint as 

will be explained later. The output of the fuzzy controller is the steering command and 

the linear speed to be executed by the low-level motion controller, making the robot 

smoothly converge to the centre line. The block diagram of a generic fuzzy logic 

controller is shown in Figure 6.5. 
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Figure 6.5 Fuzzy logic controller. 

 

     There are four linguistic variables which should be defined, including two input 

variables (i.e., offset and heading error) and two output variables (i.e., turning rate and 

linear speed). Each variable would normally span symmetrically between minus and plus 

its maximum range about zero. The specific range for each input and output variable 

would depend upon the environmental constraints (e.g., corridor width for the offset 

variable), or mechanical constraints (e.g., speed limit of the wheel for the turning rate 

variable).  

     Each linguistic variable is assigned to different linguistic values (i.e., fuzzy sets). In 

this dissertation, the fuzzification of the offset error includes five sets: left-high-distance 

(LHD), left-low-distance (LLD), zero-distance (ZD), right-low-distance (RLD) and right-

high-distance (RHD). Similarly, there are five fuzzy sets for heading error: negative-

high-angle (NHA), negative-low-angle (NLA), zero-angle (ZA), positive-low-angle 

(PLA) and positive-high-angle (PHA). The speed is determined using three fuzzy sets: 

slow, medium and fast. A total of five sets are designed to describe the linguistic 

variables of the turning rate: sharp-left (SL), low-left (LL), straight (ST), low-right (LR) 
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and sharp-right (SR). Our design ensures that the wheel speed of the robot is lower while 

it is turning and higher when the robot is moving straight. Turning at a high speed can 

result in slippage and inaccurate turns. Each linguistic value is assigned with a 

trapezoidal membership function. The parameters for each membership function need to 

be experimentally tuned. 

     Given the fuzzy input sets and designed output sets, a set of fuzzy rules is defined to 

specify the relationship between the input and the output. 5 5 25   different input 

configurations were used as summarized in Table 6.2. For each input configuration, a rule 

was specified to realize the desirable linear speed and turning rate. The rules are, for 

example: if the offset is left large and the heading error is zero, then the speed should be 

slow and the steering rate should be positive large. 

     After the membership functions and fuzzy rules are defined, an inference engine is 

applied to derive the output fuzzy set for the given input fuzzy set. There are different 

types of fuzzy inference techniques. The most commonly used is the so called Mamdani 

method [Mamdani and Assilian, 1975] which has been applied in this dissertation for the 

design of intelligent controller. In Mamdani’s model, the conjunction operator (AND) is 

minimum, the disjunction operator (OR) is maximum, the fuzzy implication is modelled 

by Mamdani’s minimum operator, and for the aggregation of the rules, the maximum 

operator is used. The centre of gravity algorithm is chosen for defuzzifying the output 

fuzzy sets and giving output variables in crisp values (i.e., the turning rate and linear 

speed). The two crisp values are further used to derive the rotation speed for the left and 

right wheel, respectively (see Eq. (6-5)).  
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Table 6.2 Fuzzy rules. 

No. 
Input Output 

Offset Heading error Speed Turning rate 

1 ZD PHA Slow SL 

2 ZD PLA Medium LL 

3 ZD ZA Fast ST 

4 ZD NLA Medium LR 

5 ZD NHA Slow SR 

6 PHD PHA Slow SL 

7 PHD PLA Slow SL 

8 PHD ZA Slow SL 

9 PHD NLA Medium LL 

10 PHD NHA Fast ST 

11 PLD PHA Slow SL 

12 PLD PLA Medium LL 

13 PLD ZA Medium LL 

14 PLD NLA Fast ST 

15 PLD NHA Medium LR 

16 NHD PHA Fast ST 

17 NHD PLA Medium LR 

18 NHD ZA Slow SR 

19 NHD NLA Slow SR 

20 NHD NHA Slow SR 

21 NLD PHA Medium LL 

22 NLD PLA Fast ST 

23 NLD ZA Medium LR 

24 NLD NLA Medium LR 

25 NLD NHA Slow SR 

 

6.3.2 Intersection Controller 

     To make a turn at an intersection elegantly, the robot should turn around the corner by 

following a circular arc through the intersection; and the fuzzy logic controller is applied 

in the same way as described in the previous section. However, in our case arc following 

is impossible due to the metre-level positioning accuracy provided by the RFID 

positioning system. To make it work, a more efficient intersection turning strategy has 

been developed: e.g., the robot slows down and then stops when it enters an intersection 
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area and pivots to a desired direction by steadily controlling the driver wheels’ rotation 

speed.  

     At the intersection, depending on the relative location between the robot and the target 

point, different actions are executed. Specifically, if the target point is located on the left 

or right side of the robot’s heading direction, the robot pivots toward the corresponding 

direction until its heading is aligned with that of the target point. After the automatic 

turning process is done, the robot moves straight to escape the intersection area. If the 

target point is located in the heading direction of the robot, then the robot should stay in 

the current direction and simply move straight ahead to leave the current intersection. An 

intersection controller is designed to execute those maneuvers. The flowchart of the 

control scheme is illustrated in Figure 6.6. 

 

Figure 6.6 Flowchart of the intersection control algorithm. 
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6.4 Construction of an Autonomous Navigation Algorithm 

     In this dissertation, the task of the autonomous navigation is specified as:  

1. The robot starts from an unknown location in a corridor environment. 

2. The robot should arrive at the selected target point with certain accuracy by 

following the centre line of the corridors and a number of waypoints. 

3. The waypoints are defined at each intersection which includes the coordinates and 

heading information. 

     Up until this section, different modules that consist of the overall autonomous 

navigation system have be introduced, including the orientation module based on the 

MEMS technology, the RFID positioning module, the sonic-vision using ultrasonic 

sensors as well as the intelligent controllers. This section presents the construction of an 

autonomous navigation algorithm by employing all those sub-modules and explains the 

data acquisition and processing techniques.  

     Basically, the whole software architecture consists of four levels: sensor-level data 

acquisition, filter-level data processing, control level, and motor execution level. The 

block diagram of the autonomous navigation algorithms is illustrated in Figure 6.7. 

     The design of the autonomous navigation system uses a variety of sensors including 

an inertial and magnetic sensor module (i.e., gyroscope, accelerometer and 

magnetometer), RFID, wheel encoders, as well as ultrasonic range finders. At the sensor 

level, the raw data from each sensor are acquired and fed into the corresponding 

processor for the estimation of the states of interest through data fusion. 
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Figure 6.7 Architecture of the autonomous navigation algorithm. 

 

     For the filter-level data processing, the various sensors data are processed in three 

different processors. Specifically, the raw data from the inertial and magnetic module are 

processed by the Kalman filter to provide the orientation information of the robot in a 

local reference frame. Such information together with the wheel-encoder-derived speed is 

further applied as dynamic inputs into the particle filter for position estimation. In the 

meantime, the sonic-vision system is executed to: 1) build a local map of the operating 

environment, 2) compute the offset from the centre line if the robot is confirmed to be in 

a straight corridor, and 3) check if a collision is about to happen. 

     At the control level, two different controllers are implemented depending on the type 

of the corridors. If the robot is in a straight corridor, it follows its centre line. In this case, 

the fuzzy logic controller takes charge of the navigation task. The intersection controller 
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will be activated in place of the fuzzy logic controller once it is confirmed that the robot 

is at an intersection area. Once the robot is back to the straight corridor, the control 

authority will be returned to the fuzzy logic controller for centre line tracking.  

     A gate module acts like an analyst that extracts specific information from the output of 

the filtering level. Based on the robot’s estimated position, it finds the first closest 

waypoint to start the navigation process, searches for the next one once the robot reaches 

the first one, and stops the robot if it arrives at the destination point. In addition, as 

pointed out previously in section 6.2, the sonic-vision alone may cause misjudgment 

problems. To guard against this issue, the RFID position estimates are used together with 

the sonic-vision to determine if the robot is at the intersection. This is done by checking 

the distance between the robot and the waypoint of the intersection. If the sonic-vision 

indicates an intersection and the robot-waypoint distance is within a certain range, then 

intersection is confirmed. It switches the authority between the two controllers and 

controls the data flow. The heading and the ultrasonic raw measurements are fed into the 

intersection controller; otherwise, the heading error and the offset information are input 

to the fuzzy logic controller.  

     At the low-level motor execution level, the robot listens to the commands (i.e., left 

and right wheel speed) sent from the controllers. If a collision happens, it stops 

immediately. The flowchart for executing the whole navigation system is shown in 

Figure 6.8. The steps are described as follows: 

     Step 1: The robot is idling for about 10 seconds to allow the filters to converge (i.e., 

the Kalman filter for orientation estimation and the particle filter for position 

estimation). Search for the first waypoint (the one that is closest to the robot’s 
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current position). Once the initialization stage has successfully completed, the 

robot switches to the kinematic mode starting from step 2.  

     Step 2: Obtain current position and orientation from each processor. Examine the 

measurements of ultrasonic sensors and profile the environment. If the sonic-

vision detects an open space around and the current position is close to the 

waypoint, the robot will be noticed of an intersection. If not, a straight 

corridor is confirmed instead. Different control actions will be executed 

according to the corridor type. 

If the robot is moving in a straight corridor: 

     Step 3: Compute the offset between the robot and the centre line of the corridor, 

determine the heading error by comparing the heading of the robot with the 

heading of the waypoint. 

     Step 4: Compute the linear speed and turning rate. 

     Step 5: Convert the speed and angle estimates to the low-level motor execution 

command for the left and right wheel, respectively. 

If the robot enters into an intersection area: 

     Step 6: Find the next waypoint. Suspend the fuzzy logic controller and at the same 

time, activate the intersection controller.  

     Step 7: Once the robot re-enters the straight corridor, deactivate the intersection 

controller and at the same time wake up the fuzzy logic controller. 

     Step 8: Repeat step 2-5 if the robot remains in the straight corridor, otherwise repeat 

step 6-7 until the robot reaches the target point. 
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Figure 6.8 Flowchart of the autonomous navigation algorithm. 



 

 

170 

     The implementation of the proposed navigation algorithm requires efficient 

coordination among different modules while being executed on the robot’s processor in 

real time. In this work, the C++ language is used in the Windows system with the multi-

threading technique. The whole system is realized by five threads. They are: four threads 

for collecting raw measurements from the four sensor units, one thread for the data fusion 

(i.e., Kalman filter orientation processing, and particle filter position estimation) and the 

motion control process. The raw measurements from each data acquisition thread will be 

saved in a ring buffer and retrieved by the processing thread later. A timer is created 

calling for the filtering and motion control thread. The time interval of the timer is set to 

be 0.1 second synchronized with the highest raw data sampling rate. When no update is 

available from RFID and the wheel encoders, the predicted position is used with only 

orientation information, while the measurement at the previous epoch is used to fill the 

gap up for ultrasonic measurements. 

 

6.5 Chapter Summary 

     In the first section of this chapter, both forward and inverse kinematic problems have 

been described which lays out the foundation for the design of the navigation control 

strategy. A novel aiding module, the so-called “sonic-vision” system, has been developed. 

The function of the sonic-vision system is three-fold: 1) it helps the robot operate safely, 

2) it can profile the local environment, and 3) it can help the mobile robot follow the 

centre line or virtually any lane of the straight corridor. The sonic-vision works in parallel 

with the position and orientation system to realize autonomous indoor navigation. Two 
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intelligent controllers have been implemented: i.e., a fuzzy logic controller for centre line 

(or a specific lane) tracking in a straight corridor and an intersection controller for 

intersection maneuvers. The construction of an autonomous navigation algorithm by 

employing all sub-modules (i.e., the AHRS module, the RFID positioning module, the 

sonic-vision system, and the intelligent controllers) has been illustrated in the last section. 
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Chapter 7  Autonomous Navigation Experiments 

     This chapter describes the test and analysis results of the developed mobile robot 

autonomous navigation algorithm in indoor environments. The details of experimental 

set-up are presented first, followed by navigation performance analysis. 

 

7.1 Experiment Description 

     As mentioned before, the low-cost sensors used in the navigation system include: a 

Microstrain inertial and magnetic sensor unit 3DM-GX1; an RFID module comprising 

several i-Q350TL F RFID tags, an i-CARD CF-350 RFID reader (Identec Solutions, Inc., 

Addison, TX, USA), and a PSTG-915S antenna (Mobile Mark); four ultrasonic range 

finders (DYP-ME007, DYP Sensor CO., LTD); and on-board wheel encoders. Although 

most of the sensors have been described in the previous chapters, as a reminder, a brief 

summary of sensor specifications and hardware configuration is given here.  

     The 3DM-GX1 combines three angular rate gyros with three orthogonal 

accelerometers, three orthogonal magnetometers, and an embedded microcontroller 

providing serial digital output of angular rate, acceleration as well as magnetic field data 

in three dimensions. The RFID tag is a transmitter which can be configured to 

automatically send radio signals at a pre-specified time interval. The RFID reader is a 

receiver for the RFID tag in a CF card format. It has a highly sophisticated anti-channel-

collision algorithm which guarantees identification of thousands of tags concurrently 

located within its read zone. The PSTG-915S is a single band ¼ wave omni-directional 

antenna working at 902-928 MHz. The DYP-ME007 is a USB interface ultrasonic sensor 
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module which provides non-contact distance measurement. The specifications of the 

RFID tag and the ultrasonic sensor are shown in Table 7.1 and Table 7.2, respectively. 

 

Table 7.1 DYP-ME007 Specifications. 

Parameters Specifications 

Measuring range [m] 0.02 ~ 4 

Accuracy [cm] 1 

Opening angle of beam width [degree] 50 

Response time [ms] 5 

 

Table 7.2 i-Q350TL RFID Tags Specification. 

Parameters Specifications 

Read range 250 metre (in an open space) 

Operating frequency 920 MHz 

Transmit power < 1mW 

Ping rate Configurable from 0.5 to 300 s in steps of 0.5s 

Broadcast user data Up to 50 bytes 

Identification code 48 bit fixed ID 

Power source Replaceable lithium battery 

 

     The test system was installed on a CoroBot CB-D robot development platform 

(CoroWare Technologies, Inc., Kirkland, WA, USA). It is a non-holonomic, 

differentially driven robot for indoor operations, dimensioned 30 cm in width and 30 cm 

in length. The 3DM-GX1 was tightly mounted on the top deck of the robot. The RFID 

receiving antenna was fixed to an antenna pole. The robot was not moving backward in 

the tests, therefore, three instead of four ultrasonic range finders were installed on the 

sides (left, right and front) of the top deck to increase the efficiency. The back side 
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ultrasonic range finder was not installed because backward movements were not 

conducted in the tests and the back side ultrasonic sensor was unnecessary for profiling 

environment according to table 6.1. A picture of the robot and the equipment set-up is 

shown in Figure 7.1. 

 

 

Figure 7.1 Equipment setup on the test robot. 
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RFID reader 
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Wheel encoder 
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     The robot has a standard Windows XP system (VIA C7, 1.5 G RAM) running the 

autonomous navigation program developed using Microsoft Visual C++ coupled with C# 

language. The program was implemented in real time to collect data from all the sensors 

and output the control commands to the lower level execution module. The data sampling 

rate was set as 10 Hz for the 3DM-GX1, 2 Hz for the DYP-ME007, 1 Hz for the RFID 

modules and the wheel encoders. All measurements were time stamped using the 

computer’s internal clock to synchronize all sensors’ measurements. The control 

commands were executed every 0.1 second. 

     A local coordinate system was defined beforehand as shown in Figure 7.2. Tests were 

conducted in the corridors of our department building as indicated by A, B, C, D and E. 

The actual width of the five corridors is 2.1 m, 3.0 m, 1.9 m, 2.0 m, and 1.5 m, 

respectively. In a test scenario, the starting position of the robot and the target point can 

be anywhere in the corridors. Different levels of autonomous navigation tasks can be 

assigned in the test scenario. For example, the easiest task is to set the target point in the 

same corridor where the robot starts. Complexity increases by selecting the target point in 

a different corridor which requires a number of intersection maneuvers. A waypoint is 

specified at each intersection in advance to guide the robot to the target point. On the 

other hand, the initial state (e.g., offset and heading difference with respect to the centre 

line) is randomly given. 

     To demonstrate the efficiency of the developed autonomous indoor navigation 

algorithms, three representative test scenarios (e.g., low, medium and high complexity) 

have been implemented. At each test, the same initial location was chosen at the right end 

of the corridor A. For the low-complexity task, the target point was located at the left end 
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of the same corridor. For the medium-complexity task, the target point was defined to be 

at the lower end of the corridor B. The robot needs to make a left turn to get to the target 

point. For the last task with high complexity, the target point was chosen in the corridor 

E. To reach this target point, the robot should navigate the corridors in the order of A-B-

C-D-E by tracking the waypoints #1, #2, #3, #4, and #5 as illustrated in Figure 7.2. The 

state of the target points and the corresponding waypoints are listed in Table 7.3. This 

information is stored in the robot’s database. 

 

 

Figure 7.2 Indoor test floor map. 
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Table 7.3 List of waypoints and selected target points. 

Task complexity 
State 

Points 

Coordinate X 

[metre] 

Coordinate Y 

[metre] 

Heading 

[degree] 

Low 
Waypoint #1 -3.6 1.5 -90 

Target point -3.7 5.1  

Medium 

Waypoint #1 -3.6 1.5 -90 

Waypoint #2 32.5 1.5 0 

Target point 29.5 1.5  

High 

Waypoint #1 -3.6 1.5 -90 

Waypoint #2 32.5 1.5 0 

Waypoint #3 32.5 -13.2 -90 

Waypoint #4 -1 -13.2 -180 

Waypoint #5 -1 1.5 90 

Target point 13.4 -13.2  

 

 

7.2 Experimental Results 

     The data collected from all sensors were processed in real time. By comparing the 

coordinates of the target point and the position where the robot actually stopped, the 

overall performance of the autonomous navigation system was evaluated in terms of the 

coordinate deviation. In addition, the efficiency of the sonic-vision system and the 

performance of the two intelligent controllers were also analyzed. As the performance of 

the AHRS and the RFID positioning system has been validated in Chapter 4 and Chapter 

5, respectively, therefore, this analysis will not be repeated here. 

 

7.2.1 Overall Performance of the Autonomous Navigation System 

     With respect to the three representative test scenarios, five test runs for each scenario 

were performed. Table 7.4 outlines overall performance of the autonomous indoor 
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navigation. The coordinates of the target point and the final coordinates of the robot 

where each test run ended up are summarized in the table. For all tests, the robot could 

successfully navigate to a final location close to the target point. The mean of coordinate 

deviations was 2.38 metres with a standard deviation of 0.52 metre, which agrees with 

the positioning accuracy provided by the RFID system as reported previously in Chapter 

5. 

 

Table 7.4 Position deviation between the target point and the actually stopped locations. 

Task complexity 
Target point [x, y] 

[meter] 

Final position [x, y] 

[meter] 

Position deviation 

[meter] 

Low [-4, 5] 

[-3.52, 7.03] 2.09 

[-4.61, 6.62]  1.73 

[-4.43, 7.31] 2.35 

[-5.27, 8.12] 3.37 

[-5.60, 6.93] 2.51 

Medium [30, 1.5] 

[28.12, 1.46] 1.88 

[27.65, 1.53]  2.35 

[31.90, 1.49] 1.90 

[27.34, 1.45] 2.66 

[31.81, 1.57] 1.81 

High [-1, -6] 

[-3.20, -6.95] 2.40 

[-3.82, -4.44] 3.22 

[-0.31, -4.26] 1.87 

[-0.90, -8.55] 2.55 

[1.87, -6.76] 2.97 

 

7.2.2 Performance of the sonic-vision 

     The sonic-vision system has been developed to solve two main issues: 1) profiling the 

local environment in real time; and 2) tracking the offset between the robot and the centre 
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line of a straight corridor. Because the route of the high-complexity task covers most of 

the test corridors, the results obtained in this test scenario are presented for the sonic-

vision performance analysis. The top panel of Figure 7.3 illustrates the raw measurements 

from the sonic-vision system. The estimated corridor width and the environment profile 

(i.e., straight corridor, cross-, L-, or T-shape intersection as discussed in section 6.2) 

determined in real time are shown in the middle and bottom panels, respectively. 

 

 

Figure 7.3 Performance of the sonic-vision. 

 

     The ultrasonic sensors are not reliable due to the effects of specular reflections, which 

results in an incorrect estimate of distance. A reflecting surface will be seen from a sensor 

Actual corridor width 
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only if the absolute value of the angular distance between the ultrasonic beam and the 

normal direction of the surface is less than the half width of the beam (the beam width is 

50
o
 as given in Table 7.1). However, the effects of specular reflections did not cause 

much trouble in our autonomous navigation application, because the controller always 

attempts to align the robot to the centre line of a corridor. As a result, the angle of 

incidence of the ultrasonic beam (of the side sensors) is normally within the threshold, 

which means the effect of specular reflections was minimized during the test. By 

examining the measurements collected in straight corridors, both the left and right 

sensors’ output are found to be valid.  

     The accuracy of the raw measurement is difficult to assess without a true reference. 

Instead, the corridor width is computed using the left and right side sensor measurements 

and heading information. Comparing the estimated value with the actual corridor width, 

an estimation error of 0.06 metre (r.m.s.) was achieved. The error budget consists of the 

ultrasonic measurement errors and the heading estimation errors. For the front sensor, a 

null value would be expected as the space in front of the robot was vacant when the robot 

was travelling in a straight corridor. Surprisingly, it has non-zero output most of the time. 

This is probably due to the wide opening angle of the beam width (50
o
), which causes 

reflected signals from side walls and/or the floor to be received by the sensor. During the 

intersection maneuvers, the situation turns to be opposite. Either or both side sensors 

become invalid depending on the type of the intersection. In this case, the trend of the 

front sensor’s measurements indicates if the robot is approaching a wall in front. 

     As described previously, our algorithm relies on the signals of the side ultrasonic 

sensors to differentiate a corridor from an intersection. Furthermore, if the intersection is 
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confirmed, it couples the front sensor’s measurement to identify the shape of the 

intersection. In Figure 7.3, the identified environment profile is indicated with different 

digit numbers (0 for a straight corridor and 1 for an intersection). By comparing the 

profiling results with the actual test environment, all five intersections have been found to 

be correctly identified. 

 

7.2.3 Performance of the Intelligent Controller 

     In this dissertation, two intelligent controllers have been developed and involved for 

realizing the task of autonomous navigation. One is the fuzzy logic controller for centre 

line tracking in a straight corridor, and the other one is the intersection controller 

specifically developed for intersection maneuvers. The performance of the fuzzy logic 

controller could be evaluated in two aspects. Firstly, based on the inputs, the actual 

command outputs should match with the predefined control strategy (i.e., the fuzzy rules). 

For example, the robot should move at a high speed if the offset and heading difference is 

small, or it needs to slow down during a sharp turn. Secondly, the offset between the 

actual trajectory and the desired path should be minimized as well as the heading 

difference.  

     Different initial offset and heading difference were given for each test scenario. The 

state of the robot and the corresponding control outputs for the three test scenarios are 

shown in Figure 7.4 through Figure 7.6. 
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Figure 7.4 Performance of the fuzzy logic controller in the low-complexity test scenario 

(dS: offset, dH: heading difference, W: turning rate, and V: speed). 

 

 
Figure 7.5 Performance of the fuzzy logic controller in the medium-complexity test 

scenario (① shady band: converging stage, ② shady band: intersection maneuver). 

② ① 
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Figure 7.6 Performance of the fuzzy logic controller in the high-complexity test scenario 

(① shady band: converging stage, ② shady band: intersection maneuver). 

 

     For the low-complexity task, the robot started with zero offset and zero heading 

difference. As shown in Figure 7.4, after the robot started to move, the offset deviation 

was quite small with a mean value of 0.03 metre and standard deviation of 0.17 metre. 

The heading was continuously adjusted within a limited range (mean: -0.17
o
 and standard 

deviation: 12.3
o
). Because the offset and heading difference were small, the robot 

continuously moved at a high speed (0.45 m/sec) until it reached the target point, then it 

stopped.  

     For the task with medium complexity, the robot started with a large offset. As can be 

seen from Figure 7.5, the robot quickly converged to the desired path as soon as it 

① ② 
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moved. Thus the initial offset between the robot and the path was reduced in a few 

seconds. At this converging stage (i.e., the ① shady band), the turning rate was large 

( 40 deg/sec ) and the corresponding speed was slow (0.25 m/sec). This demonstrates the 

consistency between the actual control actions and the original design. After that, the 

controller continuously commanded the robot to follow the centre line with a similar 

performance as the low complexity task. At the intersection, the intersection controller 

took over the control authority. Therefore, no data was obtained during this period as 

indicated in Figure 7.5 (i.e., the ② shady band). The epochs of data gaps matches with 

the environment profile identified by the sonic-vision. After the intersection maneuvers 

were completed, the offset usually increases. This is because the task of the intersection 

controller is to complete a pivot movement to make a required turning, regardless of the 

offset changes. After the robot left the intersection and the control authority returned back 

to the fuzzy logic controller, the offset was quickly reduced to an acceptable range.  

     For the high-complexity task, the robot started with a large heading difference. 

Compared to the case of starting with a large offset, it took more time (57 seconds) for 

the robot to converge to the desired path. After the robot converged to the path, similar 

tracking performance was obtained. 

     For the intersection controller, its performance could be evaluated on site by 

examining whether the intersection maneuvers have been successfully executed. Video 

clips of all test scenarios were prepared for visual confirmation later. All test results have 

confirmed that the intersection control strategy was efficient and robust in making a 
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correct decision (i.e., turning left/right or moving straight) and executing the 

corresponding movements.  

     For all fifteen test runs, autonomous indoor navigation of the mobile robot was 

successfully demonstrated. From the simple navigation task to the complicated one, the 

robot could autonomously navigate to a pre-specified target point by tracking the centre 

line of a straight corridor and/or executing a number of intersection maneuvers. Once the 

robot has converged to the centre line, the average across-track error was at the 0.1 metre 

level. 
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Chapter 8  Conclusions and Recommendations 

     This dissertation focuses on developing accurate indoor orientation and position 

estimation algorithms at a low cost and investigating their performance for autonomous 

mobile robot indoor navigation. Specifically, for orientation estimation, accelerometers 

and magnetometers are integrated to limit the drift error of gyros; for indoor position 

estimation, an RFID RSSI-based positioning system has been developed by dealing with 

challenges such as multipath and NLOS; and for autonomous indoor navigation, a sonic-

vision system has been developed to profile the local environment and a novel navigation 

strategy using two intelligent controllers has been implemented to successfully guide a 

robot to a target point. All algorithms have been tested and validated in a typical indoor 

corridor environment. This chapter summarizes the research work presented in this 

dissertation, draws conclusions from the dissertation’s theoretical development and test 

results, and provides recommendations for future research and development in this field. 

 

8.1 Conclusions 

     The integration of accelerometers and magnetometers with gyros can enhance the 

orientation estimation accuracy. Robust and accurate indoor positioning using RFID 

RSSI is achievable. The integration of the developed sub-system components can provide 

satisfactory performance for autonomous mobile robot navigation under corridor 

environments. The major conclusions are summarized below. 
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Orientation Estimation 

1. For the raw measurements collected from a tri-axis gyro, a significant measurement 

bias of each axis (0.06 deg/sec, -0.2 deg/sec, and 0.09 deg/sec for x-, y- and z-axis, 

respectively) has been observed. The integration of the bias causes an angular error 

which continuously grows over time (e.g., about 7  after 1 minute). The orientation 

drift can be much reduced by removing the offset (i.e., the constant term of the bias). 

The remaining bias drift, which cannot be eliminated deterministically, causes a time-

varying error. 

2. The accelerometers are corrupted by body accelerations as well as systematic errors 

(e.g., sensor biases), causing inclination errors. For the magnetometers, apart from 

sensor errors, the measurements are also distorted externally, leading to heading 

errors. A site calibration is helpful to eliminate errors caused by the materials attached 

to the test platform. However, the hard and soft iron errors caused by the materials 

external to the platform are normally significant in indoor environments, resulting in 

continuous deterioration to magnetometers’ output. Inaccurate inclination information 

can also introduce heading errors.  

3. The quaternion-based Kalman filter integration algorithm is able to capture the time-

varying sensor biases of the accelerometers and magnetometers. The performance of 

the integration approach is always superior to other conventional approaches. In static 

mode, the integration algorithm can provide an estimation accuracy of less than o1  

when there is no magnetic anomaly. Even with the existence of significant magnetic 

disturbances, the orientation estimation error is reduced from up to 
o131.6  to 

o4.7 . In 

kinematic mode, the solutions show as much as 40%  error reduction compared to 
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those without applying the integration strategy. It should be noted that the 

measurement quality of the aiding sensors has great impact on the integration 

performance. 

 

Position Estimation 

1. Under typical indoor environment scenarios, multipath can deteriorate the normality 

of the measurement noise, resulting in skewness/dual-mode characteristics. A 

bimodal normal distribution would be a better fit to capture this feature. A non-

parametric, probabilistic observation model is able to capture the effect of multipath 

on LOS signal propagation in indoor environments. The novel online measurement 

quality control algorithm can effectively identify and reject NLOS and/or multipath 

corrupted measurements. 

2. The advantages of the RPF for indoor position estimation include: 1) it is able to 

handle arbitrary noise distribution; 2) it can carry out positioning without 

initialization; 3) a positioning solution converges quickly when measurements are 

available; and 4) it can get solutions using only one measurement with a comparable 

accuracy. These features are especially beneficial for indoor positioning applications 

where the measurement noises are considerably deviated.  

3. The performance of the proposed approach has been empirically validated in our 

department building. A positioning accuracy (distance error root mean square) of 1.64 

m ± 1.03 m (1  ) has been achieved by assessing a number of reference points 

covering an area of 4200 m
2
. It is about 49% or more improvement in accuracy 
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compared to other conventional methods. The proposed positioning algorithm turned 

out to be robust to environment changes. 

 

Autonomous Navigation 

1. The sonic-vision system turned out to be a very useful tool for realizing autonomous 

navigation. The contributions of the sonic-vision system are three-fold: 1) it helps the 

robot operate safely, 2) it can profile the local environment, and 3) it can help the 

mobile robot follow the centre line or virtually any lane of the straight corridor. 

2. The novel navigation strategy, coordinating the fuzzy logic controller for centre line 

tracking and the intersection controller for intersection maneuvers, efficiently 

performs the control tasks.  

3. The integrated navigation algorithm employing all sub-system components (i.e., the 

orientation estimation module, the positioning module, the sonic-vision, and the 

intelligent controllers) has successfully demonstrated autonomous mobile robot 

indoor navigation. From the simple navigation task to the complicated one, the robot 

can autonomously navigate to a pre-specified target point with a mean offset of 2.38 

m. The average cross-track error is about 0.1 m which indicates the controllers’ 

autonomous capability in tracking and guidance. Overall results have confirmed the 

significant performance improvements of the developed orientation and position 

estimation methods, the benefits of applying them for indoor navigation, and the 

effectiveness of the autonomous navigation algorithm. 
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8.2 Recommendations for Further Research 

     Based on the results and conclusions of this dissertation, the following 

recommendations for further research are proposed: 

 

Orientation Estimation 

     Future work would seek to further increase the accuracy of the integration algorithm 

by improving the performance of individual orientation source. 

1. It has been found that if the aiding sensors (accelerometers and magnetometers) are 

not fully reliable, limited or no information could be retrieved from the aiding sensors 

for gyro bias correction. In this sparse measurement update case, it is desirable to 

estimate the gyro bias drift in order to improve the accuracy of gyro integration. An 

efficient approach should be investigated for the optimal determination of the sensor 

error model parameters considering minimizing the dimension of the state vector. 

2. The performance of the aiding sensors can be improved if the body acceleration and 

the magnetic disturbances could be properly modelled and captured by augmenting 

more parameters in the state vector. In this case, the dynamics of the robot platform 

and the constantly changing magnetic field should be studied. In addition, with a 

higher-dimension state vector, more aiding measurements should be included through 

multi-sensor integration in order to guarantee the stability of the model. 
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Position Estimation 

1. The performance of the RPF can be further improved by optimizing the proposal 

density. Instead of simply choosing the transitional density, as a more efficient 

approach, the current measurements can be included to reduce sampling errors. 

2. The observation model works well in an untrained environment. As the testing has 

been carried out under a typical office environment, it might be reasonable to further 

validate it in a different environment (e.g., a shopping mall). 

 

Autonomous Navigation 

     To further advance our current state-of-the-art development for autonomous indoor 

navigation and make a more practical robotic system useful for our daily lives, our 

system will be tested under more complex mission scenarios by adding more functions 

such as optimal path planning and obstacle avoidance. In practical applications, it is 

required to develop an expert system to efficiently coordinate the current navigation 

system with the added modules.  
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