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Abstract

Currently, most autonomous mobile robot indoor navigation systems are unable to
provide absolute state information (e.g., coordinates in a reference frame) and rely on
expensive sensors. The goal of this research is to develop a low-cost, high-accuracy,
autonomous mobile robot indoor navigation system. The robot starts from an unknown
location in a corridor environment and arrives at a selected target point with certain
accuracy by following the centre line or virtually any lane of the corridors. The core
research of this autonomous navigation system is in the development of reliable indoor

orientation and position estimation algorithms.

Integrating MEMS inertial and magnetic sensors improves overall performance of
orientation estimation. However, challenges exist in dealing with the large gyro sensor
errors and the large measurement noises of the accelerometers and magnetometers. A
quaternion-based Kalman filter has been developed, which applies tightly-coupled and
closed-loop integration strategies. It incorporates an online sensor calibration procedure
for modelling time-varying sensor biases of the accelerometers and magnetometers, and
a mechanism for adapting the measurement noise in the presence of motion and
magnetic disturbances. In static mode, the integration algorithm can provide an
estimation accuracy of less than 1° when there is no magnetic anomaly. Even with the

existence of significant magnetic disturbances, the orientation estimation error is

reduced from up to 131.6° to 4.7°. In kinematic mode, the solutions show as much as

40% error reduction compared to those without applying the integration strategy.



A novel indoor positioning system based on radio frequency identification
technology has been developed, which can deal with complicated indoor radio signal
environments due to multipath, non-line-of-sight, and signal interference. A regularized
particle filter has been built by employing a non-parametric, probabilistic observation
model. An effective online measurement quality control algorithm has been developed,
which can identify and reject non-line-of-sight and/or multipath corrupted
measurements. The developed indoor positioning system achieved a mean positioning
error of 1.64 m, which is about 49% or more improvement in accuracy compared to

other conventional methods.

To successfully guide a robot to a target position, a sonic-vision system that can
profile the local environment has been developed and two intelligent controllers have
been designed. An efficient autonomous navigation algorithm has been developed,
which choreographs all sub-system components comprising the orientation estimation
module, the positioning module, the sonic-vision, and the intelligent controllers. The
results showed that the robot is able to autonomously navigate to a pre-specified target
point with a mean offset of 2.38 m. The average cross-track error was about 0.1 m
which indicates the controllers’ autonomous capability in tracking and guidance. Overall
results have confirmed the significant performance improvements of the developed
orientation and position estimation methods, the benefits of applying them for indoor

navigation, and the effectiveness of the autonomous navigation algorithm.
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Chapter 1 Introduction

Today, mobile robots are widely employed as an alternative to human operations in
industry, agricultural, medical, and military environments. They also appear as consumer
products for entertainment or to perform certain household tasks such as vacuum cleaning
and gardening. One of the fundamental requirements for mobile robot operations is
navigation. Originally, a mobile robot was manually operated using a remote controller.
Over the past few decades, research on autonomous navigation has gained considerable
interests [Dai et al., 2007]. An important issue associated with autonomous mobile robot
operations is to maintain reasonable navigation performance along with the cost demand.
This dissertation investigates a low-cost, sensor fusion approach to realize autonomous

mobile robot navigation in indoor environments.

1.1 Background

Autonomous navigation is a process of understanding and modelling dynamic world
for safe navigation (i.e., obstacle avoidance), planning motion/path in dynamic
environments, monitoring the state (e.g., position, orientation) of a mobile robot, and
controlling its movement without human intervention. However, in this dissertation, the
term “autonomous navigation” refers to a narrow concept, that is, the automation of state
perception as well as intelligent controlling. The easiest way to navigate a mobile robot to
its destination is to follow painted lines [Yi, 2009] or induction wires [Kim and Ryoo,
2007]. Alternatively, some studies have been conducted to navigate a robot with respect

to surrounding features like doors, wall edges, artificial landmarks, etc. The motions of



the robot are determined by observing the relative position between the selected features
and the robot [Santos-Victor et al., 1993; Gueaieb and Miah, 2008]. Currently, more
research efforts have been given towards building absolute navigation systems on which
a mobile robot relies to travel to a target point by examining its state in absolute terms,
for example, determining coordinates in a reference frame.

To build a goal-oriented autonomous indoor navigation system, several sub-system
components should be developed, including an orientation estimation module, a
positioning module, and an intelligent logic controller. In other words, this dissertation
focuses on tracking the state (i.e., orientation and position) of a mobile robot in indoor
environments and realizing autonomous navigation using the obtained state information.
For system state estimation, generally, the use of multiple sensors may reduce
uncertainties associated with each sensor and provide sufficient and reliable information
of the environment [D’Orazio et al., 1993].

For orientation estimation, amongst many technologies that have been considered,
gyroscopes (usually abbreviated to gyros) have become the most promising approach in
terms of being self-contained, compact, and robust [Welch and Foxlin, 2002]. Typically,
orientation is determined by integrating the output from a rate gyro which shows good
short-term accuracy. However, gyro-derived orientation error tends to grow over time
due to inherent sensor biases. This orientation drift cannot be removed without external
references. Orientation can also be computed using the combination of accelerometers
and magnetometers. A tri-axis accelerometer measures the vector sum of body
acceleration and gravity. In most situations of robot movement, the gravity vector is

dominant. Thus, the accelerometer is able to provide inclination (pitch and roll)



information. This inclination estimate has long-term accuracy. A tri-axis magnetometer
responds to the vector sum of the Earth’s magnetic field and other local magnetic fields.
It offers direct and drift-free heading information if it is not subject to local magnetic
disturbances.

Research is currently being carried out in many laboratories for estimating robot
orientation by fusing the two types of sources (i.e., gyros only and the combination of
accelerometers and magnetometers). The orientation drift resulting from the integration
of gyro biases can be corrected by incorporating the drift-free solutions from
accelerometers and magnetometers. Such an orientation system is usually known as an
attitude and heading reference system (AHRS). A successful AHRS requires very
expensive sensors that have exceptionally long-term bias stability. The cost demand has
limited such an AHRS to high-end applications. Recently, advances in micro-electro-
mechanical systems (MEMS) technology have made cheap inertial sensors (i.e., gyros
and accelerometers) available for cost-sensitive applications. A considerable amount of
effort then has been directed in developing a low-cost AHRS based on MEMS
technology. The challenge is to develop a robust integration algorithm to deal with the
large sensor errors of the gyros as well as large measurement noise of the accelerometers
and magnetometers. Specifically speaking, for the accelerometers, the body acceleration
will corrupt the inclination estimates as they are determined by measuring the gravity
vector, while the presence of magnetic anomalies generated by nearby ferromagnetic
materials will bring heading errors for the magnetometers.

For position estimation, the success of outdoor positioning applications based on

global navigation satellite systems (GNSS) motivates its extension to the development of



indoor positioning systems. Unfortunately, the poor reception due to weak signals
prohibits GNSS from being used effectively in dense urban areas or inside buildings
where the visibility of the GNSS satellites is very limited. For indoor applications, a
number of positioning strategies have been proposed in the literature: e.g., exploiting
visual landmarks [Makela and Koskinen, 1991; D’Orazio et al., 1993; Matia and Jimenez,
1998; Samuelsson, 2005] and map-matching [Luo et al., 2008]. The common problem
pertaining to these techniques is that they depend on complex image processing
algorithms, expensive hardware, and prior models of the environment. Over the past few
years, there has been astonishing growth of wireless technologies which opens a new
opportunity for indoor positioning applications [Benet et al., 2002; Yi and Choi, 2004;
Liu et al., 2007]. Compared with other types of wireless technologies (e.g., infrared and
ultrasonic), radio frequency (RF)-based positioning systems are predominant today due to
their availability and low cost. Because radio waves of sufficient power can penetrate
walls and human bodies, they are able to provide more ubiquitous coverage with less
hardware cost. However, indoor radio propagation is very complicated due to multipath,
non-line-of-sight (NLOS), and signal interference [Liu et al., 2007], which pose

significant challenges for accurate position estimation.

1.2 Literature Review

In the following sub-sections, current research activities regarding orientation
estimation using inertial sensors and magnetometers will be discussed first. Also,
methods and approaches to deal with sensor errors and measurement noise will be

examined. Then, existing indoor positioning systems and algorithms using wireless



technologies will be reviewed, followed by the discussion of sensor fusion for

autonomous navigation.

1.2.1 MEMS Attitude and Heading Reference System

Integration of inertial and magnetic sensors for orientation estimation has been
investigated in the literature for decades [Foxlin, 1996; Bachmann, 2000; Roetenberg et
al., 2005; Tome and Yalak, 2008; Han and Wang, 2011]. The Kalman filtering
methodology is usually applied for system integration. Different integration strategies
have been developed by appropriately weighting the three sources of information (i.e.,
measurements from gyroscopes, accelerometers, and magnetometers) in order to make
the best use of the data from each sensor.

Foxlin [1996] investigated the performance of an adaptive algorithm that roughly
adjusts the noise covariance matrices (the accelerometer measurements are ignored when
they are erroneous). The accelerometer-derived inclination angle is used for updating the
orientation of a test platform while it is in a static mode. Because the update from the
accelerometer is sparsely applied, the gyro bias terms are also included in the state vector
in order to improve the accuracy of gyro integration. Experiment results have shown that
the incorporation of measurements from the accelerometer can effectively correct the
drift in roll and pitch estimation. However, a certain amount of error accumulates at every
update. The procedures to remove the heading drift under environments with magnetic
disturbances were not described in detail. In the work of Roetenberg et al. [2005], the
state vector was augmented with a magnetic disturbance vector and the gyro bias terms.

The disturbance was modelled as a Gaussian Markov process. When a magnetic



perturbation was detected, the magnitude of the driving noise was adjusted adaptively
proportional to the magnetic amplitude and dip angle variations. Sabatini [2006]
presented interesting results using a total state (orientation was estimated in the filter)
extended Kalman filter with an attempt to model and capture the sensor biases for both
accelerometers and magnetometers. Rather than modelling and including the body
acceleration and magnetic disturbance in the state vector, the measurement noise
covariance is changed at run-time. The purpose of this strategy is to disregard unreliable
aiding measurements. Experimental results have demonstrated that the performance has
been significantly improved through online bias compensation and an adaptive data
fusion algorithm. However, all these approaches are designed for human motion study.
The filter performance degrades in magnetically disturbed indoor environments where a
mobile robot will be deployed.

Recently, an adaptive extended Kalman filter has been investigated by Tome and
Yalak [2008] to improve orientation estimation for indoor and outdoor pedestrian
positioning. The measurement of each sensor is verified against certain conditions to
detect the occurrence of a magnetic disturbance and the immobility condition of the
system. The system model and measurement covariance are adapted according to some
specific rules. By integrating estimated orientation with step length estimates, significant
improvements have been made in positioning accuracy. However, the experiments have
exposed the fact that the adaptability feature of the filter is sensitive to the
parameterization and the selection of the thresholds in the adaptability rules. This
approach has shown quite variable performances with different data sets. The accuracy

could also decrease if the magnetic field is constantly disturbed. In addition, the way to



deal with an unobservable system was not well addressed. As a matter of fact, they tried
to estimate twelve states with only six measurements. The work on the fusion of low-cost
inertial and magnetic sensors in signal-degraded indoor environments still requires more

exploration.

1.2.2 Wireless Positioning Systems

An astonishing growth of indoor positioning systems using wireless technologies has
been witnessed recently. Those systems can be classified based on their system
topologies, sensor technologies, measuring techniques, and positioning algorithms.

The wireless positioning system usually consists of multiple base stations (BS)
installed in the test environment with known coordinates and a mobile station (MS)
carried by the object to be tracked. There are two main different topologies for designing
the system. The first one is the so-called receiver positioning system. In this topology, a
receiver acts as an MS while a transmitter acts as a BS. The receiver is able to determine
its position using the measured signals. The second topology is known as the transmitter
positioning system, which has the opposite system configuration to the receiver
positioning system. The position of the transmitter has to be computed at a central server
with the measured signals obtained from the receivers.

The sensor technologies refer to the type of wireless signals used by sensors. The
wireless signals commonly used for positioning can be divided into three main
categories: i.e., infrared, ultrasound, and RF. The infrared signal has the same properties
as visible light. It cannot pass through obstructions and thus has limited range (< 5 m) in

indoor environments; moreover, the infrared signal is susceptible to interference from



sunlight and fluorescent lights. Ultrasound cannot penetrate walls either and has a short
range (3~10 m). However, a high resolution (1 cm) of distance measurement makes it a
good candidate for positioning in open areas. The RF signal covers a potential wide range
of frequency (3 kHz to 300 GHz) and can pass through most indoor building materials
given sufficient signal power. Thus, it has the longest range and is able to provide a more
ubiquitous coverage in comparison with the other two wireless signal technologies.

The measuring techniques refer to the various physical parameters of the signal
measured by the receiver. These parameters include time-of-arrival (TOA), time-
difference-of-arrival (TDOA), angle-of-arrival (AOA), and received signal strength
(RSS). The TOA technique measures the one-way propagation time from which the
distance between the transmitter and the receiver can be computed. Rather than
measuring the absolute arrival time like TOA, the TDOA technique measures the time
differences when the signal from a transmitter arrives at multiple receivers or from
multiple transmitters at a signal receiver. The main drawback of these time delay-based
techniques is that all transmitters and receivers in the system have to be precisely
synchronized. The AOA techniques determine the angle of incidence of a signal. It has no
time synchronization requirement, but may need relatively large and complex hardware
(e.g., directional antennas or antenna arrays). RSS is a measure of the power of a received
radio signal. It provides a low-cost and easily-implemented solution.

Besides the system topologies, sensor technologies and measuring techniques,
wireless positioning systems can also be categorized by the positioning algorithms used.
They refer to the mathematical approaches used to derive position using the different

measurements of the signal mentioned previously. Trilateration determines the position
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of the mobile object by measuring its distances from at least three reference positions.
The distance can be calculated based on time delay (e.g., TOA) or from RSS using a
path-loss model. For the triangulation technique, the position of the mobile object is
found to be at the intersection of multiple angle direction lines. Apart from the traditional
techniques (i.e., trilateration and triangulation), algorithms using fingerprinting and
proximity have been developed as well. Fingerprinting refers to the type of algorithms
that collect features (i.e., fingerprints) of an environment and then estimate the position of
the mobile object by matching online measurements with the pre-stored fingerprints.
Usually, RSS or other non-geometric features are used as fingerprints. Proximity-based
positioning techniques determine the position of the mobile object based on its closeness
to a reference point (e.g., a wireless transmitter). The position of the object is assumed to
be either the position of the reference point, or an average of the positions of multiple
reference points within range. Thus, the positioning accuracy of this technique relies on
the density of the reference points.

Various indoor wireless positioning systems have been developed by choosing
different wireless signals with appropriate measuring techniques and positioning
algorithms. A wireless positioning system can be built in two ways: design a special
signaling system or take advantage of existing wireless network infrastructures. A
comprehensive survey of wireless positioning systems can be found in Liu et al. [2007],
and a special focus on indoor positioning technologies is provided in Torres-Solis et al.
[2010]. A subset of these systems is reviewed as examples herein.

The Active Badge system [Want et al., 1992], developed at Olivetti Research

Laboratory, is one of the earliest indoor positioning systems. The user to be tracked is



tagged with an infrared badge which has a unique ID. The badge regularly transmits its
ID using infrared. Receivers placed at known locations pick up the signal if the badge is
within a detectable area. The receivers relay the proximity information to a central server
from where the position of the badge is determined. The accuracy of this cell-based
positioning system is in general coarse with room-sized granularity.

Instead of using infrared, the Active Bat [Harter et al., 1999] improves the accuracy by
using both ultrasound and RF. This approach takes advantage of the fact that the speed of
sound is much slower than the speed of light (RF) in air. The system consists of a set of
ceiling-mounted ultrasonic receivers, an Active Bat attached to the user, and an RF base
station. The Bat contains a radio transceiver and an ultrasonic transducer. The receivers
are connected to the base station via a wired network. The base station sends out a radio
message periodically causing the Bat to emit an ultrasonic pulse. Simultaneously, the
receivers are reset (triggered by the radio message) and start to record the time of arrival
of any ultrasonic signal from the Bat. The Bat-receiver distance could be derived by
multiplying the time-of-flight of the ultrasound from the Bat to the receiver with the
speed of sound in air. In open areas, a positioning accuracy of 3 cm, 95% of the time
could be achieved.

Cricket [Priyantha et al., 2000] is another location-support system using a combination
of ultrasound and RF technologies. But it has no centralized controller. Beacons
(transmitters) fixed in a building send out information over RF together with an
ultrasonic pulse. A listener (receiver) attached to a user records the time elapsed between

hearing the RF signal and receiving the ultrasonic pulse. It uses this time difference to
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estimate the beacon-listener distance and adopts the multilateration method to calculate
its position.

SpotON [Hightower et al., 2000] is also a range-based positioning system, but the
distance is derived from signal strength attenuation instead of time-of-flight. The
designers used radio-frequency identification (RFID) technology for the development. A
path-loss model is built based on empirical data that maps an RSS to a tag-reader
distance. RADAR [Bahl and Padmanabhan, 2000], developed by Microsoft Research
Group, is based on signal strength of a wireless local area network (WLAN). The authors
evaluated two approaches for positioning: the fingerprinting technique by creating a
database of RSS fingerprints, and the trilateration method by using a signal propagation
model. RADAR determinates objects’ position to within around 5.9 m of their actual
position with 90% probability.

Indoor positioning based on broadcast and wide area networks (e.g., television
broadcast signals and cellular phone networks) is also possible if the building is covered
by several base stations. Otsason et al. [2005] presented a GSM-based indoor positioning
system using the fingerprinting technique. The fingerprints database is created by
collecting RSS from access points at a number of calibration points covering a multi-
floor building. Position is estimated using the weighted k-nearest-neighbour technique
during the online positioning phase. The system is robust in differentiating floors and is
able to achieve a within-floor median accuracy of around 2.5 m.

Aside from the systems mentioned above, much pioneering work has been done in this
area [Liu et al., 2007; Gu et al., 2009; Torres-Solis et al., 2010]. The infrared and

ultrasonic techniques both require line-of-sight (LOS) because the signal cannot penetrate
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the walls and floors, and furthermore they have a short communication range. These

conditions have limited their wide applications in indoor environments.

1.2.3 RF-based Positioning Methods

For positioning using RF technologies, most direct range-based trilateration
techniques are not feasible because the hardware is typically not designed for accurate
TOA measurements. Instead, position has to be indirectly inferred from the RSS
measurements. Although RF technologies show great potential for indoor positioning,
their performance is limited by radio signal propagation errors caused by: (1) multipath
induced by radio signals reaching the receiving antenna via two or more paths, (2) NLOS
situation where radio signals transmit across a path that is partially or completely blocked
by obstacles like walls or people, and (3) interference by radio signals from other
electronic devices. Various methodologies have been studied for RSS-based positioning
to deal with the unpredictability of signal propagation in indoor environments. They are
grouped into: the geometry-based approach, fingerprinting, and Bayesian filtering.

The geometry-based approach triangulates the position of a mobile robot based on
multiple range measurements. In this approach, the relationship between RSS and range
can be parameterized through a path loss model [Hightower et al., 2001; Retscher and Fu,
2007; Tsai et al., 2008; Chen et al., 2009] whose parameters are pre-determined from a
set of training data. However, fixed signal attenuation parameters may not be able to
accurately model signal fading effects under dynamic indoor environments. To increase
system robustness, Kao and Lin [2010] proposed an environmental adaptive model to

tolerate parameter variations caused by environmental changes. Kaemarungsi and
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Krishnamurthy [2004] investigated a more accurate model that accounts for the presence
of walls, floors, and furniture along the propagation path of the RF signal. Even so, the
geometric method still suffers from several drawbacks: (1) it is a challenging task to
precisely model the RSS-range deterministic relation due to severe multipath and
interference in indoor environments; (2) this method is not particularly able to detect
outliers caused by NLOS; and (3) the geometric arrangement of BS should guarantee low
values of the dilution of precision [Seco et al., 2009]. Therefore, the performance of this
approach could be degraded in practice due to the susceptibility of RSS to multipath and
interference over time and location.

Another widely applied method is so called fingerprinting technology [Bahl and
Padmanabhan, 2000; Kaemarungsi, 2005; Moghtadaiee et al., 2011]. This approach
creates a database of RSS data collected at pre-specified positions (usually at a grid of
dense points) during a training phase. Then, an estimate of position is determined by
comparing the online RSS measurements with the entries of the database using statistical
learning methods (e.g., k-nearest neighbours, neural networks, support vector machines,
etc.). In the simplest case, the sampling data at each calibration point is averaged to a
scale value and stored as a fingerprint in the database. The Euclidean distance between
the online observed RSS and each fingerprint is evaluated in signal strength space. The
grid point (nearest neighbour method) [Retscher and Fu, 2008] or the average of k closest
grid points (k-nearest neighbours method) [Bahl and Padmanabhan, 2000] that minimizes
the Euclidean distance is chosen as the current position estimate.

On the basis of the above generic fingerprinting approach, most recent systems have

opted for probabilistic techniques which take the variability of the RSS training data into
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account. They estimate the probability distribution of the signal strength variable over
different locations. Bayesian inference is then used to search for the maximum likelihood
estimator of the position. The likelihood function (i.e., the observation model) can be
derived through either parametric [Haeberlen et al., 2004] or non-parametric methods
[Ladd et al., 2002; Roos et al., 2002; Schwaighofer et al., 2004; Youssef and Agrawala,
2005; Seco et al., 2010]. In Ladd et al. [2002], the authors developed a probabilistic
positioning system by directly working with histograms of signal strength measurements
for creating the database. Later, Haeberlen et al. [2004] showed that fitting the histograms
with Gaussian distributions requires smaller training sets and results in better positioning
performance. More recently, the Gaussian process has been applied to model the
relationship between RSS and position [Seco et al., 2010]. Such a regression technique
makes it more flexible to select the calibration points (wherever possible) and enables
one to predict the RSS at different locations from the calibration points.

By utilizing signal characteristics at each location for positioning, fingerprinting
methods turn out to be more robust to NLOS and multipath effect, and they provide the
highest positioning accuracy if the training data set is sufficient. However, the major
disadvantages of fingerprinting methods are: (1) the off-line training phase is usually
time-consuming and labour-intensive; (2) any changes in the environment would affect
signal strength distribution and subsequently require re-training; and (3) poor
extrapolation is unavoidable in untrained areas.

More recently, the Bayesian filtering method as an extension of the Bayesian
inference previously mentioned has gained greater attention. This approach treats the

position and RSS measurements as random variables. The position estimate is
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sequentially improved from noisy measurements using a dynamic model and an
observation model. For RSS-based indoor positioning, the first challenge in employing
the Bayesian filtering method is to build a realistic observation model that can capture
any localized, site-dependent effects. The observation model can be produced from either
a path-loss model or fingerprinting training as explained previously. More investigation is
required to build an efficient observation model that inherits the advantages of those two
modelling techniques. The second challenge is to design an optimal estimator for
nonlinear/non-Gaussian models. Kao and Lin [2010] designed an extended Kalman filter
to estimate user positions by integrating measured RSS and relative displacements
obtained from dead-reckoning systems. Paul and Wan [2009] presented a sigma-point
Kalman smoother that fuses IEEE 802.11 (known as Wi-Fi) RSS, binary infrared motion
sensors and foot-switches to track a pedestrian’s position. However, the Gaussian
distribution assumption inherent in the Kalman filter and its variants may restrict their
performance when non-Gaussian behaviour is involved.

Our approach to Bayesian filtering is based on a particle filter. The particle filtering
approach has recently become a popular alternative to the extended Kalman filter in
dealing with nonlinear/non-Gaussian models, and it especially outperforms the extended
Kalman filter in terms of efficiency, robustness, and accuracy for indoor positioning
applications [Letchner et al., 2005; Seshadri et al., 2005; Ferris et al., 2006; Koutsou et
al., 2007]. More details of the particle filtering approach are described in Chapter 3 and
Chapter 5. The efficiency and robustness of the particle filter applied for RSS-based

indoor positioning requires further validation.

15



For mobile robot autonomous navigation, most of the developed systems rely on
expensive and accurate sensors [Tsai et al., 2008]. It is interesting to investigate the
performance of sensor fusion that integrates wireless technologies with different motion

sensors for mobile robot navigation applications.

1.3 Research Objectives and Contributions

The main objective of the research reported in this dissertation was to design a low-
cost, high-accuracy, autonomous indoor navigation system using commercial off-the-
shelf sensors. Because of the lack of research and the challenges in integrating a low-cost
orientation system with an RF based positioning system for indoor autonomous
navigation, the research was devoted to developing effective integration algorithms that
provide reliable and accurate solutions for autonomous navigation. An RF-based
positioning system using RFID technology has been built because of its competitive
advantages described in Chapter 2.

The major contributions of this dissertation can be summarized as follows:

1. Development of a low-cost AHRS. An intelligent integration algorithm using the
Kalman filter methodology has been developed by incorporating two independent
orientation information sources: MEMS gyros and the combination of MEMS
accelerometers and magnetometers. This algorithm is capable of improving the
performance of the orientation estimation by dealing with large sensor errors in
the presence of motion and magnetic disturbances.

2. Development of a range-RSS probabilistic observation model. This model is

developed through an off-line calibration that can capture the effects of multipath
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on LOS signal propagation in indoor environments. Instead of building a location-
based model, the range-based one has been investigated to eliminate the
environment dependency.

Development of a probabilistic filtering technique for the RSS-based indoor
positioning system. The efficiency and robustness of the variants of the particle
filter have been investigated. The observation model developed above has been
implemented in this estimator. A novel online (i.e., real-time) measurement
quality control algorithm has been applied to reduce performance deterioration
mainly caused by NLOS measurements.

Development of a sonic-vision system using measurements from ultrasonic range
finders. This system is designed to build a local map of the environment during
the online operation stage which helps the robot navigate safely.

Development of intelligent logic controllers. The heading, the position, as well as
the corridor profile information obtained above are used as inputs for goal-
oriented autonomous navigation. In particular, a controller based on fuzzy logic
technology is developed for centre line tracking in a straight corridor. Apart from
the fuzzy logic controller, an intersection controller has been specially designed
for intersection maneuvers.

Development and validation of a software program implementing all of the
navigation modules, including the Kalman filter-based orientation estimation
module, the particle filter-based positioning module, the sonic-vision system, as
well as the logic controller module. The navigation performance has been verified

through field experiments under typical indoor environments.
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1.4 Dissertation Outline

Chapter 1 presents the motivation, objectives, and major contributions of this
dissertation to the integration of low-cost orientation sensors with an RF positioning
system for mobile robot indoor autonomous navigation.

Chapter 2 provides an overview of the navigation sensors used in this dissertation,
including gyros, accelerometers, magnetometers, RFID, wheel encoders, and ultrasonic
range finders. The principle, the error sources, and the characteristics of each sensor are
addressed.

In Chapter 3, the two different filtering approaches that have been used in the
dissertation are described. They are the Kalman filter and the particle filter. In addition,
the fundamentals of fuzzy logic control technology are also presented.

In Chapter 4, the principles for orientation estimation using gyros, accelerometers, and
magnetometers are described. Then, the Kalman filter used for integrating those
orientation sources is presented. The test and performance analysis of the orientation
system are given in this chapter.

Chapter 5 describes the development of the RFID positioning system. This chapter
gives a comprehensive description of the development of the probabilistic observation
model and the online measurement quality control algorithm. The particle filtering
approach is illustrated that integrates RSS measurements from RFID, ground speed
provided by the wheel encoders, and the heading determined in Chapter 4. The
performance of the positioning system is validated and the discussion of test results is

presented.
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Chapter 6 presents the idea of the sonic-vision system and the design of the intelligent
logic controllers for mobile robot autonomous navigation.

In Chapter 7 the overall test and results analysis of the autonomous navigation system
under typical indoor environments is presented.

Finally, Chapter 8 concludes the major results and findings obtained in this research

and gives recommendations for future work.
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Chapter 2 Overview of Navigation Sensors

A multi-sensor system can provide more reliable and accurate navigation solutions
than a system relies on one type of sensors by integrating redundant or complementary
information. In this dissertation, several navigation sensors are used for indoor mobile
robot applications, including inertial sensors (i.e., rate gyros and accelerometers),
magnetometers, RFID, wheel encoders, and ultrasonic range finders. Based upon
measurements from those sensors, our mobile robot indoor navigation algorithm will
perform three layers of integration: (1) estimating orientation by fusing the inertial and
magnetic sensors; (2) positioning based on the estimated orientation, wheel encoder-
derived ground speed, and RFID RSS measurements; and (3) integrating the information
obtained from the previous two layers with ultrasonic sensors for autonomous navigation.
Prior to designing multi-sensor data fusion algorithms, it is very important to understand
and analyze the characteristics of each sensor. An overview of the selected navigation

sensors in terms of their principles and error characteristics is presented in this chapter.

2.1 Overview of Orientation Sensors

To build an attitude and heading reference system, three types of orientation sensors
have been used in this research, namely, gyroscopes, accelerometers, and magnetometers.

The principles and error sources of each sensor are presented in the following sections.
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2.1.1 Gyroscopes

Gyro(scope)s are electronic devices for detecting and measuring angular motion
relative to an inertial frame. They have a number of unique properties such as being
completely self-contained and insensitive to electromagnetic and ferromagnetic
anomalies. Since the advent of gyros in 1852 [Sorg, 1976], they have been widely applied
in various applications such as the development of inertial navigation systems, the
stabilization of flying vehicles, and the maintenance of direction in tunnel mining. The
principles of three broad categories of gyros (i.e., mechanical, optical, and vibratory) are
discussed herein. The definition of a gyro was originally restricted to the mechanical
type, but now encompasses all angular-rate sensors that do not require an external
reference [Groves, 2008], including optical gyros and vibratory gyros.

Mechanical gyros operate on the basis of conservation of angular momentum. This
theorem states that the angular momentum of a body with respect to inertial space will
remain constant unless acted upon by a torque. This type of gyro usually consists of a
spinning mass that is mechanically isolated from the instrument case using a set of
gimbals. Therefore, the direction of the spin axis of the mass will remain aligned with
inertial space even when the case is rotated. The orientation of the instrument (i.e., the
case) with respect to inertial space (i.e., the direction of the spin axis) could be measured
with angle pickoff devices mounted on the gimbals. The main disadvantage of the
mechanical gyros is that they contain moving parts which will cause friction leading to
drifting outputs. To minimize the friction, high-precision bearings and special lubricants

are needed which increases the cost of the devices. Even so, mechanical gyros are still in
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common use, particularly for applications requiring very accurate solutions, such as
navigation of ships and submarines.

With the development of photovoltaic technology and nanotechnology, new types of
gyros have emerged. Optical and vibratory gyros have been under development as
replacements for their mechanical counterparts for over three decades [Everett, 1995].
They are made based on modern principles of physics, but broadly speaking, still use the
gyroscopic effect. Being different from the traditional mechanical gyros, they have no
moving parts (i.e., a high-speed rotor). Thus, they are known as solid-state gyros. The
basic components of the optical gyros are two counter-propagating beams travelling in a
close-loop path. The rate and direction of the sensor rotation rely on the effective
detection of the path length difference between the two beams. Vibratory gyros sense
angular rotation by detecting the Coriolis acceleration of a vibrating element when it is
rotated. The Coriolis acceleration instigates a harmonic motion whose amplitude is
proportional to the angular rate [Groves, 2008].

A number of other gyro technologies have also been studied, including nuclear
magnetic resonance, fluidic sensors, angular accelerometers, and atom interferometry
techniques [Titterton and Weston, 2004]. It should be noted that the gyro, no matter what
principle it uses, belongs to one of the two basic rotation-sensing gyros: (1) rate gyros
which have an output proportional to the angular rate (e.g., optical gyros), and (2)
displacement gyros that sense the actual turn angle with respect to an initial orientation

(e.g., mechanical gyros).
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2.1.2 Accelerometers

An accelerometer is a device that measures specific force along a single sensitive axis.
Note that specific force is not actually a force, but a type of acceleration. It is defined as
the non-gravitational force per unit mass, the acceleration produced by forces acting on
the object through physical linkage (i.e., relative to free-fall acceleration); for example,
accelerometers on the surface of the Earth measure a constant 9.8 m/s* when they are
static. A single-axis accelerometer typically contains a proof mass restrained by springs
or other supports. The mass is free to move along the sensor’s sensitive axis. The
displacement of the mass with respect to its zero position is proportional to the specific
force acting on the mass in the direction of the input axis. By measuring this with a
pickoff system, a measurement from the accelerometer is obtained.

The design of all accelerometers is based on this conceptual principle. Actual
accelerometers are different in the ways in which they convert mechanical motion into an
electrical signal. Mostly, accelerometers follow either a pendulous or vibrating-beam
design. For a pendulous accelerometer, the proof mass is attached to the case of the
sensor via a pendulum (i.e., a pendulous arm and hinge) [Groves, 2008]. The vibrating-
beam accelerometer retains the pendulous arm from the pendulous accelerometer.
However, the proof mass is supported by a vibrating beam which is driven to vibrate at
its resonant frequency. When a force is applied to the accelerometer along the sensitive
axis, the proof mass pushes or pulls the beam, causing the beam to be compressed and
stretched. Compressing or stretching the vibrating beam will cause the resonant
frequency to decrease or increase accordingly. Therefore, by measuring the resonant

frequency, the specific force along the sensitive axis can be determined.
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Different grades of performance could be achieved by varying the quality and design
of the different components, such as the pendulum, beam, proof mass, pickoff system,
and control electronics. By mounting three single-axis accelerometers perpendicularly to
each other, a tri-axis accelerometer can be constructed. Since the earliest development of
the accelerometer in 1923 [Walter, 2007], it has found broad applications in navigation,

orientation sensing, building structural monitoring, etc.

2.1.3 Magnetometers

A magnetometer is a device for measuring the intensity of a magnetic field along its
sensitive axis. Magnetic sensing techniques exploit a broad range of physics and
chemistry disciplines, and they are based on a number of different principles. A detailed
description of those different magnetic sensing technologies can be found in the literature
[Lenz, 1990]. For heading estimation applications, the magnetometers commonly used
are based on the magneto-resistive (MR) effect. The MR magnetometers are made of thin
strips of permalloy (a ferromagnetic film) whose electrical resistance varies with the
amplitude of the magnetic field applied. The MR sensors typically have a sensitivity
range of 10 gauss to 50 gauss. The minimum detectable field can reach 10 gauss for
limited bandwidths [Lenz, 1990]. Magnetometers have a diverse range of applications
such as detecting buried or submerged objects (e.g., shipwrecks), mapping hazards to

coal mining, providing azimuth in directional drilling as compasses, etc.
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2.1.4 Sensor Errors Characteristics

Due to sensor manufacturing imperfections or installation errors, the output from the
sensors can be corrupted by errors such as biases, scale factor errors, cross-coupling
errors, and random noise to a certain extent [Groves, 2008]. In this section, the errors
arising in gyros and their effects on integrated orientation will be examined. The sensor
errors for accelerometers and magnetometers have similar characteristics.

A Dias is an average output from the gyro when it is not experiencing any rotation.
Generally, it consists of four components: i.e., a fixed term, a temperature-dependent
variation, a run-to-run variation, and an in-run variation [Groves, 2008]. The fixed
contribution is present each time the sensor is used. It can be captured and corrected
through the laboratory calibration process. Environment temperature fluctuations and
sensor self-heating could introduce a drift of the sensor bias. The relationship between the
bias drift and the temperature variation can be determined through intensive lab thermal
testing. The calibration parameters could be stored for online compensation provided the
gyro contains a temperature sensor. Those two error sources, corrected within the gyro
processor, are usually not the main concerns. In general, the bias refers to the last two
terms (i.e., the run-to-run and in-run variation) and the residual effects of the fixed and
temperature-dependent contributions that left over from the calibration process. It can be
split into static and dynamic components.

The static component, also called a bias offset, consists of the run-to-run variation and
the residual bias after sensor calibration. It remains constant throughout an operation
period, but varies from run to run. The integration of a constant bias causes an angular

error which grows linearly with time. The bias offset can be roughly determined by
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averaging static measurements taken over a long period. Once the bias is known,
eliminating this type of error is trivial by simply subtracting it from subsequent
measurements.

The dynamic component, also known as a bias drift, comprises the in-run variation
due to flicker noise in the electronics and the residual of the temperature-dependent bias.
It changes slowly during the course of a run, which would produce a second-order
random process in the integrated orientation [Woodman, 2007]. The bias drift is random
in nature and cannot be eliminated from the measurements using deterministic models. It
is usually observed at low frequencies compared to the white noise. Therefore, the bias
drift can be modelled by a stochastic process, such as the random walk process or the
Gauss-Markov process.

Scale factor error is the departure of the input-output gradient of the sensor from unity.
Ideally, the three gyros that make up the sensor triad are identical sensors. In reality, each
sensor will have a different sensitivity. That is, when all three gyros are exposed to an
identical angular rate, the observed output from each will be different due to the scale
factor error. Cross-coupling error arises from the misalignment of the three sensitive axes
with respect to the orthogonal axes of the body frame due to manufacturing limitations.
As a result, each axis is affected by the measurements of the other two axes in the body
frame. The scale factor error is deterministic in nature and can be determined by
calibration. The calibration involves determining the multiplicative factor that has to be
applied to each sensor so that the output will be the same given the same input. For the
cross-coupling error, if care is taken during the calibration of the gyro triad during

manufacturing, this type of error can be minimized.
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Random noise is an additional signal resulting from the sensor itself or other
electronic devices that interfere with the output signals being measured. Noise fluctuates
at a rate much larger than the sampling rate of the sensor, and usually it is non-systematic.
The magnitude of the noise level can be described by the standard deviation of static
measurements over a few seconds [Wang, 2006]. Typically, noise cannot be removed

from the data using deterministic methods.

2.1.5 MEMS Sensors

Despite years of development, conventional mechanical sensors still have complex
mechanical parts and a requirement for parts with high-precision tolerances and intricate
assembly techniques [Woodman, 2007]. Therefore, the cost has remained high. These
factors impede their adoption for applications where cost, size, and power consumption
are the governing parameters. Recent advances in MEMS technology enable the use of
silicon as the base material in the production of low-cost sensors. This progress
overcomes many of the issues considered above for the conventional mechanical sensors.

The gyros manufactured with MEMS technology operate on the vibratory principle.
They take advantage of the Coriolis effect for detecting inertial angular rotation [Titterton
and Weston, 2004]. A MEMS accelerometer typically has a spring mass damper
mechanism. It consists of a proof mass suspended by a beam, both made of silicon.
Capacitive sensing is usually used to measure the motion of the mass. The displacement
of the mass is proportional to the change of capacitance. By measuring the change in
capacitance, the amplitude of the force that led to the displacement can be derived [Kraft,

1997].
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Currently, MEMS sensors offer relatively poor stand-alone accuracy and run-to-run
stability. They can result in large errors over short time intervals if the sensor errors are
not compensated, especially for MEMS gyros where an integration step is involved in the
orientation computation [Shin, 2005]. Because the level of sensor errors and noise is high,
some input signals (e.g., the Earth’s rotation rate) and error terms (e.g., the cross-
coupling error) are relatively small and negligible compared to other error sources. The
bias drift and random noise are usually the two dominant terms in the overall error budget
for a MEMS sensor.

Even though MEMS sensors currently offer relatively poor performance, they are
expected to be quite promising in the future due to the following advantages: small size,
low weight, rugged construction, low power consumption, low cost, and high reliability.
In this dissertation, | am interested in evaluating their performance of orientation

estimation for mobile robot navigation in indoor environments.

2.2 Overview of RFID

RFID is a rapidly developing technology that uses short-range radio communication
for automatic identification of objects. This technology has been around for decades. It
was invented in 1948 but was not mainstreamed for commercial applications until the
1980s due to its high-cost [Landt, 2005]. RFID is particularly attractive for applications
in asset tracking, industrial automation, homecare, and healthcare systems. A detailed
description of RFID will be presented in the following sections. The RFID principles are
presented first, followed by the discussion of applying RFID for positioning and the

signal propagation error sources.
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2.2.1 RFID Technologies

RFID is one of the RF technologies that use electromagnetic fields to transfer data. It
is mainly used for automatically identifying and tracking tagged objects. A typical RFID
system comprises three basic components: a tag (i.e., transponder), a reader (i.e.,
interrogator), and a controller. The tag consists of an integrated circuit, an antenna coil,
and sometimes a battery. The circuit is mainly used for storing and processing,
modulating and demodulating an RF signal. The antenna enables the tag to receive and
respond to RF queries from an RFID reader [Weis, 2003]. The reader is composed of an
antenna, an RF electronics module for communicating with tags, and a control electronics
module for communicating with the controller. The controller usually appears in the form
of a PC running control programs. A tag is mounted to the object to be identified and can
be queried by a reader through radio communication. When a tagged object enters the
read zone of a reader, the reader signals the tag to transmit its stored data. The data may
contain a unique ID and some other product-related information such as a stock number,
batch number, or production date. Once the reader has obtained the tag’s data, it will
transfer the data back to the controller via serial interface or network communication.
Then, the controller uses this information for various purposes such as for an inventory of
the object in a database.

Depending on power supply options, passive and active tags can be distinguished. A
passive tag has no battery embedded. Generally, it draws power from the signal
transmitted from the reader. Therefore, the reader must be powerful and close in order to
make the RF field strong enough to activate the tag. The effective range for passive tags

is usually short in the range of about a few millimetres up to several metres. On the other
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hand, an active tag is battery-powered. Therefore, compared to passive tags, they usually
can transmit and receive data from a distance of up to tens of metres. Additionally, active
tags may have larger memories. Additional information apart from ID (e.g., the tag’s
position information) can be directly stored on the tag which eliminates the need of a
central database. However, they are much larger and more expensive than their passive
counterparts. Further information about the underlying technology can be found in Hunt
et al. [2007]. For our application, the active tags are the more appropriate choice.

The frequency requirement of wireless communication significantly restricts the
frequency range for an RFID system. Frequency bands specifically reserved for
industrial, scientific or medical applications (100 kHz ~ 5.8 GHz) have also been used for
RFID technologies [Finkenzeller, 2010]. In North America, five frequency bands are
available centred on: 125 kHz (low frequency), 13.56 MHz (high frequency), 433 MHz
(ultra-high frequency (UHF)), 915 MHz (UHF), and 2.45 GHz (microwave). In general,
RF radiation has more energy at higher frequencies and thus can have longer
communication ranges. However, higher frequencies can introduce a number of
limitations, more significantly, the signal can be more easily obstructed or absorbed by
objects along the propagation path. Choosing a proper operating frequency to fit the

application is necessary.

2.2.2 RFID Positioning

RFID technology was originally designed for automatic identification of tagged
objects [Landt, 2005]. Recently, the large number of applications has driven a significant

decrease in the price of RFID. Low-cost, together with other favourable features such as

30



high data rate, reliable performance, NLOS readability, and compactness, makes it an
attractive candidate for indoor positioning applications.

RFID positioning can be classified into tag positioning and reader positioning. For the
tag positioning, RFID readers are installed at certain waypoints (e.g., the entrance of a
room), and an RFID tag is attached to the object to be tracked. The reader is able to detect
any tagged object when it passes by. This strategy is suitable for many applications
spanning from locating books in the library to tracking patients in the hospital. The reader
positioning approach is to attach the reader to the mobile object while the tags are
installed at known locations (i.e., active landmarks). When the mobile object passes by a
tag, the reader retrieves its ID and other information (e.g. its coordinates). Mobile robot
autonomous navigation usually benefits from the second configuration. With a number of
tags mounted in the workspace, a robot carrying a reader communicates with the tags to
estimate its own position.

RFID-based positioning techniques bear great similarities to other wireless positioning
technologies as described in Chapter 1. The reader determines its position using different
signal measuring techniques and positioning processing. Time-based range estimation
could be promising if ultra-wide band techniques are used [Dardari et al., 2010; Lee et
al., 2011]. However, for a conventional narrowband RFID system, applying time-based
techniques for positioning is often challenging due to poor time resolution limited by the
frequency bandwidth [Zhang et al., 2010]. Other RFID signal sensing techniques such as
phase-difference-of-arrival [Knox and Bridgelall, 2006] or angle of arrival [Wang et al.,
2006] have also been investigated. Typically, RFID positioning is performed by utilizing

the received signal strength (RSS) measurements obtained by the reader. Signal strength
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decreases as the reader moves away from a tag. Theoretically, in the far field, signal
strength is inversely proportional to the square of the distance travelled. The relation can
be expressed by the Friis transmission equation assuming the antennas have an

impedance and polarization match [Foina et al., 2007]:

2
% _GG, (ﬁj | (2-1)
T

t
where P, is the power received by the reader in watts; P, is the radiated power from the
active tag in watts; G, is the antenna gain of the reader; G, is the antenna gain of the tag;
A is the wavelength of the radio signal in metres; and d is the distance between the
reader and the tag in metres.

The signal frequency, the antenna gains, and the transmitting power are determined by
the devices used. The quantity that can be varied is the tag-reader distance. Hence, the
RSS could potentially be used as an indicator of the distance at which the tag is located
from the reader. For RFID technology, the RSS is usually indicated by received signal
strength indication (RSSI) values. RSSI is defined as ten times the logarithm of the ratio
of the received signal power P. and a reference power P, (e.g., 1 milliwatt), given as:

RSSI =10-log,, [&J (2-2)
R
The relationship between the RSSI and the distance can be derived from Eg. (2-1). By

dividing both sides with the reference power P, and taking the logarithm (i.e.,

transferring the unit of power from watts to dBm), Eq. (2-1) can be simplified as:

10log,, (%) _ A—20-log,,d, (2-3)

0
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where the constant A is written as:

A=10-log,, (gj +10-log,, G, +10-log,, G, +20-log,, (ﬁ) .

0
Substituting Eqg. (2-2) into Eq. (2-3) gives:

RSSI =A-20-log,, d, (2-4)
where RSSI is the measured signal strength value in the unit of dBm and A is a constant.
If the observation equation (i.e., Eq. (2-4)) could be accurately determined, then the tag-
reader distance can be obtained from the measured RSSI. When the RSSI measurements
from at least three tags are combined, the position of the reader can be determined using
trilateration. However, accurately modelling the radio propagation in indoor
environments is not easy due to a number of challenges that will be discussed in the
following sections. More complex and efficient observation models and algorithms are

required to improve the accuracy of RSSI-based indoor positioning methods.

2.2.3 Radio Signal Indoor Propagation

Although RFID technologies show great potential for indoor positioning, the quality
of the signal strength measurements is affected by various factors such as multipath,
NLQOS, and interference. Details of these errors and their characteristics are addressed in

the following sections.
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2.2.3.1 Multipath

Multipath occurs when a radio signal arrives at a receiving antenna via two or more
routes [Misra and Enge, 2001]. It occurs on all terrestrial radio links, and is especially
common for indoor environments. When radio waves are emitted from an omni-
directional antenna of a transmitter, the signal propagates in all directions from the
antenna. One or more components of the original RF wave front may travel straight to the
receiving antenna, while other components may get diffracted or reflected off various
objects along its propagation route such as walls, ceilings, furniture, and people. One or
more of those components may reach the antenna together with the direct signal
producing a composite multipath signal.

When multipath signals converge with the direct signal at the receiving antenna, the
consequences are generally not favourable. Depending on the phase of the multipath
signal with respect to the direct signal, it can introduce both destructive and constructive
errors. Effects of multipath distortion on the signal strength measurement can be
categorized into four types:

1. Data corruption: this happens when multipath is so severe that the receiver is

unable to detect the transmitted information.

2. Signal nulling: it occurs when the multipath signals arrive exactly out of phase

with the direct signal and completely cancels it.

3. Constructive effect: the multipath signals arrive in phase with the direct signal and

add on to the direct signal, causing an increase in the magnitude of signal

strength.
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4. Destructive effect: the multipath signals reach the antenna out of phase with the

direct signal to some extent reducing the signal’s magnitude.

A number of techniques are available for mitigating multipath errors. It can be
reduced to a certain extent by careful selection of the antenna site. Of primary importance
is to place the receiving antenna at a site that has unobstructed LOS reception from the
transmitting antenna at all bearings and elevation angles. However, this ideal setup is
impossible for practical implementations, especially for indoor kinematic applications.
The second approach is to incorporate a metallic plate under the antenna. This ground
plate can direct the gain in the zenith direction and exhibit a shielding effect against
reflections from the ground beneath the antenna. An optimum diameter for the plate is
approximately 0.6 A [Granger and Simpson, 2008]. For RFID UHF bands, this
corresponds to about 20 cm. However, the performance of this mitigation strategy may be
limited, because in indoor environments, multipath signals may arrive at the receiver not
only from the bottom but also from above; for example, they could be reflected by the

ceilings.

2.2.3.2 Non-line-of-sight

Typical radio signals are designed to be operated in a LOS configuration. Only under
this condition, can the signal propagation follow well-proven methodologies refined over
many decades. LOS clearance requires that a path remain obstruction-free not only along
its visual LOS path, but for an expanded space called the Fresnel zone [Green and
Obaidat, 2002]. In practice, satisfying this strict condition is difficult especially in indoor

environments.
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NLOS is the occurrence of a radio signal transmitting across a path that is partially or
completely blocked by obstructions like walls. Therefore, an NLOS signal arrives at the
receiving antenna by either passing through impeding objects or as a reflection from
other objects. NLOS propagation produces further fading of the received signal in respect
to the LOS case. The extent of attenuation varies depending on the material composition
of the obstructions [Sarkar et al., 2003]; Such as, for a radio signal centered at 900 MHz,
one layer of wood plate (7.6 cm) would cause a signal strength decrease of 2.8 dB, and a
concrete wall (20.3 cm) may bring an approximate loss of 15~30 dB.

Intensive NLOS error mitigation techniques have been investigated [Wylie and
Holtzman, 1996; Wylie and Wang, 2001]. Most of these techniques assume that only a
small portion of the measurements are impaired by NLOS propagation. Those NLOS
measurements are treated as outliers, as they are inconsistent with their LOS counterparts.
More sophisticated techniques based on the knowledge of NLOS error statistics are able
to handle the case where most measurements are NLOS measurements [Cong and
Zhuang, 2005]. However, this research only study the NLOS error mitigation techniques
for time-based positioning systems. So far, no significant contribution has been made for
mitigating NLOS errors in RSS measurements. Challenges still exist in identifying the
NLOS propagation and mitigating their effects on signal strength measurements in a real-

time processing scenario.

2.2.3.3 Signal Interference
Signal interference is due to the presence of disturbances that affect an electrical

circuit through electromagnetic induction. Interference may be introduced by any object
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carrying rapidly changing electrical currents which share common or closely adjacent
frequency bands. Signal interference negatively affects overall system performance.
These effects can range from a degradation of the desired signal to a total loss of data.
The operation of an RFID positioning system typically involves a situation in which
numerous tags are concurrently located within the reader’s read zone. Interference
between tags may occur when all tags try to access the reader. This situation is the so-
called multi-access interference [Finkenzeller, 2010]. Highly sophisticated algorithms
should be developed to enable the reader to simultaneously communicate with more than
one tag. Fortunately, various anti-collision algorithms have been studied to separate the
individual tags from each other so that they can access the reader without mutual
interference [Finkenzeller, 2010; Klair et al., 2010]. By far, the time domain multiple
access technique is the most widely accepted procedure. A special algorithm is used to
enable the reader to communicate (e.g., authentication, read and write of data) with the
tags within its read zone one by one. Only one communication relation is initiated at a
time, and the tags can be operated in a rapid succession. At the present state of
technology, an RFID reader can simultaneously communicate with thousands of tags per
second with accuracy over 98% [Klair et al., 2010]. Apart from the among-tag
interference, the spectrum of the RFID devices is shared among different systems and
services such as WLANS or personal area networks (e.g., Bluetooth). The composition of
all these signals makes for a very complex environment, which must be routinely

monitored in order to maximize service performance.
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2.3 Overview of Auxiliary Sensors

Today, most indoor mobile robots are equipped with wheel encoders. They measure
the rotation of the robot’s wheels, from which the motion of the robot (e.g., the ground
speed) can be easily determined. They are inexpensive sensors and can provide accurate
solutions assuming there is no wheel slip. In this dissertation, they are involved in the
positioning module by providing the dynamic information (i.e., ground speed). Besides
the wheel encoders, ultrasonic range finders are used for the purpose of safe navigation in
the indoor environment with minimum cost. The basic principles of those two aiding

sensors are described.

2.3.1 Wheel Encoders

Wheel encoders are sensors that generate digital signals in response to rotation
movement. Encoders are operated based on either optical or magnetic sensing technology.
Optical encoders use a glass or metal disk with a pattern of lines deposited on it. Light
from an LED shines through the disk onto one or more photo-detectors, which produce
the encoder’s output. For magnetic encoders, there are several types but all share the
basic operation principle. That is, the sensor detects changes in the magnetic field caused
by the presence or movement of a ferromagnetic object. Optical encoders provide high
resolution, high speed, and reliable operation so that they are widely adopted for
industrial applications.

There are two basic types of optical encoders: i.e., absolute and incremental. An
absolute encoder directly measures the actual angular position of the shaft, while an

incremental encoder measures rotation velocity by producing a certain number of pulses
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for each shaft revolution [Everett, 1995]. The greater the number of pulses is, the higher
the resolution of the unit is (and subsequently the cost). Rotation speed can be determined
by counting the number of pulses recorded with respect to the reference index. Wheel

encoders are typically used in robots for odometry [Patric, 2001].

2.3.2 Ultrasonic Range Finders

Ultrasonic range finders are sensors using sound pulses to measure distance. By
emitting an ultrasonic pulse and timing how long it takes to travel to a reflecting object
and echo back to a receiver, the ultrasonic range finder can determine the distance by
multiplying the velocity of a sound wave with the one-way trip time. The absolute range
to an observed point is directly available as an output with no complicated analysis
required. Today, ultrasonic range finders are the most common sensors employed in
indoor mobile robot systems, primarily due to their low-cost and easy interface. Over the
past decades, much research has been conducted for investigating applications in areas
such as environment modelling, collision avoidance, position estimation, and motion
detection.

The sensors maintain range accuracy in a linear pattern as long as echo detection is
sustained. Potential error sources may include variation in the propagation speed due to
temperature changes and reflecting surface interaction [Everett, 1995]. Specifically, when
sound waves strike an object, the detected echo represents only a small portion of the
original signal, with the remaining energy reflected in scattered directions. Instances that
no return signal is received at all can occur when the reflected signals are deflected

outside of the sensing envelope of the receiver [Yata et al., 1999]. Scattered signals can
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reflect from secondary objects as well, returning to the receiver to generate false signals

that can yield questionable or otherwise noisy data.

2.4 Chapter Summary

In this chapter, an overview of the selected navigation sensors (i.e., the inertial and
magnetic sensors, RFID, wheel encoders, and ultrasonic range finders) has been
presented. Their principles and error characteristics have been discussed. Their
application for the development of the navigation system and the approaches for handling

the various sensor errors will be delivered in the following chapters.
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Chapter 3 Data Processing and Control Methodologies

In general, mobile robot autonomous navigation is involved with both sensing and
control technologies. Measurements from various sensors need to be properly interpreted
and processed in order to produce the navigation information of interest. Therefore, the
first problem is to estimate the state of a dynamic system using a sequence of noisy
measurements observed over time. This problem can be solved using recursive Bayesian
estimation. Within the generic framework of the Bayesian filtering, various
implementations are derived to solve practical issues; for example, the Kalman filter and
its variants are typically applied for a linear system with Gaussian noise, while particle
filters perform better for nonlinear and non-Gaussian situations. The second problem is to
apply the obtained navigation information to an intelligent controller that determines the
control parameters to drive the navigation system. Recently, increased efforts have been
given towards developing intelligent control systems that do not require a precise
deterministic model of the world: e.g., a non-analytical method based on fuzzy logic.
This dissertation applies the Kalman filter for orientation estimation, a particle filter for
positioning, and a fuzzy logic technique for intelligent control. This chapter will present

the fundamentals of these algorithms.

3.1 Bayesian Filtering

Bayesian filtering applies Bayesian statistics and Bayes’ theorem to solve stochastic

filtering problems. In the following sections, firstly, sequential Bayesian filtering will be
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reviewed. Then, the Kalman filter as an analytical realization and the particle filter as a

sample-based implementation of Bayesian filtering will be introduced.

3.1.1 Recursive Bayesian Filtering

To define a generic nonlinear filtering problem, the following discrete-time stochastic

model is considered:

X =i (X W), (3-1)
where f,_, is a known, possibly nonlinear function of the state x, ,; and w, , represents
a system noise sequence. At discrete times, measurements z, become available, which
are related to the target state X, via the measurement equation:

z, =hy, (X, vy ), (3-2)
where h, is a known measurement function and v, is referred to as a measurement noise

sequence. The objective of nonlinear filtering is to seek an optimal estimate of the state

X, based on all available measurements up to time t, , which essentially is to construct a
posterior probability density function p(x, |z, ). Here, z,, denotes a sequence of
measurements taken from the first epoch up to time t, . It will be shown that the posterior
density can be recursively computed through two stages: i.e., prediction and update.
Suppose that the posterior density p(X,,|z,,) at time t_, is available, the

prediction stage involves using the system model (Eg. 3-1) to obtain the prediction

density p(xk |zl:k71) at time t, via the Chapman-Kolmogorov equation:
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p(xk | Zl:k—l) = Ip(xk | Xy )p(xk—l | Zl:k—l)dxk—l’ (3-3)
where p(xk |xk_1) represents the probabilistic model of state evolution (i.e., transitional
density) which is defined by the dynamic model of Eqg. (3-1). At time t , when

measurements z, are available, the update stage is carried out according to Bayes’
theorem, which gives the posterior density of the state as:

P(X1Zui) = 8- P21 %)- P (X | Zics) (3-4)
where a, is a normalization constant which ensures that the posterior density over the
entire state space sums to one. The observation model p(z,|x,) describes the
probability of obtaining observations z, when the current state is given as X, . The

observation model can be obtained from empirical formulae or through site calibrations.

To compute the posterior density p(X, |z, ) recursively, the boundary condition (i.e.,
the initial probability density function of a state vector p(x0 |zo)) should be specified,

where z, is a set of no measurements. Knowledge of the posterior density p(X, |z.)

enables us to compute an optimal state estimate with respect to any criterion; for
example, the minimum mean-square error (MMSE) estimate is the conditional mean of
the state x, [Ristic et al., 2004]:

)A(EAMSE = E{Xk |Zl:k} = ka 'p(xk | Zy4 )dxk : (3-5)

Although the posterior density provides a complete solution for the nonlinear filtering
problem, in general it cannot be determined analytically because the implementation of

the conceptual solution needs full knowledge of the posterior density function, which
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means the storage of an infinite dimensional vector [Ristic et al., 2004]. Under restrictive
conditions with respect to the system and measurement models, the posterior density can
be exactly and completely characterized by sufficient statistics with a finite dimension;
for example, the Kalman filter is a special implementation of Bayesian filtering which
provides an efficient and analytical solution under linear quadratic Gaussian
circumstances. However, in most practical situations, the problem is analytically
intractable because of nonlinear, non-Gaussian, and non-stationary characteristics; and
one has to use approximations resulting in a suboptimal Bayesian filter.

A number of approximation methods have been proposed. They can be categorized
into four main classes [Ristic et al., 2004]: (1) analytical approximations (e.g., extended
Kalman filters), (2) numerical approximations (e.g., approximate grid-based methods),
(3) multiple model filters (e.g., Gaussian sum filters), and (4) sampling approaches (e.g.,
particle filters). In this dissertation, | am interested in developing an orientation system
using the Kalman filter and a positioning system by applying the particle filter. More

details of these two filtering methods are described in the following sections.

3.1.2 The Kalman Filter

The Kalman filter, also known as linear quadratic estimation, is an algorithm that
incorporates all available measurements, regardless of their precision, to estimate the
variables of interest. The estimation is based on the use of: (1) knowledge of the system
and measurement dynamics, (2) the statistics of the system and measurement noises and
uncertainty in the dynamic models, and (3) initial conditions of the variables of interest

[Maybeck, 1979]. The Kalman filter can provide an optimal solution, in a minimum
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variance sense, if the strict assumptions hold. That is, the system can be described by a
linear model, and the system and measurement noises are white, Gaussian, and
independent of each other [Gelb, 1974]. The Kalman filter has been the common
technique for numerous applications, especially for navigation of vehicles [Wang, 2006].
The algorithms of the discrete Kalman filter are presented in the following sections,
followed by the illustration of the implementation strategies for inertial and magnetic

sensors integration.

3.1.2.1 The Discrete Kalman Filter

For a linear system, the dynamics of the continuous physical system can be
represented by the differential equation [Gelb, 1974]:

x=Fx +Gu, (3-6)

where x is the state vector; u is the random forcing vector function; F is the known
system dynamics matrix; and G is the design matrix. Because the measurements are
observed and the estimation is implemented on a computer at discrete points in time, Eq.
(3-6) should be transformed to its discrete form (i.e., difference equation), written as:

X, =®,_ X, , +W,,, (3-7)
where X, and X, , are the state vectors at time t, and t, ,, respectively; ®, , is the state
transition matrix; w, , is the driven response at t, due to the random noise input u
during the interval At =t -t ,.

For a stationary system, the transition matrix ®, , is calculated as a power-series

expansion of the system matrix F and sampling interval At [Gelb, 1974]:
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2 3
@, , =exp™) =1+ FAt+ (Fs;[) + (Fﬁ't) +eee (3-8)

If the sampling time interval At is very small, Eq. (3-8) could be approximated to:
®, , =T+FAt. (3-9)
The process noise w, , is assumed to be drawn from a zero-mean multivariate normal
distribution with covariance Q, , :
Q,, =D ,GQGD, -At, (3-10)

where Q=E [u (t)u (t)T} is the spectral density matrix for the forcing function input u.

At time t,, measurement z, is made according to:
z, =H/X, +v,, (3-11)
where H, is the measurement matrix which maps the state space into the observed space,
and v, is the measurement noise which is assumed to be zero mean Gaussian white noise

with covariance R, . In addition, the process noise w, and the measurement noise v, are

assumed to be mutually independent.

The Kalman filter assumes that the conditional probability density function (Eq. (3-3)
and Eq. (3-4)) is Gaussian at each epoch. The Gaussian distribution can be completely
characterized by the mean vector and the covariance matrix. By propagating the first two
moments of the distribution, the Kalman filter recursively estimates the state of the linear
dynamic system. There are two distinct phases involved in the iteration of the filtering.
The predict phase uses the state estimate from the previous epoch to produce a prior state

estimate X, ,. In the update phase, the current prior prediction is combined with current
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observation information to refine the state estimate. This improved estimate is termed the

posterior state estimate X,, . Additionally, the corresponding estimate error covariance
Pg. and P, are also produced. The block diagram of the discrete Kalman filter

algorithm is shown in Figure 3.1.
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Figure 3.1 Block diagram of the Kalman filter.

In the block diagram, X, and P, are initial condition inputs; K, is the optimal Kalman

gain matrix which is determined by minimizing the mean-square estimation error (i.e.,
the trace of the estimate covariance matrix) [Gelb, 1974].

In the Kalman filter, the system and measurement models are assumed to be linear
functions. However, in most engineering applications, nonlinearity could be associated
with either model or both. A number of approaches have been proposed to apply the
Kalman filter for nonlinear systems. Two linearization approaches have been widely
applied in situations with nonlinear dynamics and/or measurement relations. One is to

linearize the models about the nominal trajectory in state space, while the other method is
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to linearize about a trajectory that is continuously updated with the state estimates
resulting from the measurements [Brown and Hwang, 1997]. The former is called a
linearized Kalman filter and the latter is referred to as an extended Kalman filter. Both
methods have benefits and limitations. To apply the linearized Kalman filter, the nominal
trajectory should be known as a prior that usually is impossible for most applications. For
the extended Kalman filter, it is sensitive to the tuning of the initialization of the estimate
error covariance [Groves, 2008]. The filter may diverge if the initial uncertainty and
measurement errors are large [Brown and Hwang, 1997].

In many navigation applications, perturbation techniques are extensively used to
linearize the nonlinear differential equations [Britting, 1971]. The perturbation analysis
produces linear differential equations involving only the error quantities. Products of the
error variables and other small quantities are negligibly small and consequently could be
safely neglected. Therefore, the error behaviour is described by a relatively simple linear
equation and is analytically more tractable. Perturbation analysis is preferred over direct
studies because only the linear error response is examined to analyze the system
behaviour. The developed linear system models are suitable for the application of the
standard Kalman filtering techniques. In this dissertation, the perturbation techniques are
applied for the model linearization process. However, it must be kept in mind that small
perturbations around the true states should be guaranteed in order to get good

performance out of the filtering.
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3.1.2.2 Implementation Strategies

The Kalman filtering methodology has been extensively applied for optimal fusion of
data from inertial and magnetic sensors for orientation estimation applications [Foxlin,
1996; Bachmann, 2000; Roetenberg et al., 2005; Tome and Yalak 2008; Han and Wang,
2011]. The most commonly used integration schemes in the literature are loosely- and
tightly-coupled integration strategies. For the loosely-coupled integration algorithm as
shown in Figure 3.2, the two types of orientation sources operate as independent systems
and process data in a parallel way to derive respective orientation information. The
differences between the gyro-derived roll, pitch, and heading and those obtained from the
accelerometer and magnetometer together are input to the Kalman filter as the
measurements. The dynamic model is built based on the gyro error equations. When
accelerometer and/or magnetometer data are available, the Kalman filter estimates all
observable orientation and sensor errors to compensate system outputs. When the aiding

source is unavailable, the states of the filter will be predicted based on the dynamic

model.
Roll, pitch
Gyroscopes Integration -
heading
™ Kalman Corrected roll,
Accelerometers filter pitch and heading
Roll, pitch
» Calculation -
heading
Magnetometers

Figure 3.2 Loosely-coupled orientation integration scheme.
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In the tightly-coupled integration scheme, a Kalman filter is applied to process the raw
measurements of the two types of orientation sources together as shown in Figure 3.3.
Similar to the loosely-coupled integration strategy, the orientation states are first derived
by integrating the gyro raw measurements. Then, in the Kalman filter, the orientation and
sensor errors are estimated using the measurement differences between the ones predicted
by the gyros and the actual ones measured by the accelerometer and magnetometer. The

estimated orientation errors are applied to correct the gyro-predicted orientation.

Roll, pitch
Gyroscopes ™ Integration -
heading

Gravity vector

Accelerometers Y Kalman Corrected roll,
filter | pitch and heading

Magnetometers - >

Magnetic vector

Figure 3.3 Tightly-coupled orientation integration scheme.

Both integration strategies have advantages and disadvantages. In the aspect of system
implementation, loosely-coupled integration has higher flexibility and modularity due to
the independent operation. In the aspect of system accuracy, the tightly-coupled
integration system provides optimal estimation accuracy, because all the states for the
entire system are defined in one state vector with a corresponding description of the
process noise [Wang, 2006]. In our applications, estimation accuracy is the main interest.
Therefore, the tightly-coupled integration scheme is considered to be a more suitable

approach.
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Apart from the integration schemes, a Kalman filter has two different implementation
forms: i.e., the direct (total state) and the indirect (error state) formulation [Maybeck,
1979]. In the direct formulation, total states (e.g., orientation) are the variables included
in the state vector. The measurements are direct sensor output, such as the angular rate
measurements from a gyro. On the other hand, the indirect form estimates errors in
orientation using the measurement difference between the gyro and the aiding sensor
data. The main benefit of the indirect formulation is that complex dynamic modelling of
the system is avoided [Maybeck, 1979]. The dynamics of the error-state Kalman filter are
represented by a set of error propagation equations which are usually linear. Another
advantage of the indirect formulation is that if the filter fails, the orientation estimation
algorithm still can provide estimates by integrating the gyro measurement. For these
reasons, the error-state formulation is chosen.

According to whether the estimated states are fed back to correct the system, both
loosely- and tightly-coupled integration algorithms can be implemented with an open
loop or closed loop. In the open-loop implementation, all state estimates are retained in
the Kalman filter algorithm. Without feedback, the states will generally get larger as time
progresses. As explained previously, to get the best performance out of an error-state
Kalman filter, the states should be small. Therefore, the open-loop implementation
usually produces poor performance. Conversely, the closed-loop implementation feeds
back the errors estimated by the Kalman filter to correct the system itself. This feedback
process keeps the Kalman filter states small, minimizing the effect of neglecting higher

order products of states in the system model [Groves, 2008]. Therefore, it generally

51



enhances the estimation performance and becomes a common technique for
implementing an error-state Kalman filter.

The closed-loop and open-loop implementations of the Kalman filter may be mixed
such that some state estimates (e.g., orientation errors) are fed back as corrections,
whereas others (e.g., aiding sensor errors) are not [Groves, 2008]. This configuration is
useful for applications where feeding back some states is desirable, but others cannot be

fed back as there is no way of applying them as corrections to the system.

3.1.3 The Particle Filter

A particle filter, also known as a sequential Monte Carlo method, is a technique to
implement a recursive Bayesian filter by Monte Carlo sampling. The basic idea of Monte
Carlo sampling was introduced in the 1950s [Hammersley and Morton, 1954]. It
performs sequential Monte Carlo estimation based on particle representation of
probability density functions. Particle filters have a number of characteristics: e.g., they
are non-parametric estimation approaches; they can deal with nonlinear models, non-
Gaussian noises; and they are easy to implement [Gordon et al., 1993]. Those advantages
coupled with ever faster computers make them attractive for numerous applications
[Thrun et al., 2001; Aggarwal et al., 2006; Fang et al., 2011]. This section reviews the

theoretical basis of the generic and regularized particle filter (RPF).
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3.1.3.1 The Generic Particle Filter

The key idea of the particle filter is to use a set of N independent random particles
{Xlk}.: directly sampled from the state space, to represent the posterior density and to

update the posterior density (i.e., the particle system) by involving new observations.
Once a numerically-approximated posterior density becomes available, the complex
integrals from Eqg. (3-3) and Eq. (3-5) can be solved via the Monte Carlo integration
method [Gould et al., 2006].

It is desirable to directly generate particles from the true posterior density. The higher
the probability, the denser the particles’ concentration is. The particle system evolves
over time according to the state models. However, in fact, the true posterior density is
unknown or difficult to sample as it may be multivariate, nonstandard, or multimodal

[Aggarwal et al., 2007]. Therefore, the particles are usually sampled from a proposal

density associated with weights {wj}"

. which reflect the difference between the true

posterior density and the proposal density. The weights are chosen using the principle of
importance sampling [Ristic et al.,, 2004] and can be updated using the following

equation:

oo p(z, IxiL)pi(XL | Xi.1)
Q<Xk | X0 Zk)

, (3-12)

where 0|(xik |xL_l,zk) is the proposal density. Then the true posterior density can be

approximated as follows:

P(% 12 ) = D Wed (X, =% ) (3-13)
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where §(-) is the Dirac delta function which is zero everywhere except at x, = x; . As

the number of particles increases toward infinity, the particle distribution approaches the
true posterior density according to the law of large numbers [Ristic et al., 2004].

This is the algorithm of the generic particle filter, named the sequential importance
sampling technique. Filtering based on the sequential importance sampling technique
thus consists of sequential propagation of particles using a dynamic model and their
weights updated when new measurements are received. It has been shown that the
sequential importance sampling technique has a common problem called “particle
degeneracy”. That is, after a few iterations, all but one particle will have a negligible
weight, which implies that a large computational effort is devoted to updating particles
whose contribution to the approximation is almost zero [Arulampalam et al., 2002].

A sampling importance resampling technique has been proposed by Gordon et al.
[1993] to reduce the effect of degeneracy by adding a resampling between two

importance sampling steps. It aims to eliminate particles with low weight and duplicate

those with high weight. This step generates a new particle set {XL}IN:l by resampling N

times from the previous discrete set {x‘k}_N . The probability of resampling from a certain
i=1

particle x; is proportional to its weight w, . After the resampling step, the previous

particle set S, = {xik,wik}iN:l is replaced by the new set {x;, w‘k*}N1 with equal weight (i.e.,

w, =1/N).
The resampling step used in the sampling importance resampling technique is

prevalent and useful in particle filtering to reduce the degeneracy problem. However, it
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introduces other problems like “particle impoverishment”. In this case, the resampling
step causes particles with high weight to be selected many times. After several
resampling steps, all resultant particles occupy the same point in the state space and thus
the particle set loses diversity and gives a poor representation of the true posterior
density. This problem becomes severe when the system noise is very small [Oudjane and
Musso, 2000].

Various particle filters have been proposed by researchers based on the generic
sequential importance sampling algorithm. They differ from each other by choosing an

appropriate proposal density and/or modifying the resampling step.

3.1.3.2 The Regularized Particle Filter
A modified-resampling particle filter known as a RPF has been proposed by Musso et
al. [2001] as a potential solution to the particle impoverishment problem. The RPF is

derived from the sequential importance sampling algorithm by choosing the proposal

density q(x, | X4z, ) to be the transitional density p(x, |x,,). Therefore, the weight
update in Eq. (3-12) can be simply reduced to:

W, = W‘k_lp(zk |x‘k). (3-14)

Differing from the sampling importance resampling technique which resamples from a

discrete approximation of the posterior density, the RPF resamples from a continuous

approximation. Specifically, resampled particles are drawn from the approximation as

[Ristic et al., 2004]:

p(xk | L1k ) ~ ZWII( K, (Xk _XL )’ (3-15)
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and

1 X i
<3 (X)= K(H], (3-16)

where K(-) is the kernel density; h >0 is the kernel bandwidth; and n, is the dimension

of the state vector. The kernel density and bandwidth are chosen to minimize the mean
integrated square error between the true posterior density and the corresponding
regularized empirical representation in Eq. (3-15).

In a special case that all particles have the same weight (after each resampling step)

and the underlying density is Gaussian, the optimal choice of the bandwidth becomes:
hopt _ |:4/ (nx + 2):|1/(nx+4) N -1(n, +4) . (3_17)

where N is the number of particles. Although the above choice is made in a special case,

it can be generally used to obtain a suboptimal filter.

3.2 Fuzzy Logic

The concept of fuzzy logic was conceived as a better method for sorting and handling
data [Zadeh, 1965]. It is a convenient tool for handling real world uncertainty and
knowledge representation. Since the 1970’s, fuzzy logic has been proven to be an
excellent choice for many control system applications [Jamshidi et al., 1997; Rodriguez-
Castano et al., 2000; Peri, 2002]. Compared to conventional control methods, fuzzy logic
incorporates an if-then rule-based approach by resembling human reasoning rather than

attempting to mathematically model a system. It provides a simple way to derive a
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definite decision based upon ambiguous input information. In this dissertation, fuzzy

logic has been applied to the design of an intelligent controller for robot manipulations.

3.2.1 Basic Concepts of Fuzzy Logic

In this section, the basic terminology of fuzzy logic is discussed, followed by a

description of all the aspects involved.

3.2.1.1 Fuzzy Sets and Membership Functions

Linguistic variable is a variable whose values are words or sentences in a natural or
artificial language [Zadeh, 1975]. It is represented by a universe of discourse denoted as
X and a term set; for example, water temperature is a linguistic variable if its values are

linguistic rather than numerical, and the term set could be {cold, warm, hot} where each

term is characterized by a fuzzy set in the universe of discourse X = [O° ~ 100°] .

Fuzzy set theory was proposed by Zadeh [1965] for reasoning under vagueness. A
non-fuzzy set is defined that all the elements should either belong or not belong to the set.
In reality, many situations exist where the transition from member to non-member is
gradual rather than abrupt. In Zadeh’s approach, for each element x € X , it can belong to
a set with a degree k (0<k <1), in contrast to non-fuzzy set theory where an element
must definitely belong to a set or not. A fuzzy set A in the universe of discourse X is

defined as follows:

A={(x u,(x))Ixe X}, (3-18)
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where /,1A(~) is called the membership function of the fuzzy set A. It maps each element

X in X to a value between 0 and 1. This value ,uA(x) quantifies the degree of

membership of the element in the fuzzy set A. Membership functions allow us to
graphically represent a fuzzy set as shown in Figure 3.4. The x-axis represents the
universe of discourse, whereas the y-axis represents the degree of membership in the
interval [0, 1]. The degree of membership is determined by plugging the selected input

element X, into the horizontal axis and vertically projecting to the upper boundary of the
membership functions. The value 0 means that x, is not a member of the fuzzy set; the
value 1 indicates that X, is fully a member of the fuzzy set; while the values between 0

and 1 characterize that x, only partially belongs to the fuzzy set.

Membership function
of fuzzy set A

Figure 3.4 Features of the membership function.

The design of membership functions can be simply derived from human knowledge or
common sense reasoning or more sophisticated techniques, e.g., neural networks [Jang,

1993] or genetic algorithms [Karr and Gentry, 1993]. Different functions can be used to
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build membership functions. In practice, simple functions (e.g., the triangular or the

trapezoidal function) are usually used.

3.2.1.2 Fuzzy If-Then Rules

A fuzzy control rule is a fuzzy conditional statement in which the antecedent is a
condition in its application domain and the consequent is a control action for the system
under control [Peri, 2002]. Once the linguistic variables and their values are defined, the
fuzzy rules can be specified to map the fuzzy inputs to fuzzy outputs. It usually takes the
if-then conditional form as:

If xis A,then y is B, (3-19)
where x and y are the name of the input and output linguistic variables, respectively;
and A and B are linguistic values defined by the input and output fuzzy sets on their
corresponding universe of discourse. Here, “x is A” is called the antecedent, and “y is
B ” is called the consequent.

If several linguistic variables are involved, the fuzzy system is of the type multi-input-
multi-output. The antecedent takes the form:

x isA, withi=1 ---m,j=1, --- M,, (3-20)
where Al isthe j" linguistic value (fuzzy set) of the input linguistic variable x, defined
over the universe of discourse X;; m is the number of linguistic variables; and for each

variable x;, the number of linguistic values is M. The various parts of the antecedent are

connected with each other by the logical connective AND and OR. The consequent takes

the form:
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Yy, isBf, withk=1, ---n; p=1, --- N,. (3-21)
Similarly, y, is the k™ output linguistic variable; BP is its p" linguistic value; n is the
number of output linguistic variables; and N, is the number of its linguistic values.

Assuming all antecedent terms are used in every rule and a rule is generated for each

possible antecedent combination, the total number of rules will be:

Y M =M;-M, M. (3-22)
i=1

3.2.1.3 Logical Operators of the Inference Mechanism

By applying the fuzzy inputs to the antecedents of the fuzzy rules, a fuzzy inference
module derives fuzzy outputs by performing fuzzy logical operations through rules
evaluation. To complete such a process, a set of logical operators are involved. In order to

explain their concepts, a simple two-input-two-output example is given herein. The

system has two input linguistic variables (X, and x,) and two output variables (y, and
y,); each has two membership functions ([A;, A’], [A., A’1, [B,, B;1, and [B] ,
By22 ]) and consists of two rules defined as follows:

R,: IFx is A OR x,is A ,THENYy, is B, y, is B,

R,: IFx, is Afl AND x, is &Z,THEN y, is le, y, is sz
For the actual crisp inputs values (the exact inputs measured by sensors) x, and x,, their
degree of membership for the corresponding fuzzy set is denoted as
Ay (%), yAfl(xf), yAiZ(x;), M (x;), respectively.

4
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Firstly, if the antecedent of the rule has more than one part, a fuzzy operator is applied
to obtain a single membership value that represents the result of the antecedent
evaluation. That is, the fuzzy operator is executed to find the firing level « for each rule.
To evaluate the disjunction (OR connective) of the various parts of the antecedent, the

classical fuzzy operation union is used:

e, =t . () =max{ g (%), at ()] (3-23)

1

Similarly, if the two or more parts of the antecedent are joined by a conjunction (AND

connective), the intersection is applied to the various individual membership values:
e, =My e (x)= min{,uAK21 (%), M (xz)} (3-24)
Secondly, the causal link from the input variables to each output variable is
represented using an implication operator | . For each rule (e.g., R;) and each output
variable (e.g., y,), the implication operator is applied between the antecedent value (e.g.,
@ ) and the consequent membership function (e.g., B;). This operation results in a
truncated or scaled membership function for the output variable denoted as [B;]. There

are many implication operators that can be applied while designing a fuzzy control

system. The most commonly used is the so-called Mamdani implication operator 1,,
(i.e., minimum operator) [Mamdani, 1977]. It is given as:

(B} ]=1tu(c,, By )=min{ay, B} }. (3-25)

Finally, a fuzzy system may involve more than one rule. In this case, after applying

the implication operator for each rule, the resultant fuzzy output from each rule (e.g.,
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[B;], [le]) is combined into a single fuzzy set using an aggregation operator U . In

other words, the input of the aggregation process is a list of truncated or scaled

consequent membership functions, and the output is an overall fuzzy set for each output

variable (e.g., y,). Some of the most commonly used aggregation operators are the

maximum, the sum, and the probabilistic sum [lancu, 2012]. For example, the maximum

aggregation operator can be expressed as:

8, -u{[&;], [8 )} -max{[&} ] 5]} @29

3.2.2 General Structure of a Fuzzy Logic Controller

The seminal work by Zadeh [1965] on fuzzy set theory introduced the idea of
formulating the control algorithm by fuzzy logic rules. Fuzzy logic controllers, initiated
by Mamdani and Assilian are now considered as one of the most important applications
[Cordon et al., 1997].

A fuzzy logic control system is a computing framework for mapping crisp inputs to
crisp control outputs based on the concepts described in the previous section. It usually
consists of four major modules: i.e., fuzzification module, inference engine, knowledge
base, and defuzzification module, as shown in Figure 3.5.

The fuzzification module converts the crisp inputs to fuzzy sets using the membership
functions. The knowledge base comprises if-then rules provided by experts. The fuzzy
inputs are mapped to the fuzzy outputs by the inference engine through evaluating the if-
then fuzzy rules. The inference process is involved with the following procedures: (1)

find the firing level of each rule using the fuzzy operator, (2) derive the output of each
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rule with the implication operator, and (3) aggregate the output from individual rule to

Crisp inputs

Fuzzy inputs

Fuzzy
inference
engine

Knowledge
base

. F outputs
Crisp outputs uzzy outpu

Defuzzification

Figure 3.5 Block diagram of the fuzzy logic controller.

obtain the overall system output by applying the aggregation operator. After getting the
overall fuzzy output, the defuzzification module transforms the fuzzy output into a crisp
control action.

Several defuzzification methods have been investigated [Hellendoorn and Thomas,
1993], including max-membership principle, centroid method, weighted average method,
centre of sums, etc. The most commonly used defuzzification method is the centroid
technique. It finds a point representing the centre of gravity of the overall fuzzy set, given

as:

N

Z yi,UBy1 (yi)

= (3-27)

N

z'usyl (yi)

i=1

where y; is the defuzzified crisp output quantity and 7 (yi) is the membership

function of the overall fuzzy output.
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3.3 Chapter Summary

This chapter describes the fundamentals of the mathematical algorithms used in this
research, including the Kalman filter for orientation estimation, a particle filter for
positioning, and fuzzy logic technique for intelligent control. Their specific applications

in the system development will be further illustrated in Chapter 4 through Chapter 6.
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Chapter 4 Development of Attitude and Heading Reference System

Various orientation sensors have been described in Chapter 2. Orientation produced by
gyros has a significant drift especially for MEMS gyros. In contrast, with long-term
accuracy, orientation computed from the combination of accelerometers and
magnetometers is considered particularly suitable for correcting the gyros’ drift.
However, this type of aiding source is susceptible to external disturbances, resulting in
the degradation of performance in practice. In this chapter, 1 have embarked on the
development of an AHRS by integrating the two types of orientation sensors using the
Kalman filter methodology described in Chapter 3. The fundamental ideas for developing
an orientation system are given first, followed by the introduction of orientation
determination methods. Then, an optimal approach to integrate various measurements in
the Kalman filter for mobile robot indoor applications is discussed. Finally, a series of

experiments are conducted to validate the performance of the proposed algorithm.

4.1 Fundamentals of Orientation System

In this section, the various frames of reference used in this research will be given and

the fundamentals of the three orientation parameter sets are represented.

4.1.1 Reference frames

Several reference frames are involved in the development and analysis of an

orientation system; for example, the inertial and magnetic sensors measure quantities in
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the body frame, while the orientation solution should be resolved in the navigation frame.
The reference frames that will be used in this dissertation are:

1. Inertial frame: it is a non-rotating frame of reference. The origin of the inertial

frame is the centre of the Earth’s mass. The x-axis points toward the First Point of

Aries. The z-axis is parallel to the spin axis of the Earth, pointing toward the

North Celestial Pole. The y-axis completes a right-handed orthogonal system as

shown in Figure 4.1. This is a frame in which ideal accelerometers and gyros have

13t
1

zero outputs. The superscript is used to denote a quantity measured in this

frame.

North Celestial Pole t Z'

——
-
-

Xi

First Point of Aries

Equatorial plane

Figure 4.1 The inertial frame, the navigation frame and the horizontal frame.

2. Navigation frame: this is a local geodetic frame having its origin at the object,

with the x-axis pointing toward geodetic north (i.e., true north), z-axis lining-up

66



with the direction of gravity, and the y-axis completing a right-handed system (see
Figure 4.1). In equations, vector quantities expressed in this coordinate frame will
have the superscript “n”.

Horizontal frame: this frame has its origin at the object with the z-axis defined as
the negative direction of gravity. The x- and y-axis, perpendicular to each other,
lie in the horizontal plane normal to the gravity vector. Three axes are arranged in
a right handed helix indicated with the superscript “h” (see Figure 4.1).

Body frame: it is a strapdown inertial sensor coordinate system with axes parallel
to nominal right handed orthogonal sensor input axes. This frame has its origin
coinciding with that of the navigation frame with the x-axis along the object’s
forward direction, the y-axis out to the right side, and the z-axis completing the
right-hand system (see Figure 4.2). The superscript “b” indicates a quantity

expressed in the body frame.

Zb

Figure 4.2 The body frame.
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4.1.2 Orientation Representations

A survey conducted by Diebel [2006] shows numerous mathematical constructs being
used for parameterizing the relative orientation between two coordinate frames. Amongst
those parameters, the direction cosine matrix, Euler angles, and the orientation quaternion
are commonly used. This section describes the analytical properties of each parameter set,

as well as the equivalencies between them.

4.1.2.1 Orientation Parameters

The direction cosine matrix is a matrix used to perform a rotation in Euclidean space.
It is defined between two coordinate frames. The multiplication of the rotation matrix
with a vector will transform this vector from one frame to the other one. Hereafter the

dimension of a matrix or vector is given in the round brackets for clarification. A rotation

matrix C’Q(%) that maps vectors from frame B to frame A can be expressed as:

21 Cp  Cy |- (4-1)

If XA(M) is a column vector in the frame A and XB(M) is the same vector expressed in the

frame B, then the following relation holds:
x* =CEx®. (4-2)
It provides a simple algebraic operation for transforming vectors between two frames and
is extensively used for computations in strapdown inertial system analysis.
The second method for representing the spatial orientation between two coordinate

frames is through an Euler angle rotation sequence. An Euler angle sequence is a set of
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sequential rotations of a given frame about the frame’s coordinate axes. After the rotation
sequence is completed, the original frame will be positioned at a new orientation. There
are several conventions for Euler angles depending on the axes about which the rotations
are carried out. The most common rotation sequence is the one used to describe the
orientation of “aircraft axes” (i.e., the body frame) relative to the navigation frame. It
consists of a “yaw  ” rotation about the z-axis (i.e., the direction of gravity), followed
by a “pitch 6 rotation along the displaced y-axis, followed a “roll ¢ ” rotation about the
displaced x-axis [Savage, 2000]. The Euler angle sequence is the most popular
representation because of its easy concept and implementation.

Another way of describing the rotation from one frame to the other is through the
orientation quaternion. It is based on the “rotation vector” concept. The Euler angles
provide one way to bring a coordinate frame to any desired orientation by sequentially
making rotations about an axis fixed relative to the frame. However, this can also be
achieved with one single rotation about an axis. This is the concept of the rotation vector.
The rotation vector defines an axis of rotation and the magnitude of the rotation based on

the standard right hand convention [Savage, 2000]:

¢=gu,, (4-3)
where (p=[¢x d, ¢Z]T(M) is the rotation vector; ¢ represents the magnitude of the
rotation vector; and U, is the unit vector in the rotation vector direction. Because the

rotation vector from the frame A is the same as that from the frame B [Savage, 2000], the

superscript notation is dropped.

69


http://en.wikipedia.org/wiki/Rotations

Orientation quaternion encodes the axis-angle representation of the rotation vector in a

four-element column array:

O

a =" (@-4)
Os
q, |,

where g, is a scalar quantity; and d,, g, and g, are the vector portion. The relationship

between the rotation vector ¢ and the orientation quaternion qg‘( sa) 1S EXpressed as:

—cos| ?
g, _cos(zJ

_Sein[ 2
q2_¢sm 2}

(4-5)
b (2
0, = ¢sm 2]
_ b (2
q, = ¢sm 2}

4.1.2.2 Conversions between Different Orientation Parameters

The relations between the various representations of the orientation are given in this
section. For Euler angle representation, the final orientation of the displaced coordinate
frame depends on both the magnitude of each rotation and the order of the rotation
sequence [Savage, 2000]. In this dissertation, the aircraft axis Euler angle sequence is
adopted. As explained previously, the aircraft axis Euler angle sequence is a set of

sequential rotations (yaw y — pitch 8 — roll ¢) that transforms from the navigation

frame to the body frame. The function that maps Euler angles to its rotation matrix are:
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Cr =R(2)R, (O)R. (v), (4-6)
where Cﬁ(m) is the direction cosine matrix that converts vectors from the navigation

frame to the body frame; R, (¢), R, (0) and R, () are three basic rotation matrices

1 0 0 cosd 0 -sind
R,(¢)=|0 cosp sing , R,(0)=| 0 1 0 :
0 -sing cose sind 0 cosé

cosy siny 0
Rz(w): —siny cosy 0| that rotate vectors about the x-, y- or z-axis in three
0 0 1

dimensions. For applications using inertial sensors, the measurements are measured in the

body frame, while the solutions are usually required in the navigation frame. Therefore,

the inverse rotation matrix CQ(M) is typically applied, given as:

C,C, —C,S,+S,5,C, S,S,+C,S,C,
c'=(c") =R R, (-0)R, (-¢)=|c,s, ¢ c +s,6s,S, —S,C +C,S,S |,(4-7)
b_(n)_Z(_V/)y()X(¢)_9v/ o2y Cp 0 y oy T VpY0 %y |0

-s, S, Co C,Co
in which cosine and sine are denoted as “c” and “s” for compact notation.

The inverse mapping of Eq. (4-7) gives the Euler angles as a function of the rotation

matrix:

@ =atan2(Cs,, Cy;)

6 =—tan* [L] (4-8)

é 2 2
C32 + C33

y =atan2(c,,, ¢,)
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Note that the magnitude of the pitch angle € is between —% and %; the function atan2

is the arctangent function with two arguments, and it is used in order to get a four

quadrant result, that is, the range of roll ¢ and yaw y is [-7, 7].

The direction cosine matrix Cf corresponding to a rotation by the orientation

quaternion is given by [Savage, 2000]:

q12 +qu _q?f _qj 2(Q2q3 _q1q4) 2(q2CI4 +q1q3)
Co=| 2(q,0,+00,) o —0;+0;—-0a; 2(0,0,—00,) |- (4-9)
2(9,9, —%0)  2(00, +%0,) O —G; —0s +0;

Several ways could be used to extract the quaternion elements from the rotation matrix,
and the following algorithm has been proven to be the most robust. Firstly, four
intermediate quantities are computed [Savage, 2000] as:

=1+t =1+2c, -t
pa r pb 11 r (4_10)
P =1+2¢, -1, Py =1+2¢y; -1,
where t, is the trace of the rotation matrix Cf . Four sets of equations are available for
computing the quaternion elements depending on the maximum of the above four

quantities [Savage, 2000]. For example, if p, =max(p,, p,, P.. Py ), then:

Cy;, —C Cs—C Cy —Cyp
=05 _ 232 “23 _ 3~ ¥31 - 4-11
0, P, O, i, d, i, q, i, (4-11)

Note that the positive square root solution has been selected for the computation. If the

negative square root solution is used (i.e., g, <0), then, the subsequent elements will just

need to change to their inverse. The other three equation sets are [Savage, 2000]:

If p, =max(p,, Py, P, Py), then:
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_ Cs —Cy3

= =0.5
0, 4q, a, Py

If p, =max(p,, P, P.s Py ), then:

_ GGy _CutCy
0, 4q, q, 4q,
If py =max(p,, P, P, Py). then:
Q= Cyu —Cpp , = Ci3 +Cy
4q, 4q,

=C21+C12 :C13+C31 4-12
P 4, Y g, (442
C., +C
g, =0.5{p, g, =22, (4-13)
3 4 4q3
C., +C
3:337423 d, =0.5{p, - (4-14)

Among those orientation representations, the quaternion is chosen for orientation

integration because of its two distinct advantages: (1) quaternion representation is more

compact and efficient in computation than matrix implementation; and (2) it eliminates

the singularity problem inherent in the Euler angle representation. Even though the Euler

angle representation is easy to understand, it has a mathematical singularity at certain

angles (i.e., pitch angle of 90°), which causes poor numerical results in three-dimensional

orientation applications.

4.2 Orientation Determination

A tri-axis gyro is able to determine orientation. An accelerometer triad and a

magnetometer triad together could also be applied to derive orientation. The principle of

each method is described in the following sections.
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4.2.1 Gyro-based Orientation Determination

Integration of the angular velocity measurements from a gyro triad provides the

orientation of an object when its initial condition is given. An equation for the rate of

change of the orientation quaternion qg(M

| IS given in a four-vector matrix form as

[Savage, 2000]:
4 =~ oy 8o} ] [} ] ), (4-15)

;
where [ | =|0 @) @& o is the quaternion form (that is, indicated by
ib q iby b, ib, (41)

subscript ‘q’) of the angular rate of the body frame relative to the inertial space expressed

in the body frame, and its components are measured by gyros; ["’inn]q(4 ) is the

quaternion form of the angular rate of the navigation frame relative to the inertial space

expressed in the navigation frame; and ® is the product of quaternions; for example, if

two quantities u and v are defined in the quaternion form as [u]O|

T
[a b c d ] (4><l)

and [v] =[e f g h]T(M), respectively, their product [w], ,

) 15 cOmputed as:

a b -¢c -dile
b a -d c|f

[W]q :[u]q [v]q “le 4 a b ol (4-16)
d -¢c b allh

Note that the term [(o” ]q represents the motion of the navigation frame caused by

in

Earth’s r