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ABSTRACT 

This dissertation provides the architecture and describes the development effort of a 

modular software-based real-time global navigation satellite system (GNSS) receiver 

research framework using the Microsoft .NET Framework and the C# programming 

language. A pipelined signal-processing model is used to address key timing and inter-

module synchronization challenges inherent in working with the parallelism required to 

simultaneously receive and process four or more satellite signals. An extensible 

interoperability layer provides clearly defined functional interfaces and simplifies the 

integration of existing hardware and software components with any stage in the signal 

pipeline. Various aspects of front-end hardware design requirements, as well as new 

acquisition and tracking mechanisms, are identified and discussed. 

The expected benefits of this framework development will be to establish a whole 

context for software receiver research and to provide a unified view of a software 

receiver implementation using tools and technologies that encourage the development of 

diverse feature-rich applications. 
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PREFACE 

When I began my thesis research I wanted to do work with digital-system design and 

development. I had a few ideas of specific areas that I intended to explore, such as system 

on a programmable chip (SoPC) and hardware/software co-design focusing on the 

practical applications of scientific theory for the development of buildable solutions. The 

reason I went into engineering in the first place is that I like to see designs implemented; 

the tangibility of seeing your work constructed and your ideas realized has a large appeal 

to me. 

I needed to find a field of scientific research that used in some practical way the 

results of digital system design, so I took an interdisciplinary approach of trying to find a 

problem for a solution technology. I peaked in on the Chemistry department to find out 

what was going on in that realm with regards to electromagnetic chemical analysis, but as 

I listened to their explanations, I became uncomfortably aware that while I was familiar 

with all of the words they were using to describe their work, I had never heard them in 

that particular order and all together like that before, so I realized that I would be 

spending most of my time just trying to figure out the pertinent background material and 

very little on the digital design parts of the problem. 

GPS uses a similar spread-spectrum signaling technology used by CDMA cell phones 

and wireless Ethernet. The basic signals concepts are not that difficult to understand, the 

solutions combine various aspects of both hardware and software, and as a bonus there’s 

no obvious controls theory to any of it. As far as digital-system applications go, GPS is as 
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good as any other. Besides, recovering messages from space is kind of cool and people 

can relate to the work when you tell you’re building a GPS thing. 

Narrowing down the application area was one thing, but finding a contribution to 

make is something else. The work couldn’t just be a project for the sake of building 

something; it had to have meaning and value to other people doing similar work. At first I 

thought of designing and implementing a multi-channel correlator using an FPGA and an 

assortment of hardware functional blocks, but I soon found out that several dozens of 

low-cost commercial ICs are available that do this part, already. 

In order to get started with some form of GPS research, I looked for the work of 

others that I could reproduce and possibly enhance or extend. They all required some 

piece of special hardware or software, or the specific implementation details were so 

obscured that reproducing the results would be impossible. The really difficult thing in 

working with spread-spectrum communications is that when things are working properly 

everything looks like noise, just as it does when things are working improperly, and in 

practice it’s hard to tell the two situations apart. 

The idea for the design of the framework came from the realization that there would 

be a significant benefit to having a reference receiver to act as a starting point for future 

development work. All of the pieces would be implemented in a way that they could be 

readily customized to accommodate the integration of components from different 

sources. 

After the initial dissertation proposal, a certain member of the supervisory committee 

suggested to me that perhaps the project was too big to be done alone—receivers are 
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complicated things and the reason that researchers tend to concentrate on one area is that 

it’s too much work for one person to do the whole thing by themselves. Not knowing any 

better, I argued convincingly that it couldn’t really be that bad. I should have let myself 

be talked down from that tree. Nothing works the way the theory in the books describes it 

does, and to make life worse, the essentials of the receiver are phase-lock and delay-lock 

loops in mutual feedback control with one another, so I spent hours revisiting the controls 

material I had hoped to avoid after all—I wanted neither signals or controls and I got 

both, instead.  

In all of the literature, nobody really said how they did it. They have great ideas and 

algorithms on acquisition, but nothing but hand waving on implementing carrier tracking 

loops. What information was available was flawed, conflicted, and incomplete. Trying to 

re-implement someone else’s research required having access to their code, their 

hardware, and their development and test environments. Also, since the work was never a 

complete receiver, it would have to be integrated with something else in order to get 

useable results. Each new report of something similar had to be looked at and picked 

apart to see if it really did what was claimed. Most of them were optimizations of offline 

receivers. 

An array of MATLAB-based offline post-processing applications exists. However, to 

me, MATLAB obscures the details behind some of the important parts of an 

implementation. While it makes some things easier, understanding the details of how a 

particular filter or transform is implemented is important sometimes, and without that 

understanding applying the results obtained is pretty hard. Also, MATLAB functions on a 
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Java virtual machine so the performance is wanting, even for offline applications, let 

alone meeting any sort of real-time target. 

The implications of not utilizing MATLAB for the work are numerous and 

inconvenient. MATLAB provides graphing and plotting capabilities that are time 

consuming to reproduce. There are also the pieces in the solution that will receive only a 

one-sentence mention that took many weeks to develop, test and debug. The Complex 

types and the DFT/FFT routines, for example, involved much testing and coding effort 

and are really only support functions for the receiver framework. There really has been 

no new work on the FFT since Cooley and Tukey, and what is represented as new is 

largely plagiarized directly from (1), which itself is adapted from the original version in 

FORTRAN—two-character variable names and all. No, seriously, go to your favorite 

search page and search for the following exact phrase and just see how many results are 

obtained: 

―// here begins the Danielson-Lanczos section‖  

Even though I had tried to avoid signals and controls, learning that the z-transform 

shares the same generating function as a shift register for the PRN sequences, and that 

discrete control feedback loops can be analyzed and implemented in a similar manner to 

digital filters for signal processing was revealing. I’ve also noticed that the state feedback 

equations used in controls look like the representation of a Mealy state machine in digital 

logic systems. There is something intellectually reassuring in these similarities and 

representational dualities, if for no other reason than it is a form of brain-cell reuse. 
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I’ve chosen to include code that supports the theory or ideas as implementation 

examples. The books that I found most useful were the ones that included coding 

examples, even if they were in C, FORTRAN, or some flavor of BASIC. These were 

easy to translate into any language, and they made solid the abstract concepts the text was 

trying to present. References such as (2) provide no code or example implementations to 

support the work, and no matter how useful it was at some point in time, the development 

effort is largely lost forever. C# shares much of the language syntax of C/C++, so 

examples are included that have little to no dependency on the functions of the .NET base 

class library (BCL) for operational support. If a BCL function is required in the example, 

the operations are either well commented or the behavior of the code is evident from the 

names of the classes and methods invoked. 

The Receiver Development Framework described in this thesis is really just a starting 

point for the exploration of signals-related control applications. The pipeline model and 

interoperability support features allow for a wide range of ideas to be tested, evaluated, 

and integrated into a huge variety of working solutions. 

There’s nothing like a fact you’ve learned yourself; believe in your own experiences.  
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Chapter 1 Introduction  

There are many expected and anticipated advantages of software Global Navigation 

Satellite System (GNSS) receivers over conventional hardware implementations. Among 

these benefits are lower cost, greater flexibility, easier updating or upgrading mech-

anisms, and better adaptability for supporting new signals and frequencies. Software 

receivers serve as fertile ground for researchers exploring the exciting possibilities of the 

development and testing of new signal processing techniques and ideas. Satisfying the 

computational requirements for a real-time software receiver has focused much of the 

current research and development effort on innovative algorithms aimed at reducing the 

necessary processing complexity. For the purposes of proof-of-concept testing, many of 

these ideas have been demonstrated using some combination of Field Programmable Gate 

Arrays (FPGAs) and commercial Digital Signal Processors (DSPs) with software written 

in assembly language. PC-based demonstrations that take advantage of the MMX/SSE 

(streaming SIMD—single instruction, multiple data—extensions) instruction sets 

provided by the Pentium-4 microprocessor have required the use of optimized assembler 

code for their implementations. 

While perhaps reconfigurable, Hardware Definition Languages (HDLs), such as 

VHDL (very high speed integrated circuit hardware description language) or Verilog, are 

intended to describe hardware operations and are not widely considered to be software as 

the compiled binaries are not executed on a general purpose processor. Solutions based 

on a System on a Programmable Chip (SoPC) philosophy, using one or more soft-core 
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processors in combination with various application specific logic blocks, bring the 

features and performance benefits of both hardware and software. However, they also 

suffer all the combined development challenges of hardware and software systems, as 

well, in that they are often difficult to customize, requiring the support of a mix of non-

integrated vendor-specific tools and components. Furthermore, solutions built from 

specialized DSP chipsets using hand-optimized assembly languages and esoteric 

development tools require specialized software skill-sets to reproduce. These systems 

represent more of a one-off customized hardware implementation approach and generally 

fail to satisfy the adaptability and flexibility benefits expected from software receivers. 

Using readily available tools and high-level programming languages makes the 

technology more accessible to would-be system implementers and brings the desired 

software receiver goals closer to realization. Beneficial side-effects include having access 

to larger data storage devices, network connectivity and XML-based web-service 

integration, links to GIS and mapping information, and support for rich application 

functionality that is difficult to provide through low-level code only. 

Eventually, everything falls out from having the local code and carrier precisely 

aligned with the received signal. As developed and tested, with a 2.4 GHz Pentium 4 

Quad-core processor working in conjunction with a front-end sampler sampling at 

approximately 16 MHz, it first appears that there should be enough processing resources 

to manage the amount of work required. The processor clock is roughly 150x faster than 

the sampling-rate, which really implies, though, that there is only 150 clock-cycles worth 

of time in order to process one sample. The situation worsens when the level of 

application parallelism is not ideal (Chapter 5), and the multiple-processors are doing 
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other work unrelated to processing the input signal. Work such as running the operating 

system, responding to user input, and memory management require clock-cycles that 

need to be accounted for. 

A real-time solution will require the use, management, and synchronization of 

multiple threads of processing. The synchronization and scheduling problems are non-

trivial issues that cannot be simply dismissed. 

The key features of this framework are: 

 that it uses a high-level development language (C#) and feature-rich run-time 

environment; 

 that it defines and implements a unique software-based pipeline processing 

model; 

 that it is a flexible and easily adapted object model providing well-defined 

functional interfaces; 

 that it provides an interoperability layer that directly supports integration with 

3
rd

-party tools and other external software and hardware. 

The end result of attempts to characterize and manage the vagaries of multiple 

interacting threads is the realization that achieving some measure of real-time software 

receiver operation will require much more than additional processors and complex 

algorithm optimizations. 

The Receiver Development Framework is the outcome of an analysis process that was 

an attempt at standing back and taking a holistic view of the overall approach to GNSS 
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receiver application research and development. The significance of this work lies in the 

establishment of the collection of object models and base implementations for real-time 

receiver development. Without it, there is a limitation to the degree of improvement to 

software receiver performance that can be made through individual optimization efforts 

alone. By adopting the principles and integration philosophies embodied and presented in 

this work, world-wide efforts can be combined into a unified development model, which 

has the potential for enhancing researcher productivity through the reduction of 

redundant non-value-added activities. 

1.1 Overview and Background 

Global Navigation Satellite System (GNSS) is the general term given to the process 

of identification of user position through the relative location of known orbiting satellite 

platforms. There are currently two operational GNSS services: the Global Positioning 

System (GPS) funded by the US Department of Defense and the Global’naya 

Navigatsionnaya Sputnikova Sistema, which translates to Global Navigation Satellite 

System (GLONASS), developed by the former Soviet Union and now supported by the 

Russian Federation. Both GPS and GLONASS are operated under the joint control of 

military and civil agencies. 

The European Union (EU) in collaboration with the European Space Agency (ESA) is 

currently in the process of deploying the Galileo satellite-based navigation system. 

Galileo is expected to be operated under the control of a civilian agency, but will 

undoubtedly also be used by military authorities. The Chinese have developed and 

deployed a regional satellite navigation system known as BeiDou, that unlike GPS, 
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interacts with the user to determine a position estimate. Another Chinese system–

Compass or BeiDou-2, similar to GPS, is currently under development. 

While the modulation and data encoding methods may differ in their specific 

implementations, GLONASS and Galileo are largely variations of GPS and share many 

similarities. As a result, mixed-constellation receivers have been developed that 

interoperate with navigation data from these systems. 

Software Defined Radio (SDR) is a broad term that can apply to the different aspects 

of transceiver functions. SDR makes use of software digital signal processing (DSP) 

techniques to create or receive data streams that are converted to/from the analog domain 

as close as possible to the antenna in the signal path. For a receiver, the intelligence 

information or message from the carrier is extracted by means of extensive processing in 

software. 

GNSS receivers based on SDR allow a flexible, customizable, and easily extensible 

solution in which the future requirements for system operation can be altered or updated 

after the system has been deployed. For example, a multi system, multiple constellation, 

SDR GNSS receiver could be developed that would allow the resolution of position from 

a mixed set of visible satellites when there is an insufficient number visible from a single 

system. A multiple-constellation system can provide higher positioning accuracies than a 

single constellation system, even when there is a sufficient number of satellite signals 

available from a single constellation. 

The approach most often taken to software-centric signal processing is based on 

Fourier transform analysis. Large data sets in the time domain are captured from an input 
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signal sampling hardware device and then converted to the frequency domain through a 

Discrete Fourier Transform (DFT) or its fast (FFT) alternative. Once in the frequency 

domain, more complicated operations such as correlation and convolution can be 

replaced by multiplication. However, this approach is very difficult to make work in a 

real-time manner, especially at high sample rates and in situations where the signal needs 

to be processed for more than one data stream from more than one transmitting source. 

Analyzing signal data in parallel requires either that all tracked sources have access to 

copies of the incoming data stream, or that they have access to a shared buffering data 

structure. Maintaining multiple copies of the data can create memory resource issues, and 

sharing the data requires a synchronized or thread-interlock mechanism that limits peak 

system performance. Adding to this complexity is the further need of establishing a 

common reference time base or source that the data demodulators can work from, which 

serves only to increase the design headaches. 

While frequency-transform features have been supplied, the Receiver Development 

Framework (RDF) takes an adaptable and flexible asynchronous pipeline approach to 

working with each sample as it arrives in the discrete time domain for most of the signal 

processing activities. Software representations of block diagrams for hardware-based 

receiver components can be developed and ―plugged in‖ to the framework pipeline, 

making the development effort easier and faster. More importantly real-time performance 

has been considered essential and is achievable with the pipelined approach. 

The framework provides implementations of many adaptable pieces that can be used 

to build a rich variety of functionality. The interoperability features of the framework 

support the direct integration of custom or commercial hardware and software 
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components at any point in the processing sequence. As a result, components can be 

described and simulated using software representations for baseline performance 

characterizations. Then, hardware versions can be synthesized using an HDL and FPGA 

toolset using parameters derived from the software components. These hardware pieces 

can be subsequently connected back into the pipeline, replacing the software component, 

so that performance comparisons for improvements from the baseline can be made. 

Alternatively, existing libraries of software can be directly integrated with the framework 

for testing without the need to rewrite previously tested code. 

The framework was developed and tested with a GPS receiver implementation for 

measuring the required observables of code and carrier phase, and carrier frequency 

(Doppler) necessary for a pseudorange measurement. However, extensions to the 

framework are possible that would make it suitable for a wide range of applications, such 

as audio/video signal processing and feedback control systems. 

The implementation of the framework has been developed using the Microsoft .NET 

Framework version 3.5 and the C# development language, with some device drivers 

written in C. However, as described, the framework could be developed in other 

languages and operating environments. The design is object-oriented, so tools and 

languages that directly support an object-based development paradigm will be more 

suitable for future adaptations. 

1.2 Previous Work 

While a software-only approach to GNSS has been predicted, highly anticipated, and 

widely researched for some time, only recently has the capability of general purpose 
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CPUs been up to the required signal processing performance demands. Recent publicly-

disclosed SDR GNSS attempts, however, are non-real-time, have specific hardware 

dependencies, and often work with a single system on a single frequency. Other soft-GPS 

solutions are proprietary or largely commercial endeavors that poorly support the open 

environment needed for receiver research. 

General background information on the design and operation of GPS receivers can be 

found in (3) and broader but related details on spread-spectrum communication systems 

in (4). Additional information on software signal processing methods are provided in (5), 

(6) and (7). These references develop some of the necessary theory for software-based 

GNSS receivers. 

Many solutions are intended more for modeling the behaviors of individual system 

functional blocks for hardware implementations, and lack a whole-system approach for 

performance analysis. Taking a direct block-diagram approach towards receiver design, 

and then constructing it using iterative frequency-domain transformations, bypasses the 

opportunity for discrete optimizations and yields non-real-time performance 

characteristics. Solutions such as (8) possess real-time behaviors, but are based on 

specialized hardware chipsets, support only GPS, and lack extensibility for dual-

frequency support. 

Papers such as (9) discuss the current research activities, and provide some guidance 

to the architectural requirements, but lack documentation on any substantive 

implementations. The work discussed in (10) is an FPGA-based real-time GPS receiver 

connected to a PC for graphical display of the results. While solutions that include an 
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FPGA fabric for signal processing acceleration can be regarded as ―reconfigurable,‖ 

modifications to the systems require non-trivial tools and skills. The limited extensibility 

of these systems negatively impacts their flexibility for use in future, wider research 

areas. 

Reference (11) uses the SIMD MMX (single instruction multiple data multimedia 

extensions) instructions on the Intel x86 processor. By using C++ and inline assembler, 

the code gains a 70% performance improvement—which demonstrates that it is possible 

with targeted optimizations to achieve the necessary work throughput from a PC 

processor. However, the implementation does not represent a flexible application 

framework for GNSS research. 

References (5) and (12) are non-real-time projects in that they are offline batch-

oriented processes, requiring specific proprietary hardware. These are predominantly 

MATLAB simulations for functional analysis purposes. The work presented in (13) is a 

proprietary library of GPS receiver pieces and not a complete general-purpose solution 

framework. 

Article (14) describes Galileo acquisition software techniques in a non-real-time 

environment and no concrete implementation details are provided. (15) represents the 

development and testing of a hardware simulator using non-real-time software 

techniques. (16) is also a non-real-time MATLAB GPS simulator for a single satellite 

signal. 

The works of (17) and (18) are hardware-dependent FPGA-based special-purpose 

solutions and not flexible frameworks for further development. (17) is an attempt to 
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improve or offset limitations in GPS precision under weak-signal conditions using SDR 

for time-of-arrival (TOA) corrections, and (18) is a proposed reference implementation of 

a prototype SDR + FPGA architecture GNSS receiver. 

References (2) and (19) develop the mathematical models for digital delay and phase-

lock loops (DDLL and DPLL) for use in GPS receivers and present software simulations 

of the results. In particular, (2) states that the work included a software baseband receiver 

implementation, but it is developed for a simulated signal only and ignores the effects of 

the navigation message. The work of (20) was a study on post-processing data from an 

early unconventional civil GPS receiver, Satellite Emission Range Inferred Earth 

Surveying (SERIES), and was similar, in some respects, to other such data post-

processing efforts at UNB. 

Many of the so-called real-time systems have been developed more for real-time 

signal simulation graphing and plotting functions for the purposes of validation and 

verification. For others, the real-time performance attribute has never been demonstrated 

operationally, only modeled and simulated, such as the systems described in (21) and 

(22). 

On-going research at the University of New South Wales (UNSW) Satellite 

Navigation and Positioning (SNAP) lab is taking the direction of developing combination 

hardware (FPGA) and software (C) receiver implementations (23) that are targeted for a 

single hardware configuration. 

At the 2008 International GNSS Service (IGS) Workshop in Miami Beach, 

recommendations made in a presentation by researchers from Cornell University and 
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University FAF Munich (24) seem to support the need for further development of open 

software GNSS receivers. The presentation encourages the definition of an IGS-

sponsored software receiver and the establishment of an IGS format for exchange of data 

among software receivers, and identifies the need for benchmark comparisons of software 

receiver performance to traditional commercial hardware devices. 

There are so many software receivers of the post-processing non-real-time variety 

that a comprehensive evaluation of the nature and characteristics of all of them would be 

practically impossible. Nearly any programming language that can open a file and 

perform basic mathematical operations can be used for the development of these projects. 

A good overview of the current state of software GNSS receivers can be found in 

reference (25) and issues with their testing protocols and challenges covered nicely in 

(26). 

The variety of MATLAB-based solutions, such as those presented in (16) and 

included in (5), like the examples provided by (6) and (7), are post-processing receivers 

and possess no real-time design intentions or characteristics. 

There are also highly optimized receiver components that are written in some 

combination of assembler and C++ claiming real-time performance benefits. However, 

the designs and methods of implementation of test beds such as (18), or the software 

defined radio receivers for GPS and GNSS discussed in (10) and (17) are cobbled 

together from the complex interconnection of hardware dependent system prototyping 

components. Solutions such as these are difficult to repeat and customize, and it is even 
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harder to incorporate their presented generalized conclusions into a specific application 

development and testing environment. 

Any relevant discussion on threading, parallelism, and the required level of inter-

process communication and data structure synchronization are conspicuously absent from 

the vast multitude of emerging real-time software receiver implementation papers. In 

(27), a real-time 12-channel SIMD software correlator is described, but the work does not 

identify any of the challenges or their solutions for managing the necessary level of 

processing parallelism. 

The contributions and key differences of the work presented in this dissertation from 

the previously identified literature are that 

 it is entirely a software solution, with the exception of the hardware front-end, 

that does not rely on accelerator devices to function; 

 it is an object-oriented solution architecture that defines the generalized set of 

interfaces and base-class implementations for future receiver development; 

 it presents a working view of real-time systems and identifies the issues 

associated with managing shared resources across multiple processing 

pathways; 

 it establishes a pipeline model for software-based signal-processing work that 

can be customized and readily adapted for use in a broad range of signal and 

control-related applications. 

Most notably, the basis of the reference implementation of the framework is the 

signal processing methods presented in (5), but with greater consideration given in the 
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design of the modules and components for how these things will be shared and improved 

in the future. Rather than merely providing a library of code that others will need to pull 

apart to extricate and augment, the object-oriented nature of the signal processing 

pipeline components facilitates a much simpler approach to customization and 

specialization. Innovative new functionality will be able to be encapsulated in a self-

contained assembly that can be made available to other researchers, who will only have 

to add the components directly to their own projects. The process will eliminate the 

lengthy setup and build times associated with the configuration of cumbersome non-

homogeneous development environments. 
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Chapter 2 GPS Operation 

The known propagation characteristics of radio waves make their use for obtaining 

position information as valuable as their use for communication. Radionavigation began 

with the development of Loran (long-range navigation) system during WWII, and 

subsequently accelerated with the advent of ground-based short-range line-of-sight 

navigation aids such as the VHF Omni-directional Radio Range (VOR), the Instrument 

Landing System (ILS), and the Microwave Landing System (MLS) (3). 

2.1 Trilateration 

Estimation of position based on distance measurements to reference points at known 

locations is called trilateration. By measuring the length of time taken for a radio signal 

to propagate from a transmitter to an observer, combined with the known speed of travel 

of radio waves, it is possible to determine the distance between the transmitter and the 

observer. A radionavigation system based on this idea is referred to as a time-of-arrival 

(TOA) system (3). 

As illustrated in Figure 2-1 [adapted from (3)] if one can determine the distances to 

three radio wave transmitting towers operating at known locations, then one can 

unambiguously determine their own position.  
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Figure 2-1—Trilateration: Determining the range to three transmitters at known locations 

permits an observer to calculate their position, point P 

By measuring their distance, or range, to transmitter T1 with known coordinates, the 

observer’s line of position (LOP) must lie on a circle of radius r1 that is centered on T1. 

Range information from a second tower T2 gives a circle of radius r2, thereby reducing 

the uncertainty in the observer’s actual location to the two points where the circles 

intersect, P and Pʹ. While it may be possible to reject one of the points based on other 

physical information, it typically requires finding the range to a third transmitter to 

unambiguously determine the observer’s position, point P. 

To extend the system to 3-dimensional solutions, it is necessary that the angle of 

elevation between at least one of the transmitters and the observer be large (3). Since 

ground-based transmitters are limited by practical tower heights, the solutions obtained 

from them are restricted to 2-dimensions. In the case of a satellite-based transmitter, each 

range measurement would result in an LOP described by the geometry of a sphere, the 
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surface of which represents a potential area of position. Three intersecting spheres would 

identify a coordinate in 3-dimensions at or near the surface of the earth. 

GPS is a trilateration-based TOA system. In order for a user of the system to make a 

position determination (position fix) it is necessary that information regarding the nature 

and orbit of the satellites that are visible to the receiver (in view) be communicated at the 

time that the fix is made. 

At an approximate orbital radius of 26,560 km the GPS satellites move in space at 

about 4 km/s, yet their positions can be accurately predicted with an error of less than a 

few meters 24-48 hours in advance (3). The transmission times are imprinted on the 

signals using nearly perfect and nearly perfectly synchronized atomic clocks on the 

satellites. The precise estimation of the arrival times at the receiver is made possible by 

spread-spectrum signaling, which allows each satellite to transmit its unique signal on a 

shared frequency. 

2.2  System Overview 

GPS consists of a baseline constellation of at least 24 satellites (they try to keep 30 or 

more functioning at all times) that operate on the L1:1575.42 MHz, L2:1227.6 MHz, and 

L5:1176.45 MHz frequencies. All current satellites transmit a public C/A-code (Coarse 

Acquisition) on L1 and an encrypted P(Y)-code on L1 and L2. Presently, there is only 

one satellite actively transmitting on L5—full operational capability for the L5 signal is 

scheduled for 2018 when plans call for 24 L5-capable satellites to be on orbit. The latest 

generation of satellites, Blocks IIR-M and IIF (―R‖ is for replenishment and ―F‖ is for 

follow-on), additionally transmit a new L2C civil code on L2 (7). 
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The navigation data transmitted by the satellites are Binary Phase Shift Keying 

(BPSK) encoded at 50 bps and broadcast using a direct-sequence spread-spectrum 

technique known as Code Division Multiple Access (CDMA) (5).  

2.2.1    System Architecture 

The components of the GPS architecture are organized into three functional groups or 

segments: the space segment, the control segment, and the user segment. Each segment 

serves a specific function or describes a particular operation of the complete system. 

The space segment is where the satellites live. The baseline GPS constellation is 

comprised of at least 24 satellites that are distributed in six orbital planes inclined 55° to 

the equator. Each orbit has four primary satellites and room for several spares. The 

satellites are identified by a letter (A-F) for the orbital plane and a number (1-6) for the 

order of the satellite within the plane. With an orbital period of approximately 12-hours, 

the primary 24 satellites cover the earth in such a way that at least four, and possibly as 

many as 12, are visible at any time (7). 

The control segment consists of the Master Control Station (MCS) located at 

Schriever Air Force Base in Colorado, with a backup at Vandenberg Air Force Base in 

California; several unmanned and remotely operated monitor stations spread around the 

world; and the ground antenna upload stations that receive telemetry from, and transmit 

commands to, the satellites. The role of the control segment includes monitoring and 

maintenance of the satellites’ health, orbit, and time (GPS Time), and to predict the 

satellites’ orbital information (the ephemerides) and clock parameters that are required by 

a receiver in order to make position determinations. 
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The user segment is the part of GPS that most people are familiar with, namely the 

receivers and devices. It is the responsibility of the receiver to identify and track in-view 

satellites, to detect and decode the navigation message, and to calculate a navigation 

solution. The unknown difference, or bias, between the satellite clock and that of the 

receiver is overcome by an additional parameter in the ―fix‖ calculations, shown in 

Equation 2-3. 

2.2.2    Signals 

GPS uses basically two types of spreading codes and operates currently on the L1 and 

L2 frequency bands. Support for L5, as previously mentioned, is planned but is not fully 

operational. L1 contains a civilian-use C/A code and a military-only encrypted P(Y) 

code, while L2 contains only P(Y). There is now also a civilian code on L2—the L2C—

however, a portion of the L2 frequency band is shared with Aeronautical Radiolocation 

services (ground radar) on a co-primary basis and may be susceptible to interference from 

non GPS sources (3). 

Each satellite is assigned a unique ID code that it uses to identify its signal 

transmission. In order to make a position determination, a receiver must identify the code 

and then synchronize a local replica of it for at least three satellites (four are necessary to 

remove receiver timing biases), and track these signals for eighteen to thirty-seconds. 

2.2.2.1    Frequencies 

Currently, GPS signals are broadcast on two carrier frequencies that are known as 

Link-1 (L1) and Link-2 (L2). The frequency of L1 is 1575.42 MHz, and L2 is 1227.6 
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MHz. These signals are derived from a very accurate atomic clock on board the satellite 

operating at 10.23 MHz, and can be related to them by: 

L1 = 154 x 10.23 MHz = 1575.42 MHz 

L2 = 120 x 10.23 MHz = 1227.6 MHz 

When the clock signal is generated, its frequency is adjusted to be slightly lower by 

4.567x10
-3

 Hz in order to account for relativistic effects, making the satellite reference 

frequency 10.229999995433 MHz on the ground before launch, rather than 10.23 MHz. 

When received by a receiver, the signals should be at the correct frequencies. However, 

the relative motion between the satellite and the receiver can produce a Doppler shift in 

the frequencies by as much as ±5 kHz (6). 

The total radio-frequency power at the transmitter input port on the satellite is 

approximately 50 W (3), about half of which is allocated to the L1 C/A code. At the 

receiver antenna, the signal energy is less than the background noise level (≈ -160 dBW). 

As with all CDMA-based systems, it is the receiver’s ability to reproduce the PRN 

sequence used by the transmitter that allows for the extraction of the signal buried 

beneath the noise (3). 

Since the GPS satellites all transmit on the same carrier frequencies, there is the 

possibility that they will interfere with one another. In order to help avoid this 

interference, it is desirable that all signals appear to have the same power level at the 

receiver. Otherwise, a strong signal may cause a large cross correlation peak with a weak 

signal, and the receiver will miss the desired cross correlation peak in the weaker signal 
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(6). If transmitted isotropically, less power will be seen by a receiver from a satellite low 

on the horizon than from one directly overhead. Consequently, the satellite antennae are 

designed to concentrate more signal energy on the edges than in the middle of the beam.  

The transmitted signals are BPSK modulated with the 50 bps navigation data and 

PRN chipping codes. The chip rate (frequency) determines the amount of signal 

spreading that occurs and creates a transmitted power spectral density, which is often 

modeled in the form of a 𝑠𝑖𝑛𝑐2 function  
𝑠𝑖𝑛  𝑥

𝑥
 

2

. The main lobes of the spectrum are 

located at the carrier frequency ± the chipping rate, making the first null-to-null 

bandwidth equal to twice the chipping rate. 

2.2.2.2    Spreading Codes 

The present constellation of GPS satellites supports the coarse/acquisition (C/A) and 

the precision (P) codes. The C/A code is a 1023-chip code that is BPSK modulated onto 

L1 at a rate of 1.023 MHz, which makes the first null-to-null bandwidth of the primary 

signal lobe 2.046 MHz. With a 1.023 MHz chip rate and length of 1023 chips, the C/A 

code repeats itself every millisecond. 

The P code is modulated at 10.23 MHz, making the main lobe null-to-null width of 

the spectrum 20.46 MHz. The P code is not directly transmitted but is first encrypted by a 

W code, the details of which are a classified US military secret, to generate the Y code. 

Referred to as the P(Y) code, it is not directly available to civilian users, and requires 

access to a cryptographic key that the military will only provide to authorized users (3). 

Civil dual-frequency receivers exist that acquire P(Y) measurements through sub-optimal 

semi-codeless techniques. 
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The P code is generated from two PRN sequences. One sequence is 15,345,000 chips 

in length, and the other is 15,345,037 chips long. These two numbers have no common 

factors and are, therefore, relative primes (6). The duration, or period, of the first 

sequence is 1.5 seconds  
15,345 ,000

10.23×106    and the total combined code length of these two 

sequences is 1.5 x 15,345,037, or 23,017,555.5 seconds—just a bit (≈ 9 hours) longer 

than 38 weeks. 

Instead of using one code for 38 weeks, the P code is reset each week so that only a 

one-week-long portion is used, allowing for 37 different one-week-long codes. Each of 

the 32 possible satellite IDs is assigned to a different section of the code, with five 

sections being reserved for operational uses such as ground transmission. The time of the 

GPS Week must be known very accurately in order to perform signal acquisition; 

normally, the precise time is found by first acquiring the C/A code and then, using the 

known timing relationship between the two, locking onto the P(Y) code (6). The signals 

and contained codes are summarized in Figure 2-2. 
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Figure 2-2—GPS Frequencies and Codes: Note that the L5 frequency and the L2C and M codes 

are only active on some satellites 

The C/A codes belong to a family of PRN sequences known as Gold codes, named 

after Dr. Robert Gold, that are formed by the product of two maximal length codes, 

identified as G1 and G2. Gold codes are an important class of periodic PRN sequences 

that exhibit good periodic cross correlation and autocorrelation properties. 

Each code generator is a 1,023-bit sequence formed by a 10-stage maximum length 

linear shift register that is driven by a 1.023 MHz clock. Maximum-length sequences (m-

sequences) can be created by employing modulo-2 feedback from the shift register output 

and intermediate stages. The feedback tap positions, which determine the output pattern 

of the sequence, can be expressed as binary polynomials. 

The generator function for G1 can be written as 1 + 𝑥3 + 𝑥10, meaning the feedback 

is from bits 10 and 3. The corresponding polynomial for G2 is 
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1 + 𝑥2 + 𝑥3 + 𝑥6 + 𝑥8 + 𝑥9 + 𝑥10  2-1 

so, feedback is from bits 2, 3, 6, 8, 9, and 10 (6). 

A pair of taps is taken from stages in G2, modulo-2 added together, and then added to 

the output of G1 to form the C/A code. The positions of the tapped stages in G2 

determine the satellite ID. Initially, all stages of both G1 and G2 are reset to the ―1s‖ 

condition. Figure 2-3 shows the shift register configuration for satellite ID #2 using the 

G2 taps 3 and 7. 

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

G2 Generator

G1 Generator

G1

G2 C/A Code

Taps determine satellite ID

 

Figure 2-3—C/A Code Generation: The C/A code is formed by the product of two sequences, G1 

and G2 

Even though it is 1,023-chips long, when compared with the data rate of 50 bps, the 

C/A code would be considered a short code; the C/A code is repeated 20 times for each 

data bit. With a 38 week period, obviously the P code would be a long code. Longer 

codes with higher chipping rates are more desirable than shorter ones from a positioning 
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point of view since the length of the code limits the precision of the position that can be 

determined. Each C/A chip is approximately 1μs wide, which, when multiplied by the 

speed of light, corresponds to a distance of 300 m. While the signal travel time can be 

measured to a small fraction of a chip, however in general, the greater the ambiguity in 

the measurements of arrival time, the greater the uncertainty in positioning (3). 

2.2.3    Transmitted Data 

The data transmitted by the GPS satellites includes information regarding the health 

of the vehicle, its key orbital parameters, and the system time. A reduced precision 

version of orbital data for the entire satellite constellation, called an almanac, is also 

included to help receivers predict which satellites should be visible into the near future. 

While only a short amount of signal, about 1 ms, is required to determine which satellites 

are currently in view, it is necessary to track and demodulate the signal for up to 12.5 

minutes in order to receive the entire navigation message, including the almanac, 

ionospheric correction data, Universal Time offset, and so on. 

2.2.3.1    Navigation Message 

As shown in Figure 2-4, the GPS navigation message is transmitted as words that are 

30-bits in length. Ten words make up a sub-frame, and a frame is composed of five sub-

frames. At 50 bps, each navigation data bit is 20 ms long, so it takes 600 ms to transmit a 

word, and six seconds to send a sub-frame. It takes 30 seconds to transmit all five sub-

frames of a frame, and the entire message is 25 frames long, repeating every 12.5 minutes 

(6). 
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Figure 2-4—GPS Navigation message structure 

As previously discussed, essential to the principle of trilateration is the need to know 

the exact location of the reference transmitters. The precise orbital information for each 

of the in-view satellites is contained in only the first three sub-frames of each frame of 

the navigation message, so a minimum of 18 seconds of data is required to accurately 

determine the satellite’s position. However, since the data is being continuously 

transmitted by the satellite, it is not possible for the receiver to know exactly when these 

specific sub-frames will be transmitted. To be certain of receiving all three ephemeris 

sub-frames, it is necessary to wait until all five sub-frames in the frame have been sent. 

Consequently, 30 seconds of the navigation message, at a minimum, must be recovered to 

be guaranteed the delivery of sub-frames one through three. 

To help ensure error-free recovery of the transmitted navigation message, the data 

bits are first encoded using a Hamming (32, 26) error detection code (7), meaning for 

each 32-bits sent, 26 of them are data. Each word in the navigation message contains 30-

bits—24 are data and six are parity bits. In order to perform a parity check, eight parity 

bits are used by incorporating the last two parity bits from the previous word in the 
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parity-generation algorithm. There are 30 parity generating equations: one for each data 

bit, and one for each parity bit. Complete details on the data contained in the navigation 

message are defined in the GPS Interface Specifications (28), while interpretations and 

explanations can be found in references (5), (3), (6), and (7). 

2.2.3.2    Ephemerides 

Each satellite transmits key orbital parameters in sub-frames 1-3 that a receiver uses 

to correctly determine its position. These parameters, called an ephemeris, are predicted 

by the Master Control Station based on code and carrier phase measurements at the 

monitor stations. Parameter sets covering the next fourteen days are uploaded to the 

satellites daily. The data set that a satellite broadcasts changes every two hours, and 

without daily refreshing would deteriorate over time (3). 

2.2.3.3    Almanac 

In addition to its own ephemeris data, each satellite transmits as part of its navigation 

message, in sub-frames four and five, a catalog of a coarse version of the ephemerides of 

all satellites in the constellation known as an almanac. The almanac allows a receiver to 

determine approximately when a satellite will come into view above the horizon given a 

rough estimate of the user position. The almanac parameters are not required to be as 

accurate as the ephemeris, and serve only to let the receiver plan when to initiate satellite 

signal acquisition (3). With PC-based prediction software, users can also utilize the 

almanac data for observation planning purposes. 

2.2.4    Position Determination 

A receiver determines a user’s position by first calculating the distance, or range, to 

the satellites that are in view based on 
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𝜌 =  (𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑙) 𝑥 (𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔𝑕𝑡 𝑖𝑛 𝑎 𝑣𝑎𝑐𝑢𝑢𝑚) 2-2 

The time of travel is derived from code and carrier phase measurements; however, as 

a side effect of the unsynchronized clock in the receiver there is a timing bias between the 

receiver and the satellite. The offset from GPS Time for each satellite clock is included in 

sub-frames 1-3 of the navigation message, so the same bias can apply to all signals at the 

receiver. The measured value of ρ will be either too large or too small by some amount, 

and is referred to as a pseudorange. As shown in Figure 2-5, by measuring the 

pseudoranges to at least four satellites (𝜌 𝑘 𝑓𝑜𝑟 𝑘 = 1… 4) the 𝑋,𝑌, 𝑎𝑛𝑑 𝑍 coordinates 

of the position can be determined and the timing bias, 𝑏, can be calculated. To do so 

requires solving a set of four equations for four unknowns in the form of 

𝜌(𝑘) =  (𝑥 𝑘 − 𝑥)2 + (𝑦 𝑘 − 𝑦)2 + (𝑧 𝑘 − 𝑧)2 + 𝑏 2-3 

Theoretically, solving this set of nonlinear equations will result in two possible 

solutions. However, only one solution is near the earth’s surface and the other is in space. 

The iterative methods typically used for solving these equations begin with initial 

conditions at the center of the earth, guaranteeing convergence on the correct solution 

rather than the one in space (6). 
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Figure 2-5—Fixing a position requires finding the pseudoranges to at least four satellites 

There are many sources of error in making position determinations, and the above 

model serves only as a most basic of starting points. 

2.2.5    Receiver operation 

The role of the receiver is to determine the user’s position, velocity, and time. It does 

this by processing and separating the signals transmitted by the satellites, measuring 

signal transit times and Doppler shifts, and decoding the navigation message to determine 

the satellites’ position, velocity, and time parameters (3). 

To acquire a signal, the receiver generates a local replica of a known C/A code and 

attempts to align it with the signal from a satellite by sliding it in time and computing the 

cross correlation between the two. When the codes are aligned, a peak will appear in the 

correlator output. Code tracking is performed through the feedback mechanism of a 

delay-lock loop (DLL). Adjustments from the DLL keep the code aligned with the 

incoming signal (2). The aligned code is used to de-spread the signal, leaving only the 

carrier modulated with the navigation data. The carrier frequency and phase are tracked 
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using a phase-lock loop (PLL), which essentially extracts the data bits of the navigation 

message by identifying the phase reversals caused by the data bits. A receiver block 

diagram is presented in Figure 2-6. 
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Figure 2-6—GPS receiver block diagram 

The time shift required to align the receiver-generated code to that of the satellite is 

the apparent transit time of the signal, modulo 1 ms. The code chips are generated at 

known instances according to the satellite clock. The time of reception is determined by 

the receiver clock and the receiver can determine when the chip was generated essentially 

by reading the satellite time (3) from the navigation message. 

The whole system, including the ranging capability and the navigation message 

transmission is based on spread-spectrum CDMA data communication. 
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Chapter 3 Spread-spectrum Fundamentals 

Spread-spectrum transmission is a signaling technique that utilizes a specially 

constructed pseudo-random sequence to modulate an information carrier in such a way 

that the signal energy is spread over a much wider bandwidth than that of the original 

information-bearing signal. A receiver uses a locally generated and synchronized version 

of the modulating sequence in order to de-spread the signal and extract the information 

content (29). The elements of the pseudo-random-noise (PRN) sequence, the ones and 

zeros, are called chips in order to differentiate them from the data bits that carry 

information. The rate at which the spreading code is applied to the signal is referred to as 

the chip rate. This chapter presents general information on spread-spectrum 

communications that is relevant to its application in GPS transmitters and receivers. 

3.1 Spread-Spectrum Types 

There are two frequently used flavors of spread-spectrum, namely frequency 

hopping, where the signal is rapidly jumped between different frequencies within the 

allocated bandwidth; and direct sequence, where the digital data is directly combined 

with a higher frequency coding signal. While these two methods cover most applications, 

there is also one other: time hopping, in which the signal is transmitted in short, pseudo-

random bursts and the receiver knows when to look for it. Time hopping is not widely 

implemented, and will not be discussed any further. Although frequency hopping is not 

used by GPS, it is described for completeness. 
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With either system type, due to the increased bandwidth of the spread-spectrum 

signal, the power spectral density is reduced, so the signal appears as so-called ―white‖ 

noise to an unsynchronized receiver. This noise-like characteristic makes spread-

spectrum systems less likely to suffer negative performance effects in the presence of 

deliberate or accidental narrow-band noise and interference sources and makes the signal 

harder to intercept without a priori knowledge of the signal structure.  

3.1.1    Frequency Hopping 

When a pseudo-random sequence is used to shift the carrier frequency of an 

information-modulated signal such that the transmitted signal occupies many different 

frequencies, each for a short period of time, this is frequency-hopping spread-spectrum, 

or FHSS. 

As shown in Figure 3-1, the FHSS transmitted bandwidth is determined by the lowest 

and highest hop frequencies, while the number of hop positions is determined by the 

system bandwidth in relation to the individual hop bandwidth. At each hop, the FHSS 

signal is a narrowband transmission with all power concentrated on one channel; 

averaged over time, the transmitted signal occupies the entire spread-spectrum 

bandwidth. The hopping pattern is determined by the pseudo-noise sequence and is 

typically not numerically channel sequential. 
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Figure 3-1—Frequency Hopping Spread Spectrum: The total bandwidth available is divided into 

multiple channels, and each channel is occupied randomly in turn by the modulated carrier signal 

for a short interval of time 

3.1.2    Direct Sequence 

With direct-sequence spread-spectrum, DSSS, a pseudo-random noise sequence is 

used to shift the phase of the modulated signal at a rate (chip rate) that is a multiple of the 

information rate (bit rate), and establishes the degree of signal spreading. The maximum 

chip rate (Rc) is determined by the design of the system and limits the transmitted 

bandwidth. Unlike with FHSS, where all of the signal energy is concentrated in a narrow 

band for a short interval of time, DSSS places all of the signal energy across all of the 

bandwidth all of the time. To recover the signal, a receiver must be synchronized to the 

spreading sequence; an unsynchronized receiver will detect only noise. 
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Figure 3-2—Direct Sequence Spread Spectrum: The transmitted carrier frequency determines 

the position of the center of the spectrum, while the width (spreading) is determined by the chip rate 

(Rc) 

Figure 3-2 gives the general appearance of the frequency spectrum of a DSSS signal 

that is transmitted at a carrier frequency of Fc. The effect of the chip rate is to spread the 

signal energy across the entire available bandwidth. 

3.2 Transmitter and Receiver Architecture 

Since GPS uses the direct-sequence form of spread-spectrum, the following 

discussion on transmitters and receivers will highlight the basic principles of their 

operation in DSSS applications, and emphasizes the specifics of the Binary-Phase-Shift-

Keying (BPSK) PRN chip modulation employed by the GPS satellite transmitters. 

3.2.1    Modulation 

The stages of a DSSS modulator are represented schematically in Figure 3-3 (4). The 

nonreturn-to-zero (NRZ) binary data [actually, a binary 0 maps to a +1 and a binary 1 to 

a -1] are phase-shift modulated onto a radio-frequency (RF) carrier. This operation can 

be represented by a multiplication function that shifts the carrier phase by either 0 or -π 
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radians. The resulting product is then multiplied by the pseudo-random noise, 𝑃𝑁(𝑡), 

pattern (also -1, +1) such that whenever the product of 𝑑(𝑡) and 𝑃𝑁(𝑡) is -1, the carrier is 

phase shifted by –π radians.  
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Figure 3-3—BPSK DSSS Transmitter: The input data, d(t), is combined with the carrier and 

then binary phase shift keyed with the pseudo-noise sequence 

3.2.2    Demodulation 

Once modulated and transmitted, the signal cannot be detected by a conventional 

narrow-band receiver. In order to detect and demodulate the data contained in the signal 

it is necessary to remove not only the carrier, but also the spreading code. Often referred 

to as de-spreading, the signal detection and demodulation process requires that locally 

generated versions of the carrier and PRN sequence be kept in synchronization with the 

received signal. Carrier and code removal are codependent activities. In the case of a 

Doppler-shifted signal, a close estimate of the carrier frequency is needed in order to 

identify the presence and offset of a particular spreading code, and an aligned code-

removed version of the signal is necessary in order to accurately determine the signal 

frequency. Current methods for acquiring a signal are different from tracking one. Some 
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receiver references, such as (3) and (29), discuss the first problem of removing the RF 

carrier and then generating a synchronized PRN sequence. Others, for example (4) and 

(6), consider the problem of removing the spreading PRN code first and then the carrier. 

Either way, it is essential to remove the RF carrier component first, and then determine 

the required code and phase synchronization necessary to fully demodulate the data. This 

approach is modeled in Figure 3-4 where the signal is first amplified by a low-noise 

amplifier (LNA), mixed with a locally-generated RF carrier, and then band-pass filtered 

(BPF). 

LNA

PN

BPF

RF

Output Data

 

Figure 3-4—Direct Sequence BPSK receiver model 

3.3 PRN Sequences and Generators 

Essential to spread-spectrum communication implementations is the ability to 

generate a deterministic pattern, or sequence, of binary 1s and 0s that exhibits random 

noise-like properties that can be used to spread the bandwidth of the signal energy. As the 

pseudo-random epithet implies, these sequences are predictable when the generating code 

is known, but appear random to an observer when the code is unknown. Without the 
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ability to predict the sequence, it would be impossible for the receiver to generate a local 

replica to use to demodulate the data. 

Besides a noise-like appearance, other characteristics of an ideal spreading code are a 

zero cross correlation with other codes, maximum (peak) autocorrelation for zero delay, 

and zero autocorrelation for all non-zero delays. Additionally, ideal odd-length codes will 

exhibit a balance property in that the number of 1s exceeds the number of 0s by one, and 

that the probability distribution of consecutive patterns of all 1s or all 0s (run-lengths) 

behaves in a 
1

2𝑅
 manner (29), where R is the length of a run. 

The cross correlation function can be used to find and track code synchronization. A 

distinct peak will appear in a correlator output when the local version of the code is time 

aligned with the received code sequence. With an odd-length balanced code, there will be 

one more 1 in the sequence than zeros, such that the normalized result of the correlation 

will be 1. 

The length of a PRN code, long or short, is considered in terms of the associated data 

rate. A short code has the same pattern or portion of the PRN sequence repeating for each 

data symbol, whereas a long code is much longer than a data symbol (29). 

Most practical codes utilize maximum-length sequences (m-sequences) that are 

derived from the outputs of linear feedback sequential shift registers implementing 

functions determined by the properties of irreducible primitive binary polynomials. The 

employed algorithms are described and supported by extensive theoretical work in ring 

and finite-field arithmetic theory, some of which can be found in references (4), (29), and 

(30), with highlights provided in Appendix C. 
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Chapter 4 Object-Oriented Analysis and Design 

Much of the flexibility and extensibility of the Receiver Development Framework is 

derived from leveraging object-oriented design techniques and the languages used to 

implement them. In order to provide a basic appreciation for these concepts, the 

following sections will briefly discuss the underpinnings of object-oriented analysis and 

design and will provide working definitions for commonly used keywords and phrases. 

Unlike procedural-based structured programming techniques that emphasize 

functions over data, where the focus is on black-box representations of processes, an 

object-oriented approach is to view the problem as a set of items and related behaviors, 

objects and methods, that are essential to the system being analyzed.  

In the C language, the basic unit of work is the function. In an object-oriented 

solution it is the class method. In a parking-lot application, for example, the basic 

elements might be the Lot, the Space, and Vehicle classes. Each class within the 

application has methods that perform transformations on the internal state information or 

other object data, and that are used to send and receive messages from outside objects. 

Encapsulation, Inheritance, and Polymorphism are the three defining traits of 

object-oriented solutions. 

4.1 Encapsulation 

A class is a design description for the creation of an object, while an object is an 

instance of a class that has been constructed from the description. Classes describe the 
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basic components, their operations, and characteristic features of the system. A class 

name declaration represents the boundary of encapsulation for critical internal data stores 

and the available methods that can directly modify or manipulate their values. 

Encapsulation reduces potential coupling between unrelated entities, minimizes 

unintended side effects, and helps to ensure integrity of the object.  

The class description may include the declaration of member variables that hold the 

state of the object. Two instances of the same class may have different states, depending 

on the values of their member variables. Members can be declared as being private, 

internally accessible only by other class members, or public, accessible to external users 

of the class instance. Private members that are accessible only through a public get/set 

accessor method are called properties. For example, a class of type parking Space may 

have a private MaxWidth member that is accessed by calling get_ MaxWidth and set_ 

MaxWidth property methods. 

Objects can also encapsulate instances of other classes, either of the same or different 

type. In the Parking application example, a class of type Lot may hold references to many 

Spaces, and each Space could contain a Vehicle that was placed there by calling the 

Vehicle::Park method. Object references may take the form of C pointers or arrays, but 

may also be implemented in a language-specific manner through specialized containers 

or mail slots that have been likewise implemented using object-oriented techniques. 

Combining classes in such a manner results in what is called a has a object relationship: a 

Space has a Vehicle, or a Lot has a (or many) Spaces. 
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The process of identifying the properties, attributes, behaviors, and relationships of 

the set of objects essential to an application is referred to as object modeling. There are 

many methodologies and diagrammatic representations for communicating an object 

model. The Unified Modeling Language (UML) evolved from the collaboration of early 

pioneers in the field of object modeling. UML is a complex and mammoth toolset for 

modeling the structural, behavioral, and activity characteristics of applications and their 

objects. Mastering the intricacies and vagaries of UML, not to mention its many 

inconsistencies, is a significant challenge for those interested in doing so. The basics of 

UML for creating representations of object models is becoming the common vernacular 

in the domain of object oriented analysis and design. As such, only a limited subset of the 

UML nomenclature will be utilized in the presentation of the receiver framework. 
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-Spaces : Space
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-MaxWidth : double

-MaxLength : double

-ParkedVehicle : Vehicle

Space

+Park() : bool
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-Width : double
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Figure 4-1—Static UML object model for a parking application 

Figure 4-1 represents a UML class diagram that shows the static structural relations 

between classes in the hypothetical parking application. From left to right the diagram 

reads, a Lot contains one or more Spaces and each space holds zero or one Vehicle. When 

read from right to left, a Vehicle parks in one space, and a Space is in one Lot. The solid 

black diamond next to the Lot class indicates UML composition and a life-cycle 

dependency between the Lot object and the Spaces that it contains. If the Lot were 

destroyed, the Spaces would also cease to exist—without the Lot, the Space has no 
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meaning. The same dependency does not exist between the Space and Vehicle 

relationship; the Space can be destroyed, but a Vehicle can continue to exist 

independently of the space it was once parked in. In the UML diagram symbology, an 

unfilled diamond is used to differentiate an aggregation relationship from a stronger 

composition relationship; however, they are both used to indicate the presence of whole-

part structures between classes. 

Strict enforcement of encapsulation inevitably leads to a problem of state 

persistence. Suppose the Vehicle class has a private data member, IsParked, that retains 

the current parked status of the vehicle instance—true/false or yes/no. Once the IsParked 

internal variable is set upon completion of the Parked method, other class members (not 

shown) can make use of this state to adjust their internal actions where appropriate. 

However, the value of IsParked will be retained only if the object is kept active in system 

memory. Once the application ends, or if the object needs to be relocated or transmitted 

over a network, there is no guarantee that the proper value will be restored when the 

application is restarted and its objects are reloaded. State persistence is a multi-

dimensional problem in that there are many causes, many solutions, and many data 

integrity issues to address along with various timing and performance considerations. 

It is also necessary to point out that multiple valid object models can be derived for a 

given problem domain, depending on the viewpoint and expectations of the solution. The 

formal demonstration of completeness and correctness of an object model is both difficult 

and often unnecessary due to the flexible nature of an object-oriented implementation 

approach. Once the top-level objects and their relations have been established, sorting out 

the microscopic details of the various interaction aspects is more easily approached in an 
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iterative manner, with each iteration attempting to resolve issues that are identified by the 

previous version of the model. 

4.2 Inheritance 

Once the required functionality has been implemented in an encapsulated class 

structure, the manner in which the behavior is altered or extended is through object 

inheritance. Inheritance is a mechanism whereby one class description is used as a 

starting point for another, necessarily related class. Members and functional 

implementations from the original class, called the base class or parent class, are 

available to the new class, called the derived class or child class. Inheritance allows the 

base-class methods to be extended and enhanced for specialization in derived classes, 

without violating the rules of encapsulation of the base class. 

The UML class diagram shown in Figure 4-2 represents a possible inheritance-based 

extension to the Vehicle class for the parking application. The Vehicle base is used to 

derive implementations of a specialized family of classes, including a Car, a Bus, and a 

Truck.  
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+Park() : bool
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-Width : double

Vehicle

Vehicle::Car Vehicle::TruckVehicle::Bus

 

Figure 4-2—UML object-model showing inheritance 

The diagram represents an object-oriented hierarchical taxonomy and provides little 

insight into the behavioral or timing relationships between the various classes. Only the 

semantics that a Car is a type of Vehicle, for example, are represented by this static 

model view. The behavior of the Park method in each derived Vehicle type is inherited 

from the base Vehicle class. 

Inheritance from classes can be carried out at any level of the object hierarchy. A 

specific Car type may be derived by further inheriting from the Vehicle::Car class, such 

as a Vehicle::Car::Sedan. Subtypes of Sedan can be viewed as Cars or Vehicles, 

depending on the application context, and all object instances can be parked in a Space. 

4.3 Polymorphism 

Polymorphism allows an object to change its behavior at runtime depending on the 

type of object that has been constructed. When a base class provides a declaration of a 

method that is marked as virtual, derived classes may alter the default functionality of the 

base by overriding the method and providing a new method definition in its place. 
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However, users of the base class need not know any of the type-specific implementation 

details of the derived class. 

The inheritance diagram for the Vehicle class shown in Figure 4-3, for example, 

indicates that the Vehicle base class supports a virtual Park method that has been 

redefined in the Car, Bus, and Truck classes. Each of these classes has provided a 

specialized version of the Park method that meets the individual need of the class type.  

+Park() : bool

-Length : double

-Width : double

Vehicle

+Park() : bool

Vehicle::Car

+Park() : bool

Vehicle::Truck

+Park() : bool

Vehicle::Bus

 

Figure 4-3—Each class derived from vehicle implements a specialized polymorphic Park method 

Polymorphism occurs when an instance of a Space class, containing only the 

information provided by a Vehicle reference, calls the Vehicle::Park method, which 

automatically invokes the Car::Park implementation. The mechanism by which the 

method call is resolved to the correct implementation of the derived class is through late 

binding. While early binding seeks to resolve methods and their definitions when the 

application is compiled and linked, late binding provides only a loose mapping in the 

form of a virtual table between a method invocation and the code that implements its 

behavior such that the call can only be resolved when the application is executed at run 

time. 
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The significant benefit of polymorphism is realized when an entirely new Vehicle 

type is added to the design, after the application has been completely written and tested. 

A Motorcycle may be derived from the Vehicle base type that overrides and implements 

the Park method, and any existing code that calls a Vehicle::Park method will require no 

changes in order to support the new type of vehicle. All of the necessary specialization 

code is self-contained in the new type implementation. By extending the application 

through inheritance and polymorphism, any errors or issues can be clearly isolated to 

problems with the new components, simplifying the debugging efforts. If the application 

worked correctly before the new type was introduced, broken functionality simply 

becomes a case of post hoc, ergo proptor hoc. 

Virtual methods that are declared in a base class but contain no implementation are 

considered to be abstract methods. Class specifications that contain only abstract 

methods are referred to as pure abstract or pure virtual classes. Instances of these classes 

cannot be created directly, but must first be derived from, and all methods implemented, 

before an object can be instantiated. Classes that are derived from abstract classes, and 

provide complete method bodies, are called concrete classes. 

Pure virtual class declarations can be used to describe a component interface or 

signature. Calling methods on concrete classes through the abstract class type represents 

a formal declaration of the kinds of methods a family of classes must support. In terms of 

UML, an interface is described by the diagram of Figure 4-4. 
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+Drive(in Speed : double)

+Park() : bool

«interface»

IVehicle

+Drive(in Speed : double)

+Park() : bool

-Length : double

-Width : double

Vehicle
IVehicle

 

Figure 4-4—An interface declaration and a class that implements it 

On the left, the IVehicle interface (the de facto standard for interface names is that 

they start with an uppercase I) declares the methods and their parameters that 

implementers of the interface must support. On the right, the Vehicle class indicates that 

it implements the IVehicle interface through the named lollipop symbol attached to the 

edge of the class diagram. 

Like classes, interfaces can be composed and extended through inheritance. Classes 

may implement multiple interfaces, according to the needs of the application. 

4.4 Special Items 

Sometimes it is required that object instances of one class type be informed of 

situations or conditions that occur in another type. While it would be possible to have an 

object maintain references to all of the external recipients in a list or a collection, doing 

so requires a level of runtime determinism that is usually not possible. Instead, it is more 

desirable to have the sources of events, or publishers, be bound to event sinks, the 

subscribers, through some nondeterministic means that ensures loose coupling between 

the two parties, allowing subscribers to select which notifications they would like to 

receive from individual publishers. The scheme by which the required linkage is 

established is through loose coupled events. 
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In an event-driven application, subscriber objects register with the publisher the class 

method that should be invoked, or called, by the publisher when the event occurs. To 

ensure type safety and compatibility between the event and the method that is called, the 

publishing class must specify what the exact method signature should look like by 

defining a delegate type to be used during the registration process. Only if the method 

indicated by the subscriber matches the delegate description will the event registration 

succeed. Subscribers remove themselves from publisher’s events in a similar way, 

placing the control of the notification mechanism within the realm of the subscriber. 

Events and delegates work in a fashion that is not unlike hardware-based interrupts. 

In fact, many of the sources of software-based events involve external hardware actions, 

such as mouse button clicks, keyboard key presses, and other such activities. Events can 

signal when a process has started, when it has finished, or when a condition has been 

satisfied, such as a data value meeting a predefined criterion. 
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Chapter 5 Real-time Systems 

There are special requirements that one must to take into account when designing and 

developing applications for real-time operations. Potentially an issue at a fundamental 

level is the lack of consensus among various implementation communities on the 

essential distinguishing characteristics of a real-time system and the traits that make them 

special from their alternatives.  

Real-time system implementations often take on a similar architectural form as many 

multithreaded applications, and likewise encounter the same analysis complexity and 

operational problems. Discussions related to non-real-time applications also apply to real-

time systems, as well, but need to include additional time constraints imposed by 

considering the real-time schedule constraints. 

 Good system design practices dictate applications of modular construction consisting 

of multiple role-specific processes and interacting threads. Scheduling execution times 

for the threads and synchronizing the required level of interaction to support the 

appropriate types of interprocess communication create additional analysis and design 

complications. The diversity of the architectural patterns and choices for real-time 

systems necessitates a formal analysis methodology to sort through. Detailed design 

analysis requires the support of capable modeling tools, and well-defined models should 

provide a clear view to an implementation plan. The evaluation of suitable software 

languages for real-time systems represents another set of factors that must be considered 

prior to the start of development. 
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This chapter provides an informal working definition of real-time systems and 

attempts to place these solutions in a context that is suitable for the subsequent 

discussions on application structure, scheduling, synchronization, various modeling 

options, and the identification of essential real-time language features. 

5.1 Definition of Real-time 

While superficially trivial, possibly one of the more awkward difficulties in 

discussions on real-time systems lies in the nuances of establishing a broad-ranged 

widely-applicable definition of real-time as compared to non-real-time. Definitions 

derived from distinctions based on application-dependent operational requirements or 

consequences of failure (critical vs. noncritical) are necessarily subjective and largely a 

matter of opinion. As such, the same system implemented for one environment as real-

time may be classified as non-real-time when applied to another. The opposite may also 

be true, depending on how the system requirements are formulated. Relaxing a 

performance constraint can allow a system previously considered non-real-time to 

operate in a real-time environment without making any changes to the underlying system 

design characteristics. 

The evolving body of literature on real-time systems has partially managed to avoid 

directly addressing the issue of the meaning intended by the term’s use by creating the 

fuzzy conceptual modifiers of hard, soft, and near real-time. These modifiers provide the 

individual reader with the latitude to infer a definition that is almost a matter of personal 

taste. As a result, the published work must be evaluated against a subjective continuum 

that ranges from not-real-time-enough to more-real-time-than-necessary. This Goldilocks 

phenomenon makes applicability of the conclusions and consequences either too 
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restrictive (narrow focus) or too broad (far reaching), with only a small subset of the 

audience feeling just right.  

Conceptually, the notions of hard, with strict timing constraints and no permissible 

violations, or soft, involving perhaps some level of transaction based user interaction, 

real-time systems tend to define more of the execution model of the operations and are 

not confined to a specific realm of operating environment. If a timing constraint may be 

violated without affecting the validity of the produced result, then it could be argued that 

the constraint is poorly defined or fundamentally over specified. 

Real-time system definitions that are performance based or described through some 

type of behavioral determinism, such as the system must be fast and responsive, suffer 

the recursive problem of subsequently trying to apply concrete meanings to other 

possibly even more abstract ideas. From a pragmatic point of view, systems that are slow 

and unresponsive are rarely deemed engineering successes. An expectation exists with 

users and designers alike that all systems should be fast and responsive. The terms fast 

and responsive, however, are relative measures that require an absolute baseline metric in 

order to unambiguously determine a frame of reference for performance comparison 

purposes. 

If performance becomes the essential property in the determination of real-time, then 

the importance of competing factors, like flexibility, maintainability, and scalability 

become deprecated and the total quality of the system design will ultimately suffer. 

Regardless of requirements, designers normally strive for the best overall performance, as 

measured by the number of generated outputs in the fewest work cycles possible. There 
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are many high-performance, high-workload applications possessing great computational 

complexity that would not generally be thought of as real time. Conceivably, real-time 

systems with weak or slack timing constraints may need little performance, but must still 

meet the imposed timing requirements. So, while sometimes key, performance is neither 

necessary or sufficient in the classification of real-time systems. 

Real-time distinctions based on the embedded versus non-embedded (or workstation) 

nature of an application contain implementation requirements that are more reflective of 

the resource limitations often encountered in working with dedicated special-purpose 

hardware. Design challenges resulting from limited memory, single low-speed processor, 

and minimal operating system support may reduce the richness of features that are 

implementable in an embedded solution, but care should be taken not to confuse the 

verifiable application requirements with the restrictions imposed by the underlying 

environment. If the removal of the embedded components of a real-time system design 

eliminates the driving requirements for a real-time solution, then the view must be taken 

that the root system is not fundamentally real-time in nature. Furthermore, distributed or 

networked systems that are composed of multiple interconnected nodes, which may or 

may not be implemented as embedded devices, could still be required to operate in real 

time. The emergent properties of such systems makes it necessary to take a holistic view 

of the complete operating characteristics before making a real-time behavior 

determination. The diversity of real-time systems covers a wide range of technology scale 

from small, dedicated hardware devices to large, complex distributed applications. 

Inevitably, one must conclude that real time is a multi-dimensional N-space problem 

domain, with each dimension comprised of a solution subspace of varying boundaries 
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encompassing a region of some volume. Each design challenge, such as scheduling, 

thread management, synchronization, and resource allocation has a field of suitable 

potential implementations available. An optimum system attempts to minimize, in some 

quantitatively measurable sense, a representative cost function while simultaneously 

maximizing the value of a critical figure of merit.  

System designers generally have an intuitive, although informal, understanding in-

the-large of what is and is not real time. These systems are often driven by a precisely 

timed external stimulus or event and operate on the expectation regarding the ability of 

the system to produce a result or outcome before the next event arrival. Behavioral 

predictability is critical for design acceptance, and as a result the extensive evaluation of 

processor performance and utilization warrant considerable review and characterization. 

In contrast, coarse-grained batch-oriented computation models, where input arrival 

processing can be suspended indefinitely without compromising the validity of the 

resulting outputs, are usually thought of as non real time. 

In practice, solution analysis and design patterns that satisfy the majority of real-time 

operational needs typically yield additional beneficial side-effects in the areas of 

extensibility, flexibility, and maintainability. Even in the absence of specific real-time 

requirements, adopting a real-time system architecture can enhance the overall quality 

and long-term value of a solution. As a result, one should attempt to take the broadest 

conceivable definition of a real-time system early on in the design life cycle, without 

creating unwarranted functional restrictions or unnecessary implementation 

complications. Every computing system can be regarded as having some characteristic 
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that is real time in nature, regardless of the ambiguous or subjective properties of real-

time system definitions. 

5.2 Applications, Processes, and Threads 

System modularity represents a design outcome in a divide-and-conquer approach to 

solution analysis. By carving a set of problem specifications into groups of related 

functional pieces, highly complex problems may be decomposed into simpler 

representations of smaller interdependent components. Each smaller component may, if 

necessary, be further reduced into tinier subcomponents until the details of 

implementation become apparent. The final solution is then composed through 

aggregations of the smaller pieces and by defining the interface boundaries where the 

various modules interact with one another. 

Real-time systems can be represented or described through modular containers of 

functionality with differing levels of granularity. Once designed, the resulting system 

modules are then implemented as one or more applications, processes, and threads. 

An application is a top-level system comprised of one or more substituent elements. 

Applications may be composed of multiple dedicated processes, and each process may 

have multiple threads. A process can be thought of as a task in that it represents a subunit 

of work that is smaller than an application. Due to the complexity and high clock speed 

of modern microprocessors, distinctions between processes and tasks based on the 

number of physical processors in the system, like those found in (31), are synthetic and 

outdated. Processes within an application can usually be configured to operate with 

unique identities for the purposes of resource access and security. 
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A thread is a conceptual construct that is used to model the path a computer processor 

takes when performing the instructions contained in a set of code in the form of a 

program. Threads represent a basic unit of software execution. 

―A thread is a lightweight process with a reduced state.‖ (31) 

The state of a thread consists of all the CPU registers—instruction counter, stack 

position, status flags, accumulator and other general purpose registers—that hold the 

current values of an executing program’s internal variables. State reduction is achieved 

by externalizing these internal registers to reserved areas of system memory where they 

can be saved and later retrieved. Multiple blocks of memory can be used to 

simultaneously maintain the state of several threads, which gives rise to a multithreaded 

runtime environment. If one thread can no longer make progress or if another more 

important (higher priority) thread needs to run, the current thread’s state is stored and the 

former state of the next ready-to-run thread is loaded and the processor resumes 

execution.  

By managing multiple threads in this manner, a single high-speed processor can 

appear to perform several tasks in parallel. Of course, the resulting parallelism is in 

appearance only in that one processor may only execute one thread’s instructions at a 

time. To improve performance, multiple processors may be utilized to execute an 

application, where each available processor manages a different set of threads for 

execution. The scheduling mechanisms responsible for setting and controlling the 

sequence of running threads are considered later in this document in Section 5.3. 
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Articles such as (32) suggest the abandonment of threads as a model of computation 

in favor of weakly defined alternatives. The view is promoted that multithreading 

represents a nondeterministic approach to problem solving and should be used only when 

chaos and randomness are desirable system characteristics. In this view, even for a small 

number of programming instructions, the permutations of their arrangement is large, but 

only one sequence represents the correct solution to the problem. As a result, the odds of 

finding the right solution are small. Adding hard-to-model thread interaction serves only 

to create another layer of complexity that reduces the odds of success still further. 

However, the argument as presented is flawed in that, due to the commutability and 

idempotence properties of many of the required operations, there would exist many more 

than one solution to the problem (e.g. A x B ≡ B x A—two solutions) and that even a 

small amount of skill and intellect can greatly increase the possibility of finding one of 

the correct instruction sequences. While it is unlikely that typing random letters on a 

keyboard will result in a well-formed grammatically correct sentence, there is no need to 

consider abandoning words as a method of communication due to the complexity of a 

written language. 

However complicated thread interaction modeling and prediction may be, one must 

accept that the idea of a thread is a consequence of the key features of the von Neumann 

computing architecture (33): 

 Data and instructions are stored in a single read/write memory; 

 Memory contents are addressable by location; 

 Execution occurs in a sequential fashion. 
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A thread is a synthetic device that has been fabricated in order to optimize the 

utilization of a limited number of processor clock cycles. If a thread is waiting for an 

external or shared resource, such as the completion of an I/O operation or reading from a 

comparatively slow memory location, rather than wasting time spinning (or idling) the 

current thread it is better to do other work instead. A context switch is performed by the 

operating system whenever progress is no longer being made on the current thread’s 

execution while it waits to acquire a resource. Threads provide, when properly used, a 

means of creating fine-grained independent workers for long-running or background 

activities. 

For security purposes, threads will inherit the identity of their creating process when 

accessing shared system resources. The specific authentication and access control 

mechanisms are dependent on the nature and level of operating system access control 

support. 

5.3 Scheduling 

Scheduling is the act of determining the order in which the threads (or tasks) within a 

process are made running on the CPU. Schedulers may be grouped into one of two broad 

categories: static or dynamic. A static scheduler is usually a person who makes up the 

thread list ahead of time and figures out their ideal execution sequence in order to 

guarantee that all threads finish their work in time and that there are no constraint 

violations or resource deadlocks. The task list is then hard-coded into the work queue of 

the implemented system so that the threads always run in the same predetermined order. 
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For a static schedule to function as expected, reliable information regarding the 

resource requirements and processing time for each thread needs to be available during 

the early stages of system development. There are many factors that can influence the 

length of time a particular task needs in order to complete its work. Even without thread 

interactions for non-processor resources, factors such as differences in the instruction 

counts for conditional code branches, iterations of loop counts based on external 

variables, the order in which memory has recently been accessed, and the specific 

processor architecture all influence the number of clock cycles (i.e. time) required for a 

task to complete. As a result of these extrinsic variations, statistics on the best-case, 

worst-case, and average completion times need to be collected and used in some way in 

order to evaluate the viability of a particular schedule. The verification of the 

achievability of the schedule often requires the use of NP complete (nondeterministic 

polynomial time) schedule analysis algorithms, while the schedule optimization process 

is typically NP hard. 

Deterministic analysis techniques that are based mainly on worst-case execution 

times and task deadlines do not allow deadline violations in data processing. These 

scheduling techniques are inappropriate for use with highly variable workloads. 

However, the majority of workload types are inherently variable and the worst-case 

execution time is often significantly different from the average-case when average 

processor utilization is less than 100% (34). 

The idea behind the work of (34) is to improve the results of deterministic analysis by 

providing a means of task characterization that more accurately represents the degree of 

workload variability. Using a grouped probability distribution method, histogram-based 
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models are developed that describe tasks as a discrete statistical probability mass. The 

developed models can then be used to aid in the scheduling process. Choosing the correct 

number of task classes that balances result precision with the analysis complexity is 

critical to the success of the approach. The paper shows that workload isolation is a 

desirable property of scheduling algorithms that simplifies analysis and makes the 

outcome algorithm independent. 

The Spring Architecture (35) stresses predictability and flexibility in real-time system 

design by defining three types of tasks: critical, essential, and nonessential. Each task 

type is handled differently using an a priori scheduling method to ensure critical tasks 

will always meet their deadlines. Implementations utilizing processor architectures that 

are Complex Instruction Set Computer-based (CISC) with their variable instruction 

lengths and pipeline depths are difficult to analyze and evaluate for worst-case execution 

times. Furthermore, the times arrived at would be large compared with average execution 

times, yielding an overly pessimistic schedule. On the other hand, favoring predictability 

and low variance, the philosophy of simpler designs in Reduced Instruction Set Computer 

(RISC) architecture machines make the performance characteristics easier to analyze. 

For the PC, the Intel Core 2 Duo, a CISC-based processor, provides two logical 

processors in a physical package. Each processor has a separate execution core and first-

level (L1) cache. Both cores use a shared second-level (L2) cache, but the full capacity of 

this cache can be used by one logical processor if the other processor is inactive. The 

Core 2 Quad processor consists of two identical copies of the dual-core modules. Each 

logical processor in both the dual and quad core packages accesses the outside world 

through a shared system bus. 
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The pipelined micro-architecture of the Intel Core contains (36): 

• An in-order front-end that fetches instruction streams from memory. Four 

instruction decoders handle up to five instructions per cycle. Decoded instructions (called 

μops) are fed to an out-of order execution unit four at a time. 

• An out-of-order execution engine that issues up to six μops per clock cycle. The 

μops are reordered to execute as soon as operand sources are ready and execution 

resources are available. 

• An in-order instruction retirement unit that ensures μop execution results are 

processed and completed in a sequence consistent with the original program order. A 

peak instruction retirement rate of up to four μops per cycle can be attained. 

Each processor core is able to fetch, dispatch, execute, and retire up to four 

instructions per system clock cycle. When an instruction sequence causes the processor to 

wait for a shared resource, the execution core performs other instructions rather than 

sitting idle. For semantically correct execution, the results of instructions must be 

committed in original program order before they are retired.  

Due to the high level of pipelining in the processor, instruction timing data from Intel 

is specified in the form of latency and throughput values. Latency is the number of clock 

cycles necessary in order for the execution core to complete the execution of all of the 

μops that form an instruction. Throughput refers to the number of clock cycles required to 

wait before the same instruction can be accepted again. These values are implementation 

dependent in that they can vary between different core models. 
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Other factors affecting these timings can include: 

• The memory type the instructions came from and any cache replacements or 

memory write-backs that are subsequently required. 

• Activities on other cores, what instruction sequences they are executing and have 

recently completed. 

• Code optimizations across all other running threads. 

• Whether the processor is operating in 32-bit or 64-bit execution mode. 

As a result of these variations, the often-used means of determining total execution 

times by summing the clock cycle counts for a series of instructions is not valid for a 

modern superscalar processor. 

“Due to the complexity of dynamic execution and out-of-order nature of the execution 

core, the instruction latency data may not be sufficient to accurately predict realistic 

performance of actual code sequences based on adding instruction latency data.” (36) 

Since reliable and precise clock-cycle counts for instruction execution times are not 

available, results derived from generalized assumptions on how long individual 

operations take are inadequate to predict required performance levels. Statistical 

measurements on execution times gathered with an application profiler must be used 

instead. The outcome of such an analysis effort is a stochastic schedule—ranges of 

probability—that is only valid for a given execution environment and instruction 

sequence, making it impossible to accurately determine the process run-time duration. 
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Obtaining a deterministic result from a statistical approach is a difficult thing for 

static scheduling to successfully achieve. Additionally, static execution schedules are not 

very flexible in that minor changes to system requirements can mean huge new efforts to 

rework the execution plan. With small, relatively simple systems with little to no OS 

support, however, static scheduling can produce acceptable results. 

In a dynamic scheduling environment, tasks are allowed to run according to the 

availability of system resources and free processor clock cycles. Dynamic scheduling 

may be either preemptive, where tasks are periodically interrupted so the system may 

check if something else needs to run, or non-preemptive. Both preemptive and non-

preemptive systems require high degrees of cooperation between interacting threads, but 

the amount of cooperation required is typically greater for the non-preemptive case. The 

cooperation comes in the form of threads that appropriately signal their resource usage, 

wait for other threads to release shared resources before proceeding, don’t block 

unnecessarily or longer than required, and release control of the processor from time to 

time during long-running loops of operations. Obviously, this type of cooperation must 

be preplanned and developed into the system at implementation time. 

Preemptive dynamic schedulers have an additional requirement of needing a source 

of periodic interrupts, usually in the form of a hardware interval timer. The interrupt 

service routine for the timer event will determine if another ready-to-run thread is waiting 

and should be made running. If so, a context switch is performed by saving the current 

thread’s state and loading the previously saved state from the next thread to run into the 

processor. The interval of the timer’s timeout determines the time resolution of the thread 

schedule. If the interval is too large, threads will potentially run for an excessive length of 
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time, while other threads will miss critical completion deadlines. If the interval is too 

small, threads will be interrupted more frequently than necessary and the increase in 

overhead will limit their ability to make execution progress. 

Threads may be managed according to their importance so that higher priority threads 

receive greater access to the system processor. When all threads share the same fixed 

priority, only a single work queue is required and threads can be serviced in a round-

robin fashion. With multiple thread priorities, or priority classes, a separate queue is 

required for each shared priority level and waiting threads of the highest priority are 

dispatched first. If priorities are not shared, each thread must have a unique priority, and 

one work queue maintained in order sorted by priority is sufficient.  

Priority-based scheduling creates an implementation challenge with many solutions 

and algorithms that cover the gradient from simple and fast to complex and not so fast. 

Many of the more complex approaches aim at detecting and avoiding threads that 

deadlock over access to shared critical sections. A deadlock occurs when one thread 

acquires a resource needed by another thread, and the other thread is blocking the 

processor while it waits to acquire the resource it needs. The result is that neither thread 

can make progress. A related problem occurs when higher priority threads are blocked 

while waiting for lower priority threads to release resources, which leads to a situation 

known as priority inversion. Static priorities can also lead to thread starvation, where 

lower-priority threads never gain access to the processor due to the continued preemption 

by higher-priority tasks. One solution to these problems lies in the introduction of some 

form of priority inheritance, where a thread’s running priority is dynamically varied from 

its base priority. Wait time, acquired resource priorities, and the priorities of other 
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waiting threads can be used as factors in calculating the current thread’s actual running 

priority. 

Preemptive operating systems providing guaranteed response times may use Rate 

Monotonic Scheduling (RMS) with static priorities. Threads are assigned priorities based 

on the execution time of their work: the shorter the time, the higher the priority. Rate 

monotonic analysis is used in the development of these systems to provide scheduling 

guarantees for a specific application. Assumptions for a simple RMS implementation 

include no resource sharing (so, deadlocks shouldn’t happen) and free context switches. 

One must carefully evaluate whether these assumptions are legitimate for their particular 

application. 

In systems requiring mutual access to shared resources, arbitrary preemption of tasks 

introduces the need for non-trivial resource access protocols, which can degrade system 

performance and complicate system analysis and design (37). However, a fixed-priority 

non-preemptive solution may lead to scheduling conflicts. An analysis of the worst-case 

response times under fixed priority with deferred preemption scheduling (FPDS) and a 

continuous time model is presented in (37). The central thesis of the work is to show that 

previous analyses were fundamentally either too pessimistic or overly optimistic. 

The benefit of dynamic scheduling over static is a reduction in the level of 

information required on the behavior of the processes involved. Dynamic plans can also 

be more flexible in accommodating changes and insertion of new jobs. However, it can 

be more problematic to guarantee critical deadlines under a dynamic scheduling plan, 

which usually results in contingency increases during design to ensure sufficient resource 
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allocations. Dynamic scheduling also increases the overhead work required in preemptive 

systems by periodically running a schedule and dispatch cycle. Increasing the 

sophistication of the scheduler algorithm directly increases the corresponding amount of 

overhead. 

A method for the insertion of a random task within a predefined schedule of jobs, 

such that existing real-time constraints are not violated, is presented in (38). The jobs (or 

tasks) are assumed to be non-preemptive and must execute in the order given by the 

schedule, although their start time can be delayed. The objective is to determine a suitable 

point of insertion in the schedule for the new job without compromising critical 

deadlines. A reference algorithm, without the real-time constraint, is provided and 

subsequently shown to be 𝑂(𝑛2) in complexity. The algorithm is then divided into an 

offline part, where the schedule is determined and pre-calculated, and an online part, for 

when a job must be inserted. With the applied modifications, both the online and offline 

parts are shown to be 𝑂(𝑛), which would make the method a reasonable solution for 

accommodating a mix of static and dynamic scheduling, even for a suitably large number 

of tasks. The work has the potential of bringing together the best of both static and 

dynamic scheduling plans. 

A further complication in the areas of real-time system analysis and design is the 

variable frequency clocks for thermal management available in low-power devices (39). 

Predicting system behavior while simultaneously balancing temperature-imposed clock-

speed limitations results in conflicting operational characteristic requirements that are not 

addressed by existing design methodologies. The work of (39) is an effort to resolve this 

problem through a calculus of reactive speed scaling. Although pointing out traditional 
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worst-case execution scenarios do not apply in temperature-constrained situations, the 

paper does not address schedulability analysis under the resulting clock-speed 

constraints.  

Of course, it would also be naïve to assume that a quad-core processor has four times 

the capability that a single-core processor would have. The levels of parallelism implicit 

in the algorithms and the amount of synchronization overhead required for their 

execution limit the potential performance gain possible with multiprocessor systems. In 

general, increasing the number of processors does not proportionally increase the 

processing performance of the system, depending on the degree to which portions of the 

application can be executed in parallel. Assuming a 50% parallel workload, (36) 

calculates the expected performance improvement using two physical processors to be 

only 33% compared to using a single processor, with four processors providing no more 

than a 60% improvement over a single processor. In practice, it can be very difficult to 

determine with any certainty the actual degree of parallelism present, since the final 

application that runs is often some mix of user, library, and operating system code. 

However, improper use of thread synchronization, discussed next, can reduce the 

effective level of parallelism and diminish the potential performance gain through 

processor scaling. 

5.4 Synchronization 

With a hardware-based design, getting multiple modules to execute in-step with one 

another is basically a matter of running wires from their respective clock inputs to the 

output of a common clock source. Similar synchronous behaviors in software are harder 

to achieve; it is very difficult to run multiple code modules simultaneously with a high 
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degree of timing precision. In single-processor multithreaded environments, concurrent 

execution is obtained by interleaving the instructions from different threads according to 

some schedule. With a multiple-processor solution, multiple threads may run together 

over time, but predicting and guaranteeing their temporal behaviors and interactions are 

critical and essential design challenges. 

Unanticipated process interactions across shared data structures can cause 

unpredictable, seemingly random, results. The manifestation of these interactions most 

often comes in the form of spurious data corruption and system crashes. Debugging and 

proactively eliminating the side effects from poorly behaved threads requires a great deal 

of time and testing in order to achieve a satisfactory level of application performance and 

reliability. 

Consider the situation where two threads, thread-A and thread-B, execute the C 

instruction n++, meaning take the current value of n, add one to it, and store the result 

back in the memory location identified by the variable n. Once thread-A reads the current 

value of n, it is then pre-empted by thread-B, which also reads the current value of n. 

When thread-A resumes execution, it increments its local copy of n and saves the new 

value to the memory location of n. Thread-B then does likewise, but since it is working 

from an outdated copy of n it is overwriting the work of thread-A, and the resulting value 

of n is now one too small. Thread-B should have been kept from accessing the value of n 

from the point where thread-A initially read the value through to the time when the 

update was completed. 
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Preventing such race conditions across two or more threads requires the use of 

synchronization primitives in the form of locks or signals. A lock can be used to allow a 

single thread to gain exclusive access to a shared resource (a mutex), or to allow a fixed 

number of threads access to a limited number of resources. A signal acts as a wait handle, 

providing a predetermined point in the code execution path where multiple threads can 

wait for one another before proceeding. It is important to remember that thread 

synchronization is cooperative. If a thread bypasses a synchronization mechanism and 

accesses the protected resource directly, the synchronization mechanism will not be 

effective. Errors or exceptions occurring in the code after a thread acquires a lock must be 

adequately handled and recovered so that the lock is released before the thread 

terminates. Otherwise, the lock will never be released and any threads already waiting to 

acquire the resource will block indefinitely, leading to a hung application. 

In many ways, it would be better to have no interaction or shared resources between 

threads, but this would limit the flexibility of solutions. For instance, in a system that 

consists of one module for reading inputs and another module that processes these values 

and calculates an output, since the input arrivals are potentially asynchronous in nature, 

and the amount of time required to process the data could be variable, running both input 

and output operations on a single thread can create undesirable characteristics. The output 

could be delayed due to the timing of the input, or the input module could appear to be 

unresponsive due to the long processing time required for calculating each output. 

Separating the work into two threads allows each component to run at its own pace, 

determined by either the arrival rate of the inputs or the processing time requirement of 
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the outputs. However, this design requires the use of a shared data structure between the 

two threads. 

Even with non-shared resources, race conditions can unexpectedly occur with 

numeric types that are wider than the system data bus. Changing the value of a 16-bit 

integer on an 8-bit system, or 64-bit integer on a 32-bit system, requires reading and 

updating two consecutive memory locations. A thread context switch that occurs in the 

middle of the update cycle can cause the final value written to be in error. 

Processing long-running tasks on the user-interface thread can make an application 

look like it has become nonresponsive or completely broken, which eventually leads to a 

poor user experience. Performing slow network activities, such as downloading large 

files, in the background can appear to improve system performance since the processor 

will be able to do other useful work while delayed tasks are waiting on external events.  

When poorly thought out and improperly implemented, the consequences of using 

multithread synchronization primitives can be excessive deadlocks and a priority 

inversion, as previously described. Creating, maintaining, and synchronizing another 

thread creates an additional system workload overhead. The performance improvement of 

the new thread has to outweigh its overhead in order to yield a net benefit. An 

implementer may feel that churning out threads to do work in the background will 

necessarily improve the application’s performance. However, this improvement will only 

be realized if all threads are doing useful work and are not competing for shared 

resources. Once threads need to stop, wait, and synchronize with other tasks, the 

associated performance penalties can outweigh the potential performance gains. No 
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amount of increase in processor clock speed will make threads that are constantly 

blocking run any faster. 

Solutions designed for multithreading should prefer fine-grained locks and lock only 

the smallest possible part that needs exclusive access, not entire methods or class data 

structures. Locks should be acquired as late as possible in the code path and released as 

soon as the work is completed. The number of threads should not exceed the availability 

of dependent resources. When necessary, add a thread per available resource and then 

scale out the number of resources to reduce performance bottlenecks. Avoid creating 

threads on a per request basis, and instead manage long-running threads and message 

queues. Considering the performance implications, design and implement lock-free 

alternatives such as those presented in (40). Many of these access algorithms use a 

timestamp or thread ID to mark the value most recently written. Before updating with a 

new value, the ID of the current value is compared with the value the thread obtained 

when the data was initially read. If these are different, another thread has made a change, 

so the new value should be reread and the work recalculated. These are not perfect 

solutions, but they solve many types of performance problems related to locking critical 

sections in many circumstances. 

5.5 Architectural Modeling and Languages for Real-time 

Computer programming languages are oriented towards solving a problem through 

the sequential execution of a series of instructions. Concurrency and parallelism lack the 

support of available direct language constructs. Imperative languages like C++ are 

wanting in the amount of declarative expressions available for the parallel operations 

required of real-time systems. High-level-language keywords and constructs that say 
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“Run these things together and put the combined results here,” are either nonexistent or 

poorly supported by application development tools. Manual coding efforts to coerce a 

better optimized parallel execution plan, using tactics such as loop unrolling where one 

large loop is broken into multiple smaller loops, can yield significant performance 

improvements but they result in code that is harder to support and maintain. During 

implementation, developers are rarely aware of the underlying execution-time operating 

environment, which requires different versions be implemented for the specific number 

of processors available at run time. 

Establishing some form of system model should not be an uncommon activity during 

analysis and design stages of any system development methodology. Behavioral 

modeling is especially critical in the design of real-time systems because the available 

languages and tools are presently incapable of automatically revealing timing constraint 

violations and general resource contention issues. As such, it is necessary to develop 

models that permit the exploration of critical and essential features regarding system 

operation. Good models will expose otherwise hidden information regarding the 

characteristics of the system and potential modes of operational failure. Using the 

information obtained from the modeling exercise allows a designer to explicitly specify 

how the various components will fit together. These same models can also be used to 

verify system behaviors post-implementation. Ideal modeling tools allow the direct 

translation from design artifact to executable code.  

While essential to the design process, structural models depicting the physical 

composition and relationships between the key solution modules are insufficient for 

building real-time systems. Some form of dynamic modeling, showing the causal patterns 
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between external events or triggers and actions, is necessary to fully characterize the 

system. Various types of statecharts and data-flow diagrams can be used to show state 

transitions in the context of pre and post conditions as well as any actions that are 

performed during the transition. Timing constraints can be more difficult to capture, but 

analysis by some type of Petri-net is sometimes worthwhile. Petri-nets are better for 

determining the existence of self (internal) loops and modeling the synchronization 

requirements between distributed tasks, and are usually easier to construct than queuing 

nets. 

Object-oriented analysis and design practices for real time is visited by Rumbaugh et 

al. (41) and partially addressed through the definition of the Object Model (structures and 

relationships), the Dynamic Model (events and states), and the Functional Model 

(operations and their data flows). The work was transformational at the time of 

publication in that it provided an easy to read and understand class-oriented symbology 

along with a consistent set of rules for their construction. However, it lacked the 

necessary semantics to properly describe the interdependencies of concurrent threads of 

execution, and instead repackaged classic computer science constructs, such as 

statecharts, to fill in the missing pieces.  

The development of the Unified Modeling Language (UML) (42) was the synthesis 

and evolution of various ideas on object-oriented practices. The initial impetus behind 

UML was to provide a unification of the best parts of a number of software and relational 

database modeling and diagramming methods, such as the Object Modeling Technique 

(OMT), from names like Booch, Gane & Sarsen, Jackson, and others including 

Rumbaugh (41). Over time, UML has become excessively large and unwieldy, 
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embodying an incomprehensible degree of complexity. With UML, there are many 

equivalent ways to express the same model, resulting in several types of documentation 

inconsistencies. Over time, UML has essentially turned into a basis for heavyweight and 

expensive analysis methodology tools for commercial sale rather than a cohesive system 

modeling language. Rational Rose from IBM (43) is one example of such a toolset that 

has been corporately acquired and twisted to support the Rational Unified Process 

(RUP). A RUP implementation requires significant investment in skills and training to 

properly execute, often out of proportion to the end system being developed. A 

methodology is usually represented by a gated process, a sequence of tasks and outputs, 

that is presumed to deliver a consistently repeatable outcome. If, in order to produce 

results, a methodology is overly dependent on the experience and skills of the people 

involved in its execution, then it must contain indefinable and uncodifiable properties, 

which limit its repeatability. Once the project development emphasis has shifted towards 

a specific methodology implementation, the big process is no longer about doing the 

system design work. 

When a minimalist view of UML is taken, where only the parts of UML that are 

necessary to communicate the ideas that one wishes to represent are used, the results can 

be satisfactory. Capturing design requirements in the form of use cases and presenting 

high-level structures and interactions in the form of object models and activity diagrams 

is generally a worthwhile exercise. While essential for functional analysis and 

requirements verification, however, once these models have been completed, the path to 

object identification and implementation is usually unclear. One approach to object 

identification from use cases in real-time embedded systems is discussed in (44). Since 
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there is typically no one-to-one mapping between the two models, activity diagrams are 

first constructed from the use cases, which then serve as the basis for object 

identification. 

Architectural description languages (ADL) based on Milner’s (45) Calculus of 

Communicating Systems (CCS) or Communicating Sequential Processes (CSP) can be 

used to specify the implementation of a programmable architecture for both hardware and 

software. Wright, Darwin, or Piccola are typical ADL examples (46). ADLs differ from 

UML in that they focus on the descriptions of components rather than on the whole 

solution. Simulation using ADLs allows for design-space exploration and evaluation of 

candidate architectures at a level of abstraction that prevents binding to specific point 

solutions (47). Critics of an ADL-based approach (48) are instead seeking architectural 

design languages that, rather than describing the current practice, aid in the identification 

of the characteristics of correct solutions for future practices. 

Prototyping system behavioral requirements from a well-defined CCS calculus to C# 

and .NET are discussed in (46) where CCS processes and actions are mapped to C# 

classes and methods, respectively. By describing the interactions across input ports and 

output ports, the manner in which messages are passed between processes and how they 

communicate with each other can be examined.  

In a model-driven development exercise, integration with reusable standards-based 

commercial components can reduce solution costs and time to market factors. Overall, 

however, the integration process requires simplification and automation. Auto-generation 

tools for synthesizing artifacts from models that support middleware component 
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technology aid in system realization. The challenges associated with one approach for 

component modeling in distributed real-time embedded systems are identified and 

partially addressed in (49). The platform–independent design language developed uses 

Java and the Component Object Resource Broker Architecture (CORBA) Component 

System (CCS).  

A component model framework implementation for extending C++ to support 

concurrency, thereby integrating object-orientation and concurrency, is developed in (50). 

Heavily influenced by Concurrent Pascal, the work involves the definition of an active 

object that combines the concept of an object with that of a process, and claims a 50% 

reduction in code size as a beneficial side effect. A reference implementation is given in 

the form of a CD player developed for a commercial manufacturer. 

Various programming languages are available to choose from for the development of 

real-time systems. While it is possible to use nothing but assembler, high-level languages 

such as C offer advantages of portability, maintainability, and developer productivity 

over processor-specific assembly language implementations. While historically the 

choice most often made has been C, C++ and an object-oriented paradigm are becoming 

increasingly more prevalent (50) and accepted in industry. Not all features are available 

in every language, so hybrid assembler approaches are not atypical of many real-time 

solutions. 

A listing of language features necessary to support real-time programming are 

identified in (51). These features are grouped into four categories: essential, primary, 

secondary, and performance. The essential language features given for real-time system 
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implementation include the ability to access and control hardware, availability of bit 

manipulation instructions, support for interrupt handling, and accessibility of pointers for 

use with dynamic data structures. Fundamentally, these essential features are more 

representative of specific patterns of solutions for traditional hardware-centric systems 

than requirements for real-time system development. Access and control of hardware can 

be, and should be in a good design, implemented in a device-appropriate way and then 

abstracted for use by higher-level functions, thus removing the need for general 

programming languages to support these low-level operations. Such designs create better 

modularity and reusability, and allow the intervention of security access control 

mechanisms of an underlying operating system. Interrupts and their handling are usually 

a way of gaining control and somehow manipulating a type of thread creation 

mechanism. Since the processor state is stored and then retrieved during an interrupt 

event, the execution model is a kind of special-purpose micro-thread. Access to hardware 

interrupts or external events is better done through a functional abstraction, with or 

without operating system support, rather than directly through high-level code. The use of 

pointers for creating and accessing dynamically created data structures, such as linked 

lists, can likewise be implemented through abstractions in the form of reference types or 

smart pointers, which require no direct memory access capabilities on the part of the 

high-level language. Indeed, many of the essential features that are identified in (51) are 

not critical or essential real-time language requirements at all. 

When developing real-time applications, programming languages need to be able to 

create and control tasks at the thread level, they need to be able to influence the scheduler 

(if one is used) either directly or via setting thread priorities, and they require diverse 
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types of atomic inter-thread synchronization primitives. These things are really more 

operating system issues and not limitations of a particular programming language. While 

some languages may be better suited than others for solving a particular problem, as long 

as a language is supported by the operating system environment and libraries of thread 

management and synchronization (and possibly timing control) functionality are 

available, then in actuality any high-level language can be used to develop real-time 

applications. 

The particular choice of implementation language is more often determined by 

operating system support and the manner in which the application and the OS will be 

linked together. If the linking, the combining of the operating system with the 

application, is done during or immediately after compile time (early binding), then the 

source language of the operating system will predicate the application language. The C 

and C++ languages don’t interoperate well with other languages without help—a large 

portion of the development of Windows™ has involved getting C to play nice with other 

development languages. Operating systems requiring early binding that have been written 

mainly in C will carry with them language specific interoperability restrictions. 

If the operating system provides an application loader and supports late binding, the 

options for development languages become somewhat broader. More sophisticated 

environments will provide memory management features, such as garbage collection to 

automatically reclaim unused memory references. These services can limit the 

predictability of real-time operations by introducing a potential near-random workload on 

the system. 
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The .NET Framework provides support for creating and managing threads and thread 

priorities, as well as a variety of mutex types and exception-safe critical-section lock 

devices. Many of the built-in collection classes (arrays and lists) include a synchronized 

interface for cross-thread call capabilities. Asynchronous method calls, callbacks, and 

software-based events are all integral parts of the run-time environment. While the real-

time suitability assessment of (52) is based on version 1.0 of the .NET Framework 

(version 4.0 will be released shortly), it does correctly identify a weakness in the inability 

to predict or specify when a scheduled thread will start. Presently, there is a timing 

ambiguity over when a started thread will actually begin executing. If better control is 

required, it may be possible to use the High Performance Event Timer (HPET) (53) on 

newer PC system boards as a work around to this problem. 
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Chapter 6 Development Framework Overview 

The GNSS Receiver Development Framework project has been designed and 

developed to address the issues of thread management, interprocess communication, and 

module synchronization associated with the levels of parallelism required for real-time 

software-based GNSS receivers. The main goals of the framework’s object-oriented 

design are  

• to be developed using a modern high-level language with tools that are intended 

for the implementation of feature-rich applications; 

• to provide a modular component model that supports a high degree of reuse 

through inheritance and polymorphism; 

• to integrate with other 3rd-party hardware and software components in as simple a 

manner as possible; 

• to act as an extensible baseline receiver reference. 

Serving as the focal point for customization and functional composition, the Receiver 

Development Framework provides the essential aspects for object creation 

(instantiation), system orchestration, signal detection, synchronization, and tracking. 

Unlike offline post-processing tools and utilities, the framework is intended to deliver the 

critical performance characteristics necessary to achieve real-time receiver operation.  
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A key requirement in the framework design is providing for the integration of 

external hardware and software components in a seamless and consistent manner. Doing 

so allows for the immediate reuse of existing solution pieces, while simultaneously 

supporting the externalization of any newly developed features. As such, receiver 

algorithms may first be developed and tested as software within the framework and then 

migrated into hardware representations that can be hooked back into the receiver object 

model for further testing and evaluation. 

The receiver framework supports the development and integration of toolkits of a 

variety of implementation types for each component category. Baseline performance 

measurements and operational characterizations with one implementation strategy can be 

made and used for direct comparison to alternate models for benefit evaluation. By 

leveraging object-oriented design techniques such as polymorphism, model comparisons 

can be made with minimal code changes simply by overriding the implementation of a 

class virtual method and invoking the base method at run time. 

The reference implementation provided is only one way, not necessarily the best, of 

achieving a signal detection and tracking objective. However, it is the generalized set of 

interfaces and abstract classes that give the framework its flexibility and offers the 

greatest value to its consumers. The design of the framework establishes the philosophy 

of defining an interface, declaring an abstract base that implements it, and creating 

derived types that satisfy specific requirements. This framework is not intended to deliver 

a toolkit or a collection of library components that must be incorporated into other 

applications—instead, it is a development guidance reference for how receiver 
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applications should be structured and constructed to achieve the most worthwhile results 

in the shortest timeframe with the greatest opportunity for reuse and extension. 

Since the operation of a receiver is to undo that which the transmitter does, the 

receiver components and object models provided, or subsequently developed, could also 

be modified and extended to create simulation-based signal generators for testing receiver 

operations under controlled input conditions. A mathematical model of a signal could 

easily be implemented that creates a binary file to be used as an input source for testing 

receiver performance. 

6.1 Receiver Framework Architecture Diagram 

The receiver framework diagram, shown in Figure 6-1, serves as the solution 

overview and a roadmap to the following documentation. Each functional block is 

documented in greater detail in sections that describe the operational requirements, 

characteristics, and interactions with other system components. While the intention of the 

framework is to provide a development tool for the research of GNSS and other spread-

spectrum receivers, the modular definition of the components allows for a kind of plug-

and-play approach to the overall system implementation. 
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Figure 6-1—Block diagram model of the Receiver Development Framework 

Each box in the development framework diagram represents a collection of related 

pieces that combine to produce the expected output from the corresponding module. All 

that is necessary to change or extend a component is to implement the classes of objects 

that support the required interfaces and methods. While the greatest flexibility will be 

achieved when all of the components are developed in software, there is nothing in the 

overall design that precludes the substitution of a specialized hardware device in place of 

a class method or an entire class implementation, as long as the hardware fully supports 

the expected input and output parameters of the method being replaced. It is for this 

reason that the system was developed in such a way that it more closely resembles the 

block diagrams of the hardware that it represents. 

The object-oriented design takes advantage of the reusability available through 

inheritance and polymorphism. Types that are derived from a common base class can be 

thought of as new implementations of the base-class functionality. Invokers see no 
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difference in the calling semantics, and implementers can leverage any suitable 

functionality existing in the base class. Reuse exists, therefore, at two levels. 

The analog front-end is used to tune, band-limit, and sample the incoming signal so 

that it can be brought into the system in the form of a stream of binary data. It is 

connected to the framework through a set of signal device driver interface components 

that are used to structure the properties and attributes of the device data source into a 

format that is compatible with the dependent subsystems. 

Interoperability support features allow previously developed functional libraries 

and external hardware devices to be tied into the system in a uniform and consistent 

manner without a great deal of effort or intellectual overhead. Although dependent on the 

polymorphic behavior of the framework’s object-oriented design, the interoperability 

layer allows for high degrees of reuse and application flexibility. 

While not necessarily an integral part of the receiver framework in that they borrow 

from and must be supported by operating system constructs, the thread management 

components represent a collection of work queues and synchronization primitives that are 

required to help ensure the desired real-time performance objectives of the system. 

Events and delegates available to other system components are considered part of thread 

management services, and patterns for their use are provided. Support for multithreaded 

processes is largely dependent on the underlying operating system characteristics. 

The frequency operators section refers to the frequency-domain essentials of signal 

processing. These include FFT/DFT functions and their inverses, filtering functions, and 

other operations necessary to transform input signals into useable data. Reference 
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implementations have been provided as parts of the receiver framework; however, these 

can easily be replaced with alternate software algorithms or with customized external 

hardware blocks. 

Classes and supporting interface specifications for items that are commonly 

encountered or shared between operations such as the Complex data type and system 

status enumerations are provided in the common type declarations of the receiver 

framework. Data types and structures that bridge between functional modules can be 

considered as part of the common type library. 

Pseudo-random noise (PRN) code generators are required to reproduce an exact 

replica of the sequence of binary chips that was originally used by the transmitter to 

spread the signal. Only the GPS C/A codes are currently provided, but different code 

types and generating methods are supported by extension. 

The signal acquisition and tracking module contains the classes that are responsible 

for finding the presence of PRN sequences in the received signal and keeping the locally 

generated sequences in synchronization. The acquisition process attempts to discover a 

transmitted sequence by cross-correlating the incoming signal with each possible 

spreading code while looking for a peak in the correlator output. After signal acquisition 

is completed, a collection of objects is returned for tracking—each object representing a 

detected PRN sequence in the input signal. Object models for a phase-lock loop (PLL), 

delay-lock loop (DLL), and a numerically-controlled oscillator (NCO) are provided as 

part of this module. Solution implementations vary widely in their approach to signal 
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detection and demodulation, so these components are offered as reference utilities that 

may be used, altered, extended, and replaced as needed. 

The data demodulator components contain the code that is required to extract, verify, 

and process the recovered navigation data message. Any required data formatting and 

validation functions may be included in this block as well. 

Atmospheric models and navigation message interfaces are identified as parts of the 

framework, but no reference implementation has been provided as of yet. Libraries from 

other sources such as the GPSTk toolkit (54) from the University of Texas at Austin have 

been integrated into the framework, and support for these functions could easily be 

extended. Details of this integration work are provided in Appendix A. 

6.2 Pipeline Processing Model 

The preferred batch-oriented approach (6) to software-based post-processing signal 

demodulation is a compute-intensive solution, which often requires several hours of 

offline execution time to analyze even just 30-40 seconds worth of captured and stored 

data. Efforts to achieve real-time performance through optimization of the individual 

post-processing stages usually follow a similar sequential program flow as was originally 

provided, without creating extensions for parallelism. As such, it is unlikely that these 

works will ever manage to attain the throughput required for a real-time signal processing 

application. 

By dividing the signal processing activities into two parts, data capture followed by 

iterative calculations—capture-then-process—the resulting CPU workload becomes non-
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uniform with time, as illustrated in Figure 6-2. The sampling task is time critical but low 

workload, while the calculations are not time critical but they are high workload. 
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Figure 6-2—CPU Workload with a capture-then-process signal processing approach 

When a real-time solution is attempted using this processing model, it becomes 

necessary to run both the sampling and calculating activities in parallel. Individually, it 

may be the case that neither activity exceeds the performance capacity of the system 

processor, but when combined the deficiency in spare CPU cycles makes itself apparent. 

One approach to contend with this workload balance issue is to run each activity on 

system threads with suitably higher or lower priorities. 

If the sampling work is performed on a higher-priority thread, the calculation 

activities will be preempted often and require an excessive amount of time to complete. 

As a result, the signal samples will be arriving at a rate faster than the system can process 

them and will have to be queued or buffered. Keeping the system synchronized under 

these conditions is a challenging exercise. With limited system memory resources, signal 

buffering will eventually overflow and the application will have to cease functioning. 

Likewise, if the sampling work is performed on a lower-priority thread than the 

execution of the calculation activities, giving more processor time to run the 
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computational workload, signal samples will undoubtedly be missed. At best, dropping 

input data samples will cause the system to lose signal synchronization, but it can also be 

a pernicious and hard to detect source of data errors. 

Overall, to execute the capture-then-process computational model in real time is 

extremely challenging and requires careful performance tuning and optimizations in order 

to realize adequate results. It is for reasons of complexity and performance that previous 

solutions based on this approach have not been real time. 

6.2.1    Synchronous Pipeline 

An often used construct of high-performance computer architecture is the sequential 

pipeline, where functional blocks are linked together in a chain and driven by a common 

clock. Each block in the chain achieves some measure of work in the time interval 

between clock pulses (ticks) contributing to the overall operation. New operations are 

started at the beginning of the pipeline while in-progress operations occur during 

successive stages. The output of one block becomes the input for the next, and the final 

result is taken from the output of the last stage in the sequence. 
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Figure 6-3—Pipeline structure with a common clock 

An N-stage pipeline is shown in Figure 6-3. While it takes an amount of time equal to 

N stages to initialize and fill the pipeline, once filled a new result is produced on each 
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clock cycle. It is the common shared clock that makes this a synchronous pipeline, the 

rate of which must be lower than the maximum input-to-output delay of the slowest block 

in the chain. In hardware, the clock source is usually the output of an oscillator or some 

other reference signal that is physically wired to a control point on each stage that latches 

the input data between clock transitions. 

Without access to a shared time reference, pipelines are difficult to build using 

software constructs. However, the same pipeline structure as presented in Figure 6-3 can 

be achieved in software applications with events and event handlers. To do so requires 

that event handlers from multiple object instances be assigned to respond to a single 

shared event source. The shared event source serves an equivalent role as the common 

clock in the hardware version, such as the configuration shown in Figure 6-4. 
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Figure 6-4—Event-driven synchronous pipeline process 

An event, such as a signal sample arrival from a common source, is raised every 𝑇 

seconds, making the event frequency 𝐸𝑓 = 1
𝑇 . The N-stages of the pipeline are filled in 

𝑁 × 𝑇 seconds and a new result is produced every 𝑇 seconds. Basically, the structure 

mimics the properties of a hardware-based implementation, including running at the 

slowest stage performance level. The throughput benefit of this model results from the 
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more evenly distributed workload due to the processing that occurs between the event-

trigger intervals. 

Unfortunately, with software-based events, the system makes no guarantee as to the 

order of delivery of the event signals to the various subscribed handlers. The order in 

which the event handlers are registered with the event source can influence but not fully 

determine which handlers will receive the event notification first. If the last stage is 

triggered to run out of sequence with the rest of the pipeline, the resulting output would 

be a repeat from the previous cycle and obviously an error. A synchronous pipeline 

requires additional semaphores, wait handles, or other shared synchronization primitives, 

such as a synchronized queue between stages, to reliably execute in software, each of 

which negatively impacts system performance and increases implementation complexity.  

6.2.2    Asynchronous Pipeline 

The receiver framework makes use of an innovative event-driven asynchronous 

pipeline model for the processing activities involved in signal acquisition and tracking, as 

shown in Figure 6-5. Each stage in the pipeline is notified by an event from the preceding 

stage that the next signal sample is available for processing. The stage reads the passed-

along prior stage’s output value as its input and updates its current time. The stage then 

performs a small amount of processing on the sample and sets its output property to the 

newly calculated result. Finally, the stage signals, through a new event to the successor 

downstream stage, that it has completed its processing chore and its output is stable. As a 

result, each sample is time stamped as it arrives and is allowed to ripple through the 

pipeline without blocking or interfering with the processing activities of the antecedent 

stages. 
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Figure 6-5—Asynchronous software pipeline model using event coupling between successive 

stages 

As shown in Figure 6-5, the pipeline is initiated by the event source at stage S1 

occurring at regular intervals every 𝑇 seconds. After responding to the event and updating 

its output, S1 then raises its own event at time 𝑇 + 𝜏1, where 𝜏1 is the S1 processing delay. 

The new event signals to downstream subscribers that the outputs from stage S1 have 

been updated and are stable. Each stage repeats this sequence, cascading the event and 

the data sample along the way. 

The total N-stage pipeline propagation delay, 𝜏𝑡𝑜𝑡𝑎𝑙 , can be given by 

𝜏𝑡𝑜𝑡𝑎𝑙 =  𝜏𝑘

𝑁

𝑘=1

 6-1 

As long as 𝜏𝑡𝑜𝑡𝑎𝑙  is kept to less than the event arrival interval 𝑇, the performance 

characteristics of the asynchronous pipeline are equivalent to those of the synchronous 

one in that the N-stages of the pipeline are filled in 𝑁 × 𝑇 seconds and a new result will 

be produced every 𝑇 seconds, without the drawback of having an unpredictable event 

delivery order. The delivery sequence is entirely determined by the pipeline organization, 
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and events can be triggered at different rates that are appropriate for the output timing 

characteristics of the component. 

For real-time operation, it is important to keep each stage’s event handler 

computationally simple and to limit the overall length of the pipeline in order to minimize 

the total processing delay. Tasks that need to run longer or do more work than is practical 

in the event handler should do so on blockable worker threads that are created and started 

when the object instance is initialized. The basic pipeline stage element is shown 

conceptually in Figure 6-6 for the pipeline stage S1. The stage properties include input, 

output and time data values that are inherited from the component base class. 
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Figure 6-6—Pipeline stage 1 event-handler structure with separate worker threads 

Unlike other software-based signal processing models that operate by collecting a 

large number of samples and then processing them in bulk, the pipelined approach allows 

a single sample to trickle through the system and be processed in real time. Each pipeline 

stage in the receiver framework has, in addition to an input and output, a control object 

access point that optionally allows feedback from downstream or external components so 

that its behavior can be regulated by the outputs of other objects. The pipeline component 

model allows one to easily mimic hardware timing behaviors and functions in software. 
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As defined, the model more closely resembles a discrete time-domain representation of a 

feedback control system block diagram, which minimizes the need for processor 

intensive transform-based analysis of large blocks of signal data. 

6.2.3    Pipeline Component 

Each component of the pipeline is derived from a common base class, shown in 

Figure 6-7, that implements the IPipelineComponent interface representing the minimum 

functionality required to participate in the receiver pipeline structure. Generalizing the 

component description in this manner allows the overall configuration of the pipeline to 

be highly adaptable, easily supporting the creation and integration of new components. 

However, if needed, existing components can be enhanced through extension to support 

additional specialized properties and methods as required, without significant loss in 

flexibility. 
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Figure 6-7—Pipeline component object model 

The PipelineComponent base class provides default behaviors for the stage’s 

StageEventHandler and UpdateOutput methods. New pipeline components can be 

defined by inheriting from this base and overriding the functionality of either 

StageEventHandler or UpdateOutput, or both. Components can be made to behave as 
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basic gain stages, where the output is a simple product of the input, or they can perform 

more complex functions such as summers and integrators. 

The ControlObject property of a PipelineComponent can be used to externally 

regulate the output of a stage. Controlling transfer-function properties based on input 

signal characteristics, such as gain or correlator detection thresholds, or adjusting 

frequency and phase for signal mixing, are the expected typical uses of the ControlObject 

property. If a specific type of controller object is required by a stage, such as the output 

of a low-pass filter for a voltage-controlled oscillator in a phase-lock loop, the provided 

base-type reference may be appropriately cast to the required derived type. 

Since the PipelineComponent event signal, Done, includes a parameter that is a 

reference to the signal sender, the output value is actually passed from one stage to the 

next in the event itself. Consequently, pipelines can be organized with multiple parallel 

pathways by assigning the event handlers from two or more components to the same 

event source. Specialized observer components can tap into pipeline outputs at any stage, 

recording time and sample values to disk or sending them to a graphical display object 

for plotting. 

Figure 6-8 shows an example of a system with a forward control path for gain, a 

feedback path for regulation, and a signal tap for data recording. An input stage sends a 

data value through an event to a mixer and automatic-gain control (AGC) stages. The 

AGC stage sets its Output property based on the average level of the input, and although 

it may raise an event, it has no listeners so no additional action is triggered. The mixer 

stage produces an output based on some function of the input signal and its 
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ControlObject property, the output of a downstream phase detector. The mixer then raises 

its Done event. An integrator stage responds to the event from the mixer and uses the 

input value and the output from its ControlObject property, the AGC component, to 

determine the length of integration time.  

Mixer Phase Filter
Input 

Event

Output 

Event

Event Event Event

AGC




0

Control Object

Control Object

Record

 

Figure 6-8—Example pipeline configuration showing feed-forward and feedback control objects 

with parallel pathways 

The integrator updates its output and triggers an event for the Phase detector. The 

phase detector output is looped back to control the Output property of the earlier mixer 

stage, and its triggered event passes along an output to the filter component that creates 

the final result. The phase Done event is also connected to a data record object that copies 

the Time and Output information from the event to a persistent data store, such as a file or 

relational database. 

Care must be taken not to stall the main event thread executing the 

StageEventHandler by invoking long-running or overly involved operations. Lengthier 

processing loops, when required, can be executed by creating and initializing a separate 

worker thread.  
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6.2.3.1    Properties 

Input: the data value passed from the output of the previous stage that is valid for the 

current time index. 

Output: that data value that will be passed to the next stage in the pipeline after the 

Done event is raised. Typically,  

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝑓(𝐼𝑛𝑝𝑢𝑡,𝑇𝑖𝑚𝑒,𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑂𝑏𝑗𝑒𝑐𝑡.𝑂𝑢𝑡𝑝𝑢𝑡, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 

Time: a relative or absolute time value for the sample currently being processed. 

Outputs that are calculated from time-based functions use the value of this property as the 

time parameter. The difference in time between two successive samples will be the 

stage-1 event source’s event rate, T. 

ControlObject: allows feed-forward or feedback control from an external pipeline 

component. The ControlObject.Output property may be used in the calculation of the 

stage’s Output value.  

6.2.3.2    Methods 

StageEventHandler: the virtual event handler for the Done event. The default 

implementation provided by the PipelineComponent base class, which can be overridden 

in derived classes, performs the following sequence of operations: 

1) Sets the Time property to the event sender Time 

2) Sets the Input property to the event sender Output 

3) Calls the virtual method UpdateOutput to change the Output property 

4) Raises the Done event and forwards a reference to itself as the sender object 
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This default component behavior is equivalent to the unit delay (𝑧−1) transfer 

function. 

UpdateOutput: virtual method that is used to calculate the Output property based on 

the Input, Time, and ControlObject property values. The base-class version of 

StageEventHandler calls the UpdateOutput method after changing the Input and Time 

properties and before it raises the Done event. The default function performed by 

UpdateOutput is to set the Output = Input, thereby acting as a single-stage delay. The 

majority of new classes derived from PipelineComponent should only need to provide a 

definition for UpdateOuput and inherit all other attributes from the base class. 

6.2.3.3    Events 

Done: signals to other stages that this object has finished updating its Output 

property. A reference to the sender object is passed as a parameter. 

6.2.4    Pipeline Container 

The pipeline components are configured into the desired sequential structure, 

dependent events connected, and control objects assigned as part of a PipelineContainer 

class. All that is required to run multiple pipelines in parallel is to create multiple 

container instances and connect them to the front-end event source.  
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+StageEventHandler()

+UpdateOutput()

«interface»

IPipelineComponent

+StageEventHandler()

+UpdateOutput()

«signal»+Done(in sender : PipelineComponent)

+Input

+Output

+Time

+ControlObject : PipelineComponent

PipelineComponent

IPipelineComponent

+PipelineContainer()

+Initialize()

PipelineComponent::PipelineContainer

 

Figure 6-9—PipelineContainer class diagram 

The PipelineContainer type is derived from the PipelineComponent so that larger 

pipelines can be comprised of smaller ones; pipelines may contain stages that are 

themselves pipelines. 

6.2.4.1    Properties 

Inherits the properties of Input, Output, and Time from PipelineComponent. Derived 

types may need to add properties that expose selected state information of the contained 

PipelineComponents as computational results to objects that created the pipeline. In the 

case of the reference GPS application, a derived PipelineContainer class is defined that 

extracts the carrier and code phases and carrier Doppler values, as well as the latest 

output navigation data bits, for a single tracked satellite as properties of the container. 

6.2.4.2    Methods 

PipelineContainer: a class constructor method that gets called when an instance is 

created. The various constituents of the pipeline will need to be initialized and the events 
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hooked together and this is a good place to do it. The bulk of the work may be put into 

the Initialize method, described below, so that the pipeline may be reinitialized without 

having to be recreated. 

Initialize: used to reinitialize the pipeline configuration. 

6.2.4.3    Events 

PipelineContainer inherits the Done event from PipelineComponent. Additional 

events to notify external objects of changes in the pipeline state may be added to derived 

class instances as necessary.  

6.2.5    Phase-Lock Loop Pipeline Component 

The purpose of the PLL is to accurately track the frequency and phase of the 

incoming signal carrier after the DLL has removed a properly aligned code. If the 

location of the navigation data bits is known, a coherent PLL can be used. However, 

usually this is not the case, so a Costas-type or squaring discriminator is required. 1
st
 and 

2
nd

-order PLLs are described and characterized in (6), and the PLL implementation 

provided by the receiver framework is based largely on that work. Reference (55) 

provides an analysis of the performance characteristics of GPS weak-signal tracking 

using a 3
rd

-order PLL. An optimal loop filter for the discrete-time PLL operating at 

steady-state is obtained in (56) using Wiener’s analysis of the minimum-mean-squared 

error of the phase difference between the input signal and the PLL output. Many of the 

texts consider only the analog nature of PLLs, and ignore the consequences of their 

discrete characterizations, such as (3) and (4). 
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Figure 6-10—A basic phase-lock loop 

Figure 6-10 shows the time-domain representation of a basic PLL. The output of the 

phase comparison is the difference between the phases of the input signal and the output 

of the voltage-controlled oscillator (VCO). The transfer function of the low-pass (LP) 

filter is given by 

𝐹 𝑧 = 𝐶1 +
𝐶2

1 − 𝑧−1
 6-2 

which is simply a first-order PI (proportional integral) controller. 

C1

C2

z
-1

Input Output

 

Figure 6-11—PI controller as the filter function for a PLL 
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The VCO can be replaced with 

𝑁 𝑧 =
𝜃𝑓 𝑧 

𝑉𝑂 𝑧 
≡

𝑘1𝑧
−1

1 − 𝑧−1
 6-3 

The PLL transfer function can be written as 

𝐻 𝑧 =
𝜃𝑓 𝑧 

𝜃𝑖 𝑧 
=

𝑘0𝐹 𝑧 𝑁 𝑧 

1 + 𝑘0𝐹 𝑧 𝑁 𝑧 
 6-4 

Substituting equations 6-2 and 6-3 into 6-4 results in 

𝐻 𝑧 =
𝑘0𝑘1 𝐶1 + 𝐶2 𝑧

−1 − 𝑘0𝑘1𝐶1𝑧
−2

1 +  𝑘0𝑘1 𝐶1 + 𝐶2 − 2 𝑧−1 +  1 − 𝑘0𝑘1𝐶1 𝑧−2
 6-5 

From which, it can be shown (6) that 

𝐶1 =
1

𝑘0𝑘1

 8𝜁𝜔𝑛𝑇𝑆  

 4 + 4𝜁𝜔𝑛𝑇𝑆 +  𝜔𝑛𝑇𝑆 2 
 6-6 

𝐶2 =
1

𝑘0𝑘1

4 𝜔𝑛𝑇𝑆 
2

 4 + 4𝜁𝜔𝑛𝑇𝑆 +  𝜔𝑛𝑇𝑆 2 
 6-7 

Where the natural frequency, 𝜔𝑛 , and the damping factor, 𝜁,can be found from 

𝜔𝑛 =  
𝑘0𝑘1

𝜏1
 6-8 

𝜁 =
1

2
𝜔𝑛𝜏2 6-9 
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Additionally, 

𝜏1 =
𝑇𝑆
𝐶2

 6-10 

𝜏2 =
2𝜏1𝐶1 + 𝑇𝑆

2
 6-11 

The desired loop characteristic usually specified is the noise bandwidth, 𝐵𝑛 , which for 

the second-order system implemented is equal to 

𝐵𝑛 =   𝐻 𝜔  2
∞

0

𝑑𝜔 

=
𝜔𝑛

2
(𝜁 +

1

4𝜁
) 

6-12 

Typical values for the noise bandwidth are in the range of 15-25 𝑉/ 𝐻𝑧, and the 

damping factor is usually specified to be the critically-damped value of 0.7; i.e., the poles 

of the characteristic equation will be real and equal. 

There are many different, but equivalent, ways to code a digital filter and control 

loop, so the stability effects due to the loop gains 𝑘0 and 𝑘1are not able to be easily 

generalized. Ensuring stability for the PLL involves evaluating a modified Routh-

Hourwitz criteria using a bilinear transform to the 𝜔-domain (not the best choice for a 

discrete system), or preferably conducting Jury’s stability test (57). A few of the controls 

related details for tracking loop implementations are provided in Appendix B. 

Loop stability as related to the signal sample rate, 𝑇𝑆  , for the classic Type-2 PLL has 

been evaluated in (58). The open-loop gain, 𝐺𝑂𝐿, is given by 
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𝐺𝑂𝐿 𝑧 =  𝜔𝑛𝑇𝑆 
2
𝑧  

1
2 +

𝜏2

𝑇𝑆
 +  

1
2 −

𝜏2

𝑇𝑆
 

 𝑧 − 1 2
 6-13 

and the resulting gain margin is, 

𝐺𝑀 = −20 log(𝜁𝜔𝑛𝑇𝑆) 6-14 

However, the gain margin is only defined provided that 𝜔𝑛𝑇𝑆 < 4𝜁. 

In the situation where the PLL is operated in a coherent integrate-and-dump 

configuration, it is important to realize that the value of 𝑇𝑆 will correspond to the 

integration interval (typically, the length of a spreading code) and not the actual sampling 

rate. As a consequence, the gain margin may be considerably smaller than expected and 

the combined code and carrier loop could exhibit a loss of signal tracking due to loop 

instability. 

The most frequently encountered PLL phase discriminator functions (59) are 

provided in Table 6-1. In the table, the terms 𝐼𝑘and 𝑄𝑘  are the in-phase (real) and 

quadrature (imaginary) components of the signal. The recovered data bit stream is taken 

from the I arm of the output of the PLL, since every bit-transition will cause a 180° phase 

reversal in the carrier and will be seen as an abrupt change in the polarity of the PLL 

output. 
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Discriminator Description 

𝜃 = 𝑠𝑖𝑔𝑛 𝐼𝑘 𝑄𝑘  

Computationally simple, output is 

proportional to the sine function 

𝜃 =  𝐼𝑘𝑄𝑘   
Medium calculation complexity, output is 

proportional to sine function 

𝜃 = tan−1  
𝑄𝑘

𝐼𝑘
  

High computational workload, output is the 

phase error 

 

Table 6-1—Typical PLL discriminator functions  

The PLLPipelineComponent class diagram is shown in Figure 6-12. As the name 

suggests, the PLLPipelineComponent inherits from the PipelineComponent base class so 

that instances may be created and configured to participate in the signal processing 

pipeline. Consequently, the PLLPipelineComponent has access to the default Input, 

Output, and Time properties, as well as sending and receiving pipeline events.  
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+StageEventHandler()

+UpdateOutput()

«signal»+Done(in sender : PipelineComponent)

+Input

+Output

+Time

+ControlObject : PipelineComponent

PipelineComponent

+PLLPipelineComponent()

«signal»+IterationComplete(out sender : PipelineComponent)

-NCO : NCOPipelineComponent

+Dwell : double

+Frequency : double

+Phase : double

-loopFilter

PipelineComponent::PLLPipelineComponent

 

Figure 6-12—PLLPipelineComponent class diagram 

6.2.5.1    Properties 

NCO: A private reference to an instance of a numerically-controlled oscillator 

component. The PLL controls the frequency and phase properties of this object, which is 

also shared with the DLL component. 

Dwell: A public property for controlling the length of time the PLL integrates the 

product of the incoming signal and the NCO output before evaluating the phase error and 

adjusting the frequency and phase of the NCO. 

Frequency: Since the NCO is a privately held reference, the Frequency property is 

used by other pipeline members to view the current frequency of the tracked signal. 

Phase: Used by other pipeline members to view the current phase of the tracked 

signal. 
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loopFilter: A private reference to an instance of a Filter class that performs a 

smoothing operation on the output of the discriminator function. The output of the filter 

is used to adjust the NCO frequency and phase. 

6.2.5.2    Methods 

PLLPipelineComponent: Class instance constructor that is used to initialize the 

various internal states. 

6.2.5.3    Events 

IterationComplete: In addition to the inherited Done event, the class also raises this 

event to signal to interested listeners that the amount of time equal to the dwell time has 

passed since the start of the last integration period. The firing of this event represents the 

completing of the dump part of integrate and dump. 

6.2.6    Delay-Lock Loop 

Following the acquisition process, the DLL receiver component performs the cross 

correlation between the incoming carrier, that has been mixed with the signal from the 

NCO and the locally-generated PRN code in order to produce a code-removed version of 

the signal that is then fed to the PLL for message bit recovery. Correlation can be 

performed as multiplication in the frequency domain, or as integration in the time 

domain. Usually, the integration method is harder (or, at least more mundane), so many 

post-processing receivers are implemented using the frequency-transform-based 

approach. The pipeline processing model of the receiver framework makes performing 

the integration a fairly simple and natural operation. After each event from the 

predecessor stage, the input value is added to a sum accumulator, and a test is made 

comparing the Time property to the integration interval end time. If the integration time 
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is complete, the total sum is normalized by multiplying the sum by the sampling time 

interval (dividing by the sampling rate) and the result is then produced as an output, after 

which the accumulated sum is reset to zero. A multichannel software correlator using a 

combined DSP and PC environment and a 12 MHz sampling rate is tested in (59). 

The DLL keeps the locally-generated replica of the code time-aligned with the code 

in the carrier by maintaining three correlation results with an on-time (Prompt, P), an 

advanced (Early, E), and a delayed (Late, L) version of the local code. When the E 

correlation result is higher than the P result, the indication is that the local code is running 

behind since the advanced version fits better. Likewise, when the L result is higher, the 

local code is running advanced, since the delayed version fits better. The usual spacing of 

the early and the late codes is ½-chip interval ahead and behind the prompt timing.  

E P L
 

E P L
 

E P L
 

(a) Aligned P code (b) Code is early, late 

version fits better 

(c) Code is late, early 

version fits better 

Figure 6-13—DLL E, P, L correlator outputs under on-time (a), early (b), and late conditions (c) 

Depicted graphically, the DLL operates as shown in Figure 6-13. The triangular 

shaped outline represents the envelope of the expected range of values of the PRN cross 

correlation function. The goal is to keep the P correlator output in the apex of the triangle 

with the E and L values on either side as seen in (a). When the timing of the local code 
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generator advances, situation (b), getting ahead of where it should be, the output from the 

L correlator peaks higher than that of either the E or P correlators—the late version fits 

better, so the local code must be ahead of the received code. Feedback control from a 

discriminator function will cause the timing of the code generator to slow down, bringing 

it back into alignment. The reverse happens when the E correlator output peaks (c). 
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Figure 6-14—DLL correlator block diagram 

A block diagram of the correlator section of a DLL is presented in Figure 6-14. The 

input signal from the front-end sampler is mixed with the output from the PLL controlled 

NCO and multiplied by early, prompt, and late code sets. After integrating for an interval 

of time, 𝜏, usually equal to the code duration, the correlator outputs are then compared 

with a discriminator function to produce the feedback variable.  

Various DLL discriminators are given in Table 6-2 from (59). In the table, the terms 

𝐼𝐸 , 𝐼𝐿 , 𝐼𝑃and 𝑄𝐸 ,𝑄𝐿 ,𝑄𝑃  are the in-phase (real) and quadrature (imaginary) components of 

the Early, Late and Prompt correlator outputs. 
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Type Discriminator Description 

Coherent 𝑑 = 𝐼𝐸 − 𝐼𝐿 

Simple discriminator, can only be 

used when the carrier phase and 

data- bit locations are known 

Non-

coherent 

𝑑 =   𝐼𝐸
2 + 𝑄𝐸

2 − (𝐼𝐿
2 + 𝑄𝐿

2)   Early power minus late power 

𝑑 =
  𝐼𝐸

2 + 𝑄𝐸
2 −  𝐼𝐿

2 + 𝑄𝐿
2  

  𝐼𝐸
2 + 𝑄𝐸

2 +  𝐼𝐿
2 + 𝑄𝐿

2  
 Normalized early minus late power 

𝑑 =  𝐼𝑃 𝐼𝐸 − 𝐼𝐿 + 𝑄𝑃(𝑄𝐸 −𝑄𝐿)   Dot product 

 

Table 6-2—Typical DLL discriminator functions  

The receiver framework DLLPipelineComponent class diagram is provided in Figure 

6-15. The reference implementation uses the normalized 𝐸 − 𝐿 discriminator function to 

keep a PRN code generator instance aligned with the received signal. The Output 

property is set to the Input property times the PRN sequence value for the current sample 

time. 
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+DLLPipelineComponent()

«signal»-IterationComplete(out sender : PipelineComponent)

-PRNGenerator : GPSCAPRNGenerator

-loopFilter

+E

+P

+L

+dwell : double

+codeDelay : double

+Locked : bool

+chipRate : double

PipelineComponent::DLLPipelineComponent

+StageEventHandler()

+UpdateOutput()

«signal»+Done(in sender : PipelineComponent)

+Input

+Output

+Time

+ControlObject : PipelineComponent

PipelineComponent

 

Figure 6-15—DLLPipelineComponent class diagram 

The DLLPipelineComponent is derived from the PipelineComponent base class and 

as such, inherits that class’ properties, methods, and the Done event. It is then extended 

with DLL-specific characteristics. 

6.2.6.1    Properties 

PRNGenerator: A private reference to one of the PRNGenerator classes that will 

produce the correct code value in a sequence for a given point in time. 

loopFilter: A private reference to an instance of a Filter class that performs a 

smoothing operation on the output of the discriminator function. The output of the filter 

is used to adjust the PRN generator delay property. 

E: the current value of the integrator for the Early code correlator. 
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P: the current value of the integrator for the Prompt code correlator. 

L: the current value of the integrator for the Late code correlator. 

dwell: the length of time, 𝜏, that the correlator will integrate for before invoking the 

discriminator function and adjusting the PRN code delay. 

codeDelay: the current tracked PRN delay value. This output is used to calculate the 

signal transit time, modulo 1 ms, for pseudorange measurements. 

 Locked: indicates that the DLL is actively tracking a signal. If this property changes 

to false, the signal must be reacquired. 

chipRate: the current PRN chip rate. With large Doppler shifts, the code generator 

chipping rate needs to be adjusted in order to maintain better tracking control. 

6.2.6.2    Methods 

DLLPipelineComponent: class constructor that is used for initializing the instance 

state variables. 

6.2.6.3    Events 

IterationComplete: an event that is raised upon complete of the integration interval. 

6.2.7    Numerically Controlled Oscillator 

The numerically-controlled oscillator generates the local version of the Doppler-

adjusted signal that is mixed with the incoming signal prior to the DLL. There are several 

vector-based SIMD implementations of optimized algorithms, such as (27), but the 

reference implementation operates simply with the 𝑠𝑖𝑛 and 𝑐𝑜𝑠 math library functions. 
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The class diagram is given in Figure 6-16. 

+StageEventHandler()

+UpdateOutput()

«signal»+Done(in sender : PipelineComponent)

+Input

+Output

+Time

+ControlObject : PipelineComponent

PipelineComponent

+NCOPipelineComponent()

+Frequency : double

+Phase : double

PipelineComponent::NCOPipelineComponent

 

Figure 6-16—NCOPipelineComponent class diagram 

6.2.7.1    Properties 

The Input, Output, Time properties are inherited from the PipelineComponent base 

class. 

Output.Real = Math.Cos(2.0 * Math.PI * Frequency * Time + Phase); 

Output.Imag = Math.Sin(2.0 * Math.PI * Frequency * Time + Phase); 

Frequency: The current frequency of the output signal. 

Phase: The current phase of the output signal.  

6.2.7.2    Methods 

NCOPipelineComponent: The class constructor used for initialization. 

6.2.7.3    Events 

The Done event from the base class indicates the output value has changed. 
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6.2.8    Data Demodulator 

The data demodulator component is connected to the IterationComplete event of the 

PLL, where it integrates the output for the bit rate time interval; 20 ms for the 50 bps data 

rate of the C/A signal. At the end of each integration period, a comparison is made to 

determine if the accumulated value is largely positive or negative. Positive results are 

then mapped to an output of binary 0, negative results produce a binary 1 (Appendix C). 

As each data bit is extracted, the demodulator raises an IterationComplete event that can 

be used to activate a navigation message formatting component. 

The demodulator class diagram is given in Figure 6-17. 

+DemodulatorPipelineComponent()

«signal»+IterationComplete(out sender : PipelineComponent)

«signal»+SyncChanged()

+bitRate : double

+PLLLocked : bool

+isSynchronized : bool

+nextBitTime : double

PipelineComponent::DemodulatorPipelineComponent

+StageEventHandler()

+UpdateOutput()

«signal»+Done(in sender : PipelineComponent)

+Input

+Output

+Time

+ControlObject : PipelineComponent

PipelineComponent

 

Figure 6-17—UML static object model for the demodulator component 

6.2.8.1    Properties 

The Input, Output, and Time properties are inherited from the PipelineComponent 

base class. The Output value is determined by accumulating the values from the PLL 

output and generating a 1 for a negative result, and a 0 for a positive result. It is possible, 
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depending on the PLL discriminator used, that the polarity of the bits may change 

between words. The last two bits in the second word of each sub-frame (bits 59 and 60 

from the sub-frame start) should produce a negative result and can be used to correct 

inverted polarity conditions. 

bitRate: The rate at which the binary symbols are received. The default value is 50 

bps. 

PLLLocked: An input condition indicating that the PLL is properly tracking a 

legitimate signal. This flag must be set to true before the data bit output events will 

occur.  

isSynchronized: The default initial condition for the demodulator is to integrate over 

the entire bit interval without regard for the location of the start position. However, better 

results will be obtained when the position of the bit edge can be located. This flag signals 

a condition in which the demodulator has been able to make a reasonable estimate of the 

edge location and the nextBitTime property can be used to control the integration span of 

the PLL in a feedback loop. 

nextBitTime: The expected time of the next bit transition condition. This value can 

be used to control a PLL for situations where the discriminator function is sensitive to bit 

transitions. 

6.2.8.2    Methods 

DemodulatorPipelineComponent: The class constructor used to initialize variable 

instances. 
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6.2.8.3    Events 

IterationComplete: An event that occurs when the specified bit time interval has 

passed with the PLLLocked flag set; signals that a new data bit is ready. 

SyncChanged: This event indicates that either a new value for nextBitTime has been 

calculated or that the isSynchronized property has changed. The demodulator component 

needs to verify that the estimate of the location of the bit edges is legitimate by looking 

for transitions when they are expected to occur. 

6.2.9    Signal Controller 

An instance of the SignalController class maintains an initialized reference to a 

SignalBase abstract class object that serves as the connection point to the receiver’s input 

signal. Any class that either inherits from the SignalBase class or provides an 

implementation for ISignalSource, described in the Signal Source Device Driver 

Interface section, may be used as the signal reference. The object model for the 

SignalController class is provided in Figure 6-18. 

The SignalController class is derived from the PipelineComponent base class and 

provides the signal sample interconnection and time synchronization to the rest of the 

processing pipeline. As a result of SignalController being a type of PipelineComponent, a 

SignalController instance may be joined to a pipeline at any stage and not just at the 

front-end acting as the primary signal input. Combining a SignalController with a signal 

connected through an interoperability component (see section on Interoperability 

Support) in the middle of a pipeline would allow, for example, an external physical 

hardware clock circuit to participate as part of the signal processing chain. Information 
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regarding the frequency and sampling rate of the underlying SignalBase object is made 

available through access to the SignalSource class property. 

A SignalController instance is expected to run asynchronously on a separate thread 

until it is sent a Stop signal from the containing parent application. Running a 

SignalController in this manner allows the priority of thread to be adjusted according to 

the demands of the input signal source. 

+StageEventHandler()

+UpdateOutput()

«interface»

IPipelineComponent

+StageEventHandler()

+UpdateOutput()

«signal»+Done(in sender : PipelineComponent)

+Input

+Output

+Time

+ControlObject : PipelineComponent

PipelineComponent

+RunAsync()

+Stop()

+SignalSource : SignalBase

-Running : bool

PipelineComponent::SignalController

 

Figure 6-18—SignalController object model 

In addition to the properties, methods, and events inherited from the base 

PipelineComponent, the SignalController class provides the following extensions. 

6.2.9.1    Properties 

SignalSource: a reference to a SignalBase object (Chapter 8) that is used to generate 

the input sample data and time values. When a SignalController is connected as the 

primary input stage to a pipeline container, in each sample interval the Time property is 
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incremented by an amount equal to the reciprocal of the sampling rate property defined in 

the SignalSource. 

Running: a private property used by the class to determine if it should terminate any 

threads or operations that are currently executing. 

6.2.9.2    Methods 

SignalController: The class constructor that is used for initialization. 

RunAsync: resets the Input and Time properties, initializes and starts the 

SignalSource. It then executes a loop that repeatedly sets the Output to the ReadData 

method result from the SignalSource, raises the Done event, and then updates the Time 

property. This method only returns after the Stop method is called. 

Stop: sets the Running property to false, which halts the RunAsync thread if it is 

running. 

6.2.9.3    Events 

The Done event is inherited from the PipelineComponent class. Derived classes may 

extend the signals of the base-class definition. 

6.2.10    PRN Code Generation  

The classes that are responsible for the generation of the pseudo-random noise 

sequences that are necessary to de-spread the received signal implement the 

IPRNGenerator interface. Shown in Figure 6-19 is the UML object model for an 

inheritance hierarchy of GNSS PRN code generator classes. 
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+SequenceValue(in timeIndex : double) : double

«interface»IPRNGenerator

+SequenceValue() : double

+ID : int

+SequenceLength : int

+SequenceDuration : double

+ChipRate : double

+ChipDuration : double

GNSSPRNGenerator

IPRNGenerator

GNSSPRNGenerator::GPSPRNGenerator GNSSPRNGenerator::GalileoPRNGenerator

«inherits»

+SequenceValue() : double

GPSPRNGenerator::GPSCAPRNGenerator GPSPRNGenerator::GPSYPRNGenerator

«inherits»

 

Figure 6-19—UML static object model for PRN code generators 

PRN code generating solutions can be developed in a wide variety of ways that offer 

tradeoffs between memory and performance optimizations. Generator functions and shift 

registers, or look-up-tables in the form of arrays with packed or unpacked bit-fields, 

among other strategies, can be used to produce the required chip sequences. Regardless 

of the implementation details, the time-based output value must be expanded in time, or 

up-sampled, to correspond with the input signal sampling rate in order to keep the 

sequence length consistent in relation to its duration. 

Although other code generators are listed in the object model, only the GPS C/A code 

class (GPSCAPRNGenerator) implementation has been provided in the reference 

receiver application. This implementation uses the C/A code lookup table in Appendix C. 

When an instance of the class is created, the ID of the PRN code is used to specify an 
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index in the table as the code starting point. Time values passed into the SequenceValue 

method are reduced modulo sequence duration to compute the index of the chip location 

for the time provided. 

6.2.10.1    Properties 

ID: represents the identifier or starting seed value of the PRN sequence. 

SequenceLength: the total number of chips in the PRN sequence. 

SequenceDuration: the time interval, or repeat rate, of the sequence; the sequence 

length divided by the chipping rate. 

ChipRate: the frequency, or time-base, of the chip sequence. 

ChipDuration: the width in time of each chip in the sequence, equal to the sequence 

duration divided by the sequence length, or the reciprocal of the chip rate. 

6.2.10.2    Methods 

SequenceValue: returns -1/+1 value of the sequence for the specified time index. The 

returned value should be calculated on a modulo-ChipDuration basis and should support 

negative time inputs as indicating a time offset from the end of the sequence. 

6.3 Common Types 

The common types module includes the various types that have been provided in 

order to support, leverage, or enhance certain characteristics of the targeted runtime 

environment. By providing them in this fashion, portability issues are lessened should 

someone decide to undertake the endeavor of migrating the framework to a different 

environment. 
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6.3.1    Complex 

The Complex type is a structure that provides a Real + Imaginary number system and 

defines the related operators. The signal processing pipeline classes work with Input and 

Output properties that are of type Complex. 

6.3.2    DFT 

The DFT class provides a Transform method that accepts and returns an array of 

Complex numbers. The Transform method is a brute-force, non-optimized discrete 

implementation of the Fourier transform. 

𝐻 𝑓 =    𝑕𝑛

𝑛<𝑁

𝑛=0

𝑘<𝑁

𝑘=0

𝑒−2𝜋𝑖𝑓𝑛𝑘 /𝑁  6-15 

where 𝑓 is the desired frequency bin and 𝑁 is the number of samples. 

Although slower than the FFT, discussed next, the DFT will operate on sampled data 

sets of any arbitrary length. It is sometimes faster to perform a DFT transformation on 

non-power of two data lengths rather than padding the input to the next highest power of 

two. 

6.3.3    FFT 

The FFT class provides a Transform method that accepts and returns an array of 

Complex numbers. The Transform method is a fast-optimized discrete implementation of 

the Fourier transform based on the Cooley and Tukey Radix-2 Butterfly technique (60). 

This algorithm requires that the input data be, or be made to be, a power of two in length. 

Data sets that are shorter should be extended and padded with zeros before calling the 

Transform method. 
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6.3.4    Filter Classes 

The Filter classes include moving average, 2
nd

- and 3
rd

-order discrete filter 

implementations. These filter implementations are used primarily in the PLL and DLL 

integrator functions. 

6.3.5    Frequency 

Provides a collection of methods for performing correlation, convolution and their 

respective inverses, along with data-windowing functions, on arrays of Complex data. 

These can be used for signal analysis purposes. 
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Chapter 7 Interoperability Support 

The interoperability support features provide guidelines, class templates, and other 

resources for the integration of external hardware or software components through a 

consistent set of interface wrappers. If required, it is possible to implement, in external 

hardware, intermediate parts of a receiver that are connected through a suitable device-

driver interface, and to make them behave as if the work were performed by an internal 

application component. This capability allows hardware functions to be initially defined 

and tested in software, and then implemented in hardware. Once implemented, the 

hardware can then be plugged into the framework replacing the software version of the 

component for relevant performance evaluation comparisons. Software functions built 

using other implementation tools or technologies (languages, etc.) may also be combined 

with the core application framework in a similar manner. Any component within the 

system can be implemented externally through the interoperability interface, provided all 

critical timing requirements are met. 

7.1 Interoperability Requirements 

To satisfy general reuse expectations and to support specialty libraries and tools from 

3
rd

-parties, either open-source or commercial in nature, the receiver framework provides 

a generalized method of integrating non-core code through its interoperability service 

interface. Such code can be locally or remotely executed, or even called via a web service 

or an equivalent remote procedure call (RPC) mechanism. In order to connect a plug-in 
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component, that component has to conform to or be made to look like it supports, certain 

essential interoperability requirements: 

1) An external component has to be externally callable. That is, the component 

needs a layer to provide some type of formal application programming interface 

(API) definition. It can be a library module, an application, or a system-level 

service, but it has to include a means of invoking the functions and receiving 

returned results. Stand-alone applications that only interact with the outside-world 

through an event-driven user-interface, make for poor interoperability candidates. 

2) External components must have data types that support the necessary 

marshaling services, and the types have to have equivalent representations in 

both environments; i.e., they must be blittable data types. [Data marshaling is the 

act of moving and initializing data elements from one region of memory to 

another, typically between processes.] Types that are of different sizes, byte-

ordering (endianness), or are ambiguous require special handling and possibly the 

implementation of a custom marshaler. Ambiguous types have either multiple 

representations that map to a single type, or they are missing type information, 

such as the size of an array.  

3) The external code must be available to the system at run time. For library code 

that has been statically linked, the code will become part of a user application that 

must be present on the path when the code is called. 

4) The code has to be native to the operating system that supports the 

application, or accessible through a service that will make it look like native 

code. Interpreted code, such as Java or MATLAB, requires invoking the 
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functionality through a runtime interpreter application that must be accessed by a 

user-provided mechanism. 

Although not a critical requirement, ideally, the external code will not be required 

by the application to maintain state between calls. Multiple round-trip calls to library 

functions that expect the persistence of state between calls will have to externalize the 

information necessary to exchange and reinitialize the state-related variables from call-to-

call. Such a requirement can be difficult to implement efficiently, particularly in a 

multithreaded or multiuser environment. 

7.2 Interoperability Layered Model  

The relationship between the interoperability layer and the other framework 

components can be conceptualized as shown in Figure 7-1. While the receiver framework 

provides interface specifications and type declarations, the interoperability layer provides 

a means of sending and receiving messages to and from external or 3
rd

-party components. 

Interoperability Layer

Data 

Recovery

Receiver Framework

Acquisition Tracking
3

rd
-party 

libraries

 

Figure 7-1— Interoperability Layer 

Figure 7-2 shows the various strata that make up a representative interoperability 

implementation. Depending on the device or component-level technology involved, not 



 122 

all layers in this four-layer model will need to be provided. At a minimum, only Layer-4 

is required with layers one through three providing hardware service abstraction, state 

management, and data type compatibility, respectively.  

Device-specific  

functions

Interoperability 

adaptation layer

Run-time 

interoperability type 

declarations

Component feature 

abstractions 

Layer 2:

Interface reduction and 

state management wrapper

Layer 1:

Hardware-specific device 

driver code

Layer 3:

Interoperability support 

types and data marshalling

Layer 4:

Component interface 

implementations

 

Figure 7-2—Layered Interoperability Model 

At the bottom is the Layer-1 hardware-specific, often vendor provided, specialized 

device driver application or library code, and is usually only required when connecting to 

physical hardware. The hardware drivers are typically written in C and assembler, and as 

a result require the support of other C-language constructs in order to invoke their 

functionality. The exported functions and data structures frequently contain naming 

conventions and other attributes that tie them directly to either the hardware or the system 

bus connection they represent. Calling these functions or creating related type instances 

directly by their name makes the code explicitly hardware dependent and limits 

application reusability. 

Layer-1 consists of libraries, applications, and configuration utilities that expose 

fundamental low-level operations to the upper layers in a uniform and consistent way. A 

familiar example would be a driver for a printer device. While perhaps not a potential 
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hardware component for a receiver, the abstraction that is achieved is equivalent in that 

any application with a print capability can direct its output to the printer through the 

device driver without any specific information on how the printer happens to be attached 

to the system. 

Layer-2 is identified as an interoperability adaptation layer, the purpose of which is 

to hide some of the low-level implementation details required to perform high-level 

functional tasks. Depending on the complexity of the device operations, it is sometimes 

necessary to create an additional C-library wrapper to transform and minimize the 

exported functions and their data types. State encapsulation and persistence management 

can be implemented at this layer. While it is optional, this layer can be particularly 

beneficial when the source code for the device is unavailable, or when the device is 

shared by multiple applications and the interface signature is immutable (non-

changeable), thereby making it impossible to be changed for a specific need or 

requirement. 

Layer-3 provides the runtime interoperability type and function declarations, 

specifies the names and locations of related hardware libraries, and describes the nature 

and direction of the required data-marshaling services (in, out, in/out.) This layer is 

optional if support for the device is integrated as a library type of the runtime 

environment or operating system, or when creating a virtual or simulated device. It is 

usually necessary when connecting to a physical device through a device driver provider. 

Layer-4 is the critical part that provides the functional view of the device to 

dependent applications. It is implemented through interfaces and base classes that are 
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used to define general capabilities for specific hardware-centric device descriptions. If a 

base class implements an interface, the derived class inherits that implementation. 

Since the nature and operational characteristics of the interface requirements for any 

individual device can vary greatly, even within a device family, only general 

implementation strategies can be discussed for the bottom three layers. The top layer, due 

to its application-wide pervasiveness warrants the most attention. 

The most likely candidate that will be encountered in developing and extending the 

receiver framework using the interoperability model will be for the front-end signal 

hardware. Signal sources from different types of hardware front-ends, including 

simulated and file-based data, may be connected to the receiver framework through the 

interoperability layer. Low-level device driver code for detecting, initializing, and 

activating the front-end is specified at Layer-1. Any code that is necessary for 

amalgamating multi-step operational sequences into a single high-level step is developed 

for Layer-2, as is the persistence of device state information. Any required numeric type 

conversions or data formatting issues are resolved at Layer-3. Finally, Layer-4 represents 

the connection point to the receiver framework for the signal source. 

The benefit of the layered interoperability model is that there typically is no need to 

repetitively coerce internal data representations to fit different application programming 

interface signatures. System-level modules need only support the externally visible level 

of abstraction through the appropriate interface specification. As a result, connecting 

components from different sources should require no hacking and patching of someone 

else’s code to support additional functionality. 
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7.3 Interoperability Scenarios 

Different interoperability situations call for different interoperability support 

structures in order to satisfy the specific requirements at hand. When an application calls 

a method or procedure that has been packaged into an external library, the code that is 

eventually executed requires runtime system resources such as memory and processor 

time, in the form of a scheduled thread, in order to do the requested work. The required 

resources may be taken directly from the calling application—the code can be loaded into 

the application’s address space and the instructions can execute with the active thread. 

When resources are shared in such a manner, the code is considered to be executing in-

process since it appears to the system as if it is part of the original application process. 

For security and other memory management related reasons, however, it is often not 

appropriate for an external piece of code to share the same memory and other resources 

as the application that has invoked the operation. Such circumstances require that 

memory be allocated by the global system memory manager and the necessary data 

values must be copied between the two memory spaces in a way that makes the values 

look like they are sharing the same storage locations. 

An executing thread takes on the security context, the identity and credentials, of the 

process that created it. The active security context can be used to limit the amount of 

access that an executing thread has within the system. Switching a thread between one 

process context and another incurs a potentially significant overhead and corresponding 

performance penalty. Keeping calls within a single process, with or without data 

marshaling, typically represents the most ideal situation from a performance point of 
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view. Making calls into a functional library or an application-mode device driver is 

usually a single process activity. 

Calls that invoke operations residing in external libraries or applications can also be 

made between two processes as an interprocess operation, such as calling code in a 

system service or other application where dedicated resources are doing work. In addition 

to the aforementioned data marshaling requirements, these calls also necessitate thread 

synchronization operations and security context changes. While there is an additional 

overhead to consider, interprocess execution can be invaluable in situations involving 

trusted subsystem models, accessing dedicated resource pools, or for connection and state 

management activities. Interprocess operations can also be combined with a network 

layer redirector to create a distributed execution environment, where code can be 

executed remotely, such as performing database queries or accessing a hardware resource 

on an external server. The flexibility of interprocess operations often makes up for their 

potential performance downside. 

7.3.1    Single Process 

Figure 7-3 represents the most often encountered configuration for interoperability 

between legacy or special-purpose library code; straight calls to library functions or 

application-mode device drivers.  
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Figure 7-3—Single process interoperability function call: custom marshaler in A, system 

marshaler in B 

The interoperability layer provides the runtime callable wrappers that specify the 

names and locations of library binaries as well as supplying the mappings between 

function names and interface signatures (function prototypes.) When library code is 

loaded and executed in the memory space of the main application process it takes on 

whatever threading model is active when the call is made. Thread synchronization 

requirements depend on the application and any shared data structures. Object state 

persistence is the responsibility of either the application or the interoperability layer 

implementer. 

An in-process custom marshaler is shown in A, while a solution with the system 

default marshaler is shown in B. System provided marshalers usually run in the system 

process. 

7.3.2    Interprocess 

Figure 7-4 shows an example of the interoperation between an out-of-process 

application or system service and the system framework receiver application. Kernel-
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mode device drivers, host applications, or installable services provide an isolated 

execution environment and security context that require system-level marshaling and 

synchronization services. The marshaler is required to create and initialize copies of the 

involved data structures between the two processes. 

The threading model of the client (Process 1) must support that of the server, 

Process 2, since the library code is executed within the Process 2 apartment or boundary. 

Process 2 could represent a persistent data store and the marshaler would be an Open 

Database Connectivity (ODBC) or Object Linking and Embedding (OLE) data source 

provider. 

Application

Interop

Process 
Apartment

Application 
or Service

Marshaler

Code Library 
or API

Process 
Apartment

Process 2Process 1
 

Figure 7-4—Interprocess with common data types and system marshaler 

State persistence between calls would have to be supported intrinsically by the design 

of Process 2, or extrinsically by Process 1 in the implementation of the interoperability 

layer. Depending on the nature of the services provided by Process 2, state persistence 

may either be not supported or not required. 
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7.3.3    Interprocess with Remote Execution 

A distributed application solution can be integrated with the system framework 

through a standard network remote procedure call (RPC), named pipe, or sockets-based 

approach. Pipes and RPC methods are session-layer network protocol connections, while 

a socket operates at the transport layer. Remote services that operate over application-

layer protocols, such as XML-based Web Services over HTTP, can also be used to extend 

the interoperability layer to services hosted on networked machines located anywhere in 

the world. The pipe or socket layer may not necessarily be a native application 

component and therefore would not require interoperability support from the system 

framework. However, such support would be needed if the communication components 

involved were part of a customized connection library application or message exchange 

protocol. 
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Figure 7-5—Interprocess interoperability between two systems with remote code execution 

The connection hierarchy shown in Figure 7-5 is a generic view of the remote 

execution of code between two network-attached systems. The systems involved may be 
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of completely different architectures, as long as there is a possible mapping between any 

data types that are exchanged. 

The end-to-end round-trip latency introduced by the network conversation must not 

adversely affect any of the desired real-time performance characteristics expected of the 

receiver implementation. While it may be technically possible to use a hardware-based 

correlator located on the opposite side of the world through a network accessible 

interoperability layer, the delays in sending, processing, and receiving the results will 

likely negatively impact the system performance. 
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Chapter 8 Signal Source Device Driver Interface 

The most frequently encountered need for connecting external hardware will be for 

the signal front-end sampling device. This section provides the details of implementing a 

signal source using the layered-interoperability model, showing the required adaptations 

for a specific device; the SiGe SE4110L-EK3 USB (61) Link-1 (L1) receiver front-end 

that has been used for framework testing. 

The purpose of the device driver components is to provide the interfaces and abstract 

base classes required to permit the necessary functional virtualization. The design goal is 

to support a broad range of hardware-oriented analog-to-digital front-end devices in a 

manner that is both internally consistent and externally flexible in order to isolate 

changes and to minimize the effects on unrelated system components. 

Internally, the focus is on the common characteristics of these devices. Aspects such 

as the sampling rate and intermediate frequency are made accessible through device class 

properties, while specific hardware features, such as bus connection type or individual 

chipset registers, are kept deliberately opaque. Externally, by acting as a data-stream 

endpoint, the framework supports a variety of highly dissimilar devices, even those that 

are file based or entirely simulated. The source for the receiver connection sink can be 

implemented in the manner most appropriate to the device at hand. 

The same principle of abstraction applies to the device state, as well. While it may be 

necessary for an individual hardware device to traverse several unique states on the path 
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from initialization to data transfer, these fine-grained states can be represented by 

aggregation into a smaller number of more coarse-grained system-level states. The 

messages defined by the supported interface types act as signals that trigger a state 

transition, such as starting a signal capture or data transfer process. 

8.1 Layered Device Driver Approach 

The key to achieving system-level hardware-isolation is a layered approach to device-

independent abstraction. A device driver model based on the interoperability model 

layers of abstraction is shown in Figure 8-1. The model is comprised of four layers, but 

depending on the characteristics of the implemented device, it will not always be 

necessary to provide all the layers; once again, only the top level, Layer-4, is mandatory. 

Device-specific C-library 
functions

Interoperability 
adaptation layer

Run-time 
interoperability type 

declarations

Signal abstraction 
components

Layer 2:
Interface reduction and state 
management wrapper

Layer 1:
Signal-dependent hardware-
specific device driver code

Layer 3:
Interoperability support 
types and data marshalling

Layer 4:
Supported component 
interface implementations

 

Figure 8-1—Layered Device Driver Model 

Layer-1 implementation consists of the OpenSource LibUSB USB (62) device driver 

code library for Win32 applications. LibUSB allows user applications to access any USB 

device on a Windows system in a generic way without having to write custom kernel-

mode device drivers. The exported device library functions are called by including the 

usb.h C header file and linking to the LibUSB.lib library. 
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The code from the library for the device start function is shown in Figure 8-2. It is not 

obvious from the code alone what is happening at the physical device connection since 

the goal of this function is to provide a level of abstraction between the device details and 

the higher level functionality. 

 

Figure 8-2—LibUSB library function for starting a USB device. 

Layer-2 provides the connection to the underlying device library by encapsulating 

and selectively exporting only those higher-level functions that are required to be 

accessed. The exported functions for the USB signal device are declared in a C header 

file, shown partially in Figure 8-3. 

 

bool fusb_ephandle_win32::start () { 

  if (d_started) 

    return true; // already running 

 

  d_started = true; 

 

  d_curr = d_nblocks-1; 

  d_outstanding_write = 0; 

  d_input_leftover =0; 

  d_output_short = 0; 

 

  if (d_input_p){ // fire off all the reads 

    int i; 

 

    for (i=0; i<d_nblocks; i++) { 

      usb_submit_async(d_context[i], (char * ) d_buffer+i*d_block_size, 

        d_block_size); 

    } 

  } 

 

  return true; 

} 
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Figure 8-3—Exported USB functions from Layer-2 

The implementation of one of the functions, InitializeTheDevice, is shown in Figure 

8-4. This function is responsible for creating an instance of a pointer or Win32 handle to 

the correct USB device instance, and persisting its initialized state information. 

Collectively, these functions are exported from an application dynamic-link library. 

 

Figure 8-4—Implementation of the Layer-2 USB function for device initialization 

Layer-3 would be responsible for ensuring type compatibility between the 

unmanaged C runtime and the managed .NET Framework common language runtime. 

For this particular device, the types used are directly compatible between the two 

environments, so type conversions are not necessary. 

GN3LIB_API void InitializeTheDevice(void) { 

  

 if (fx2 == NULL) { 

  fx2 = usb_fx2_find(&num_str, vid_str, pid_str, debug); 

 

  if (!fx2) { 

   throw ERROR_NOT_SUPPORTED; 

  }  

 

  if (usb_fx2_configure(fx2, &fx2c) != 0) { 

   throw ERROR_NOT_SUPPORTED; 

  } 

 } 

 

 deviceinitialized = true; 

 

} 

GN3LIB_API void InitializeTheDevice(void); 

GN3LIB_API void ReleaseTheDevice(void); 

GN3LIB_API void StartDataClock(void); 

GN3LIB_API void StopDataClock(void); 

GN3LIB_API void ReadDeviceData(LPBYTE buffer, int size); 

GN3LIB_API DWORD GetDeviceStatus(void); 

GN3LIB_API void ReadGnssRFData(HANDLE hDevice, LPBYTE buffer, int size); 
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Layer-4 provides the final connection between the device library and the receiver 

framework. The functions declared in the runtime callable wrapper shown in Figure 8-5 

meet the requirements of the interface specification for the USBSignalSource type, as 

shown in the class diagram of Figure 8-7, by utilizing the .NET platform-invoke 

(P/Invoke) mechanisms. 

 

Figure 8-5—Layer-4 device wrapper declaration for the GN3S device driver 

The implementation of the initialization function is shown in Figure 8-6. The wrapper 

functionality can now be called by simply including the assembly into any development 

project utilizing a .NET-compatible language. All of the exported types and functionality 

are visible to consumers of the assembly without the need to include any of the C 

language-specific header or library files. However, it is necessary to have the USB device 

driver (LibUSB) properly installed, the USB front-end connected, and the Layer-2 library 

accessible to the calling application when the code is run. See Appendix A for additional 

details on P/Invoke and 3
rd

-party library interoperability requirements. 

public class GN3S { 

 

    [DllImport("GN3Lib", EntryPoint = "?InitializeTheDevice@@YAXXZ")] 

    public static extern void InitializeTheDevice(); 

 

    [DllImport("GN3Lib", EntryPoint = "?ReleaseTheDevice@@YAXXZ")] 

    public static extern void ReleaseTheDevice(); 

 

    [DllImport("GN3Lib", EntryPoint = "?StartDataClock@@YAXXZ")] 

    public static extern void StartDataClock(); 

 

    [DllImport("GN3Lib", EntryPoint = "?StopDataClock@@YAXXZ")] 

    public static extern void StopDataClock(); 

 

    [DllImport("GN3Lib", EntryPoint = "?ReadDeviceData@@YAXPAEH@Z")] 

    public static extern void ReadDeviceData([Out] Byte[] buffer,  

                                             [In] int size); 

 

    [DllImport("GN3Lib", EntryPoint = "?GetDeviceStatus@@YAKXZ")] 

    public static extern uint GetDeviceStatus(); 

} 
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Figure 8-6—Layer-4 wrapper code implementation for the GN3S device driver initialization 

sequence 

In general, there are two forms of implementation patterns that achieve the level of 

isolation and abstraction that is expected of Layer-1. The first, shown in Figure 8-7, uses 

an abstract base class that provides interface amalgamation, and default method 

definitions when default component behavior can be defined without loss of generality. 

Marking the base class as abstract prevents it from being created directly and constrains 

its use for derived types only. Each derived receiver class follows the is a idiom for 

object inheritance; for example, a USBSignalSource is a SignalBase type. Only one class 

definition is required for use in host applications, where the object characteristics are 

determined at run time through late binding and polymorphism. 

 /// <summary> 

 /// Initializes the hardware device and readies it for data capture 

 /// </summary> 

 public override void Initialize() { 

     GN3S.InitializeTheDevice(); 

     GN3S.StopDataClock(); 

     //Signal the device Reset event: 

     Reset(this, new EventArgs()); 

} 
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Figure 8-7—Abstract signal base class implementation UML static structure diagram 

The interface declaration, ISignalSource, describes the features that would be 

expected of any generic signal class. Objects that implement this interface must provide a 

definition of all methods and operations that users of the interface expect—the interface 

represents a contract between the component and its clients or users. 

To further refine the desired functional features, an abstract signal base class, 

SignalBase, is declared that implements the ISignalSource interface. Since SignalBase is 

abstract, it can only be used as a contract, of sorts, in the definition of derived classes. A 

class derived from SignalBase will inherit the interfaces and default method definitions 

that it supports, but must also provide any bodies for methods not already present in the 

base class. 

Variable declarators of the base type are assigned to references of derived or concrete 

type specifiers through an instance identifier. Messages sent via method calls made on the 
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base-class type are resolved at run time to the corresponding derived-class 

implementations. 

Object creation follows the usual instantiation pattern: 

SignalBase inputsignal = new USBSignalSource(); 

All dependent code that relies on the general behaviors of a SignalBase instance can 

be obtained by invoking the same methods on the signal reference; in the code above, the 

derived USBSignalSource instance would provide the device specific functionality. 

inputsignal.Initialize(); 

The previous code excerpt demonstrates the explicit creation of a derived-class 

instance by name. Creating object references in this manner requires the identity of the 

type to be known at the time that the application is compiled. A class factory is a 

generalized mechanism that creates object instances from a codified ID or some other 

form of unique class identifier. If complete type isolation is necessary, a factory could be 

implemented either as a helper class or an extension method that would defer the final 

derived-type resolution until run time execution. 

A second form of signal source implementation can be crafted to achieve the goal of 

device independence. Figure 8-8 shows a USBSignalSource class that directly 

implements the ISignalSource interface without inheriting from the SignalBase abstract 

class. This class would need to implement all of the methods described in this interface 

since interfaces provide no default implementations. Any new, non-USB, types of signal 

source defined in a similar manner would not be able to take advantage of methods 
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implemented in the USBSignalSource class, so the pattern would have to be repeated for 

each device type. 

+Initialize()

+ReadData()

+Start()

+Stop()

+Dispose()

USBSignalSource

ISignalSource
Explicit component 

interface

Requires explicit 
interface 
implementation

 

Figure 8-8—Explicit interface implementation 

By implementing interfaces in this way, the USBSignalSource class looks like a 

generic signal source but inherits no default behaviors or method implementations. 

However, other USB signal input device types with shared or similar characteristics 

could be derived from the non-abstract USBSignalSource class. 

The following code declares an identifier of the interface type ISignalSource and then 

creates an instance of a USBSignalSource with the new keyword: 

ISignalSource inputsignal; 

USBSignalSource input = new USBSignalSource(); 

The declared interface, receiver, is then assigned to the USBSignalSource instance 

after casting it to the interface type: 

inputsignal = input as ISignalSource; 

Methods are then called directly on the interface to achieve the required polymorphic 

behavior: 

inputsignal.Initialize(); 
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8.1.1    Signal Source Device Interface 

ISignalSource is the standard signal interface type that represents the most abstract 

form of the operations any signal source must support in order to be compatible with the 

system as presently defined. Future changes to this interface description will affect all 

classes and their derived subclasses that support it. To that end, it is necessary to keep the 

basic interface as uncomplicated as possible to avoid creating a burden for future 

component developers. While it may be tempting to add extra properties and methods, 

only those that are absolutely necessary, and not just nice to have, should be incorporated 

into the common signal interface. 

8.1.1.1    Properties 

IF: provides the value of the intermediate frequency, or center frequency, of the 

down-converted signal source. This value is used in various parts of the receiver in order 

to set the reference frequency of the carrier mixer stages and to calculate the Doppler 

shifts of the incoming signal. 

SampleRate: indicates the sampling frequency of the incoming data stream. In the 

case of an external hardware signal sampling device, this value is determined by the 

device characteristics. For a simulation-based signal, the sampling rate must be specified 

to meet the Nyquist criteria—twice the highest frequency component of the signal. 

Status: provides an indicator for the operational status of the device. The value is an 

enumerated system type, discussed later. 
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8.1.1.2     Methods 

The methods of the SignalSource classes setup, activate, deactivate, and tear down 

the connections and resources for signal sampling. The related state transitions involved 

are described in the device State Model section. 

Initialize: acquires the necessary system resources, such as memory and device 

handles, and configures any internal data structures used by the device. This method must 

be called by consumers of the signal source to ensure the device is properly configured, 

but the class implementation may not be required. A call to initialize should leave the 

device in the Suspended state. 

Dispose: stops the device if it is currently active and releases any resources 

previously acquired through initialize. 

ReadData: while the signal source is in the Data Transferring state, transfers an 

element of data from the signal source. This method may be implemented to support 

block transfers of data involving more than one sample, or can support a time-indexed 

value where the current time is passed as an input parameter. 

Start: activates the device for data sampling. The device is put into the Data 

Transferring state.  

Stop: suspends device data sampling. The device is put into the Suspended state. 
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8.1.1.3    Events 

In the class UML diagram, <<signals>> indicate the published events that may be 

used to notify external objects of internal conditions or state transitions that have 

occurred. 

DataReady: raised when a sample unit of signal is available to be read. Data readers 

may either block by calling the ReadData method, or be asynchronously notified that 

data is ready by responding to this event. 

Reset: raised when the device has been reset, allowing external system components 

to reinitialize the device and reestablish their own internal state variables. 

Error: occurs when the device has encountered an unrecoverable error that requires 

external intervention in order to correct. 

8.1.1.4    Status Enumeration 

SignalSourceStatus enumerated type provides an indication through the device Status 

property of the operational state of the signal source. Valid values are: OK, ERROR, 

RESET, PENDING. 

8.1.2    Signal Source Base Class 

SignalBase implements ISignalSource and provides default implementations of 

Initialize, Start, and Stop. Not all signal sources will require bodies for these methods and 

providing a default implementation eases the work necessary to derive a new concrete 

type from the base class. Default properties for IF and SampleRate properties cannot be 

provided as they are always dependent on the signal source. 
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8.1.3    Signal Source Derived Classes 

Derived implementation classes for a USB-attached signal sampler, a file-based 

signal data source, and a simulation signal model are provided as references. Further 

details are provided in the Reference Implementation, Chapter 10. 

8.2 Device Interface State Models 

Just as important as the ability to abstract the functionality of the device, the state 

transitions must also be reduced to a common set that the system can manage and 

maintain. The signal device system-state model identifies the representative states and the 

conditions that must be met for a state to occur. It is necessary that hardware devices be 

mapped from one state space to the other; from an internal to an external representation. 

8.2.1    Signal Source System State Model 

The signal source state model that is defined by the system is represented as a UML 

Statechart in Figure 8-9. 

Uninitialized Suspended Data Transferring

/ New / Initialize / Start / Dispose

Disposed

/ Finalize

/ Stop

/ Dispose

/ Dispose

 

Figure 8-9—Generic signal source UML Statechart model 

There are four states identified in the model: 
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 Uninitialized: The representing object has been created from the global 

resource pool and any required memory has been allocated. Access 

mechanisms for the hardware have not been established, device or file handles 

are not yet created. 

 Suspended: Hardware and operating system primitives, such as device 

handles, have been initialized and are ready to go, awaiting a signal to start 

reading data. The process of initialization has reset base stream positions to 

their beginning. In the case of a Stop message, the current stream position, for 

byte-stream oriented devices, is maintained. 

 Data Transferring: Data is actively being collected or generated and is either 

buffered internally or moved to the system. This is an active state where work 

is being performed by the device. 

 Disposed: The resources previously acquired by the object and underlying 

hardware have been deactivated and released, ready to return to the system 

resource pool. The objects cannot be reclaimed or reinitialized from this 

terminal state. Reactivation implies recreation of all dependent objects. 

8.2.2    State Model for USB Signal Source 

Figure 8-10 represents an internal state model view of a USB-attached digitizing 

device. This representation does not make visible any of the details of the USB interface 

protocol specification and has been simplified to show only a high-level logical 

characterization of the device operation. There is a greater number of states and state 

transitions identified in this diagram than the previously discussed system-state model 
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supports. It is necessary, therefore, that a mapping and minimization effort first be 

performed in order to coerce the model’s shape into something the system supports. 

Reset Initialized

Error

Paused

Capturing Transferring Closed

/ On / Initialize / Start

/ Stop/ Start

/ Data / Close

/ Done

/ Bad

/ Bad/ Bad

/ Close

 

Figure 8-10—USB signal source internal state model 

One such possible system mapping is demonstrated in Figure 8-11. The labeled gray 

outlines indicate the aggregate state boundaries. The exact boundaries appropriate for 

aggregation and the manner in which state information is maintained or persisted are 

largely dependent on the specific implementation and device operational requirements. 

Reset Initialized

Error

Paused

Capturing Transferring Closed

/ On / Initialize / Start

/ Stop/ Start

/ Data / Close

/ Done

/ Bad

/ Bad/ Bad

/ Close

Uninitialized

Suspended

Transferring

Disposed

 

Figure 8-11—USB device state model as mapped into the system state model 
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The state reduction mechanisms can be structured as code in any layer of the device 

interface model, but should be done so in the most appropriate manner for the individual 

device. As defined, the system state model may hide device-specific capabilities, making 

them invisible to client applications; such is the nature of hierarchical entity abstraction. 
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Chapter 9 Acquisition and Tracking 

The acquisition components are required to process the input signal source and 

determine which transmitters are visible and to make an accurate initial measurement of 

the code delay and Doppler values. The output of acquisition is a collection of tracking 

objects for each signal transmitter to be tracked. 

The event-driven pipeline model, discussed in the Pipeline Processing Model section, 

is used for the signal processing activities necessary for signal acquisition and tracking. 

Each acquisition and tracking component is derived from a common abstract base class 

that implements the IPipelineComponent interface. Instances of these components are 

then organized into a pipeline by setting up the event sources and their handlers 

appropriately as part of a pipeline container class. Where necessary, the ControlObject 

property of the classes is set to enable any feed-forward or feedback linkages between the 

various pipeline stages. Each instance of the pipeline container performs the signal 

detection and processing needed to track a single transmitter. Multiple transmitters are 

tracked by creating multiple instances of the pipeline container and connecting them to 

the same SignalController stage Done event. 

9.1 Acquisition 

There are different methods available for acquisition; the parallel approach of circular 

correlation is implemented in the Receiver Development Framework and explained in 

detail here. 
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Typical software-based receivers for GPS applications (5) (6) (7)  perform acquisition 

by analyzing a block of sampled data along a 2-dimensional plane with code delay 

running along one axis and Doppler shift along the other. This analysis is repeated for 

each satellite signal the receiver is attempting to acquire. The Doppler axis divides the 

expected intermediate frequency ±5-10 kHz shift range into bins 500 Hz to 1 kHz apart, 

while the code axis is determined by the length of the code—1023 chips, 1 ms, in the 

case of the GPS C/A code. The approach is shown in Figure 9-1. 

Code Delay

Doppler

PRN ID

X

Location of correlator peak indicates 

signal frequency and code delay for 

this PRN

 

Figure 9-1—Software-based signal determination 

Each sample in the data block is multiplied by 𝑐𝑜𝑠(𝜔𝑡) and 𝑠𝑖𝑛(𝜔𝑡), where 𝜔 =

2𝜋 𝐼𝐹 + 𝑓𝐷 ; IF is the intermediate frequency of the signal source, and 𝑓𝐷 is the Doppler 

frequency value. The resulting real and imaginary (in-phase and quadrature) values are 

cross-correlated with a generated copy of the PRN code for delays ranging from 0 to the 

sequence length. The discrete form of the correlation function between two sample sets of 

length 𝑁, 𝑥(𝑛) and 𝑦(𝑛) can be written as: 
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𝑟 𝑛 =  𝑥 𝑖 𝑦(𝑛 + 𝑖)

𝑁−1

𝑖=0

 9-1 

If 𝑥(𝑛) and 𝑦(𝑛) are both real, the transform-pair relationship can be used to find the 

correlation (Appendix D) in the frequency domain as: 

 𝑅(𝑘) =  𝑋 𝑘 𝑌∗(𝑘)  9-2 

The complex conjugate of the frequency-transformed PRN sequence is multiplied 

point-by-point with the transform of the signal data. The result is then inverse-

transformed and the resulting vector is scanned to locate the index of the largest peak 

above the noise floor. If located, the index of the peak can be used along with the signal 

sampling frequency, 𝑓𝑆 , to calculate the time delay of the start of the sequence. 

𝑐𝑜𝑑𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓𝑓𝑠𝑒𝑡 =  
𝑝𝑒𝑎𝑘 𝑖𝑛𝑑𝑒𝑥

𝑓𝑆
 9-3 

Estimating the amount of noise in the signal in order to determine the required peak 

size required for detection can be difficult to do reliably. If the noise floor estimate is too 

low, the probability of a false detection is increased; if set too high, signals may be 

overlooked. The approach taken in the code of (5) is to compare the magnitude ratio of 

the largest peak to the next larger peak, and declaring a detection only if the result is 

greater than an acquisition threshold parameter (default = 2.5). However, if it happens 

that the sample contains a navigation data bit transition, the effect is to create double 

peaks in the output of the correlator, which can reduce the effectiveness of this detection 

strategy. The process is usually run twice on consecutive data sets and the results 

averaged before evaluating the detection metric. 
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The magnitude of the peak is then stored in the table at position (𝑓𝐷 , 𝑑𝑒𝑙𝑎𝑦). The 

calculations are repeated until all 𝑓𝐷  𝑥 𝑑𝑒𝑙𝑎𝑦 table locations are filled. Once completed, 

the table is then scanned to find the coarse Doppler frequency and code delay that 

resulted in the best, or highest, correlation output. These values are for one PRN or 

satellite ID; the entire process must be repeated for every satellite that is expected to be 

visible. 

Once the coarse Doppler and code delay are found, the original sample data is 

multiplied by the local code of the correct delay. Since the sample duration is short 

compared to the data bit time interval, the result should contain the carrier only. Multiple 

blocks of samples, up to half the length of a data bit to help minimize the possibility of 

the presence of a bit transition, are then cascaded together and processed to find the fine 

carrier frequency and phase values. The phase angle, 𝜃𝑚 , for a data set at time 𝑚 can be 

found from the highest frequency component in the DFT result (6). 

𝜃𝑚 (𝑘) = tan−1  
𝐼𝑚(𝑋𝑚  𝑘 )

𝑅𝑒(𝑋𝑚  𝑘 )
  9-4 

Repeating the calculation to find the phase angle from data set 𝑛, 𝜃𝑛 , taken a short 

time later can be used to find the fine frequency (6). 

𝑓 =
𝜃𝑛(𝑘) − 𝜃𝑚 (𝑘)

2𝜋(𝑛 −𝑚)  
 9-5 

Once the code delay and the carrier frequency and phase are known, an instance of 

the tracking loop components is initialized and started with these values as input 

parameters. 
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9.2 Tracking 

The essential elements are the delay and phase-lock loops for tracking code and 

carrier phases. These are feedback control systems where the plant under control is the 

frequency of a numerically controlled oscillator. Without the ability to track the signal for 

the time required, it would not be possible to receive the navigation message. 

The usual approach is to model the control loops as continuous functions of time 

using s-domain representations and assuming a conversion to the sampled z-domain 

exists. When demonstrated, the transform from the s-domain is done with Tustin’s 

bilinear transform with, 

𝑠 =
2

𝑇𝑆

(𝑧 − 1)

(𝑧 + 1)
 9-6 

where 𝑇𝑆 is the sampling time interval = 1/𝑓𝑠 . 

While other transforms exist, this one maps all stable s-domain systems into stable z-

domain (the unit disc). 

A potential drawback of this approach is that it assumes a very high sampling rate for 

the system and fails to account for the effect the sampling delay has on system stability. 

The sampling rate is not necessarily the signal sampling rate of the front-end hardware, 

but for the purposes of the control-loop operation, it is the pre-detection integration time 

of the non-coherent and so-called integrate and dump integrators. As a result, the models 

derived are less than optimum, provide no guidance or insight on parameter selection, 

and are potentially unstable. 
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Chapter 10 Reference Implementation Results 

The component models that have been developed have been extensively tested using 

a combination of sampled data from live satellites and simulated signals. The processing 

results from one sample file to another are consistent, so only two sets of sampled data 

outputs are presented. These are the from signal data files that were captured on June 5 

and 10, 2009, at Fredericton, NB. 

The front-end that was used for testing is less than ideal for a real time applications, 

and it was never intended to be used for this purpose. However, the development of the 

receiver framework was already well into testing before the shortcomings of the device 

were fully realized. At that time, a critical design goal of the receiver framework was to 

allow for hardware independence and spending additional effort adapting to new 

hardware was not germane to the framework fundamentals. A great deal of time went 

into trying to find ways to overcome the limitations of the hardware, but the device was 

never designed to work in real time applications. 

As it turns out, PLLs are a challenge to implement well and efficiently in software. 

Testing has revealed some interesting dynamics related to the implementation in the 

receiver. There is still lots of work to be done in this area, and understanding all of it will 

involve reading and writing many more papers. 
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Real time performance is not achieved with the front-end as tested, however a 

simulated signal using I/Q sampling, a 4-bit signed representation and byte-packing was 

used to demonstrate the real time capabilities of the application framework. 

As a demonstration and further proof of the interoperability features of the framework 

a PLL component from the open-source GNU Radio project has been integrated. Also, 

adapting the front-end to use a simulated signal source with different characteristics from 

the other device also represents the equivalent of replacing the hardware entirely, further 

supporting the design flexibility of the framework. 

10.1 Pipeline Testing Configuration 

Evaluation of the receiver framework has been conducted with the post-detection 

tracking configuration shown in Figure 10-1. Using an SiGe SE4110L-EK3 USB (61) 

Link-1 (L1) receiver front-end, the signal from the antenna (not shown) is down-

converted to an intermediate frequency (IF) of 4.1304 MHz, and then sampled and 

digitized at a rate of 16.3676 MHz. The event source for the arrival of a new sample from 

the front-end is connected in parallel to a DLL module that follows the code delay, and a 

signal recorder object that writes the sample data to a file on disk. 
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Figure 10-1—Tracking pipeline configuration used for testing 

The DLL module (Section 6.2.6) produces early (E) and late (L) C/A PRN code 

sequences by multiplying the input signal with the output of an NCO block. A prompt (P) 

sequence is kept time aligned with the received code by adjusting the code delay amount 

with a normalized E – L feedback loop. Using the locally generated P values, the code is 

removed from the signal. The code-removed output from the DLL is passed to a PLL that 

tracks changes in carrier phase using an arctangent discriminator function, discussed in 

Section 6.2.5, and adjusts the output of the NCO. Finally, the phase transitions caused by 

the presence of the navigation data bits in the signal are forwarded to a demodulator 

component that is used to extract the 50 bps data stream. For testing, the outputs from the 

DLL and PLL components are also fed to data recorder objects, in a manner similar to the 

input signal, for offline graphical analysis. 

Referring to the layered interoperability model shown in Figure 7-2 for a moment, the 

code for initializing the front-end hardware, starting and stopping the sampler, and 

conducting sample data transfers over the USB link represents Layer-1 functionality. 



 155 

Persisting and reporting on the status of the device, such as current error conditions, and 

combining the multiple steps required to detect, enable, and activate the hardware into 

single functional commands is handled in Layer-2. In order to start the sampling process, 

the device needs to be either reset or reinitialized, and then sent a byte-oriented command 

sequence to turn on the sampler; all of this step-by-step activity was rolled into the single 

statement ISignalSource interface methods Start(), Stop(), Initialize(), and ReadData(). 

The 2-bit (magnitude + sign) data values from the analog-to-digital-converter (ADC) in 

the front-end that are transmitted over the USB connection to the PC as unsigned 8-bit 

bytes are translated into a (sign + magnitude) representation by mapping the values {11, 

01, 00, 10} to {-3, -1, 1, 3} at Layer-2. The byte-sized data types used by the front-end 

are directly compatible with the interoperability data marshaler, so the conversion 

services of Layer-3 were not required. Had the front-end utilized more complex 

structures involving indirect pointers or multi-byte character strings, these data types—

referred to as non-blittable, since their representations in memory are not consistent 

between runtime environments—would need to be converted to more basic types before 

being exposed to Layer-4, where the hardware makes the final connection to the receiver 

framework. 

Only a single instance of the tracking pipeline is shown in Figure 10-1. For tracking 

multiple signal sources (satellites), instances of the pipeline are created and initialized for 

each tracked object, all connected to the shared signal front-end. Passing the data through 

the system in this manner eliminates the need for maintaining large arrays of samples that 

are synchronized across threads and aged out of memory when the last process is 

completed. Each stage in the pipeline has its own timestamped copy of the data it requires 
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to complete its specified task. Information regarding the incoming sample rate, IF, data 

bit rate, PRN code delay, and carrier frequency and phase are properties of their 

representative component classes and are made visible to the receiver pipeline container. 

In order to produce the repeatable set of results presented here, the input signal from 

the front-end was initially recorded to two data files (June 5, 2009 at 13:16 UTC and June 

10, 2009 at 15:52 UTC, located at UNB Fredericton, 45.9499N 66.6425W) which were 

then used as input sources for subsequent analysis. The front-end hardware utilized was 

originally designed for data capturing in a post-processing application and is not entirely 

adequate for real-time signal processing. Due to a limitation in the device’s embedded 

software, it suffers from an inability to capture data for more than 40 seconds without 

requiring a reset. At ≈16 MHz, the sample rate is excessively high such that on a 2.4 GHz 

Pentium 4 processor only 150 (2400 / 16 = 150) system clock cycles worth of time is 

available between samples to complete all processing stages. However, with a sample 

rate of ≈4x the intermediate frequency, the minimum phase difference between samples 

of π/2 makes accurately tracking the carrier phase on a sample-by-sample basis either 

impossible or results in compromised long-term stability of the PLL module. The post-

processing software intended for use with this device (5) avoids this problem by tracking 

the signal on a longer time base, integrating the phase error over some interval. However, 

the longer the integration interval, the more accurate the frequency estimate needs to be, 

due to a narrowing of the 𝑠𝑖𝑛𝑐 function, requiring more signal processing time. 

An excerpt of one of the input signals is shown in Figure 10-2 (a). The signal exhibits 

the expected noiselike appearance, bounded by the -3 to +3 input voltage range. 
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(a)  (b)  

Figure 10-2—Time-domain view of input signal source (a) and input signal histogram (b) 

The distribution of the input values covering the same time period is shown in the 

signal histogram of Figure 10-2 (b). The appearance of this graph indicates that the input 

signal is not over-saturating the sampling hardware and that the signal level is reasonably 

well-balanced over the available range. 

The frequency domain view of a signal is provided in Figure 10-3, which was 

obtained by performing ensemble averaging on ten consecutive 4096-length Fast Fourier 

Transforms (FFTs) of the signal data. The resulting periodogram shows the input signal 

energy spread over about a 4 MHz bandwidth that is roughly centered on the ≈4 MHz IF. 
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Figure 10-3—Frequency-domain view of input signal 

Using the circular correlation method as described previously in section 9.1, the 

presence of PRNs #18, #21, #22, and #26 were detected in the signal recorded on June 5, 

2009 and the initial code phase (time delay) was found for each satellite. The location of 

the peak for PRN #18 shown in Figure 10-4 corresponds to a code delay of about 917 μs. 
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Figure 10-4—Correlation peak for PRN#18 detection 

The initial carrier-frequency estimate (IF + Doppler) was found by removing the C/A 

code from ten milliseconds of sampled data and then frequency transforming the result, 

looking for a spectral peak. Figure 10-5 reveals a peak for PRN #18 of 4.1304 MHz + 

2584.0 Hz. 

 

Figure 10-5—Frequency-domain view of recovered carrier for PRN #18 
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On June 5, 2009 at 10:16 ADT (13:16 UTC), PRN18 had a radial velocity with 

respect to Fredericton, NB of  -409 m/s, which would give it a theoretical Doppler shift of  

𝑑𝑓 =  −
𝑑𝑣

𝑐
∗  𝑓 10-1 

=  −
−409

299 792 458
 ×  1575.42 × 106  

        = 2149 Hz  

The difference between the measured (2584 Hz) and calculated (2149 Hz) values can 

most likely be caused by an inaccuracy in the sampling frequency of the front-end 

hardware. Since the sampling rate specification is approximately four times the 

intermediate frequency, an error of only 100 Hz in sampling frequency would cause a 

difference in IF of 400 Hz. The front-end is based on the SiGe 4110L chipset, but the 

sampling rate accuracy is determined by the nature of the reference clock circuitry 

provided in the design. These details and variances are not indicated in the product 

datasheets, so it is difficult to determine if the calculated errors would be considered 

within specification. 

Additional errors in the Doppler calculation come from numerical precision 

restrictions resulting from the length of the frequency FFT transform analysis. All of the 

signal energy from a narrow band of frequencies is placed into a single bin the width of 

which is determined by the size of the FFT. It is not possible to distinguish one frequency 

from another unless their difference is greater than the minimum bin width. This error 

source is discussed in greater detail in section 10.2, next. 
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For the purposes of tracking the signal, the initial code phase and carrier frequency 

estimates are passed to the pipeline components during initialization. A thread is created 

and attached to the main component collection for each PRN detected in the signal. 

The output from the PLL, shown in Figure 10-6, is taken every millisecond and 

forwarded to the demodulator component. The normalized value is then converted to an 

appropriate binary one or zero at the expected data rate. 

 

Figure 10-6—Navigation data signal from PLL output 

At 50 bps and using the mapping of {-1, +1} → {1, 0} the signal of Figure 10-6 

corresponds to the output of ten data bits {0110100101}. The data output is a raw stream 

of bits that would have to be aligned to the preamble character (0x8B) at the start of each 

of the sub-frames in the navigation message in order begin to extract the satellite 

ephemeris parameters (future work). 

The results presented graphically above represent the output of a single instance of 

the satellite signal tracking loop from the file sampled on June 5, 2009. Multiple loop 

instances are created and initialized to track multiple signals simultaneously. However 
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the results obtained thus far using the SiGe front-end hardware are not produced in real 

time, as desired. 

The data recording objects have a tendency to increase the system workload by 

creating high priority operating system threads that perform the necessary file output 

operations, which limits the available processor cycles for tracking signals—these 

recorders can be removed when they are not required for testing. Additionally, the PLL as 

implemented uses the most computationally intensive discriminator function in order to 

avoid the need for data bit timing synchronization. More work is required to identify and 

implement a better PLL software processing model. 

The results obtained from processing the signals recorded on June 5, 2009 are 

summarized in Table 10-1. The average error between the theoretical Doppler and the 

measured value is about 390 Hz higher than predicted, which can potentially be caused 

by the previously mentioned clock frequency error, however the standard deviation of the 

errors is 102 Hz. The samples are gathered over a relatively short timeframe, and one 

would not expect such a large amount of variability in the clock uncertainty. 

PRN # 

Code 

Delay 

(ms) 

Doppler 

(Hz) 

Radial Velocity 

(m/s) 

Theoretical 

Doppler (Hz) Error (Hz) 

18 0.917 2584 -409 2149 434 

21 0.094 664 -74 389 275 

22 0.043 3263 -525 2759 504 

26 0.428 1842 -287 1508 334 

Table 10-1—Visible satellites extracted from file captured on June 5, 2009 at 13:16 UTC 
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Typically, sampling clock circuits are off by some measurable amount and that 

amount drifts slowly with time and temperature. The frequency resolution of the software 

detection method is about 65 Hz; the standard deviation would be expected to fall within 

a range of ± that amount. 

PRN # 

Code 

Delay 

(ms) 

Doppler 

(Hz) 

Radial Velocity 

(m/s) 

Theoretical 

Doppler (Hz) Error (Hz) 

9 0.940 -2427 486 -2554 127 

12 0.514 2373 -361 1897 476 

14 0.907 2038 -299 1571 467 

18 0.009 -1607 349 -1834 227 

22 0.171 477 -12 63 414 

26 0.566 -2520 496 -2606 86 

30 0.509 3747 -638 3352 394 

Table 10-2—Visible satellites extracted from file captured on June 10, 2009 at 15:52 UTC 

The results of processing the data captured on June 10, 2009 are summarized in Table 

10-2, yielding an average Doppler error of 313 Hz and a standard deviation of the errors 

of 163 Hz. Again, these values are higher than anticipated. 

10.2 Real-time Performance Evaluation 

Real-time performance testing has been conducted with files captured from the SiGE 

SE4110L-EK3 USB signal front-end and a pipeline configuration without the data 

recording objects of Figure 10-1 attached. For the 16 MHz sampling rate, 40-seconds of 

captured signal data results in a file that is 625MB in size. The SignalSource component 

that reads the data from the file and raises an empty event (with no attached listeners), 

performing no processing, requires approximately 18 seconds to reach the end of file. 
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With the addition of a single satellite tracking loop, it takes 57 seconds of processing time 

to get to the end of the file, which is longer than the original file duration. If the signal 

were being received in real time, the processing activities would obviously not be 

maintaining pace with the sample arrival events. Connecting a second tracking loop 

worsens this timing situation, requiring 79 seconds to process the entire file. The results 

obtained from this testing are summarized in Table 10-3. 

Activity Time (s) 

File reading only 18 

Track one satellite 57 

Track two satellites 79 

Table 10-3—Performance testing on 40 seconds of data from the SiGe EK3 front-end hardware 

The high sampling rate and low information density of the samples, 2-bits of signal 

information for every stored byte, make for a cumbersomely large file to process in real 

time. Also, due to the low ratio of sampling rate to IF, the PLL processing component 

frequently loses its lock during processing operations and has to perform extra steps to 

reacquire the carrier phase. The lack of the pipeline recording objects makes it difficult to 

demonstrate the PLL’s loss of lock, however during testing the Locked property of the 

PLLPipelineComponent was frequently observed to transition to the FALSE state. 

A more desirable front-end would utilize an I/Q sampler operating at a lower sample 

rate, but with an IF that has been down-converted to a value much closer to baseband. 

Each I and Q sample would be represented by a signed (two’s complement) 4-bit binary 

sequence with I+Q data packed together in an 8-bit byte formatted as: QSQ2Q1Q0 ISI2I1I0, 
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where the subscripted S denotes the sign bit and 2, 1, and 0 represent the three magnitude 

bits. 

The signal characteristics described and evaluated in (2) make use of a sampling rate 

of 2.1518 MHz and an IF of 17.248 kHz. The reduction of sampling rate places a 

limitation on the precision with which the position of the C/A code alignment can be 

found, however. The ambiguity of the code phase depends on the commensurability ratio 

of the sampling rate over the chip rate; the higher the common factors between the 

sampling rate and chip rate, the greater the potential error. At 2.1518 MHz the resulting 

error in positioning accuracy is calculated to be approximate 1.3 cm (2). 

For testing, a 40-second signal was simulated using these characteristics and 

containing the same satellite signals (PRN #s 18, 21, 22, and 26) as the June 5, 2009 

recorded signal file previously analyzed. The code delay values used were the same 

values measured in the original signal file, however the Doppler values simulated were 

the theoretical predicted values based on the satellites’ orbital velocities. The reason for 

using the predicted Doppler values instead of the measured values was to ascertain to 

what extent the measured values obtained in Table 10-1 were affected by numerical 

issues with the software and how much they were influenced by clock or other 

inaccuracies in the hardware. 

The I and Q components of the test signal were created using the following numerical 

equations: 
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𝐼 = 𝑆𝑖𝑔𝑛𝑎𝑙 × 𝐶𝑜𝑠 2𝜋 ×  𝐼𝐹 +  𝐷𝑜𝑝𝑝𝑙𝑒𝑟 × 𝑡 

× 𝑃𝑅𝑁(𝑡 − 𝐶𝑜𝑑𝑒𝐷𝑒𝑙𝑎𝑦) × 𝑁𝑎𝑣𝐷𝑎𝑡𝑎(𝑡)  +  𝑛𝑜𝑖𝑠𝑒(𝑡) 
10-2 

𝑄 = 𝑆𝑖𝑔𝑛𝑎𝑙 × 𝑆𝑖𝑛(2𝜋 × (𝐼𝐹 +  𝐷𝑜𝑝𝑝𝑙𝑒𝑟) × 𝑡)

× 𝑃𝑅𝑁(𝑡 − 𝐶𝑜𝑑𝑒𝐷𝑒𝑙𝑎𝑦) × 𝑁𝑎𝑣𝐷𝑎𝑡𝑎(𝑡)  +  𝑛𝑜𝑖𝑠𝑒(𝑡) 
10-3 

where Signal is the relative scale factor for the signal amplitude, Doppler is the positive 

or negative Doppler shift amount, PRN is the chip code value (±1) for the specified time 

minus the code delay, and the NavData is the stream of navigation data bits (±1) at a 50 

bps rate. Noise was added to the signal using a uniform random number generator. 

The calculated I and Q values were then scaled to the same ±3 Volt range as the 

original SiGe front-end hardware, and quantized into a 4-bit representation. The 4-bit Q 

nibble was shifted left by 4-bits, and then combined (bitwise OR) with the I nibble before 

the merged byte value was written to disk. The lower sampling rate and higher 

information density resulted in a 40-second file that was only 80 MB in size. A section of 

the simulated signal is shown in Figure 10-7. 
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Figure 10-7—Input I/Q signal from the simulated signal source used for testing 

The calculated spectrum for the simulated signal is shown in Figure 10-8. A longer 

length FFT was used in order to increase the frequency resolution of the result because of 

the lower IF and sampling rates involved. Since the L1 signal is down-converted closer to 

baseband, some of the signal energy from the lower sideband region is lost, reducing the 

overall SNR. Also, since the input data are complex values, assumptions regarding the 

symmetry of the negative frequencies in relation to the positive ones no longer apply. 

Hence, the spectrum of Figure 10-8 is shown double sided. 
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Figure 10-8—Double sided spectrum for simulated signal source 

In order to accommodate the packed byte format of this file type, a new 

FileSignalSource class (Figure 8-7) was created that inherits default behaviors and the 

ISignalSource interface implementation from FileSignalSource, but overrides the 

ReadData method. The QuadratureFileSignalSource class provides the facility to read a 

byte of data from the specified file, unpack the I and Q values, and return a complex 

sample with real and imaginary parts. The properties for IF and sampling rate are 

specified and returned according to the indicated values. An instance of this type is then 

created and used to initialize the pipeline component SignalController. The rest of the 

testing application remains unchanged since all of the operations and behaviors are 

encapsulated and abstracted through the related base class declarations. 

As was done previously, all PRN sequences present in the signal were detected, the 

code delays measured and the Doppler amounts determined during an initial acquisition 
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process. Figure 10-9 shows the same peak detected for PRN #18 at 0.917 ms in the 

simulated signal, the same as Figure 10-4 for the real signal. 

 

Figure 10-9—Circular correlation peak detection using simulated signal source 

Likewise, after the code delay has been found, the Doppler shift can be determined by 

locating a peak in the frequency transformed version of a longer signal sample that has 

been multiplied by the detected PRN code of the correct delay. The signal peak is 

obvious in the chart of Figure 10-10, located at the expected value of about 19.4 kHz 

(17248 + 2149 Hz). 
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Figure 10-10—Frequency-domain view of carrier using the simulated signal source 

Finally, if desired, the carrier can be recovered and viewed in the time-domain by 

band-pass filtering the signal and taking the inverse Fourier transform of the result. The 

resulting output of this operation is shown in Figure 10-11, however it is usually not a 

necessary step for the purposes of tracking the received signal and is shown here for 

illustrative purposes only. 
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Figure 10-11—Time-domain view of recovered carrier using the simulated signal source 

The results of the signal acquisition and detection processing are summarized in 

Table 10-4. All of the PRNs contained in the signal were identified with the correct 

delays. The errors between the actual Doppler values used in the simulated signal and the 

Doppler as measured can be directly attributed to limitations in the precision of numerical 

signal processing, since there is no hardware involved or other external physical 

phenomenon at play. 

PRN # 

Code 

Delay 

(ms) 

Actual 

Doppler 

(Hz) 

Measured Doppler 

(Hz) Error (Hz) 

18 0.917 2149 2124 -25 

21 0.094 389 417 28 

22 0.043 2759 2781 22 

26 0.428 1508 1533 25 

Table 10-4—Satellite tracking results with a simulated signal 

The average Doppler error for the simulated signal is 12.5 Hz, while the standard 

deviation is 25 Hz. The transform-based frequency measurement has a maximum 
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resolution that is determined by the ratio of the sampling frequency to the number of data 

bins in the transformation. The greater the number of bins, the higher the frequency 

resolution obtained, at a cost of increased computation time. For these tests, the 

corresponding ratio is 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  
2.1518 𝑀𝐻𝑧

32 768
 

= 65.67 𝐻𝑧 𝑝𝑒𝑟 𝑏𝑖𝑛 

10-4 

The computed errors are all within this limiting value. 

Similar to before, real time performance measurements were obtained using this 

simulated signal source and are summarized in Table 10-5. Since the file was 

significantly smaller, a much lower amount of time was required just to read its contents; 

the file read operation without processing completed on average in less than two seconds. 

Tracking of one, two, and four satellite signals simultaneously was also achieved, all 

within an amount of time less than the actual recording duration of the file. 

Activity Time (s) 

File reading only < 2 

Track one satellite 16 

Track two satellites 29 

Track four satellites 38 

Table 10-5—Performance testing on 40 seconds of data from the simulated signal model 

The additional information present in the I/Q format of the data significantly 

simplified the phase and frequency tracking operations of the PLL, which managed to 
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stay in a locked status through the entirety of the processing. I and Q processing offers 

advantages over real only samples in that the additional information provided can be used 

to calculate the frequency when the exact phase is unknown and to find the frequency by 

the rate of change of phase. The navigation data bits were simulated using an instance of 

a PRN class that had its chip rate set to 50. This configuration allowed the data bit edge 

for each simulated satellite to align properly with the chip edge, as it would in a real 

signal, but it does not encode an actual GPS navigation message. However, the phase of 

the carrier is not adjusted by the simulated code delay, and all signals are given the same 

navigation message and noise values. Furthermore, the simulation noise, usually modeled 

as a band-limited Gaussian process, was actually created using a random number 

generator with a uniform distribution, and the same noise value was added to both the I 

and Q signals. A better, more precise, way to create the simulation data would be to add a 

band-limited noise value to a simulated real signal and then, using an implementation of a 

Hilbert transform, form the Q signal component. 

For the purposes of evaluating and testing the real time tracking capabilities of the 

framework, the signal as simulated should be sufficient. 

10.3 Interoperability Component Integration 

The motivation in providing an interoperability support layer for the receiver 

development framework was to enable hardware and software components developed and 

supported in different application environments a means of tying into the signal 

processing model. Likewise, application features of the framework can be enhanced by 

the integration of additional functionality that has previously been developed by other 

members of the receiver research community. 
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The integration and testing of the I/Q simulated signal source is an example of the 

capabilities and potential of this interoperability approach. Although the signal was 

simulated, the adaptations involved in the framework are identical to what would be 

required had the signal source been a physical piece of front-end hardware.  

In order to accommodate the packed byte format of this file type, a new 

FileSignalSource class was created that inherits from FileSignalSource, gaining default 

behaviors and the ISignalSource interface implementation. By overriding the ReadData 

method, polymorphism allowed the correct method of the new class to be invoked at run 

time. As far as the rest of the processing components were involved, the details of the 

format and actual source of the new signal were irrelevant. 

In a similar manner, any hardware or software component can be adapted to 

implement the appropriate component interface, either through inheriting a level of 

already existing functionality and overriding the differences in properties and methods, or 

by starting a new class type that implements the interface directly. Had the new signal 

source been a physical piece of hardware, the only additional complexity in creating 

support for it would be in the challenges associated with writing or finding a suitable 

Windows® device driver. The degree of complexity involved is usually determined more 

by the complications of working in the realm of the required 3
rd

-party tools and 

environments. 

Appendix A provides background and details on the mechanics of working with 3
rd

-

party application libraries and developing interoperability components in general. As a 

further example and demonstration of the steps involved, a phase-lock loop component 
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from the open-source GNU Radio (63) project will be integrated into the signal 

processing pipeline of the test configuration. Although the basic approach is the same, 

following the four-layer model presented in Chapter 7, the work of this section is not for 

the faint of heart. 

GNU Radio consists of a mixed bag of hardware and software technologies. The 

project contains many worker classes and utilities for building SDR and other signal 

processing related applications. The first step in connecting to this ready-made 

functionality is to build (compile and link) the GNU GRC library called general; building 

it is hard (64): 

“Considerable effort has been put into making the GNU Radio code portable among 

various operating systems, but there are several reasons why it cannot be "simply" 

compiled and run under Windows: 

• The build and install procecures [sic] are based on Linux scripts and tools 

• Several third-party libraries are used, each with its own, often system-

dependent, installation procedure 

• Most GNU Radio applications must interface to hardware (e.g., a sound card 

or USRP) which require system-dependent drivers and installation procedures 

• Because GNU Radio is written as an extension to Python, there are potential 

problems on Windows if different runtime libraries are used for GNU Radio 

and Python” 

Not to editorialize, but it’s clear that in their efforts to keep the GNU Radio project 

system agnostic, the implementers have instead made life difficult for everyone who 
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wishes to use it. Specific build instructions change with each version, so no additional 

details on building the imported libraries will be provided, here. 

After getting the appropriate source files compiled into a static library, the next step is 

to create a new Windows DLL (this DLL is for dynamic-link library, not delay-lock 

loop) project; here it is called GNURadioParts. To this project was added the previously 

built general.lib to the list of linker inputs. Also added was the gr_pll_refout_cc.h file to 

the stdafx.h precompiled header file, as shown in Figure 10-12. 

 

Figure 10-12—Precompiled header file stdafx.h used for the GNURadioParts library project 

The purpose of creating this library is to produce the interoperability type adaptations 

and function exports (Layer-2 and Layer-3). The GNURadioParts.h file shown in Figure 

10-13 will declare the exported function UpdateOutput(…) that takes a single complex 

value as an input and returns a complex value as an output. 

// stdafx.h : include file for standard system include files, 

// or project specific include files that are used frequently, but 

// are changed infrequently 

#pragma once 

 

#include "targetver.h" 

// Exclude rarely-used stuff from Windows headers 

#define WIN32_LEAN_AND_MEAN              

// Windows Header Files: 

#include <windows.h> 

 

// TODO: reference additional headers your program requires here 

#include "..\\..\\gnuradio-3.2.2\\gnuradio-

core\\src\\lib\\general\\gr_pll_refout_cc.h" 
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Figure 10-13—Header file GNURadioParts.h with the UpdateOutput(…) function exported from 

the  GNURadioParts library project 

The implementation of UpdateOutput(…) in GNURadioParts.cpp is shown in Figure 

10-14. The simple template library (STL) complex template is used to map the input 

value to a C++ complex type. An instance of the PLL class has been previously declared 

in Figure 10-13 and initialized in Figure 10-15. All that is required is to forward (redirect) 

the input argument to the work(…) method of the GNU Radio gr_pll_refout_cc class. 

When the method call completes, the returned value is subsequently passed back to the 

caller from the upper layer. 

// The following ifdef block is the standard way of creating  

// macros which make exporting from a DLL simpler. All files  

// within this DLL are compiled with the GNURADIOPARTS_EXPORTS 

// symbol defined on the command line. This symbol should not be 

// defined on any project that uses this DLL. This way any other 

// project whose source files include this file see 

// GNURADIOPARTS_API functions as being imported from a DLL, 

// whereas this DLL sees symbols defined with this macro as being 

// exported. 

#ifdef GNURADIOPARTS_EXPORTS 

#define GNURADIOPARTS_API __declspec(dllexport) 

#else 

#define GNURADIOPARTS_API __declspec(dllimport) 

#endif 

 

//GNU Radio PLL component declaration, initialized in DLLMain 

extern GNURADIOPARTS_API gr_pll_refout_cc* PLLInstance; 

//GNU Radio PLL component interface wrapper exported function 

extern "C" { 

GNURADIOPARTS_API std::complex 

   UpdateOutput(std::complex<double> input); 

} 
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Figure 10-14—CPP source file GNURadioParts.cpp showing the UpdateOutput() function 

implementation  

The DllMain entry point in DLLMain.cpp, Figure 10-15, is called when the library 

module is loaded by the operating system. Rather than repeatedly initializing an instance 

of the PLL class, it is simpler and more resource efficient to create and initialize a shared 

instance when the application is first loaded. The instance is first declared in 

GNURadioParts.h, shown in Figure 10-13, but note that the instance marked as external 

(extern keyword). The actual instance in defined in DLLMain.cpp, but it existence needs 

to be communicated to the UpdateOuput(…) function in GNURadioParts.cpp.  

 

#include "stdafx.h" 

#include "GNURadioParts.h" 

#include <complex> 

 

// This is the exported GNU Radio PLL work function wrapper code 

// The input and return types are from the STL complex library, 

// which happen to be compatible with the Receiver Framework 

// Complex type. 

GNURADIOPARTS_API std::complex 

   UpdateOutput(std::complex<double> input) { 

  

 std::complex<double> output; 

 std::vector<gr_vector_const_void_star> input_items(input); 

 std::vector<gr_vector_void_star> output_items(output); 

 

 //The actual operations are performed in the call to the GNU 

//Radio PLL gr_pll_refout_cc class member, work. 

 PLLInstance->work(int(1), input_items, output_items); 

 

 return output_items; 

} 
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Figure 10-15—CPP source file DllMain.cpp with the gr_pll_refout_cc instance initialization 

The implementation of the Layer-4 component wrapper, GNURadioWrapper.cs, is 

shown in Figure 10-16. This C# file declares the GNURadio namespace and creates the 

linkage between the GNURadioWrapper class and the GNURadioParts library. 

 

Figure 10-16—C# source file GNURadioWrapper.cs that imports the GNURadioParts library 

 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.Runtime.InteropServices; 

 

namespace GNURadio { 

    public class GNURadioWrapper { 

 

     [DllImport("GNURadioParts")] 

     public static extern Complex UpdateOutput(Complex input); 

    } 

} 

// dllmain.cpp : Defines the entry point for the DLL application. 

#include "stdafx.h" 

 

GNURADIOPARTS_API gr_pll_refout_cc* PLLInstance; 

 

BOOL APIENTRY DllMain( HMODULE hModule, 

                       DWORD  ul_reason_for_call, 

                       LPVOID lpReserved 

      ) 

{ 

 switch (ul_reason_for_call) 

 { 

 case DLL_PROCESS_ATTACH: 

 case DLL_THREAD_ATTACH: 

  PLLInstance = new gr_pll_refout_cc(float alpha, 

float beta, float max_freq, float min_freq); 

  break; 

 case DLL_THREAD_DETACH: 

 case DLL_PROCESS_DETACH: 

  delete PLLInstance; 

  break; 

 } 

 return TRUE; 

} 
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A new PipelineComponent class needs to be declared in order to connect the 

GNURadioWrapper class to the signal processing pipeline. This work is accomplished in 

GNUPLLPipelineComponent.cs, shown in Figure 10-17. 

 

Figure 10-17—C# source file GNUPLLPipelineComponent.cs for invoking the 

GNURadioWrapper UpdateOutput() static method 

The class, GNUPLLPipelineComponent, inherits from the existing 

PLLPipelineComponent type, and overrides the non-default constructor and the 

UpdateOutput() method. The PLL maintains references to an NCO instance that is shared 

with the DLL (now this is a delay-lock loop), and a demodulator component that is used 

to convert the real portion of the PLL output into a binary data stream. The PLL also 

receives bit synchronization timing information as feedback from the demodulator. 

The required adaptations in the existing PipelineContainer merely involve changing 

the type name of the PLL instance to the new class name. The pipeline holds a private 

member of the PLLPipelineComponent base type, and since the 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

 

namespace PipelineComponents { 

   public class GNUPLLPipelineComponent : PLLPipelineComponent { 

         

      //Non-default class constructor: 

      public GNUPLLPipelineComponent(NCOPipelineComponent NCO, 

         DemodulatorPipelineComponent Demod):base(NCO, Demod) { 

         } 

 

        //PipelineComponent inherited method: 

        public override void UpdateOutput() { 

            Output = GNURadio.GNURadioWrapper.UpdateOutput(Input); 

        } 

    } 

} 
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GNUPLLPipelineComponent is derived from this class, it can be treated as an equivalent 

type. The modifications required are shown in Figure 10-18. 

 

Figure 10-18—PipelineContainer PLL member declaration and initialization for 

GNUPLLPipelineComponent class integration 

Everything else in the existing application stays exactly the same since the declared 

type of the PLL is of the base type PLLPipelineComponent, but at run-time the actual 

derived type is GNUPLLPipelineComponent, and polymorphism ensures the correct 

method is executed. The UpdateOutput() method is invoked from within the Done() 

event handler of the base PLLPipelineComponent class. 

The performance results with the simulated signal and the GNU Radio PLL are 

unchanged from the results previously presented in Table 10-5. 

 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using PRNCodeGenerator; 

 

namespace PipelineComponents { 

   public class PipelineContainer : PipelineComponent { 

 : 

 : 

    //PLL Class instance: 

    private PLLPipelineComponent PLL; 

: 

: 

    PLL = new GNUPLLPipelineComponent(NCO, Demodulator); 

 : 

 : 

} 
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Chapter 11 Conclusion 

The design and development of a real-time software GNSS receiver research 

framework has been demonstrated and tested. The pipelined processing model of the 

system eliminates the need for parallel access to large signal data structures and the 

requirement of creating multiple copies of objects in memory for parallel access across 

multiple processes. The interoperability layer defined by the framework allows for the 

direct integration of external components from other sources, and the extensibility 

characteristics of the provided object-oriented design allow new functionality to be 

created while permitting high levels of code reuse. 

Due to the complexity of modern microprocessors used in PC-based computing 

systems, achieving real-time software GNSS receiver operation will require algorithms 

with high degrees of parallelism and carefully designed interprocess synchronization 

strategies. The nature of these applications requires more than an overall optimization 

effort on the part of software and algorithm implementers. 

Using a block-diagram model and a pipeline signal processing approach, the 

framework allows the development and testing of both software and hardware concepts in 

a consistent unified manner. An object-oriented implementation maximizes the potential 

for component reuse and enhances the system’s extensibility benefits. 

The interoperability features of the framework allow for the integration of multiple 

types of component implementations from different solution sources. Combining 
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individual efforts in such a manner allows for the best-of-everything system development 

model necessary to meet required performance objectives. 

The tracking loops as tested and presented consist of only the most direct 

interpretation of the basic processing techniques and requires more sophisticated 

optimizations and improvements to enhance the overall performance characteristics. 

However, there are many researchers actively focusing on algorithm optimization, and by 

exploiting the integration goals of the framework, the results thus obtained can be 

incorporated into this solution for testing and evaluation. 

The reference receiver needs the integration of an almanac and other support material 

to aid in the initial detection process. There currently is no ability to make or incorporate 

in-view satellite predictions based on last known location and time-of-day information. 

The effective process for acquisition is equivalent to a receiver in a ―cold-start‖ mode. 

Given an approximate estimate of location from the last known position, and a reasonably 

accurate system time, the search space and corresponding processing duration for 

identifying in-view satellites can be dramatically reduced. 

Going forward, many of the list and collection types in the framework could benefit 

from the definition of C# generics, or templates in C++, to simplify the process of 

creation of new components. Also, the development of a receiver pipeline graphical 

design utility will eventually be included as an essential part of the framework. Such a 

utility will assist in the visualization of the interconnections between the components and 

their event sources. 
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Some future considerations for software receivers include the design of front-end 

hardware that converts the input signal to a frequency that is closer to baseband in order 

to reduce the workload on the PC processor, and at the same time increasing the sampling 

rate as a factor of the IF requirement. The SiGe EK3 USB sampler used in this research 

operates at a ≈4 MHz IF and a ≈16 MHz sample rate (although a newer one has been 

made available that uses a sampling frequency of 8.1838 MHz and an IF of 38.400 KHz). 

For carrier frequency and phase tracking, the error in the angle between samples needs to 

be kept at less than π/2, but at four samples per signal cycle the minimum possible phase 

difference is π/2. Simply satisfying the Nyquist rate for choosing the sampling rate is not 

sufficient for many control-related applications (65) (66). Increasing the sampling rate 

improves the stability and tracking capabilities of DLL and PLL loops (57). The 

differences in the stability analysis of analog phase-lock loops (APLLs) and their discrete 

counterparts (DPLLs) are discussed for first and second-order systems in (19). A 

baseband software processor for GPS was developed and evaluated in (2) using an IF of 

≈20 kHz and a sampling rate of ≈2 MHz, but only tested under simulated signal 

conditions and without the presence of a navigation message. Also, reducing the 

sampling rate reduces the precision with which the C/A code delay can be found, so a 

careful balance must be struck between performance and accuracy. 

Many of the texts and references separate their discussions on the process of satellite 

signal acquisition from that of acquired signal tracking. The usual software model is that 

acquisition finds the PRN sequences corresponding to satellite transmissions in the 

incoming signal, and then returns a collection of objects for the tracking loops to follow 

over time. Tracking each detected satellite on an individual dedicated thread appears to 
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be a good idea, but there is a great deal of variability in the starting time of a thread from 

its point of creation. The purpose of accurately finding the sub-millisecond C/A-code 

delay in the acquisition stage is lost when it takes 1-5 milliseconds for the tracking thread 

to begin execution. The transition between acquisition and tracking, therefore, must be 

viewed as a basic change of state in a continuous operation rather than a step in a longer 

sequential process. Methods need to be developed that support the seamless transition 

from acquired signal to tracked satellite. 

The time-domain versions of acquisition processes generally require an excessive 

length of time in order to run. Frequency-based circular correlation methods for finding 

the initial code-phase parameter will require the incorporation of the output from a 

hardware counter resource that can serve as a relative timestamp for the incoming 

samples. The current code delay may then be calculated from the initial delay provided 

by the acquisition stage by using the difference in the counter values. Newer PC system 

boards include a High Performance Event Timer (HPET) for multimedia time reference 

purposes, which could also be used for front-end signal timing. 

The allocation of large blocks of memory for storing signal samples takes time and 

processor clock cycles to achieve. These ―background‖ system activities are usually 

unaccounted for, but need to be recognized in the overall receiver workload. 

Finally, the flexibility of the receiver framework allows for a binary file to serve as 

the source for an input signal. Configuring the signal classes with the required 

information on the signal properties, such as IF and sample rate, could be done 

automatically if there were even a de facto agreement from the community on the 
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establishment of a binary file format that defines an embedded header for holding an 

information structure that includes byte ordering (endianess), sample rate, and other 

information required for cross-platform and hardware compatibility. 

It is also worth mentioning that the event-driven pipeline model developed for the 

receiver does not need to be limited to real-time systems. Highly complex calculations 

may benefit from the ability to create multiple parallel instances of a sequential 

processing chain, even though real-time operation would not be achievable due to the 

computational load. There are many possible applications of the software pipeline 

architecture for controls and signal processing work. When combined with the memory, 

data storage, and network access capabilities of a PC, well, one’s imagination becomes 

the limiting factor. 

The classes of supporting components developed as part of this framework can also 

provide benefits to other applications as well. The PRN generator classes and signal 

sources, for example, can be used outside of the framework pipeline and can act as input 

signal simulators for the development and testing of a wide range of utilities. 

The significance of this work lies in the establishment of the collection of object 

models and base implementations for real-time receiver development. Without it, there is 

a limitation to the degree of improvement to software receiver performance that can be 

made through individual optimization efforts alone. By adopting the principles and 

integration philosophies embodied and presented in this work, world-wide efforts can be 

combined into a unified development model. 
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The release of this document corresponds to version 1.0 of the receiver framework. 

There is still much work to be done and many opportunities for making improvements. It 

is difficult to predict how consumers of any object-model will need to adapt and change 

its structure in the future. As the goal of establishing and distributing the framework 

proceeds, the feedback obtained from testers and users alike will serve as a means for 

enhancements and a better overall application environment. 
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Appendices 

Introduction to the Appendices 

These are the things that I had to search many texts to find out and the connections or 

discoveries I’ve made along the way. There is likely nothing new here, (except for 

Appendix A) and you’ve probably seen it already before. I’m including this material not 

necessarily to support the work, but to aid in someone starting out so that they don’t have 

to go through it all themselves. 
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Appendix A—3
rd

-party Toolkit Interoperability 

As an example of the approach of the receiver framework towards interoperability, a 

few details on the integration of the open-source GPS toolkit library, GPSTk (54), from 

the University of Texas at Austin, are provided in this appendix. 

The GPSTk toolkit is written primarily in C/C++ and contains many features and 

functions for working with GPS almanac data files, performing date-time conversions, 

and extracting ephemeris data from the received satellite navigation message. The library 

comes with source code, compiled libraries for static linking, and several command line 

applications. Rather than rewriting and testing the ready-made functionality provided by 

the toolkit, it is far easier to make use of such resources as they are, in place. 

The purpose of this appendix is to provide relevant background information and 

details on using C/C++ to create a native-code Windows library that exports functions 

and symbols that are consumable by .NET applications and is connected to the receiver 

framework. This approach may be used to provide a bridge between managed and 

unmanaged code that abstracts many of the type-conversion complexities and issues 

involved with the typical direct approach of invoking native code through the various 

Interop assemblies. 

Library Background and History 

In the past, application code was written and rewritten without regard for how it could 

be recycled and reused. In the interest of increasing code reuse, the idea of bundling 

collections of valuable and useful, but generically implemented, functions into shareable 
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redistributable software libraries eventually evolved. Source code, such as C/C++ and 

machine specific assembler files were compiled into object modules and then merged 

together into libraries. Typically, code with similar functional purposes was grouped 

together into a single aptly-named library. The librarian tool, LIB, was used to build and 

maintain these various libraries.  

When an application required a piece of code that was available in one of the 

libraries, the developer would declare to the compiler that the functionality was 

implemented externally. The compiler would produce intermediate object files without 

immediately trying to locate all of the missing pieces. It was then up to the link operation 

to combine the object files and extract from the libraries the external functions. This 

process created a statically linked application: a copy of the function was taken from the 

code in the library and statically embedded into the application. 

For all of the reuse benefits, static linking has a couple of disadvantages. If a large 

application consists of several executable modules that all share code from a common set 

of libraries, each of those modules will increase in size by the amount of code extracted 

from the libraries. When the applications run, they will each have their own copy of the 

code in memory and it will all be loaded whether or not the functions are ever actually 

called by the application. {Just to clarify: an optimizing linker will not link to external 

library code that is never called by the application, but if an external function is called 

within a conditional statement that evaluates to false at run time, that function‟s 

implementation will be linked and loaded because it could have been called.} Loading 

many copies of the same code into memory is not a very efficient use of available system 

resources. 
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What was needed was a way of dynamically linking the libraries into a shared module 

that could be loaded into memory just once and only when it was needed. Shared code 

could be written, compiled, and linked into a dynamic-link library (DLL) that could be 

accessed by several applications all at once, if needed. Any functions that were to be 

exported from the library would be added to a lightweight LIB file that contained just 

enough information to keep the linker happy—unlike their static counterparts, these LIBs 

contained no executable code. Application authors wishing to make use of the services 

provided by the DLL would add the LIB file to the list of linker inputs, and as long as the 

DLL could be loaded when the application needed it, calls into the functions would run as 

if they had been statically linked all along. Parameters surrounding the loading of the 

library into memory could be controlled to improve the application’s startup time and to 

reduce its memory footprint. 

In order to create the LIB file, exported function names first had to be either added to 

a module definition file, .DEF file, or the function entry points needed to be marked with 

the _export keyword (16-bit applications used _export, 32-bit versions later replaced this 

syntax with a _declspec(dllexport) tag.) A utility, implib, would produce the LIB file 

using either the DEF file or the DLL itself as an input. The DEF file provided better 

control of the export behaviors, where the _export approach was just simpler. 

Consuming these libraries was not always an easy thing to do, especially if they had 

been developed by a 3
rd

-party independent software vendor (ISV). The function 

prototypes (names and parameters) must be declared before their use, along with any 

custom symbols, types, or enumerations that are required by the library interface. 

Typically, these things are placed in C-style .H header files that are <included.h> with the 
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application source code. It may seem very structured and abstract, providing the sense of 

separation between declaration and implementation, however, in practice the code 

frequently becomes an ugly mix of preprocessor directives, obtuse macros, conditional 

includes, and hard-coded file paths. 

The .LIB files had to be added to the linker input list, and the DLLs needed to be 

available when the application ran. When trying to locate DLL modules, the runtime 

loader would only look in the current directory, usually where the application was started, 

and in the system directory. If something couldn’t be found, the application would die in 

a most shameful manner. Keeping in mind that the libraries were intended to encapsulate 

shared functionality, applications that were modularized into multiple executables in self-

contained directory structures would either require multiple copies of the shared DLL in 

multiple locations, or a single copy in the operating system root directory where they 

would often overwrite one another. 

The problem with the C language is that it has a tendency to constantly pull the 

developer away from the abstract into the detail view. Most experienced C/C++ 

developers are aware when they are writing code what registers will hold variables, how 

values are being stored and what the stack-frame looks like at any point in time, among 

other minutiae not directly related to the task at hand. 

Other more modern languages, however, are much better suited to developing 

feature-rich applications, where too much fretting over the compiler details just gets in 

the way of being productive and innovative. Unfortunately, there are development 

language issues to deal with because C header files are only useful to C language 
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compilers. When C code is included with a Visual Basic application, the result is general 

unhappiness. Interoperating C libraries with non-C languages has been problematic, to 

say the least. 

Component Object Model 

Using (67), in particular the Abstract Factory, Factory Method, and Builder patterns, 

Microsoft® developed the Component Object Model (COM) interface standard, which 

later became COM+ (the + is for new and improved) with the release of Windows 2000. 

The COM+ subsystem provides class factory methods that allow subclass types to be 

created through an interface provided by a virtual base class. The underpinnings of COM 

take advantage of the C++ multiple inheritance and polymorphism capabilities to define 

an abstract base class that all other COM-capable objects must derive from and 

implement. Pointers to the base-class type are passed into and out of method calls and 

eventually cast to a concrete implementation at run time. 

COM-accessible components assign newly defined classes (types) a globally unique 

identifier, a GUID, and store information on how to create instances in a central 

searchable location, namely the system registry. An application can then ask the 

operating system to create an instance of a class by invoking a method on the abstract 

base (through the common interface) that returns a pointer to an object as the base type 

that can eventually be cast to the appropriate derived type. This pointer can be used to 

call methods on the specific class implementation. All of this plumbing eventually allows 

non-C languages to create instances of, and call methods on, classes written in C++. 
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So, for an example, the Acrobat Access reader plug-in has a registry entry that looks 

like Figure A-1. 

 

Figure A-1—Acrobat Access system registry entry 

As shown, AcroAccess.AcrobatAccess is the version independent program ID 

(progID). An application wishing to create classes of types supported by this library can 

refer to the progID by name. The current version, CurVer, key contains the version 

specific program ID, AcroAccess.AcrobatAccess.1, as shown in Figure A-2. 

 

Figure A-2—Acrobat Access version specific program ID 

The class ID key, CLSID, of this entry contains the GUID of the executable that 

holds the implementation runtime of the class library, as shown in Figure A-3 and Figure 

A-4. 

 

Figure A-3—Acrobat Access class ID key 
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Figure A-4—Acrobat Access class ID value 

The value of {C523F39F-9C83-11D3-9094-00104BD0D535} given in Figure A-4 

references another registry key that contains, among other information, the name and 

location of the executable, shown in Figure A-5. 

 

Figure A-5—Acrobat Access InprocServer32 sub-key 

Where, the InprocServer32 sub-key provides the name and path of the executable 

file, as shown in Figure A-6. 

 

Figure A-6—Acrobat Access executable file registry entry 

The COM model defines two pure-abstract base-classes that work in similar but 

somewhat different manners, IUnknown and IDispatch. C++-style languages that 

support v-table method calls, such as C++, use the IUnknown interface. Other late 

binding scripting languages, like Visual Basic, VB Script, and Java Script, use the 
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IDispatch interface, which inherits from and extends IUnknown. The methods defined in 

these two interfaces are: 

(68) IUnknown:  QueryInterface, AddRef, and Release 

(69) IDispatch:   GetTypeInfoCount, GetTypeInfo, GetIDsOfNames and Invoke 

So, to create an instance of the Acrobat Access class, the Win32 function 

CoCreateInstance is called with the version independent program ID 

AcroAccess.AcrobatAccess, and the returned IUnknown pointer can be cast to the specific 

AcroAccess plug-in type. From there, QueryInterface can be called to get references to 

any other functional interfaces that the class implements. All of the registry lookups and 

object instantiation details are left to the operating system to deal with. 

Declaring an interface using the C++ syntax for an abstract class with pure-virtual 

methods is awkward and long winded. It also doesn’t support the additional GUID 

information required for COM registration. The Interface Definition Language (IDL) 

leverages the C++ syntax and supports the extra attributes and keywords necessary for 

declaring object IDs and interface types. The Microsoft IDL compiler, MIDL, processes 

this information and generates C files that are then compiled and linked into the class 

library. All of the type information exposed by the COM interfaces is listed in a type-

library file, .TLB, that client applications can use to create references to the exported 

types. 

 MIDL code is the standard way of creating COM/COM+ compatible interfaces in 

C/C++. Further details on COM and the MIDL tools can be found in (70). 
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The .NET Framework 

The .NET Framework includes a feature-rich Base Class Library (BCL) as a 

foundation for application development, and a managed code execution environment that 

provides system services for library dependency, versioning, and runtime security.  

The Common Language Infrastructure (CLI) specification has been standardized 

under ECMA-335 and ISO/IEC 23271:2006 (71) and (72). The CLI encompasses a 

Common Language Specification (CLS), a Common Type System, and a Virtual 

Execution System. The Common Intermediate Language (CIL) (73) (CIL—formerly 

MSIL) is the lowest-level human-readable language in the CLI and the .NET Framework. 

Any development language that targets the .NET Framework runtime must be capable of 

generating CIL-compatible code. The Microsoft-defined .NET languages are C#, 

Visual Basic .NET, managed C++/CLI, and J#. 

Using the .NET-aware languages, high-level code is compiled into assemblies of 

instructions in the CIL format. These assemblies can be either .EXE or .DLL files similar 

to native code, but they contain no CPU-specific binary compatible operations. Instead, 

the code is loaded and further compiled into binary code by the just-in-time (JIT) 

compiler of the .NET runtime the first time the application is executed. Each loaded 

assembly contains meta-data that describes the version specific details, dependency 

requirements, symbol exports, and any other applied attributes. 

Exported types are visible through reflection, and consuming functionality exposed 

from a library is as simple as adding a reference to it in a project. Since there are no 

requirements for forward declarations of types or function prototypes, there is no need for 
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header or other types of include files. There are no .LIBs or exported type libraries, and 

no digging through the registry looking for interface IDs. More importantly, side-by-side 

version execution provides the capability to load two different versions of a DLL with the 

same file name without conflicts. ISVs can install their application-specific files into an 

isolated folder without stomping on other similarly-named system files; the .NET 

Framework will sort out all the details when the assemblies are loaded. 

Memory management is provided by the runtime in that all class instances are created 

on a managed system heap. As references to objects go out of scope, memory will be 

automatically released by a garbage collection process that is provided to eliminate 

application memory leaks. Along with improved type safety and security checking, 

application stability is greatly enhanced. These changes, coupled with the Framework’s 

base class library, allow software developers to focus on delivering a higher level of 

application functionality.  

Integration of GPSTk 

A .NET application can access Win32 native-code C library functions through 

platform invoke, P/Invoke, by specifying the function as external and by applying 

attributes that provide the name of the library where the function implementation can be 

located. Using P/Invoke requires class-method declarations for each of the C functions 

that one wishes to use, and all the data types that those functions require, in the .NET 

environment. However, not all C/C++ native types map directly to CLS compatible types, 

particularly where multiple levels of indirection are present, like passing the address of a 

pointer to a structure that contains a pointer to a void pointer. It’s not always easy or 

necessarily possible to resolve these incompatibility issues. 



 199 

It is possible to build a C/C++ DLL and use it to interconnect to the plumbing of the 

desired C-only API, exposing a much simpler interface with intrinsically compatible data 

types. Quite often, the overall goal is to achieve a single purpose task that is 

accomplished through two or more C function calls, where each call requires references 

to data structures that bear little relevance to the top layer. Rather than redefining types 

and function signatures for each piece, the easier solution is to write a single C function 

interface that instantiates the required data types and invokes the correct sequence of API 

calls. Only this function then needs to be exported from the library, and any input 

parameters that are necessary can often be passed using simpler data types, but more 

complex structures can be accommodated, as well. 

Much has already been written on using P/Invoke and the DllImport attributes to link 

to unmanaged Win32 library code, but little information is provided on the requirements 

for writing an unmanaged C/C++ DLL that exports CLR-accessible symbols. 

Surprisingly, the rules for building a DLL in C haven’t changed in many years, but some 

of the details have been obscured through the mists of time and legend. 

The GPSTk library comes complete with several command line example applications 

that take lists of input arguments, but the whole thing looks very UNIX’y. Without 

having to rewrite the functionality or going through time-consuming hoops to get to it, an 

adapter DLL is created to call into the C-only GPSTk library. 

Referring to the layered interoperability model discussed in Chapter 7, Layer-1 

represents the actual GPSTk library code. The first step in creating the Layer-2 adaptation 
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involves starting a new Win32 DLL project in Visual Studio (any C++ compiler tool for 

Windows can be used), as shown in Figure A-7. 

 

 Figure A-7—Visual Studio 2008 new project dialog 

After selecting the Win32 Project type, giving the project a name, and pressing OK, 

additional project options can be specified, as shown in Figure A-8. This dialog allows 

the specification of the application type (DLL) and an option to export symbols. 
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Figure A-8—Visual Studio 2008 new project dialog 

If the export symbols option is selected, the new project wizard will generate a .h file 

(projectname.h) that contains the following code. 

 

Figure A-9—Exported code symbol C macro 

// The following ifdef block is the standard way of creating macros which 

// make exporting from a DLL simpler. All files within this DLL are   

// compiled with the GPSTKLIB_EXPORTS symbol defined on the command line. 

// This symbol should not be defined on any project that uses this DLL. 

// This way any other project whose source files include this file see  

// TESTWIN32LIB_API functions as being imported from a DLL, whereas this  

// DLL sees symbols defined with this macro as being exported. 

#ifdef GPSTKLIB_EXPORTS 

#define GPSTKLIB_API __declspec(dllexport) 

#else 

#define GPSTKLIB_API __declspec(dllimport) 

#endif 
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As explained by the code comments, if the header file with the macro is included in a 

project that defines the GPSTKLIB_API symbol, the default will be to export declared 

functions from the library, otherwise the functions will be imported.  

At this point, there are two choices for creating function exports. In the source code, 

create functions or classes with name declarations by adding GPSTKLIB_API before the 

function or class name, like in Figure A-10. 

 

Figure A-10—C++ class code exported using API macro 

Alternatively, a module definition file (DEF) can be added to the project and the 

exports can be created manually. With this method, it’s possible to explicitly specify 

which symbols are exported rather than exporting the whole class. Also, the symbol that 

is added to the generated .LIB file has to be searched for by name when the DLL is 

loaded. For performance reasons, it is sometimes desirable to specify an ordinal value for 

linkage rather than a text name. 

The module definition file can be added to the project by adding a new item and 

selecting the Module Definition File (.def) icon (Figure A-11), giving the new file a 

name, and pressing Add. A blank DEF file will be inserted into the project. 

class GPSTKLIB_API SystemTime 

     : public UnixTime 

{ 

    public: 

 //Further details elided… 
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Figure A-11—Dialog for adding a DLL module export definition file 

The newly created DEF file, Figure A-12, can be edited to supply the properties of 

the required exports. The LIBRARY section specifies the name of the output LIB file, 

and the EXPORTS part supplies the names of the exported symbols.  

 

Figure A-12—Definition file exported symbols 

The function names are the result of the C++ name mangling mechanism that 

combines information about the class, method name, and input parameters to generate a 

unique signature. The easy way to get these names to add to the EXPORTS section is to 

simply copy them from the linker error output or the build log file the first time the 

LIBRARY "gpstklib" 

 

EXPORTS 

 ?GPSfullweek@DayTime@gpstk@@QBEFXZ @100 

 ?GPSsow@DayTime@gpstk@@QBENXZ  @200 

 ?dayOfWeek@DayTime@gpstk@@QBEFXZ  @300 

 ??0DayTime@gpstk@@QAE@XZ   @400 

 ?day@DayTime@gpstk@@QBEFXZ   @500 
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application is built. The other, slightly harder, way is to configure the linker to generate a 

map file that contains the mangled names of all the exportable symbols. 

The @numbers after the symbol names are optional; they cause the linker/loader to 

resolve symbols by ordinal rather than by name. Calling performance is better but if the 

exports change, dependent projects will need to be re-linked. The numbers can be 

grouped and incremented according to any desired scheme. It is also possible to use a 

combination of both  methods, DEF file and the export macro, to get pretty much any set 

of desired results. 

Another way of declaring the exported functions is to add to a header file, like the 

projectname.h file that defines the import API macro, C-style prototypes for the 

necessary functions, as shown in Figure A-13. 

 

Figure A-13—API Macro exported symbols using C naming styles 

The extern “C” prevents the name mangling, and is optional. These functions can be 

defined in a C/CPP source file, such as in Figure A-14. 

 

extern "C" { 

 GPSTKLIB_API short GPSfullweek(); 

 GPSTKLIB_API short GPSday(); 

 GPSTKLIB_API double GPSsecond(); 

 GPSTKLIB_API short day(); 

} 
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Figure A-14—C++ exported function implementation 

This function simply creates an instance of the GPSTk class DayTime as defined in 

the library, and invokes the corresponding method of the class. The exported functions 

may also be declared with the GPSTKLIB_API attribute, Figure A-15, as long as the 

unmangled exports are put into the module definition file as in Figure A-16. 

 

Figure A-15—Exported symbols using C naming styles, without the use of the API macro 

 

Figure A-16—Exported symbols using C naming styles 

This approach, however, tends to flatten the existing hierarchical class structure 

making it look more like a C API than a C++ object-oriented solution. This technique 

will only work in situations where the class encapsulates only functionality, in that 

member fields and variables do not need to maintain their values between calls. A 

LIBRARY "gpstklib" 

 

EXPORTS 

 GPSfullweek  @600 

 GPSday   @700 

 GPSsecond  @800 

 day   @900 

 

extern "C" { 

 short GPSfullweek(); 

 short GPSday(); 

 double GPSsecond(); 

 short day(); 

} 

 

using namespace std; 

using namespace gpstk; 

 

GPSTKLIB_API short GPSfullweek() { 

 DayTime dt; 

  

 return dt.GPSfullweek(); 

} 
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possible solution is discussed later for those situations where persisting class state is 

necessary. 

The next step involves the creation of the Layer-4 interoperability layer component. 

A class named GPSTK is declared as shown in Figure A-17. Each library function that 

needs to be called has to be added as a public static extern member of this class, and 

each requires a DllImport attribute from the System.Runtime.InteropServices namespace 

that provides, at a minimum, the name of the library where the function is implemented. 

The symbol that will be searched for in the library will be taken from the given function 

name using the unmangled (extern ―C‖) name, but an entry point can be specified in the 

case where the .NET function and the export names are different. 

 

Figure A-17—C# class for accessing the functions exported from the GPSTk library  

In this case, the link will be to the symbols that are exported as the non-class wrapper 

implementations, as in Figure A-15. Since these are static members that belong to the 

class, code can invoke the corresponding methods through the GPSTK class name 

using System.Runtime.InteropServices; 

 

namespace GPSTKLib { 

    public class GPSTK { 

 

        [DllImport("gpstklib")] 

        public static extern short GPSfullweek(); 

 

        [DllImport("gpstklib")] 

        public static extern short GPSday(); 

 

        [DllImport("gpstklib")] 

        public static extern double GPSsecond(); 

         

        [DllImport("gpstklib")] 

        public static extern short day(); 

 

    } 

} 
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without explicitly creating an instance, as shown in the button click event handler of 

Figure A-18. 

 

Figure A-18—C# event handler that invokes functions from the external GPSTk library 

Additional Features 

When a DLL is available, but there is no export LIB file, it is possible to make one by 

using the LIB utility with the /def option if a DEF file is used, or by providing the name 

of the existing DLL itself. The result will be a LIB file describing the public exports that 

can be used to link C/C++ code to the DLL. Only symbols exported from the DLL at 

implementation time will be visible to the caller application. 

 A list of function names for a specific DLL can be found by running one of a variety 

of command-line tools. For example, you can use the following to obtain function names 

exported from the gpstklib.dll library,  

dumpbin /exports gpstklib.dll or  

link /dump /exports gpstklib.dll 

When creating exports using the DEF file approach it is sometimes convenient to 

produce a complete list of all the private and public symbols being generated. This list 

can be obtained by getting the linker to generate a map file. In the DLL project property 

page, expand linker, select debugging, and in Map file name put in something like:  

private void button1_Click(object sender, EventArgs e) { 

    label5.Text = GPSTK.GPSfullweek().ToString(); 

    label6.Text = GPSTK.GPSday().ToString(); 

    label7.Text = GPSTK.GPSsecond.ToString(); 

    label8.Text = GPSTK.day().ToString(); 

} 
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$(OutDir)\$(ProjectName).map 

The created DLL has to reside in the application folder, where the EXE is launched, 

or on the path somewhere. A convenient place for these custom DLLs is usually the 

%WINDIR% directory—this is not a good place to install non-system DLL’s. 

Deployment pain should be felt by the developer and not the end-user. 

As previously mentioned, class member variables don’t persist state across calls. 

Calling a couple of field set accessors and then invoking a DoMagic() operation may not 

result in the expected behavior. Actually, calling into class methods without an actual 

instance can be a hazardous thing to do since the v-table mechanism may not have been 

properly initialized when the call is made. It is possible, though, to add an exported 

global instance to the library and initialize it in the DllMain function of DllMain.cpp. 

DllMain is the DLL’s equivalent to the standard C main function application entry point 

and is called by the system whenever the DLL is loaded or unloaded from memory. The 

function includes a flag that is passed to indicate the reason for the call. Testing the value 

of this flag can be used to determine when to create an instance, and when to delete it, as 

shown in Figure A-19. 
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Figure A-19—C++ code for initializing a persisted class instance 

The global instance can be accessed from one of the application modules exported 

from the DLL, such as in Figure A-20. 

 

Figure A-20—C++ code for accessing a persisted class instance 

To prevent memory leaks, it’s necessary to delete the instance when the process or 

thread unloads the DLL, which will happen after a short period of non-use, typically just 

a few minutes without making a call. State will not persist across instances, for obvious 

reasons. 

Depending on the requirements, a mechanism may have to be invented that will 

determine the validity of the class instance before the application relies on state values. 

This class factory will have to do reference counting and should be able to distinguish 

void SetValue(double newValue) { 

 anInstance->setMJD(newValue); 

} 

 

GPSTKLIB_API DayTime* anInstance; 
 

BOOL APIENTRY DllMain( HMODULE hModule, 

                       DWORD  ul_reason_for_call, 

                       LPVOID lpReserved ) 

{ 

 switch (ul_reason_for_call) { 

 case DLL_PROCESS_ATTACH: 

 case DLL_THREAD_ATTACH: 

  anInstance = new DayTime; 
  break; 

 case DLL_THREAD_DETACH: 

 case DLL_PROCESS_DETACH: 

  delete anInstance; 

  break; 

 } 

 return TRUE; 

} 
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between object instances. Since these requirements could apply to more than one type 

that is available in the library, it would be a good design idea to possibly assign an 

identifier to each class or type, something that could be passed into the factory method as 

an ID. The construction process could look up the type information from some sort of 

table indexed by the identifier and use the details it finds there to create and cast a pointer 

to the corresponding type. However, at this point, something about the design becomes 

oddly familiar in that this work would just be a reinvention of COM. In the end, the same 

problems recur and similar solutions result. 

At first glance, one may be inclined to think that the COM design is overly-complex 

and largely unnecessary. As the generality of the problem becomes more clearly 

understood, one can better appreciate features provided by the COM infrastructure. If the 

interoperability of a native C++ application requires the creation of an abstract factory, 

the details of the COM and IDL technologies should be thoroughly explored before 

proceeding with a custom solution. 
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Appendix B—Tracking-loop Control Theory 

This section is not intended to be a comprehensive treatment of feedback control 

theory. Its purpose is to provide a summary of the relevant sections of references (57), 

(66), and (65), along with information gathered from multiple conversations with 

Dr. C.P. Diduch, to aid in the understanding of the control problems associated with the 

PLL and DLL carrier phase and code delay tracking. 

Out of all the challenges encountered in software receiver design, the combined code 

and carrier tracking loop problem represents the area for the greatest system performance 

improvement opportunities. Most of the time, the PLL control model is explained in the 

literature using continuous analog functions that are represented in the s-domain, under 

the assumption that a suitable transform to the discrete z-domain exists. However, it is not 

always the case that such a transformation will provide a suitable basis for analysis and 

implementation. 

In the continuous domain, the basic element is the integrator, whereas in the discrete 

domain the basic element is the time delay, or memory, of 𝑇𝑆 seconds.  

 ⇒
1

𝑠
= 𝑠−1 →

𝑧

𝑧 − 1
=

1

1 − 𝑧−1
 B-1 
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The most often encountered transformations between the continuous and discrete 

domains are the forward difference, or Euler’s method, 

𝑠 =
𝑧 − 1

𝑇𝑆
 B-2 

The backward difference transformation, 

𝑠 =
𝑧 − 1

𝑧𝑇𝑠
 B-3 

And Tustin’s approximation, the trapezoidal, or the bilinear transform, 

𝑠 =
2 𝑧 − 1 

𝑇𝑠 𝑧 + 1 
 B-4 

The bilinear (Tustin’s) is probably the most widely used, since it has the advantage of 

mapping the left half of the s-plane into the unit disc on the z-plane, which ensures that 

all stable continuous systems will result in stable discrete systems. All of these 

transformations create, however, a distortion of the frequency scale as given by B-5. 

𝜔 =
2

𝑇𝑠
tan  

𝜔′𝑇𝑠
2

  B-5 

Where 𝜔′ is the unwarped frequency in the continuous-time system, and 𝜔 is the 

warped frequency in the discrete-time system. 
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For the case of the PLL, the NCO is modeled as shown in Figure B-1. 

F(s)

k1/s

θi(s)

θf(s)
-

VO(s)
k0

NCO modeled as 

an integrator
 

Figure B-1—PLL feedback control model 

The usual 1
st
-order equivalent model for the NCO is the transfer function given in 

Equation B-6. 

𝑁 𝑧 =
𝜃𝑓 𝑧 

𝑉𝑂 𝑧 
=

𝑘1𝑧
−1

1 − 𝑧−1
 B-6 

A close inspection of B-6 and comparing with the integrator model of B-1 reveals an 

additional 𝑧−1 term in the numerator. The existence of this term is explained by 

evaluating the model of the NCO, and including the effects of the sample and hold 

operation on the transfer function. 

Firstly, the 𝑘1/𝑠 element in Figure B-1 is the internal representation of the input 

signal characteristic modeled as a constant, such that the steady-state error goes to zero; if 

the signal/error is not a constant, the model is incorrect (more on this point momentarily) 

and the error will not be adequately removed. Secondly, the discrete sample-hold effects 

need to be considered, as shown in Figure B-2.  



 214 

hold 
Ts Ts

u x

u(kTs)  

Figure B-2—Sample and hold representation 

𝑥  𝑡 = 𝑢 𝑡  

= 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 ;  𝐴 = 0,𝐵 = 1 

B-7 

𝑥 𝑘𝑇𝑆 + 𝑇𝑆 = 𝑒𝐴𝑇𝑠𝑥 𝑘𝑇𝑆 +   𝑒𝐴𝑛𝑑𝑛𝐵
𝑇𝑆

0

 𝑢 𝑘𝑇𝑆  B-8 

𝑥 𝑘𝑇𝑆 + 𝑇𝑆 = 𝑥 𝑘𝑇𝑆 + 𝑇𝑆𝑢 𝑘𝑇𝑆  B-9 

𝑥 𝑘 + 1 =  𝑥 𝑘 + 𝑇𝑆𝑢 𝑘  B-10 

𝑧𝑥 = 𝑥 + 𝑇𝑆𝑢 B-11 

𝑥 =
𝑇𝑆𝑧

−1

1 − 𝑧−1
𝑢 B-12 

So, the discrete form of a sampled integrator given in equation B-12 is different from 

the relationship indicated by B-1. However, if all the work is performed and the state 

maintained internally to the sample and hold elements, then the extra 𝑧−1 term in the 

numerator represents an additional delay and isn’t really necessary. Also, the model’s 

plant is the filter and not the NCO, but this point will only matter if there is an external 

disturbance at the output that is not correctly fed-back to the compensator. 
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The loop filter, 𝐹(𝑠), shown in Figure B-1 is essentially an integrator and is 

intrinsically non-stable. To improve the stability requires a modification of the gain in the 

feedback element, as shown in Figure B-3. 

C1

C2

0.99z
-1

input output

r

 

Figure B-3—PLL 1
st
-order filter 

Implementing discrete filters in software requires a bit of manipulation of the desired 

transfer function. A transfer-function block diagram is shown in Figure B-4. 

)(zU )(zG )(zY
 

Figure B-4—A simple transfer function 

In general, there can be multiple inputs and multiple outputs, so 𝑈(𝑧), 𝐺(𝑧), and 𝑌(𝑧) 

may be state-variable vectors. For the linear time-invariant case, 

𝐺 𝑧 ≡
𝑌 𝑧 

𝑈 𝑧 
=
𝑏0 + 𝑏1𝑧

−1 + 𝑏2𝑧
−2 …

𝑎0 + 𝑎1𝑧−1 + 𝑎2𝑧−2 …
 B-13 

𝑌 𝑧   𝑎0 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 …  =  𝑈 𝑧  𝑏0 + 𝑏1𝑧
−1 + 𝑏2𝑧

−2 …   B-14 

Now, since 

𝑌 𝑧 → 𝑌 𝑘   and, 
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𝑧−1𝑌 𝑧 → 𝑌 𝑘 − 1   𝑧𝑌 𝑧 → 𝑌 𝑘 + 1   

𝑧−2𝑌 𝑧 → 𝑌 𝑘 − 2   𝑧2𝑌 𝑧 → 𝑌 𝑘 + 2   

So, 

𝑎0𝑌 𝑘 + 𝑎1𝑌 𝑘 − 1 + 𝑎2𝑌 𝑘 − 2 …

= 𝑏0𝑈 𝑘 + 𝑏1𝑈 𝑘 − 1 + 𝑏2𝑈 𝑘 − 2 … 
B-15 

𝑌 𝑘 =
1

𝑎0

 −𝑎1𝑌 𝑘 − 1 − 𝑎2𝑌 𝑘 − 2 …+ 𝑏0𝑈 𝑘 + 𝑏1𝑈 𝑘 − 1 

+ 𝑏2𝑈 𝑘 − 2 …   

B-16 

The difference equation of B-16 gives the current output as a weighted sum of the 

current and past inputs as well as limited series of previous outputs. A minimal 

representation of an n
th
-order system will contain only n delays. The prior inputs and 

outputs need to be persisted as state variables in software. 

As each new input arrives, an updated output is calculated, and then, of course, there 

is a shift of last value = new value, 

𝑌 𝑘 − 1 =  𝑌 𝑘  

𝑌 𝑘 − 2 =  𝑌 𝑘 − 1  

𝑈 𝑘 − 1 =  𝑈 𝑘  

𝑈 𝑘 − 2 = 𝑈 𝑘 − 1  

The code for implementing the filter of Figure B-3 is given in Figure B-5. The 

constants C1 and C2 are held in private class member variables that are calculated 
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whenever the filter characteristics (sampling rate, damping factor, natural frequency, 

gain) are changed. 

 

Figure B-5—C# code for implementing the 1
st
-order filter of Figure B-3 

The frequency response of the transfer function can be found by letting 𝑧 = 𝑒𝑗𝜔 𝑇𝑆and 

computing the magnitude of the result for each value of 𝜔.  

Now, returning to Figure B-1 and Equation B-6. The objective of the PLL is to track 

small changes in carrier phase by computing the error angle through some form of a 

discriminator function. Two commonly used discriminators are shown plotted in Figure 

B-6 and Figure B-7, both of which have linear ramp characteristics over a small range of 

error input that crosses through the origin. Assuming that the acquisition stage of the 

GNSS receiver has provided the tracking loop with a good estimate of the initial carrier 

frequency (Doppler) and phase, the local carrier phase error will be close to zero and the 

1
st
-order model of the discriminator error as a constant will be valid. If the phase error, 

for some reason, becomes large however, the discriminator error will be better modeled 

as 2
nd

-order (1/𝑠2), which results in a non-zero steady-state error. So, the PLL will 

quickly lose its ability to adequately track the dynamic phase changes and the signal will 

need to be reacquired. 

public double Filter(double input) { 

r = C2 * input + 0.99 * r; 

output = C1 * input + r; 

 

return output; 

} 
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Figure B-6—Arctangent discriminator function over the range [-π, π] 

 

Figure B-7—Product discriminator function over the range [-π, π] 

The SiGe SE4110L-EK3 USB (61) Link-1 (L1) receiver front-end used for testing the 

software Receiver Development Framework provides 3.96 samples per carrier cycle. A 

time-domain plot of the post-DLL code-removed carrier is shown in Figure B-8. The data 

has been plotted as straight lines with the actual sample points indicated by (blue) 

markers. 
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Figure B-8—Recovered carrier waveform, after code removal 

At this sample rate, the phase error between samples will always be large and the 

discriminator function will not be operating in the linear region as desired on a sample-

by-sample basis. It becomes necessary to integrate the error function over some interval 

of time in order to computer the average error, keeping the 1
st
-order approximation valid. 

This approach is suitable for post-processing applications, but potentially limits the 

ability of real-time implementations to accurately track the phase of the input signal. 

More work is required to develop and test higher-order models that are capable of 

representing the PLL functions with greater accuracy. The potential to improve weak 

signal tracking performance, especially under high-dynamic (large Doppler-rate (74)) 

conditions, is great. Also, increasing the signal lock-in range of the PLL, reduces the 

precision and processing workload required of the initial acquisition stage.  
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Appendix C—Finite Fields and SSRGs 

The intention of this appendix is to serve as an introduction to finite field theory as it 

applies to sequential shift register generators (SSRGs) as sources for pseudo-random 

noise (PRN) sequences that are used as spreading codes in direct-sequence-spread-

spectrum systems. Much of this section is based on Chapter 2 from reference (4), 

however the text has several mistakes and mismatches in the equations and diagrams, as 

well as a few awkward language issues, that make it somewhat confusing to follow at 

times. 

This appendix should serve to clarify a few of the points of confusion and provide a 

more substantive basis for system implementation. The goal is to remove some of the 

stumbling points, without creating new ones. The treatment of this material here is 

deliberately lacking in rigor and formality since much of that is provided by the 

referenced text, but the gist of the content is included for future use after the text has been 

returned to the library. 

A finite field, or Galois field of 𝑞 elements, denoted by 𝐺𝐹(𝑞), has special properties 

and is defined in such a manner that there is only one way of constructing it. For any 

field, two operations exist, addition and multiplication, with their results always being in 

the field. The field must contain the additive and multiplicative identities (i.e. 0 and 1), 

and for every value in the field there must also exist the corresponding additive and 

multiplicative inverse. The usual associative, commutative, and distributive properties 
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must also apply. For their use in SSRGs we are concerned only with polynomials defined 

in the field of 𝐺𝐹(2). 

 A polynomial, 𝑓(𝑥), of degree 𝑛 is irreducible, or prime, if it is not divisible by any 

polynomial of degree less than 𝑛 but greater than zero. Like prime numbers, irreducible 

polynomials cannot be factored. Obviously, only odd polynomials, 𝑥𝑛 + ⋯+ 1, can be 

irreducible, otherwise 𝑥 would be a factor. Since the polynomial coefficients must be in 

𝐺𝐹(2), not all decimal prime numbers correspond to irreducible polynomials—don’t 

make that mistake. 

An irreducible polynomial of degree 𝑛 is primitive if it divides 𝑥𝑚 + 1 for no 𝑚 less 

than 2𝑛 − 1. Obtaining a maximal sequence length of 𝑁 = 2𝑛 − 1 for every 𝑛 requires 

that the characteristic polynomial be primitive. There will always be one more one in the 

sequence than zero, since the all-zero state is not used in the output (it is terminal, 

resulting in no further changes in state.) 

The various texts and articles on the subject of 0 and 1 binary valued transformations 

to the required +1 and -1 values differ and are usually incorrect. While an obvious choice 

would be to simply keep the 1 as +1 and shift the 0 down to the level of -1 (it would seem 

sensible enough), the only mapping between these value representations that preserves 

the equivalence of the exclusive-or and multiplication operations is that of 

  0, 1  ↔    +1,−1   

Under this mapping, the results of an exclusive-or operation on two numbers is 

equivalent to multiplication, as show in Table C-1. The results column of both tables are 

equivalent when 0 ↔ +1 and 1 ↔ -1. 
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𝑋 𝑌 𝑋 𝑌  

0 0 0 

0 1 1 

1 0 1 

1 1 0 
 

𝑋 𝑌 𝑋 ×  𝑌 

+1 +1 +1 

+1 -1 -1 

-1 +1 -1 

-1 -1 +1 
 

Table C-1—The equivalence between XOR and multiplication with {0, 1} ↔ {+1, -1} mapping 

If the message data and PRN chipping/spreading code are mixed with the carrier as 

{0, 1} binary data, then the exclusive-or operation is required to spread the signal. 

Otherwise, when {+1, -1} signals are used, the required operation is multiplication. The 

following function assumes that the binary data sequence, 𝑑 𝑡 , and the spreading code, 

𝑃𝑁 𝑡 , have been mapped to {+1, -1} 

𝑠 𝑡 =  𝑃  × 𝑑 𝑡 × 𝑃𝑁 𝑡 × cos 𝜔𝑐𝑡  
C-1 

When binary {1, 0} values are used for the message data and chip code, they must be 

first modulo-2 added together before bi-phase modulating the carrier, like so: 

𝑠 𝑡 =  𝑃 cos(𝜔𝑐𝑡 −  𝑑 𝑡 ⊕ 𝑃𝑁 𝑡   ×  𝜋) C-2 

Both functions behave in a similar manner in that they both produce a -180° phase 

shift in the carrier, 𝜔𝑐 , when the message data and spreading chip are different from each 

other, and a 0° phase shift when they are the same. 

The function that maps binary data, 𝑏(𝑡), to {+1, -1}:  

𝑎 𝑡 =
1 − 𝑏(𝑡)

2
 C-3 
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Linear feedback shift register generators for PRN sequences are created by arranging 

feedback from various shift stages with taps defined according to a carefully selected 

polynomial. Take the following 𝐺𝐹(2) polynomial, 𝑃 𝑥 , for example: 

𝑃 𝑥 = 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥5 + 1 C-4 

This polynomial may be represented by the binary sequence [11101100001] and 

implemented as a linear feedback shift register by connecting the register cells 

corresponding to the powers of 𝑥 to the feedback path through modulo-2 addition (XOR). 

This configuration is the Fibonacci form, shown in Figure C-1, and is characterized by 

feedback being taken from various taps in descending powers of 𝑥 (from left to right) and 

applied to the most significant bit (MSB). The output is taken from the least significant 

bit (LSB). 

Output

x
10

+ x
9

+ x
8

+ x
6

+ x
5

+ 1

1 1 1 1 1 10 0 0 0 0
 

Figure C-1—Fibonacci implementation of P(x) 

Starting with a single 1 in the right-most cell, the initial part of the produced sequence 

starts like: 

1000000000110101001010001101101010111011110100011110101000001110… 

An alternate configuration of the same polynomial is the Galois form, show in Figure 

C-2. In this form, the polynomial is written in reverse order, in increasing powers of x, 

and feedback is applied at multiple points along the length of the shift register. 
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Output

+ x
10

+ x
9

+ x
8

+ x
6

+ x
5

1

111111 00000
 

Figure C-2—Galois implementation of P(x) 

The output is taken from the most significant bit (highest order term), and starting 

with a single 1 in the right-most cell the initial part of the sequence looks like: 

1101010010100011011010101110111101000111101010000011101100110000… 

It can be shown that for a given set of initial conditions, both shift register 

configurations are equivalent and will produce the same binary sequence, although they 

may differ in phase.  

Now, for the part that can be confusing: The GNSS community uses a representation 

convention that is a hybrid of Fibonacci and Galois. As can be seen in Figure C-3, the 

feedback arrangement is that of Fibonacci, but the polynomial is written in increasing 

order as it is with Galois.  

Output

+ x
10

+ x
9

+ x
8

+ x
6

+ x
5

1

111111 00000
 

Figure C-3—GNSS implementation of P(x) 

The sequence that results is the reverse sequence generated by a Fibonacci 

implementation, which is the same as using the reciprocal polynomial, 
1

𝑃 𝑥 
. The 
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reciprocal of a primitive or irreducible polynomial is itself primitive or irreducible and 

will generate the reverse sequence. 

The reciprocal of a polynomial can be evaluated using: 

1

𝐺 𝑥𝑁 
= 𝑥𝑁𝐺  

1

𝑥
  C-5 

So, for example, if 

𝑃 𝑥 = 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥5 + 1 C-6 

then, 

1

𝑃 𝑥 
= 𝑥10 𝑥−10 + 𝑥−9 + 𝑥−8 + 𝑥−6 + 𝑥−5 + 1  

= 𝑥10 + 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1 

C-7 

C-8 

Implementing this polynomial as a feedback shift register using either the Fibonacci 

or Galois forms will result in the same output sequence as that of Figure C-3. 

𝐺𝐹(2) polynomial algebra is handled in a manner similar to traditional algebra, but 

keeping the coefficients in the field. Polynomials may be added and subtracted, or 

multiplied: 

 𝑥 + 1  𝑥3 + 𝑥2 + 1 = 𝑥4 + 𝑥3 + 𝑥 + 𝑥3 + 𝑥2 + 1 

= 𝑥4 + 𝑥2 + 𝑥 + 1 
C-9 

Division can be conducted in the familiar long-method using pencil-and-paper, once 

again keeping the coefficients within the field. 
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𝑥3 + 𝑥2 + 1

𝑥 + 1

𝑥4 + 𝑥2 + 𝑥 + 1

 𝑥4+ 𝑥3 + 𝑥

0

𝑥3 + 𝑥2 + 1
𝑥3 + 𝑥2 + 1

 

C-10 

The derivative of a GF(2) polynomial exists, with differentiation carried out in the 

usual way, except with the term coefficients kept within the field: 

𝑑

𝑑𝑥
 𝑥𝑁 +  𝑥𝑁−1 + 𝑥𝑁−2 …𝑥 + 1 

= 𝑁𝑥𝑁−1 +  𝑁 − 1 𝑥𝑁−2 +  𝑁 − 2 𝑥𝑁−3 …+ 1 

C-11 

Where the coefficients (𝑁 − 𝑘) are interpreted modulo-2. Now, since(2 𝑚𝑜𝑑 2), 

(4 𝑚𝑜𝑑 2), (6 𝑚𝑜𝑑 2), and (𝑟 𝑚𝑜𝑑 2) = 0 {𝑓𝑜𝑟 𝑟 𝑒𝑣𝑒𝑛} , even-order powers of 𝑥 have 

a derivative of zero, while the derivative of odd-orders of 𝑥 are 𝑥𝑁−1. An example, 

𝑑

𝑑𝑥
 𝑥7 + 𝑥6 + 𝑥3 + 𝑥2 + 𝑥 + 1 = 𝑥6 + 𝑥2 + 1 C-12 

Referring to Figure C-4, a generalized SSRG configuration model, expressions for the 

characteristic equation and characteristic polynomial can be obtained. 
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a-1 a-2 a-na-3 ... a-n+1

Output

c1 c2 c3 cn-1 cn=1

 

Figure C-4—SSRG configuration 

The characteristic equation is defined as 

𝐹 𝜆 =  𝑐𝑘𝜆
𝑛−𝑘

𝑛

𝑘=0

, 𝑐0 = 𝑐𝑛 = 1 C-13 

The characteristic polynomial is given by 

𝑓 𝜆 =  𝑐𝑘𝜆
𝑘

𝑛

𝑘=0

, 𝑐0 = 𝑐𝑛 = 1 C-14 

For an n-stage shift register with an initial state of 𝑎−1 , 𝑎−2 ,𝑎−3 ,… , 𝑎−𝑛+1, 𝑎−𝑛 , the 

output sequence is denoted by 

{𝑎𝑚 } = {𝑎0 ,𝑎1 ,𝑎2 ,… } C-15 

After the initial state has been clocked out of the registers, the output sequence is 

defined by 

𝑎𝑚 =  𝑐𝑖

𝑛

𝑖=1

𝑎𝑚−𝑖          𝑚 = 0, 1, 2,… C-16 
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One would expect that the value immediately preceding 𝑎0 would naturally be 𝑎−1, 

however with the subscripts defined in the left-right manner above, the sequence would 

actually run 𝑎−1𝑎−2𝑎−3 …𝑎−𝑛+1𝑎−𝑛𝑎0𝑎1𝑎2𝑎3 … such that the n
th
 stage’s connection and 

initial condition are on the right, as shown in the diagram. 

The sequence generating function is given by 

𝐺 𝑥 =  𝑎𝑘𝑥
𝑘

∞

𝑘=0

 C-17 

By combining equations C-16 and C-17, the output sequence can be determined as 

𝐺 𝑥 =  𝑐𝑖𝑥
𝑖

𝑛

𝑖=1

 𝑎𝑘−𝑖𝑥
𝑘−𝑖

𝑛

𝑘=0

 C-18 

Rearranging gives 

𝐺(𝑥) =
 𝑐𝑖𝑥

𝑖 𝑎−𝑖𝑥
−𝑖 + 𝑎−𝑖+1𝑥

−𝑖+1 + ⋯+ 𝑎−1𝑥
−1 𝑛

𝑖=1

 𝑐𝑖𝑥 𝑖
𝑛
𝑖=0

=
𝑔 𝑥 

𝑓 𝑥 
 C-19 

As an example, the shift register shown in Figure C-5 with feedback taps of:  

𝑐0 = 𝑐1 = 𝑐3 = 𝑐4 = 1,𝑎𝑛𝑑 𝑐2 = 0  

having initial conditions:  

𝑎−1 = 𝑎−2 = 𝑎−3 = 1,𝑎𝑛𝑑 𝑎−𝑛 = 0  

can be described by the polynomial: 

𝑓 𝑥 = 1 + 𝑥 + 𝑥3 + 𝑥4 
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1 1 1 0

Output
 

Figure C-5—Example shift register 

The output sequence after the passing of the initial conditions can be found by 

evaluating equation C-20 

𝑔 𝑥 = 𝑐1𝑥 𝑎−1𝑥
−1 + 𝑐2𝑥

2 𝑎−2𝑥
−2 + 𝑎−1𝑥

−1 

+ 𝑐3𝑥
3 𝑎−3𝑥

−3 + 𝑎−2𝑥
−2 + 𝑎−1𝑥

−1 

+ 𝑐4𝑥
4(𝑎−4𝑥

−4 + 𝑎−3𝑥
−3 + 𝑎−2𝑥

−2 + 𝑎−1𝑥
−1) 

C-20 

𝑔 𝑥 = 𝑥 𝑥−1 + 𝑥3 𝑥−3 + 𝑥−2 + 𝑥−1 + 𝑥4 𝑥−3 + 𝑥−2 + 𝑥−1  C-21 

𝑔 𝑥 = 1 + 1 + 𝑥 + 𝑥2 + 𝑥 + 𝑥2 + 𝑥3 C-22 

𝑔 𝑥 = 𝑥3 C-23 

By dividing 𝑔 𝑥  by 𝑓 𝑥  in ascending order, one obtains the following power-series 

in 𝑥: 
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1 + 𝑥 + 𝑥3 + 𝑥4

𝑥3 + 𝑥4+ 𝑥5+ 𝑥9

𝑥3

𝑥3 + 𝑥4+ 𝑥6+ 𝑥7

𝑥4 + 𝑥6+ 𝑥7

𝑥4 + 𝑥5+ 𝑥7+ 𝑥8

𝑥5+ 𝑥6+ 𝑥8

𝑥5 + 𝑥6+ 𝑥8+ 𝑥9

𝑥9

0001       1     10001
a0a1a2a3               a4           a5a6a7a8a9… 

 

C-24 

The coefficients of the result,  𝑎0𝑎1𝑎2 … = {0001110001… }, represent the output 

sequence after the initial conditions have passed. 

The characteristic phase of an SSRG is the set of initial conditions that results in an 

output pattern such that if every second value in the sequence is sampled, the result is the 

same as the original output sequence. The characteristic phase of 𝑓(𝑥) can be found from 

𝑔 𝑥 = 𝑓 𝑥 +
𝑑 𝑥𝑓 𝑥  

𝑑𝑥
 , 𝑓𝑜𝑟 𝑓 𝑥  𝑜𝑓 𝑒𝑣𝑒𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 C-25 

Or, from 

𝑔 𝑥 =
𝑑 𝑥𝑓 𝑥  

𝑑𝑥
, 𝑓𝑜𝑟 𝑓 𝑥  𝑜𝑓 𝑜𝑑𝑑 𝑑𝑒𝑔𝑟𝑒𝑒 C-26 

The characteristic phase of the generator of Figure C-5 with 𝑓 𝑥 = 1 + 𝑥 + 𝑥3 + 𝑥4 

can be found using equation C-25, since the polynomial is of even degree 
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𝑔(𝑥) = 1 + 𝑥 + 𝑥3 + 𝑥4 +
𝑑

𝑑𝑥
 𝑥 + 𝑥2 + 𝑥4 + 𝑥5  

= 𝑥 + 𝑥3 

C-27 

Evaluating 𝐺 𝑥  in a similar manner to C-24 results in the following power series 

𝐺 𝑥 =
𝑔 𝑥 

𝑓(𝑥)
=

𝑥 + 𝑥3

1 + 𝑥 + 𝑥3 + 𝑥4
 C-28 

𝐺 𝑥 = 0 + 1𝑥 + 1𝑥2 + 0𝑥3 + 1𝑥4 + 1𝑥5 + 0𝑥6 + 1𝑥7 + 1𝑥8 + 0𝑥9 + 1𝑥10 … 

Which corresponds to an output sequence of [01101101101…] Starting the shift 

register of Figure C-5 with a left-to-right initial condition of [1010] and sampling the 2
nd

, 

4
th
, 6

th
, 8

th
, and 10

th
 bits in the output sequence yields [10110], which contains the same 

repeating pattern (underlined) as the first.  

The correlation of two binary sequences can be found by performing a symbol-by-

symbol sum for {0, 1} values or product for {+1, -1} values. In the case of the product, 

the correlation is the sum along the horizontal of the result. Dividing by the sequence 

length, 𝑁, gives the normalized correlation, that for a maximum length sequence will be 

either −1/𝑁 or 1 since there is always one more -1 than +1. A useful trick for finding the 

correlation using XOR operations is to subtract the number of ―ones‖ in the bitwise result 

from the number of ―zeros.‖ An example that shows the calculation of the autocorrelation 

for a 7-bit sequence with successive bit delays is given in Table C-2. 
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Table C-2—Example 7-bit autocorrelation calculations. Each row represents one additional bit 

delay. 

The correlation result for each bit delay and a graph corresponding to these results is 

given in Table C-3 and Figure C-6. Note how the delayed autocorrelation function is 

periodic in the sequence length. 

Bit-shift amount Correlation 

0 7 

1 -1 

2 -1 

3 -1 

4 -1 

5 -1 

6 -1 

7 7 

 
Table C-3—Correlation results 

 
 

Figure C-6—Non-normalized autocorrelation 

 

  0′𝑠 −  1′𝑠   = 
 1 1 0 0 1 0 1 

  1 1 0 0 1 0 1 

 0 0 0 0 0 0 0 
 

7 - 0 = 7 

 -1 -1 1 1 -1 1 -1 

⨉ -1 -1 1 1 -1 1 -1 

 1 1 1 1 1 1 1 
 

7 

 1 1 0 0 1 0 1 

  1 0 0 1 0 1 1 

 0 1 0 1 1 1 0 
 

3 - 4 = -1 

 -1 -1 1 1 -1 1 -1 

⨉ -1 1 1 -1 1 -1 -1 

 1 -1 1 -1 -1 -1 1 
 

-1 

 1 1 0 0 1 0 1 

  0 0 1 0 1 1 1 

 1 1 1 0 0 1 0 
 

3 - 4 = -1 

 -1 -1 1 1 -1 1 -1 

⨉ 1 1 -1 1 -1 -1 -1 

 1 -1 1 -1 -1 -1 1 
 

-1 

 1 1 0 0 1 0 1 

  0 1 0 1 1 1 0 

 1 0 0 1 0 1 1 
 

3 - 4 = -1 

 -1 -1 1 1 -1 1 -1 

⨉ 1 -1 1 -1 -1 -1 1 

 -1 1 1 -1 1 -1 -1 
 

-1 

 1 1 0 0 1 0 1 

  1 0 1 1 1 0 0 

 0 1 1 1 0 0 1 
 

3 - 4 = -1 

 -1 -1 1 1 -1 1 -1 

⨉ -1 1 -1 -1 -1 1 1 

 1 -1 -1 -1 1 1 -1 
 

-1 

 1 1 0 0 1 0 1 

  0 1 1 1 0 0 1 

 1 0 1 1 1 0 0 
 

3 - 4 = -1 

 -1 -1 1 1 -1 1 -1 

⨉ 1 -1 -1 -1 1 1 -1 

 -1 1 -1 -1 1 1 1 
 

-1 

 1 1 0 0 1 0 1 

  1 1 1 0 0 1 0 

 0 0 1 0 1 1 1 
 

3 - 4 = -1 

 -1 -1 1 1 -1 1 -1 

⨉ -1 -1 -1 1 1 -1 1 

 1 1 -1 1 -1 -1 -1 
 

-1 
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Not all sequences have these ideal autocorrelation characteristics. Although, the 

family of Gold codes are considered to be non-ideal sequences due to their imperfect 

autocorrelation properties, they are relatively easy to generate, there are many of them, 

and they are close enough to ideal for most applications. New sequences can be selected 

from existing generators by simply changing the positions of the polynomial taps. Figure 

C-7 shows a representative autocorrelation function for a length-31 Gold code. 

 

Figure C-7—Length-31 Gold code autocorrelation function 

What follows is a complete list of all 1023-bits (chips) of each of the C/A codes for 

the GPS satellites. The generator configuration for these codes is shown in Figure C-8. 

The G1 and G2 generators are initialized to the all 1’s condition, and the taps on the top 

of G2 are adjusted to determine the satellite ID. The values in the list are given in 

hexadecimal as arrays of 32-bit unsigned integers and include the transient pattern that 

results from the initial conditions. The bits are arranged starting with the left and moving 

to the right, such that the most significant bit is the first one in the sequence. Since there 

are 32 x 32-bit values, the listing actually provides 1024 bits in total, however the very 

last (least significant) bit of the very last value is unused and is always set to one (which 
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is also the same as the first bit in the sequence). These tables are used in the PRN Code 

Generator class, GPSCACodeGenerator (Section 6.2.9), to produce the early, prompt, 

and late code sequences.  

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

G2 Generator

G1 Generator

G1

G2 C/A Code

Taps determine satellite ID

 

Figure C-8—GPS C/A-code generator configuration 

A lookup table of C/A-code PRN sequences: Not just filler, these are hard to find in 

their complete form. 

//Satellite 1: PRN 2 + 6 

{ 0xC83949E5, 0x13EAD115, 0x591E9FB7, 0x37CAA100, 0xEA44DE0F, 0x5CCF602F, 0x3EA62DC6, 

0xF5158201, 0x031D81C6, 0xFFA74B61, 0x56272DD8, 0xEEF0D864, 0x906D2DE2, 0xE0527E0A, 

0xB9F5F331, 0xC6D56C6E, 0xE002CD9D, 0xA0ABAE94, 0x7389452D, 0x0ADAD8E7, 0xB21F9688, 

0x7D5CC925, 0xFF87DE37, 0x2C3950A5, 0x7E3DA767, 0xEFA31F01, 0x28B444D8, 0x1DA3448E, 

0x2CC9E6FC, 0xCA69AF36, 0xA778D442, 0x24E1CA21 } 

 

//Satellite 2: PRN 3 + 7 

{ 0xE4383E99, 0x6FCB2FF4, 0xB088B1E3, 0x06708E23, 0xA782D0D2, 0xF0E0F8DC, 0xC6B80F1A, 

0x2E4666D3, 0x05E24A8C, 0x0AA09E09, 0x7FFBAB54, 0x152AA123, 0x21425370, 0x3954DC1E, 

0xEC088B5C, 0xD4993B7D, 0x60979C2C, 0x346B025D, 0x8A5BA5B3, 0xE088AD28, 0xE9D923EB, 

0xEF63AEA6, 0xF352EBC1, 0xEFB7A3E6, 0xDE216B43, 0xCCB30610, 0xFD67D33A, 0x8BD0CFA0, 

0x9E997DCB, 0x69ECE796, 0xE66BEF69, 0x4B40A191 } 

 

//Satellite 3: PRN 4 + 8 

{ 0xF2388527, 0x51DBD084, 0x4443A6C9, 0x1EAD99B2, 0x0161D7BC, 0x26F734A5, 0x3AB71E74, 

0x43EF94BA, 0x069DAF29, 0x702374BD, 0x6B15E812, 0x68C79D80, 0xF9D5EC39, 0x55D78D14, 

0xC6F6376A, 0x5DBF10F4, 0xA0DD34F4, 0xFE0B5439, 0x76B2D5FC, 0x95A197CF, 0x443A795A, 

0x267C1D67, 0x7538713A, 0x8E70DA47, 0x0E2F0D51, 0xDD3B0A98, 0x178E18CB, 0xC0E90A37, 

0xC7B13050, 0xB82E43C6, 0xC6E272FC, 0xFC901449 } 
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//Satellite 4: PRN 5 + 9 

{ 0xF938D8F8, 0x4ED3AF3C, 0x3E262D5C, 0x12C3127A, 0xD210540B, 0x4DFCD299, 0xC4B096C3, 

0x753B6D8E, 0x87225DFB, 0xCD6281E7, 0x6162C9B1, 0x563103D1, 0x159E339D, 0xE3962591, 

0xD3896971, 0x192C0530, 0x40F86098, 0x9B3B7F0B, 0x08C66DDB, 0x2F350ABC, 0x92CBD402, 

0xC2F3C487, 0xB60D3C47, 0x3E936697, 0xE6283E58, 0xD5FF0CDC, 0x62FAFD33, 0x6575E8FC, 

0x6B25169D, 0x50CF11EE, 0xD6A6BC36, 0x27784EA5 } 

 

//Satellite 5: PRN 1 + 9 

{ 0x96C46C57, 0x1EAEF9BE, 0xA3EE4593, 0xAF648601, 0xC0E7BD26, 0xDD96F3DC, 0x9B671012, 

0x51FE1CB6, 0x8E7746E2, 0x81684D78, 0xFC4CC05F, 0xF3165F24, 0xA9F565A4, 0xC0605DA1, 

0x1EDA361D, 0x21C3310A, 0x4134A2DA, 0xAA3AEE16, 0x55FF13F2, 0x480DB857, 0xB7C26778, 

0xFAA74E83, 0xA73E8EF1, 0xC485DD92, 0x6606D1D7, 0x51C0D0E1, 0x503F37B5, 0x52300C95, 

0xD3E4CD28, 0xD53C0F91, 0xD562E7AD, 0x4D04D4E5 } 

 

//Satellite 6: PRN 2 + 10 

{ 0xCB46AC40, 0x69693BA1, 0x4DF0DCF1, 0x4A279DA3, 0x32D36146, 0x304C3125, 0x145891F0, 

0x7C33A988, 0xC357291E, 0x35C71D05, 0xAACE5D97, 0x9BD9E283, 0x3D8E7753, 0x294DCDCB, 

0x3F9F69CA, 0xA71215CF, 0x300CAB8F, 0xB123A21C, 0x99608EDC, 0x41E31D70, 0xEB37DB13, 

0xAC9E6D75, 0xDF0E43A2, 0x9BE9E57D, 0x523CD01B, 0x9382E1E0, 0xC1226A8C, 0x2C196BAD, 

0x610FE821, 0x664637C5, 0x5F66F69E, 0xFFB22EF3 } 

 

//Satellite 7: PRN 1 + 8 

{ 0x967FD269, 0x0E51894A, 0x68F96F8B, 0x727317A7, 0x23E0D3F0, 0xCA5A8A20, 0x94767E7F, 

0xF80C75B5, 0xF192E398, 0x0282F96C, 0x120F8622, 0x1E2AFCFC, 0x3E4A2CC8, 0x4331578B, 

0xE0660094, 0x07E8B8CA, 0x0B9C7A10, 0xCA6C8AEA, 0xBC8F5C87, 0x61375FFA, 0x5498D6B1, 

0xE5148F05, 0xCDA47590, 0x03FC7C42, 0x6860C3C6, 0xD9CC580B, 0xB9F4C6FE, 0x6BF59BCC, 

0xFBA956F9, 0x17985FB1, 0x5CFF721A, 0x9DB10CC9 } 

 

//Satellite 8: PRN 2 + 9 

{ 0xCB1B735F, 0x611683DB, 0x287B49FD, 0x24AC5570, 0x4350D62D, 0x3BAA0DDB, 0x13D026C6, 

0xA8CA9D09, 0x7CA5FBA3, 0x7432470F, 0xDDEFFEA9, 0x6D47B36F, 0x7651D3E5, 0x68E548DE, 

0x40C1728E, 0x3407D12F, 0x1558C7EA, 0x81089062, 0xEDD8A966, 0xD57E6EA6, 0x1A9A83F7, 

0x23478DB6, 0xEA433E12, 0x78553595, 0x550FD913, 0x5784A595, 0xB5C79229, 0xB0FBA001, 

0xF52925C9, 0x87141FD5, 0x1BA83C45, 0x17E8C2E5 } 

 

//Satellite 9: PRN 3 + 10 

{ 0xE5A923C4, 0x56B50693, 0x883A5AC6, 0x0FC3F41B, 0xF308D4C3, 0xC3524E26, 0xD0030A9A, 

0x00A9E957, 0x3A3E77BE, 0xCF6A183E, 0x3A1FC2EC, 0xD4F114A6, 0xD25C2C73, 0xFD0F4774, 

0x9092CB83, 0x2DF065DD, 0x9A3A9917, 0xA4BA9D26, 0xC5735396, 0x0F5AF608, 0x3D9BA954, 

0x406E0CEF, 0x79B09BD3, 0x4581917E, 0xCBB85479, 0x90A0DB5A, 0xB3DE3842, 0x5D7CBDE7, 

0x72691C51, 0xCF523FE7, 0x38039B6A, 0xD2C425F3 } 

 

//Satellite 10: PRN 2 + 3 

{ 0xD1289C36, 0x84084766, 0xD2302DE7, 0xACFD0285, 0xA2E49F1C, 0x67E40F8E, 0x551675C4, 

0x1BED7A42, 0xFEDE52EA, 0xA30F2815, 0x0861B654, 0xF34B803B, 0xA18ADDDE, 0xA5EBC8AD, 

0x7051FECE, 0x50408661, 0x4AD29E24, 0xADB25920, 0x81062773, 0xF7FF6AEA, 0xF6373D72, 

0x8D86EDBD, 0x51A0DF1D, 0x8F5A7924, 0x27AE54C2, 0x2E9ECBA5, 0xC32AF355, 0x776460F0, 

0xE3CFFF56, 0xA184282B, 0x41FF947B, 0xBCA98C01 } 

 

//Satellite 11: PRN 3 + 4 

{ 0xE8B0D470, 0xA43A64CD, 0x751FE8CB, 0x4BEB5FE1, 0x03D2F05B, 0x6D754F0C, 0x7360231B, 

0x593A1AF2, 0xFB03A31A, 0x24F4AFB3, 0x50D8E692, 0x1BF70D0C, 0xB9B1AB6E, 0x1B88074D, 

0x08DA8DA3, 0x1FD3CE7A, 0xB5FFB5F0, 0xB2E7F987, 0xF31C149C, 0x9E1A742E, 0x4BCD7616, 

0x970EBCEA, 0xA4416B54, 0xBE063726, 0x72E89291, 0x2C2DEC42, 0x88A888FC, 0x3EB35D9F, 

0xF91A711E, 0x5C1A2418, 0x15284F75, 0x87648281 } 

 

//Satellite 12: PRN 5 + 6 

{ 0xFA1AE242, 0x3C2FFDF2, 0x4F43FB16, 0x01A5E60A, 0x7B045C29, 0x2A99BF6D, 0xE9C69DC3, 

0x28E47286, 0xF89A279E, 0x46F78D89, 0xEAAA1AC0, 0xD58668DA, 0xF3A2CD9A, 0x6B211345, 

0x2ABDE8CE, 0xEBFEB871, 0xB5A26AEF, 0xBA9841FD, 0x96978190, 0xF091BCFD, 0x3A4EC17D, 

0x9CE88014, 0xA3C9DC62, 0x6AFF03A7, 0xCD1A402C, 0x6DD8B648, 0xFF892BC2, 0xC82D0C73, 

0xB2C5D5A8, 0x1DB2A10D, 0x6A765431, 0x14714661 } 

 

//Satellite 13: PRN 6 + 7 

{ 0xFD29EB4A, 0xF829B987, 0x3BA603B3, 0x9D472DA6, 0xEF2291C1, 0xCBCB977D, 0xAD085718, 

0xC0BE9E90, 0xF82199A0, 0x5608FD7D, 0x21BD30D8, 0x0891F97C, 0x10A5A34C, 0x7CED6AB9, 

0x25AC86A3, 0x420CD172, 0xCA47CF95, 0x3972F5E9, 0x78D4C7ED, 0x1DAD1F25, 0xADF18811, 

0x1FB98A3E, 0x5D75EAEB, 0x4CD48A67, 0x87B298E6, 0x0D8ED2B4, 0x16F964B7, 0xE117EBDE, 

0x519F6461, 0x0201608B, 0x00ECAF50, 0xD308E7B1 } 
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//Satellite 14: PRN 7 + 8 

{ 0xFEB06FCE, 0x9A2A9BBD, 0x81D4FFE1, 0x53364870, 0xA531F735, 0xBB628375, 0x8F6F3275, 

0x3493E89B, 0xF87C46BF, 0x5E774507, 0x4436A5D4, 0x661A31AF, 0x61261427, 0x770B5647, 

0x22243195, 0x96F5E5F3, 0x75B51D28, 0x7887AFE3, 0x0FF564D3, 0xEB334EC9, 0xE62E2CA7, 

0x5E110F2B, 0x222BF1AF, 0xDFC14E87, 0xA2E6F483, 0x3DA5E0CA, 0x6241430D, 0x758A9808, 

0xA0323C85, 0x8DD88048, 0x35A1D2E0, 0x30B43759 } 

 

//Satellite 15: PRN 8 + 9 

{ 0xFF7CAD8C, 0xAB2B0AA0, 0xDCED81C8, 0x340EFA9B, 0x8038444F, 0x83360971, 0x9E5C80C3, 

0xCE85539E, 0x7852A930, 0xDA48993A, 0x76F36F52, 0x515FD5C6, 0xD9E7CF92, 0xF2F84838, 

0x21E06A0E, 0xFC897FB3, 0xAA4C7476, 0xD87D02E6, 0x3465B54C, 0x907C663F, 0xC3C1FEFC, 

0x7EC54DA1, 0x9D84FC0D, 0x964BACF7, 0xB04CC2B1, 0xA5B079F5, 0x581D50D0, 0x3FC421E3, 

0xD8E490F7, 0xCA347029, 0xAF076C38, 0x416A5F2D } 

 

//Satellite 16: PRN 9 + 10 

{ 0xFF9ACCAD, 0xB3ABC22E, 0x72713EDC, 0x8792A3EE, 0x12BC9DF2, 0x9F1C4C73, 0x96C55998, 

0xB38E0E1C, 0xB845DEF7, 0x18577724, 0xEF918A11, 0x4AFD27F2, 0x05872248, 0x3001C707, 

0xA00247C3, 0x49B73293, 0xC5B0C0D9, 0x88005464, 0xA9ADDD83, 0x2DDBF244, 0xD13617D1, 

0xEEAF6CE4, 0xC2537ADC, 0xB28EDDCF, 0xB919D9A8, 0xE9BAB56A, 0xC533593E, 0x9AE37D16, 

0x648FC6CE, 0xE9C20819, 0x62543354, 0x79856B17 } 

 

//Satellite 17: PRN 1 + 4 

{ 0x9B8044FC, 0xE45E239A, 0x3B406292, 0x85C7E528, 0x41BE2ED5, 0x7857CE08, 0x3F8C8EA5, 

0xDC94DB92, 0xF0B840FB, 0x2B03A0FF, 0xE1AA471F, 0xCA8E1762, 0x89C7460F, 0x674F988D, 

0xF9CC6B79, 0x80F55E4D, 0x4BA5E258, 0x8C4CB8C9, 0x17287342, 0x4DD049A7, 0x3039E0DE, 

0xA21E1E45, 0x4F8203C6, 0xDCBEAB22, 0xD8651E37, 0x294BA38C, 0x1FAC7FAE, 0xAD1D2741, 

0xCCB16D8F, 0xA7263C7E, 0xBC87F969, 0xF0FE9F81 } 

 

//Satellite 18: PRN 2 + 5 

{ 0xCDE4B815, 0x941156B3, 0x01A7CF71, 0xDF762C37, 0xF27FA8BF, 0xE2ACAFCF, 0x462D5EAB, 

0xBA86CA1A, 0xFC30AA12, 0xE0F2EBC6, 0x243D1E37, 0x8715C6A0, 0x2D976686, 0xFADA2F5D, 

0x4C144778, 0xF789226C, 0xB5440BCE, 0xA2188973, 0x380B3E84, 0x430DE588, 0xA8CA18C0, 

0x80C2C516, 0xAB500539, 0x17F45E25, 0x0D0D37EB, 0xAFC75856, 0x66EBCE81, 0xD38FFE47, 

0x6EA53872, 0xDF4B2E32, 0xEB9479FC, 0xA14F0B41 } 

 

//Satellite 19: PRN 3 + 6 

{ 0xE6D6C661, 0x2C36EC27, 0x9CD41980, 0x722EC8B8, 0x2B9F6B8A, 0xAFD11F2C, 0xFAFDB6AC, 

0x898FC2DE, 0xFA74DF66, 0x050A4E5A, 0xC6F6B2A3, 0xA1D82E41, 0x7FBF76C2, 0x3410F4B5, 

0x16F85178, 0x4C371C7C, 0x4A34FF05, 0xB53291AE, 0x2F9A9867, 0x4463339F, 0x64B3E4CF, 

0x91ACA8BF, 0x59390646, 0xF25124A6, 0xE7B92305, 0xEC8125BB, 0x5A481616, 0x6CC692C4, 

0x3FAF128C, 0x637DA714, 0xC01DB9B6, 0x0997C121 } 

 

//Satellite 20: PRN 4 + 7 

{ 0xF34FF95B, 0x7025316D, 0xD26DF2F8, 0xA482BAFF, 0xC76F0A10, 0x096FC75D, 0x2495C2AF, 

0x100B46BC, 0xF956E5DC, 0x77F61C94, 0xB79364E9, 0xB2BEDA31, 0xD6AB7EE0, 0x53759941, 

0x3B8E5A78, 0x11E80374, 0x358C8560, 0x3EA79DC0, 0xA4524B16, 0xC7D45894, 0x828F1AC8, 

0x191B9E6B, 0xA00D87F9, 0x008399E7, 0x12E32972, 0xCD221B4D, 0xC419FA5D, 0xB3622485, 

0x972A07F3, 0x3D66E387, 0xD5D95993, 0x5DFBA411 } 

 

//Satellite 21: PRN 5 + 8 

{ 0xF98366C6, 0x5E2CDFC8, 0xF5310744, 0xCFD483DC, 0x31173ADD, 0x5A30AB65, 0xCBA1F8AE, 

0xDCC9048D, 0xF8C7F881, 0x4E8835F3, 0x8F218FCC, 0xBB0DA009, 0x82217AF1, 0x60C72FBB, 

0x2D355FF8, 0x3F078CF0, 0x0A50B852, 0xFB6D1BF7, 0xE1B622AE, 0x060FED11, 0x719165CB, 

0xDD400501, 0xDC97C726, 0xF9EAC747, 0xE84E2C49, 0x5DF38436, 0x8B310C78, 0x5CB07FA5, 

0x43688D4C, 0x926B41CE, 0x5F3B2981, 0xF7CD9689 } 

 

//Satellite 22: PRN 6 + 9 

{ 0xFCE52908, 0xC928289A, 0x669F7D9A, 0xFA7F9F4D, 0xCA2B22BB, 0xF39F1D79, 0xBC3BE5AE, 

0x3AA82595, 0x780F762F, 0xD2372140, 0x1378FA5E, 0x3FD41D15, 0xA86478F9, 0xF91E74C6, 

0x2668DD38, 0x28704B32, 0x15BEA6CB, 0x998858EC, 0x43441672, 0x66E237D3, 0x881E5A4A, 

0x3F6DC8B4, 0xE2DAE749, 0x055E6817, 0x9518AED4, 0x959B4B8B, 0x2CA5776A, 0xAB595235, 

0x2949C813, 0x45ED90EA, 0x9A4A1188, 0xA2D68FC5 } 

 

//Satellite 23: PRN 1 + 3 

{ 0x8CF7833E, 0xFBB03D03, 0x59A52189, 0x2735D1F4, 0x2153F417, 0x81D8F189, 0xDDA14310, 

0xE2D9FBFD, 0x0C0CEFAB, 0x56552262, 0x29C288A2, 0x6D1A6C70, 0x7E2E6B9F, 0x0D6EDDD2, 

0x2E4ABA5D, 0x45846644, 0x1EBEFB14, 0x86802754, 0x39219DE7, 0x6A8CBC1B, 0x5B6FD9FD, 

0x54662E88, 0x1CDD6FFE, 0x338A9123, 0x14A75C06, 0x28DABED1, 0x26D256C9, 0x95AFCC64, 

0xC50217B7, 0xF3AC386F, 0x8F354F93, 0xE6459A01 } 
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//Satellite 24: PRN 4 + 6 

{ 0xF1A101A3, 0x33D8F2BE, 0xFE315A9B, 0xD0DCFC64, 0x4B72B148, 0x565E20AD, 0x18D07B19, 

0xB7C2E2B1, 0x06C07036, 0x785CCCC7, 0x0E9E7D1E, 0x064C5553, 0x88565B52, 0x5E31B1EA, 

0xC17E805C, 0x89462475, 0x1F2FE649, 0xBFFE0E33, 0x019376C2, 0x633FC623, 0x0FE5DDEC, 

0x67D49872, 0x0A666A7E, 0x1D651EA7, 0x2B7B6134, 0xED1038E6, 0x63363F71, 0x547479E1, 

0x361C68B4, 0x37F7A305, 0xF3AF0F4C, 0x1F2CC4A1 } 

 

//Satellite 25: PRN 5 + 7 

{ 0xF8F41ABA, 0x7FD23E21, 0x631F5375, 0x75FBA091, 0xF719E771, 0x75A8589D, 0xD5832475, 

0x8F2DD68B, 0x070CB274, 0x495D5DDA, 0x53A70337, 0x6174E7B8, 0xAD5FE828, 0x66653BEE, 

0xD04D32EA, 0x73509F70, 0x9F0109C6, 0x3BC1D20E, 0x3356BC44, 0x547A224A, 0xB7240659, 

0xE227860D, 0x09A231E5, 0x771984E7, 0xF482086A, 0x4DEA95E3, 0x58A6EEEE, 0x2F3B5117, 

0x13F3BAEF, 0x1723E18F, 0x4C0002EE, 0x56A626D1 } 

 

//Satellite 26: PRN 6 + 8 

{ 0xFC5E9736, 0xD9D7586E, 0xAD885782, 0x27680EEB, 0x292C4C6D, 0xE4536485, 0xB32A8BC3, 

0x935A4C96, 0x07EAD355, 0x51DD9554, 0xFD3BBC23, 0xD2E8BECD, 0x3FDB3195, 0x7A4F7EEC, 

0xD8D4EBB1, 0x0E5BC2F2, 0x5F167E01, 0xF9DE3C10, 0xAA345907, 0x4FD8D07E, 0x6B44EB83, 

0x20DE0932, 0x88401C28, 0xC227C9C7, 0x9B7EBCC5, 0x1D97C361, 0xC56E8621, 0x929CC56C, 

0x010453C2, 0x8749C0CA, 0x13D7843F, 0x726357E9 } 

 

//Satellite 27: PRN 7 + 9 

{ 0xFE0BD1F0, 0x8AD5EB49, 0x4AC3D5F9, 0x8E21D9D6, 0x463699E3, 0xACAEFA89, 0x807E5C18, 

0x9D618198, 0x8799E3C5, 0xDD9DF113, 0xAA75E3A9, 0x8B269277, 0xF6995D4B, 0xF45A5C6D, 

0xDC98071C, 0xB0DE6C33, 0x3F1DC5E2, 0x18D1CB1F, 0xE6852BA6, 0xC209A964, 0x05749D6E, 

0x41A2CEAD, 0x48B10ACE, 0x18B8EF57, 0xAC80E692, 0xB5A96820, 0x8B8AB246, 0x4C4F0F51, 

0x887FA754, 0x4F7CD068, 0xBC3C4757, 0xE001EF75 } 

 

//Satellite 28: PRN 8 + 10 

{ 0xFF217293, 0xA354B2DA, 0xB96614C4, 0x5A853248, 0xF1BBF324, 0x88D0358F, 0x99D437F5, 

0x1A7C671F, 0xC7A07B8D, 0x9BBDC330, 0x01D2CC6C, 0xA7C1842A, 0x92386B24, 0xB350CD2D, 

0x5EBE714A, 0x6F9CBB53, 0x8F181813, 0xE8563098, 0x40DD92F6, 0x04E115E9, 0x326CA618, 

0xF11CAD62, 0xA8C981BD, 0x75F77C1F, 0xB77FCBB9, 0x61B63D80, 0x2CF8A875, 0xA326EA4F, 

0x4CC25D1F, 0x2B665839, 0xEBC9A6E3, 0xA930B33B } 

 

//Satellite 29: PRN 1 + 6 

{ 0x95E656ED, 0x6C52AB70, 0xD28B93D9, 0xBC027271, 0x69F3B504, 0xBAF39E28, 0xB6111B12, 

0x0C2103BE, 0xF1CF3C87, 0x0AFD4116, 0x7784132E, 0x70A1342F, 0x4FC99BA3, 0x48D76B75, 

0xE7EEB7A2, 0xD3118C4B, 0xB46EA8AD, 0x8B99D0E0, 0xCBAEFFB9, 0x97A90E16, 0x1F477207, 

0xA4BC0A10, 0xB2FA6ED4, 0x90E9B8A2, 0x4D34AFA3, 0xE9E76A75, 0xCD4CE144, 0xFF68E81A, 

0x0A040E1D, 0x9841BF72, 0x69B20FAA, 0x7E0DDC21 } 

 

//Satellite 30: PRN 2 + 7 

{ 0xCAD7B11D, 0x501712C6, 0x754237D4, 0x4394E79B, 0x66596557, 0x03FE87DF, 0x02E39470, 

0x52DC260C, 0xFC8B142C, 0xF00D9B32, 0xEF2A342F, 0x5A025706, 0xCE900850, 0xED1656A1, 

0x43052915, 0x5E7B4B6F, 0xCAA1AEB4, 0x21F23D67, 0xD64878F9, 0xAE314650, 0x3F7551AC, 

0x0393CF3C, 0x55EC33B0, 0x31DFD7E5, 0x47A5EF21, 0xCF913CAA, 0x8F9B81F4, 0xFAB519EA, 

0x8DFF89BB, 0xC0F8EFB4, 0x810E829D, 0x6636AA91 } 

 

//Satellite 31: PRN 3 + 8 

{ 0xE54F42E5, 0x4E35CE1D, 0x26A6E5D2, 0xBC5FAD6E, 0x618C0D7E, 0xDF780B24, 0xD89AD3C1, 

0x7DA2B4D5, 0xFA290079, 0x0D75F620, 0xA37D27AF, 0xCF53E692, 0x0E3CC1A9, 0x3FF6C84B, 

0x1170E64E, 0x98CE28FD, 0xF5C62DB8, 0xF4C7CBA4, 0x58BB3B59, 0xB2FD6273, 0x2F6C4079, 

0xD0042DAA, 0x26671D02, 0x6144E046, 0xC2ED4F60, 0xDCAA17C5, 0x2EF031AC, 0xF85BE112, 

0xCE024A68, 0xECA447D7, 0xF550C406, 0xEA2B11C9 } 

 

//Satellite 32: PRN 4 + 9 

{ 0xF2833B19, 0x4124A070, 0x8F548CD1, 0xC3BA0814, 0xE266B96A, 0x313B4D59, 0x35A67019, 

0xEA1DFDB9, 0x79780A53, 0xF3C9C0A9, 0x8556AE6F, 0x85FB3E58, 0x6E6AA555, 0xD686873E, 

0x384A01E3, 0x7B949934, 0xEA75EC3E, 0x9E5D30C5, 0x9FC29A89, 0xBC9B7062, 0xA760C893, 

0x39CFDCE1, 0x1FA28A5B, 0x49097B97, 0x00491F40, 0x55378272, 0xFE45E980, 0xF92C9D6E, 

0xEFFCAB81, 0x7A8A13E6, 0x4F7FE74B, 0x2C25CC65 } 
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Appendix D—Background Signals Theory 

This appendix provides, without much explanation, a few of the more useful 

expressions and operations of basic signal theory. Most of this information can be found 

in references (75), (60), (76), (77), and (78). Reading it may feel like a shotgun blast. 

The Fourier transform and its discrete equivalent are given by, 

𝐻 𝑓 =  𝑕 𝑡 𝑒2𝜋𝑗𝑓𝑡

∞

−∞

𝑑𝑡 ≈ 𝐻𝑛 = Δ 𝑕𝑘𝑒
2𝜋𝑗𝑘𝑛 /𝑁

𝑁−1

𝑘=0

 D-1 

And the inverse is given by, 

𝑕 𝑡 =  𝐻 𝑓 𝑒−2𝜋𝑗𝑓𝑡

∞

−∞

𝑑𝑡 ≈ hk =
1

N
 𝐻𝑛𝑒

−2𝜋𝑗𝑘𝑛 /𝑁

𝑁−1

𝑛=0

 D-2 

Where, 

Δ = the sample interval, 𝑇𝑆 =
1

𝑓𝑆
 

𝑕𝑘 ≡ 𝑕(𝑡𝑘), the sample value at time 𝑡𝑘  

𝑡𝑘 ≡ 𝑘Δ, the time at the 𝑘𝑡𝑕  sample, 𝑘 = 0, 1, 2,…𝑁 − 1  

𝐻 𝑓𝑛 ≅ Δ𝐻𝑛  with 𝑓𝑛 ≡
𝑛

Δ𝑁
;  𝑛 = −

𝑁

2
…

𝑁

2
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The Nyquist frequency is given by 

𝑓𝑐 =
1

2Δ
=
𝑓𝑠
2

 D-3 

Table D-1 provides a summary of the relationships between the time and frequency 

domains. 

If: Then: 

𝑕(𝑡) is real 𝐻 −𝑓 = 𝐻 𝑓 ∗  

𝑕(𝑡) is imaginary 𝐻 −𝑓 = −𝐻 𝑓 ∗  

𝑕(𝑡) is even 𝐻 −𝑓 = 𝐻 𝑓 ⇒ 𝐻 𝑓  is even  

𝑕(𝑡) is odd 𝐻 −𝑓 = −𝐻 𝑓 ⇒ 𝐻 𝑓  is odd  

𝑕(𝑡) is real and even 𝐻 𝑓  is real and even 

𝑕(𝑡) is real and odd 𝐻 𝑓  is imaginary and odd 

𝑕(𝑡) is imaginary and even 𝐻 𝑓  is imaginary and even  

𝑕(𝑡) is imaginary and odd 𝐻 𝑓  is real and odd  

Table D-1—Relationships between the properties of the time and frequency domains 

Some other useful relations are given in equations D-4 to D-7. 
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Time scaling 

𝑕(𝑎𝑡) ↔
1

 𝑎 
𝐻  

𝑓

𝑎
  D-4 

Frequency scaling 

1

 𝑏 
𝑕  

𝑡

𝑏
 ↔ 𝐻 𝑏𝑓  D-5 

Time shifting 

𝑕 𝑡 − 𝑡0 ↔ 𝐻 𝑓 𝑒2𝜋𝑗𝑓 𝑡0  D-6 

Frequency shifting 

𝑕 𝑡 𝑒−2𝜋𝑗 𝑓0𝑡 ↔ 𝐻 𝑓 − 𝑓0  D-7 

Parseval’s Theorem equates a signal’s total energy in the time domain to the 

frequency domain. 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 ≡   𝑕 𝑡  2𝑑𝑡 =   𝐻 𝑓  2

∞

−∞

𝑑𝑓

∞

−∞

↔   𝑕𝑘 
2 =

1

𝑁
  𝐻𝑛  

2

𝑁−1

𝑛=0

𝑁−1

𝑘=0

 

D-8 

Convolution means to smear out, or to spread a signal’s energy across a specified 

response function. It can be found from: 
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𝑔 ∗ 𝑕 ≡  𝑔 𝜏 𝑕 𝑡 − 𝜏 𝑑𝜏

∞

−∞

 D-9 

Convolution in the time domain corresponds to multiplication in the frequency 

domain, 

𝑔 ∗ 𝑕 ↔ 𝐺 𝑓 𝐻(𝑓) D-10 

For the discrete form, the signal, 𝑠(𝑡), is represented by its samples, 𝑠𝑗 , and the 

response, 𝑟(𝑡), is represented by samples 𝑟𝑘 , as in D-11, 

 𝑟 ∗ 𝑠 𝑗 ≡   𝑠𝑗−𝑘𝑟𝑘 ⇔ 𝑆𝑛𝑅𝑛

𝑀
2

𝑘=−
𝑀
2

+1

 D-11 

M is some sample interval; typically M would equal N in the case of 𝑠𝑗  being periodic 

in N. But, there are potential problems: 

 The input signal is not always periodic 

 The duration of the response does not equal the period of the data (N) 

The length (duration) of the response is typically shorter than the length of the data 

set (i.e. M < N). Therefore, data must be padded on one end with zeros equal to the larger 

of the positive or negative duration of the response function, such that M = N. 

Correlation calculates the extent to which one signal can be related to another. Also 

called the lag, it is the close cousin of convolution. 
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𝐶𝑜𝑟𝑟 𝑔, 𝑕  𝑡 = 𝐶𝑜𝑟𝑟 𝑕,𝑔 (−𝑡) D-12 

𝐶𝑜𝑟𝑟 𝑔,𝑕 ↔ 𝐺 𝑓 𝐻 −𝑓   D-13 

If 𝑔, 𝑕 are real, then, 

𝐻 −𝑓 = 𝐻 𝑓 ∗ D-14 

So, 

𝐶𝑜𝑟𝑟 𝑔, 𝑕 ↔ 𝐺 𝑓 𝐻 𝑓 ∗ D-15 

And, the autocorrelation, 

𝐶𝑜𝑟𝑟(𝑔,𝑔) ↔  𝐺(𝑓) 2 D-16 

Or, in its discrete form, 

𝐶𝑜𝑟𝑟 𝑔,𝑕 𝑗 ≡  𝑔𝑗+𝑘𝑕𝑘

𝑁−1

𝑘=0

 D-17 

The DFT can be used to estimate the power spectral density (PSD) of a signal. For the 

one-sided PSD, 

𝑃𝑕 𝑓 ≡  𝐻 𝑓  2 +  𝐻(−𝑓) 2     0 ≤ 𝑓 < ∞  D-18 

If 𝑕(𝑡) is real, then 

 𝐻 −𝑓  2 =  𝐻 𝑓  2  D-19 
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So, 

𝑃𝑕 = 2 𝐻(𝑓) 2  D-20 

Since, D-21 is periodic in 𝑛, 

𝐻𝑛 ≡  𝑕𝑘𝑒
2𝜋𝑗𝑘𝑛 /𝑁

𝑁−1

𝑘=0

 D-21 

with period 𝑁, then 𝑛 can vary between 0 to 𝑁 − 1 (instead of –
𝑀

2
𝑡𝑜

𝑀

2
 as in Equation 

D-11), which is useful for zero-based arrays. The DFT, or FFT, then produces a 

periodogram such that: 

The positive frequencies are located at  0 < 𝑓 < 𝑓𝑐  → 1 ≤ 𝑛 ≤
𝑁

2
− 1 

The negative frequencies are located at  −𝑓𝑐 <  𝑓 <  0 →
𝑁

2
+ 1 ≤ 𝑛 ≤ 𝑁 − 1 

And, the most positive and negative frequencies  𝑓 = 𝑓𝑐  𝑎𝑛𝑑 𝑓 = −𝑓𝑐 → 𝑛 =
𝑁

2
 

In order to get things to scale correctly when plotted, 

𝑃 0 = 𝑃 𝑓0 =
1

𝑁2
 𝐶0 

2 D-22 

𝑃 𝑓𝑘 =
1

𝑁2
  𝐶𝑘 

2 +  𝐶𝑁−𝑘  
2 ;   𝑘 = 1,2,… 

𝑁

2
− 1  D-23 

𝑃 𝑓𝑐 = 𝑃  𝑓𝑁
2
 =

1

𝑁2
 𝐶𝑁

2
 

2

 D-24 
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Note how the endpoints get special treatment; this is because these bins are either 

counted twice (most positive and most negative 𝑓 overlap) or are only half as wide (at 

𝑓 = 0). For 𝐶 𝑡  real,  𝐶𝑘  
2 =  𝐶𝑁

2

 
2

 

C/N or SNR is the ratio of signal carrier power to the white-noise power in a specified 

bandwidth (dB). C/N0 is the ratio of signal carrier power to the white-noise power 

spectral density in a 1-Hz bandwidth (dB-Hz). 

 To convert C/N0 to C/N, divide by the bandwidth, 

𝐶
𝑁 = 𝐶

𝑁0𝐵
   

 D-25 

Or, in dB, simply subtract 10 log 𝐵  where 𝐵 is the bandwidth in Hz. 
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