
A REAL-TIME SOFTWARE GNSS
RECEIVER DEVELOPMENT

FRAMEWORK

DOUGLAS A. GODSOE

April 2010

TECHNICAL REPORT
273

A REAL-TIME SOFTWARE GNSS RECEIVER

DEVELOPMENT FRAMEWORK

Douglas A. Godsoe

Department of Electrical and Computer Engineering
University of New Brunswick

P.O. Box 4400
Fredericton, N.B.

Canada
E3B 5A3

April, 2010

© Douglas A. Godsoe, 2010

PREFACE

 This technical report is a reproduction of a dissertation submitted in partial fulfillment

of the requirements for the degree of Doctor of Philosophy in the Department of

Electrical and Computer Engineering, April 2010. The research was supervised by Mary

Kaye, Department of Electrical and Computer Engineering and Dr. Richard Langley,

Department of Geodesy and Geomatics Engineering and funding was provided by the

Natural Sciences and Engineering Research Council of Canada.

 As with any copyrighted material, permission to reprint or quote extensively from this

report must be received from the author. The citation to this work should appear as

follows:

Godsoe, D.A. (2010). A Real-Time Software GNSS Receiver Development Framework.

Ph.D. dissertation, Department of Electrical and Computer Engineering, published
as Technical Report No. 273 by the Department of Geodesy and Geomatics
Engineering, University of New Brunswick, Fredericton, New Brunswick,
Canada, 256 pp.

 ii

DEDICATION

To Pam, for encouraging me to start and supporting me as I finished. Thanks

especially to Victoria, for pork chop sandwiches and always making me laugh. And

especially to Allan, for being interesting when I needed a distraction, but stop taking all

the ammo.

 iii

ABSTRACT

This dissertation provides the architecture and describes the development effort of a

modular software-based real-time global navigation satellite system (GNSS) receiver

research framework using the Microsoft .NET Framework and the C# programming

language. A pipelined signal-processing model is used to address key timing and inter-

module synchronization challenges inherent in working with the parallelism required to

simultaneously receive and process four or more satellite signals. An extensible

interoperability layer provides clearly defined functional interfaces and simplifies the

integration of existing hardware and software components with any stage in the signal

pipeline. Various aspects of front-end hardware design requirements, as well as new

acquisition and tracking mechanisms, are identified and discussed.

The expected benefits of this framework development will be to establish a whole

context for software receiver research and to provide a unified view of a software

receiver implementation using tools and technologies that encourage the development of

diverse feature-rich applications.

 iv

PREFACE

When I began my thesis research I wanted to do work with digital-system design and

development. I had a few ideas of specific areas that I intended to explore, such as system

on a programmable chip (SoPC) and hardware/software co-design focusing on the

practical applications of scientific theory for the development of buildable solutions. The

reason I went into engineering in the first place is that I like to see designs implemented;

the tangibility of seeing your work constructed and your ideas realized has a large appeal

to me.

I needed to find a field of scientific research that used in some practical way the

results of digital system design, so I took an interdisciplinary approach of trying to find a

problem for a solution technology. I peaked in on the Chemistry department to find out

what was going on in that realm with regards to electromagnetic chemical analysis, but as

I listened to their explanations, I became uncomfortably aware that while I was familiar

with all of the words they were using to describe their work, I had never heard them in

that particular order and all together like that before, so I realized that I would be

spending most of my time just trying to figure out the pertinent background material and

very little on the digital design parts of the problem.

GPS uses a similar spread-spectrum signaling technology used by CDMA cell phones

and wireless Ethernet. The basic signals concepts are not that difficult to understand, the

solutions combine various aspects of both hardware and software, and as a bonus there’s

no obvious controls theory to any of it. As far as digital-system applications go, GPS is as

 v

good as any other. Besides, recovering messages from space is kind of cool and people

can relate to the work when you tell you’re building a GPS thing.

Narrowing down the application area was one thing, but finding a contribution to

make is something else. The work couldn’t just be a project for the sake of building

something; it had to have meaning and value to other people doing similar work. At first I

thought of designing and implementing a multi-channel correlator using an FPGA and an

assortment of hardware functional blocks, but I soon found out that several dozens of

low-cost commercial ICs are available that do this part, already.

In order to get started with some form of GPS research, I looked for the work of

others that I could reproduce and possibly enhance or extend. They all required some

piece of special hardware or software, or the specific implementation details were so

obscured that reproducing the results would be impossible. The really difficult thing in

working with spread-spectrum communications is that when things are working properly

everything looks like noise, just as it does when things are working improperly, and in

practice it’s hard to tell the two situations apart.

The idea for the design of the framework came from the realization that there would

be a significant benefit to having a reference receiver to act as a starting point for future

development work. All of the pieces would be implemented in a way that they could be

readily customized to accommodate the integration of components from different

sources.

After the initial dissertation proposal, a certain member of the supervisory committee

suggested to me that perhaps the project was too big to be done alone—receivers are

 vi

complicated things and the reason that researchers tend to concentrate on one area is that

it’s too much work for one person to do the whole thing by themselves. Not knowing any

better, I argued convincingly that it couldn’t really be that bad. I should have let myself

be talked down from that tree. Nothing works the way the theory in the books describes it

does, and to make life worse, the essentials of the receiver are phase-lock and delay-lock

loops in mutual feedback control with one another, so I spent hours revisiting the controls

material I had hoped to avoid after all—I wanted neither signals or controls and I got

both, instead.

In all of the literature, nobody really said how they did it. They have great ideas and

algorithms on acquisition, but nothing but hand waving on implementing carrier tracking

loops. What information was available was flawed, conflicted, and incomplete. Trying to

re-implement someone else’s research required having access to their code, their

hardware, and their development and test environments. Also, since the work was never a

complete receiver, it would have to be integrated with something else in order to get

useable results. Each new report of something similar had to be looked at and picked

apart to see if it really did what was claimed. Most of them were optimizations of offline

receivers.

An array of MATLAB-based offline post-processing applications exists. However, to

me, MATLAB obscures the details behind some of the important parts of an

implementation. While it makes some things easier, understanding the details of how a

particular filter or transform is implemented is important sometimes, and without that

understanding applying the results obtained is pretty hard. Also, MATLAB functions on a

 vii

Java virtual machine so the performance is wanting, even for offline applications, let

alone meeting any sort of real-time target.

The implications of not utilizing MATLAB for the work are numerous and

inconvenient. MATLAB provides graphing and plotting capabilities that are time

consuming to reproduce. There are also the pieces in the solution that will receive only a

one-sentence mention that took many weeks to develop, test and debug. The Complex

types and the DFT/FFT routines, for example, involved much testing and coding effort

and are really only support functions for the receiver framework. There really has been

no new work on the FFT since Cooley and Tukey, and what is represented as new is

largely plagiarized directly from (1), which itself is adapted from the original version in

FORTRAN—two-character variable names and all. No, seriously, go to your favorite

search page and search for the following exact phrase and just see how many results are

obtained:

―// here begins the Danielson-Lanczos section‖

Even though I had tried to avoid signals and controls, learning that the z-transform

shares the same generating function as a shift register for the PRN sequences, and that

discrete control feedback loops can be analyzed and implemented in a similar manner to

digital filters for signal processing was revealing. I’ve also noticed that the state feedback

equations used in controls look like the representation of a Mealy state machine in digital

logic systems. There is something intellectually reassuring in these similarities and

representational dualities, if for no other reason than it is a form of brain-cell reuse.

 viii

I’ve chosen to include code that supports the theory or ideas as implementation

examples. The books that I found most useful were the ones that included coding

examples, even if they were in C, FORTRAN, or some flavor of BASIC. These were

easy to translate into any language, and they made solid the abstract concepts the text was

trying to present. References such as (2) provide no code or example implementations to

support the work, and no matter how useful it was at some point in time, the development

effort is largely lost forever. C# shares much of the language syntax of C/C++, so

examples are included that have little to no dependency on the functions of the .NET base

class library (BCL) for operational support. If a BCL function is required in the example,

the operations are either well commented or the behavior of the code is evident from the

names of the classes and methods invoked.

The Receiver Development Framework described in this thesis is really just a starting

point for the exploration of signals-related control applications. The pipeline model and

interoperability support features allow for a wide range of ideas to be tested, evaluated,

and integrated into a huge variety of working solutions.

There’s nothing like a fact you’ve learned yourself; believe in your own experiences.

 ix

ACKNOWLEDGEMENTS

I’d like to thank my supervisors, Prof. Kaye and Dr. Langley, for their support and

guidance over the past few years. Dr. Tervo and Dr. Diduch have always been willing to

make themselves available to help me out of the occasional cognitive bind, and for that I

am greatly appreciative.

 x

Table of Contents

DEDICATION ... ii

ABSTRACT .. iii

PREFACE .. iv

ACKNOWLEDGEMENTS .. ix

Table of Contents .. x

List of Tables.. xiv

List of Figures ... xv

Acronyms and Abbreviations ... xxii

Chapter 1 Introduction ... 1

1.1 Overview and Background ... 4

1.2 Previous Work ... 7

Chapter 2 GPS Operation... 14

2.1 Trilateration ... 14

2.2 System Overview ... 16

2.2.1 System Architecture ... 17
2.2.2 Signals ... 18

2.2.3 Transmitted Data.. 24
2.2.4 Position Determination... 26

2.2.5 Receiver operation ... 28

Chapter 3 Spread-spectrum Fundamentals ... 30

3.1 Spread-Spectrum Types ... 30

3.1.1 Frequency Hopping .. 31
3.1.2 Direct Sequence ... 32

 xi

3.2 Transmitter and Receiver Architecture ... 33

3.2.1 Modulation .. 33

3.2.2 Demodulation .. 34

3.3 PRN Sequences and Generators ... 35

Chapter 4 Object-Oriented Analysis and Design .. 37

4.1 Encapsulation... 37

4.2 Inheritance ... 41

4.3 Polymorphism .. 42

4.4 Special Items ... 45

Chapter 5 Real-time Systems ... 47

5.1 Definition of Real-time .. 48

5.2 Applications, Processes, and Threads ... 52

5.3 Scheduling ... 55

5.4 Synchronization ... 64

5.5 Architectural Modeling and Languages for Real-time 68

Chapter 6 Development Framework Overview .. 77

6.1 Receiver Framework Architecture Diagram ... 79

6.2 Pipeline Processing Model ... 83

6.2.1 Synchronous Pipeline ... 85
6.2.2 Asynchronous Pipeline... 87

6.2.3 Pipeline Component ... 90
6.2.4 Pipeline Container .. 94

6.2.5 Phase-Lock Loop Pipeline Component ... 96
6.2.6 Delay-Lock Loop ... 103

6.2.7 Numerically Controlled Oscillator .. 108
6.2.8 Data Demodulator .. 110

6.2.9 Signal Controller .. 112
6.2.10 PRN Code Generation .. 114

6.3 Common Types .. 116

6.3.1 Complex .. 117

6.3.2 DFT ... 117
6.3.3 FFT .. 117

6.3.4 Filter Classes.. 118
6.3.5 Frequency .. 118

 xii

Chapter 7 Interoperability Support ... 119

7.1 Interoperability Requirements .. 119

7.2 Interoperability Layered Model .. 121

7.3 Interoperability Scenarios .. 125

7.3.1 Single Process .. 126

7.3.2 Interprocess.. 127
7.3.3 Interprocess with Remote Execution .. 129

Chapter 8 Signal Source Device Driver Interface ... 131

8.1 Layered Device Driver Approach ... 132

8.1.1 Signal Source Device Interface .. 140

8.1.2 Signal Source Base Class ... 142
8.1.3 Signal Source Derived Classes ... 143

8.2 Device Interface State Models .. 143

8.2.1 Signal Source System State Model ... 143

8.2.2 State Model for USB Signal Source ... 144

Chapter 9 Acquisition and Tracking ... 147

9.1 Acquisition .. 147

9.2 Tracking .. 151

Chapter 10 Reference Implementation Results ... 152

10.1 Pipeline Testing Configuration ... 153

10.2 Real-time Performance Evaluation ... 163

10.3 Interoperability Component Integration .. 173

Chapter 11 Conclusion .. 182

Appendices .. 188

Introduction to the Appendices ... 188

Appendix A— 3
rd

-party Toolkit Interoperability ... 189

Library Background and History ... 189

Component Object Model ... 193
The .NET Framework ... 197

Integration of GPSTk .. 198
Additional Features... 207

 xiii

Appendix B— Tracking-loop Control Theory ... 211

Appendix C— Finite Fields and SSRGs .. 220

Appendix D— Background Signals Theory .. 238

References ... 245

Index ... 256

Curriculum Vitae

 xiv

List of Tables

Table 6-1—Typical PLL discriminator functions ... 101

Table 6-2—Typical DLL discriminator functions .. 106

Table 10-1—Visible satellites extracted from file captured on June 5, 2009 at 13:16 UTC 162

Table 10-2—Visible satellites extracted from file captured on June 10, 2009 at 15:52 UTC 163

Table 10-3—Performance testing on 40 seconds of data from the SiGe EK3 front-end hardware

 .. 164

Table 10-4—Satellite tracking results with a simulated signal ... 171

Table 10-5—Performance testing on 40 seconds of data from the simulated signal model 172

Table C-1—The equivalence between XOR and multiplication with {0, 1} ↔ {+1, -1} mapping

 .. 222

Table C-2—Example 7-bit autocorrelation calculations. Each row represents one additional bit

delay. ... 232

Table C-3—Correlation results.. 232

Table D-1—Relationships between the properties of the time and frequency domains 239

 xv

List of Figures

Figure 2-1—Trilateration: Determining the range to three transmitters at known locations permits

an observer to calculate their position, point P .. 15

Figure 2-2—GPS Frequencies and Codes: Note that the L5 frequency and the L2C and M codes

are only active on some satellites .. 22

Figure 2-3—C/A Code Generation: The C/A code is formed by the product of two sequences, G1

and G2 ... 23

Figure 2-4—GPS Navigation message structure .. 25

Figure 2-5—Fixing a position requires finding the pseudoranges to at least four satellites.......... 28

Figure 2-6—GPS receiver block diagram .. 29

Figure 3-1—Frequency Hopping Spread Spectrum: The total bandwidth available is divided into

multiple channels, and each channel is occupied randomly in turn by the modulated carrier

signal for a short interval of time .. 32

Figure 3-2—Direct Sequence Spread Spectrum: The transmitted carrier frequency determines the

position of the center of the spectrum, while the width (spreading) is determined by the chip

rate (Rc) ... 33

Figure 3-3—BPSK DSSS Transmitter: The input data, d(t), is combined with the carrier and then

binary phase shift keyed with the pseudo-noise sequence .. 34

Figure 3-4—Direct Sequence BPSK receiver model .. 35

 xvi

Figure 4-1—Static UML object model for a parking application .. 39

Figure 4-2—UML object-model showing inheritance .. 42

Figure 4-3—Each class derived from vehicle implements a specialized polymorphic Park method

 .. 43

Figure 4-4—An interface declaration and a class that implements it .. 45

Figure 6-1—Block diagram model of the Receiver Development Framework 80

Figure 6-2—CPU Workload with a capture-then-process signal processing approach 84

Figure 6-3—Pipeline structure with a common clock .. 85

Figure 6-4—Event-driven synchronous pipeline process ... 86

Figure 6-5—Asynchronous software pipeline model using event coupling between successive

stages ... 88

Figure 6-6—Pipeline stage 1 event-handler structure with separate worker threads 89

Figure 6-7—Pipeline component object model .. 90

Figure 6-8—Example pipeline configuration showing feed-forward and feedback control objects

with parallel pathways .. 92

Figure 6-9—PipelineContainer class diagram .. 95

Figure 6-10—A basic phase-lock loop .. 97

Figure 6-11—PI controller as the filter function for a PLL .. 97

 xvii

Figure 6-12—PLLPipelineComponent class diagram .. 102

Figure 6-13—DLL E, P, L correlator outputs under on-time (a), early (b), and late conditions (c)

 .. 104

Figure 6-14—DLL correlator block diagram ... 105

Figure 6-15—DLLPipelineComponent class diagram .. 107

Figure 6-16—NCOPipelineComponent class diagram ... 109

Figure 6-17—UML static object model for the demodulator component 110

Figure 6-18—SignalController object model ... 113

Figure 6-19—UML static object model for PRN code generators .. 115

Figure 7-1— Interoperability Layer ... 121

Figure 7-2—Layered Interoperability Model ... 122

Figure 7-3—Single process interoperability function call: custom marshaler in A, system

marshaler in B .. 127

Figure 7-4—Interprocess with common data types and system marshaler 128

Figure 7-5—Interprocess interoperability between two systems with remote code execution ... 129

Figure 8-1—Layered Device Driver Model ... 132

Figure 8-2—LibUSB library function for starting a USB device. ... 133

Figure 8-3—Exported USB functions from Layer-2 .. 134

 xviii

Figure 8-4—Implementation of the Layer-2 USB function for device initialization.................. 134

Figure 8-5—Layer-4 device wrapper declaration for the GN3S device driver 135

Figure 8-6—Layer-4 wrapper code implementation for the GN3S device driver initialization

sequence .. 136

Figure 8-7—Abstract signal base class implementation UML static structure diagram 137

Figure 8-8—Explicit interface implementation .. 139

Figure 8-9—Generic signal source UML Statechart model .. 143

Figure 8-10—USB signal source internal state model .. 145

Figure 8-11—USB device state model as mapped into the system state model 145

Figure 9-1—Software-based signal determination ... 148

Figure 10-1—Tracking pipeline configuration used for testing .. 154

Figure 10-2—Time-domain view of input signal source (a) and input signal histogram (b) 157

Figure 10-3—Frequency-domain view of input signal ... 158

Figure 10-4—Correlation peak for PRN#18 detection ... 159

Figure 10-5—Frequency-domain view of recovered carrier for PRN #18................................. 159

Figure 10-6—Navigation data signal from PLL output .. 161

Figure 10-7—Input I/Q signal from the simulated signal source used for testing 167

Figure 10-8—Double sided spectrum for simulated signal source .. 168

 xix

Figure 10-9—Circular correlation peak detection using simulated signal source 169

Figure 10-10—Frequency-domain view of carrier using the simulated signal source 170

Figure 10-11—Time-domain view of recovered carrier using the simulated signal source........ 171

Figure 10-12—Precompiled header file stdafx.h used for the GNURadioParts library project .. 176

Figure 10-13—Header file GNURadioParts.h with the UpdateOutput(…) function exported from

the GNURadioParts library project .. 177

Figure 10-14—CPP source file GNURadioParts.cpp showing the UpdateOutput() function

implementation .. 178

Figure 10-15—CPP source file DllMain.cpp with the gr_pll_refout_cc instance initialization .. 179

Figure 10-16—C# source file GNURadioWrapper.cs that imports the GNURadioParts library 179

Figure 10-17—C# source file GNUPLLPipelineComponent.cs for invoking the

GNURadioWrapper UpdateOutput() static method ... 180

Figure 10-18—PipelineContainer PLL member declaration and initialization for

GNUPLLPipelineComponent class integration ... 181

Figure A-1—Acrobat Access system registry entry ... 194

Figure A-2—Acrobat Access version specific program ID .. 194

Figure A-3—Acrobat Access class ID key .. 194

Figure A-4—Acrobat Access class ID value .. 195

Figure A-5—Acrobat Access InprocServer32 sub-key... 195

 xx

Figure A-6—Acrobat Access executable file registry entry.. 195

Figure A-7—Visual Studio 2008 new project dialog ... 200

Figure A-8—Visual Studio 2008 new project dialog ... 201

Figure A-9—Exported code symbol C macro .. 201

Figure A-10—C++ class code exported using API macro .. 202

Figure A-11—Dialog for adding a DLL module export definition file 203

Figure A-12—Definition file exported symbols ... 203

Figure A-13—API Macro exported symbols using C naming styles... 204

Figure A-14—C++ exported function implementation ... 205

Figure A-15—Exported symbols using C naming styles, without the use of the API macro 205

Figure A-16—Exported symbols using C naming styles .. 205

Figure A-17—C# class for accessing the functions exported from the GPSTk library 206

Figure A-18—C# event handler that invokes functions from the external GPSTk library 207

Figure A-19—C++ code for initializing a persisted class instance.. 209

Figure A-20—C++ code for accessing a persisted class instance ... 209

Figure B-1—PLL feedback control model ... 213

Figure B-2—Sample and hold representation .. 214

Figure B-3—PLL 1
st
-order filter .. 215

 xxi

Figure B-4—A simple transfer function .. 215

Figure B-5—C# code for implementing the 1
st
-order filter of Figure B-3 217

Figure B-6—Arctangent discriminator function over the range [-π, π] 218

Figure B-7—Product discriminator function over the range [-π, π] .. 218

Figure B-8—Recovered carrier waveform, after code removal .. 219

Figure C-1—Fibonacci implementation of P(x) ... 223

Figure C-2—Galois implementation of P(x) .. 224

Figure C-3—GNSS implementation of P(x) .. 224

Figure C-4—SSRG configuration ... 227

Figure C-5—Example shift register ... 229

Figure C-6—Non-normalized autocorrelation ... 232

Figure C-7—Length-31 Gold code autocorrelation function .. 233

Figure C-8—GPS C/A-code generator configuration ... 234

 xxii

Acronyms and Abbreviations

ADL Architectural description language

AGC Automatic gain control

API Application Programming Interface

BCL Base class library

BPF Band-pass filter

BPSK Binary Phase-shift Keying

C/A Coarse Acquisition

CCS CORBA Component System

CCS Calculus of communicating systems

CDMA Code-division Multiple-access

CISC Complex instruction set computer

CORBA Common Object Resource Broker Architecture

CPU Central processing unit

CSP Communicating sequential processes

DDLL Discrete delay-lock loop

DFT Discrete Fourier Transform

DLL Delay-lock loop or Dynamic-link library

DPLL Discrete phase-lock loop

DSP Digital Signal Processing or Digital Signal Processor

DSSS Direct-sequence spread-spectrum

FFT Fast Fourier Transform

FHSS Frequency hopped spread-spectrum

 xxiii

FPGA Field Programmable Gate Array

GNSS Global Navigation Satellite System

GPS Global Positioning System

HDL Hardware description language

HPET High-performance event timer

HTTP Hyper-text transfer protocol

I, Q In-phase (signal), Quadrature-phase (signal)

LNA Low-noise amplifier

LPF Low-pass filter

MMX Multimedia extensions

NCO Numerically controlled oscillator

ODBC Open database connectivity

OLE Object linking and embedding

OMT Object modeling technique

O-O Object-oriented

OS Operating system

PLL Phase-lock loop

PRN Pseudo-random noise

RF Radio-frequency

RISC Reduced instruction set computer

RPC Remote Procedure Call

RUP Rational Unified Process

SDR Software Defined Radio

SIMD Single instruction multiple data

SOPC System on programmable chip

 xxiv

SSE Streaming SIMD extensions

SSRG Sequential serial shift register generator

TOA Time of arrival

UML Unified modeling language

VHDL VHSIC hardware description language

VHSIC Very high-speed integrated circuit

XML Extensible mark-up language

 1

Chapter 1 Introduction

There are many expected and anticipated advantages of software Global Navigation

Satellite System (GNSS) receivers over conventional hardware implementations. Among

these benefits are lower cost, greater flexibility, easier updating or upgrading mech-

anisms, and better adaptability for supporting new signals and frequencies. Software

receivers serve as fertile ground for researchers exploring the exciting possibilities of the

development and testing of new signal processing techniques and ideas. Satisfying the

computational requirements for a real-time software receiver has focused much of the

current research and development effort on innovative algorithms aimed at reducing the

necessary processing complexity. For the purposes of proof-of-concept testing, many of

these ideas have been demonstrated using some combination of Field Programmable Gate

Arrays (FPGAs) and commercial Digital Signal Processors (DSPs) with software written

in assembly language. PC-based demonstrations that take advantage of the MMX/SSE

(streaming SIMD—single instruction, multiple data—extensions) instruction sets

provided by the Pentium-4 microprocessor have required the use of optimized assembler

code for their implementations.

While perhaps reconfigurable, Hardware Definition Languages (HDLs), such as

VHDL (very high speed integrated circuit hardware description language) or Verilog, are

intended to describe hardware operations and are not widely considered to be software as

the compiled binaries are not executed on a general purpose processor. Solutions based

on a System on a Programmable Chip (SoPC) philosophy, using one or more soft-core

 2

processors in combination with various application specific logic blocks, bring the

features and performance benefits of both hardware and software. However, they also

suffer all the combined development challenges of hardware and software systems, as

well, in that they are often difficult to customize, requiring the support of a mix of non-

integrated vendor-specific tools and components. Furthermore, solutions built from

specialized DSP chipsets using hand-optimized assembly languages and esoteric

development tools require specialized software skill-sets to reproduce. These systems

represent more of a one-off customized hardware implementation approach and generally

fail to satisfy the adaptability and flexibility benefits expected from software receivers.

Using readily available tools and high-level programming languages makes the

technology more accessible to would-be system implementers and brings the desired

software receiver goals closer to realization. Beneficial side-effects include having access

to larger data storage devices, network connectivity and XML-based web-service

integration, links to GIS and mapping information, and support for rich application

functionality that is difficult to provide through low-level code only.

Eventually, everything falls out from having the local code and carrier precisely

aligned with the received signal. As developed and tested, with a 2.4 GHz Pentium 4

Quad-core processor working in conjunction with a front-end sampler sampling at

approximately 16 MHz, it first appears that there should be enough processing resources

to manage the amount of work required. The processor clock is roughly 150x faster than

the sampling-rate, which really implies, though, that there is only 150 clock-cycles worth

of time in order to process one sample. The situation worsens when the level of

application parallelism is not ideal (Chapter 5), and the multiple-processors are doing

 3

other work unrelated to processing the input signal. Work such as running the operating

system, responding to user input, and memory management require clock-cycles that

need to be accounted for.

A real-time solution will require the use, management, and synchronization of

multiple threads of processing. The synchronization and scheduling problems are non-

trivial issues that cannot be simply dismissed.

The key features of this framework are:

 that it uses a high-level development language (C#) and feature-rich run-time

environment;

 that it defines and implements a unique software-based pipeline processing

model;

 that it is a flexible and easily adapted object model providing well-defined

functional interfaces;

 that it provides an interoperability layer that directly supports integration with

3
rd

-party tools and other external software and hardware.

The end result of attempts to characterize and manage the vagaries of multiple

interacting threads is the realization that achieving some measure of real-time software

receiver operation will require much more than additional processors and complex

algorithm optimizations.

The Receiver Development Framework is the outcome of an analysis process that was

an attempt at standing back and taking a holistic view of the overall approach to GNSS

 4

receiver application research and development. The significance of this work lies in the

establishment of the collection of object models and base implementations for real-time

receiver development. Without it, there is a limitation to the degree of improvement to

software receiver performance that can be made through individual optimization efforts

alone. By adopting the principles and integration philosophies embodied and presented in

this work, world-wide efforts can be combined into a unified development model, which

has the potential for enhancing researcher productivity through the reduction of

redundant non-value-added activities.

1.1 Overview and Background

Global Navigation Satellite System (GNSS) is the general term given to the process

of identification of user position through the relative location of known orbiting satellite

platforms. There are currently two operational GNSS services: the Global Positioning

System (GPS) funded by the US Department of Defense and the Global’naya

Navigatsionnaya Sputnikova Sistema, which translates to Global Navigation Satellite

System (GLONASS), developed by the former Soviet Union and now supported by the

Russian Federation. Both GPS and GLONASS are operated under the joint control of

military and civil agencies.

The European Union (EU) in collaboration with the European Space Agency (ESA) is

currently in the process of deploying the Galileo satellite-based navigation system.

Galileo is expected to be operated under the control of a civilian agency, but will

undoubtedly also be used by military authorities. The Chinese have developed and

deployed a regional satellite navigation system known as BeiDou, that unlike GPS,

 5

interacts with the user to determine a position estimate. Another Chinese system–

Compass or BeiDou-2, similar to GPS, is currently under development.

While the modulation and data encoding methods may differ in their specific

implementations, GLONASS and Galileo are largely variations of GPS and share many

similarities. As a result, mixed-constellation receivers have been developed that

interoperate with navigation data from these systems.

Software Defined Radio (SDR) is a broad term that can apply to the different aspects

of transceiver functions. SDR makes use of software digital signal processing (DSP)

techniques to create or receive data streams that are converted to/from the analog domain

as close as possible to the antenna in the signal path. For a receiver, the intelligence

information or message from the carrier is extracted by means of extensive processing in

software.

GNSS receivers based on SDR allow a flexible, customizable, and easily extensible

solution in which the future requirements for system operation can be altered or updated

after the system has been deployed. For example, a multi system, multiple constellation,

SDR GNSS receiver could be developed that would allow the resolution of position from

a mixed set of visible satellites when there is an insufficient number visible from a single

system. A multiple-constellation system can provide higher positioning accuracies than a

single constellation system, even when there is a sufficient number of satellite signals

available from a single constellation.

The approach most often taken to software-centric signal processing is based on

Fourier transform analysis. Large data sets in the time domain are captured from an input

 6

signal sampling hardware device and then converted to the frequency domain through a

Discrete Fourier Transform (DFT) or its fast (FFT) alternative. Once in the frequency

domain, more complicated operations such as correlation and convolution can be

replaced by multiplication. However, this approach is very difficult to make work in a

real-time manner, especially at high sample rates and in situations where the signal needs

to be processed for more than one data stream from more than one transmitting source.

Analyzing signal data in parallel requires either that all tracked sources have access to

copies of the incoming data stream, or that they have access to a shared buffering data

structure. Maintaining multiple copies of the data can create memory resource issues, and

sharing the data requires a synchronized or thread-interlock mechanism that limits peak

system performance. Adding to this complexity is the further need of establishing a

common reference time base or source that the data demodulators can work from, which

serves only to increase the design headaches.

While frequency-transform features have been supplied, the Receiver Development

Framework (RDF) takes an adaptable and flexible asynchronous pipeline approach to

working with each sample as it arrives in the discrete time domain for most of the signal

processing activities. Software representations of block diagrams for hardware-based

receiver components can be developed and ―plugged in‖ to the framework pipeline,

making the development effort easier and faster. More importantly real-time performance

has been considered essential and is achievable with the pipelined approach.

The framework provides implementations of many adaptable pieces that can be used

to build a rich variety of functionality. The interoperability features of the framework

support the direct integration of custom or commercial hardware and software

 7

components at any point in the processing sequence. As a result, components can be

described and simulated using software representations for baseline performance

characterizations. Then, hardware versions can be synthesized using an HDL and FPGA

toolset using parameters derived from the software components. These hardware pieces

can be subsequently connected back into the pipeline, replacing the software component,

so that performance comparisons for improvements from the baseline can be made.

Alternatively, existing libraries of software can be directly integrated with the framework

for testing without the need to rewrite previously tested code.

The framework was developed and tested with a GPS receiver implementation for

measuring the required observables of code and carrier phase, and carrier frequency

(Doppler) necessary for a pseudorange measurement. However, extensions to the

framework are possible that would make it suitable for a wide range of applications, such

as audio/video signal processing and feedback control systems.

The implementation of the framework has been developed using the Microsoft .NET

Framework version 3.5 and the C# development language, with some device drivers

written in C. However, as described, the framework could be developed in other

languages and operating environments. The design is object-oriented, so tools and

languages that directly support an object-based development paradigm will be more

suitable for future adaptations.

1.2 Previous Work

While a software-only approach to GNSS has been predicted, highly anticipated, and

widely researched for some time, only recently has the capability of general purpose

 8

CPUs been up to the required signal processing performance demands. Recent publicly-

disclosed SDR GNSS attempts, however, are non-real-time, have specific hardware

dependencies, and often work with a single system on a single frequency. Other soft-GPS

solutions are proprietary or largely commercial endeavors that poorly support the open

environment needed for receiver research.

General background information on the design and operation of GPS receivers can be

found in (3) and broader but related details on spread-spectrum communication systems

in (4). Additional information on software signal processing methods are provided in (5),

(6) and (7). These references develop some of the necessary theory for software-based

GNSS receivers.

Many solutions are intended more for modeling the behaviors of individual system

functional blocks for hardware implementations, and lack a whole-system approach for

performance analysis. Taking a direct block-diagram approach towards receiver design,

and then constructing it using iterative frequency-domain transformations, bypasses the

opportunity for discrete optimizations and yields non-real-time performance

characteristics. Solutions such as (8) possess real-time behaviors, but are based on

specialized hardware chipsets, support only GPS, and lack extensibility for dual-

frequency support.

Papers such as (9) discuss the current research activities, and provide some guidance

to the architectural requirements, but lack documentation on any substantive

implementations. The work discussed in (10) is an FPGA-based real-time GPS receiver

connected to a PC for graphical display of the results. While solutions that include an

 9

FPGA fabric for signal processing acceleration can be regarded as ―reconfigurable,‖

modifications to the systems require non-trivial tools and skills. The limited extensibility

of these systems negatively impacts their flexibility for use in future, wider research

areas.

Reference (11) uses the SIMD MMX (single instruction multiple data multimedia

extensions) instructions on the Intel x86 processor. By using C++ and inline assembler,

the code gains a 70% performance improvement—which demonstrates that it is possible

with targeted optimizations to achieve the necessary work throughput from a PC

processor. However, the implementation does not represent a flexible application

framework for GNSS research.

References (5) and (12) are non-real-time projects in that they are offline batch-

oriented processes, requiring specific proprietary hardware. These are predominantly

MATLAB simulations for functional analysis purposes. The work presented in (13) is a

proprietary library of GPS receiver pieces and not a complete general-purpose solution

framework.

Article (14) describes Galileo acquisition software techniques in a non-real-time

environment and no concrete implementation details are provided. (15) represents the

development and testing of a hardware simulator using non-real-time software

techniques. (16) is also a non-real-time MATLAB GPS simulator for a single satellite

signal.

The works of (17) and (18) are hardware-dependent FPGA-based special-purpose

solutions and not flexible frameworks for further development. (17) is an attempt to

 10

improve or offset limitations in GPS precision under weak-signal conditions using SDR

for time-of-arrival (TOA) corrections, and (18) is a proposed reference implementation of

a prototype SDR + FPGA architecture GNSS receiver.

References (2) and (19) develop the mathematical models for digital delay and phase-

lock loops (DDLL and DPLL) for use in GPS receivers and present software simulations

of the results. In particular, (2) states that the work included a software baseband receiver

implementation, but it is developed for a simulated signal only and ignores the effects of

the navigation message. The work of (20) was a study on post-processing data from an

early unconventional civil GPS receiver, Satellite Emission Range Inferred Earth

Surveying (SERIES), and was similar, in some respects, to other such data post-

processing efforts at UNB.

Many of the so-called real-time systems have been developed more for real-time

signal simulation graphing and plotting functions for the purposes of validation and

verification. For others, the real-time performance attribute has never been demonstrated

operationally, only modeled and simulated, such as the systems described in (21) and

(22).

On-going research at the University of New South Wales (UNSW) Satellite

Navigation and Positioning (SNAP) lab is taking the direction of developing combination

hardware (FPGA) and software (C) receiver implementations (23) that are targeted for a

single hardware configuration.

At the 2008 International GNSS Service (IGS) Workshop in Miami Beach,

recommendations made in a presentation by researchers from Cornell University and

 11

University FAF Munich (24) seem to support the need for further development of open

software GNSS receivers. The presentation encourages the definition of an IGS-

sponsored software receiver and the establishment of an IGS format for exchange of data

among software receivers, and identifies the need for benchmark comparisons of software

receiver performance to traditional commercial hardware devices.

There are so many software receivers of the post-processing non-real-time variety

that a comprehensive evaluation of the nature and characteristics of all of them would be

practically impossible. Nearly any programming language that can open a file and

perform basic mathematical operations can be used for the development of these projects.

A good overview of the current state of software GNSS receivers can be found in

reference (25) and issues with their testing protocols and challenges covered nicely in

(26).

The variety of MATLAB-based solutions, such as those presented in (16) and

included in (5), like the examples provided by (6) and (7), are post-processing receivers

and possess no real-time design intentions or characteristics.

There are also highly optimized receiver components that are written in some

combination of assembler and C++ claiming real-time performance benefits. However,

the designs and methods of implementation of test beds such as (18), or the software

defined radio receivers for GPS and GNSS discussed in (10) and (17) are cobbled

together from the complex interconnection of hardware dependent system prototyping

components. Solutions such as these are difficult to repeat and customize, and it is even

 12

harder to incorporate their presented generalized conclusions into a specific application

development and testing environment.

Any relevant discussion on threading, parallelism, and the required level of inter-

process communication and data structure synchronization are conspicuously absent from

the vast multitude of emerging real-time software receiver implementation papers. In

(27), a real-time 12-channel SIMD software correlator is described, but the work does not

identify any of the challenges or their solutions for managing the necessary level of

processing parallelism.

The contributions and key differences of the work presented in this dissertation from

the previously identified literature are that

 it is entirely a software solution, with the exception of the hardware front-end,

that does not rely on accelerator devices to function;

 it is an object-oriented solution architecture that defines the generalized set of

interfaces and base-class implementations for future receiver development;

 it presents a working view of real-time systems and identifies the issues

associated with managing shared resources across multiple processing

pathways;

 it establishes a pipeline model for software-based signal-processing work that

can be customized and readily adapted for use in a broad range of signal and

control-related applications.

Most notably, the basis of the reference implementation of the framework is the

signal processing methods presented in (5), but with greater consideration given in the

 13

design of the modules and components for how these things will be shared and improved

in the future. Rather than merely providing a library of code that others will need to pull

apart to extricate and augment, the object-oriented nature of the signal processing

pipeline components facilitates a much simpler approach to customization and

specialization. Innovative new functionality will be able to be encapsulated in a self-

contained assembly that can be made available to other researchers, who will only have

to add the components directly to their own projects. The process will eliminate the

lengthy setup and build times associated with the configuration of cumbersome non-

homogeneous development environments.

 14

Chapter 2 GPS Operation

The known propagation characteristics of radio waves make their use for obtaining

position information as valuable as their use for communication. Radionavigation began

with the development of Loran (long-range navigation) system during WWII, and

subsequently accelerated with the advent of ground-based short-range line-of-sight

navigation aids such as the VHF Omni-directional Radio Range (VOR), the Instrument

Landing System (ILS), and the Microwave Landing System (MLS) (3).

2.1 Trilateration

Estimation of position based on distance measurements to reference points at known

locations is called trilateration. By measuring the length of time taken for a radio signal

to propagate from a transmitter to an observer, combined with the known speed of travel

of radio waves, it is possible to determine the distance between the transmitter and the

observer. A radionavigation system based on this idea is referred to as a time-of-arrival

(TOA) system (3).

As illustrated in Figure 2-1 [adapted from (3)] if one can determine the distances to

three radio wave transmitting towers operating at known locations, then one can

unambiguously determine their own position.

 15

T1

T2

T3

r1

r2

r3

P

Pʹ

Figure 2-1—Trilateration: Determining the range to three transmitters at known locations

permits an observer to calculate their position, point P

By measuring their distance, or range, to transmitter T1 with known coordinates, the

observer’s line of position (LOP) must lie on a circle of radius r1 that is centered on T1.

Range information from a second tower T2 gives a circle of radius r2, thereby reducing

the uncertainty in the observer’s actual location to the two points where the circles

intersect, P and Pʹ. While it may be possible to reject one of the points based on other

physical information, it typically requires finding the range to a third transmitter to

unambiguously determine the observer’s position, point P.

To extend the system to 3-dimensional solutions, it is necessary that the angle of

elevation between at least one of the transmitters and the observer be large (3). Since

ground-based transmitters are limited by practical tower heights, the solutions obtained

from them are restricted to 2-dimensions. In the case of a satellite-based transmitter, each

range measurement would result in an LOP described by the geometry of a sphere, the

 16

surface of which represents a potential area of position. Three intersecting spheres would

identify a coordinate in 3-dimensions at or near the surface of the earth.

GPS is a trilateration-based TOA system. In order for a user of the system to make a

position determination (position fix) it is necessary that information regarding the nature

and orbit of the satellites that are visible to the receiver (in view) be communicated at the

time that the fix is made.

At an approximate orbital radius of 26,560 km the GPS satellites move in space at

about 4 km/s, yet their positions can be accurately predicted with an error of less than a

few meters 24-48 hours in advance (3). The transmission times are imprinted on the

signals using nearly perfect and nearly perfectly synchronized atomic clocks on the

satellites. The precise estimation of the arrival times at the receiver is made possible by

spread-spectrum signaling, which allows each satellite to transmit its unique signal on a

shared frequency.

2.2 System Overview

GPS consists of a baseline constellation of at least 24 satellites (they try to keep 30 or

more functioning at all times) that operate on the L1:1575.42 MHz, L2:1227.6 MHz, and

L5:1176.45 MHz frequencies. All current satellites transmit a public C/A-code (Coarse

Acquisition) on L1 and an encrypted P(Y)-code on L1 and L2. Presently, there is only

one satellite actively transmitting on L5—full operational capability for the L5 signal is

scheduled for 2018 when plans call for 24 L5-capable satellites to be on orbit. The latest

generation of satellites, Blocks IIR-M and IIF (―R‖ is for replenishment and ―F‖ is for

follow-on), additionally transmit a new L2C civil code on L2 (7).

 17

The navigation data transmitted by the satellites are Binary Phase Shift Keying

(BPSK) encoded at 50 bps and broadcast using a direct-sequence spread-spectrum

technique known as Code Division Multiple Access (CDMA) (5).

2.2.1 System Architecture

The components of the GPS architecture are organized into three functional groups or

segments: the space segment, the control segment, and the user segment. Each segment

serves a specific function or describes a particular operation of the complete system.

The space segment is where the satellites live. The baseline GPS constellation is

comprised of at least 24 satellites that are distributed in six orbital planes inclined 55° to

the equator. Each orbit has four primary satellites and room for several spares. The

satellites are identified by a letter (A-F) for the orbital plane and a number (1-6) for the

order of the satellite within the plane. With an orbital period of approximately 12-hours,

the primary 24 satellites cover the earth in such a way that at least four, and possibly as

many as 12, are visible at any time (7).

The control segment consists of the Master Control Station (MCS) located at

Schriever Air Force Base in Colorado, with a backup at Vandenberg Air Force Base in

California; several unmanned and remotely operated monitor stations spread around the

world; and the ground antenna upload stations that receive telemetry from, and transmit

commands to, the satellites. The role of the control segment includes monitoring and

maintenance of the satellites’ health, orbit, and time (GPS Time), and to predict the

satellites’ orbital information (the ephemerides) and clock parameters that are required by

a receiver in order to make position determinations.

 18

The user segment is the part of GPS that most people are familiar with, namely the

receivers and devices. It is the responsibility of the receiver to identify and track in-view

satellites, to detect and decode the navigation message, and to calculate a navigation

solution. The unknown difference, or bias, between the satellite clock and that of the

receiver is overcome by an additional parameter in the ―fix‖ calculations, shown in

Equation 2-3.

2.2.2 Signals

GPS uses basically two types of spreading codes and operates currently on the L1 and

L2 frequency bands. Support for L5, as previously mentioned, is planned but is not fully

operational. L1 contains a civilian-use C/A code and a military-only encrypted P(Y)

code, while L2 contains only P(Y). There is now also a civilian code on L2—the L2C—

however, a portion of the L2 frequency band is shared with Aeronautical Radiolocation

services (ground radar) on a co-primary basis and may be susceptible to interference from

non GPS sources (3).

Each satellite is assigned a unique ID code that it uses to identify its signal

transmission. In order to make a position determination, a receiver must identify the code

and then synchronize a local replica of it for at least three satellites (four are necessary to

remove receiver timing biases), and track these signals for eighteen to thirty-seconds.

2.2.2.1 Frequencies

Currently, GPS signals are broadcast on two carrier frequencies that are known as

Link-1 (L1) and Link-2 (L2). The frequency of L1 is 1575.42 MHz, and L2 is 1227.6

 19

MHz. These signals are derived from a very accurate atomic clock on board the satellite

operating at 10.23 MHz, and can be related to them by:

L1 = 154 x 10.23 MHz = 1575.42 MHz

L2 = 120 x 10.23 MHz = 1227.6 MHz

When the clock signal is generated, its frequency is adjusted to be slightly lower by

4.567x10
-3

 Hz in order to account for relativistic effects, making the satellite reference

frequency 10.229999995433 MHz on the ground before launch, rather than 10.23 MHz.

When received by a receiver, the signals should be at the correct frequencies. However,

the relative motion between the satellite and the receiver can produce a Doppler shift in

the frequencies by as much as ±5 kHz (6).

The total radio-frequency power at the transmitter input port on the satellite is

approximately 50 W (3), about half of which is allocated to the L1 C/A code. At the

receiver antenna, the signal energy is less than the background noise level (≈ -160 dBW).

As with all CDMA-based systems, it is the receiver’s ability to reproduce the PRN

sequence used by the transmitter that allows for the extraction of the signal buried

beneath the noise (3).

Since the GPS satellites all transmit on the same carrier frequencies, there is the

possibility that they will interfere with one another. In order to help avoid this

interference, it is desirable that all signals appear to have the same power level at the

receiver. Otherwise, a strong signal may cause a large cross correlation peak with a weak

signal, and the receiver will miss the desired cross correlation peak in the weaker signal

 20

(6). If transmitted isotropically, less power will be seen by a receiver from a satellite low

on the horizon than from one directly overhead. Consequently, the satellite antennae are

designed to concentrate more signal energy on the edges than in the middle of the beam.

The transmitted signals are BPSK modulated with the 50 bps navigation data and

PRN chipping codes. The chip rate (frequency) determines the amount of signal

spreading that occurs and creates a transmitted power spectral density, which is often

modeled in the form of a 𝑠𝑖𝑛𝑐2 function
𝑠𝑖𝑛 𝑥

𝑥

2

. The main lobes of the spectrum are

located at the carrier frequency ± the chipping rate, making the first null-to-null

bandwidth equal to twice the chipping rate.

2.2.2.2 Spreading Codes

The present constellation of GPS satellites supports the coarse/acquisition (C/A) and

the precision (P) codes. The C/A code is a 1023-chip code that is BPSK modulated onto

L1 at a rate of 1.023 MHz, which makes the first null-to-null bandwidth of the primary

signal lobe 2.046 MHz. With a 1.023 MHz chip rate and length of 1023 chips, the C/A

code repeats itself every millisecond.

The P code is modulated at 10.23 MHz, making the main lobe null-to-null width of

the spectrum 20.46 MHz. The P code is not directly transmitted but is first encrypted by a

W code, the details of which are a classified US military secret, to generate the Y code.

Referred to as the P(Y) code, it is not directly available to civilian users, and requires

access to a cryptographic key that the military will only provide to authorized users (3).

Civil dual-frequency receivers exist that acquire P(Y) measurements through sub-optimal

semi-codeless techniques.

 21

The P code is generated from two PRN sequences. One sequence is 15,345,000 chips

in length, and the other is 15,345,037 chips long. These two numbers have no common

factors and are, therefore, relative primes (6). The duration, or period, of the first

sequence is 1.5 seconds
15,345 ,000

10.23×106 and the total combined code length of these two

sequences is 1.5 x 15,345,037, or 23,017,555.5 seconds—just a bit (≈ 9 hours) longer

than 38 weeks.

Instead of using one code for 38 weeks, the P code is reset each week so that only a

one-week-long portion is used, allowing for 37 different one-week-long codes. Each of

the 32 possible satellite IDs is assigned to a different section of the code, with five

sections being reserved for operational uses such as ground transmission. The time of the

GPS Week must be known very accurately in order to perform signal acquisition;

normally, the precise time is found by first acquiring the C/A code and then, using the

known timing relationship between the two, locking onto the P(Y) code (6). The signals

and contained codes are summarized in Figure 2-2.

 22

L5

1176.45 MHz

L2

1227.6 MHz

L1

1575.42 MHz

L5-Code

 Encrypted

 P(Y)-code

 M-Code L2C-code
 Encrypted

 P(Y)-code

 M-Code

 C/A-code

 Open-use

Figure 2-2—GPS Frequencies and Codes: Note that the L5 frequency and the L2C and M codes

are only active on some satellites

The C/A codes belong to a family of PRN sequences known as Gold codes, named

after Dr. Robert Gold, that are formed by the product of two maximal length codes,

identified as G1 and G2. Gold codes are an important class of periodic PRN sequences

that exhibit good periodic cross correlation and autocorrelation properties.

Each code generator is a 1,023-bit sequence formed by a 10-stage maximum length

linear shift register that is driven by a 1.023 MHz clock. Maximum-length sequences (m-

sequences) can be created by employing modulo-2 feedback from the shift register output

and intermediate stages. The feedback tap positions, which determine the output pattern

of the sequence, can be expressed as binary polynomials.

The generator function for G1 can be written as 1 + 𝑥3 + 𝑥10, meaning the feedback

is from bits 10 and 3. The corresponding polynomial for G2 is

 23

1 + 𝑥2 + 𝑥3 + 𝑥6 + 𝑥8 + 𝑥9 + 𝑥10 2-1

so, feedback is from bits 2, 3, 6, 8, 9, and 10 (6).

A pair of taps is taken from stages in G2, modulo-2 added together, and then added to

the output of G1 to form the C/A code. The positions of the tapped stages in G2

determine the satellite ID. Initially, all stages of both G1 and G2 are reset to the ―1s‖

condition. Figure 2-3 shows the shift register configuration for satellite ID #2 using the

G2 taps 3 and 7.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

G2 Generator

G1 Generator

G1

G2 C/A Code

Taps determine satellite ID

Figure 2-3—C/A Code Generation: The C/A code is formed by the product of two sequences, G1

and G2

Even though it is 1,023-chips long, when compared with the data rate of 50 bps, the

C/A code would be considered a short code; the C/A code is repeated 20 times for each

data bit. With a 38 week period, obviously the P code would be a long code. Longer

codes with higher chipping rates are more desirable than shorter ones from a positioning

 24

point of view since the length of the code limits the precision of the position that can be

determined. Each C/A chip is approximately 1μs wide, which, when multiplied by the

speed of light, corresponds to a distance of 300 m. While the signal travel time can be

measured to a small fraction of a chip, however in general, the greater the ambiguity in

the measurements of arrival time, the greater the uncertainty in positioning (3).

2.2.3 Transmitted Data

The data transmitted by the GPS satellites includes information regarding the health

of the vehicle, its key orbital parameters, and the system time. A reduced precision

version of orbital data for the entire satellite constellation, called an almanac, is also

included to help receivers predict which satellites should be visible into the near future.

While only a short amount of signal, about 1 ms, is required to determine which satellites

are currently in view, it is necessary to track and demodulate the signal for up to 12.5

minutes in order to receive the entire navigation message, including the almanac,

ionospheric correction data, Universal Time offset, and so on.

2.2.3.1 Navigation Message

As shown in Figure 2-4, the GPS navigation message is transmitted as words that are

30-bits in length. Ten words make up a sub-frame, and a frame is composed of five sub-

frames. At 50 bps, each navigation data bit is 20 ms long, so it takes 600 ms to transmit a

word, and six seconds to send a sub-frame. It takes 30 seconds to transmit all five sub-

frames of a frame, and the entire message is 25 frames long, repeating every 12.5 minutes

(6).

 25

1 2 3 4 ≈

1

1

30

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 ≈ 25

600 ms

30-bit word

10-word sub-frame

6 seconds

1 2 3 4 5
5 sub-frame frame

30 seconds

25 frames

12.5 minutes

Figure 2-4—GPS Navigation message structure

As previously discussed, essential to the principle of trilateration is the need to know

the exact location of the reference transmitters. The precise orbital information for each

of the in-view satellites is contained in only the first three sub-frames of each frame of

the navigation message, so a minimum of 18 seconds of data is required to accurately

determine the satellite’s position. However, since the data is being continuously

transmitted by the satellite, it is not possible for the receiver to know exactly when these

specific sub-frames will be transmitted. To be certain of receiving all three ephemeris

sub-frames, it is necessary to wait until all five sub-frames in the frame have been sent.

Consequently, 30 seconds of the navigation message, at a minimum, must be recovered to

be guaranteed the delivery of sub-frames one through three.

To help ensure error-free recovery of the transmitted navigation message, the data

bits are first encoded using a Hamming (32, 26) error detection code (7), meaning for

each 32-bits sent, 26 of them are data. Each word in the navigation message contains 30-

bits—24 are data and six are parity bits. In order to perform a parity check, eight parity

bits are used by incorporating the last two parity bits from the previous word in the

 26

parity-generation algorithm. There are 30 parity generating equations: one for each data

bit, and one for each parity bit. Complete details on the data contained in the navigation

message are defined in the GPS Interface Specifications (28), while interpretations and

explanations can be found in references (5), (3), (6), and (7).

2.2.3.2 Ephemerides

Each satellite transmits key orbital parameters in sub-frames 1-3 that a receiver uses

to correctly determine its position. These parameters, called an ephemeris, are predicted

by the Master Control Station based on code and carrier phase measurements at the

monitor stations. Parameter sets covering the next fourteen days are uploaded to the

satellites daily. The data set that a satellite broadcasts changes every two hours, and

without daily refreshing would deteriorate over time (3).

2.2.3.3 Almanac

In addition to its own ephemeris data, each satellite transmits as part of its navigation

message, in sub-frames four and five, a catalog of a coarse version of the ephemerides of

all satellites in the constellation known as an almanac. The almanac allows a receiver to

determine approximately when a satellite will come into view above the horizon given a

rough estimate of the user position. The almanac parameters are not required to be as

accurate as the ephemeris, and serve only to let the receiver plan when to initiate satellite

signal acquisition (3). With PC-based prediction software, users can also utilize the

almanac data for observation planning purposes.

2.2.4 Position Determination

A receiver determines a user’s position by first calculating the distance, or range, to

the satellites that are in view based on

 27

𝜌 = (𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑙) 𝑥 (𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔𝑕𝑡 𝑖𝑛 𝑎 𝑣𝑎𝑐𝑢𝑢𝑚) 2-2

The time of travel is derived from code and carrier phase measurements; however, as

a side effect of the unsynchronized clock in the receiver there is a timing bias between the

receiver and the satellite. The offset from GPS Time for each satellite clock is included in

sub-frames 1-3 of the navigation message, so the same bias can apply to all signals at the

receiver. The measured value of ρ will be either too large or too small by some amount,

and is referred to as a pseudorange. As shown in Figure 2-5, by measuring the

pseudoranges to at least four satellites (𝜌 𝑘 𝑓𝑜𝑟 𝑘 = 1… 4) the 𝑋,𝑌, 𝑎𝑛𝑑 𝑍 coordinates

of the position can be determined and the timing bias, 𝑏, can be calculated. To do so

requires solving a set of four equations for four unknowns in the form of

𝜌(𝑘) = (𝑥 𝑘 − 𝑥)2 + (𝑦 𝑘 − 𝑦)2 + (𝑧 𝑘 − 𝑧)2 + 𝑏 2-3

Theoretically, solving this set of nonlinear equations will result in two possible

solutions. However, only one solution is near the earth’s surface and the other is in space.

The iterative methods typically used for solving these equations begin with initial

conditions at the center of the earth, guaranteeing convergence on the correct solution

rather than the one in space (6).

 28

(x
(k)

, y
(k)

, z
(k)

)

ρ
(k)

Figure 2-5—Fixing a position requires finding the pseudoranges to at least four satellites

There are many sources of error in making position determinations, and the above

model serves only as a most basic of starting points.

2.2.5 Receiver operation

The role of the receiver is to determine the user’s position, velocity, and time. It does

this by processing and separating the signals transmitted by the satellites, measuring

signal transit times and Doppler shifts, and decoding the navigation message to determine

the satellites’ position, velocity, and time parameters (3).

To acquire a signal, the receiver generates a local replica of a known C/A code and

attempts to align it with the signal from a satellite by sliding it in time and computing the

cross correlation between the two. When the codes are aligned, a peak will appear in the

correlator output. Code tracking is performed through the feedback mechanism of a

delay-lock loop (DLL). Adjustments from the DLL keep the code aligned with the

incoming signal (2). The aligned code is used to de-spread the signal, leaving only the

carrier modulated with the navigation data. The carrier frequency and phase are tracked

 29

using a phase-lock loop (PLL), which essentially extracts the data bits of the navigation

message by identifying the phase reversals caused by the data bits. A receiver block

diagram is presented in Figure 2-6.

Analog
Receiver

Doppler
removal

Navigation
Data Recovery

Navigation
Estimation

 Preamplifier
 IF Downconversion
 A/D

Bias
Compensation

Position
Result

DLL & PLL
filters

Carrier
NCO

Correlators

Code
NCO

Demodulator

Reference
Oscillator

Frequency
Synthesizer

I Q E P L

Figure 2-6—GPS receiver block diagram

The time shift required to align the receiver-generated code to that of the satellite is

the apparent transit time of the signal, modulo 1 ms. The code chips are generated at

known instances according to the satellite clock. The time of reception is determined by

the receiver clock and the receiver can determine when the chip was generated essentially

by reading the satellite time (3) from the navigation message.

The whole system, including the ranging capability and the navigation message

transmission is based on spread-spectrum CDMA data communication.

 30

Chapter 3 Spread-spectrum Fundamentals

Spread-spectrum transmission is a signaling technique that utilizes a specially

constructed pseudo-random sequence to modulate an information carrier in such a way

that the signal energy is spread over a much wider bandwidth than that of the original

information-bearing signal. A receiver uses a locally generated and synchronized version

of the modulating sequence in order to de-spread the signal and extract the information

content (29). The elements of the pseudo-random-noise (PRN) sequence, the ones and

zeros, are called chips in order to differentiate them from the data bits that carry

information. The rate at which the spreading code is applied to the signal is referred to as

the chip rate. This chapter presents general information on spread-spectrum

communications that is relevant to its application in GPS transmitters and receivers.

3.1 Spread-Spectrum Types

There are two frequently used flavors of spread-spectrum, namely frequency

hopping, where the signal is rapidly jumped between different frequencies within the

allocated bandwidth; and direct sequence, where the digital data is directly combined

with a higher frequency coding signal. While these two methods cover most applications,

there is also one other: time hopping, in which the signal is transmitted in short, pseudo-

random bursts and the receiver knows when to look for it. Time hopping is not widely

implemented, and will not be discussed any further. Although frequency hopping is not

used by GPS, it is described for completeness.

 31

With either system type, due to the increased bandwidth of the spread-spectrum

signal, the power spectral density is reduced, so the signal appears as so-called ―white‖

noise to an unsynchronized receiver. This noise-like characteristic makes spread-

spectrum systems less likely to suffer negative performance effects in the presence of

deliberate or accidental narrow-band noise and interference sources and makes the signal

harder to intercept without a priori knowledge of the signal structure.

3.1.1 Frequency Hopping

When a pseudo-random sequence is used to shift the carrier frequency of an

information-modulated signal such that the transmitted signal occupies many different

frequencies, each for a short period of time, this is frequency-hopping spread-spectrum,

or FHSS.

As shown in Figure 3-1, the FHSS transmitted bandwidth is determined by the lowest

and highest hop frequencies, while the number of hop positions is determined by the

system bandwidth in relation to the individual hop bandwidth. At each hop, the FHSS

signal is a narrowband transmission with all power concentrated on one channel;

averaged over time, the transmitted signal occupies the entire spread-spectrum

bandwidth. The hopping pattern is determined by the pseudo-noise sequence and is

typically not numerically channel sequential.

 32

71 2 3 4 5 6 8 ... N

f

Channel

Hop BW

Total system bandwidth

Hop

Figure 3-1—Frequency Hopping Spread Spectrum: The total bandwidth available is divided into

multiple channels, and each channel is occupied randomly in turn by the modulated carrier signal

for a short interval of time

3.1.2 Direct Sequence

With direct-sequence spread-spectrum, DSSS, a pseudo-random noise sequence is

used to shift the phase of the modulated signal at a rate (chip rate) that is a multiple of the

information rate (bit rate), and establishes the degree of signal spreading. The maximum

chip rate (Rc) is determined by the design of the system and limits the transmitted

bandwidth. Unlike with FHSS, where all of the signal energy is concentrated in a narrow

band for a short interval of time, DSSS places all of the signal energy across all of the

bandwidth all of the time. To recover the signal, a receiver must be synchronized to the

spreading sequence; an unsynchronized receiver will detect only noise.

 33

f

Total system bandwidth

Fc

Fc - Rc Fc + Rc

Figure 3-2—Direct Sequence Spread Spectrum: The transmitted carrier frequency determines

the position of the center of the spectrum, while the width (spreading) is determined by the chip rate

(Rc)

Figure 3-2 gives the general appearance of the frequency spectrum of a DSSS signal

that is transmitted at a carrier frequency of Fc. The effect of the chip rate is to spread the

signal energy across the entire available bandwidth.

3.2 Transmitter and Receiver Architecture

Since GPS uses the direct-sequence form of spread-spectrum, the following

discussion on transmitters and receivers will highlight the basic principles of their

operation in DSSS applications, and emphasizes the specifics of the Binary-Phase-Shift-

Keying (BPSK) PRN chip modulation employed by the GPS satellite transmitters.

3.2.1 Modulation

The stages of a DSSS modulator are represented schematically in Figure 3-3 (4). The

nonreturn-to-zero (NRZ) binary data [actually, a binary 0 maps to a +1 and a binary 1 to

a -1] are phase-shift modulated onto a radio-frequency (RF) carrier. This operation can

be represented by a multiplication function that shifts the carrier phase by either 0 or -π

 34

radians. The resulting product is then multiplied by the pseudo-random noise, 𝑃𝑁(𝑡),

pattern (also -1, +1) such that whenever the product of 𝑑(𝑡) and 𝑃𝑁(𝑡) is -1, the carrier is

phase shifted by –π radians.

)cos(2 0t

)cos()(2 0ttd 

)(td

)(tPN

PG 

)cos()()(2)(0ttPNtdPts 

Figure 3-3—BPSK DSSS Transmitter: The input data, d(t), is combined with the carrier and

then binary phase shift keyed with the pseudo-noise sequence

3.2.2 Demodulation

Once modulated and transmitted, the signal cannot be detected by a conventional

narrow-band receiver. In order to detect and demodulate the data contained in the signal

it is necessary to remove not only the carrier, but also the spreading code. Often referred

to as de-spreading, the signal detection and demodulation process requires that locally

generated versions of the carrier and PRN sequence be kept in synchronization with the

received signal. Carrier and code removal are codependent activities. In the case of a

Doppler-shifted signal, a close estimate of the carrier frequency is needed in order to

identify the presence and offset of a particular spreading code, and an aligned code-

removed version of the signal is necessary in order to accurately determine the signal

frequency. Current methods for acquiring a signal are different from tracking one. Some

 35

receiver references, such as (3) and (29), discuss the first problem of removing the RF

carrier and then generating a synchronized PRN sequence. Others, for example (4) and

(6), consider the problem of removing the spreading PRN code first and then the carrier.

Either way, it is essential to remove the RF carrier component first, and then determine

the required code and phase synchronization necessary to fully demodulate the data. This

approach is modeled in Figure 3-4 where the signal is first amplified by a low-noise

amplifier (LNA), mixed with a locally-generated RF carrier, and then band-pass filtered

(BPF).

LNA

PN

BPF

RF

Output Data

Figure 3-4—Direct Sequence BPSK receiver model

3.3 PRN Sequences and Generators

Essential to spread-spectrum communication implementations is the ability to

generate a deterministic pattern, or sequence, of binary 1s and 0s that exhibits random

noise-like properties that can be used to spread the bandwidth of the signal energy. As the

pseudo-random epithet implies, these sequences are predictable when the generating code

is known, but appear random to an observer when the code is unknown. Without the

 36

ability to predict the sequence, it would be impossible for the receiver to generate a local

replica to use to demodulate the data.

Besides a noise-like appearance, other characteristics of an ideal spreading code are a

zero cross correlation with other codes, maximum (peak) autocorrelation for zero delay,

and zero autocorrelation for all non-zero delays. Additionally, ideal odd-length codes will

exhibit a balance property in that the number of 1s exceeds the number of 0s by one, and

that the probability distribution of consecutive patterns of all 1s or all 0s (run-lengths)

behaves in a
1

2𝑅
 manner (29), where R is the length of a run.

The cross correlation function can be used to find and track code synchronization. A

distinct peak will appear in a correlator output when the local version of the code is time

aligned with the received code sequence. With an odd-length balanced code, there will be

one more 1 in the sequence than zeros, such that the normalized result of the correlation

will be 1.

The length of a PRN code, long or short, is considered in terms of the associated data

rate. A short code has the same pattern or portion of the PRN sequence repeating for each

data symbol, whereas a long code is much longer than a data symbol (29).

Most practical codes utilize maximum-length sequences (m-sequences) that are

derived from the outputs of linear feedback sequential shift registers implementing

functions determined by the properties of irreducible primitive binary polynomials. The

employed algorithms are described and supported by extensive theoretical work in ring

and finite-field arithmetic theory, some of which can be found in references (4), (29), and

(30), with highlights provided in Appendix C.

 37

Chapter 4 Object-Oriented Analysis and Design

Much of the flexibility and extensibility of the Receiver Development Framework is

derived from leveraging object-oriented design techniques and the languages used to

implement them. In order to provide a basic appreciation for these concepts, the

following sections will briefly discuss the underpinnings of object-oriented analysis and

design and will provide working definitions for commonly used keywords and phrases.

Unlike procedural-based structured programming techniques that emphasize

functions over data, where the focus is on black-box representations of processes, an

object-oriented approach is to view the problem as a set of items and related behaviors,

objects and methods, that are essential to the system being analyzed.

In the C language, the basic unit of work is the function. In an object-oriented

solution it is the class method. In a parking-lot application, for example, the basic

elements might be the Lot, the Space, and Vehicle classes. Each class within the

application has methods that perform transformations on the internal state information or

other object data, and that are used to send and receive messages from outside objects.

Encapsulation, Inheritance, and Polymorphism are the three defining traits of

object-oriented solutions.

4.1 Encapsulation

A class is a design description for the creation of an object, while an object is an

instance of a class that has been constructed from the description. Classes describe the

 38

basic components, their operations, and characteristic features of the system. A class

name declaration represents the boundary of encapsulation for critical internal data stores

and the available methods that can directly modify or manipulate their values.

Encapsulation reduces potential coupling between unrelated entities, minimizes

unintended side effects, and helps to ensure integrity of the object.

The class description may include the declaration of member variables that hold the

state of the object. Two instances of the same class may have different states, depending

on the values of their member variables. Members can be declared as being private,

internally accessible only by other class members, or public, accessible to external users

of the class instance. Private members that are accessible only through a public get/set

accessor method are called properties. For example, a class of type parking Space may

have a private MaxWidth member that is accessed by calling get_ MaxWidth and set_

MaxWidth property methods.

Objects can also encapsulate instances of other classes, either of the same or different

type. In the Parking application example, a class of type Lot may hold references to many

Spaces, and each Space could contain a Vehicle that was placed there by calling the

Vehicle::Park method. Object references may take the form of C pointers or arrays, but

may also be implemented in a language-specific manner through specialized containers

or mail slots that have been likewise implemented using object-oriented techniques.

Combining classes in such a manner results in what is called a has a object relationship: a

Space has a Vehicle, or a Lot has a (or many) Spaces.

 39

The process of identifying the properties, attributes, behaviors, and relationships of

the set of objects essential to an application is referred to as object modeling. There are

many methodologies and diagrammatic representations for communicating an object

model. The Unified Modeling Language (UML) evolved from the collaboration of early

pioneers in the field of object modeling. UML is a complex and mammoth toolset for

modeling the structural, behavioral, and activity characteristics of applications and their

objects. Mastering the intricacies and vagaries of UML, not to mention its many

inconsistencies, is a significant challenge for those interested in doing so. The basics of

UML for creating representations of object models is becoming the common vernacular

in the domain of object oriented analysis and design. As such, only a limited subset of the

UML nomenclature will be utilized in the presentation of the receiver framework.

-Location : string

-Spaces : Space

Lot

-MaxWidth : double

-MaxLength : double

-ParkedVehicle : Vehicle

Space

+Park() : bool

-Length : double

-Width : double

Vehicle
-is in

1

-contains

1..*

-parks in

1

-holds

0..1

Figure 4-1—Static UML object model for a parking application

Figure 4-1 represents a UML class diagram that shows the static structural relations

between classes in the hypothetical parking application. From left to right the diagram

reads, a Lot contains one or more Spaces and each space holds zero or one Vehicle. When

read from right to left, a Vehicle parks in one space, and a Space is in one Lot. The solid

black diamond next to the Lot class indicates UML composition and a life-cycle

dependency between the Lot object and the Spaces that it contains. If the Lot were

destroyed, the Spaces would also cease to exist—without the Lot, the Space has no

 40

meaning. The same dependency does not exist between the Space and Vehicle

relationship; the Space can be destroyed, but a Vehicle can continue to exist

independently of the space it was once parked in. In the UML diagram symbology, an

unfilled diamond is used to differentiate an aggregation relationship from a stronger

composition relationship; however, they are both used to indicate the presence of whole-

part structures between classes.

Strict enforcement of encapsulation inevitably leads to a problem of state

persistence. Suppose the Vehicle class has a private data member, IsParked, that retains

the current parked status of the vehicle instance—true/false or yes/no. Once the IsParked

internal variable is set upon completion of the Parked method, other class members (not

shown) can make use of this state to adjust their internal actions where appropriate.

However, the value of IsParked will be retained only if the object is kept active in system

memory. Once the application ends, or if the object needs to be relocated or transmitted

over a network, there is no guarantee that the proper value will be restored when the

application is restarted and its objects are reloaded. State persistence is a multi-

dimensional problem in that there are many causes, many solutions, and many data

integrity issues to address along with various timing and performance considerations.

It is also necessary to point out that multiple valid object models can be derived for a

given problem domain, depending on the viewpoint and expectations of the solution. The

formal demonstration of completeness and correctness of an object model is both difficult

and often unnecessary due to the flexible nature of an object-oriented implementation

approach. Once the top-level objects and their relations have been established, sorting out

the microscopic details of the various interaction aspects is more easily approached in an

 41

iterative manner, with each iteration attempting to resolve issues that are identified by the

previous version of the model.

4.2 Inheritance

Once the required functionality has been implemented in an encapsulated class

structure, the manner in which the behavior is altered or extended is through object

inheritance. Inheritance is a mechanism whereby one class description is used as a

starting point for another, necessarily related class. Members and functional

implementations from the original class, called the base class or parent class, are

available to the new class, called the derived class or child class. Inheritance allows the

base-class methods to be extended and enhanced for specialization in derived classes,

without violating the rules of encapsulation of the base class.

The UML class diagram shown in Figure 4-2 represents a possible inheritance-based

extension to the Vehicle class for the parking application. The Vehicle base is used to

derive implementations of a specialized family of classes, including a Car, a Bus, and a

Truck.

 42

+Park() : bool

-Length : double

-Width : double

Vehicle

Vehicle::Car Vehicle::TruckVehicle::Bus

Figure 4-2—UML object-model showing inheritance

The diagram represents an object-oriented hierarchical taxonomy and provides little

insight into the behavioral or timing relationships between the various classes. Only the

semantics that a Car is a type of Vehicle, for example, are represented by this static

model view. The behavior of the Park method in each derived Vehicle type is inherited

from the base Vehicle class.

Inheritance from classes can be carried out at any level of the object hierarchy. A

specific Car type may be derived by further inheriting from the Vehicle::Car class, such

as a Vehicle::Car::Sedan. Subtypes of Sedan can be viewed as Cars or Vehicles,

depending on the application context, and all object instances can be parked in a Space.

4.3 Polymorphism

Polymorphism allows an object to change its behavior at runtime depending on the

type of object that has been constructed. When a base class provides a declaration of a

method that is marked as virtual, derived classes may alter the default functionality of the

base by overriding the method and providing a new method definition in its place.

 43

However, users of the base class need not know any of the type-specific implementation

details of the derived class.

The inheritance diagram for the Vehicle class shown in Figure 4-3, for example,

indicates that the Vehicle base class supports a virtual Park method that has been

redefined in the Car, Bus, and Truck classes. Each of these classes has provided a

specialized version of the Park method that meets the individual need of the class type.

+Park() : bool

-Length : double

-Width : double

Vehicle

+Park() : bool

Vehicle::Car

+Park() : bool

Vehicle::Truck

+Park() : bool

Vehicle::Bus

Figure 4-3—Each class derived from vehicle implements a specialized polymorphic Park method

Polymorphism occurs when an instance of a Space class, containing only the

information provided by a Vehicle reference, calls the Vehicle::Park method, which

automatically invokes the Car::Park implementation. The mechanism by which the

method call is resolved to the correct implementation of the derived class is through late

binding. While early binding seeks to resolve methods and their definitions when the

application is compiled and linked, late binding provides only a loose mapping in the

form of a virtual table between a method invocation and the code that implements its

behavior such that the call can only be resolved when the application is executed at run

time.

 44

The significant benefit of polymorphism is realized when an entirely new Vehicle

type is added to the design, after the application has been completely written and tested.

A Motorcycle may be derived from the Vehicle base type that overrides and implements

the Park method, and any existing code that calls a Vehicle::Park method will require no

changes in order to support the new type of vehicle. All of the necessary specialization

code is self-contained in the new type implementation. By extending the application

through inheritance and polymorphism, any errors or issues can be clearly isolated to

problems with the new components, simplifying the debugging efforts. If the application

worked correctly before the new type was introduced, broken functionality simply

becomes a case of post hoc, ergo proptor hoc.

Virtual methods that are declared in a base class but contain no implementation are

considered to be abstract methods. Class specifications that contain only abstract

methods are referred to as pure abstract or pure virtual classes. Instances of these classes

cannot be created directly, but must first be derived from, and all methods implemented,

before an object can be instantiated. Classes that are derived from abstract classes, and

provide complete method bodies, are called concrete classes.

Pure virtual class declarations can be used to describe a component interface or

signature. Calling methods on concrete classes through the abstract class type represents

a formal declaration of the kinds of methods a family of classes must support. In terms of

UML, an interface is described by the diagram of Figure 4-4.

 45

+Drive(in Speed : double)

+Park() : bool

«interface»

IVehicle

+Drive(in Speed : double)

+Park() : bool

-Length : double

-Width : double

Vehicle
IVehicle

Figure 4-4—An interface declaration and a class that implements it

On the left, the IVehicle interface (the de facto standard for interface names is that

they start with an uppercase I) declares the methods and their parameters that

implementers of the interface must support. On the right, the Vehicle class indicates that

it implements the IVehicle interface through the named lollipop symbol attached to the

edge of the class diagram.

Like classes, interfaces can be composed and extended through inheritance. Classes

may implement multiple interfaces, according to the needs of the application.

4.4 Special Items

Sometimes it is required that object instances of one class type be informed of

situations or conditions that occur in another type. While it would be possible to have an

object maintain references to all of the external recipients in a list or a collection, doing

so requires a level of runtime determinism that is usually not possible. Instead, it is more

desirable to have the sources of events, or publishers, be bound to event sinks, the

subscribers, through some nondeterministic means that ensures loose coupling between

the two parties, allowing subscribers to select which notifications they would like to

receive from individual publishers. The scheme by which the required linkage is

established is through loose coupled events.

 46

In an event-driven application, subscriber objects register with the publisher the class

method that should be invoked, or called, by the publisher when the event occurs. To

ensure type safety and compatibility between the event and the method that is called, the

publishing class must specify what the exact method signature should look like by

defining a delegate type to be used during the registration process. Only if the method

indicated by the subscriber matches the delegate description will the event registration

succeed. Subscribers remove themselves from publisher’s events in a similar way,

placing the control of the notification mechanism within the realm of the subscriber.

Events and delegates work in a fashion that is not unlike hardware-based interrupts.

In fact, many of the sources of software-based events involve external hardware actions,

such as mouse button clicks, keyboard key presses, and other such activities. Events can

signal when a process has started, when it has finished, or when a condition has been

satisfied, such as a data value meeting a predefined criterion.

 47

Chapter 5 Real-time Systems

There are special requirements that one must to take into account when designing and

developing applications for real-time operations. Potentially an issue at a fundamental

level is the lack of consensus among various implementation communities on the

essential distinguishing characteristics of a real-time system and the traits that make them

special from their alternatives.

Real-time system implementations often take on a similar architectural form as many

multithreaded applications, and likewise encounter the same analysis complexity and

operational problems. Discussions related to non-real-time applications also apply to real-

time systems, as well, but need to include additional time constraints imposed by

considering the real-time schedule constraints.

 Good system design practices dictate applications of modular construction consisting

of multiple role-specific processes and interacting threads. Scheduling execution times

for the threads and synchronizing the required level of interaction to support the

appropriate types of interprocess communication create additional analysis and design

complications. The diversity of the architectural patterns and choices for real-time

systems necessitates a formal analysis methodology to sort through. Detailed design

analysis requires the support of capable modeling tools, and well-defined models should

provide a clear view to an implementation plan. The evaluation of suitable software

languages for real-time systems represents another set of factors that must be considered

prior to the start of development.

 48

This chapter provides an informal working definition of real-time systems and

attempts to place these solutions in a context that is suitable for the subsequent

discussions on application structure, scheduling, synchronization, various modeling

options, and the identification of essential real-time language features.

5.1 Definition of Real-time

While superficially trivial, possibly one of the more awkward difficulties in

discussions on real-time systems lies in the nuances of establishing a broad-ranged

widely-applicable definition of real-time as compared to non-real-time. Definitions

derived from distinctions based on application-dependent operational requirements or

consequences of failure (critical vs. noncritical) are necessarily subjective and largely a

matter of opinion. As such, the same system implemented for one environment as real-

time may be classified as non-real-time when applied to another. The opposite may also

be true, depending on how the system requirements are formulated. Relaxing a

performance constraint can allow a system previously considered non-real-time to

operate in a real-time environment without making any changes to the underlying system

design characteristics.

The evolving body of literature on real-time systems has partially managed to avoid

directly addressing the issue of the meaning intended by the term’s use by creating the

fuzzy conceptual modifiers of hard, soft, and near real-time. These modifiers provide the

individual reader with the latitude to infer a definition that is almost a matter of personal

taste. As a result, the published work must be evaluated against a subjective continuum

that ranges from not-real-time-enough to more-real-time-than-necessary. This Goldilocks

phenomenon makes applicability of the conclusions and consequences either too

 49

restrictive (narrow focus) or too broad (far reaching), with only a small subset of the

audience feeling just right.

Conceptually, the notions of hard, with strict timing constraints and no permissible

violations, or soft, involving perhaps some level of transaction based user interaction,

real-time systems tend to define more of the execution model of the operations and are

not confined to a specific realm of operating environment. If a timing constraint may be

violated without affecting the validity of the produced result, then it could be argued that

the constraint is poorly defined or fundamentally over specified.

Real-time system definitions that are performance based or described through some

type of behavioral determinism, such as the system must be fast and responsive, suffer

the recursive problem of subsequently trying to apply concrete meanings to other

possibly even more abstract ideas. From a pragmatic point of view, systems that are slow

and unresponsive are rarely deemed engineering successes. An expectation exists with

users and designers alike that all systems should be fast and responsive. The terms fast

and responsive, however, are relative measures that require an absolute baseline metric in

order to unambiguously determine a frame of reference for performance comparison

purposes.

If performance becomes the essential property in the determination of real-time, then

the importance of competing factors, like flexibility, maintainability, and scalability

become deprecated and the total quality of the system design will ultimately suffer.

Regardless of requirements, designers normally strive for the best overall performance, as

measured by the number of generated outputs in the fewest work cycles possible. There

 50

are many high-performance, high-workload applications possessing great computational

complexity that would not generally be thought of as real time. Conceivably, real-time

systems with weak or slack timing constraints may need little performance, but must still

meet the imposed timing requirements. So, while sometimes key, performance is neither

necessary or sufficient in the classification of real-time systems.

Real-time distinctions based on the embedded versus non-embedded (or workstation)

nature of an application contain implementation requirements that are more reflective of

the resource limitations often encountered in working with dedicated special-purpose

hardware. Design challenges resulting from limited memory, single low-speed processor,

and minimal operating system support may reduce the richness of features that are

implementable in an embedded solution, but care should be taken not to confuse the

verifiable application requirements with the restrictions imposed by the underlying

environment. If the removal of the embedded components of a real-time system design

eliminates the driving requirements for a real-time solution, then the view must be taken

that the root system is not fundamentally real-time in nature. Furthermore, distributed or

networked systems that are composed of multiple interconnected nodes, which may or

may not be implemented as embedded devices, could still be required to operate in real

time. The emergent properties of such systems makes it necessary to take a holistic view

of the complete operating characteristics before making a real-time behavior

determination. The diversity of real-time systems covers a wide range of technology scale

from small, dedicated hardware devices to large, complex distributed applications.

Inevitably, one must conclude that real time is a multi-dimensional N-space problem

domain, with each dimension comprised of a solution subspace of varying boundaries

 51

encompassing a region of some volume. Each design challenge, such as scheduling,

thread management, synchronization, and resource allocation has a field of suitable

potential implementations available. An optimum system attempts to minimize, in some

quantitatively measurable sense, a representative cost function while simultaneously

maximizing the value of a critical figure of merit.

System designers generally have an intuitive, although informal, understanding in-

the-large of what is and is not real time. These systems are often driven by a precisely

timed external stimulus or event and operate on the expectation regarding the ability of

the system to produce a result or outcome before the next event arrival. Behavioral

predictability is critical for design acceptance, and as a result the extensive evaluation of

processor performance and utilization warrant considerable review and characterization.

In contrast, coarse-grained batch-oriented computation models, where input arrival

processing can be suspended indefinitely without compromising the validity of the

resulting outputs, are usually thought of as non real time.

In practice, solution analysis and design patterns that satisfy the majority of real-time

operational needs typically yield additional beneficial side-effects in the areas of

extensibility, flexibility, and maintainability. Even in the absence of specific real-time

requirements, adopting a real-time system architecture can enhance the overall quality

and long-term value of a solution. As a result, one should attempt to take the broadest

conceivable definition of a real-time system early on in the design life cycle, without

creating unwarranted functional restrictions or unnecessary implementation

complications. Every computing system can be regarded as having some characteristic

 52

that is real time in nature, regardless of the ambiguous or subjective properties of real-

time system definitions.

5.2 Applications, Processes, and Threads

System modularity represents a design outcome in a divide-and-conquer approach to

solution analysis. By carving a set of problem specifications into groups of related

functional pieces, highly complex problems may be decomposed into simpler

representations of smaller interdependent components. Each smaller component may, if

necessary, be further reduced into tinier subcomponents until the details of

implementation become apparent. The final solution is then composed through

aggregations of the smaller pieces and by defining the interface boundaries where the

various modules interact with one another.

Real-time systems can be represented or described through modular containers of

functionality with differing levels of granularity. Once designed, the resulting system

modules are then implemented as one or more applications, processes, and threads.

An application is a top-level system comprised of one or more substituent elements.

Applications may be composed of multiple dedicated processes, and each process may

have multiple threads. A process can be thought of as a task in that it represents a subunit

of work that is smaller than an application. Due to the complexity and high clock speed

of modern microprocessors, distinctions between processes and tasks based on the

number of physical processors in the system, like those found in (31), are synthetic and

outdated. Processes within an application can usually be configured to operate with

unique identities for the purposes of resource access and security.

 53

A thread is a conceptual construct that is used to model the path a computer processor

takes when performing the instructions contained in a set of code in the form of a

program. Threads represent a basic unit of software execution.

―A thread is a lightweight process with a reduced state.‖ (31)

The state of a thread consists of all the CPU registers—instruction counter, stack

position, status flags, accumulator and other general purpose registers—that hold the

current values of an executing program’s internal variables. State reduction is achieved

by externalizing these internal registers to reserved areas of system memory where they

can be saved and later retrieved. Multiple blocks of memory can be used to

simultaneously maintain the state of several threads, which gives rise to a multithreaded

runtime environment. If one thread can no longer make progress or if another more

important (higher priority) thread needs to run, the current thread’s state is stored and the

former state of the next ready-to-run thread is loaded and the processor resumes

execution.

By managing multiple threads in this manner, a single high-speed processor can

appear to perform several tasks in parallel. Of course, the resulting parallelism is in

appearance only in that one processor may only execute one thread’s instructions at a

time. To improve performance, multiple processors may be utilized to execute an

application, where each available processor manages a different set of threads for

execution. The scheduling mechanisms responsible for setting and controlling the

sequence of running threads are considered later in this document in Section 5.3.

 54

Articles such as (32) suggest the abandonment of threads as a model of computation

in favor of weakly defined alternatives. The view is promoted that multithreading

represents a nondeterministic approach to problem solving and should be used only when

chaos and randomness are desirable system characteristics. In this view, even for a small

number of programming instructions, the permutations of their arrangement is large, but

only one sequence represents the correct solution to the problem. As a result, the odds of

finding the right solution are small. Adding hard-to-model thread interaction serves only

to create another layer of complexity that reduces the odds of success still further.

However, the argument as presented is flawed in that, due to the commutability and

idempotence properties of many of the required operations, there would exist many more

than one solution to the problem (e.g. A x B ≡ B x A—two solutions) and that even a

small amount of skill and intellect can greatly increase the possibility of finding one of

the correct instruction sequences. While it is unlikely that typing random letters on a

keyboard will result in a well-formed grammatically correct sentence, there is no need to

consider abandoning words as a method of communication due to the complexity of a

written language.

However complicated thread interaction modeling and prediction may be, one must

accept that the idea of a thread is a consequence of the key features of the von Neumann

computing architecture (33):

 Data and instructions are stored in a single read/write memory;

 Memory contents are addressable by location;

 Execution occurs in a sequential fashion.

 55

A thread is a synthetic device that has been fabricated in order to optimize the

utilization of a limited number of processor clock cycles. If a thread is waiting for an

external or shared resource, such as the completion of an I/O operation or reading from a

comparatively slow memory location, rather than wasting time spinning (or idling) the

current thread it is better to do other work instead. A context switch is performed by the

operating system whenever progress is no longer being made on the current thread’s

execution while it waits to acquire a resource. Threads provide, when properly used, a

means of creating fine-grained independent workers for long-running or background

activities.

For security purposes, threads will inherit the identity of their creating process when

accessing shared system resources. The specific authentication and access control

mechanisms are dependent on the nature and level of operating system access control

support.

5.3 Scheduling

Scheduling is the act of determining the order in which the threads (or tasks) within a

process are made running on the CPU. Schedulers may be grouped into one of two broad

categories: static or dynamic. A static scheduler is usually a person who makes up the

thread list ahead of time and figures out their ideal execution sequence in order to

guarantee that all threads finish their work in time and that there are no constraint

violations or resource deadlocks. The task list is then hard-coded into the work queue of

the implemented system so that the threads always run in the same predetermined order.

 56

For a static schedule to function as expected, reliable information regarding the

resource requirements and processing time for each thread needs to be available during

the early stages of system development. There are many factors that can influence the

length of time a particular task needs in order to complete its work. Even without thread

interactions for non-processor resources, factors such as differences in the instruction

counts for conditional code branches, iterations of loop counts based on external

variables, the order in which memory has recently been accessed, and the specific

processor architecture all influence the number of clock cycles (i.e. time) required for a

task to complete. As a result of these extrinsic variations, statistics on the best-case,

worst-case, and average completion times need to be collected and used in some way in

order to evaluate the viability of a particular schedule. The verification of the

achievability of the schedule often requires the use of NP complete (nondeterministic

polynomial time) schedule analysis algorithms, while the schedule optimization process

is typically NP hard.

Deterministic analysis techniques that are based mainly on worst-case execution

times and task deadlines do not allow deadline violations in data processing. These

scheduling techniques are inappropriate for use with highly variable workloads.

However, the majority of workload types are inherently variable and the worst-case

execution time is often significantly different from the average-case when average

processor utilization is less than 100% (34).

The idea behind the work of (34) is to improve the results of deterministic analysis by

providing a means of task characterization that more accurately represents the degree of

workload variability. Using a grouped probability distribution method, histogram-based

 57

models are developed that describe tasks as a discrete statistical probability mass. The

developed models can then be used to aid in the scheduling process. Choosing the correct

number of task classes that balances result precision with the analysis complexity is

critical to the success of the approach. The paper shows that workload isolation is a

desirable property of scheduling algorithms that simplifies analysis and makes the

outcome algorithm independent.

The Spring Architecture (35) stresses predictability and flexibility in real-time system

design by defining three types of tasks: critical, essential, and nonessential. Each task

type is handled differently using an a priori scheduling method to ensure critical tasks

will always meet their deadlines. Implementations utilizing processor architectures that

are Complex Instruction Set Computer-based (CISC) with their variable instruction

lengths and pipeline depths are difficult to analyze and evaluate for worst-case execution

times. Furthermore, the times arrived at would be large compared with average execution

times, yielding an overly pessimistic schedule. On the other hand, favoring predictability

and low variance, the philosophy of simpler designs in Reduced Instruction Set Computer

(RISC) architecture machines make the performance characteristics easier to analyze.

For the PC, the Intel Core 2 Duo, a CISC-based processor, provides two logical

processors in a physical package. Each processor has a separate execution core and first-

level (L1) cache. Both cores use a shared second-level (L2) cache, but the full capacity of

this cache can be used by one logical processor if the other processor is inactive. The

Core 2 Quad processor consists of two identical copies of the dual-core modules. Each

logical processor in both the dual and quad core packages accesses the outside world

through a shared system bus.

 58

The pipelined micro-architecture of the Intel Core contains (36):

• An in-order front-end that fetches instruction streams from memory. Four

instruction decoders handle up to five instructions per cycle. Decoded instructions (called

μops) are fed to an out-of order execution unit four at a time.

• An out-of-order execution engine that issues up to six μops per clock cycle. The

μops are reordered to execute as soon as operand sources are ready and execution

resources are available.

• An in-order instruction retirement unit that ensures μop execution results are

processed and completed in a sequence consistent with the original program order. A

peak instruction retirement rate of up to four μops per cycle can be attained.

Each processor core is able to fetch, dispatch, execute, and retire up to four

instructions per system clock cycle. When an instruction sequence causes the processor to

wait for a shared resource, the execution core performs other instructions rather than

sitting idle. For semantically correct execution, the results of instructions must be

committed in original program order before they are retired.

Due to the high level of pipelining in the processor, instruction timing data from Intel

is specified in the form of latency and throughput values. Latency is the number of clock

cycles necessary in order for the execution core to complete the execution of all of the

μops that form an instruction. Throughput refers to the number of clock cycles required to

wait before the same instruction can be accepted again. These values are implementation

dependent in that they can vary between different core models.

 59

Other factors affecting these timings can include:

• The memory type the instructions came from and any cache replacements or

memory write-backs that are subsequently required.

• Activities on other cores, what instruction sequences they are executing and have

recently completed.

• Code optimizations across all other running threads.

• Whether the processor is operating in 32-bit or 64-bit execution mode.

As a result of these variations, the often-used means of determining total execution

times by summing the clock cycle counts for a series of instructions is not valid for a

modern superscalar processor.

“Due to the complexity of dynamic execution and out-of-order nature of the execution

core, the instruction latency data may not be sufficient to accurately predict realistic

performance of actual code sequences based on adding instruction latency data.” (36)

Since reliable and precise clock-cycle counts for instruction execution times are not

available, results derived from generalized assumptions on how long individual

operations take are inadequate to predict required performance levels. Statistical

measurements on execution times gathered with an application profiler must be used

instead. The outcome of such an analysis effort is a stochastic schedule—ranges of

probability—that is only valid for a given execution environment and instruction

sequence, making it impossible to accurately determine the process run-time duration.

 60

Obtaining a deterministic result from a statistical approach is a difficult thing for

static scheduling to successfully achieve. Additionally, static execution schedules are not

very flexible in that minor changes to system requirements can mean huge new efforts to

rework the execution plan. With small, relatively simple systems with little to no OS

support, however, static scheduling can produce acceptable results.

In a dynamic scheduling environment, tasks are allowed to run according to the

availability of system resources and free processor clock cycles. Dynamic scheduling

may be either preemptive, where tasks are periodically interrupted so the system may

check if something else needs to run, or non-preemptive. Both preemptive and non-

preemptive systems require high degrees of cooperation between interacting threads, but

the amount of cooperation required is typically greater for the non-preemptive case. The

cooperation comes in the form of threads that appropriately signal their resource usage,

wait for other threads to release shared resources before proceeding, don’t block

unnecessarily or longer than required, and release control of the processor from time to

time during long-running loops of operations. Obviously, this type of cooperation must

be preplanned and developed into the system at implementation time.

Preemptive dynamic schedulers have an additional requirement of needing a source

of periodic interrupts, usually in the form of a hardware interval timer. The interrupt

service routine for the timer event will determine if another ready-to-run thread is waiting

and should be made running. If so, a context switch is performed by saving the current

thread’s state and loading the previously saved state from the next thread to run into the

processor. The interval of the timer’s timeout determines the time resolution of the thread

schedule. If the interval is too large, threads will potentially run for an excessive length of

 61

time, while other threads will miss critical completion deadlines. If the interval is too

small, threads will be interrupted more frequently than necessary and the increase in

overhead will limit their ability to make execution progress.

Threads may be managed according to their importance so that higher priority threads

receive greater access to the system processor. When all threads share the same fixed

priority, only a single work queue is required and threads can be serviced in a round-

robin fashion. With multiple thread priorities, or priority classes, a separate queue is

required for each shared priority level and waiting threads of the highest priority are

dispatched first. If priorities are not shared, each thread must have a unique priority, and

one work queue maintained in order sorted by priority is sufficient.

Priority-based scheduling creates an implementation challenge with many solutions

and algorithms that cover the gradient from simple and fast to complex and not so fast.

Many of the more complex approaches aim at detecting and avoiding threads that

deadlock over access to shared critical sections. A deadlock occurs when one thread

acquires a resource needed by another thread, and the other thread is blocking the

processor while it waits to acquire the resource it needs. The result is that neither thread

can make progress. A related problem occurs when higher priority threads are blocked

while waiting for lower priority threads to release resources, which leads to a situation

known as priority inversion. Static priorities can also lead to thread starvation, where

lower-priority threads never gain access to the processor due to the continued preemption

by higher-priority tasks. One solution to these problems lies in the introduction of some

form of priority inheritance, where a thread’s running priority is dynamically varied from

its base priority. Wait time, acquired resource priorities, and the priorities of other

 62

waiting threads can be used as factors in calculating the current thread’s actual running

priority.

Preemptive operating systems providing guaranteed response times may use Rate

Monotonic Scheduling (RMS) with static priorities. Threads are assigned priorities based

on the execution time of their work: the shorter the time, the higher the priority. Rate

monotonic analysis is used in the development of these systems to provide scheduling

guarantees for a specific application. Assumptions for a simple RMS implementation

include no resource sharing (so, deadlocks shouldn’t happen) and free context switches.

One must carefully evaluate whether these assumptions are legitimate for their particular

application.

In systems requiring mutual access to shared resources, arbitrary preemption of tasks

introduces the need for non-trivial resource access protocols, which can degrade system

performance and complicate system analysis and design (37). However, a fixed-priority

non-preemptive solution may lead to scheduling conflicts. An analysis of the worst-case

response times under fixed priority with deferred preemption scheduling (FPDS) and a

continuous time model is presented in (37). The central thesis of the work is to show that

previous analyses were fundamentally either too pessimistic or overly optimistic.

The benefit of dynamic scheduling over static is a reduction in the level of

information required on the behavior of the processes involved. Dynamic plans can also

be more flexible in accommodating changes and insertion of new jobs. However, it can

be more problematic to guarantee critical deadlines under a dynamic scheduling plan,

which usually results in contingency increases during design to ensure sufficient resource

 63

allocations. Dynamic scheduling also increases the overhead work required in preemptive

systems by periodically running a schedule and dispatch cycle. Increasing the

sophistication of the scheduler algorithm directly increases the corresponding amount of

overhead.

A method for the insertion of a random task within a predefined schedule of jobs,

such that existing real-time constraints are not violated, is presented in (38). The jobs (or

tasks) are assumed to be non-preemptive and must execute in the order given by the

schedule, although their start time can be delayed. The objective is to determine a suitable

point of insertion in the schedule for the new job without compromising critical

deadlines. A reference algorithm, without the real-time constraint, is provided and

subsequently shown to be 𝑂(𝑛2) in complexity. The algorithm is then divided into an

offline part, where the schedule is determined and pre-calculated, and an online part, for

when a job must be inserted. With the applied modifications, both the online and offline

parts are shown to be 𝑂(𝑛), which would make the method a reasonable solution for

accommodating a mix of static and dynamic scheduling, even for a suitably large number

of tasks. The work has the potential of bringing together the best of both static and

dynamic scheduling plans.

A further complication in the areas of real-time system analysis and design is the

variable frequency clocks for thermal management available in low-power devices (39).

Predicting system behavior while simultaneously balancing temperature-imposed clock-

speed limitations results in conflicting operational characteristic requirements that are not

addressed by existing design methodologies. The work of (39) is an effort to resolve this

problem through a calculus of reactive speed scaling. Although pointing out traditional

 64

worst-case execution scenarios do not apply in temperature-constrained situations, the

paper does not address schedulability analysis under the resulting clock-speed

constraints.

Of course, it would also be naïve to assume that a quad-core processor has four times

the capability that a single-core processor would have. The levels of parallelism implicit

in the algorithms and the amount of synchronization overhead required for their

execution limit the potential performance gain possible with multiprocessor systems. In

general, increasing the number of processors does not proportionally increase the

processing performance of the system, depending on the degree to which portions of the

application can be executed in parallel. Assuming a 50% parallel workload, (36)

calculates the expected performance improvement using two physical processors to be

only 33% compared to using a single processor, with four processors providing no more

than a 60% improvement over a single processor. In practice, it can be very difficult to

determine with any certainty the actual degree of parallelism present, since the final

application that runs is often some mix of user, library, and operating system code.

However, improper use of thread synchronization, discussed next, can reduce the

effective level of parallelism and diminish the potential performance gain through

processor scaling.

5.4 Synchronization

With a hardware-based design, getting multiple modules to execute in-step with one

another is basically a matter of running wires from their respective clock inputs to the

output of a common clock source. Similar synchronous behaviors in software are harder

to achieve; it is very difficult to run multiple code modules simultaneously with a high

 65

degree of timing precision. In single-processor multithreaded environments, concurrent

execution is obtained by interleaving the instructions from different threads according to

some schedule. With a multiple-processor solution, multiple threads may run together

over time, but predicting and guaranteeing their temporal behaviors and interactions are

critical and essential design challenges.

Unanticipated process interactions across shared data structures can cause

unpredictable, seemingly random, results. The manifestation of these interactions most

often comes in the form of spurious data corruption and system crashes. Debugging and

proactively eliminating the side effects from poorly behaved threads requires a great deal

of time and testing in order to achieve a satisfactory level of application performance and

reliability.

Consider the situation where two threads, thread-A and thread-B, execute the C

instruction n++, meaning take the current value of n, add one to it, and store the result

back in the memory location identified by the variable n. Once thread-A reads the current

value of n, it is then pre-empted by thread-B, which also reads the current value of n.

When thread-A resumes execution, it increments its local copy of n and saves the new

value to the memory location of n. Thread-B then does likewise, but since it is working

from an outdated copy of n it is overwriting the work of thread-A, and the resulting value

of n is now one too small. Thread-B should have been kept from accessing the value of n

from the point where thread-A initially read the value through to the time when the

update was completed.

 66

Preventing such race conditions across two or more threads requires the use of

synchronization primitives in the form of locks or signals. A lock can be used to allow a

single thread to gain exclusive access to a shared resource (a mutex), or to allow a fixed

number of threads access to a limited number of resources. A signal acts as a wait handle,

providing a predetermined point in the code execution path where multiple threads can

wait for one another before proceeding. It is important to remember that thread

synchronization is cooperative. If a thread bypasses a synchronization mechanism and

accesses the protected resource directly, the synchronization mechanism will not be

effective. Errors or exceptions occurring in the code after a thread acquires a lock must be

adequately handled and recovered so that the lock is released before the thread

terminates. Otherwise, the lock will never be released and any threads already waiting to

acquire the resource will block indefinitely, leading to a hung application.

In many ways, it would be better to have no interaction or shared resources between

threads, but this would limit the flexibility of solutions. For instance, in a system that

consists of one module for reading inputs and another module that processes these values

and calculates an output, since the input arrivals are potentially asynchronous in nature,

and the amount of time required to process the data could be variable, running both input

and output operations on a single thread can create undesirable characteristics. The output

could be delayed due to the timing of the input, or the input module could appear to be

unresponsive due to the long processing time required for calculating each output.

Separating the work into two threads allows each component to run at its own pace,

determined by either the arrival rate of the inputs or the processing time requirement of

 67

the outputs. However, this design requires the use of a shared data structure between the

two threads.

Even with non-shared resources, race conditions can unexpectedly occur with

numeric types that are wider than the system data bus. Changing the value of a 16-bit

integer on an 8-bit system, or 64-bit integer on a 32-bit system, requires reading and

updating two consecutive memory locations. A thread context switch that occurs in the

middle of the update cycle can cause the final value written to be in error.

Processing long-running tasks on the user-interface thread can make an application

look like it has become nonresponsive or completely broken, which eventually leads to a

poor user experience. Performing slow network activities, such as downloading large

files, in the background can appear to improve system performance since the processor

will be able to do other useful work while delayed tasks are waiting on external events.

When poorly thought out and improperly implemented, the consequences of using

multithread synchronization primitives can be excessive deadlocks and a priority

inversion, as previously described. Creating, maintaining, and synchronizing another

thread creates an additional system workload overhead. The performance improvement of

the new thread has to outweigh its overhead in order to yield a net benefit. An

implementer may feel that churning out threads to do work in the background will

necessarily improve the application’s performance. However, this improvement will only

be realized if all threads are doing useful work and are not competing for shared

resources. Once threads need to stop, wait, and synchronize with other tasks, the

associated performance penalties can outweigh the potential performance gains. No

 68

amount of increase in processor clock speed will make threads that are constantly

blocking run any faster.

Solutions designed for multithreading should prefer fine-grained locks and lock only

the smallest possible part that needs exclusive access, not entire methods or class data

structures. Locks should be acquired as late as possible in the code path and released as

soon as the work is completed. The number of threads should not exceed the availability

of dependent resources. When necessary, add a thread per available resource and then

scale out the number of resources to reduce performance bottlenecks. Avoid creating

threads on a per request basis, and instead manage long-running threads and message

queues. Considering the performance implications, design and implement lock-free

alternatives such as those presented in (40). Many of these access algorithms use a

timestamp or thread ID to mark the value most recently written. Before updating with a

new value, the ID of the current value is compared with the value the thread obtained

when the data was initially read. If these are different, another thread has made a change,

so the new value should be reread and the work recalculated. These are not perfect

solutions, but they solve many types of performance problems related to locking critical

sections in many circumstances.

5.5 Architectural Modeling and Languages for Real-time

Computer programming languages are oriented towards solving a problem through

the sequential execution of a series of instructions. Concurrency and parallelism lack the

support of available direct language constructs. Imperative languages like C++ are

wanting in the amount of declarative expressions available for the parallel operations

required of real-time systems. High-level-language keywords and constructs that say

 69

“Run these things together and put the combined results here,” are either nonexistent or

poorly supported by application development tools. Manual coding efforts to coerce a

better optimized parallel execution plan, using tactics such as loop unrolling where one

large loop is broken into multiple smaller loops, can yield significant performance

improvements but they result in code that is harder to support and maintain. During

implementation, developers are rarely aware of the underlying execution-time operating

environment, which requires different versions be implemented for the specific number

of processors available at run time.

Establishing some form of system model should not be an uncommon activity during

analysis and design stages of any system development methodology. Behavioral

modeling is especially critical in the design of real-time systems because the available

languages and tools are presently incapable of automatically revealing timing constraint

violations and general resource contention issues. As such, it is necessary to develop

models that permit the exploration of critical and essential features regarding system

operation. Good models will expose otherwise hidden information regarding the

characteristics of the system and potential modes of operational failure. Using the

information obtained from the modeling exercise allows a designer to explicitly specify

how the various components will fit together. These same models can also be used to

verify system behaviors post-implementation. Ideal modeling tools allow the direct

translation from design artifact to executable code.

While essential to the design process, structural models depicting the physical

composition and relationships between the key solution modules are insufficient for

building real-time systems. Some form of dynamic modeling, showing the causal patterns

 70

between external events or triggers and actions, is necessary to fully characterize the

system. Various types of statecharts and data-flow diagrams can be used to show state

transitions in the context of pre and post conditions as well as any actions that are

performed during the transition. Timing constraints can be more difficult to capture, but

analysis by some type of Petri-net is sometimes worthwhile. Petri-nets are better for

determining the existence of self (internal) loops and modeling the synchronization

requirements between distributed tasks, and are usually easier to construct than queuing

nets.

Object-oriented analysis and design practices for real time is visited by Rumbaugh et

al. (41) and partially addressed through the definition of the Object Model (structures and

relationships), the Dynamic Model (events and states), and the Functional Model

(operations and their data flows). The work was transformational at the time of

publication in that it provided an easy to read and understand class-oriented symbology

along with a consistent set of rules for their construction. However, it lacked the

necessary semantics to properly describe the interdependencies of concurrent threads of

execution, and instead repackaged classic computer science constructs, such as

statecharts, to fill in the missing pieces.

The development of the Unified Modeling Language (UML) (42) was the synthesis

and evolution of various ideas on object-oriented practices. The initial impetus behind

UML was to provide a unification of the best parts of a number of software and relational

database modeling and diagramming methods, such as the Object Modeling Technique

(OMT), from names like Booch, Gane & Sarsen, Jackson, and others including

Rumbaugh (41). Over time, UML has become excessively large and unwieldy,

 71

embodying an incomprehensible degree of complexity. With UML, there are many

equivalent ways to express the same model, resulting in several types of documentation

inconsistencies. Over time, UML has essentially turned into a basis for heavyweight and

expensive analysis methodology tools for commercial sale rather than a cohesive system

modeling language. Rational Rose from IBM (43) is one example of such a toolset that

has been corporately acquired and twisted to support the Rational Unified Process

(RUP). A RUP implementation requires significant investment in skills and training to

properly execute, often out of proportion to the end system being developed. A

methodology is usually represented by a gated process, a sequence of tasks and outputs,

that is presumed to deliver a consistently repeatable outcome. If, in order to produce

results, a methodology is overly dependent on the experience and skills of the people

involved in its execution, then it must contain indefinable and uncodifiable properties,

which limit its repeatability. Once the project development emphasis has shifted towards

a specific methodology implementation, the big process is no longer about doing the

system design work.

When a minimalist view of UML is taken, where only the parts of UML that are

necessary to communicate the ideas that one wishes to represent are used, the results can

be satisfactory. Capturing design requirements in the form of use cases and presenting

high-level structures and interactions in the form of object models and activity diagrams

is generally a worthwhile exercise. While essential for functional analysis and

requirements verification, however, once these models have been completed, the path to

object identification and implementation is usually unclear. One approach to object

identification from use cases in real-time embedded systems is discussed in (44). Since

 72

there is typically no one-to-one mapping between the two models, activity diagrams are

first constructed from the use cases, which then serve as the basis for object

identification.

Architectural description languages (ADL) based on Milner’s (45) Calculus of

Communicating Systems (CCS) or Communicating Sequential Processes (CSP) can be

used to specify the implementation of a programmable architecture for both hardware and

software. Wright, Darwin, or Piccola are typical ADL examples (46). ADLs differ from

UML in that they focus on the descriptions of components rather than on the whole

solution. Simulation using ADLs allows for design-space exploration and evaluation of

candidate architectures at a level of abstraction that prevents binding to specific point

solutions (47). Critics of an ADL-based approach (48) are instead seeking architectural

design languages that, rather than describing the current practice, aid in the identification

of the characteristics of correct solutions for future practices.

Prototyping system behavioral requirements from a well-defined CCS calculus to C#

and .NET are discussed in (46) where CCS processes and actions are mapped to C#

classes and methods, respectively. By describing the interactions across input ports and

output ports, the manner in which messages are passed between processes and how they

communicate with each other can be examined.

In a model-driven development exercise, integration with reusable standards-based

commercial components can reduce solution costs and time to market factors. Overall,

however, the integration process requires simplification and automation. Auto-generation

tools for synthesizing artifacts from models that support middleware component

 73

technology aid in system realization. The challenges associated with one approach for

component modeling in distributed real-time embedded systems are identified and

partially addressed in (49). The platform–independent design language developed uses

Java and the Component Object Resource Broker Architecture (CORBA) Component

System (CCS).

A component model framework implementation for extending C++ to support

concurrency, thereby integrating object-orientation and concurrency, is developed in (50).

Heavily influenced by Concurrent Pascal, the work involves the definition of an active

object that combines the concept of an object with that of a process, and claims a 50%

reduction in code size as a beneficial side effect. A reference implementation is given in

the form of a CD player developed for a commercial manufacturer.

Various programming languages are available to choose from for the development of

real-time systems. While it is possible to use nothing but assembler, high-level languages

such as C offer advantages of portability, maintainability, and developer productivity

over processor-specific assembly language implementations. While historically the

choice most often made has been C, C++ and an object-oriented paradigm are becoming

increasingly more prevalent (50) and accepted in industry. Not all features are available

in every language, so hybrid assembler approaches are not atypical of many real-time

solutions.

A listing of language features necessary to support real-time programming are

identified in (51). These features are grouped into four categories: essential, primary,

secondary, and performance. The essential language features given for real-time system

 74

implementation include the ability to access and control hardware, availability of bit

manipulation instructions, support for interrupt handling, and accessibility of pointers for

use with dynamic data structures. Fundamentally, these essential features are more

representative of specific patterns of solutions for traditional hardware-centric systems

than requirements for real-time system development. Access and control of hardware can

be, and should be in a good design, implemented in a device-appropriate way and then

abstracted for use by higher-level functions, thus removing the need for general

programming languages to support these low-level operations. Such designs create better

modularity and reusability, and allow the intervention of security access control

mechanisms of an underlying operating system. Interrupts and their handling are usually

a way of gaining control and somehow manipulating a type of thread creation

mechanism. Since the processor state is stored and then retrieved during an interrupt

event, the execution model is a kind of special-purpose micro-thread. Access to hardware

interrupts or external events is better done through a functional abstraction, with or

without operating system support, rather than directly through high-level code. The use of

pointers for creating and accessing dynamically created data structures, such as linked

lists, can likewise be implemented through abstractions in the form of reference types or

smart pointers, which require no direct memory access capabilities on the part of the

high-level language. Indeed, many of the essential features that are identified in (51) are

not critical or essential real-time language requirements at all.

When developing real-time applications, programming languages need to be able to

create and control tasks at the thread level, they need to be able to influence the scheduler

(if one is used) either directly or via setting thread priorities, and they require diverse

 75

types of atomic inter-thread synchronization primitives. These things are really more

operating system issues and not limitations of a particular programming language. While

some languages may be better suited than others for solving a particular problem, as long

as a language is supported by the operating system environment and libraries of thread

management and synchronization (and possibly timing control) functionality are

available, then in actuality any high-level language can be used to develop real-time

applications.

The particular choice of implementation language is more often determined by

operating system support and the manner in which the application and the OS will be

linked together. If the linking, the combining of the operating system with the

application, is done during or immediately after compile time (early binding), then the

source language of the operating system will predicate the application language. The C

and C++ languages don’t interoperate well with other languages without help—a large

portion of the development of Windows™ has involved getting C to play nice with other

development languages. Operating systems requiring early binding that have been written

mainly in C will carry with them language specific interoperability restrictions.

If the operating system provides an application loader and supports late binding, the

options for development languages become somewhat broader. More sophisticated

environments will provide memory management features, such as garbage collection to

automatically reclaim unused memory references. These services can limit the

predictability of real-time operations by introducing a potential near-random workload on

the system.

 76

The .NET Framework provides support for creating and managing threads and thread

priorities, as well as a variety of mutex types and exception-safe critical-section lock

devices. Many of the built-in collection classes (arrays and lists) include a synchronized

interface for cross-thread call capabilities. Asynchronous method calls, callbacks, and

software-based events are all integral parts of the run-time environment. While the real-

time suitability assessment of (52) is based on version 1.0 of the .NET Framework

(version 4.0 will be released shortly), it does correctly identify a weakness in the inability

to predict or specify when a scheduled thread will start. Presently, there is a timing

ambiguity over when a started thread will actually begin executing. If better control is

required, it may be possible to use the High Performance Event Timer (HPET) (53) on

newer PC system boards as a work around to this problem.

 77

Chapter 6 Development Framework Overview

The GNSS Receiver Development Framework project has been designed and

developed to address the issues of thread management, interprocess communication, and

module synchronization associated with the levels of parallelism required for real-time

software-based GNSS receivers. The main goals of the framework’s object-oriented

design are

• to be developed using a modern high-level language with tools that are intended

for the implementation of feature-rich applications;

• to provide a modular component model that supports a high degree of reuse

through inheritance and polymorphism;

• to integrate with other 3rd-party hardware and software components in as simple a

manner as possible;

• to act as an extensible baseline receiver reference.

Serving as the focal point for customization and functional composition, the Receiver

Development Framework provides the essential aspects for object creation

(instantiation), system orchestration, signal detection, synchronization, and tracking.

Unlike offline post-processing tools and utilities, the framework is intended to deliver the

critical performance characteristics necessary to achieve real-time receiver operation.

 78

A key requirement in the framework design is providing for the integration of

external hardware and software components in a seamless and consistent manner. Doing

so allows for the immediate reuse of existing solution pieces, while simultaneously

supporting the externalization of any newly developed features. As such, receiver

algorithms may first be developed and tested as software within the framework and then

migrated into hardware representations that can be hooked back into the receiver object

model for further testing and evaluation.

The receiver framework supports the development and integration of toolkits of a

variety of implementation types for each component category. Baseline performance

measurements and operational characterizations with one implementation strategy can be

made and used for direct comparison to alternate models for benefit evaluation. By

leveraging object-oriented design techniques such as polymorphism, model comparisons

can be made with minimal code changes simply by overriding the implementation of a

class virtual method and invoking the base method at run time.

The reference implementation provided is only one way, not necessarily the best, of

achieving a signal detection and tracking objective. However, it is the generalized set of

interfaces and abstract classes that give the framework its flexibility and offers the

greatest value to its consumers. The design of the framework establishes the philosophy

of defining an interface, declaring an abstract base that implements it, and creating

derived types that satisfy specific requirements. This framework is not intended to deliver

a toolkit or a collection of library components that must be incorporated into other

applications—instead, it is a development guidance reference for how receiver

 79

applications should be structured and constructed to achieve the most worthwhile results

in the shortest timeframe with the greatest opportunity for reuse and extension.

Since the operation of a receiver is to undo that which the transmitter does, the

receiver components and object models provided, or subsequently developed, could also

be modified and extended to create simulation-based signal generators for testing receiver

operations under controlled input conditions. A mathematical model of a signal could

easily be implemented that creates a binary file to be used as an input source for testing

receiver performance.

6.1 Receiver Framework Architecture Diagram

The receiver framework diagram, shown in Figure 6-1, serves as the solution

overview and a roadmap to the following documentation. Each functional block is

documented in greater detail in sections that describe the operational requirements,

characteristics, and interactions with other system components. While the intention of the

framework is to provide a development tool for the research of GNSS and other spread-

spectrum receivers, the modular definition of the components allows for a kind of plug-

and-play approach to the overall system implementation.

 80

Analog

Front-end

Signal Device

Driver Interface

Acquisition &

Tracking Classes

PRN Code

Generators

Data Demodulator

Components

Navigation

Interfaces

Atmospheric

Model

Descriptions

Interop Support

Receiver Development

Framework

External Libraries

and Applications

Thread

Management

Frequency

Domain Operators

Common Type

Definitions

Receiver

output

Figure 6-1—Block diagram model of the Receiver Development Framework

Each box in the development framework diagram represents a collection of related

pieces that combine to produce the expected output from the corresponding module. All

that is necessary to change or extend a component is to implement the classes of objects

that support the required interfaces and methods. While the greatest flexibility will be

achieved when all of the components are developed in software, there is nothing in the

overall design that precludes the substitution of a specialized hardware device in place of

a class method or an entire class implementation, as long as the hardware fully supports

the expected input and output parameters of the method being replaced. It is for this

reason that the system was developed in such a way that it more closely resembles the

block diagrams of the hardware that it represents.

The object-oriented design takes advantage of the reusability available through

inheritance and polymorphism. Types that are derived from a common base class can be

thought of as new implementations of the base-class functionality. Invokers see no

 81

difference in the calling semantics, and implementers can leverage any suitable

functionality existing in the base class. Reuse exists, therefore, at two levels.

The analog front-end is used to tune, band-limit, and sample the incoming signal so

that it can be brought into the system in the form of a stream of binary data. It is

connected to the framework through a set of signal device driver interface components

that are used to structure the properties and attributes of the device data source into a

format that is compatible with the dependent subsystems.

Interoperability support features allow previously developed functional libraries

and external hardware devices to be tied into the system in a uniform and consistent

manner without a great deal of effort or intellectual overhead. Although dependent on the

polymorphic behavior of the framework’s object-oriented design, the interoperability

layer allows for high degrees of reuse and application flexibility.

While not necessarily an integral part of the receiver framework in that they borrow

from and must be supported by operating system constructs, the thread management

components represent a collection of work queues and synchronization primitives that are

required to help ensure the desired real-time performance objectives of the system.

Events and delegates available to other system components are considered part of thread

management services, and patterns for their use are provided. Support for multithreaded

processes is largely dependent on the underlying operating system characteristics.

The frequency operators section refers to the frequency-domain essentials of signal

processing. These include FFT/DFT functions and their inverses, filtering functions, and

other operations necessary to transform input signals into useable data. Reference

 82

implementations have been provided as parts of the receiver framework; however, these

can easily be replaced with alternate software algorithms or with customized external

hardware blocks.

Classes and supporting interface specifications for items that are commonly

encountered or shared between operations such as the Complex data type and system

status enumerations are provided in the common type declarations of the receiver

framework. Data types and structures that bridge between functional modules can be

considered as part of the common type library.

Pseudo-random noise (PRN) code generators are required to reproduce an exact

replica of the sequence of binary chips that was originally used by the transmitter to

spread the signal. Only the GPS C/A codes are currently provided, but different code

types and generating methods are supported by extension.

The signal acquisition and tracking module contains the classes that are responsible

for finding the presence of PRN sequences in the received signal and keeping the locally

generated sequences in synchronization. The acquisition process attempts to discover a

transmitted sequence by cross-correlating the incoming signal with each possible

spreading code while looking for a peak in the correlator output. After signal acquisition

is completed, a collection of objects is returned for tracking—each object representing a

detected PRN sequence in the input signal. Object models for a phase-lock loop (PLL),

delay-lock loop (DLL), and a numerically-controlled oscillator (NCO) are provided as

part of this module. Solution implementations vary widely in their approach to signal

 83

detection and demodulation, so these components are offered as reference utilities that

may be used, altered, extended, and replaced as needed.

The data demodulator components contain the code that is required to extract, verify,

and process the recovered navigation data message. Any required data formatting and

validation functions may be included in this block as well.

Atmospheric models and navigation message interfaces are identified as parts of the

framework, but no reference implementation has been provided as of yet. Libraries from

other sources such as the GPSTk toolkit (54) from the University of Texas at Austin have

been integrated into the framework, and support for these functions could easily be

extended. Details of this integration work are provided in Appendix A.

6.2 Pipeline Processing Model

The preferred batch-oriented approach (6) to software-based post-processing signal

demodulation is a compute-intensive solution, which often requires several hours of

offline execution time to analyze even just 30-40 seconds worth of captured and stored

data. Efforts to achieve real-time performance through optimization of the individual

post-processing stages usually follow a similar sequential program flow as was originally

provided, without creating extensions for parallelism. As such, it is unlikely that these

works will ever manage to attain the throughput required for a real-time signal processing

application.

By dividing the signal processing activities into two parts, data capture followed by

iterative calculations—capture-then-process—the resulting CPU workload becomes non-

 84

uniform with time, as illustrated in Figure 6-2. The sampling task is time critical but low

workload, while the calculations are not time critical but they are high workload.

100%

0%

Utilization

sampling calculating sampling calculating

time

Figure 6-2—CPU Workload with a capture-then-process signal processing approach

When a real-time solution is attempted using this processing model, it becomes

necessary to run both the sampling and calculating activities in parallel. Individually, it

may be the case that neither activity exceeds the performance capacity of the system

processor, but when combined the deficiency in spare CPU cycles makes itself apparent.

One approach to contend with this workload balance issue is to run each activity on

system threads with suitably higher or lower priorities.

If the sampling work is performed on a higher-priority thread, the calculation

activities will be preempted often and require an excessive amount of time to complete.

As a result, the signal samples will be arriving at a rate faster than the system can process

them and will have to be queued or buffered. Keeping the system synchronized under

these conditions is a challenging exercise. With limited system memory resources, signal

buffering will eventually overflow and the application will have to cease functioning.

Likewise, if the sampling work is performed on a lower-priority thread than the

execution of the calculation activities, giving more processor time to run the

 85

computational workload, signal samples will undoubtedly be missed. At best, dropping

input data samples will cause the system to lose signal synchronization, but it can also be

a pernicious and hard to detect source of data errors.

Overall, to execute the capture-then-process computational model in real time is

extremely challenging and requires careful performance tuning and optimizations in order

to realize adequate results. It is for reasons of complexity and performance that previous

solutions based on this approach have not been real time.

6.2.1 Synchronous Pipeline

An often used construct of high-performance computer architecture is the sequential

pipeline, where functional blocks are linked together in a chain and driven by a common

clock. Each block in the chain achieves some measure of work in the time interval

between clock pulses (ticks) contributing to the overall operation. New operations are

started at the beginning of the pipeline while in-progress operations occur during

successive stages. The output of one block becomes the input for the next, and the final

result is taken from the output of the last stage in the sequence.

S1 S2 S3 SN

Clock

Source

Input Output

Figure 6-3—Pipeline structure with a common clock

An N-stage pipeline is shown in Figure 6-3. While it takes an amount of time equal to

N stages to initialize and fill the pipeline, once filled a new result is produced on each

 86

clock cycle. It is the common shared clock that makes this a synchronous pipeline, the

rate of which must be lower than the maximum input-to-output delay of the slowest block

in the chain. In hardware, the clock source is usually the output of an oscillator or some

other reference signal that is physically wired to a control point on each stage that latches

the input data between clock transitions.

Without access to a shared time reference, pipelines are difficult to build using

software constructs. However, the same pipeline structure as presented in Figure 6-3 can

be achieved in software applications with events and event handlers. To do so requires

that event handlers from multiple object instances be assigned to respond to a single

shared event source. The shared event source serves an equivalent role as the common

clock in the hardware version, such as the configuration shown in Figure 6-4.

S1 S2 S3 SN

Common

Event

Source

Input Output

One event every T

seconds

Event

Handler

Event

Handler

Event

Handler

Event

Handler

Figure 6-4—Event-driven synchronous pipeline process

An event, such as a signal sample arrival from a common source, is raised every 𝑇

seconds, making the event frequency 𝐸𝑓 = 1
𝑇 . The N-stages of the pipeline are filled in

𝑁 × 𝑇 seconds and a new result is produced every 𝑇 seconds. Basically, the structure

mimics the properties of a hardware-based implementation, including running at the

slowest stage performance level. The throughput benefit of this model results from the

 87

more evenly distributed workload due to the processing that occurs between the event-

trigger intervals.

Unfortunately, with software-based events, the system makes no guarantee as to the

order of delivery of the event signals to the various subscribed handlers. The order in

which the event handlers are registered with the event source can influence but not fully

determine which handlers will receive the event notification first. If the last stage is

triggered to run out of sequence with the rest of the pipeline, the resulting output would

be a repeat from the previous cycle and obviously an error. A synchronous pipeline

requires additional semaphores, wait handles, or other shared synchronization primitives,

such as a synchronized queue between stages, to reliably execute in software, each of

which negatively impacts system performance and increases implementation complexity.

6.2.2 Asynchronous Pipeline

The receiver framework makes use of an innovative event-driven asynchronous

pipeline model for the processing activities involved in signal acquisition and tracking, as

shown in Figure 6-5. Each stage in the pipeline is notified by an event from the preceding

stage that the next signal sample is available for processing. The stage reads the passed-

along prior stage’s output value as its input and updates its current time. The stage then

performs a small amount of processing on the sample and sets its output property to the

newly calculated result. Finally, the stage signals, through a new event to the successor

downstream stage, that it has completed its processing chore and its output is stable. As a

result, each sample is time stamped as it arrives and is allowed to ripple through the

pipeline without blocking or interfering with the processing activities of the antecedent

stages.

 88

S1 S2 S3 SN

Event

Source

Input Output

One event every T

seconds

Event Event Event

Figure 6-5—Asynchronous software pipeline model using event coupling between successive

stages

As shown in Figure 6-5, the pipeline is initiated by the event source at stage S1

occurring at regular intervals every 𝑇 seconds. After responding to the event and updating

its output, S1 then raises its own event at time 𝑇 + 𝜏1, where 𝜏1 is the S1 processing delay.

The new event signals to downstream subscribers that the outputs from stage S1 have

been updated and are stable. Each stage repeats this sequence, cascading the event and

the data sample along the way.

The total N-stage pipeline propagation delay, 𝜏𝑡𝑜𝑡𝑎𝑙 , can be given by

𝜏𝑡𝑜𝑡𝑎𝑙 = 𝜏𝑘

𝑁

𝑘=1

 6-1

As long as 𝜏𝑡𝑜𝑡𝑎𝑙 is kept to less than the event arrival interval 𝑇, the performance

characteristics of the asynchronous pipeline are equivalent to those of the synchronous

one in that the N-stages of the pipeline are filled in 𝑁 × 𝑇 seconds and a new result will

be produced every 𝑇 seconds, without the drawback of having an unpredictable event

delivery order. The delivery sequence is entirely determined by the pipeline organization,

 89

and events can be triggered at different rates that are appropriate for the output timing

characteristics of the component.

For real-time operation, it is important to keep each stage’s event handler

computationally simple and to limit the overall length of the pipeline in order to minimize

the total processing delay. Tasks that need to run longer or do more work than is practical

in the event handler should do so on blockable worker threads that are created and started

when the object instance is initialized. The basic pipeline stage element is shown

conceptually in Figure 6-6 for the pipeline stage S1. The stage properties include input,

output and time data values that are inherited from the component base class.

S1

Event handler

Worker threads

Stage

Properties

Figure 6-6—Pipeline stage 1 event-handler structure with separate worker threads

Unlike other software-based signal processing models that operate by collecting a

large number of samples and then processing them in bulk, the pipelined approach allows

a single sample to trickle through the system and be processed in real time. Each pipeline

stage in the receiver framework has, in addition to an input and output, a control object

access point that optionally allows feedback from downstream or external components so

that its behavior can be regulated by the outputs of other objects. The pipeline component

model allows one to easily mimic hardware timing behaviors and functions in software.

 90

As defined, the model more closely resembles a discrete time-domain representation of a

feedback control system block diagram, which minimizes the need for processor

intensive transform-based analysis of large blocks of signal data.

6.2.3 Pipeline Component

Each component of the pipeline is derived from a common base class, shown in

Figure 6-7, that implements the IPipelineComponent interface representing the minimum

functionality required to participate in the receiver pipeline structure. Generalizing the

component description in this manner allows the overall configuration of the pipeline to

be highly adaptable, easily supporting the creation and integration of new components.

However, if needed, existing components can be enhanced through extension to support

additional specialized properties and methods as required, without significant loss in

flexibility.

+StageEventHandler()

+UpdateOutput()

«interface»

IPipelineComponent

+StageEventHandler()

+UpdateOutput()

«signal»+Done(in sender : PipelineComponent)

+Input

+Output

+Time

+ControlObject : PipelineComponent

PipelineComponent

IPipelineComponent

Figure 6-7—Pipeline component object model

The PipelineComponent base class provides default behaviors for the stage’s

StageEventHandler and UpdateOutput methods. New pipeline components can be

defined by inheriting from this base and overriding the functionality of either

StageEventHandler or UpdateOutput, or both. Components can be made to behave as

 91

basic gain stages, where the output is a simple product of the input, or they can perform

more complex functions such as summers and integrators.

The ControlObject property of a PipelineComponent can be used to externally

regulate the output of a stage. Controlling transfer-function properties based on input

signal characteristics, such as gain or correlator detection thresholds, or adjusting

frequency and phase for signal mixing, are the expected typical uses of the ControlObject

property. If a specific type of controller object is required by a stage, such as the output

of a low-pass filter for a voltage-controlled oscillator in a phase-lock loop, the provided

base-type reference may be appropriately cast to the required derived type.

Since the PipelineComponent event signal, Done, includes a parameter that is a

reference to the signal sender, the output value is actually passed from one stage to the

next in the event itself. Consequently, pipelines can be organized with multiple parallel

pathways by assigning the event handlers from two or more components to the same

event source. Specialized observer components can tap into pipeline outputs at any stage,

recording time and sample values to disk or sending them to a graphical display object

for plotting.

Figure 6-8 shows an example of a system with a forward control path for gain, a

feedback path for regulation, and a signal tap for data recording. An input stage sends a

data value through an event to a mixer and automatic-gain control (AGC) stages. The

AGC stage sets its Output property based on the average level of the input, and although

it may raise an event, it has no listeners so no additional action is triggered. The mixer

stage produces an output based on some function of the input signal and its

 92

ControlObject property, the output of a downstream phase detector. The mixer then raises

its Done event. An integrator stage responds to the event from the mixer and uses the

input value and the output from its ControlObject property, the AGC component, to

determine the length of integration time.

Mixer Phase Filter
Input

Event

Output

Event

Event Event Event

AGC




0

Control Object

Control Object

Record

Figure 6-8—Example pipeline configuration showing feed-forward and feedback control objects

with parallel pathways

The integrator updates its output and triggers an event for the Phase detector. The

phase detector output is looped back to control the Output property of the earlier mixer

stage, and its triggered event passes along an output to the filter component that creates

the final result. The phase Done event is also connected to a data record object that copies

the Time and Output information from the event to a persistent data store, such as a file or

relational database.

Care must be taken not to stall the main event thread executing the

StageEventHandler by invoking long-running or overly involved operations. Lengthier

processing loops, when required, can be executed by creating and initializing a separate

worker thread.

 93

6.2.3.1 Properties

Input: the data value passed from the output of the previous stage that is valid for the

current time index.

Output: that data value that will be passed to the next stage in the pipeline after the

Done event is raised. Typically,

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝐼𝑛𝑝𝑢𝑡,𝑇𝑖𝑚𝑒,𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑂𝑏𝑗𝑒𝑐𝑡.𝑂𝑢𝑡𝑝𝑢𝑡, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)

Time: a relative or absolute time value for the sample currently being processed.

Outputs that are calculated from time-based functions use the value of this property as the

time parameter. The difference in time between two successive samples will be the

stage-1 event source’s event rate, T.

ControlObject: allows feed-forward or feedback control from an external pipeline

component. The ControlObject.Output property may be used in the calculation of the

stage’s Output value.

6.2.3.2 Methods

StageEventHandler: the virtual event handler for the Done event. The default

implementation provided by the PipelineComponent base class, which can be overridden

in derived classes, performs the following sequence of operations:

1) Sets the Time property to the event sender Time

2) Sets the Input property to the event sender Output

3) Calls the virtual method UpdateOutput to change the Output property

4) Raises the Done event and forwards a reference to itself as the sender object

 94

This default component behavior is equivalent to the unit delay (𝑧−1) transfer

function.

UpdateOutput: virtual method that is used to calculate the Output property based on

the Input, Time, and ControlObject property values. The base-class version of

StageEventHandler calls the UpdateOutput method after changing the Input and Time

properties and before it raises the Done event. The default function performed by

UpdateOutput is to set the Output = Input, thereby acting as a single-stage delay. The

majority of new classes derived from PipelineComponent should only need to provide a

definition for UpdateOuput and inherit all other attributes from the base class.

6.2.3.3 Events

Done: signals to other stages that this object has finished updating its Output

property. A reference to the sender object is passed as a parameter.

6.2.4 Pipeline Container

The pipeline components are configured into the desired sequential structure,

dependent events connected, and control objects assigned as part of a PipelineContainer

class. All that is required to run multiple pipelines in parallel is to create multiple

container instances and connect them to the front-end event source.

 95

+StageEventHandler()

+UpdateOutput()

«interface»

IPipelineComponent

+StageEventHandler()

+UpdateOutput()

«signal»+Done(in sender : PipelineComponent)

+Input

+Output

+Time

+ControlObject : PipelineComponent

PipelineComponent

IPipelineComponent

+PipelineContainer()

+Initialize()

PipelineComponent::PipelineContainer

Figure 6-9—PipelineContainer class diagram

The PipelineContainer type is derived from the PipelineComponent so that larger

pipelines can be comprised of smaller ones; pipelines may contain stages that are

themselves pipelines.

6.2.4.1 Properties

Inherits the properties of Input, Output, and Time from PipelineComponent. Derived

types may need to add properties that expose selected state information of the contained

PipelineComponents as computational results to objects that created the pipeline. In the

case of the reference GPS application, a derived PipelineContainer class is defined that

extracts the carrier and code phases and carrier Doppler values, as well as the latest

output navigation data bits, for a single tracked satellite as properties of the container.

6.2.4.2 Methods

PipelineContainer: a class constructor method that gets called when an instance is

created. The various constituents of the pipeline will need to be initialized and the events

 96

hooked together and this is a good place to do it. The bulk of the work may be put into

the Initialize method, described below, so that the pipeline may be reinitialized without

having to be recreated.

Initialize: used to reinitialize the pipeline configuration.

6.2.4.3 Events

PipelineContainer inherits the Done event from PipelineComponent. Additional

events to notify external objects of changes in the pipeline state may be added to derived

class instances as necessary.

6.2.5 Phase-Lock Loop Pipeline Component

The purpose of the PLL is to accurately track the frequency and phase of the

incoming signal carrier after the DLL has removed a properly aligned code. If the

location of the navigation data bits is known, a coherent PLL can be used. However,

usually this is not the case, so a Costas-type or squaring discriminator is required. 1
st
 and

2
nd

-order PLLs are described and characterized in (6), and the PLL implementation

provided by the receiver framework is based largely on that work. Reference (55)

provides an analysis of the performance characteristics of GPS weak-signal tracking

using a 3
rd

-order PLL. An optimal loop filter for the discrete-time PLL operating at

steady-state is obtained in (56) using Wiener’s analysis of the minimum-mean-squared

error of the phase difference between the input signal and the PLL output. Many of the

texts consider only the analog nature of PLLs, and ignore the consequences of their

discrete characterizations, such as (3) and (4).

 97

LP

Filter

VCO

θi(t)

θf(t)
-

VO(t)
k0

Figure 6-10—A basic phase-lock loop

Figure 6-10 shows the time-domain representation of a basic PLL. The output of the

phase comparison is the difference between the phases of the input signal and the output

of the voltage-controlled oscillator (VCO). The transfer function of the low-pass (LP)

filter is given by

𝐹 𝑧 = 𝐶1 +
𝐶2

1 − 𝑧−1
 6-2

which is simply a first-order PI (proportional integral) controller.

C1

C2

z
-1

Input Output

Figure 6-11—PI controller as the filter function for a PLL

 98

The VCO can be replaced with

𝑁 𝑧 =
𝜃𝑓 𝑧

𝑉𝑂 𝑧
≡

𝑘1𝑧
−1

1 − 𝑧−1
 6-3

The PLL transfer function can be written as

𝐻 𝑧 =
𝜃𝑓 𝑧

𝜃𝑖 𝑧
=

𝑘0𝐹 𝑧 𝑁 𝑧

1 + 𝑘0𝐹 𝑧 𝑁 𝑧
 6-4

Substituting equations 6-2 and 6-3 into 6-4 results in

𝐻 𝑧 =
𝑘0𝑘1 𝐶1 + 𝐶2 𝑧

−1 − 𝑘0𝑘1𝐶1𝑧
−2

1 + 𝑘0𝑘1 𝐶1 + 𝐶2 − 2 𝑧−1 + 1 − 𝑘0𝑘1𝐶1 𝑧−2
 6-5

From which, it can be shown (6) that

𝐶1 =
1

𝑘0𝑘1

 8𝜁𝜔𝑛𝑇𝑆

 4 + 4𝜁𝜔𝑛𝑇𝑆 + 𝜔𝑛𝑇𝑆 2
 6-6

𝐶2 =
1

𝑘0𝑘1

4 𝜔𝑛𝑇𝑆
2

 4 + 4𝜁𝜔𝑛𝑇𝑆 + 𝜔𝑛𝑇𝑆 2
 6-7

Where the natural frequency, 𝜔𝑛 , and the damping factor, 𝜁,can be found from

𝜔𝑛 =
𝑘0𝑘1

𝜏1
 6-8

𝜁 =
1

2
𝜔𝑛𝜏2 6-9

 99

Additionally,

𝜏1 =
𝑇𝑆
𝐶2

 6-10

𝜏2 =
2𝜏1𝐶1 + 𝑇𝑆

2
 6-11

The desired loop characteristic usually specified is the noise bandwidth, 𝐵𝑛 , which for

the second-order system implemented is equal to

𝐵𝑛 = 𝐻 𝜔 2
∞

0

𝑑𝜔

=
𝜔𝑛

2
(𝜁 +

1

4𝜁
)

6-12

Typical values for the noise bandwidth are in the range of 15-25 𝑉/ 𝐻𝑧, and the

damping factor is usually specified to be the critically-damped value of 0.7; i.e., the poles

of the characteristic equation will be real and equal.

There are many different, but equivalent, ways to code a digital filter and control

loop, so the stability effects due to the loop gains 𝑘0 and 𝑘1are not able to be easily

generalized. Ensuring stability for the PLL involves evaluating a modified Routh-

Hourwitz criteria using a bilinear transform to the 𝜔-domain (not the best choice for a

discrete system), or preferably conducting Jury’s stability test (57). A few of the controls

related details for tracking loop implementations are provided in Appendix B.

Loop stability as related to the signal sample rate, 𝑇𝑆 , for the classic Type-2 PLL has

been evaluated in (58). The open-loop gain, 𝐺𝑂𝐿, is given by

 100

𝐺𝑂𝐿 𝑧 = 𝜔𝑛𝑇𝑆
2
𝑧

1
2 +

𝜏2

𝑇𝑆
 +

1
2 −

𝜏2

𝑇𝑆

 𝑧 − 1 2
 6-13

and the resulting gain margin is,

𝐺𝑀 = −20 log(𝜁𝜔𝑛𝑇𝑆) 6-14

However, the gain margin is only defined provided that 𝜔𝑛𝑇𝑆 < 4𝜁.

In the situation where the PLL is operated in a coherent integrate-and-dump

configuration, it is important to realize that the value of 𝑇𝑆 will correspond to the

integration interval (typically, the length of a spreading code) and not the actual sampling

rate. As a consequence, the gain margin may be considerably smaller than expected and

the combined code and carrier loop could exhibit a loss of signal tracking due to loop

instability.

The most frequently encountered PLL phase discriminator functions (59) are

provided in Table 6-1. In the table, the terms 𝐼𝑘and 𝑄𝑘 are the in-phase (real) and

quadrature (imaginary) components of the signal. The recovered data bit stream is taken

from the I arm of the output of the PLL, since every bit-transition will cause a 180° phase

reversal in the carrier and will be seen as an abrupt change in the polarity of the PLL

output.

 101

Discriminator Description

𝜃 = 𝑠𝑖𝑔𝑛 𝐼𝑘 𝑄𝑘

Computationally simple, output is

proportional to the sine function

𝜃 = 𝐼𝑘𝑄𝑘
Medium calculation complexity, output is

proportional to sine function

𝜃 = tan−1
𝑄𝑘

𝐼𝑘

High computational workload, output is the

phase error

Table 6-1—Typical PLL discriminator functions

The PLLPipelineComponent class diagram is shown in Figure 6-12. As the name

suggests, the PLLPipelineComponent inherits from the PipelineComponent base class so

that instances may be created and configured to participate in the signal processing

pipeline. Consequently, the PLLPipelineComponent has access to the default Input,

Output, and Time properties, as well as sending and receiving pipeline events.

 102

+StageEventHandler()

+UpdateOutput()

«signal»+Done(in sender : PipelineComponent)

+Input

+Output

+Time

+ControlObject : PipelineComponent

PipelineComponent

+PLLPipelineComponent()

«signal»+IterationComplete(out sender : PipelineComponent)

-NCO : NCOPipelineComponent

+Dwell : double

+Frequency : double

+Phase : double

-loopFilter

PipelineComponent::PLLPipelineComponent

Figure 6-12—PLLPipelineComponent class diagram

6.2.5.1 Properties

NCO: A private reference to an instance of a numerically-controlled oscillator

component. The PLL controls the frequency and phase properties of this object, which is

also shared with the DLL component.

Dwell: A public property for controlling the length of time the PLL integrates the

product of the incoming signal and the NCO output before evaluating the phase error and

adjusting the frequency and phase of the NCO.

Frequency: Since the NCO is a privately held reference, the Frequency property is

used by other pipeline members to view the current frequency of the tracked signal.

Phase: Used by other pipeline members to view the current phase of the tracked

signal.

 103

loopFilter: A private reference to an instance of a Filter class that performs a

smoothing operation on the output of the discriminator function. The output of the filter

is used to adjust the NCO frequency and phase.

6.2.5.2 Methods

PLLPipelineComponent: Class instance constructor that is used to initialize the

various internal states.

6.2.5.3 Events

IterationComplete: In addition to the inherited Done event, the class also raises this

event to signal to interested listeners that the amount of time equal to the dwell time has

passed since the start of the last integration period. The firing of this event represents the

completing of the dump part of integrate and dump.

6.2.6 Delay-Lock Loop

Following the acquisition process, the DLL receiver component performs the cross

correlation between the incoming carrier, that has been mixed with the signal from the

NCO and the locally-generated PRN code in order to produce a code-removed version of

the signal that is then fed to the PLL for message bit recovery. Correlation can be

performed as multiplication in the frequency domain, or as integration in the time

domain. Usually, the integration method is harder (or, at least more mundane), so many

post-processing receivers are implemented using the frequency-transform-based

approach. The pipeline processing model of the receiver framework makes performing

the integration a fairly simple and natural operation. After each event from the

predecessor stage, the input value is added to a sum accumulator, and a test is made

comparing the Time property to the integration interval end time. If the integration time

 104

is complete, the total sum is normalized by multiplying the sum by the sampling time

interval (dividing by the sampling rate) and the result is then produced as an output, after

which the accumulated sum is reset to zero. A multichannel software correlator using a

combined DSP and PC environment and a 12 MHz sampling rate is tested in (59).

The DLL keeps the locally-generated replica of the code time-aligned with the code

in the carrier by maintaining three correlation results with an on-time (Prompt, P), an

advanced (Early, E), and a delayed (Late, L) version of the local code. When the E

correlation result is higher than the P result, the indication is that the local code is running

behind since the advanced version fits better. Likewise, when the L result is higher, the

local code is running advanced, since the delayed version fits better. The usual spacing of

the early and the late codes is ½-chip interval ahead and behind the prompt timing.

E P L

E P L

E P L

(a) Aligned P code (b) Code is early, late

version fits better

(c) Code is late, early

version fits better

Figure 6-13—DLL E, P, L correlator outputs under on-time (a), early (b), and late conditions (c)

Depicted graphically, the DLL operates as shown in Figure 6-13. The triangular

shaped outline represents the envelope of the expected range of values of the PRN cross

correlation function. The goal is to keep the P correlator output in the apex of the triangle

with the E and L values on either side as seen in (a). When the timing of the local code

 105

generator advances, situation (b), getting ahead of where it should be, the output from the

L correlator peaks higher than that of either the E or P correlators—the late version fits

better, so the local code must be ahead of the received code. Feedback control from a

discriminator function will cause the timing of the code generator to slow down, bringing

it back into alignment. The reverse happens when the E correlator output peaks (c).

Local Code

Generator




0




0




0

d(l)

E

P

L

Input Signal

Prompt code output

Phase-aligned carrier

replica from NCO

Figure 6-14—DLL correlator block diagram

A block diagram of the correlator section of a DLL is presented in Figure 6-14. The

input signal from the front-end sampler is mixed with the output from the PLL controlled

NCO and multiplied by early, prompt, and late code sets. After integrating for an interval

of time, 𝜏, usually equal to the code duration, the correlator outputs are then compared

with a discriminator function to produce the feedback variable.

Various DLL discriminators are given in Table 6-2 from (59). In the table, the terms

𝐼𝐸 , 𝐼𝐿 , 𝐼𝑃and 𝑄𝐸 ,𝑄𝐿 ,𝑄𝑃 are the in-phase (real) and quadrature (imaginary) components of

the Early, Late and Prompt correlator outputs.

 106

Type Discriminator Description

Coherent 𝑑 = 𝐼𝐸 − 𝐼𝐿

Simple discriminator, can only be

used when the carrier phase and

data- bit locations are known

Non-

coherent

𝑑 = 𝐼𝐸
2 + 𝑄𝐸

2 − (𝐼𝐿
2 + 𝑄𝐿

2) Early power minus late power

𝑑 =
 𝐼𝐸

2 + 𝑄𝐸
2 − 𝐼𝐿

2 + 𝑄𝐿
2

 𝐼𝐸
2 + 𝑄𝐸

2 + 𝐼𝐿
2 + 𝑄𝐿

2
 Normalized early minus late power

𝑑 = 𝐼𝑃 𝐼𝐸 − 𝐼𝐿 + 𝑄𝑃(𝑄𝐸 −𝑄𝐿) Dot product

Table 6-2—Typical DLL discriminator functions

The receiver framework DLLPipelineComponent class diagram is provided in Figure

6-15. The reference implementation uses the normalized 𝐸 − 𝐿 discriminator function to

keep a PRN code generator instance aligned with the received signal. The Output

property is set to the Input property times the PRN sequence value for the current sample

time.

 107

+DLLPipelineComponent()

«signal»-IterationComplete(out sender : PipelineComponent)

-PRNGenerator : GPSCAPRNGenerator

-loopFilter

+E

+P

+L

+dwell : double

+codeDelay : double

+Locked : bool

+chipRate : double

PipelineComponent::DLLPipelineComponent

+StageEventHandler()

+UpdateOutput()

«signal»+Done(in sender : PipelineComponent)

+Input

+Output

+Time

+ControlObject : PipelineComponent

PipelineComponent

Figure 6-15—DLLPipelineComponent class diagram

The DLLPipelineComponent is derived from the PipelineComponent base class and

as such, inherits that class’ properties, methods, and the Done event. It is then extended

with DLL-specific characteristics.

6.2.6.1 Properties

PRNGenerator: A private reference to one of the PRNGenerator classes that will

produce the correct code value in a sequence for a given point in time.

loopFilter: A private reference to an instance of a Filter class that performs a

smoothing operation on the output of the discriminator function. The output of the filter

is used to adjust the PRN generator delay property.

E: the current value of the integrator for the Early code correlator.

 108

P: the current value of the integrator for the Prompt code correlator.

L: the current value of the integrator for the Late code correlator.

dwell: the length of time, 𝜏, that the correlator will integrate for before invoking the

discriminator function and adjusting the PRN code delay.

codeDelay: the current tracked PRN delay value. This output is used to calculate the

signal transit time, modulo 1 ms, for pseudorange measurements.

 Locked: indicates that the DLL is actively tracking a signal. If this property changes

to false, the signal must be reacquired.

chipRate: the current PRN chip rate. With large Doppler shifts, the code generator

chipping rate needs to be adjusted in order to maintain better tracking control.

6.2.6.2 Methods

DLLPipelineComponent: class constructor that is used for initializing the instance

state variables.

6.2.6.3 Events

IterationComplete: an event that is raised upon complete of the integration interval.

6.2.7 Numerically Controlled Oscillator

The numerically-controlled oscillator generates the local version of the Doppler-

adjusted signal that is mixed with the incoming signal prior to the DLL. There are several

vector-based SIMD implementations of optimized algorithms, such as (27), but the

reference implementation operates simply with the 𝑠𝑖𝑛 and 𝑐𝑜𝑠 math library functions.

 109

The class diagram is given in Figure 6-16.

+StageEventHandler()

+UpdateOutput()

«signal»+Done(in sender : PipelineComponent)

+Input

+Output

+Time

+ControlObject : PipelineComponent

PipelineComponent

+NCOPipelineComponent()

+Frequency : double

+Phase : double

PipelineComponent::NCOPipelineComponent

Figure 6-16—NCOPipelineComponent class diagram

6.2.7.1 Properties

The Input, Output, Time properties are inherited from the PipelineComponent base

class.

Output.Real = Math.Cos(2.0 * Math.PI * Frequency * Time + Phase);

Output.Imag = Math.Sin(2.0 * Math.PI * Frequency * Time + Phase);

Frequency: The current frequency of the output signal.

Phase: The current phase of the output signal.

6.2.7.2 Methods

NCOPipelineComponent: The class constructor used for initialization.

6.2.7.3 Events

The Done event from the base class indicates the output value has changed.

 110

6.2.8 Data Demodulator

The data demodulator component is connected to the IterationComplete event of the

PLL, where it integrates the output for the bit rate time interval; 20 ms for the 50 bps data

rate of the C/A signal. At the end of each integration period, a comparison is made to

determine if the accumulated value is largely positive or negative. Positive results are

then mapped to an output of binary 0, negative results produce a binary 1 (Appendix C).

As each data bit is extracted, the demodulator raises an IterationComplete event that can

be used to activate a navigation message formatting component.

The demodulator class diagram is given in Figure 6-17.

+DemodulatorPipelineComponent()

«signal»+IterationComplete(out sender : PipelineComponent)

«signal»+SyncChanged()

+bitRate : double

+PLLLocked : bool

+isSynchronized : bool

+nextBitTime : double

PipelineComponent::DemodulatorPipelineComponent

+StageEventHandler()

+UpdateOutput()

«signal»+Done(in sender : PipelineComponent)

+Input

+Output

+Time

+ControlObject : PipelineComponent

PipelineComponent

Figure 6-17—UML static object model for the demodulator component

6.2.8.1 Properties

The Input, Output, and Time properties are inherited from the PipelineComponent

base class. The Output value is determined by accumulating the values from the PLL

output and generating a 1 for a negative result, and a 0 for a positive result. It is possible,

 111

depending on the PLL discriminator used, that the polarity of the bits may change

between words. The last two bits in the second word of each sub-frame (bits 59 and 60

from the sub-frame start) should produce a negative result and can be used to correct

inverted polarity conditions.

bitRate: The rate at which the binary symbols are received. The default value is 50

bps.

PLLLocked: An input condition indicating that the PLL is properly tracking a

legitimate signal. This flag must be set to true before the data bit output events will

occur.

isSynchronized: The default initial condition for the demodulator is to integrate over

the entire bit interval without regard for the location of the start position. However, better

results will be obtained when the position of the bit edge can be located. This flag signals

a condition in which the demodulator has been able to make a reasonable estimate of the

edge location and the nextBitTime property can be used to control the integration span of

the PLL in a feedback loop.

nextBitTime: The expected time of the next bit transition condition. This value can

be used to control a PLL for situations where the discriminator function is sensitive to bit

transitions.

6.2.8.2 Methods

DemodulatorPipelineComponent: The class constructor used to initialize variable

instances.

 112

6.2.8.3 Events

IterationComplete: An event that occurs when the specified bit time interval has

passed with the PLLLocked flag set; signals that a new data bit is ready.

SyncChanged: This event indicates that either a new value for nextBitTime has been

calculated or that the isSynchronized property has changed. The demodulator component

needs to verify that the estimate of the location of the bit edges is legitimate by looking

for transitions when they are expected to occur.

6.2.9 Signal Controller

An instance of the SignalController class maintains an initialized reference to a

SignalBase abstract class object that serves as the connection point to the receiver’s input

signal. Any class that either inherits from the SignalBase class or provides an

implementation for ISignalSource, described in the Signal Source Device Driver

Interface section, may be used as the signal reference. The object model for the

SignalController class is provided in Figure 6-18.

The SignalController class is derived from the PipelineComponent base class and

provides the signal sample interconnection and time synchronization to the rest of the

processing pipeline. As a result of SignalController being a type of PipelineComponent, a

SignalController instance may be joined to a pipeline at any stage and not just at the

front-end acting as the primary signal input. Combining a SignalController with a signal

connected through an interoperability component (see section on Interoperability

Support) in the middle of a pipeline would allow, for example, an external physical

hardware clock circuit to participate as part of the signal processing chain. Information

 113

regarding the frequency and sampling rate of the underlying SignalBase object is made

available through access to the SignalSource class property.

A SignalController instance is expected to run asynchronously on a separate thread

until it is sent a Stop signal from the containing parent application. Running a

SignalController in this manner allows the priority of thread to be adjusted according to

the demands of the input signal source.

+StageEventHandler()

+UpdateOutput()

«interface»

IPipelineComponent

+StageEventHandler()

+UpdateOutput()

«signal»+Done(in sender : PipelineComponent)

+Input

+Output

+Time

+ControlObject : PipelineComponent

PipelineComponent

+RunAsync()

+Stop()

+SignalSource : SignalBase

-Running : bool

PipelineComponent::SignalController

Figure 6-18—SignalController object model

In addition to the properties, methods, and events inherited from the base

PipelineComponent, the SignalController class provides the following extensions.

6.2.9.1 Properties

SignalSource: a reference to a SignalBase object (Chapter 8) that is used to generate

the input sample data and time values. When a SignalController is connected as the

primary input stage to a pipeline container, in each sample interval the Time property is

 114

incremented by an amount equal to the reciprocal of the sampling rate property defined in

the SignalSource.

Running: a private property used by the class to determine if it should terminate any

threads or operations that are currently executing.

6.2.9.2 Methods

SignalController: The class constructor that is used for initialization.

RunAsync: resets the Input and Time properties, initializes and starts the

SignalSource. It then executes a loop that repeatedly sets the Output to the ReadData

method result from the SignalSource, raises the Done event, and then updates the Time

property. This method only returns after the Stop method is called.

Stop: sets the Running property to false, which halts the RunAsync thread if it is

running.

6.2.9.3 Events

The Done event is inherited from the PipelineComponent class. Derived classes may

extend the signals of the base-class definition.

6.2.10 PRN Code Generation

The classes that are responsible for the generation of the pseudo-random noise

sequences that are necessary to de-spread the received signal implement the

IPRNGenerator interface. Shown in Figure 6-19 is the UML object model for an

inheritance hierarchy of GNSS PRN code generator classes.

 115

+SequenceValue(in timeIndex : double) : double

«interface»IPRNGenerator

+SequenceValue() : double

+ID : int

+SequenceLength : int

+SequenceDuration : double

+ChipRate : double

+ChipDuration : double

GNSSPRNGenerator

IPRNGenerator

GNSSPRNGenerator::GPSPRNGenerator GNSSPRNGenerator::GalileoPRNGenerator

«inherits»

+SequenceValue() : double

GPSPRNGenerator::GPSCAPRNGenerator GPSPRNGenerator::GPSYPRNGenerator

«inherits»

Figure 6-19—UML static object model for PRN code generators

PRN code generating solutions can be developed in a wide variety of ways that offer

tradeoffs between memory and performance optimizations. Generator functions and shift

registers, or look-up-tables in the form of arrays with packed or unpacked bit-fields,

among other strategies, can be used to produce the required chip sequences. Regardless

of the implementation details, the time-based output value must be expanded in time, or

up-sampled, to correspond with the input signal sampling rate in order to keep the

sequence length consistent in relation to its duration.

Although other code generators are listed in the object model, only the GPS C/A code

class (GPSCAPRNGenerator) implementation has been provided in the reference

receiver application. This implementation uses the C/A code lookup table in Appendix C.

When an instance of the class is created, the ID of the PRN code is used to specify an

 116

index in the table as the code starting point. Time values passed into the SequenceValue

method are reduced modulo sequence duration to compute the index of the chip location

for the time provided.

6.2.10.1 Properties

ID: represents the identifier or starting seed value of the PRN sequence.

SequenceLength: the total number of chips in the PRN sequence.

SequenceDuration: the time interval, or repeat rate, of the sequence; the sequence

length divided by the chipping rate.

ChipRate: the frequency, or time-base, of the chip sequence.

ChipDuration: the width in time of each chip in the sequence, equal to the sequence

duration divided by the sequence length, or the reciprocal of the chip rate.

6.2.10.2 Methods

SequenceValue: returns -1/+1 value of the sequence for the specified time index. The

returned value should be calculated on a modulo-ChipDuration basis and should support

negative time inputs as indicating a time offset from the end of the sequence.

6.3 Common Types

The common types module includes the various types that have been provided in

order to support, leverage, or enhance certain characteristics of the targeted runtime

environment. By providing them in this fashion, portability issues are lessened should

someone decide to undertake the endeavor of migrating the framework to a different

environment.

 117

6.3.1 Complex

The Complex type is a structure that provides a Real + Imaginary number system and

defines the related operators. The signal processing pipeline classes work with Input and

Output properties that are of type Complex.

6.3.2 DFT

The DFT class provides a Transform method that accepts and returns an array of

Complex numbers. The Transform method is a brute-force, non-optimized discrete

implementation of the Fourier transform.

𝐻 𝑓 = 𝑕𝑛

𝑛<𝑁

𝑛=0

𝑘<𝑁

𝑘=0

𝑒−2𝜋𝑖𝑓𝑛𝑘 /𝑁 6-15

where 𝑓 is the desired frequency bin and 𝑁 is the number of samples.

Although slower than the FFT, discussed next, the DFT will operate on sampled data

sets of any arbitrary length. It is sometimes faster to perform a DFT transformation on

non-power of two data lengths rather than padding the input to the next highest power of

two.

6.3.3 FFT

The FFT class provides a Transform method that accepts and returns an array of

Complex numbers. The Transform method is a fast-optimized discrete implementation of

the Fourier transform based on the Cooley and Tukey Radix-2 Butterfly technique (60).

This algorithm requires that the input data be, or be made to be, a power of two in length.

Data sets that are shorter should be extended and padded with zeros before calling the

Transform method.

 118

6.3.4 Filter Classes

The Filter classes include moving average, 2
nd

- and 3
rd

-order discrete filter

implementations. These filter implementations are used primarily in the PLL and DLL

integrator functions.

6.3.5 Frequency

Provides a collection of methods for performing correlation, convolution and their

respective inverses, along with data-windowing functions, on arrays of Complex data.

These can be used for signal analysis purposes.

 119

Chapter 7 Interoperability Support

The interoperability support features provide guidelines, class templates, and other

resources for the integration of external hardware or software components through a

consistent set of interface wrappers. If required, it is possible to implement, in external

hardware, intermediate parts of a receiver that are connected through a suitable device-

driver interface, and to make them behave as if the work were performed by an internal

application component. This capability allows hardware functions to be initially defined

and tested in software, and then implemented in hardware. Once implemented, the

hardware can then be plugged into the framework replacing the software version of the

component for relevant performance evaluation comparisons. Software functions built

using other implementation tools or technologies (languages, etc.) may also be combined

with the core application framework in a similar manner. Any component within the

system can be implemented externally through the interoperability interface, provided all

critical timing requirements are met.

7.1 Interoperability Requirements

To satisfy general reuse expectations and to support specialty libraries and tools from

3
rd

-parties, either open-source or commercial in nature, the receiver framework provides

a generalized method of integrating non-core code through its interoperability service

interface. Such code can be locally or remotely executed, or even called via a web service

or an equivalent remote procedure call (RPC) mechanism. In order to connect a plug-in

 120

component, that component has to conform to or be made to look like it supports, certain

essential interoperability requirements:

1) An external component has to be externally callable. That is, the component

needs a layer to provide some type of formal application programming interface

(API) definition. It can be a library module, an application, or a system-level

service, but it has to include a means of invoking the functions and receiving

returned results. Stand-alone applications that only interact with the outside-world

through an event-driven user-interface, make for poor interoperability candidates.

2) External components must have data types that support the necessary

marshaling services, and the types have to have equivalent representations in

both environments; i.e., they must be blittable data types. [Data marshaling is the

act of moving and initializing data elements from one region of memory to

another, typically between processes.] Types that are of different sizes, byte-

ordering (endianness), or are ambiguous require special handling and possibly the

implementation of a custom marshaler. Ambiguous types have either multiple

representations that map to a single type, or they are missing type information,

such as the size of an array.

3) The external code must be available to the system at run time. For library code

that has been statically linked, the code will become part of a user application that

must be present on the path when the code is called.

4) The code has to be native to the operating system that supports the

application, or accessible through a service that will make it look like native

code. Interpreted code, such as Java or MATLAB, requires invoking the

 121

functionality through a runtime interpreter application that must be accessed by a

user-provided mechanism.

Although not a critical requirement, ideally, the external code will not be required

by the application to maintain state between calls. Multiple round-trip calls to library

functions that expect the persistence of state between calls will have to externalize the

information necessary to exchange and reinitialize the state-related variables from call-to-

call. Such a requirement can be difficult to implement efficiently, particularly in a

multithreaded or multiuser environment.

7.2 Interoperability Layered Model

The relationship between the interoperability layer and the other framework

components can be conceptualized as shown in Figure 7-1. While the receiver framework

provides interface specifications and type declarations, the interoperability layer provides

a means of sending and receiving messages to and from external or 3
rd

-party components.

Interoperability Layer

Data

Recovery

Receiver Framework

Acquisition Tracking
3

rd
-party

libraries

Figure 7-1— Interoperability Layer

Figure 7-2 shows the various strata that make up a representative interoperability

implementation. Depending on the device or component-level technology involved, not

 122

all layers in this four-layer model will need to be provided. At a minimum, only Layer-4

is required with layers one through three providing hardware service abstraction, state

management, and data type compatibility, respectively.

Device-specific

functions

Interoperability

adaptation layer

Run-time

interoperability type

declarations

Component feature

abstractions

Layer 2:

Interface reduction and

state management wrapper

Layer 1:

Hardware-specific device

driver code

Layer 3:

Interoperability support

types and data marshalling

Layer 4:

Component interface

implementations

Figure 7-2—Layered Interoperability Model

At the bottom is the Layer-1 hardware-specific, often vendor provided, specialized

device driver application or library code, and is usually only required when connecting to

physical hardware. The hardware drivers are typically written in C and assembler, and as

a result require the support of other C-language constructs in order to invoke their

functionality. The exported functions and data structures frequently contain naming

conventions and other attributes that tie them directly to either the hardware or the system

bus connection they represent. Calling these functions or creating related type instances

directly by their name makes the code explicitly hardware dependent and limits

application reusability.

Layer-1 consists of libraries, applications, and configuration utilities that expose

fundamental low-level operations to the upper layers in a uniform and consistent way. A

familiar example would be a driver for a printer device. While perhaps not a potential

 123

hardware component for a receiver, the abstraction that is achieved is equivalent in that

any application with a print capability can direct its output to the printer through the

device driver without any specific information on how the printer happens to be attached

to the system.

Layer-2 is identified as an interoperability adaptation layer, the purpose of which is

to hide some of the low-level implementation details required to perform high-level

functional tasks. Depending on the complexity of the device operations, it is sometimes

necessary to create an additional C-library wrapper to transform and minimize the

exported functions and their data types. State encapsulation and persistence management

can be implemented at this layer. While it is optional, this layer can be particularly

beneficial when the source code for the device is unavailable, or when the device is

shared by multiple applications and the interface signature is immutable (non-

changeable), thereby making it impossible to be changed for a specific need or

requirement.

Layer-3 provides the runtime interoperability type and function declarations,

specifies the names and locations of related hardware libraries, and describes the nature

and direction of the required data-marshaling services (in, out, in/out.) This layer is

optional if support for the device is integrated as a library type of the runtime

environment or operating system, or when creating a virtual or simulated device. It is

usually necessary when connecting to a physical device through a device driver provider.

Layer-4 is the critical part that provides the functional view of the device to

dependent applications. It is implemented through interfaces and base classes that are

 124

used to define general capabilities for specific hardware-centric device descriptions. If a

base class implements an interface, the derived class inherits that implementation.

Since the nature and operational characteristics of the interface requirements for any

individual device can vary greatly, even within a device family, only general

implementation strategies can be discussed for the bottom three layers. The top layer, due

to its application-wide pervasiveness warrants the most attention.

The most likely candidate that will be encountered in developing and extending the

receiver framework using the interoperability model will be for the front-end signal

hardware. Signal sources from different types of hardware front-ends, including

simulated and file-based data, may be connected to the receiver framework through the

interoperability layer. Low-level device driver code for detecting, initializing, and

activating the front-end is specified at Layer-1. Any code that is necessary for

amalgamating multi-step operational sequences into a single high-level step is developed

for Layer-2, as is the persistence of device state information. Any required numeric type

conversions or data formatting issues are resolved at Layer-3. Finally, Layer-4 represents

the connection point to the receiver framework for the signal source.

The benefit of the layered interoperability model is that there typically is no need to

repetitively coerce internal data representations to fit different application programming

interface signatures. System-level modules need only support the externally visible level

of abstraction through the appropriate interface specification. As a result, connecting

components from different sources should require no hacking and patching of someone

else’s code to support additional functionality.

 125

7.3 Interoperability Scenarios

Different interoperability situations call for different interoperability support

structures in order to satisfy the specific requirements at hand. When an application calls

a method or procedure that has been packaged into an external library, the code that is

eventually executed requires runtime system resources such as memory and processor

time, in the form of a scheduled thread, in order to do the requested work. The required

resources may be taken directly from the calling application—the code can be loaded into

the application’s address space and the instructions can execute with the active thread.

When resources are shared in such a manner, the code is considered to be executing in-

process since it appears to the system as if it is part of the original application process.

For security and other memory management related reasons, however, it is often not

appropriate for an external piece of code to share the same memory and other resources

as the application that has invoked the operation. Such circumstances require that

memory be allocated by the global system memory manager and the necessary data

values must be copied between the two memory spaces in a way that makes the values

look like they are sharing the same storage locations.

An executing thread takes on the security context, the identity and credentials, of the

process that created it. The active security context can be used to limit the amount of

access that an executing thread has within the system. Switching a thread between one

process context and another incurs a potentially significant overhead and corresponding

performance penalty. Keeping calls within a single process, with or without data

marshaling, typically represents the most ideal situation from a performance point of

 126

view. Making calls into a functional library or an application-mode device driver is

usually a single process activity.

Calls that invoke operations residing in external libraries or applications can also be

made between two processes as an interprocess operation, such as calling code in a

system service or other application where dedicated resources are doing work. In addition

to the aforementioned data marshaling requirements, these calls also necessitate thread

synchronization operations and security context changes. While there is an additional

overhead to consider, interprocess execution can be invaluable in situations involving

trusted subsystem models, accessing dedicated resource pools, or for connection and state

management activities. Interprocess operations can also be combined with a network

layer redirector to create a distributed execution environment, where code can be

executed remotely, such as performing database queries or accessing a hardware resource

on an external server. The flexibility of interprocess operations often makes up for their

potential performance downside.

7.3.1 Single Process

Figure 7-3 represents the most often encountered configuration for interoperability

between legacy or special-purpose library code; straight calls to library functions or

application-mode device drivers.

 127

Application

Interop

Marshaler

Code Library
or API

Process
Apartment

Application

Interop Marshaler

Code Library
or API

Process
Apartment

A B

Figure 7-3—Single process interoperability function call: custom marshaler in A, system

marshaler in B

The interoperability layer provides the runtime callable wrappers that specify the

names and locations of library binaries as well as supplying the mappings between

function names and interface signatures (function prototypes.) When library code is

loaded and executed in the memory space of the main application process it takes on

whatever threading model is active when the call is made. Thread synchronization

requirements depend on the application and any shared data structures. Object state

persistence is the responsibility of either the application or the interoperability layer

implementer.

An in-process custom marshaler is shown in A, while a solution with the system

default marshaler is shown in B. System provided marshalers usually run in the system

process.

7.3.2 Interprocess

Figure 7-4 shows an example of the interoperation between an out-of-process

application or system service and the system framework receiver application. Kernel-

 128

mode device drivers, host applications, or installable services provide an isolated

execution environment and security context that require system-level marshaling and

synchronization services. The marshaler is required to create and initialize copies of the

involved data structures between the two processes.

The threading model of the client (Process 1) must support that of the server,

Process 2, since the library code is executed within the Process 2 apartment or boundary.

Process 2 could represent a persistent data store and the marshaler would be an Open

Database Connectivity (ODBC) or Object Linking and Embedding (OLE) data source

provider.

Application

Interop

Process
Apartment

Application
or Service

Marshaler

Code Library
or API

Process
Apartment

Process 2Process 1

Figure 7-4—Interprocess with common data types and system marshaler

State persistence between calls would have to be supported intrinsically by the design

of Process 2, or extrinsically by Process 1 in the implementation of the interoperability

layer. Depending on the nature of the services provided by Process 2, state persistence

may either be not supported or not required.

 129

7.3.3 Interprocess with Remote Execution

A distributed application solution can be integrated with the system framework

through a standard network remote procedure call (RPC), named pipe, or sockets-based

approach. Pipes and RPC methods are session-layer network protocol connections, while

a socket operates at the transport layer. Remote services that operate over application-

layer protocols, such as XML-based Web Services over HTTP, can also be used to extend

the interoperability layer to services hosted on networked machines located anywhere in

the world. The pipe or socket layer may not necessarily be a native application

component and therefore would not require interoperability support from the system

framework. However, such support would be needed if the communication components

involved were part of a customized connection library application or message exchange

protocol.

Application

Interop

Process
Apartment

Marshaler

System 1

Pipe/Socket

Network

Application
or Service

Code Library
or API

Process
Apartment

System 2

Listener

Figure 7-5—Interprocess interoperability between two systems with remote code execution

The connection hierarchy shown in Figure 7-5 is a generic view of the remote

execution of code between two network-attached systems. The systems involved may be

 130

of completely different architectures, as long as there is a possible mapping between any

data types that are exchanged.

The end-to-end round-trip latency introduced by the network conversation must not

adversely affect any of the desired real-time performance characteristics expected of the

receiver implementation. While it may be technically possible to use a hardware-based

correlator located on the opposite side of the world through a network accessible

interoperability layer, the delays in sending, processing, and receiving the results will

likely negatively impact the system performance.

 131

Chapter 8 Signal Source Device Driver Interface

The most frequently encountered need for connecting external hardware will be for

the signal front-end sampling device. This section provides the details of implementing a

signal source using the layered-interoperability model, showing the required adaptations

for a specific device; the SiGe SE4110L-EK3 USB (61) Link-1 (L1) receiver front-end

that has been used for framework testing.

The purpose of the device driver components is to provide the interfaces and abstract

base classes required to permit the necessary functional virtualization. The design goal is

to support a broad range of hardware-oriented analog-to-digital front-end devices in a

manner that is both internally consistent and externally flexible in order to isolate

changes and to minimize the effects on unrelated system components.

Internally, the focus is on the common characteristics of these devices. Aspects such

as the sampling rate and intermediate frequency are made accessible through device class

properties, while specific hardware features, such as bus connection type or individual

chipset registers, are kept deliberately opaque. Externally, by acting as a data-stream

endpoint, the framework supports a variety of highly dissimilar devices, even those that

are file based or entirely simulated. The source for the receiver connection sink can be

implemented in the manner most appropriate to the device at hand.

The same principle of abstraction applies to the device state, as well. While it may be

necessary for an individual hardware device to traverse several unique states on the path

 132

from initialization to data transfer, these fine-grained states can be represented by

aggregation into a smaller number of more coarse-grained system-level states. The

messages defined by the supported interface types act as signals that trigger a state

transition, such as starting a signal capture or data transfer process.

8.1 Layered Device Driver Approach

The key to achieving system-level hardware-isolation is a layered approach to device-

independent abstraction. A device driver model based on the interoperability model

layers of abstraction is shown in Figure 8-1. The model is comprised of four layers, but

depending on the characteristics of the implemented device, it will not always be

necessary to provide all the layers; once again, only the top level, Layer-4, is mandatory.

Device-specific C-library
functions

Interoperability
adaptation layer

Run-time
interoperability type

declarations

Signal abstraction
components

Layer 2:
Interface reduction and state
management wrapper

Layer 1:
Signal-dependent hardware-
specific device driver code

Layer 3:
Interoperability support
types and data marshalling

Layer 4:
Supported component
interface implementations

Figure 8-1—Layered Device Driver Model

Layer-1 implementation consists of the OpenSource LibUSB USB (62) device driver

code library for Win32 applications. LibUSB allows user applications to access any USB

device on a Windows system in a generic way without having to write custom kernel-

mode device drivers. The exported device library functions are called by including the

usb.h C header file and linking to the LibUSB.lib library.

 133

The code from the library for the device start function is shown in Figure 8-2. It is not

obvious from the code alone what is happening at the physical device connection since

the goal of this function is to provide a level of abstraction between the device details and

the higher level functionality.

Figure 8-2—LibUSB library function for starting a USB device.

Layer-2 provides the connection to the underlying device library by encapsulating

and selectively exporting only those higher-level functions that are required to be

accessed. The exported functions for the USB signal device are declared in a C header

file, shown partially in Figure 8-3.

bool fusb_ephandle_win32::start () {

 if (d_started)

 return true; // already running

 d_started = true;

 d_curr = d_nblocks-1;

 d_outstanding_write = 0;

 d_input_leftover =0;

 d_output_short = 0;

 if (d_input_p){ // fire off all the reads

 int i;

 for (i=0; i<d_nblocks; i++) {

 usb_submit_async(d_context[i], (char *) d_buffer+i*d_block_size,

 d_block_size);

 }

 }

 return true;

}

 134

Figure 8-3—Exported USB functions from Layer-2

The implementation of one of the functions, InitializeTheDevice, is shown in Figure

8-4. This function is responsible for creating an instance of a pointer or Win32 handle to

the correct USB device instance, and persisting its initialized state information.

Collectively, these functions are exported from an application dynamic-link library.

Figure 8-4—Implementation of the Layer-2 USB function for device initialization

Layer-3 would be responsible for ensuring type compatibility between the

unmanaged C runtime and the managed .NET Framework common language runtime.

For this particular device, the types used are directly compatible between the two

environments, so type conversions are not necessary.

GN3LIB_API void InitializeTheDevice(void) {

 if (fx2 == NULL) {

 fx2 = usb_fx2_find(&num_str, vid_str, pid_str, debug);

 if (!fx2) {

 throw ERROR_NOT_SUPPORTED;

 }

 if (usb_fx2_configure(fx2, &fx2c) != 0) {

 throw ERROR_NOT_SUPPORTED;

 }

 }

 deviceinitialized = true;

}

GN3LIB_API void InitializeTheDevice(void);

GN3LIB_API void ReleaseTheDevice(void);

GN3LIB_API void StartDataClock(void);

GN3LIB_API void StopDataClock(void);

GN3LIB_API void ReadDeviceData(LPBYTE buffer, int size);

GN3LIB_API DWORD GetDeviceStatus(void);

GN3LIB_API void ReadGnssRFData(HANDLE hDevice, LPBYTE buffer, int size);

 135

Layer-4 provides the final connection between the device library and the receiver

framework. The functions declared in the runtime callable wrapper shown in Figure 8-5

meet the requirements of the interface specification for the USBSignalSource type, as

shown in the class diagram of Figure 8-7, by utilizing the .NET platform-invoke

(P/Invoke) mechanisms.

Figure 8-5—Layer-4 device wrapper declaration for the GN3S device driver

The implementation of the initialization function is shown in Figure 8-6. The wrapper

functionality can now be called by simply including the assembly into any development

project utilizing a .NET-compatible language. All of the exported types and functionality

are visible to consumers of the assembly without the need to include any of the C

language-specific header or library files. However, it is necessary to have the USB device

driver (LibUSB) properly installed, the USB front-end connected, and the Layer-2 library

accessible to the calling application when the code is run. See Appendix A for additional

details on P/Invoke and 3
rd

-party library interoperability requirements.

public class GN3S {

 [DllImport("GN3Lib", EntryPoint = "?InitializeTheDevice@@YAXXZ")]

 public static extern void InitializeTheDevice();

 [DllImport("GN3Lib", EntryPoint = "?ReleaseTheDevice@@YAXXZ")]

 public static extern void ReleaseTheDevice();

 [DllImport("GN3Lib", EntryPoint = "?StartDataClock@@YAXXZ")]

 public static extern void StartDataClock();

 [DllImport("GN3Lib", EntryPoint = "?StopDataClock@@YAXXZ")]

 public static extern void StopDataClock();

 [DllImport("GN3Lib", EntryPoint = "?ReadDeviceData@@YAXPAEH@Z")]

 public static extern void ReadDeviceData([Out] Byte[] buffer,

 [In] int size);

 [DllImport("GN3Lib", EntryPoint = "?GetDeviceStatus@@YAKXZ")]

 public static extern uint GetDeviceStatus();

}

 136

Figure 8-6—Layer-4 wrapper code implementation for the GN3S device driver initialization

sequence

In general, there are two forms of implementation patterns that achieve the level of

isolation and abstraction that is expected of Layer-1. The first, shown in Figure 8-7, uses

an abstract base class that provides interface amalgamation, and default method

definitions when default component behavior can be defined without loss of generality.

Marking the base class as abstract prevents it from being created directly and constrains

its use for derived types only. Each derived receiver class follows the is a idiom for

object inheritance; for example, a USBSignalSource is a SignalBase type. Only one class

definition is required for use in host applications, where the object characteristics are

determined at run time through late binding and polymorphism.

 /// <summary>

 /// Initializes the hardware device and readies it for data capture

 /// </summary>

 public override void Initialize() {

 GN3S.InitializeTheDevice();

 GN3S.StopDataClock();

 //Signal the device Reset event:

 Reset(this, new EventArgs());

}

 137

+Initialize()

+ReadData()

+Start()

+Stop()

+Dispose()

«interface»

ISignalSource
+Dispose()

+Initialize()

+ReadData()

+Start()

+Stop()

«signal»+DataReady()

«signal»+Reset()

«signal»+Error()

+IF : double

+SampleRate : double

+Status : SignalSourceStatus

SignalBase

ISignalSource

+Initialize()

+ReadData()

+Start()

+Stop()

SignalBase::USBSignalSource

«inherits»

+ReadData()

SignalBase::SimulationSignalSource

+OK

+ERROR

+RESET

+PENDING

«enumeration»

SignalSourceStatus

+Initialize()

+ReadData()

+Start()

+Stop()

SignalBase::FileSignalSource

«inherits»

Figure 8-7—Abstract signal base class implementation UML static structure diagram

The interface declaration, ISignalSource, describes the features that would be

expected of any generic signal class. Objects that implement this interface must provide a

definition of all methods and operations that users of the interface expect—the interface

represents a contract between the component and its clients or users.

To further refine the desired functional features, an abstract signal base class,

SignalBase, is declared that implements the ISignalSource interface. Since SignalBase is

abstract, it can only be used as a contract, of sorts, in the definition of derived classes. A

class derived from SignalBase will inherit the interfaces and default method definitions

that it supports, but must also provide any bodies for methods not already present in the

base class.

Variable declarators of the base type are assigned to references of derived or concrete

type specifiers through an instance identifier. Messages sent via method calls made on the

 138

base-class type are resolved at run time to the corresponding derived-class

implementations.

Object creation follows the usual instantiation pattern:

SignalBase inputsignal = new USBSignalSource();

All dependent code that relies on the general behaviors of a SignalBase instance can

be obtained by invoking the same methods on the signal reference; in the code above, the

derived USBSignalSource instance would provide the device specific functionality.

inputsignal.Initialize();

The previous code excerpt demonstrates the explicit creation of a derived-class

instance by name. Creating object references in this manner requires the identity of the

type to be known at the time that the application is compiled. A class factory is a

generalized mechanism that creates object instances from a codified ID or some other

form of unique class identifier. If complete type isolation is necessary, a factory could be

implemented either as a helper class or an extension method that would defer the final

derived-type resolution until run time execution.

A second form of signal source implementation can be crafted to achieve the goal of

device independence. Figure 8-8 shows a USBSignalSource class that directly

implements the ISignalSource interface without inheriting from the SignalBase abstract

class. This class would need to implement all of the methods described in this interface

since interfaces provide no default implementations. Any new, non-USB, types of signal

source defined in a similar manner would not be able to take advantage of methods

 139

implemented in the USBSignalSource class, so the pattern would have to be repeated for

each device type.

+Initialize()

+ReadData()

+Start()

+Stop()

+Dispose()

USBSignalSource

ISignalSource
Explicit component

interface

Requires explicit
interface
implementation

Figure 8-8—Explicit interface implementation

By implementing interfaces in this way, the USBSignalSource class looks like a

generic signal source but inherits no default behaviors or method implementations.

However, other USB signal input device types with shared or similar characteristics

could be derived from the non-abstract USBSignalSource class.

The following code declares an identifier of the interface type ISignalSource and then

creates an instance of a USBSignalSource with the new keyword:

ISignalSource inputsignal;

USBSignalSource input = new USBSignalSource();

The declared interface, receiver, is then assigned to the USBSignalSource instance

after casting it to the interface type:

inputsignal = input as ISignalSource;

Methods are then called directly on the interface to achieve the required polymorphic

behavior:

inputsignal.Initialize();

 140

8.1.1 Signal Source Device Interface

ISignalSource is the standard signal interface type that represents the most abstract

form of the operations any signal source must support in order to be compatible with the

system as presently defined. Future changes to this interface description will affect all

classes and their derived subclasses that support it. To that end, it is necessary to keep the

basic interface as uncomplicated as possible to avoid creating a burden for future

component developers. While it may be tempting to add extra properties and methods,

only those that are absolutely necessary, and not just nice to have, should be incorporated

into the common signal interface.

8.1.1.1 Properties

IF: provides the value of the intermediate frequency, or center frequency, of the

down-converted signal source. This value is used in various parts of the receiver in order

to set the reference frequency of the carrier mixer stages and to calculate the Doppler

shifts of the incoming signal.

SampleRate: indicates the sampling frequency of the incoming data stream. In the

case of an external hardware signal sampling device, this value is determined by the

device characteristics. For a simulation-based signal, the sampling rate must be specified

to meet the Nyquist criteria—twice the highest frequency component of the signal.

Status: provides an indicator for the operational status of the device. The value is an

enumerated system type, discussed later.

 141

8.1.1.2 Methods

The methods of the SignalSource classes setup, activate, deactivate, and tear down

the connections and resources for signal sampling. The related state transitions involved

are described in the device State Model section.

Initialize: acquires the necessary system resources, such as memory and device

handles, and configures any internal data structures used by the device. This method must

be called by consumers of the signal source to ensure the device is properly configured,

but the class implementation may not be required. A call to initialize should leave the

device in the Suspended state.

Dispose: stops the device if it is currently active and releases any resources

previously acquired through initialize.

ReadData: while the signal source is in the Data Transferring state, transfers an

element of data from the signal source. This method may be implemented to support

block transfers of data involving more than one sample, or can support a time-indexed

value where the current time is passed as an input parameter.

Start: activates the device for data sampling. The device is put into the Data

Transferring state.

Stop: suspends device data sampling. The device is put into the Suspended state.

 142

8.1.1.3 Events

In the class UML diagram, <<signals>> indicate the published events that may be

used to notify external objects of internal conditions or state transitions that have

occurred.

DataReady: raised when a sample unit of signal is available to be read. Data readers

may either block by calling the ReadData method, or be asynchronously notified that

data is ready by responding to this event.

Reset: raised when the device has been reset, allowing external system components

to reinitialize the device and reestablish their own internal state variables.

Error: occurs when the device has encountered an unrecoverable error that requires

external intervention in order to correct.

8.1.1.4 Status Enumeration

SignalSourceStatus enumerated type provides an indication through the device Status

property of the operational state of the signal source. Valid values are: OK, ERROR,

RESET, PENDING.

8.1.2 Signal Source Base Class

SignalBase implements ISignalSource and provides default implementations of

Initialize, Start, and Stop. Not all signal sources will require bodies for these methods and

providing a default implementation eases the work necessary to derive a new concrete

type from the base class. Default properties for IF and SampleRate properties cannot be

provided as they are always dependent on the signal source.

 143

8.1.3 Signal Source Derived Classes

Derived implementation classes for a USB-attached signal sampler, a file-based

signal data source, and a simulation signal model are provided as references. Further

details are provided in the Reference Implementation, Chapter 10.

8.2 Device Interface State Models

Just as important as the ability to abstract the functionality of the device, the state

transitions must also be reduced to a common set that the system can manage and

maintain. The signal device system-state model identifies the representative states and the

conditions that must be met for a state to occur. It is necessary that hardware devices be

mapped from one state space to the other; from an internal to an external representation.

8.2.1 Signal Source System State Model

The signal source state model that is defined by the system is represented as a UML

Statechart in Figure 8-9.

Uninitialized Suspended Data Transferring

/ New / Initialize / Start / Dispose

Disposed

/ Finalize

/ Stop

/ Dispose

/ Dispose

Figure 8-9—Generic signal source UML Statechart model

There are four states identified in the model:

 144

 Uninitialized: The representing object has been created from the global

resource pool and any required memory has been allocated. Access

mechanisms for the hardware have not been established, device or file handles

are not yet created.

 Suspended: Hardware and operating system primitives, such as device

handles, have been initialized and are ready to go, awaiting a signal to start

reading data. The process of initialization has reset base stream positions to

their beginning. In the case of a Stop message, the current stream position, for

byte-stream oriented devices, is maintained.

 Data Transferring: Data is actively being collected or generated and is either

buffered internally or moved to the system. This is an active state where work

is being performed by the device.

 Disposed: The resources previously acquired by the object and underlying

hardware have been deactivated and released, ready to return to the system

resource pool. The objects cannot be reclaimed or reinitialized from this

terminal state. Reactivation implies recreation of all dependent objects.

8.2.2 State Model for USB Signal Source

Figure 8-10 represents an internal state model view of a USB-attached digitizing

device. This representation does not make visible any of the details of the USB interface

protocol specification and has been simplified to show only a high-level logical

characterization of the device operation. There is a greater number of states and state

transitions identified in this diagram than the previously discussed system-state model

 145

supports. It is necessary, therefore, that a mapping and minimization effort first be

performed in order to coerce the model’s shape into something the system supports.

Reset Initialized

Error

Paused

Capturing Transferring Closed

/ On / Initialize / Start

/ Stop/ Start

/ Data / Close

/ Done

/ Bad

/ Bad/ Bad

/ Close

Figure 8-10—USB signal source internal state model

One such possible system mapping is demonstrated in Figure 8-11. The labeled gray

outlines indicate the aggregate state boundaries. The exact boundaries appropriate for

aggregation and the manner in which state information is maintained or persisted are

largely dependent on the specific implementation and device operational requirements.

Reset Initialized

Error

Paused

Capturing Transferring Closed

/ On / Initialize / Start

/ Stop/ Start

/ Data / Close

/ Done

/ Bad

/ Bad/ Bad

/ Close

Uninitialized

Suspended

Transferring

Disposed

Figure 8-11—USB device state model as mapped into the system state model

 146

The state reduction mechanisms can be structured as code in any layer of the device

interface model, but should be done so in the most appropriate manner for the individual

device. As defined, the system state model may hide device-specific capabilities, making

them invisible to client applications; such is the nature of hierarchical entity abstraction.

 147

Chapter 9 Acquisition and Tracking

The acquisition components are required to process the input signal source and

determine which transmitters are visible and to make an accurate initial measurement of

the code delay and Doppler values. The output of acquisition is a collection of tracking

objects for each signal transmitter to be tracked.

The event-driven pipeline model, discussed in the Pipeline Processing Model section,

is used for the signal processing activities necessary for signal acquisition and tracking.

Each acquisition and tracking component is derived from a common abstract base class

that implements the IPipelineComponent interface. Instances of these components are

then organized into a pipeline by setting up the event sources and their handlers

appropriately as part of a pipeline container class. Where necessary, the ControlObject

property of the classes is set to enable any feed-forward or feedback linkages between the

various pipeline stages. Each instance of the pipeline container performs the signal

detection and processing needed to track a single transmitter. Multiple transmitters are

tracked by creating multiple instances of the pipeline container and connecting them to

the same SignalController stage Done event.

9.1 Acquisition

There are different methods available for acquisition; the parallel approach of circular

correlation is implemented in the Receiver Development Framework and explained in

detail here.

 148

Typical software-based receivers for GPS applications (5) (6) (7) perform acquisition

by analyzing a block of sampled data along a 2-dimensional plane with code delay

running along one axis and Doppler shift along the other. This analysis is repeated for

each satellite signal the receiver is attempting to acquire. The Doppler axis divides the

expected intermediate frequency ±5-10 kHz shift range into bins 500 Hz to 1 kHz apart,

while the code axis is determined by the length of the code—1023 chips, 1 ms, in the

case of the GPS C/A code. The approach is shown in Figure 9-1.

Code Delay

Doppler

PRN ID

X

Location of correlator peak indicates

signal frequency and code delay for

this PRN

Figure 9-1—Software-based signal determination

Each sample in the data block is multiplied by 𝑐𝑜𝑠(𝜔𝑡) and 𝑠𝑖𝑛(𝜔𝑡), where 𝜔 =

2𝜋 𝐼𝐹 + 𝑓𝐷 ; IF is the intermediate frequency of the signal source, and 𝑓𝐷 is the Doppler

frequency value. The resulting real and imaginary (in-phase and quadrature) values are

cross-correlated with a generated copy of the PRN code for delays ranging from 0 to the

sequence length. The discrete form of the correlation function between two sample sets of

length 𝑁, 𝑥(𝑛) and 𝑦(𝑛) can be written as:

 149

𝑟 𝑛 = 𝑥 𝑖 𝑦(𝑛 + 𝑖)

𝑁−1

𝑖=0

 9-1

If 𝑥(𝑛) and 𝑦(𝑛) are both real, the transform-pair relationship can be used to find the

correlation (Appendix D) in the frequency domain as:

 𝑅(𝑘) = 𝑋 𝑘 𝑌∗(𝑘) 9-2

The complex conjugate of the frequency-transformed PRN sequence is multiplied

point-by-point with the transform of the signal data. The result is then inverse-

transformed and the resulting vector is scanned to locate the index of the largest peak

above the noise floor. If located, the index of the peak can be used along with the signal

sampling frequency, 𝑓𝑆 , to calculate the time delay of the start of the sequence.

𝑐𝑜𝑑𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓𝑓𝑠𝑒𝑡 =
𝑝𝑒𝑎𝑘 𝑖𝑛𝑑𝑒𝑥

𝑓𝑆
 9-3

Estimating the amount of noise in the signal in order to determine the required peak

size required for detection can be difficult to do reliably. If the noise floor estimate is too

low, the probability of a false detection is increased; if set too high, signals may be

overlooked. The approach taken in the code of (5) is to compare the magnitude ratio of

the largest peak to the next larger peak, and declaring a detection only if the result is

greater than an acquisition threshold parameter (default = 2.5). However, if it happens

that the sample contains a navigation data bit transition, the effect is to create double

peaks in the output of the correlator, which can reduce the effectiveness of this detection

strategy. The process is usually run twice on consecutive data sets and the results

averaged before evaluating the detection metric.

 150

The magnitude of the peak is then stored in the table at position (𝑓𝐷 , 𝑑𝑒𝑙𝑎𝑦). The

calculations are repeated until all 𝑓𝐷 𝑥 𝑑𝑒𝑙𝑎𝑦 table locations are filled. Once completed,

the table is then scanned to find the coarse Doppler frequency and code delay that

resulted in the best, or highest, correlation output. These values are for one PRN or

satellite ID; the entire process must be repeated for every satellite that is expected to be

visible.

Once the coarse Doppler and code delay are found, the original sample data is

multiplied by the local code of the correct delay. Since the sample duration is short

compared to the data bit time interval, the result should contain the carrier only. Multiple

blocks of samples, up to half the length of a data bit to help minimize the possibility of

the presence of a bit transition, are then cascaded together and processed to find the fine

carrier frequency and phase values. The phase angle, 𝜃𝑚 , for a data set at time 𝑚 can be

found from the highest frequency component in the DFT result (6).

𝜃𝑚 (𝑘) = tan−1
𝐼𝑚(𝑋𝑚 𝑘)

𝑅𝑒(𝑋𝑚 𝑘)
 9-4

Repeating the calculation to find the phase angle from data set 𝑛, 𝜃𝑛 , taken a short

time later can be used to find the fine frequency (6).

𝑓 =
𝜃𝑛(𝑘) − 𝜃𝑚 (𝑘)

2𝜋(𝑛 −𝑚)
 9-5

Once the code delay and the carrier frequency and phase are known, an instance of

the tracking loop components is initialized and started with these values as input

parameters.

 151

9.2 Tracking

The essential elements are the delay and phase-lock loops for tracking code and

carrier phases. These are feedback control systems where the plant under control is the

frequency of a numerically controlled oscillator. Without the ability to track the signal for

the time required, it would not be possible to receive the navigation message.

The usual approach is to model the control loops as continuous functions of time

using s-domain representations and assuming a conversion to the sampled z-domain

exists. When demonstrated, the transform from the s-domain is done with Tustin’s

bilinear transform with,

𝑠 =
2

𝑇𝑆

(𝑧 − 1)

(𝑧 + 1)
 9-6

where 𝑇𝑆 is the sampling time interval = 1/𝑓𝑠 .

While other transforms exist, this one maps all stable s-domain systems into stable z-

domain (the unit disc).

A potential drawback of this approach is that it assumes a very high sampling rate for

the system and fails to account for the effect the sampling delay has on system stability.

The sampling rate is not necessarily the signal sampling rate of the front-end hardware,

but for the purposes of the control-loop operation, it is the pre-detection integration time

of the non-coherent and so-called integrate and dump integrators. As a result, the models

derived are less than optimum, provide no guidance or insight on parameter selection,

and are potentially unstable.

 152

Chapter 10 Reference Implementation Results

The component models that have been developed have been extensively tested using

a combination of sampled data from live satellites and simulated signals. The processing

results from one sample file to another are consistent, so only two sets of sampled data

outputs are presented. These are the from signal data files that were captured on June 5

and 10, 2009, at Fredericton, NB.

The front-end that was used for testing is less than ideal for a real time applications,

and it was never intended to be used for this purpose. However, the development of the

receiver framework was already well into testing before the shortcomings of the device

were fully realized. At that time, a critical design goal of the receiver framework was to

allow for hardware independence and spending additional effort adapting to new

hardware was not germane to the framework fundamentals. A great deal of time went

into trying to find ways to overcome the limitations of the hardware, but the device was

never designed to work in real time applications.

As it turns out, PLLs are a challenge to implement well and efficiently in software.

Testing has revealed some interesting dynamics related to the implementation in the

receiver. There is still lots of work to be done in this area, and understanding all of it will

involve reading and writing many more papers.

 153

Real time performance is not achieved with the front-end as tested, however a

simulated signal using I/Q sampling, a 4-bit signed representation and byte-packing was

used to demonstrate the real time capabilities of the application framework.

As a demonstration and further proof of the interoperability features of the framework

a PLL component from the open-source GNU Radio project has been integrated. Also,

adapting the front-end to use a simulated signal source with different characteristics from

the other device also represents the equivalent of replacing the hardware entirely, further

supporting the design flexibility of the framework.

10.1 Pipeline Testing Configuration

Evaluation of the receiver framework has been conducted with the post-detection

tracking configuration shown in Figure 10-1. Using an SiGe SE4110L-EK3 USB (61)

Link-1 (L1) receiver front-end, the signal from the antenna (not shown) is down-

converted to an intermediate frequency (IF) of 4.1304 MHz, and then sampled and

digitized at a rate of 16.3676 MHz. The event source for the arrival of a new sample from

the front-end is connected in parallel to a DLL module that follows the code delay, and a

signal recorder object that writes the sample data to a file on disk.

 154

DLL PLL Demodulator

Input Event

Output Data

Event Event Output Event

NCO
Frequency & Phase

PLL

Data

Recorder

Signal

Front-end

DLL

Data

Recorder

Input

Data

Recorder

Figure 10-1—Tracking pipeline configuration used for testing

The DLL module (Section 6.2.6) produces early (E) and late (L) C/A PRN code

sequences by multiplying the input signal with the output of an NCO block. A prompt (P)

sequence is kept time aligned with the received code by adjusting the code delay amount

with a normalized E – L feedback loop. Using the locally generated P values, the code is

removed from the signal. The code-removed output from the DLL is passed to a PLL that

tracks changes in carrier phase using an arctangent discriminator function, discussed in

Section 6.2.5, and adjusts the output of the NCO. Finally, the phase transitions caused by

the presence of the navigation data bits in the signal are forwarded to a demodulator

component that is used to extract the 50 bps data stream. For testing, the outputs from the

DLL and PLL components are also fed to data recorder objects, in a manner similar to the

input signal, for offline graphical analysis.

Referring to the layered interoperability model shown in Figure 7-2 for a moment, the

code for initializing the front-end hardware, starting and stopping the sampler, and

conducting sample data transfers over the USB link represents Layer-1 functionality.

 155

Persisting and reporting on the status of the device, such as current error conditions, and

combining the multiple steps required to detect, enable, and activate the hardware into

single functional commands is handled in Layer-2. In order to start the sampling process,

the device needs to be either reset or reinitialized, and then sent a byte-oriented command

sequence to turn on the sampler; all of this step-by-step activity was rolled into the single

statement ISignalSource interface methods Start(), Stop(), Initialize(), and ReadData().

The 2-bit (magnitude + sign) data values from the analog-to-digital-converter (ADC) in

the front-end that are transmitted over the USB connection to the PC as unsigned 8-bit

bytes are translated into a (sign + magnitude) representation by mapping the values {11,

01, 00, 10} to {-3, -1, 1, 3} at Layer-2. The byte-sized data types used by the front-end

are directly compatible with the interoperability data marshaler, so the conversion

services of Layer-3 were not required. Had the front-end utilized more complex

structures involving indirect pointers or multi-byte character strings, these data types—

referred to as non-blittable, since their representations in memory are not consistent

between runtime environments—would need to be converted to more basic types before

being exposed to Layer-4, where the hardware makes the final connection to the receiver

framework.

Only a single instance of the tracking pipeline is shown in Figure 10-1. For tracking

multiple signal sources (satellites), instances of the pipeline are created and initialized for

each tracked object, all connected to the shared signal front-end. Passing the data through

the system in this manner eliminates the need for maintaining large arrays of samples that

are synchronized across threads and aged out of memory when the last process is

completed. Each stage in the pipeline has its own timestamped copy of the data it requires

 156

to complete its specified task. Information regarding the incoming sample rate, IF, data

bit rate, PRN code delay, and carrier frequency and phase are properties of their

representative component classes and are made visible to the receiver pipeline container.

In order to produce the repeatable set of results presented here, the input signal from

the front-end was initially recorded to two data files (June 5, 2009 at 13:16 UTC and June

10, 2009 at 15:52 UTC, located at UNB Fredericton, 45.9499N 66.6425W) which were

then used as input sources for subsequent analysis. The front-end hardware utilized was

originally designed for data capturing in a post-processing application and is not entirely

adequate for real-time signal processing. Due to a limitation in the device’s embedded

software, it suffers from an inability to capture data for more than 40 seconds without

requiring a reset. At ≈16 MHz, the sample rate is excessively high such that on a 2.4 GHz

Pentium 4 processor only 150 (2400 / 16 = 150) system clock cycles worth of time is

available between samples to complete all processing stages. However, with a sample

rate of ≈4x the intermediate frequency, the minimum phase difference between samples

of π/2 makes accurately tracking the carrier phase on a sample-by-sample basis either

impossible or results in compromised long-term stability of the PLL module. The post-

processing software intended for use with this device (5) avoids this problem by tracking

the signal on a longer time base, integrating the phase error over some interval. However,

the longer the integration interval, the more accurate the frequency estimate needs to be,

due to a narrowing of the 𝑠𝑖𝑛𝑐 function, requiring more signal processing time.

An excerpt of one of the input signals is shown in Figure 10-2 (a). The signal exhibits

the expected noiselike appearance, bounded by the -3 to +3 input voltage range.

 157

(a) (b)

Figure 10-2—Time-domain view of input signal source (a) and input signal histogram (b)

The distribution of the input values covering the same time period is shown in the

signal histogram of Figure 10-2 (b). The appearance of this graph indicates that the input

signal is not over-saturating the sampling hardware and that the signal level is reasonably

well-balanced over the available range.

The frequency domain view of a signal is provided in Figure 10-3, which was

obtained by performing ensemble averaging on ten consecutive 4096-length Fast Fourier

Transforms (FFTs) of the signal data. The resulting periodogram shows the input signal

energy spread over about a 4 MHz bandwidth that is roughly centered on the ≈4 MHz IF.

 158

Figure 10-3—Frequency-domain view of input signal

Using the circular correlation method as described previously in section 9.1, the

presence of PRNs #18, #21, #22, and #26 were detected in the signal recorded on June 5,

2009 and the initial code phase (time delay) was found for each satellite. The location of

the peak for PRN #18 shown in Figure 10-4 corresponds to a code delay of about 917 μs.

 159

Figure 10-4—Correlation peak for PRN#18 detection

The initial carrier-frequency estimate (IF + Doppler) was found by removing the C/A

code from ten milliseconds of sampled data and then frequency transforming the result,

looking for a spectral peak. Figure 10-5 reveals a peak for PRN #18 of 4.1304 MHz +

2584.0 Hz.

Figure 10-5—Frequency-domain view of recovered carrier for PRN #18

 160

On June 5, 2009 at 10:16 ADT (13:16 UTC), PRN18 had a radial velocity with

respect to Fredericton, NB of -409 m/s, which would give it a theoretical Doppler shift of

𝑑𝑓 = −
𝑑𝑣

𝑐
∗ 𝑓 10-1

= −
−409

299 792 458
 × 1575.42 × 106

 = 2149 Hz

The difference between the measured (2584 Hz) and calculated (2149 Hz) values can

most likely be caused by an inaccuracy in the sampling frequency of the front-end

hardware. Since the sampling rate specification is approximately four times the

intermediate frequency, an error of only 100 Hz in sampling frequency would cause a

difference in IF of 400 Hz. The front-end is based on the SiGe 4110L chipset, but the

sampling rate accuracy is determined by the nature of the reference clock circuitry

provided in the design. These details and variances are not indicated in the product

datasheets, so it is difficult to determine if the calculated errors would be considered

within specification.

Additional errors in the Doppler calculation come from numerical precision

restrictions resulting from the length of the frequency FFT transform analysis. All of the

signal energy from a narrow band of frequencies is placed into a single bin the width of

which is determined by the size of the FFT. It is not possible to distinguish one frequency

from another unless their difference is greater than the minimum bin width. This error

source is discussed in greater detail in section 10.2, next.

 161

For the purposes of tracking the signal, the initial code phase and carrier frequency

estimates are passed to the pipeline components during initialization. A thread is created

and attached to the main component collection for each PRN detected in the signal.

The output from the PLL, shown in Figure 10-6, is taken every millisecond and

forwarded to the demodulator component. The normalized value is then converted to an

appropriate binary one or zero at the expected data rate.

Figure 10-6—Navigation data signal from PLL output

At 50 bps and using the mapping of {-1, +1} → {1, 0} the signal of Figure 10-6

corresponds to the output of ten data bits {0110100101}. The data output is a raw stream

of bits that would have to be aligned to the preamble character (0x8B) at the start of each

of the sub-frames in the navigation message in order begin to extract the satellite

ephemeris parameters (future work).

The results presented graphically above represent the output of a single instance of

the satellite signal tracking loop from the file sampled on June 5, 2009. Multiple loop

instances are created and initialized to track multiple signals simultaneously. However

 162

the results obtained thus far using the SiGe front-end hardware are not produced in real

time, as desired.

The data recording objects have a tendency to increase the system workload by

creating high priority operating system threads that perform the necessary file output

operations, which limits the available processor cycles for tracking signals—these

recorders can be removed when they are not required for testing. Additionally, the PLL as

implemented uses the most computationally intensive discriminator function in order to

avoid the need for data bit timing synchronization. More work is required to identify and

implement a better PLL software processing model.

The results obtained from processing the signals recorded on June 5, 2009 are

summarized in Table 10-1. The average error between the theoretical Doppler and the

measured value is about 390 Hz higher than predicted, which can potentially be caused

by the previously mentioned clock frequency error, however the standard deviation of the

errors is 102 Hz. The samples are gathered over a relatively short timeframe, and one

would not expect such a large amount of variability in the clock uncertainty.

PRN #

Code

Delay

(ms)

Doppler

(Hz)

Radial Velocity

(m/s)

Theoretical

Doppler (Hz) Error (Hz)

18 0.917 2584 -409 2149 434

21 0.094 664 -74 389 275

22 0.043 3263 -525 2759 504

26 0.428 1842 -287 1508 334

Table 10-1—Visible satellites extracted from file captured on June 5, 2009 at 13:16 UTC

 163

Typically, sampling clock circuits are off by some measurable amount and that

amount drifts slowly with time and temperature. The frequency resolution of the software

detection method is about 65 Hz; the standard deviation would be expected to fall within

a range of ± that amount.

PRN #

Code

Delay

(ms)

Doppler

(Hz)

Radial Velocity

(m/s)

Theoretical

Doppler (Hz) Error (Hz)

9 0.940 -2427 486 -2554 127

12 0.514 2373 -361 1897 476

14 0.907 2038 -299 1571 467

18 0.009 -1607 349 -1834 227

22 0.171 477 -12 63 414

26 0.566 -2520 496 -2606 86

30 0.509 3747 -638 3352 394

Table 10-2—Visible satellites extracted from file captured on June 10, 2009 at 15:52 UTC

The results of processing the data captured on June 10, 2009 are summarized in Table

10-2, yielding an average Doppler error of 313 Hz and a standard deviation of the errors

of 163 Hz. Again, these values are higher than anticipated.

10.2 Real-time Performance Evaluation

Real-time performance testing has been conducted with files captured from the SiGE

SE4110L-EK3 USB signal front-end and a pipeline configuration without the data

recording objects of Figure 10-1 attached. For the 16 MHz sampling rate, 40-seconds of

captured signal data results in a file that is 625MB in size. The SignalSource component

that reads the data from the file and raises an empty event (with no attached listeners),

performing no processing, requires approximately 18 seconds to reach the end of file.

 164

With the addition of a single satellite tracking loop, it takes 57 seconds of processing time

to get to the end of the file, which is longer than the original file duration. If the signal

were being received in real time, the processing activities would obviously not be

maintaining pace with the sample arrival events. Connecting a second tracking loop

worsens this timing situation, requiring 79 seconds to process the entire file. The results

obtained from this testing are summarized in Table 10-3.

Activity Time (s)

File reading only 18

Track one satellite 57

Track two satellites 79

Table 10-3—Performance testing on 40 seconds of data from the SiGe EK3 front-end hardware

The high sampling rate and low information density of the samples, 2-bits of signal

information for every stored byte, make for a cumbersomely large file to process in real

time. Also, due to the low ratio of sampling rate to IF, the PLL processing component

frequently loses its lock during processing operations and has to perform extra steps to

reacquire the carrier phase. The lack of the pipeline recording objects makes it difficult to

demonstrate the PLL’s loss of lock, however during testing the Locked property of the

PLLPipelineComponent was frequently observed to transition to the FALSE state.

A more desirable front-end would utilize an I/Q sampler operating at a lower sample

rate, but with an IF that has been down-converted to a value much closer to baseband.

Each I and Q sample would be represented by a signed (two’s complement) 4-bit binary

sequence with I+Q data packed together in an 8-bit byte formatted as: QSQ2Q1Q0 ISI2I1I0,

 165

where the subscripted S denotes the sign bit and 2, 1, and 0 represent the three magnitude

bits.

The signal characteristics described and evaluated in (2) make use of a sampling rate

of 2.1518 MHz and an IF of 17.248 kHz. The reduction of sampling rate places a

limitation on the precision with which the position of the C/A code alignment can be

found, however. The ambiguity of the code phase depends on the commensurability ratio

of the sampling rate over the chip rate; the higher the common factors between the

sampling rate and chip rate, the greater the potential error. At 2.1518 MHz the resulting

error in positioning accuracy is calculated to be approximate 1.3 cm (2).

For testing, a 40-second signal was simulated using these characteristics and

containing the same satellite signals (PRN #s 18, 21, 22, and 26) as the June 5, 2009

recorded signal file previously analyzed. The code delay values used were the same

values measured in the original signal file, however the Doppler values simulated were

the theoretical predicted values based on the satellites’ orbital velocities. The reason for

using the predicted Doppler values instead of the measured values was to ascertain to

what extent the measured values obtained in Table 10-1 were affected by numerical

issues with the software and how much they were influenced by clock or other

inaccuracies in the hardware.

The I and Q components of the test signal were created using the following numerical

equations:

 166

𝐼 = 𝑆𝑖𝑔𝑛𝑎𝑙 × 𝐶𝑜𝑠 2𝜋 × 𝐼𝐹 + 𝐷𝑜𝑝𝑝𝑙𝑒𝑟 × 𝑡

× 𝑃𝑅𝑁(𝑡 − 𝐶𝑜𝑑𝑒𝐷𝑒𝑙𝑎𝑦) × 𝑁𝑎𝑣𝐷𝑎𝑡𝑎(𝑡) + 𝑛𝑜𝑖𝑠𝑒(𝑡)
10-2

𝑄 = 𝑆𝑖𝑔𝑛𝑎𝑙 × 𝑆𝑖𝑛(2𝜋 × (𝐼𝐹 + 𝐷𝑜𝑝𝑝𝑙𝑒𝑟) × 𝑡)

× 𝑃𝑅𝑁(𝑡 − 𝐶𝑜𝑑𝑒𝐷𝑒𝑙𝑎𝑦) × 𝑁𝑎𝑣𝐷𝑎𝑡𝑎(𝑡) + 𝑛𝑜𝑖𝑠𝑒(𝑡)
10-3

where Signal is the relative scale factor for the signal amplitude, Doppler is the positive

or negative Doppler shift amount, PRN is the chip code value (±1) for the specified time

minus the code delay, and the NavData is the stream of navigation data bits (±1) at a 50

bps rate. Noise was added to the signal using a uniform random number generator.

The calculated I and Q values were then scaled to the same ±3 Volt range as the

original SiGe front-end hardware, and quantized into a 4-bit representation. The 4-bit Q

nibble was shifted left by 4-bits, and then combined (bitwise OR) with the I nibble before

the merged byte value was written to disk. The lower sampling rate and higher

information density resulted in a 40-second file that was only 80 MB in size. A section of

the simulated signal is shown in Figure 10-7.

 167

Figure 10-7—Input I/Q signal from the simulated signal source used for testing

The calculated spectrum for the simulated signal is shown in Figure 10-8. A longer

length FFT was used in order to increase the frequency resolution of the result because of

the lower IF and sampling rates involved. Since the L1 signal is down-converted closer to

baseband, some of the signal energy from the lower sideband region is lost, reducing the

overall SNR. Also, since the input data are complex values, assumptions regarding the

symmetry of the negative frequencies in relation to the positive ones no longer apply.

Hence, the spectrum of Figure 10-8 is shown double sided.

 168

Figure 10-8—Double sided spectrum for simulated signal source

In order to accommodate the packed byte format of this file type, a new

FileSignalSource class (Figure 8-7) was created that inherits default behaviors and the

ISignalSource interface implementation from FileSignalSource, but overrides the

ReadData method. The QuadratureFileSignalSource class provides the facility to read a

byte of data from the specified file, unpack the I and Q values, and return a complex

sample with real and imaginary parts. The properties for IF and sampling rate are

specified and returned according to the indicated values. An instance of this type is then

created and used to initialize the pipeline component SignalController. The rest of the

testing application remains unchanged since all of the operations and behaviors are

encapsulated and abstracted through the related base class declarations.

As was done previously, all PRN sequences present in the signal were detected, the

code delays measured and the Doppler amounts determined during an initial acquisition

 169

process. Figure 10-9 shows the same peak detected for PRN #18 at 0.917 ms in the

simulated signal, the same as Figure 10-4 for the real signal.

Figure 10-9—Circular correlation peak detection using simulated signal source

Likewise, after the code delay has been found, the Doppler shift can be determined by

locating a peak in the frequency transformed version of a longer signal sample that has

been multiplied by the detected PRN code of the correct delay. The signal peak is

obvious in the chart of Figure 10-10, located at the expected value of about 19.4 kHz

(17248 + 2149 Hz).

 170

Figure 10-10—Frequency-domain view of carrier using the simulated signal source

Finally, if desired, the carrier can be recovered and viewed in the time-domain by

band-pass filtering the signal and taking the inverse Fourier transform of the result. The

resulting output of this operation is shown in Figure 10-11, however it is usually not a

necessary step for the purposes of tracking the received signal and is shown here for

illustrative purposes only.

 171

Figure 10-11—Time-domain view of recovered carrier using the simulated signal source

The results of the signal acquisition and detection processing are summarized in

Table 10-4. All of the PRNs contained in the signal were identified with the correct

delays. The errors between the actual Doppler values used in the simulated signal and the

Doppler as measured can be directly attributed to limitations in the precision of numerical

signal processing, since there is no hardware involved or other external physical

phenomenon at play.

PRN #

Code

Delay

(ms)

Actual

Doppler

(Hz)

Measured Doppler

(Hz) Error (Hz)

18 0.917 2149 2124 -25

21 0.094 389 417 28

22 0.043 2759 2781 22

26 0.428 1508 1533 25

Table 10-4—Satellite tracking results with a simulated signal

The average Doppler error for the simulated signal is 12.5 Hz, while the standard

deviation is 25 Hz. The transform-based frequency measurement has a maximum

 172

resolution that is determined by the ratio of the sampling frequency to the number of data

bins in the transformation. The greater the number of bins, the higher the frequency

resolution obtained, at a cost of increased computation time. For these tests, the

corresponding ratio is

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
2.1518 𝑀𝐻𝑧

32 768

= 65.67 𝐻𝑧 𝑝𝑒𝑟 𝑏𝑖𝑛

10-4

The computed errors are all within this limiting value.

Similar to before, real time performance measurements were obtained using this

simulated signal source and are summarized in Table 10-5. Since the file was

significantly smaller, a much lower amount of time was required just to read its contents;

the file read operation without processing completed on average in less than two seconds.

Tracking of one, two, and four satellite signals simultaneously was also achieved, all

within an amount of time less than the actual recording duration of the file.

Activity Time (s)

File reading only < 2

Track one satellite 16

Track two satellites 29

Track four satellites 38

Table 10-5—Performance testing on 40 seconds of data from the simulated signal model

The additional information present in the I/Q format of the data significantly

simplified the phase and frequency tracking operations of the PLL, which managed to

 173

stay in a locked status through the entirety of the processing. I and Q processing offers

advantages over real only samples in that the additional information provided can be used

to calculate the frequency when the exact phase is unknown and to find the frequency by

the rate of change of phase. The navigation data bits were simulated using an instance of

a PRN class that had its chip rate set to 50. This configuration allowed the data bit edge

for each simulated satellite to align properly with the chip edge, as it would in a real

signal, but it does not encode an actual GPS navigation message. However, the phase of

the carrier is not adjusted by the simulated code delay, and all signals are given the same

navigation message and noise values. Furthermore, the simulation noise, usually modeled

as a band-limited Gaussian process, was actually created using a random number

generator with a uniform distribution, and the same noise value was added to both the I

and Q signals. A better, more precise, way to create the simulation data would be to add a

band-limited noise value to a simulated real signal and then, using an implementation of a

Hilbert transform, form the Q signal component.

For the purposes of evaluating and testing the real time tracking capabilities of the

framework, the signal as simulated should be sufficient.

10.3 Interoperability Component Integration

The motivation in providing an interoperability support layer for the receiver

development framework was to enable hardware and software components developed and

supported in different application environments a means of tying into the signal

processing model. Likewise, application features of the framework can be enhanced by

the integration of additional functionality that has previously been developed by other

members of the receiver research community.

 174

The integration and testing of the I/Q simulated signal source is an example of the

capabilities and potential of this interoperability approach. Although the signal was

simulated, the adaptations involved in the framework are identical to what would be

required had the signal source been a physical piece of front-end hardware.

In order to accommodate the packed byte format of this file type, a new

FileSignalSource class was created that inherits from FileSignalSource, gaining default

behaviors and the ISignalSource interface implementation. By overriding the ReadData

method, polymorphism allowed the correct method of the new class to be invoked at run

time. As far as the rest of the processing components were involved, the details of the

format and actual source of the new signal were irrelevant.

In a similar manner, any hardware or software component can be adapted to

implement the appropriate component interface, either through inheriting a level of

already existing functionality and overriding the differences in properties and methods, or

by starting a new class type that implements the interface directly. Had the new signal

source been a physical piece of hardware, the only additional complexity in creating

support for it would be in the challenges associated with writing or finding a suitable

Windows® device driver. The degree of complexity involved is usually determined more

by the complications of working in the realm of the required 3
rd

-party tools and

environments.

Appendix A provides background and details on the mechanics of working with 3
rd

-

party application libraries and developing interoperability components in general. As a

further example and demonstration of the steps involved, a phase-lock loop component

 175

from the open-source GNU Radio (63) project will be integrated into the signal

processing pipeline of the test configuration. Although the basic approach is the same,

following the four-layer model presented in Chapter 7, the work of this section is not for

the faint of heart.

GNU Radio consists of a mixed bag of hardware and software technologies. The

project contains many worker classes and utilities for building SDR and other signal

processing related applications. The first step in connecting to this ready-made

functionality is to build (compile and link) the GNU GRC library called general; building

it is hard (64):

“Considerable effort has been put into making the GNU Radio code portable among

various operating systems, but there are several reasons why it cannot be "simply"

compiled and run under Windows:

• The build and install procecures [sic] are based on Linux scripts and tools

• Several third-party libraries are used, each with its own, often system-

dependent, installation procedure

• Most GNU Radio applications must interface to hardware (e.g., a sound card

or USRP) which require system-dependent drivers and installation procedures

• Because GNU Radio is written as an extension to Python, there are potential

problems on Windows if different runtime libraries are used for GNU Radio

and Python”

Not to editorialize, but it’s clear that in their efforts to keep the GNU Radio project

system agnostic, the implementers have instead made life difficult for everyone who

 176

wishes to use it. Specific build instructions change with each version, so no additional

details on building the imported libraries will be provided, here.

After getting the appropriate source files compiled into a static library, the next step is

to create a new Windows DLL (this DLL is for dynamic-link library, not delay-lock

loop) project; here it is called GNURadioParts. To this project was added the previously

built general.lib to the list of linker inputs. Also added was the gr_pll_refout_cc.h file to

the stdafx.h precompiled header file, as shown in Figure 10-12.

Figure 10-12—Precompiled header file stdafx.h used for the GNURadioParts library project

The purpose of creating this library is to produce the interoperability type adaptations

and function exports (Layer-2 and Layer-3). The GNURadioParts.h file shown in Figure

10-13 will declare the exported function UpdateOutput(…) that takes a single complex

value as an input and returns a complex value as an output.

// stdafx.h : include file for standard system include files,

// or project specific include files that are used frequently, but

// are changed infrequently

#pragma once

#include "targetver.h"

// Exclude rarely-used stuff from Windows headers

#define WIN32_LEAN_AND_MEAN

// Windows Header Files:

#include <windows.h>

// TODO: reference additional headers your program requires here

#include "..\\..\\gnuradio-3.2.2\\gnuradio-

core\\src\\lib\\general\\gr_pll_refout_cc.h"

 177

Figure 10-13—Header file GNURadioParts.h with the UpdateOutput(…) function exported from

the GNURadioParts library project

The implementation of UpdateOutput(…) in GNURadioParts.cpp is shown in Figure

10-14. The simple template library (STL) complex template is used to map the input

value to a C++ complex type. An instance of the PLL class has been previously declared

in Figure 10-13 and initialized in Figure 10-15. All that is required is to forward (redirect)

the input argument to the work(…) method of the GNU Radio gr_pll_refout_cc class.

When the method call completes, the returned value is subsequently passed back to the

caller from the upper layer.

// The following ifdef block is the standard way of creating

// macros which make exporting from a DLL simpler. All files

// within this DLL are compiled with the GNURADIOPARTS_EXPORTS

// symbol defined on the command line. This symbol should not be

// defined on any project that uses this DLL. This way any other

// project whose source files include this file see

// GNURADIOPARTS_API functions as being imported from a DLL,

// whereas this DLL sees symbols defined with this macro as being

// exported.

#ifdef GNURADIOPARTS_EXPORTS

#define GNURADIOPARTS_API __declspec(dllexport)

#else

#define GNURADIOPARTS_API __declspec(dllimport)

#endif

//GNU Radio PLL component declaration, initialized in DLLMain

extern GNURADIOPARTS_API gr_pll_refout_cc* PLLInstance;

//GNU Radio PLL component interface wrapper exported function

extern "C" {

GNURADIOPARTS_API std::complex

 UpdateOutput(std::complex<double> input);

}

 178

Figure 10-14—CPP source file GNURadioParts.cpp showing the UpdateOutput() function

implementation

The DllMain entry point in DLLMain.cpp, Figure 10-15, is called when the library

module is loaded by the operating system. Rather than repeatedly initializing an instance

of the PLL class, it is simpler and more resource efficient to create and initialize a shared

instance when the application is first loaded. The instance is first declared in

GNURadioParts.h, shown in Figure 10-13, but note that the instance marked as external

(extern keyword). The actual instance in defined in DLLMain.cpp, but it existence needs

to be communicated to the UpdateOuput(…) function in GNURadioParts.cpp.

#include "stdafx.h"

#include "GNURadioParts.h"

#include <complex>

// This is the exported GNU Radio PLL work function wrapper code

// The input and return types are from the STL complex library,

// which happen to be compatible with the Receiver Framework

// Complex type.

GNURADIOPARTS_API std::complex

 UpdateOutput(std::complex<double> input) {

 std::complex<double> output;

 std::vector<gr_vector_const_void_star> input_items(input);

 std::vector<gr_vector_void_star> output_items(output);

 //The actual operations are performed in the call to the GNU

//Radio PLL gr_pll_refout_cc class member, work.

 PLLInstance->work(int(1), input_items, output_items);

 return output_items;

}

 179

Figure 10-15—CPP source file DllMain.cpp with the gr_pll_refout_cc instance initialization

The implementation of the Layer-4 component wrapper, GNURadioWrapper.cs, is

shown in Figure 10-16. This C# file declares the GNURadio namespace and creates the

linkage between the GNURadioWrapper class and the GNURadioParts library.

Figure 10-16—C# source file GNURadioWrapper.cs that imports the GNURadioParts library

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Runtime.InteropServices;

namespace GNURadio {

 public class GNURadioWrapper {

 [DllImport("GNURadioParts")]

 public static extern Complex UpdateOutput(Complex input);

 }

}

// dllmain.cpp : Defines the entry point for the DLL application.

#include "stdafx.h"

GNURADIOPARTS_API gr_pll_refout_cc* PLLInstance;

BOOL APIENTRY DllMain(HMODULE hModule,

 DWORD ul_reason_for_call,

 LPVOID lpReserved

)

{

 switch (ul_reason_for_call)

 {

 case DLL_PROCESS_ATTACH:

 case DLL_THREAD_ATTACH:

 PLLInstance = new gr_pll_refout_cc(float alpha,

float beta, float max_freq, float min_freq);

 break;

 case DLL_THREAD_DETACH:

 case DLL_PROCESS_DETACH:

 delete PLLInstance;

 break;

 }

 return TRUE;

}

 180

A new PipelineComponent class needs to be declared in order to connect the

GNURadioWrapper class to the signal processing pipeline. This work is accomplished in

GNUPLLPipelineComponent.cs, shown in Figure 10-17.

Figure 10-17—C# source file GNUPLLPipelineComponent.cs for invoking the

GNURadioWrapper UpdateOutput() static method

The class, GNUPLLPipelineComponent, inherits from the existing

PLLPipelineComponent type, and overrides the non-default constructor and the

UpdateOutput() method. The PLL maintains references to an NCO instance that is shared

with the DLL (now this is a delay-lock loop), and a demodulator component that is used

to convert the real portion of the PLL output into a binary data stream. The PLL also

receives bit synchronization timing information as feedback from the demodulator.

The required adaptations in the existing PipelineContainer merely involve changing

the type name of the PLL instance to the new class name. The pipeline holds a private

member of the PLLPipelineComponent base type, and since the

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace PipelineComponents {

 public class GNUPLLPipelineComponent : PLLPipelineComponent {

 //Non-default class constructor:

 public GNUPLLPipelineComponent(NCOPipelineComponent NCO,

 DemodulatorPipelineComponent Demod):base(NCO, Demod) {

 }

 //PipelineComponent inherited method:

 public override void UpdateOutput() {

 Output = GNURadio.GNURadioWrapper.UpdateOutput(Input);

 }

 }

}

 181

GNUPLLPipelineComponent is derived from this class, it can be treated as an equivalent

type. The modifications required are shown in Figure 10-18.

Figure 10-18—PipelineContainer PLL member declaration and initialization for

GNUPLLPipelineComponent class integration

Everything else in the existing application stays exactly the same since the declared

type of the PLL is of the base type PLLPipelineComponent, but at run-time the actual

derived type is GNUPLLPipelineComponent, and polymorphism ensures the correct

method is executed. The UpdateOutput() method is invoked from within the Done()

event handler of the base PLLPipelineComponent class.

The performance results with the simulated signal and the GNU Radio PLL are

unchanged from the results previously presented in Table 10-5.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using PRNCodeGenerator;

namespace PipelineComponents {

 public class PipelineContainer : PipelineComponent {

 :

 :

 //PLL Class instance:

 private PLLPipelineComponent PLL;

:

:

 PLL = new GNUPLLPipelineComponent(NCO, Demodulator);

 :

 :

}

 182

Chapter 11 Conclusion

The design and development of a real-time software GNSS receiver research

framework has been demonstrated and tested. The pipelined processing model of the

system eliminates the need for parallel access to large signal data structures and the

requirement of creating multiple copies of objects in memory for parallel access across

multiple processes. The interoperability layer defined by the framework allows for the

direct integration of external components from other sources, and the extensibility

characteristics of the provided object-oriented design allow new functionality to be

created while permitting high levels of code reuse.

Due to the complexity of modern microprocessors used in PC-based computing

systems, achieving real-time software GNSS receiver operation will require algorithms

with high degrees of parallelism and carefully designed interprocess synchronization

strategies. The nature of these applications requires more than an overall optimization

effort on the part of software and algorithm implementers.

Using a block-diagram model and a pipeline signal processing approach, the

framework allows the development and testing of both software and hardware concepts in

a consistent unified manner. An object-oriented implementation maximizes the potential

for component reuse and enhances the system’s extensibility benefits.

The interoperability features of the framework allow for the integration of multiple

types of component implementations from different solution sources. Combining

 183

individual efforts in such a manner allows for the best-of-everything system development

model necessary to meet required performance objectives.

The tracking loops as tested and presented consist of only the most direct

interpretation of the basic processing techniques and requires more sophisticated

optimizations and improvements to enhance the overall performance characteristics.

However, there are many researchers actively focusing on algorithm optimization, and by

exploiting the integration goals of the framework, the results thus obtained can be

incorporated into this solution for testing and evaluation.

The reference receiver needs the integration of an almanac and other support material

to aid in the initial detection process. There currently is no ability to make or incorporate

in-view satellite predictions based on last known location and time-of-day information.

The effective process for acquisition is equivalent to a receiver in a ―cold-start‖ mode.

Given an approximate estimate of location from the last known position, and a reasonably

accurate system time, the search space and corresponding processing duration for

identifying in-view satellites can be dramatically reduced.

Going forward, many of the list and collection types in the framework could benefit

from the definition of C# generics, or templates in C++, to simplify the process of

creation of new components. Also, the development of a receiver pipeline graphical

design utility will eventually be included as an essential part of the framework. Such a

utility will assist in the visualization of the interconnections between the components and

their event sources.

 184

Some future considerations for software receivers include the design of front-end

hardware that converts the input signal to a frequency that is closer to baseband in order

to reduce the workload on the PC processor, and at the same time increasing the sampling

rate as a factor of the IF requirement. The SiGe EK3 USB sampler used in this research

operates at a ≈4 MHz IF and a ≈16 MHz sample rate (although a newer one has been

made available that uses a sampling frequency of 8.1838 MHz and an IF of 38.400 KHz).

For carrier frequency and phase tracking, the error in the angle between samples needs to

be kept at less than π/2, but at four samples per signal cycle the minimum possible phase

difference is π/2. Simply satisfying the Nyquist rate for choosing the sampling rate is not

sufficient for many control-related applications (65) (66). Increasing the sampling rate

improves the stability and tracking capabilities of DLL and PLL loops (57). The

differences in the stability analysis of analog phase-lock loops (APLLs) and their discrete

counterparts (DPLLs) are discussed for first and second-order systems in (19). A

baseband software processor for GPS was developed and evaluated in (2) using an IF of

≈20 kHz and a sampling rate of ≈2 MHz, but only tested under simulated signal

conditions and without the presence of a navigation message. Also, reducing the

sampling rate reduces the precision with which the C/A code delay can be found, so a

careful balance must be struck between performance and accuracy.

Many of the texts and references separate their discussions on the process of satellite

signal acquisition from that of acquired signal tracking. The usual software model is that

acquisition finds the PRN sequences corresponding to satellite transmissions in the

incoming signal, and then returns a collection of objects for the tracking loops to follow

over time. Tracking each detected satellite on an individual dedicated thread appears to

 185

be a good idea, but there is a great deal of variability in the starting time of a thread from

its point of creation. The purpose of accurately finding the sub-millisecond C/A-code

delay in the acquisition stage is lost when it takes 1-5 milliseconds for the tracking thread

to begin execution. The transition between acquisition and tracking, therefore, must be

viewed as a basic change of state in a continuous operation rather than a step in a longer

sequential process. Methods need to be developed that support the seamless transition

from acquired signal to tracked satellite.

The time-domain versions of acquisition processes generally require an excessive

length of time in order to run. Frequency-based circular correlation methods for finding

the initial code-phase parameter will require the incorporation of the output from a

hardware counter resource that can serve as a relative timestamp for the incoming

samples. The current code delay may then be calculated from the initial delay provided

by the acquisition stage by using the difference in the counter values. Newer PC system

boards include a High Performance Event Timer (HPET) for multimedia time reference

purposes, which could also be used for front-end signal timing.

The allocation of large blocks of memory for storing signal samples takes time and

processor clock cycles to achieve. These ―background‖ system activities are usually

unaccounted for, but need to be recognized in the overall receiver workload.

Finally, the flexibility of the receiver framework allows for a binary file to serve as

the source for an input signal. Configuring the signal classes with the required

information on the signal properties, such as IF and sample rate, could be done

automatically if there were even a de facto agreement from the community on the

 186

establishment of a binary file format that defines an embedded header for holding an

information structure that includes byte ordering (endianess), sample rate, and other

information required for cross-platform and hardware compatibility.

It is also worth mentioning that the event-driven pipeline model developed for the

receiver does not need to be limited to real-time systems. Highly complex calculations

may benefit from the ability to create multiple parallel instances of a sequential

processing chain, even though real-time operation would not be achievable due to the

computational load. There are many possible applications of the software pipeline

architecture for controls and signal processing work. When combined with the memory,

data storage, and network access capabilities of a PC, well, one’s imagination becomes

the limiting factor.

The classes of supporting components developed as part of this framework can also

provide benefits to other applications as well. The PRN generator classes and signal

sources, for example, can be used outside of the framework pipeline and can act as input

signal simulators for the development and testing of a wide range of utilities.

The significance of this work lies in the establishment of the collection of object

models and base implementations for real-time receiver development. Without it, there is

a limitation to the degree of improvement to software receiver performance that can be

made through individual optimization efforts alone. By adopting the principles and

integration philosophies embodied and presented in this work, world-wide efforts can be

combined into a unified development model.

 187

The release of this document corresponds to version 1.0 of the receiver framework.

There is still much work to be done and many opportunities for making improvements. It

is difficult to predict how consumers of any object-model will need to adapt and change

its structure in the future. As the goal of establishing and distributing the framework

proceeds, the feedback obtained from testers and users alike will serve as a means for

enhancements and a better overall application environment.

 188

Appendices

Introduction to the Appendices

These are the things that I had to search many texts to find out and the connections or

discoveries I’ve made along the way. There is likely nothing new here, (except for

Appendix A) and you’ve probably seen it already before. I’m including this material not

necessarily to support the work, but to aid in someone starting out so that they don’t have

to go through it all themselves.

 189

Appendix A—3
rd

-party Toolkit Interoperability

As an example of the approach of the receiver framework towards interoperability, a

few details on the integration of the open-source GPS toolkit library, GPSTk (54), from

the University of Texas at Austin, are provided in this appendix.

The GPSTk toolkit is written primarily in C/C++ and contains many features and

functions for working with GPS almanac data files, performing date-time conversions,

and extracting ephemeris data from the received satellite navigation message. The library

comes with source code, compiled libraries for static linking, and several command line

applications. Rather than rewriting and testing the ready-made functionality provided by

the toolkit, it is far easier to make use of such resources as they are, in place.

The purpose of this appendix is to provide relevant background information and

details on using C/C++ to create a native-code Windows library that exports functions

and symbols that are consumable by .NET applications and is connected to the receiver

framework. This approach may be used to provide a bridge between managed and

unmanaged code that abstracts many of the type-conversion complexities and issues

involved with the typical direct approach of invoking native code through the various

Interop assemblies.

Library Background and History

In the past, application code was written and rewritten without regard for how it could

be recycled and reused. In the interest of increasing code reuse, the idea of bundling

collections of valuable and useful, but generically implemented, functions into shareable

 190

redistributable software libraries eventually evolved. Source code, such as C/C++ and

machine specific assembler files were compiled into object modules and then merged

together into libraries. Typically, code with similar functional purposes was grouped

together into a single aptly-named library. The librarian tool, LIB, was used to build and

maintain these various libraries.

When an application required a piece of code that was available in one of the

libraries, the developer would declare to the compiler that the functionality was

implemented externally. The compiler would produce intermediate object files without

immediately trying to locate all of the missing pieces. It was then up to the link operation

to combine the object files and extract from the libraries the external functions. This

process created a statically linked application: a copy of the function was taken from the

code in the library and statically embedded into the application.

For all of the reuse benefits, static linking has a couple of disadvantages. If a large

application consists of several executable modules that all share code from a common set

of libraries, each of those modules will increase in size by the amount of code extracted

from the libraries. When the applications run, they will each have their own copy of the

code in memory and it will all be loaded whether or not the functions are ever actually

called by the application. {Just to clarify: an optimizing linker will not link to external

library code that is never called by the application, but if an external function is called

within a conditional statement that evaluates to false at run time, that function‟s

implementation will be linked and loaded because it could have been called.} Loading

many copies of the same code into memory is not a very efficient use of available system

resources.

 191

What was needed was a way of dynamically linking the libraries into a shared module

that could be loaded into memory just once and only when it was needed. Shared code

could be written, compiled, and linked into a dynamic-link library (DLL) that could be

accessed by several applications all at once, if needed. Any functions that were to be

exported from the library would be added to a lightweight LIB file that contained just

enough information to keep the linker happy—unlike their static counterparts, these LIBs

contained no executable code. Application authors wishing to make use of the services

provided by the DLL would add the LIB file to the list of linker inputs, and as long as the

DLL could be loaded when the application needed it, calls into the functions would run as

if they had been statically linked all along. Parameters surrounding the loading of the

library into memory could be controlled to improve the application’s startup time and to

reduce its memory footprint.

In order to create the LIB file, exported function names first had to be either added to

a module definition file, .DEF file, or the function entry points needed to be marked with

the _export keyword (16-bit applications used _export, 32-bit versions later replaced this

syntax with a _declspec(dllexport) tag.) A utility, implib, would produce the LIB file

using either the DEF file or the DLL itself as an input. The DEF file provided better

control of the export behaviors, where the _export approach was just simpler.

Consuming these libraries was not always an easy thing to do, especially if they had

been developed by a 3
rd

-party independent software vendor (ISV). The function

prototypes (names and parameters) must be declared before their use, along with any

custom symbols, types, or enumerations that are required by the library interface.

Typically, these things are placed in C-style .H header files that are <included.h> with the

 192

application source code. It may seem very structured and abstract, providing the sense of

separation between declaration and implementation, however, in practice the code

frequently becomes an ugly mix of preprocessor directives, obtuse macros, conditional

includes, and hard-coded file paths.

The .LIB files had to be added to the linker input list, and the DLLs needed to be

available when the application ran. When trying to locate DLL modules, the runtime

loader would only look in the current directory, usually where the application was started,

and in the system directory. If something couldn’t be found, the application would die in

a most shameful manner. Keeping in mind that the libraries were intended to encapsulate

shared functionality, applications that were modularized into multiple executables in self-

contained directory structures would either require multiple copies of the shared DLL in

multiple locations, or a single copy in the operating system root directory where they

would often overwrite one another.

The problem with the C language is that it has a tendency to constantly pull the

developer away from the abstract into the detail view. Most experienced C/C++

developers are aware when they are writing code what registers will hold variables, how

values are being stored and what the stack-frame looks like at any point in time, among

other minutiae not directly related to the task at hand.

Other more modern languages, however, are much better suited to developing

feature-rich applications, where too much fretting over the compiler details just gets in

the way of being productive and innovative. Unfortunately, there are development

language issues to deal with because C header files are only useful to C language

 193

compilers. When C code is included with a Visual Basic application, the result is general

unhappiness. Interoperating C libraries with non-C languages has been problematic, to

say the least.

Component Object Model

Using (67), in particular the Abstract Factory, Factory Method, and Builder patterns,

Microsoft® developed the Component Object Model (COM) interface standard, which

later became COM+ (the + is for new and improved) with the release of Windows 2000.

The COM+ subsystem provides class factory methods that allow subclass types to be

created through an interface provided by a virtual base class. The underpinnings of COM

take advantage of the C++ multiple inheritance and polymorphism capabilities to define

an abstract base class that all other COM-capable objects must derive from and

implement. Pointers to the base-class type are passed into and out of method calls and

eventually cast to a concrete implementation at run time.

COM-accessible components assign newly defined classes (types) a globally unique

identifier, a GUID, and store information on how to create instances in a central

searchable location, namely the system registry. An application can then ask the

operating system to create an instance of a class by invoking a method on the abstract

base (through the common interface) that returns a pointer to an object as the base type

that can eventually be cast to the appropriate derived type. This pointer can be used to

call methods on the specific class implementation. All of this plumbing eventually allows

non-C languages to create instances of, and call methods on, classes written in C++.

 194

So, for an example, the Acrobat Access reader plug-in has a registry entry that looks

like Figure A-1.

Figure A-1—Acrobat Access system registry entry

As shown, AcroAccess.AcrobatAccess is the version independent program ID

(progID). An application wishing to create classes of types supported by this library can

refer to the progID by name. The current version, CurVer, key contains the version

specific program ID, AcroAccess.AcrobatAccess.1, as shown in Figure A-2.

Figure A-2—Acrobat Access version specific program ID

The class ID key, CLSID, of this entry contains the GUID of the executable that

holds the implementation runtime of the class library, as shown in Figure A-3 and Figure

A-4.

Figure A-3—Acrobat Access class ID key

 195

Figure A-4—Acrobat Access class ID value

The value of {C523F39F-9C83-11D3-9094-00104BD0D535} given in Figure A-4

references another registry key that contains, among other information, the name and

location of the executable, shown in Figure A-5.

Figure A-5—Acrobat Access InprocServer32 sub-key

Where, the InprocServer32 sub-key provides the name and path of the executable

file, as shown in Figure A-6.

Figure A-6—Acrobat Access executable file registry entry

The COM model defines two pure-abstract base-classes that work in similar but

somewhat different manners, IUnknown and IDispatch. C++-style languages that

support v-table method calls, such as C++, use the IUnknown interface. Other late

binding scripting languages, like Visual Basic, VB Script, and Java Script, use the

 196

IDispatch interface, which inherits from and extends IUnknown. The methods defined in

these two interfaces are:

(68) IUnknown: QueryInterface, AddRef, and Release

(69) IDispatch: GetTypeInfoCount, GetTypeInfo, GetIDsOfNames and Invoke

So, to create an instance of the Acrobat Access class, the Win32 function

CoCreateInstance is called with the version independent program ID

AcroAccess.AcrobatAccess, and the returned IUnknown pointer can be cast to the specific

AcroAccess plug-in type. From there, QueryInterface can be called to get references to

any other functional interfaces that the class implements. All of the registry lookups and

object instantiation details are left to the operating system to deal with.

Declaring an interface using the C++ syntax for an abstract class with pure-virtual

methods is awkward and long winded. It also doesn’t support the additional GUID

information required for COM registration. The Interface Definition Language (IDL)

leverages the C++ syntax and supports the extra attributes and keywords necessary for

declaring object IDs and interface types. The Microsoft IDL compiler, MIDL, processes

this information and generates C files that are then compiled and linked into the class

library. All of the type information exposed by the COM interfaces is listed in a type-

library file, .TLB, that client applications can use to create references to the exported

types.

 MIDL code is the standard way of creating COM/COM+ compatible interfaces in

C/C++. Further details on COM and the MIDL tools can be found in (70).

 197

The .NET Framework

The .NET Framework includes a feature-rich Base Class Library (BCL) as a

foundation for application development, and a managed code execution environment that

provides system services for library dependency, versioning, and runtime security.

The Common Language Infrastructure (CLI) specification has been standardized

under ECMA-335 and ISO/IEC 23271:2006 (71) and (72). The CLI encompasses a

Common Language Specification (CLS), a Common Type System, and a Virtual

Execution System. The Common Intermediate Language (CIL) (73) (CIL—formerly

MSIL) is the lowest-level human-readable language in the CLI and the .NET Framework.

Any development language that targets the .NET Framework runtime must be capable of

generating CIL-compatible code. The Microsoft-defined .NET languages are C#,

Visual Basic .NET, managed C++/CLI, and J#.

Using the .NET-aware languages, high-level code is compiled into assemblies of

instructions in the CIL format. These assemblies can be either .EXE or .DLL files similar

to native code, but they contain no CPU-specific binary compatible operations. Instead,

the code is loaded and further compiled into binary code by the just-in-time (JIT)

compiler of the .NET runtime the first time the application is executed. Each loaded

assembly contains meta-data that describes the version specific details, dependency

requirements, symbol exports, and any other applied attributes.

Exported types are visible through reflection, and consuming functionality exposed

from a library is as simple as adding a reference to it in a project. Since there are no

requirements for forward declarations of types or function prototypes, there is no need for

 198

header or other types of include files. There are no .LIBs or exported type libraries, and

no digging through the registry looking for interface IDs. More importantly, side-by-side

version execution provides the capability to load two different versions of a DLL with the

same file name without conflicts. ISVs can install their application-specific files into an

isolated folder without stomping on other similarly-named system files; the .NET

Framework will sort out all the details when the assemblies are loaded.

Memory management is provided by the runtime in that all class instances are created

on a managed system heap. As references to objects go out of scope, memory will be

automatically released by a garbage collection process that is provided to eliminate

application memory leaks. Along with improved type safety and security checking,

application stability is greatly enhanced. These changes, coupled with the Framework’s

base class library, allow software developers to focus on delivering a higher level of

application functionality.

Integration of GPSTk

A .NET application can access Win32 native-code C library functions through

platform invoke, P/Invoke, by specifying the function as external and by applying

attributes that provide the name of the library where the function implementation can be

located. Using P/Invoke requires class-method declarations for each of the C functions

that one wishes to use, and all the data types that those functions require, in the .NET

environment. However, not all C/C++ native types map directly to CLS compatible types,

particularly where multiple levels of indirection are present, like passing the address of a

pointer to a structure that contains a pointer to a void pointer. It’s not always easy or

necessarily possible to resolve these incompatibility issues.

 199

It is possible to build a C/C++ DLL and use it to interconnect to the plumbing of the

desired C-only API, exposing a much simpler interface with intrinsically compatible data

types. Quite often, the overall goal is to achieve a single purpose task that is

accomplished through two or more C function calls, where each call requires references

to data structures that bear little relevance to the top layer. Rather than redefining types

and function signatures for each piece, the easier solution is to write a single C function

interface that instantiates the required data types and invokes the correct sequence of API

calls. Only this function then needs to be exported from the library, and any input

parameters that are necessary can often be passed using simpler data types, but more

complex structures can be accommodated, as well.

Much has already been written on using P/Invoke and the DllImport attributes to link

to unmanaged Win32 library code, but little information is provided on the requirements

for writing an unmanaged C/C++ DLL that exports CLR-accessible symbols.

Surprisingly, the rules for building a DLL in C haven’t changed in many years, but some

of the details have been obscured through the mists of time and legend.

The GPSTk library comes complete with several command line example applications

that take lists of input arguments, but the whole thing looks very UNIX’y. Without

having to rewrite the functionality or going through time-consuming hoops to get to it, an

adapter DLL is created to call into the C-only GPSTk library.

Referring to the layered interoperability model discussed in Chapter 7, Layer-1

represents the actual GPSTk library code. The first step in creating the Layer-2 adaptation

 200

involves starting a new Win32 DLL project in Visual Studio (any C++ compiler tool for

Windows can be used), as shown in Figure A-7.

 Figure A-7—Visual Studio 2008 new project dialog

After selecting the Win32 Project type, giving the project a name, and pressing OK,

additional project options can be specified, as shown in Figure A-8. This dialog allows

the specification of the application type (DLL) and an option to export symbols.

 201

Figure A-8—Visual Studio 2008 new project dialog

If the export symbols option is selected, the new project wizard will generate a .h file

(projectname.h) that contains the following code.

Figure A-9—Exported code symbol C macro

// The following ifdef block is the standard way of creating macros which

// make exporting from a DLL simpler. All files within this DLL are

// compiled with the GPSTKLIB_EXPORTS symbol defined on the command line.

// This symbol should not be defined on any project that uses this DLL.

// This way any other project whose source files include this file see

// TESTWIN32LIB_API functions as being imported from a DLL, whereas this

// DLL sees symbols defined with this macro as being exported.

#ifdef GPSTKLIB_EXPORTS

#define GPSTKLIB_API __declspec(dllexport)

#else

#define GPSTKLIB_API __declspec(dllimport)

#endif

 202

As explained by the code comments, if the header file with the macro is included in a

project that defines the GPSTKLIB_API symbol, the default will be to export declared

functions from the library, otherwise the functions will be imported.

At this point, there are two choices for creating function exports. In the source code,

create functions or classes with name declarations by adding GPSTKLIB_API before the

function or class name, like in Figure A-10.

Figure A-10—C++ class code exported using API macro

Alternatively, a module definition file (DEF) can be added to the project and the

exports can be created manually. With this method, it’s possible to explicitly specify

which symbols are exported rather than exporting the whole class. Also, the symbol that

is added to the generated .LIB file has to be searched for by name when the DLL is

loaded. For performance reasons, it is sometimes desirable to specify an ordinal value for

linkage rather than a text name.

The module definition file can be added to the project by adding a new item and

selecting the Module Definition File (.def) icon (Figure A-11), giving the new file a

name, and pressing Add. A blank DEF file will be inserted into the project.

class GPSTKLIB_API SystemTime

 : public UnixTime

{

 public:

 //Further details elided…

 203

Figure A-11—Dialog for adding a DLL module export definition file

The newly created DEF file, Figure A-12, can be edited to supply the properties of

the required exports. The LIBRARY section specifies the name of the output LIB file,

and the EXPORTS part supplies the names of the exported symbols.

Figure A-12—Definition file exported symbols

The function names are the result of the C++ name mangling mechanism that

combines information about the class, method name, and input parameters to generate a

unique signature. The easy way to get these names to add to the EXPORTS section is to

simply copy them from the linker error output or the build log file the first time the

LIBRARY "gpstklib"

EXPORTS

 ?GPSfullweek@DayTime@gpstk@@QBEFXZ @100

 ?GPSsow@DayTime@gpstk@@QBENXZ @200

 ?dayOfWeek@DayTime@gpstk@@QBEFXZ @300

 ??0DayTime@gpstk@@QAE@XZ @400

 ?day@DayTime@gpstk@@QBEFXZ @500

 204

application is built. The other, slightly harder, way is to configure the linker to generate a

map file that contains the mangled names of all the exportable symbols.

The @numbers after the symbol names are optional; they cause the linker/loader to

resolve symbols by ordinal rather than by name. Calling performance is better but if the

exports change, dependent projects will need to be re-linked. The numbers can be

grouped and incremented according to any desired scheme. It is also possible to use a

combination of both methods, DEF file and the export macro, to get pretty much any set

of desired results.

Another way of declaring the exported functions is to add to a header file, like the

projectname.h file that defines the import API macro, C-style prototypes for the

necessary functions, as shown in Figure A-13.

Figure A-13—API Macro exported symbols using C naming styles

The extern “C” prevents the name mangling, and is optional. These functions can be

defined in a C/CPP source file, such as in Figure A-14.

extern "C" {

 GPSTKLIB_API short GPSfullweek();

 GPSTKLIB_API short GPSday();

 GPSTKLIB_API double GPSsecond();

 GPSTKLIB_API short day();

}

 205

Figure A-14—C++ exported function implementation

This function simply creates an instance of the GPSTk class DayTime as defined in

the library, and invokes the corresponding method of the class. The exported functions

may also be declared with the GPSTKLIB_API attribute, Figure A-15, as long as the

unmangled exports are put into the module definition file as in Figure A-16.

Figure A-15—Exported symbols using C naming styles, without the use of the API macro

Figure A-16—Exported symbols using C naming styles

This approach, however, tends to flatten the existing hierarchical class structure

making it look more like a C API than a C++ object-oriented solution. This technique

will only work in situations where the class encapsulates only functionality, in that

member fields and variables do not need to maintain their values between calls. A

LIBRARY "gpstklib"

EXPORTS

 GPSfullweek @600

 GPSday @700

 GPSsecond @800

 day @900

extern "C" {

 short GPSfullweek();

 short GPSday();

 double GPSsecond();

 short day();

}

using namespace std;

using namespace gpstk;

GPSTKLIB_API short GPSfullweek() {

 DayTime dt;

 return dt.GPSfullweek();

}

 206

possible solution is discussed later for those situations where persisting class state is

necessary.

The next step involves the creation of the Layer-4 interoperability layer component.

A class named GPSTK is declared as shown in Figure A-17. Each library function that

needs to be called has to be added as a public static extern member of this class, and

each requires a DllImport attribute from the System.Runtime.InteropServices namespace

that provides, at a minimum, the name of the library where the function is implemented.

The symbol that will be searched for in the library will be taken from the given function

name using the unmangled (extern ―C‖) name, but an entry point can be specified in the

case where the .NET function and the export names are different.

Figure A-17—C# class for accessing the functions exported from the GPSTk library

In this case, the link will be to the symbols that are exported as the non-class wrapper

implementations, as in Figure A-15. Since these are static members that belong to the

class, code can invoke the corresponding methods through the GPSTK class name

using System.Runtime.InteropServices;

namespace GPSTKLib {

 public class GPSTK {

 [DllImport("gpstklib")]

 public static extern short GPSfullweek();

 [DllImport("gpstklib")]

 public static extern short GPSday();

 [DllImport("gpstklib")]

 public static extern double GPSsecond();

 [DllImport("gpstklib")]

 public static extern short day();

 }

}

 207

without explicitly creating an instance, as shown in the button click event handler of

Figure A-18.

Figure A-18—C# event handler that invokes functions from the external GPSTk library

Additional Features

When a DLL is available, but there is no export LIB file, it is possible to make one by

using the LIB utility with the /def option if a DEF file is used, or by providing the name

of the existing DLL itself. The result will be a LIB file describing the public exports that

can be used to link C/C++ code to the DLL. Only symbols exported from the DLL at

implementation time will be visible to the caller application.

 A list of function names for a specific DLL can be found by running one of a variety

of command-line tools. For example, you can use the following to obtain function names

exported from the gpstklib.dll library,

dumpbin /exports gpstklib.dll or

link /dump /exports gpstklib.dll

When creating exports using the DEF file approach it is sometimes convenient to

produce a complete list of all the private and public symbols being generated. This list

can be obtained by getting the linker to generate a map file. In the DLL project property

page, expand linker, select debugging, and in Map file name put in something like:

private void button1_Click(object sender, EventArgs e) {

 label5.Text = GPSTK.GPSfullweek().ToString();

 label6.Text = GPSTK.GPSday().ToString();

 label7.Text = GPSTK.GPSsecond.ToString();

 label8.Text = GPSTK.day().ToString();

}

 208

$(OutDir)\$(ProjectName).map

The created DLL has to reside in the application folder, where the EXE is launched,

or on the path somewhere. A convenient place for these custom DLLs is usually the

%WINDIR% directory—this is not a good place to install non-system DLL’s.

Deployment pain should be felt by the developer and not the end-user.

As previously mentioned, class member variables don’t persist state across calls.

Calling a couple of field set accessors and then invoking a DoMagic() operation may not

result in the expected behavior. Actually, calling into class methods without an actual

instance can be a hazardous thing to do since the v-table mechanism may not have been

properly initialized when the call is made. It is possible, though, to add an exported

global instance to the library and initialize it in the DllMain function of DllMain.cpp.

DllMain is the DLL’s equivalent to the standard C main function application entry point

and is called by the system whenever the DLL is loaded or unloaded from memory. The

function includes a flag that is passed to indicate the reason for the call. Testing the value

of this flag can be used to determine when to create an instance, and when to delete it, as

shown in Figure A-19.

 209

Figure A-19—C++ code for initializing a persisted class instance

The global instance can be accessed from one of the application modules exported

from the DLL, such as in Figure A-20.

Figure A-20—C++ code for accessing a persisted class instance

To prevent memory leaks, it’s necessary to delete the instance when the process or

thread unloads the DLL, which will happen after a short period of non-use, typically just

a few minutes without making a call. State will not persist across instances, for obvious

reasons.

Depending on the requirements, a mechanism may have to be invented that will

determine the validity of the class instance before the application relies on state values.

This class factory will have to do reference counting and should be able to distinguish

void SetValue(double newValue) {

 anInstance->setMJD(newValue);

}

GPSTKLIB_API DayTime* anInstance;

BOOL APIENTRY DllMain(HMODULE hModule,

 DWORD ul_reason_for_call,

 LPVOID lpReserved)

{

 switch (ul_reason_for_call) {

 case DLL_PROCESS_ATTACH:

 case DLL_THREAD_ATTACH:

 anInstance = new DayTime;
 break;

 case DLL_THREAD_DETACH:

 case DLL_PROCESS_DETACH:

 delete anInstance;

 break;

 }

 return TRUE;

}

 210

between object instances. Since these requirements could apply to more than one type

that is available in the library, it would be a good design idea to possibly assign an

identifier to each class or type, something that could be passed into the factory method as

an ID. The construction process could look up the type information from some sort of

table indexed by the identifier and use the details it finds there to create and cast a pointer

to the corresponding type. However, at this point, something about the design becomes

oddly familiar in that this work would just be a reinvention of COM. In the end, the same

problems recur and similar solutions result.

At first glance, one may be inclined to think that the COM design is overly-complex

and largely unnecessary. As the generality of the problem becomes more clearly

understood, one can better appreciate features provided by the COM infrastructure. If the

interoperability of a native C++ application requires the creation of an abstract factory,

the details of the COM and IDL technologies should be thoroughly explored before

proceeding with a custom solution.

 211

Appendix B—Tracking-loop Control Theory

This section is not intended to be a comprehensive treatment of feedback control

theory. Its purpose is to provide a summary of the relevant sections of references (57),

(66), and (65), along with information gathered from multiple conversations with

Dr. C.P. Diduch, to aid in the understanding of the control problems associated with the

PLL and DLL carrier phase and code delay tracking.

Out of all the challenges encountered in software receiver design, the combined code

and carrier tracking loop problem represents the area for the greatest system performance

improvement opportunities. Most of the time, the PLL control model is explained in the

literature using continuous analog functions that are represented in the s-domain, under

the assumption that a suitable transform to the discrete z-domain exists. However, it is not

always the case that such a transformation will provide a suitable basis for analysis and

implementation.

In the continuous domain, the basic element is the integrator, whereas in the discrete

domain the basic element is the time delay, or memory, of 𝑇𝑆 seconds.

 ⇒
1

𝑠
= 𝑠−1 →

𝑧

𝑧 − 1
=

1

1 − 𝑧−1
 B-1

 212

The most often encountered transformations between the continuous and discrete

domains are the forward difference, or Euler’s method,

𝑠 =
𝑧 − 1

𝑇𝑆
 B-2

The backward difference transformation,

𝑠 =
𝑧 − 1

𝑧𝑇𝑠
 B-3

And Tustin’s approximation, the trapezoidal, or the bilinear transform,

𝑠 =
2 𝑧 − 1

𝑇𝑠 𝑧 + 1
 B-4

The bilinear (Tustin’s) is probably the most widely used, since it has the advantage of

mapping the left half of the s-plane into the unit disc on the z-plane, which ensures that

all stable continuous systems will result in stable discrete systems. All of these

transformations create, however, a distortion of the frequency scale as given by B-5.

𝜔 =
2

𝑇𝑠
tan

𝜔′𝑇𝑠
2

 B-5

Where 𝜔′ is the unwarped frequency in the continuous-time system, and 𝜔 is the

warped frequency in the discrete-time system.

 213

For the case of the PLL, the NCO is modeled as shown in Figure B-1.

F(s)

k1/s

θi(s)

θf(s)
-

VO(s)
k0

NCO modeled as

an integrator

Figure B-1—PLL feedback control model

The usual 1
st
-order equivalent model for the NCO is the transfer function given in

Equation B-6.

𝑁 𝑧 =
𝜃𝑓 𝑧

𝑉𝑂 𝑧
=

𝑘1𝑧
−1

1 − 𝑧−1
 B-6

A close inspection of B-6 and comparing with the integrator model of B-1 reveals an

additional 𝑧−1 term in the numerator. The existence of this term is explained by

evaluating the model of the NCO, and including the effects of the sample and hold

operation on the transfer function.

Firstly, the 𝑘1/𝑠 element in Figure B-1 is the internal representation of the input

signal characteristic modeled as a constant, such that the steady-state error goes to zero; if

the signal/error is not a constant, the model is incorrect (more on this point momentarily)

and the error will not be adequately removed. Secondly, the discrete sample-hold effects

need to be considered, as shown in Figure B-2.

 214

hold 
Ts Ts

u x

u(kTs)

Figure B-2—Sample and hold representation

𝑥 𝑡 = 𝑢 𝑡

= 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 ; 𝐴 = 0,𝐵 = 1

B-7

𝑥 𝑘𝑇𝑆 + 𝑇𝑆 = 𝑒𝐴𝑇𝑠𝑥 𝑘𝑇𝑆 + 𝑒𝐴𝑛𝑑𝑛𝐵
𝑇𝑆

0

 𝑢 𝑘𝑇𝑆 B-8

𝑥 𝑘𝑇𝑆 + 𝑇𝑆 = 𝑥 𝑘𝑇𝑆 + 𝑇𝑆𝑢 𝑘𝑇𝑆 B-9

𝑥 𝑘 + 1 = 𝑥 𝑘 + 𝑇𝑆𝑢 𝑘 B-10

𝑧𝑥 = 𝑥 + 𝑇𝑆𝑢 B-11

𝑥 =
𝑇𝑆𝑧

−1

1 − 𝑧−1
𝑢 B-12

So, the discrete form of a sampled integrator given in equation B-12 is different from

the relationship indicated by B-1. However, if all the work is performed and the state

maintained internally to the sample and hold elements, then the extra 𝑧−1 term in the

numerator represents an additional delay and isn’t really necessary. Also, the model’s

plant is the filter and not the NCO, but this point will only matter if there is an external

disturbance at the output that is not correctly fed-back to the compensator.

 215

The loop filter, 𝐹(𝑠), shown in Figure B-1 is essentially an integrator and is

intrinsically non-stable. To improve the stability requires a modification of the gain in the

feedback element, as shown in Figure B-3.

C1

C2

0.99z
-1

input output

r

Figure B-3—PLL 1
st
-order filter

Implementing discrete filters in software requires a bit of manipulation of the desired

transfer function. A transfer-function block diagram is shown in Figure B-4.

)(zU)(zG)(zY

Figure B-4—A simple transfer function

In general, there can be multiple inputs and multiple outputs, so 𝑈(𝑧), 𝐺(𝑧), and 𝑌(𝑧)

may be state-variable vectors. For the linear time-invariant case,

𝐺 𝑧 ≡
𝑌 𝑧

𝑈 𝑧
=
𝑏0 + 𝑏1𝑧

−1 + 𝑏2𝑧
−2 …

𝑎0 + 𝑎1𝑧−1 + 𝑎2𝑧−2 …
 B-13

𝑌 𝑧 𝑎0 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 … = 𝑈 𝑧 𝑏0 + 𝑏1𝑧
−1 + 𝑏2𝑧

−2 … B-14

Now, since

𝑌 𝑧 → 𝑌 𝑘 and,

 216

𝑧−1𝑌 𝑧 → 𝑌 𝑘 − 1 𝑧𝑌 𝑧 → 𝑌 𝑘 + 1

𝑧−2𝑌 𝑧 → 𝑌 𝑘 − 2 𝑧2𝑌 𝑧 → 𝑌 𝑘 + 2

So,

𝑎0𝑌 𝑘 + 𝑎1𝑌 𝑘 − 1 + 𝑎2𝑌 𝑘 − 2 …

= 𝑏0𝑈 𝑘 + 𝑏1𝑈 𝑘 − 1 + 𝑏2𝑈 𝑘 − 2 …
B-15

𝑌 𝑘 =
1

𝑎0

 −𝑎1𝑌 𝑘 − 1 − 𝑎2𝑌 𝑘 − 2 …+ 𝑏0𝑈 𝑘 + 𝑏1𝑈 𝑘 − 1

+ 𝑏2𝑈 𝑘 − 2 …

B-16

The difference equation of B-16 gives the current output as a weighted sum of the

current and past inputs as well as limited series of previous outputs. A minimal

representation of an n
th
-order system will contain only n delays. The prior inputs and

outputs need to be persisted as state variables in software.

As each new input arrives, an updated output is calculated, and then, of course, there

is a shift of last value = new value,

𝑌 𝑘 − 1 = 𝑌 𝑘

𝑌 𝑘 − 2 = 𝑌 𝑘 − 1

𝑈 𝑘 − 1 = 𝑈 𝑘

𝑈 𝑘 − 2 = 𝑈 𝑘 − 1

The code for implementing the filter of Figure B-3 is given in Figure B-5. The

constants C1 and C2 are held in private class member variables that are calculated

 217

whenever the filter characteristics (sampling rate, damping factor, natural frequency,

gain) are changed.

Figure B-5—C# code for implementing the 1
st
-order filter of Figure B-3

The frequency response of the transfer function can be found by letting 𝑧 = 𝑒𝑗𝜔 𝑇𝑆and

computing the magnitude of the result for each value of 𝜔.

Now, returning to Figure B-1 and Equation B-6. The objective of the PLL is to track

small changes in carrier phase by computing the error angle through some form of a

discriminator function. Two commonly used discriminators are shown plotted in Figure

B-6 and Figure B-7, both of which have linear ramp characteristics over a small range of

error input that crosses through the origin. Assuming that the acquisition stage of the

GNSS receiver has provided the tracking loop with a good estimate of the initial carrier

frequency (Doppler) and phase, the local carrier phase error will be close to zero and the

1
st
-order model of the discriminator error as a constant will be valid. If the phase error,

for some reason, becomes large however, the discriminator error will be better modeled

as 2
nd

-order (1/𝑠2), which results in a non-zero steady-state error. So, the PLL will

quickly lose its ability to adequately track the dynamic phase changes and the signal will

need to be reacquired.

public double Filter(double input) {

r = C2 * input + 0.99 * r;

output = C1 * input + r;

return output;

}

 218

Figure B-6—Arctangent discriminator function over the range [-π, π]

Figure B-7—Product discriminator function over the range [-π, π]

The SiGe SE4110L-EK3 USB (61) Link-1 (L1) receiver front-end used for testing the

software Receiver Development Framework provides 3.96 samples per carrier cycle. A

time-domain plot of the post-DLL code-removed carrier is shown in Figure B-8. The data

has been plotted as straight lines with the actual sample points indicated by (blue)

markers.

 219

Figure B-8—Recovered carrier waveform, after code removal

At this sample rate, the phase error between samples will always be large and the

discriminator function will not be operating in the linear region as desired on a sample-

by-sample basis. It becomes necessary to integrate the error function over some interval

of time in order to computer the average error, keeping the 1
st
-order approximation valid.

This approach is suitable for post-processing applications, but potentially limits the

ability of real-time implementations to accurately track the phase of the input signal.

More work is required to develop and test higher-order models that are capable of

representing the PLL functions with greater accuracy. The potential to improve weak

signal tracking performance, especially under high-dynamic (large Doppler-rate (74))

conditions, is great. Also, increasing the signal lock-in range of the PLL, reduces the

precision and processing workload required of the initial acquisition stage.

 220

Appendix C—Finite Fields and SSRGs

The intention of this appendix is to serve as an introduction to finite field theory as it

applies to sequential shift register generators (SSRGs) as sources for pseudo-random

noise (PRN) sequences that are used as spreading codes in direct-sequence-spread-

spectrum systems. Much of this section is based on Chapter 2 from reference (4),

however the text has several mistakes and mismatches in the equations and diagrams, as

well as a few awkward language issues, that make it somewhat confusing to follow at

times.

This appendix should serve to clarify a few of the points of confusion and provide a

more substantive basis for system implementation. The goal is to remove some of the

stumbling points, without creating new ones. The treatment of this material here is

deliberately lacking in rigor and formality since much of that is provided by the

referenced text, but the gist of the content is included for future use after the text has been

returned to the library.

A finite field, or Galois field of 𝑞 elements, denoted by 𝐺𝐹(𝑞), has special properties

and is defined in such a manner that there is only one way of constructing it. For any

field, two operations exist, addition and multiplication, with their results always being in

the field. The field must contain the additive and multiplicative identities (i.e. 0 and 1),

and for every value in the field there must also exist the corresponding additive and

multiplicative inverse. The usual associative, commutative, and distributive properties

 221

must also apply. For their use in SSRGs we are concerned only with polynomials defined

in the field of 𝐺𝐹(2).

 A polynomial, 𝑓(𝑥), of degree 𝑛 is irreducible, or prime, if it is not divisible by any

polynomial of degree less than 𝑛 but greater than zero. Like prime numbers, irreducible

polynomials cannot be factored. Obviously, only odd polynomials, 𝑥𝑛 + ⋯+ 1, can be

irreducible, otherwise 𝑥 would be a factor. Since the polynomial coefficients must be in

𝐺𝐹(2), not all decimal prime numbers correspond to irreducible polynomials—don’t

make that mistake.

An irreducible polynomial of degree 𝑛 is primitive if it divides 𝑥𝑚 + 1 for no 𝑚 less

than 2𝑛 − 1. Obtaining a maximal sequence length of 𝑁 = 2𝑛 − 1 for every 𝑛 requires

that the characteristic polynomial be primitive. There will always be one more one in the

sequence than zero, since the all-zero state is not used in the output (it is terminal,

resulting in no further changes in state.)

The various texts and articles on the subject of 0 and 1 binary valued transformations

to the required +1 and -1 values differ and are usually incorrect. While an obvious choice

would be to simply keep the 1 as +1 and shift the 0 down to the level of -1 (it would seem

sensible enough), the only mapping between these value representations that preserves

the equivalence of the exclusive-or and multiplication operations is that of

 0, 1 ↔ +1,−1

Under this mapping, the results of an exclusive-or operation on two numbers is

equivalent to multiplication, as show in Table C-1. The results column of both tables are

equivalent when 0 ↔ +1 and 1 ↔ -1.

 222

𝑋 𝑌 𝑋 𝑌

0 0 0

0 1 1

1 0 1

1 1 0

𝑋 𝑌 𝑋 × 𝑌

+1 +1 +1

+1 -1 -1

-1 +1 -1

-1 -1 +1

Table C-1—The equivalence between XOR and multiplication with {0, 1} ↔ {+1, -1} mapping

If the message data and PRN chipping/spreading code are mixed with the carrier as

{0, 1} binary data, then the exclusive-or operation is required to spread the signal.

Otherwise, when {+1, -1} signals are used, the required operation is multiplication. The

following function assumes that the binary data sequence, 𝑑 𝑡 , and the spreading code,

𝑃𝑁 𝑡 , have been mapped to {+1, -1}

𝑠 𝑡 = 𝑃 × 𝑑 𝑡 × 𝑃𝑁 𝑡 × cos 𝜔𝑐𝑡
C-1

When binary {1, 0} values are used for the message data and chip code, they must be

first modulo-2 added together before bi-phase modulating the carrier, like so:

𝑠 𝑡 = 𝑃 cos(𝜔𝑐𝑡 − 𝑑 𝑡 ⊕ 𝑃𝑁 𝑡 × 𝜋) C-2

Both functions behave in a similar manner in that they both produce a -180° phase

shift in the carrier, 𝜔𝑐 , when the message data and spreading chip are different from each

other, and a 0° phase shift when they are the same.

The function that maps binary data, 𝑏(𝑡), to {+1, -1}:

𝑎 𝑡 =
1 − 𝑏(𝑡)

2
 C-3

 223

Linear feedback shift register generators for PRN sequences are created by arranging

feedback from various shift stages with taps defined according to a carefully selected

polynomial. Take the following 𝐺𝐹(2) polynomial, 𝑃 𝑥 , for example:

𝑃 𝑥 = 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥5 + 1 C-4

This polynomial may be represented by the binary sequence [11101100001] and

implemented as a linear feedback shift register by connecting the register cells

corresponding to the powers of 𝑥 to the feedback path through modulo-2 addition (XOR).

This configuration is the Fibonacci form, shown in Figure C-1, and is characterized by

feedback being taken from various taps in descending powers of 𝑥 (from left to right) and

applied to the most significant bit (MSB). The output is taken from the least significant

bit (LSB).

Output

x
10

+ x
9

+ x
8

+ x
6

+ x
5

+ 1

1 1 1 1 1 10 0 0 0 0

Figure C-1—Fibonacci implementation of P(x)

Starting with a single 1 in the right-most cell, the initial part of the produced sequence

starts like:

1000000000110101001010001101101010111011110100011110101000001110…

An alternate configuration of the same polynomial is the Galois form, show in Figure

C-2. In this form, the polynomial is written in reverse order, in increasing powers of x,

and feedback is applied at multiple points along the length of the shift register.

 224

Output

+ x
10

+ x
9

+ x
8

+ x
6

+ x
5

1

111111 00000

Figure C-2—Galois implementation of P(x)

The output is taken from the most significant bit (highest order term), and starting

with a single 1 in the right-most cell the initial part of the sequence looks like:

1101010010100011011010101110111101000111101010000011101100110000…

It can be shown that for a given set of initial conditions, both shift register

configurations are equivalent and will produce the same binary sequence, although they

may differ in phase.

Now, for the part that can be confusing: The GNSS community uses a representation

convention that is a hybrid of Fibonacci and Galois. As can be seen in Figure C-3, the

feedback arrangement is that of Fibonacci, but the polynomial is written in increasing

order as it is with Galois.

Output

+ x
10

+ x
9

+ x
8

+ x
6

+ x
5

1

111111 00000

Figure C-3—GNSS implementation of P(x)

The sequence that results is the reverse sequence generated by a Fibonacci

implementation, which is the same as using the reciprocal polynomial,
1

𝑃 𝑥
. The

 225

reciprocal of a primitive or irreducible polynomial is itself primitive or irreducible and

will generate the reverse sequence.

The reciprocal of a polynomial can be evaluated using:

1

𝐺 𝑥𝑁
= 𝑥𝑁𝐺

1

𝑥
 C-5

So, for example, if

𝑃 𝑥 = 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥5 + 1 C-6

then,

1

𝑃 𝑥
= 𝑥10 𝑥−10 + 𝑥−9 + 𝑥−8 + 𝑥−6 + 𝑥−5 + 1

= 𝑥10 + 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1

C-7

C-8

Implementing this polynomial as a feedback shift register using either the Fibonacci

or Galois forms will result in the same output sequence as that of Figure C-3.

𝐺𝐹(2) polynomial algebra is handled in a manner similar to traditional algebra, but

keeping the coefficients in the field. Polynomials may be added and subtracted, or

multiplied:

 𝑥 + 1 𝑥3 + 𝑥2 + 1 = 𝑥4 + 𝑥3 + 𝑥 + 𝑥3 + 𝑥2 + 1

= 𝑥4 + 𝑥2 + 𝑥 + 1
C-9

Division can be conducted in the familiar long-method using pencil-and-paper, once

again keeping the coefficients within the field.

 226

𝑥3 + 𝑥2 + 1

𝑥 + 1

𝑥4 + 𝑥2 + 𝑥 + 1

 𝑥4+ 𝑥3 + 𝑥

0

𝑥3 + 𝑥2 + 1
𝑥3 + 𝑥2 + 1

C-10

The derivative of a GF(2) polynomial exists, with differentiation carried out in the

usual way, except with the term coefficients kept within the field:

𝑑

𝑑𝑥
 𝑥𝑁 + 𝑥𝑁−1 + 𝑥𝑁−2 …𝑥 + 1

= 𝑁𝑥𝑁−1 + 𝑁 − 1 𝑥𝑁−2 + 𝑁 − 2 𝑥𝑁−3 …+ 1

C-11

Where the coefficients (𝑁 − 𝑘) are interpreted modulo-2. Now, since(2 𝑚𝑜𝑑 2),

(4 𝑚𝑜𝑑 2), (6 𝑚𝑜𝑑 2), and (𝑟 𝑚𝑜𝑑 2) = 0 {𝑓𝑜𝑟 𝑟 𝑒𝑣𝑒𝑛} , even-order powers of 𝑥 have

a derivative of zero, while the derivative of odd-orders of 𝑥 are 𝑥𝑁−1. An example,

𝑑

𝑑𝑥
 𝑥7 + 𝑥6 + 𝑥3 + 𝑥2 + 𝑥 + 1 = 𝑥6 + 𝑥2 + 1 C-12

Referring to Figure C-4, a generalized SSRG configuration model, expressions for the

characteristic equation and characteristic polynomial can be obtained.

 227

a-1 a-2 a-na-3 ... a-n+1

Output

c1 c2 c3 cn-1 cn=1

Figure C-4—SSRG configuration

The characteristic equation is defined as

𝐹 𝜆 = 𝑐𝑘𝜆
𝑛−𝑘

𝑛

𝑘=0

, 𝑐0 = 𝑐𝑛 = 1 C-13

The characteristic polynomial is given by

𝑓 𝜆 = 𝑐𝑘𝜆
𝑘

𝑛

𝑘=0

, 𝑐0 = 𝑐𝑛 = 1 C-14

For an n-stage shift register with an initial state of 𝑎−1 , 𝑎−2 ,𝑎−3 ,… , 𝑎−𝑛+1, 𝑎−𝑛 , the

output sequence is denoted by

{𝑎𝑚 } = {𝑎0 ,𝑎1 ,𝑎2 ,… } C-15

After the initial state has been clocked out of the registers, the output sequence is

defined by

𝑎𝑚 = 𝑐𝑖

𝑛

𝑖=1

𝑎𝑚−𝑖 𝑚 = 0, 1, 2,… C-16

 228

One would expect that the value immediately preceding 𝑎0 would naturally be 𝑎−1,

however with the subscripts defined in the left-right manner above, the sequence would

actually run 𝑎−1𝑎−2𝑎−3 …𝑎−𝑛+1𝑎−𝑛𝑎0𝑎1𝑎2𝑎3 … such that the n
th
 stage’s connection and

initial condition are on the right, as shown in the diagram.

The sequence generating function is given by

𝐺 𝑥 = 𝑎𝑘𝑥
𝑘

∞

𝑘=0

 C-17

By combining equations C-16 and C-17, the output sequence can be determined as

𝐺 𝑥 = 𝑐𝑖𝑥
𝑖

𝑛

𝑖=1

 𝑎𝑘−𝑖𝑥
𝑘−𝑖

𝑛

𝑘=0

 C-18

Rearranging gives

𝐺(𝑥) =
 𝑐𝑖𝑥

𝑖 𝑎−𝑖𝑥
−𝑖 + 𝑎−𝑖+1𝑥

−𝑖+1 + ⋯+ 𝑎−1𝑥
−1 𝑛

𝑖=1

 𝑐𝑖𝑥 𝑖
𝑛
𝑖=0

=
𝑔 𝑥

𝑓 𝑥
 C-19

As an example, the shift register shown in Figure C-5 with feedback taps of:

𝑐0 = 𝑐1 = 𝑐3 = 𝑐4 = 1,𝑎𝑛𝑑 𝑐2 = 0

having initial conditions:

𝑎−1 = 𝑎−2 = 𝑎−3 = 1,𝑎𝑛𝑑 𝑎−𝑛 = 0

can be described by the polynomial:

𝑓 𝑥 = 1 + 𝑥 + 𝑥3 + 𝑥4

 229

1 1 1 0

Output

Figure C-5—Example shift register

The output sequence after the passing of the initial conditions can be found by

evaluating equation C-20

𝑔 𝑥 = 𝑐1𝑥 𝑎−1𝑥
−1 + 𝑐2𝑥

2 𝑎−2𝑥
−2 + 𝑎−1𝑥

−1

+ 𝑐3𝑥
3 𝑎−3𝑥

−3 + 𝑎−2𝑥
−2 + 𝑎−1𝑥

−1

+ 𝑐4𝑥
4(𝑎−4𝑥

−4 + 𝑎−3𝑥
−3 + 𝑎−2𝑥

−2 + 𝑎−1𝑥
−1)

C-20

𝑔 𝑥 = 𝑥 𝑥−1 + 𝑥3 𝑥−3 + 𝑥−2 + 𝑥−1 + 𝑥4 𝑥−3 + 𝑥−2 + 𝑥−1 C-21

𝑔 𝑥 = 1 + 1 + 𝑥 + 𝑥2 + 𝑥 + 𝑥2 + 𝑥3 C-22

𝑔 𝑥 = 𝑥3 C-23

By dividing 𝑔 𝑥 by 𝑓 𝑥 in ascending order, one obtains the following power-series

in 𝑥:

 230

1 + 𝑥 + 𝑥3 + 𝑥4

𝑥3 + 𝑥4+ 𝑥5+ 𝑥9

𝑥3

𝑥3 + 𝑥4+ 𝑥6+ 𝑥7

𝑥4 + 𝑥6+ 𝑥7

𝑥4 + 𝑥5+ 𝑥7+ 𝑥8

𝑥5+ 𝑥6+ 𝑥8

𝑥5 + 𝑥6+ 𝑥8+ 𝑥9

𝑥9

0001 1 10001
a0a1a2a3 a4 a5a6a7a8a9…

C-24

The coefficients of the result, 𝑎0𝑎1𝑎2 … = {0001110001… }, represent the output

sequence after the initial conditions have passed.

The characteristic phase of an SSRG is the set of initial conditions that results in an

output pattern such that if every second value in the sequence is sampled, the result is the

same as the original output sequence. The characteristic phase of 𝑓(𝑥) can be found from

𝑔 𝑥 = 𝑓 𝑥 +
𝑑 𝑥𝑓 𝑥

𝑑𝑥
 , 𝑓𝑜𝑟 𝑓 𝑥 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 C-25

Or, from

𝑔 𝑥 =
𝑑 𝑥𝑓 𝑥

𝑑𝑥
, 𝑓𝑜𝑟 𝑓 𝑥 𝑜𝑓 𝑜𝑑𝑑 𝑑𝑒𝑔𝑟𝑒𝑒 C-26

The characteristic phase of the generator of Figure C-5 with 𝑓 𝑥 = 1 + 𝑥 + 𝑥3 + 𝑥4

can be found using equation C-25, since the polynomial is of even degree

 231

𝑔(𝑥) = 1 + 𝑥 + 𝑥3 + 𝑥4 +
𝑑

𝑑𝑥
 𝑥 + 𝑥2 + 𝑥4 + 𝑥5

= 𝑥 + 𝑥3

C-27

Evaluating 𝐺 𝑥 in a similar manner to C-24 results in the following power series

𝐺 𝑥 =
𝑔 𝑥

𝑓(𝑥)
=

𝑥 + 𝑥3

1 + 𝑥 + 𝑥3 + 𝑥4
 C-28

𝐺 𝑥 = 0 + 1𝑥 + 1𝑥2 + 0𝑥3 + 1𝑥4 + 1𝑥5 + 0𝑥6 + 1𝑥7 + 1𝑥8 + 0𝑥9 + 1𝑥10 …

Which corresponds to an output sequence of [01101101101…] Starting the shift

register of Figure C-5 with a left-to-right initial condition of [1010] and sampling the 2
nd

,

4
th
, 6

th
, 8

th
, and 10

th
 bits in the output sequence yields [10110], which contains the same

repeating pattern (underlined) as the first.

The correlation of two binary sequences can be found by performing a symbol-by-

symbol sum for {0, 1} values or product for {+1, -1} values. In the case of the product,

the correlation is the sum along the horizontal of the result. Dividing by the sequence

length, 𝑁, gives the normalized correlation, that for a maximum length sequence will be

either −1/𝑁 or 1 since there is always one more -1 than +1. A useful trick for finding the

correlation using XOR operations is to subtract the number of ―ones‖ in the bitwise result

from the number of ―zeros.‖ An example that shows the calculation of the autocorrelation

for a 7-bit sequence with successive bit delays is given in Table C-2.

 232

Table C-2—Example 7-bit autocorrelation calculations. Each row represents one additional bit

delay.

The correlation result for each bit delay and a graph corresponding to these results is

given in Table C-3 and Figure C-6. Note how the delayed autocorrelation function is

periodic in the sequence length.

Bit-shift amount Correlation

0 7

1 -1

2 -1

3 -1

4 -1

5 -1

6 -1

7 7

Table C-3—Correlation results

Figure C-6—Non-normalized autocorrelation

 0′𝑠 − 1′𝑠 =
 1 1 0 0 1 0 1

 1 1 0 0 1 0 1

 0 0 0 0 0 0 0

7 - 0 = 7

 -1 -1 1 1 -1 1 -1

⨉ -1 -1 1 1 -1 1 -1

 1 1 1 1 1 1 1

7

 1 1 0 0 1 0 1

 1 0 0 1 0 1 1

 0 1 0 1 1 1 0

3 - 4 = -1

 -1 -1 1 1 -1 1 -1

⨉ -1 1 1 -1 1 -1 -1

 1 -1 1 -1 -1 -1 1

-1

 1 1 0 0 1 0 1

 0 0 1 0 1 1 1

 1 1 1 0 0 1 0

3 - 4 = -1

 -1 -1 1 1 -1 1 -1

⨉ 1 1 -1 1 -1 -1 -1

 1 -1 1 -1 -1 -1 1

-1

 1 1 0 0 1 0 1

 0 1 0 1 1 1 0

 1 0 0 1 0 1 1

3 - 4 = -1

 -1 -1 1 1 -1 1 -1

⨉ 1 -1 1 -1 -1 -1 1

 -1 1 1 -1 1 -1 -1

-1

 1 1 0 0 1 0 1

 1 0 1 1 1 0 0

 0 1 1 1 0 0 1

3 - 4 = -1

 -1 -1 1 1 -1 1 -1

⨉ -1 1 -1 -1 -1 1 1

 1 -1 -1 -1 1 1 -1

-1

 1 1 0 0 1 0 1

 0 1 1 1 0 0 1

 1 0 1 1 1 0 0

3 - 4 = -1

 -1 -1 1 1 -1 1 -1

⨉ 1 -1 -1 -1 1 1 -1

 -1 1 -1 -1 1 1 1

-1

 1 1 0 0 1 0 1

 1 1 1 0 0 1 0

 0 0 1 0 1 1 1

3 - 4 = -1

 -1 -1 1 1 -1 1 -1

⨉ -1 -1 -1 1 1 -1 1

 1 1 -1 1 -1 -1 -1

-1

 233

Not all sequences have these ideal autocorrelation characteristics. Although, the

family of Gold codes are considered to be non-ideal sequences due to their imperfect

autocorrelation properties, they are relatively easy to generate, there are many of them,

and they are close enough to ideal for most applications. New sequences can be selected

from existing generators by simply changing the positions of the polynomial taps. Figure

C-7 shows a representative autocorrelation function for a length-31 Gold code.

Figure C-7—Length-31 Gold code autocorrelation function

What follows is a complete list of all 1023-bits (chips) of each of the C/A codes for

the GPS satellites. The generator configuration for these codes is shown in Figure C-8.

The G1 and G2 generators are initialized to the all 1’s condition, and the taps on the top

of G2 are adjusted to determine the satellite ID. The values in the list are given in

hexadecimal as arrays of 32-bit unsigned integers and include the transient pattern that

results from the initial conditions. The bits are arranged starting with the left and moving

to the right, such that the most significant bit is the first one in the sequence. Since there

are 32 x 32-bit values, the listing actually provides 1024 bits in total, however the very

last (least significant) bit of the very last value is unused and is always set to one (which

 234

is also the same as the first bit in the sequence). These tables are used in the PRN Code

Generator class, GPSCACodeGenerator (Section 6.2.9), to produce the early, prompt,

and late code sequences.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

G2 Generator

G1 Generator

G1

G2 C/A Code

Taps determine satellite ID

Figure C-8—GPS C/A-code generator configuration

A lookup table of C/A-code PRN sequences: Not just filler, these are hard to find in

their complete form.

//Satellite 1: PRN 2 + 6

{ 0xC83949E5, 0x13EAD115, 0x591E9FB7, 0x37CAA100, 0xEA44DE0F, 0x5CCF602F, 0x3EA62DC6,

0xF5158201, 0x031D81C6, 0xFFA74B61, 0x56272DD8, 0xEEF0D864, 0x906D2DE2, 0xE0527E0A,

0xB9F5F331, 0xC6D56C6E, 0xE002CD9D, 0xA0ABAE94, 0x7389452D, 0x0ADAD8E7, 0xB21F9688,

0x7D5CC925, 0xFF87DE37, 0x2C3950A5, 0x7E3DA767, 0xEFA31F01, 0x28B444D8, 0x1DA3448E,

0x2CC9E6FC, 0xCA69AF36, 0xA778D442, 0x24E1CA21 }

//Satellite 2: PRN 3 + 7

{ 0xE4383E99, 0x6FCB2FF4, 0xB088B1E3, 0x06708E23, 0xA782D0D2, 0xF0E0F8DC, 0xC6B80F1A,

0x2E4666D3, 0x05E24A8C, 0x0AA09E09, 0x7FFBAB54, 0x152AA123, 0x21425370, 0x3954DC1E,

0xEC088B5C, 0xD4993B7D, 0x60979C2C, 0x346B025D, 0x8A5BA5B3, 0xE088AD28, 0xE9D923EB,

0xEF63AEA6, 0xF352EBC1, 0xEFB7A3E6, 0xDE216B43, 0xCCB30610, 0xFD67D33A, 0x8BD0CFA0,

0x9E997DCB, 0x69ECE796, 0xE66BEF69, 0x4B40A191 }

//Satellite 3: PRN 4 + 8

{ 0xF2388527, 0x51DBD084, 0x4443A6C9, 0x1EAD99B2, 0x0161D7BC, 0x26F734A5, 0x3AB71E74,

0x43EF94BA, 0x069DAF29, 0x702374BD, 0x6B15E812, 0x68C79D80, 0xF9D5EC39, 0x55D78D14,

0xC6F6376A, 0x5DBF10F4, 0xA0DD34F4, 0xFE0B5439, 0x76B2D5FC, 0x95A197CF, 0x443A795A,

0x267C1D67, 0x7538713A, 0x8E70DA47, 0x0E2F0D51, 0xDD3B0A98, 0x178E18CB, 0xC0E90A37,

0xC7B13050, 0xB82E43C6, 0xC6E272FC, 0xFC901449 }

 235

//Satellite 4: PRN 5 + 9

{ 0xF938D8F8, 0x4ED3AF3C, 0x3E262D5C, 0x12C3127A, 0xD210540B, 0x4DFCD299, 0xC4B096C3,

0x753B6D8E, 0x87225DFB, 0xCD6281E7, 0x6162C9B1, 0x563103D1, 0x159E339D, 0xE3962591,

0xD3896971, 0x192C0530, 0x40F86098, 0x9B3B7F0B, 0x08C66DDB, 0x2F350ABC, 0x92CBD402,

0xC2F3C487, 0xB60D3C47, 0x3E936697, 0xE6283E58, 0xD5FF0CDC, 0x62FAFD33, 0x6575E8FC,

0x6B25169D, 0x50CF11EE, 0xD6A6BC36, 0x27784EA5 }

//Satellite 5: PRN 1 + 9

{ 0x96C46C57, 0x1EAEF9BE, 0xA3EE4593, 0xAF648601, 0xC0E7BD26, 0xDD96F3DC, 0x9B671012,

0x51FE1CB6, 0x8E7746E2, 0x81684D78, 0xFC4CC05F, 0xF3165F24, 0xA9F565A4, 0xC0605DA1,

0x1EDA361D, 0x21C3310A, 0x4134A2DA, 0xAA3AEE16, 0x55FF13F2, 0x480DB857, 0xB7C26778,

0xFAA74E83, 0xA73E8EF1, 0xC485DD92, 0x6606D1D7, 0x51C0D0E1, 0x503F37B5, 0x52300C95,

0xD3E4CD28, 0xD53C0F91, 0xD562E7AD, 0x4D04D4E5 }

//Satellite 6: PRN 2 + 10

{ 0xCB46AC40, 0x69693BA1, 0x4DF0DCF1, 0x4A279DA3, 0x32D36146, 0x304C3125, 0x145891F0,

0x7C33A988, 0xC357291E, 0x35C71D05, 0xAACE5D97, 0x9BD9E283, 0x3D8E7753, 0x294DCDCB,

0x3F9F69CA, 0xA71215CF, 0x300CAB8F, 0xB123A21C, 0x99608EDC, 0x41E31D70, 0xEB37DB13,

0xAC9E6D75, 0xDF0E43A2, 0x9BE9E57D, 0x523CD01B, 0x9382E1E0, 0xC1226A8C, 0x2C196BAD,

0x610FE821, 0x664637C5, 0x5F66F69E, 0xFFB22EF3 }

//Satellite 7: PRN 1 + 8

{ 0x967FD269, 0x0E51894A, 0x68F96F8B, 0x727317A7, 0x23E0D3F0, 0xCA5A8A20, 0x94767E7F,

0xF80C75B5, 0xF192E398, 0x0282F96C, 0x120F8622, 0x1E2AFCFC, 0x3E4A2CC8, 0x4331578B,

0xE0660094, 0x07E8B8CA, 0x0B9C7A10, 0xCA6C8AEA, 0xBC8F5C87, 0x61375FFA, 0x5498D6B1,

0xE5148F05, 0xCDA47590, 0x03FC7C42, 0x6860C3C6, 0xD9CC580B, 0xB9F4C6FE, 0x6BF59BCC,

0xFBA956F9, 0x17985FB1, 0x5CFF721A, 0x9DB10CC9 }

//Satellite 8: PRN 2 + 9

{ 0xCB1B735F, 0x611683DB, 0x287B49FD, 0x24AC5570, 0x4350D62D, 0x3BAA0DDB, 0x13D026C6,

0xA8CA9D09, 0x7CA5FBA3, 0x7432470F, 0xDDEFFEA9, 0x6D47B36F, 0x7651D3E5, 0x68E548DE,

0x40C1728E, 0x3407D12F, 0x1558C7EA, 0x81089062, 0xEDD8A966, 0xD57E6EA6, 0x1A9A83F7,

0x23478DB6, 0xEA433E12, 0x78553595, 0x550FD913, 0x5784A595, 0xB5C79229, 0xB0FBA001,

0xF52925C9, 0x87141FD5, 0x1BA83C45, 0x17E8C2E5 }

//Satellite 9: PRN 3 + 10

{ 0xE5A923C4, 0x56B50693, 0x883A5AC6, 0x0FC3F41B, 0xF308D4C3, 0xC3524E26, 0xD0030A9A,

0x00A9E957, 0x3A3E77BE, 0xCF6A183E, 0x3A1FC2EC, 0xD4F114A6, 0xD25C2C73, 0xFD0F4774,

0x9092CB83, 0x2DF065DD, 0x9A3A9917, 0xA4BA9D26, 0xC5735396, 0x0F5AF608, 0x3D9BA954,

0x406E0CEF, 0x79B09BD3, 0x4581917E, 0xCBB85479, 0x90A0DB5A, 0xB3DE3842, 0x5D7CBDE7,

0x72691C51, 0xCF523FE7, 0x38039B6A, 0xD2C425F3 }

//Satellite 10: PRN 2 + 3

{ 0xD1289C36, 0x84084766, 0xD2302DE7, 0xACFD0285, 0xA2E49F1C, 0x67E40F8E, 0x551675C4,

0x1BED7A42, 0xFEDE52EA, 0xA30F2815, 0x0861B654, 0xF34B803B, 0xA18ADDDE, 0xA5EBC8AD,

0x7051FECE, 0x50408661, 0x4AD29E24, 0xADB25920, 0x81062773, 0xF7FF6AEA, 0xF6373D72,

0x8D86EDBD, 0x51A0DF1D, 0x8F5A7924, 0x27AE54C2, 0x2E9ECBA5, 0xC32AF355, 0x776460F0,

0xE3CFFF56, 0xA184282B, 0x41FF947B, 0xBCA98C01 }

//Satellite 11: PRN 3 + 4

{ 0xE8B0D470, 0xA43A64CD, 0x751FE8CB, 0x4BEB5FE1, 0x03D2F05B, 0x6D754F0C, 0x7360231B,

0x593A1AF2, 0xFB03A31A, 0x24F4AFB3, 0x50D8E692, 0x1BF70D0C, 0xB9B1AB6E, 0x1B88074D,

0x08DA8DA3, 0x1FD3CE7A, 0xB5FFB5F0, 0xB2E7F987, 0xF31C149C, 0x9E1A742E, 0x4BCD7616,

0x970EBCEA, 0xA4416B54, 0xBE063726, 0x72E89291, 0x2C2DEC42, 0x88A888FC, 0x3EB35D9F,

0xF91A711E, 0x5C1A2418, 0x15284F75, 0x87648281 }

//Satellite 12: PRN 5 + 6

{ 0xFA1AE242, 0x3C2FFDF2, 0x4F43FB16, 0x01A5E60A, 0x7B045C29, 0x2A99BF6D, 0xE9C69DC3,

0x28E47286, 0xF89A279E, 0x46F78D89, 0xEAAA1AC0, 0xD58668DA, 0xF3A2CD9A, 0x6B211345,

0x2ABDE8CE, 0xEBFEB871, 0xB5A26AEF, 0xBA9841FD, 0x96978190, 0xF091BCFD, 0x3A4EC17D,

0x9CE88014, 0xA3C9DC62, 0x6AFF03A7, 0xCD1A402C, 0x6DD8B648, 0xFF892BC2, 0xC82D0C73,

0xB2C5D5A8, 0x1DB2A10D, 0x6A765431, 0x14714661 }

//Satellite 13: PRN 6 + 7

{ 0xFD29EB4A, 0xF829B987, 0x3BA603B3, 0x9D472DA6, 0xEF2291C1, 0xCBCB977D, 0xAD085718,

0xC0BE9E90, 0xF82199A0, 0x5608FD7D, 0x21BD30D8, 0x0891F97C, 0x10A5A34C, 0x7CED6AB9,

0x25AC86A3, 0x420CD172, 0xCA47CF95, 0x3972F5E9, 0x78D4C7ED, 0x1DAD1F25, 0xADF18811,

0x1FB98A3E, 0x5D75EAEB, 0x4CD48A67, 0x87B298E6, 0x0D8ED2B4, 0x16F964B7, 0xE117EBDE,

0x519F6461, 0x0201608B, 0x00ECAF50, 0xD308E7B1 }

 236

//Satellite 14: PRN 7 + 8

{ 0xFEB06FCE, 0x9A2A9BBD, 0x81D4FFE1, 0x53364870, 0xA531F735, 0xBB628375, 0x8F6F3275,

0x3493E89B, 0xF87C46BF, 0x5E774507, 0x4436A5D4, 0x661A31AF, 0x61261427, 0x770B5647,

0x22243195, 0x96F5E5F3, 0x75B51D28, 0x7887AFE3, 0x0FF564D3, 0xEB334EC9, 0xE62E2CA7,

0x5E110F2B, 0x222BF1AF, 0xDFC14E87, 0xA2E6F483, 0x3DA5E0CA, 0x6241430D, 0x758A9808,

0xA0323C85, 0x8DD88048, 0x35A1D2E0, 0x30B43759 }

//Satellite 15: PRN 8 + 9

{ 0xFF7CAD8C, 0xAB2B0AA0, 0xDCED81C8, 0x340EFA9B, 0x8038444F, 0x83360971, 0x9E5C80C3,

0xCE85539E, 0x7852A930, 0xDA48993A, 0x76F36F52, 0x515FD5C6, 0xD9E7CF92, 0xF2F84838,

0x21E06A0E, 0xFC897FB3, 0xAA4C7476, 0xD87D02E6, 0x3465B54C, 0x907C663F, 0xC3C1FEFC,

0x7EC54DA1, 0x9D84FC0D, 0x964BACF7, 0xB04CC2B1, 0xA5B079F5, 0x581D50D0, 0x3FC421E3,

0xD8E490F7, 0xCA347029, 0xAF076C38, 0x416A5F2D }

//Satellite 16: PRN 9 + 10

{ 0xFF9ACCAD, 0xB3ABC22E, 0x72713EDC, 0x8792A3EE, 0x12BC9DF2, 0x9F1C4C73, 0x96C55998,

0xB38E0E1C, 0xB845DEF7, 0x18577724, 0xEF918A11, 0x4AFD27F2, 0x05872248, 0x3001C707,

0xA00247C3, 0x49B73293, 0xC5B0C0D9, 0x88005464, 0xA9ADDD83, 0x2DDBF244, 0xD13617D1,

0xEEAF6CE4, 0xC2537ADC, 0xB28EDDCF, 0xB919D9A8, 0xE9BAB56A, 0xC533593E, 0x9AE37D16,

0x648FC6CE, 0xE9C20819, 0x62543354, 0x79856B17 }

//Satellite 17: PRN 1 + 4

{ 0x9B8044FC, 0xE45E239A, 0x3B406292, 0x85C7E528, 0x41BE2ED5, 0x7857CE08, 0x3F8C8EA5,

0xDC94DB92, 0xF0B840FB, 0x2B03A0FF, 0xE1AA471F, 0xCA8E1762, 0x89C7460F, 0x674F988D,

0xF9CC6B79, 0x80F55E4D, 0x4BA5E258, 0x8C4CB8C9, 0x17287342, 0x4DD049A7, 0x3039E0DE,

0xA21E1E45, 0x4F8203C6, 0xDCBEAB22, 0xD8651E37, 0x294BA38C, 0x1FAC7FAE, 0xAD1D2741,

0xCCB16D8F, 0xA7263C7E, 0xBC87F969, 0xF0FE9F81 }

//Satellite 18: PRN 2 + 5

{ 0xCDE4B815, 0x941156B3, 0x01A7CF71, 0xDF762C37, 0xF27FA8BF, 0xE2ACAFCF, 0x462D5EAB,

0xBA86CA1A, 0xFC30AA12, 0xE0F2EBC6, 0x243D1E37, 0x8715C6A0, 0x2D976686, 0xFADA2F5D,

0x4C144778, 0xF789226C, 0xB5440BCE, 0xA2188973, 0x380B3E84, 0x430DE588, 0xA8CA18C0,

0x80C2C516, 0xAB500539, 0x17F45E25, 0x0D0D37EB, 0xAFC75856, 0x66EBCE81, 0xD38FFE47,

0x6EA53872, 0xDF4B2E32, 0xEB9479FC, 0xA14F0B41 }

//Satellite 19: PRN 3 + 6

{ 0xE6D6C661, 0x2C36EC27, 0x9CD41980, 0x722EC8B8, 0x2B9F6B8A, 0xAFD11F2C, 0xFAFDB6AC,

0x898FC2DE, 0xFA74DF66, 0x050A4E5A, 0xC6F6B2A3, 0xA1D82E41, 0x7FBF76C2, 0x3410F4B5,

0x16F85178, 0x4C371C7C, 0x4A34FF05, 0xB53291AE, 0x2F9A9867, 0x4463339F, 0x64B3E4CF,

0x91ACA8BF, 0x59390646, 0xF25124A6, 0xE7B92305, 0xEC8125BB, 0x5A481616, 0x6CC692C4,

0x3FAF128C, 0x637DA714, 0xC01DB9B6, 0x0997C121 }

//Satellite 20: PRN 4 + 7

{ 0xF34FF95B, 0x7025316D, 0xD26DF2F8, 0xA482BAFF, 0xC76F0A10, 0x096FC75D, 0x2495C2AF,

0x100B46BC, 0xF956E5DC, 0x77F61C94, 0xB79364E9, 0xB2BEDA31, 0xD6AB7EE0, 0x53759941,

0x3B8E5A78, 0x11E80374, 0x358C8560, 0x3EA79DC0, 0xA4524B16, 0xC7D45894, 0x828F1AC8,

0x191B9E6B, 0xA00D87F9, 0x008399E7, 0x12E32972, 0xCD221B4D, 0xC419FA5D, 0xB3622485,

0x972A07F3, 0x3D66E387, 0xD5D95993, 0x5DFBA411 }

//Satellite 21: PRN 5 + 8

{ 0xF98366C6, 0x5E2CDFC8, 0xF5310744, 0xCFD483DC, 0x31173ADD, 0x5A30AB65, 0xCBA1F8AE,

0xDCC9048D, 0xF8C7F881, 0x4E8835F3, 0x8F218FCC, 0xBB0DA009, 0x82217AF1, 0x60C72FBB,

0x2D355FF8, 0x3F078CF0, 0x0A50B852, 0xFB6D1BF7, 0xE1B622AE, 0x060FED11, 0x719165CB,

0xDD400501, 0xDC97C726, 0xF9EAC747, 0xE84E2C49, 0x5DF38436, 0x8B310C78, 0x5CB07FA5,

0x43688D4C, 0x926B41CE, 0x5F3B2981, 0xF7CD9689 }

//Satellite 22: PRN 6 + 9

{ 0xFCE52908, 0xC928289A, 0x669F7D9A, 0xFA7F9F4D, 0xCA2B22BB, 0xF39F1D79, 0xBC3BE5AE,

0x3AA82595, 0x780F762F, 0xD2372140, 0x1378FA5E, 0x3FD41D15, 0xA86478F9, 0xF91E74C6,

0x2668DD38, 0x28704B32, 0x15BEA6CB, 0x998858EC, 0x43441672, 0x66E237D3, 0x881E5A4A,

0x3F6DC8B4, 0xE2DAE749, 0x055E6817, 0x9518AED4, 0x959B4B8B, 0x2CA5776A, 0xAB595235,

0x2949C813, 0x45ED90EA, 0x9A4A1188, 0xA2D68FC5 }

//Satellite 23: PRN 1 + 3

{ 0x8CF7833E, 0xFBB03D03, 0x59A52189, 0x2735D1F4, 0x2153F417, 0x81D8F189, 0xDDA14310,

0xE2D9FBFD, 0x0C0CEFAB, 0x56552262, 0x29C288A2, 0x6D1A6C70, 0x7E2E6B9F, 0x0D6EDDD2,

0x2E4ABA5D, 0x45846644, 0x1EBEFB14, 0x86802754, 0x39219DE7, 0x6A8CBC1B, 0x5B6FD9FD,

0x54662E88, 0x1CDD6FFE, 0x338A9123, 0x14A75C06, 0x28DABED1, 0x26D256C9, 0x95AFCC64,

0xC50217B7, 0xF3AC386F, 0x8F354F93, 0xE6459A01 }

 237

//Satellite 24: PRN 4 + 6

{ 0xF1A101A3, 0x33D8F2BE, 0xFE315A9B, 0xD0DCFC64, 0x4B72B148, 0x565E20AD, 0x18D07B19,

0xB7C2E2B1, 0x06C07036, 0x785CCCC7, 0x0E9E7D1E, 0x064C5553, 0x88565B52, 0x5E31B1EA,

0xC17E805C, 0x89462475, 0x1F2FE649, 0xBFFE0E33, 0x019376C2, 0x633FC623, 0x0FE5DDEC,

0x67D49872, 0x0A666A7E, 0x1D651EA7, 0x2B7B6134, 0xED1038E6, 0x63363F71, 0x547479E1,

0x361C68B4, 0x37F7A305, 0xF3AF0F4C, 0x1F2CC4A1 }

//Satellite 25: PRN 5 + 7

{ 0xF8F41ABA, 0x7FD23E21, 0x631F5375, 0x75FBA091, 0xF719E771, 0x75A8589D, 0xD5832475,

0x8F2DD68B, 0x070CB274, 0x495D5DDA, 0x53A70337, 0x6174E7B8, 0xAD5FE828, 0x66653BEE,

0xD04D32EA, 0x73509F70, 0x9F0109C6, 0x3BC1D20E, 0x3356BC44, 0x547A224A, 0xB7240659,

0xE227860D, 0x09A231E5, 0x771984E7, 0xF482086A, 0x4DEA95E3, 0x58A6EEEE, 0x2F3B5117,

0x13F3BAEF, 0x1723E18F, 0x4C0002EE, 0x56A626D1 }

//Satellite 26: PRN 6 + 8

{ 0xFC5E9736, 0xD9D7586E, 0xAD885782, 0x27680EEB, 0x292C4C6D, 0xE4536485, 0xB32A8BC3,

0x935A4C96, 0x07EAD355, 0x51DD9554, 0xFD3BBC23, 0xD2E8BECD, 0x3FDB3195, 0x7A4F7EEC,

0xD8D4EBB1, 0x0E5BC2F2, 0x5F167E01, 0xF9DE3C10, 0xAA345907, 0x4FD8D07E, 0x6B44EB83,

0x20DE0932, 0x88401C28, 0xC227C9C7, 0x9B7EBCC5, 0x1D97C361, 0xC56E8621, 0x929CC56C,

0x010453C2, 0x8749C0CA, 0x13D7843F, 0x726357E9 }

//Satellite 27: PRN 7 + 9

{ 0xFE0BD1F0, 0x8AD5EB49, 0x4AC3D5F9, 0x8E21D9D6, 0x463699E3, 0xACAEFA89, 0x807E5C18,

0x9D618198, 0x8799E3C5, 0xDD9DF113, 0xAA75E3A9, 0x8B269277, 0xF6995D4B, 0xF45A5C6D,

0xDC98071C, 0xB0DE6C33, 0x3F1DC5E2, 0x18D1CB1F, 0xE6852BA6, 0xC209A964, 0x05749D6E,

0x41A2CEAD, 0x48B10ACE, 0x18B8EF57, 0xAC80E692, 0xB5A96820, 0x8B8AB246, 0x4C4F0F51,

0x887FA754, 0x4F7CD068, 0xBC3C4757, 0xE001EF75 }

//Satellite 28: PRN 8 + 10

{ 0xFF217293, 0xA354B2DA, 0xB96614C4, 0x5A853248, 0xF1BBF324, 0x88D0358F, 0x99D437F5,

0x1A7C671F, 0xC7A07B8D, 0x9BBDC330, 0x01D2CC6C, 0xA7C1842A, 0x92386B24, 0xB350CD2D,

0x5EBE714A, 0x6F9CBB53, 0x8F181813, 0xE8563098, 0x40DD92F6, 0x04E115E9, 0x326CA618,

0xF11CAD62, 0xA8C981BD, 0x75F77C1F, 0xB77FCBB9, 0x61B63D80, 0x2CF8A875, 0xA326EA4F,

0x4CC25D1F, 0x2B665839, 0xEBC9A6E3, 0xA930B33B }

//Satellite 29: PRN 1 + 6

{ 0x95E656ED, 0x6C52AB70, 0xD28B93D9, 0xBC027271, 0x69F3B504, 0xBAF39E28, 0xB6111B12,

0x0C2103BE, 0xF1CF3C87, 0x0AFD4116, 0x7784132E, 0x70A1342F, 0x4FC99BA3, 0x48D76B75,

0xE7EEB7A2, 0xD3118C4B, 0xB46EA8AD, 0x8B99D0E0, 0xCBAEFFB9, 0x97A90E16, 0x1F477207,

0xA4BC0A10, 0xB2FA6ED4, 0x90E9B8A2, 0x4D34AFA3, 0xE9E76A75, 0xCD4CE144, 0xFF68E81A,

0x0A040E1D, 0x9841BF72, 0x69B20FAA, 0x7E0DDC21 }

//Satellite 30: PRN 2 + 7

{ 0xCAD7B11D, 0x501712C6, 0x754237D4, 0x4394E79B, 0x66596557, 0x03FE87DF, 0x02E39470,

0x52DC260C, 0xFC8B142C, 0xF00D9B32, 0xEF2A342F, 0x5A025706, 0xCE900850, 0xED1656A1,

0x43052915, 0x5E7B4B6F, 0xCAA1AEB4, 0x21F23D67, 0xD64878F9, 0xAE314650, 0x3F7551AC,

0x0393CF3C, 0x55EC33B0, 0x31DFD7E5, 0x47A5EF21, 0xCF913CAA, 0x8F9B81F4, 0xFAB519EA,

0x8DFF89BB, 0xC0F8EFB4, 0x810E829D, 0x6636AA91 }

//Satellite 31: PRN 3 + 8

{ 0xE54F42E5, 0x4E35CE1D, 0x26A6E5D2, 0xBC5FAD6E, 0x618C0D7E, 0xDF780B24, 0xD89AD3C1,

0x7DA2B4D5, 0xFA290079, 0x0D75F620, 0xA37D27AF, 0xCF53E692, 0x0E3CC1A9, 0x3FF6C84B,

0x1170E64E, 0x98CE28FD, 0xF5C62DB8, 0xF4C7CBA4, 0x58BB3B59, 0xB2FD6273, 0x2F6C4079,

0xD0042DAA, 0x26671D02, 0x6144E046, 0xC2ED4F60, 0xDCAA17C5, 0x2EF031AC, 0xF85BE112,

0xCE024A68, 0xECA447D7, 0xF550C406, 0xEA2B11C9 }

//Satellite 32: PRN 4 + 9

{ 0xF2833B19, 0x4124A070, 0x8F548CD1, 0xC3BA0814, 0xE266B96A, 0x313B4D59, 0x35A67019,

0xEA1DFDB9, 0x79780A53, 0xF3C9C0A9, 0x8556AE6F, 0x85FB3E58, 0x6E6AA555, 0xD686873E,

0x384A01E3, 0x7B949934, 0xEA75EC3E, 0x9E5D30C5, 0x9FC29A89, 0xBC9B7062, 0xA760C893,

0x39CFDCE1, 0x1FA28A5B, 0x49097B97, 0x00491F40, 0x55378272, 0xFE45E980, 0xF92C9D6E,

0xEFFCAB81, 0x7A8A13E6, 0x4F7FE74B, 0x2C25CC65 }

 238

Appendix D—Background Signals Theory

This appendix provides, without much explanation, a few of the more useful

expressions and operations of basic signal theory. Most of this information can be found

in references (75), (60), (76), (77), and (78). Reading it may feel like a shotgun blast.

The Fourier transform and its discrete equivalent are given by,

𝐻 𝑓 = 𝑕 𝑡 𝑒2𝜋𝑗𝑓𝑡

∞

−∞

𝑑𝑡 ≈ 𝐻𝑛 = Δ 𝑕𝑘𝑒
2𝜋𝑗𝑘𝑛 /𝑁

𝑁−1

𝑘=0

 D-1

And the inverse is given by,

𝑕 𝑡 = 𝐻 𝑓 𝑒−2𝜋𝑗𝑓𝑡

∞

−∞

𝑑𝑡 ≈ hk =
1

N
 𝐻𝑛𝑒

−2𝜋𝑗𝑘𝑛 /𝑁

𝑁−1

𝑛=0

 D-2

Where,

Δ = the sample interval, 𝑇𝑆 =
1

𝑓𝑆

𝑕𝑘 ≡ 𝑕(𝑡𝑘), the sample value at time 𝑡𝑘

𝑡𝑘 ≡ 𝑘Δ, the time at the 𝑘𝑡𝑕 sample, 𝑘 = 0, 1, 2,…𝑁 − 1

𝐻 𝑓𝑛 ≅ Δ𝐻𝑛 with 𝑓𝑛 ≡
𝑛

Δ𝑁
; 𝑛 = −

𝑁

2
…

𝑁

2

 239

The Nyquist frequency is given by

𝑓𝑐 =
1

2Δ
=
𝑓𝑠
2

 D-3

Table D-1 provides a summary of the relationships between the time and frequency

domains.

If: Then:

𝑕(𝑡) is real 𝐻 −𝑓 = 𝐻 𝑓 ∗

𝑕(𝑡) is imaginary 𝐻 −𝑓 = −𝐻 𝑓 ∗

𝑕(𝑡) is even 𝐻 −𝑓 = 𝐻 𝑓 ⇒ 𝐻 𝑓 is even

𝑕(𝑡) is odd 𝐻 −𝑓 = −𝐻 𝑓 ⇒ 𝐻 𝑓 is odd

𝑕(𝑡) is real and even 𝐻 𝑓 is real and even

𝑕(𝑡) is real and odd 𝐻 𝑓 is imaginary and odd

𝑕(𝑡) is imaginary and even 𝐻 𝑓 is imaginary and even

𝑕(𝑡) is imaginary and odd 𝐻 𝑓 is real and odd

Table D-1—Relationships between the properties of the time and frequency domains

Some other useful relations are given in equations D-4 to D-7.

 240

Time scaling

𝑕(𝑎𝑡) ↔
1

 𝑎
𝐻

𝑓

𝑎
 D-4

Frequency scaling

1

 𝑏
𝑕

𝑡

𝑏
 ↔ 𝐻 𝑏𝑓 D-5

Time shifting

𝑕 𝑡 − 𝑡0 ↔ 𝐻 𝑓 𝑒2𝜋𝑗𝑓 𝑡0 D-6

Frequency shifting

𝑕 𝑡 𝑒−2𝜋𝑗 𝑓0𝑡 ↔ 𝐻 𝑓 − 𝑓0 D-7

Parseval’s Theorem equates a signal’s total energy in the time domain to the

frequency domain.

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 ≡ 𝑕 𝑡 2𝑑𝑡 = 𝐻 𝑓 2

∞

−∞

𝑑𝑓

∞

−∞

↔ 𝑕𝑘
2 =

1

𝑁
 𝐻𝑛

2

𝑁−1

𝑛=0

𝑁−1

𝑘=0

D-8

Convolution means to smear out, or to spread a signal’s energy across a specified

response function. It can be found from:

 241

𝑔 ∗ 𝑕 ≡ 𝑔 𝜏 𝑕 𝑡 − 𝜏 𝑑𝜏

∞

−∞

 D-9

Convolution in the time domain corresponds to multiplication in the frequency

domain,

𝑔 ∗ 𝑕 ↔ 𝐺 𝑓 𝐻(𝑓) D-10

For the discrete form, the signal, 𝑠(𝑡), is represented by its samples, 𝑠𝑗 , and the

response, 𝑟(𝑡), is represented by samples 𝑟𝑘 , as in D-11,

 𝑟 ∗ 𝑠 𝑗 ≡ 𝑠𝑗−𝑘𝑟𝑘 ⇔ 𝑆𝑛𝑅𝑛

𝑀
2

𝑘=−
𝑀
2

+1

 D-11

M is some sample interval; typically M would equal N in the case of 𝑠𝑗 being periodic

in N. But, there are potential problems:

 The input signal is not always periodic

 The duration of the response does not equal the period of the data (N)

The length (duration) of the response is typically shorter than the length of the data

set (i.e. M < N). Therefore, data must be padded on one end with zeros equal to the larger

of the positive or negative duration of the response function, such that M = N.

Correlation calculates the extent to which one signal can be related to another. Also

called the lag, it is the close cousin of convolution.

 242

𝐶𝑜𝑟𝑟 𝑔, 𝑕 𝑡 = 𝐶𝑜𝑟𝑟 𝑕,𝑔 (−𝑡) D-12

𝐶𝑜𝑟𝑟 𝑔,𝑕 ↔ 𝐺 𝑓 𝐻 −𝑓 D-13

If 𝑔, 𝑕 are real, then,

𝐻 −𝑓 = 𝐻 𝑓 ∗ D-14

So,

𝐶𝑜𝑟𝑟 𝑔, 𝑕 ↔ 𝐺 𝑓 𝐻 𝑓 ∗ D-15

And, the autocorrelation,

𝐶𝑜𝑟𝑟(𝑔,𝑔) ↔ 𝐺(𝑓) 2 D-16

Or, in its discrete form,

𝐶𝑜𝑟𝑟 𝑔,𝑕 𝑗 ≡ 𝑔𝑗+𝑘𝑕𝑘

𝑁−1

𝑘=0

 D-17

The DFT can be used to estimate the power spectral density (PSD) of a signal. For the

one-sided PSD,

𝑃𝑕 𝑓 ≡ 𝐻 𝑓 2 + 𝐻(−𝑓) 2 0 ≤ 𝑓 < ∞ D-18

If 𝑕(𝑡) is real, then

 𝐻 −𝑓 2 = 𝐻 𝑓 2 D-19

 243

So,

𝑃𝑕 = 2 𝐻(𝑓) 2 D-20

Since, D-21 is periodic in 𝑛,

𝐻𝑛 ≡ 𝑕𝑘𝑒
2𝜋𝑗𝑘𝑛 /𝑁

𝑁−1

𝑘=0

 D-21

with period 𝑁, then 𝑛 can vary between 0 to 𝑁 − 1 (instead of –
𝑀

2
𝑡𝑜

𝑀

2
 as in Equation

D-11), which is useful for zero-based arrays. The DFT, or FFT, then produces a

periodogram such that:

The positive frequencies are located at 0 < 𝑓 < 𝑓𝑐 → 1 ≤ 𝑛 ≤
𝑁

2
− 1

The negative frequencies are located at −𝑓𝑐 < 𝑓 < 0 →
𝑁

2
+ 1 ≤ 𝑛 ≤ 𝑁 − 1

And, the most positive and negative frequencies 𝑓 = 𝑓𝑐 𝑎𝑛𝑑 𝑓 = −𝑓𝑐 → 𝑛 =
𝑁

2

In order to get things to scale correctly when plotted,

𝑃 0 = 𝑃 𝑓0 =
1

𝑁2
 𝐶0

2 D-22

𝑃 𝑓𝑘 =
1

𝑁2
 𝐶𝑘

2 + 𝐶𝑁−𝑘
2 ; 𝑘 = 1,2,…

𝑁

2
− 1 D-23

𝑃 𝑓𝑐 = 𝑃 𝑓𝑁
2
 =

1

𝑁2
 𝐶𝑁

2

2

 D-24

 244

Note how the endpoints get special treatment; this is because these bins are either

counted twice (most positive and most negative 𝑓 overlap) or are only half as wide (at

𝑓 = 0). For 𝐶 𝑡 real, 𝐶𝑘
2 = 𝐶𝑁

2

2

C/N or SNR is the ratio of signal carrier power to the white-noise power in a specified

bandwidth (dB). C/N0 is the ratio of signal carrier power to the white-noise power

spectral density in a 1-Hz bandwidth (dB-Hz).

 To convert C/N0 to C/N, divide by the bandwidth,

𝐶
𝑁 = 𝐶

𝑁0𝐵

 D-25

Or, in dB, simply subtract 10 log 𝐵 where 𝐵 is the bandwidth in Hz.

 245

References

1. Press, William H., et al. Numerical Recipes in C: The Art of Scientific Computing

2nd. Ed. New York, NY : Cambridge University Press, 1992. 0-521-43108-5.

2. Zhuang, W. Composite GPS Receiver Modeling, Simulations, and Applications (Ph.D.

Disertation). Fredericton, NB : University of New Brunswick, 1992. Thesis 5008.

3. Misra, Pratap and Enge, Per. Global Positioning System: Signals, Measurements,

and Performance, 2nd Ed. Lincoln, MA : Ganga-Jamuna Press, 2006.

4. Holmes, Jack K. Spread Spectrum Systems for GNSS and Wireless Communications.

Norwood, MA : Artech House, Inc., 2007.

5. Borre, K., et al. A Software-Defined GPS and Galileo Receiver: Single-Frequency

Approach. Boston, MA : Birkhäuser, 2007.

6. Tsui, James Bao-Yen. Fundamentals of Global Positioning System Receivers: A

Software Approach. New York : John Wiley & Sons, Inc., 2000.

7. Ziedan, N.I. GNSS Receivers for Weak Signals. Norwood, MA : Artech House, Inc.,

2006.

8. Development of the Open Source GPS Software Receiver Emulator. Kelley, C.W.,

Niles, F. and Baker, D. Fort Worth, TX : The Institute of Navigation, September

2007. ION GNSS 20th International Technical Meeting of the Satellite Division.

 246

9. Creating a GPS Receiver from Free Software Components. Danielsen, T. Fort Worth,

TX : The Institute of Navigation, September 2007. ION GNSS 20th International

Technical Meeting of the Satellite Division.

10. FPGA-Based Architecture for High Throughput, Flexible and Compact Real-Time

GNSS Software Defined Receiver. Sauriol, B. and Landry, R. Jr. San Diego, CA :

The Institute of Navigation, 22-24 January 2007. ION NTM 2007.

11. Implementation and Testing of a Real-Time Software-Based GPS Receiver for x86

Processors. Charkhandeh, S., et al. Monterey, CA : The Institute of Navigation,

January 18-20 2006. ION NTM 2006.

12. Improvements to „A Software-Defined GPS and Galileo Receiver: Single-Frequency

Approach‟. Vinande, E. and Akos, D. Fort Worth, TX : The Institute of Navigation,

25-28 September 2007. ION GNSS 2007.

13. Krumvieda, K., et al. A Complete IF Software GPS Receiver: A Tutorial about the

Details. [Online] Data Fusion Corporation. [Cited: February 12, 2010.]

http://www.datafusion.com/gps/baselinereceiver.pdf.

14. Development of a One Channel Galileo L1 Software Receiver and Testing Using Real

Data. Macchi, F. and Petovello, M.G. Fort Worth, TX : The Institute of Navigation,

25-28 September 2007. ION GNSS 2007.

15. Performance Evaluation of a GPS L5 Software Receiver Using a Hardware

Simulator. Mongrédien, C., Cannon, M. E. and Lachapelle, G. Geneva,

 247

Switzerland : European Group of Institutes of Navigation, 29 May-1 June 2007. ENC

'07.

16. Software Defined Radios: A Software GPS Receiver Example. Sharawi, M. S. and

Korniyenko, O. V. Amman, Jordan : IEEE/ACS, 13-16 May 2007. International

Conference on Computer Systems and Applications, AICCSA '07.

17. Integrated GPS/TOA Navigation using a Positioning and Communication Software

Defined Radio. Brown, A. and Nordlie, J. San Diego, CA : IEEE/ION, April 25-27

2006. Position, Location, And Navigation Symposium 2006.

18. Dovis, F., Gramazio, A. and Mulassano, P. Design and test-bed implementation of

a reconfigurable receiver for navigation applications. Wireless Communications and

Mobile Computing. 2002, 2, pp. 827–838.

19. Discrete-time Phase and Delay Locked Loops Analyses in Tracking Mode. Sebesta,

J. Paris, France : World Academy of Science, Engineering, and Technology, Fall

2007, International Journal of Electronics, Circuits and Systems, Vols. 1, 4.

20. Vassiliadou-Christoo, V. GPS Series Single Difference Observations Analysis and

Software Developmen (M.Sc.E. Thesis). Fredericton, NB : University of New

Brunswick, 1989. Thesis 4470.

21. Pany, T. Status of Software Receiver Technology at University FAF Munich and

IFEN GmbH. IGS Workshop 2008, Miami Beach, FL. [Online] Institute of Geodesy

and Navigation, 2008. [Cited: February 12, 2010.]

http://www.ngs.noaa.gov/IGSWorkshop2008/docs/receivers-pany.pdf.

 248

22. Signal and Algorithm Development Environment for SDR. Schiff, M. Maclean, VA :

IEEE, 28-31 October 2001. Military Communications Conference, 2001. MILCOM

2001. Communications for Network-Centric Operations: Creating the Information

Force.

23. SNAP Namuru Project. University of New South Wales (UNSW). [Online] [Cited:

February 12, 2010.] http://www.dynamics.co.nz/index.php?main_page=page&id=9.

24. Humphreys, Todd E. and Young, Larry. IGS Receiver Considerations. 2008 IGS

Workshop, Miami Beach, FL. [Online] Institute of Geodesy and Navigation, 2008.

[Cited: February 12, 2010.]

http://www.ngs.noaa.gov/IGSWorkshop2008/docs/slidesHumphreys.ppt.

25. Baracchi-Frei, M., et al. Real-Time Software Receivers: Challenges, Status,

Perspective. GPS World. September 2009, Vol. 20, 9, pp. 40-47.

26. Mitelman, A., et al. Testing Software Receivers. GPS World. December 2009, Vol.

20, 12, pp. 28-34.

27. Achieving Precise Real-Time GNSS Positioning with Software-based Receivers. Lu,

D., et al. Savannah, GA : The Institute of Navigation, 22-25 September 2009. ION

GNSS 2009.

28. GPS JOINT PROGRAM OFFICE. IS-GPS-200 (Navstar GPS Space

Segment/Navigation User Interfaces). ARINC Inc. [Online] Revision D, March 7,

2006. [Cited: January 17, 2010.] GPS Satellite Almanacs and SEM Program by

ARINC. http://www.arinc.com/downloads/is-gps-200mar06.pdf. IRN-200D-001.

 249

29. Meel, J. Spread Spectrum (SS): introduction. De NayerInstituut. [Online] 1999.

[Cited: February 12, 2010.] http://sss-mag.com/pdf/Ss_jme_denayer_intro_print.pdf.

30. Krishna, H., et al. Computational Number Theory and Digital Signal Processing:

Fast Algorithms and Error Control Techniques. Boca Raton, FL : CRC Press, 1994.

31. Milenkovic, Milan. Operating Systems Concepts and Design, 2nd Ed. New York,

NY : McGraw-Hill Inc, 1992. 0-07-911364-8.

32. The Problem with Threads. Lee, Edward A. Washington, DC : IEEE Computer

Society, May 2006, Computer.

33. Stallings, William. Computer Organization and Architecture:Designing for

Performance. Upper Saddle River, NJ : Prentice-Hall, 2000. 0-13-081294-3.

34. An analysis method for variable execution time tasks based on histograms. Vila-

Carbó, Joan and Hernández-Orallo, Enrique. Doetinchem, Netherlands : Springer

Netherlands, January 2008, Real-Time Systems, Vols. 38, 1, pp. 1-37. 1573-1383.

35. The Spring architecture. Stankovic, John. Horsholm, Denmark : IEEE Computer

Society, 1990. Proceedings - EUROMICRO '90 Workshop on Real Time. pp. 104-

113. 9780818620768.

36. Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference

Manual. Santa Clara, CA : Intel Corporation, 2009. 248966-020.

37. Worst-case response time analysis of real-time tasks under fixed-priority scheduling

with deferred preemption. Bril, Reinder J., Lukkien, Johan J. and Verhaegh, Wim

 250

F.J. Doetinchem, Netherlands : Springer Netherlands, April 28, 2009, Real-Time

Systems, Vol. 42, pp. 63-119.

38. The one machine scheduling problem: Insertion of a job under the real-time

constraint. Duron, C., Louly, M.A. Ould and Proth, J.M. : ELSEVIER, December

16, 2009, European Journal of Operational Research, Vols. 199, 3, pp. 695-701.

0377-2217.

39. Reactive speed control in temperature-constrained real-time systems. Wang,

Shengquan and Bettati, Riccardo. Doetinchem, Netherlands : Springer Netherlands,

August 2008, Real-Time Systems, Vols. 39, 1-3, pp. 73-95. 1573-1383.

40. Lock-Free Algorithms. Jones, Toby. [ed.] Mike Dickheiser. Boston, MA : Charles

River Media, 2006, Game Programming Gems, Vol. 6, pp. 5-15. 1-58450-450-1.

41. Rumbaugh, James, et al. Object-Oriented Modeling and Design. Englewood Cliffs,

NJ : Prentice-Hall, Inc., 1991. 0-13-629841-9.

42. Unified Modeling Language. Object Management Group Inc. [Online] April 27,

2009. [Cited: April 15, 2010.]

http://www.omg.org/technology/documents/formal/uml.htm.

43. Rational Rose. IBM Corporation. [Online] [Cited: November 12, 2009.] http://www-

01.ibm.com/software/awdtools/developer/rose/.

 251

44. Deriving objects from use cases in real-time embedded systems. Kimour, Mohamed

T. and Meslati, Djamel. : Elsevier, 2005, Information and Software Technology,

Vol. 47, pp. 533-541.

45. Milner, Robin. A Calculus of Communicating Systems. : Springer Verlag, 1980. 0-

387-10235-3.

46. Architectural Prototyping: From CCS to .Net. Rodrigues, Nuno F. and Barbosa,

Luıs S. : Elsevier, 2005, Electronic Notes in Theoretical Computer Science, Vol.

130, pp. 151-167.

47. Architecture description languages for programmable embedded systems. Mishra, P.

and Dutt, N. : IEE, May 2005, IEE Proceedings on Computer and Digital

Technology, Vols. 152, 3.

48. Computing for Embedded Systems. Lee, Edward A. Budapest, Hungary : IEEE, May

21-23 2001. IEEE Instrumentation and Measurement Technology Conference.

49. A Platform-Independent Component Modeling Language for Distributed Real-time

and Embedded Systems. Balasubramanian, Krishnakumar, et al. : Elsevier, 2007,

Journal of Computer and System Sciences, Vol. 73, pp. 171-185.

50. A C++ Framework for Active Objects in Embedded Real-time Systems-Bridging the

Gap Between Modeling and Implementation. Caspersen, Michael E. 1999. 32nd

International Conference on Technology of Object-Oriented Languages and Systems

- TOOLS. p. 52. 0-7695-0462-0.

 252

51. Languages for the programming of real-time embedded systems: A survey and

comparison. Cooling, J.E. : Elsevier Science, 1996, Microprocessors and

Microsystems, Vol. 20, pp. 67-77.

52. C# and the .Net Framework: Ready for Real Time? Lutz, Michael H. and Laplante,

Phillip A. : IEEE Computer Society, IEEE Software January/February 2003.

53. IA-PC HPET (High Precision Event Timers) Specification. Intel Corporation.

[Online] October 2004. [Cited: April 15, 2010.]

http://www.intel.com/hardwaredesign/hpetspec_1.pdf.

54. GPSTk. The University of Texas at Austin. [Online] [Cited: February 12, 2010.]

http://www.gpstk.org/bin/view/Documentation/WebHome.

55. Carrier Loop Architectures for Tracking Weak GPS Signals. Razavi, Alireza,

Gebre-Egziabher, Demoz and Akos, Dennis M. : IEEE, April 2008, IEEE

Transactions on Aerospace and Electronic Systems, Vols. 44, 2, pp. 697-710. 0018-

9251.

56. Wiener's Analysis of the Discrete-Time Phase-Locked Loop With Delay. Spalvieri,

Arnaldo and Magarini, Mauizio. : IEEE, June 2008, IEEE Transactions on Circuits

and Systems--II:Express Briefs, Vols. 55, 6, pp. 596-600. 1549-7747.

57. Phillips, Charles L. and Nagle Jr., H. Troy. Digital Control System Analysis and

Design. Englewood Cliffs, NJ : Prentice-Hall Inc., 1984. 0-13-212043-7.

 253

58. Crawford, James A. Phase-Locked Loops-A Broad Perspective. CommsDesign.

[Online] May 5, 2004. [Cited: January 20, 2010.]

http://www.commsdesign.com/showArticle.jhtml?articleID=19502344.

59. Real-time GPS Software Receiver Correlator Design. Tian, Jin, et al. 2007. Second

International Conference on Communications and Networking in China

(CHINACOM '07). pp. 549-553.

60. Gerald, Curtis F. and Wheatley, Patrick O. Applied Numerical Analysis, 4th Ed.

Don Mills, ON : Addison-Wesley Publishing Company, 1989. 0-201-11583-2.

61. GPS Product Details. SiGe Semiconductor Corporate Web Site. [Online] [Cited:

February 12, 2010.] http://www.sige.com/index.php/products/details/category/gps.

62. LibUsb-Win32. SourceForge.Net. [Online] February 15, 2004. [Cited: February 12,

2010.] http://libusb-win32.sourceforge.net/.

63. GNU Radio. GNU Radio Wiki. [Online] [Cited: April 13, 2010.]

http://gnuradio.org/redmine/wiki/gnuradio.

64. Windows Installation. GNU Radio Wiki. [Online] [Cited: April 13, 2010.]

http://gnuradio.org/redmine/wiki/gnuradio/WindowsInstall.

65. Astrom, Karl J. and Wittenmark, Bjorn. Computer-Controlled Systems-Theory

and Design. Englewood Cliffs, NJ : Prentice Hall, 1990. 0-13-168600-3.

 254

66. Houpis, Constantine H. and Lamont, Gary B. Digital Control Systems-Theory,

Hardware, Software 2nd Ed. New York, NY : McGraw-Hill, Inc., 1992. 0-07-

030500.

67. Gamma, E., et al. Design Patterns: Elements of Reusable Object-Oriented Software.

Reading, MA : Addison-Wesley Publishing Co., 1995. 0-201-63361-2.

68. IUnknown. Microsoft Developer Network. [Online] [Cited: February 12, 20101.]

http://msdn2.microsoft.com/en-us/library/ms680509.aspx.

69. IDispatch. Microsoft Developer Network. [Online] [Cited: February 12, 2010.]

http://msdn2.microsoft.com/en-us/library/aa912027.aspx.

70. Microsoft Interface Definition Language. Microsoft Developer Network. [Online]

[Cited: February 12, 2010.] http://msdn2.microsoft.com/en-us/library/aa367091.aspx.

71. Common Language Infrastructure. ECMA. [Online] [Cited: February 12, 2010.]

http://www.ecma-international.org/publications/standards/Ecma-335.htm.

72. Common Language Infrastructure, ISO 23271:2006. ECMA. [Online] [Cited:

February 12, 2010.]

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html.

73. Common Intermediate Language/Microsoft Intermediate Language. Microsoft

Developer Network. [Online] [Cited: February 12, 2010.]

http://msdn2.microsoft.com/en-us/library/c5tkafs1.aspx.

 255

74. Real-time Doppler/Doppler Rate Derivation for Dynamic Applications. Zhang,

Jason, et al. Calgary, AB : CPGPS, 2005, Journal of Global Positioning Systems,

Vols. 4, no.1-2, pp. 95-105. 1446-3156.

75. Couch II, Leon W. Digital and Analog Communication Systems, 5th Ed. Upper

Saddle River, NJ : Prentice Hall, 1993. 0-13-522583-3.

76. Roden, Martin S. Analog and Digital Communication Systems, 3rd Ed. Englewood

Cliffs, NJ : Prentice Hall, 1991. 0-13-033325-5.

77. Bateman, Andrew and Paterson-Stephens, Iain. The DSP Handbook. Essex,

England : Pearson Education Ltd., 2002. 0-201-39851-6.

78. Jones, Douglas L. Classical Statistical Spectral Estimation. Connexions. [Online]

September 7, 2006. [Cited: February 3, 2010.] http://cnx.org/content/m12014/1.3/.

 256

Index

abstract methods 44

base class .. 41

characteristic equation 99, 226, 227

characteristic phase 230

characteristic polynomial 221, 227

class factory 138

COM 193, 195, 196, 210

Component Object Model 193

concrete classes 44

convolution............................... 240, 241

correlation 6, 19, 22, 28, 36, 103, 104,

118, 147, 148, 149, 150, 158, 185,

231, 232, 241, 242

data marshaling 120, 125, 126

delegate .. 46

derived class 41

DllMain .. 208

dynamic scheduling 60

dynamic-link library 134, 191

event handler 207

Fibonacci 223, 224, 225

Galois 220, 223, 224, 225

Galois field 220

generating function vii, 228

globally unique identifier 193

IDispatch 195, 196

inheritance 37, 41, 42

interface ... 44

interface definition language 196

Interop .. 189

irreducible 36, 221, 225

IUnknown 195, 196

late binding 43, 136

librarian .. 190

lollipop ... 45

loose coupled events 45

marshaler 120, 127, 128

module definition file 191, 202, 205

native-code 189, 198

Nyquist 140, 184, 239

overriding 42, 78, 90

Parseval’s Theorem 240

polymorphism 37, 42, 43

polynomial . 22, 221, 223, 224, 225, 226,

228, 230, 233

PRN sequences 234

pure abstract 44

pure virtual ... 44

reciprocal.......................... 116, 224, 225

static linking 190

static scheduler 55

Tustin’s approximation 212

type-library 196

Unified Modeling Language 39, 70

virtual vii, 42, 43, 44, 78, 93, 94, 123,

193, 196

virtual-table .. 43

v-tablevirtual table

Curriculum Vitae

Candidate’s full name: Douglas Allan Godsoe

Universities attended:

 BScE (Electrical Engineering), University of New Brunswick, 1993

 MEng (Electrical Engineering), University of New Brunswick, 2006-2007

(transferred into PhD program)

 PhD candidate, Electrical & Computer Engineering, 2007-2010

Publications:

Godsoe, D.A., Kaye, M.E., Langley, R.B., ―A Framework for Real-time GNSS

Software Receiver Research,‖ in ION International Technical Meeting 2010,

San Diego, CA, 25-27 January, 2010.

Conference Presentations:

A Framework for Real-time GNSS Software Receiver Research

The Institute of Navigation International Technical Meeting

January 25-27, 2010

