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ABSTRACT 

 

High resolution multi-temporal, multi-sensor remotely sensed data are often used 

in Earth observation applications. Image fusion is a widely used method to integrate 

those data, while image registration and radiometric normalization are two necessary 

procedures in transforming multi-temporal or multi-sensor data into identical geometric 

and radiometric bases respectively. This Ph.D research attempts to solve problems and 

develop improved techniques in these three aspects. 

A new image fusion method based on the wavelet and IHS integration is proposed 

to reduce the color distortion in fusing high resolution images. This method was 

successfully evaluated using optical images (IKONOS and QucikBird) and microwave 

images (airborne SAR and Radarsat with commonly used multi-spectral images). This 

research also discusses the wavelet-based fusion problems, improvement approaches, 

and the factors that should be considered in fusion process.  

Further using the multi-resolution property of wavelet, a new image registration 

method has been proposed. It uses the wavelet multi-resolution property to extract 

feature points; the normalized cross-correlation and relax-based probability matching 

techniques to find similarity between feature points in reference image and sensed 

image; and the triangle-based local transformation model to resample the sensed image. 

The method was evaluated using two sets of data. The evaluations show that the method 

can semi-automatically select enough control points and reduce the local distortions 

caused by terrain relief.  

  ii



 

For image normalization, improved strategies are provided for normalizing the 

high resolution images through modifications to the existing image normalization 

methods, because existing image normalization methods designed for the Landsat 

TM/MSS image cannot be directly applied to high resolution images. It is shown the 

improved strategies to be very helpful in normalizing high resolution images. 
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Chapter 1. INTRODUCTION 

 

1.1 Selection of Topics  

The research topics for this research originated from GEOIDE project 

“Automating 3D feature extraction and change detection from very high resolution 

satellite imagery with lidar and maps (MNG#TAO)”. This GEOIDE project involved 

researchers from several academic institutions including the University of New 

Brunswick (UNB). The main research objectives of this GEOIDE project were: to 

explore a new avenue to make use of the new generation of high resolution satellite 

imagery and to develop automated (automatic or semi-automatic), fast and robust 

algorithms for 3D feature extraction and change detection by integrating Lidar 

DEM/intensity data and existing Map/GIS information for GIS updating, disaster 

management, urban planning, telecom and transportation applications [AUTOMAP, 

2001]. One of UNB’s subprojects was to explore an effective and low cost way for 

precise change detection using fused panchromatic and multispectral high resolution 

satellite images.  

Change detection using high resolution satellite images is a broad, complex 

research topic and requires investigation into many different image processing 

methodologies including: data preparation methods like image fusion; preprocessing 

techniques such as geometric correction, and radiometric correction; different change 

detection algorithms, such as per-pixel based and objected oriented methods (object-

oriented is of particular interest for high resolution image because it offers the potential 

to resolve spatial variability problems in homogenous areas); different image 
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classification algorithms such as statistical-based classification method and intelligence-

based method [Jensen, 2005].  

For this research, it was decided to focus on three image preprocessing techniques 

for precise change detection, namely: image fusion, image registration and image 

normalization for the following reasons:  

• Image fusion of high resolution satellite images can improve the 

classification accuracy because the fused image combines complementary 

information from different sensors that helps in discriminating the different 

classes [Pohl and Van Gendren, 1998; Colditz et al., 2006]. The high 

accuracy classified image improves the final change detection result.  

• If the images are not properly coregistered, the change detection algorithm 

will produce incorrect results around the boundaries of homogeneous 

regions. The errors resulting from the inaccurate co-registration of the 

images will be attributed to thematic or categorical errors [Coppin et al., 

2004].  

• Differences in sensor, solar illumination or atmospheric conditions make it 

difficult to accurately compare satellite images acquired on different dates 

and/or different platforms. Radiometric normalization serves to remove the 

effects that alter the spectral characteristics of land features, except for actual 

changes in ground target, and is necessary step for multi-sensor, multi-date 

studies, like change detection [Paolini, et al., 2006].  
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Research in the above three image processing techniques is also important for 

many different remote sensing applications. A brief summary of the importance of 

research for image fusion as well as image registration and image normalization is 

included in sections 1.1.1 and 1.1.2, respectively. 

 

1.1.1 Image fusion 

The launch of IKONOS in 1999 marked the beginning of a new era of high-

resolution satellite imagery with a spatial resolution of 1 meter. High resolution satellite 

imagery offers high spatial accuracy suitable for large scale (>1:5,000) urban 

applications; high temporal resolution and updatability for change detection and base 

map updating; both stereo and multi-spectral information for automated analysis; cost-

effective and affordable pricing for data delivery [AUTOMAP, 2001]. Due to physical 

constraint, there is a trade off between spatial resolution and spectral resolution of a high 

resolution satellite sensor [Aiazzi et al., 2002], i.e., the panchromatic image has a high 

spatial resolution at the cost of low spectral resolution, and the multispectral image has 

high spectral resolution with a low spatial resolution (IKONOS: panchromatic image, 

1m, multispectral image 4m; QuickBird: panchromatic image, 0.7m, multispectral 

image, 2.8 m). To resolve this dilemma, the fusion of multispectral and panchromatic 

images, with complementary spectral and spatial characteristics, is becoming a 

promising technique to obtain images with high spatial and spectral resolution 

simultaneously [Gonzalez-Audicana et al., 2004]. Image fusion is widely used to 

integrate these types of data for full exploitation of these data, because fused images 

may provide increased interpretation capabilities and more reliable results since data 
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with different characteristics are combined. The images varying in spectral, spatial and 

temporal resolution may give a more comprehensive view of the observed objects [Pohl 

and Van Genderen, 1998].  

 

1.1.2 Image registration and image normalization 

The information provided by individual sensor is incomplete, inconsistent, or 

imprecise for many applications. Additional sources may provide complementary data, 

and fusion of different information can produce a better understanding of the observed 

site, by decreasing the uncertainty related to the single source [Simone et al., 2003]. 

Mulitemporal and multisenor high resolution data are often fused together to acquire 

complementary information to interpret the objects accurately. 

Image registration and image normalization are two important preprocessing 

operations in processing high resolution, multi-temporal or multi-sensor images. Among 

aspects of image preprocessing for land cover change detection and other Earth 

observation monitoring applications, there are two outstanding requirements: image 

registration and image normalization [Coppin and Baucer, 1996]. Image registration and 

radiometric normalization can transform multi-temporal or multi-sensor data into 

identical geometric and radiometric bases respectively, and an identical geometric base 

and a radiometric base are required in processing those images. Without a common 

geometric base, the derived information from a single remote sensing image cannot be 

associated with other spatial information, making precise geo-spatial analyses 

impossible; even comparisons among remote sensing images cannot be implemented if 

those images do not have the same geometric base. Applications utilizing multitemporal, 
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multisensor remotely sensed data are dependent on the accurate registration of the data 

into a common spatial framework [Roy, 2000]. 

Without a same radiometric base, it will be difficult or wrong-prone to compare 

images which were acquired at different illumination, atmospheric, or sensor conditions, 

because those different conditions cause the grey value difference in those images, while 

these difference does not reflect the actual object different on the ground.  

Based on the project task and the important roles of image fusion, image 

registration and image normalization in processing multitemporal and multisensor high 

resolution images, the author was motivated to conduct research in these three areas for 

this PhD research. The author deeply understands these three research topics are broad 

research topics. All of the above the work will be concentrated on urban and sub-urban 

area. This ensures that the research is focused.  

 

1.2 Background 

1.2.1 Image fusion 

Most remote sensing sensors, such as IKONOS, QuickBird, SPOT, IRS and 

Landsat, provide one high resolution panchromatic image and several multispectral 

channels [Svab and Ostir, 2006]. The panchromatic image has a high spatial resolution 

at the expense of a wide spectral bandwidth, and the multispectral image has a higher 

spectral resolution at the expense of spatial resolution. 
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The IHS (intensity, hue and saturation) transform based fusion, PCA (principal 

component analysis) based fusion, arithmetic combination fusion, and wavelet transform 

based fusion are the most widely used techniques in image fusion. 

 

1.2.1.1 IHS  

IHS is a color space, hue is defined as the predominant wavelength of a color, 

saturation is defined as the purity or total amount of white light of a color and intensity 

relates to the total amount of light that reaches the eye [Harris et al., 1990]. IHS largely 

explains the popularity of perceptual color space and overcomes the commonly used 

RGB color space drawbacks, which does not relate intuitively to the attribute of human 

color perception [Schetselaar, 2001].  

Because of its simplicity and high sharpening ability, many applications using IHS 

transform in image fusion have been reported. Harris et al. [1990] described how to use 

IHS in integrating Radar with diverse types of data such as Landsat TM, airborne 

geophysical and thematic data. The use of IHS transform was also demonstrated for 

displaying the results of quantitative analyses such as change detection studies and 

comparison between images characterized by different sensing parameters. Chavez 

[1991] compared IHS with PCA and other fusion methods by merging the information 

contents of the Landsat TM and SPOT panchromatic image. It was claimed that IHS 

method distorts the spectral characteristics of the data the most. Grasso [1993] used the 

IHS transform for geologic mapping because the IHS transform could allow diverse 

forms of spectral and spatial landscape information to be combined into a single data set 

for analysis. Schetselarr [2001] modified the IHS transform and presented a new method 
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that preserves the spectral balance of the multispectral image data and modulates the 

IHS coordinate uniformly. The method takes the limits in the representation of color of 

the display device into account, which aids in compromising the amount and spatial 

distribution of the over-range pixels against contrast in intensity and saturation. There 

are other improvements about IHS such as using wavelet [Nuñez et al., 1999; King and 

Wang, 2001; Chibani and Houacine, 2003]. 

The main advantage of the IHS method is that it separates the spatial information 

as an intensity (I) component from the spectral information represented by the hue (H) 

and saturation (S) components. The spatial information can be manipulated 

independently to enhance the image while maintaining the overall colour balance of the 

original images [Carper et al. 1990]. However, there exists color distortion in the fused 

image because IHS assumes that the intensity is formed by even contribution from the 

RGB bands; thus, all the details contained in the high resolution image are directly 

integrated into the intensity component. The color distortion will become worse when 

the panchromatic image has a low correlation with the multispectral image. Another 

limitation of IHS is that it only processes three multispectral bands. 

 

1.2.1.2 PCA 

The Principal Component Analysis (PCA) is a statistical technique that transforms 

a multivariate dataset of correlated variables into a dataset of new uncorrelated linear 

combinations of the original variables [Pohl, 1998]. PCA is widely used in signal 

processing, statistics, and many other applications.  
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Chavez et al. [1991] used principal component analysis to merge six Landsat TM 

bands and SPOT data and concluded that the color distortion in the fusion result of PCA 

method is less than the result acquired by IHS fusion method. Teggi et al. [2003] 

presented a fusion method which combines the principal component analysis and “à 

trous” wavelet and applied it to a pair of images acquired by Thematic Mapper (TM) 

and IRS-1C-PAN sensors. González-Audícana et al. [2004] presented a new fusion 

alternative, which uses the multiresolution wavelet decomposition to extract the details 

and principal component analysis to inject the spatial detail of the high resolution image 

into the low resolution multispectral image. 

The main advantage of PCA method lies in the unlimited multispectral bands in 

the fusion process, unlike the IHS method, which uses only three multispectral bands. 

The PCA also distorts the spectral characteristics of the multispectral image, but 

distortions were less severe than those in the IHS results because the first component 

image is more similar to the high resolution than is the intensity image [Chavez et al., 

1991]. However, the PCA approach is sensitive to the choice of area to be analyzed. The 

correlation coefficient reflects the tightness of a relation for a homogeneous sample, 

while shifts in the band values due to markedly different cover types will influence the 

correlations and particularly the variances [Pohl, 1998].  

 

1.2.1.3 Arithmetic combination technique  

Different arithmetic combinations have been employed for fusing multispectral 

and panchromatic images. The arithmetic operations of multiplication, division, addition 

and subtraction have been combined in different ways to achieve a better fusion effect. 
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The Brovey Transform, RE (Ratio Enhancement), and SVR (Synthetic Variable Ratio) 

techniques are successful examples for SPOT pan fusion [Zhang, 2002].  

The Brovey Transform is based on multiplying ratio images with the panchromatic 

image. It was developed to visually increase contrast in the low and high ends of an 

image’s histogram. The Brovey Transform is good for producing RGB images with a 

higher degree of contrast in the low and high ends of the image histogram and for 

producing visually appealing images. However, it should not be used if it is important to 

preserve the original scene radiometry [Erdas, 2002], because the Brovey Transform 

may cause color distortion if the spectral range of the intensity replacement image is 

different from the spectral range covered by the three bands used in the multispectral 

image. This limitation cannot be avoided in color composites that do not use 

consecutive spectral bands. The spectral distortion incurred by this fusion technique is 

difficult to control and quantify, because the high resolution panchromatic image and 

the multispectral image are from different sensors or different dates [Alparone et al., 

2004]. 

RE is to maintain the radiometric integrity of the data while increasing the spatial 

resolution [Pohl, 1998]. SVR is an improvement of RE technique, because of its 

complication in calculating the parameters used in the fusion process. SVR method used 

regression analysis between the multispectral and panchromatic image to compute 

parameters for the process of synthetic low panchromatic image. The first modification 

of the SVR is that the calculation of the parameters for the synthetic low panchromatic 

image is directly performed from the resampled TM image (10m) and the original 

SPOT pan image, instead of from the measured classes. The second modification of the 
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SVR method is that the synthetic panchromatic image is calculated from those TM 

bands which are used in the merging instead of from the TM Bands 1, 2, 3 and 4 

constantly [Zhang, 1999]. This method is very popular and has been used widely in 

fusing all kinds of high resolution images; however, this method cannot process the 

panchromatic image and multispectral image, which have large spectral range 

differences, very well, for instance, SAR data and optical multispecral image. 

 

1.2.1.4 Wavelet based fusion techniques 

The wavelet transform is an advanced mathematical tool developed in the field of 

signal processing. It can decompose a digital image into a set of multi-resolution images 

accompanied with wavelet coefficients for each resolution level. The wavelet 

coefficients for each level contain the spatial (detail) differences between two successive 

resolution levels.  

Because the performance of the wavelet based image fusion technique outperforms 

the traditional image fusion method, it has caught a lot researchers’ interest; thus, there 

are so many publications about this technique which cannot be listed at one time. The 

following have listed some typical wavelet based literature. 

Yocky [1995] proposed the two-dimensional discrete wavelet transform to image 

merging. The wavelet technique was compared with IHS transform by using 

multispectral and panchromatic images. The comparison showed that the wavelet 

technique performs better in combining and preserving spectral-spatial information. 

Yocky [1996] proposed a new fusion method based on wavelet transform technique, 

which is a kind of improvement of the method proposed by him in 1995. The method 
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has been tested by SPOT and Landsat TM. Garguet-Duport et al. [1996] proposed a new 

method based on wavelet technique to merge a SPOT panchromatic image and an XS 

multispectral image. The method was compared with IHS and other methods; it has the 

least spectral characteristic distortion. The distortions are minimal and difficult to 

detect.  

Zhou et al. [1998] presented a multiresolution orthogonal wavelet transform 

method to merge the SPOT PAN and TM reflective images. Two destination resolution 

levels, one quarter and one eighth of the original image resolution, were used for 

decomposition in evaluating the method. Nunez et al. [1999] developed a 

multiresolution wavelet decomposition image fusion method, which combines a high-

resolution panchromatic image and a low-resolution multispectral image by the addition 

of some wavelet planes of the panchromatic image to the intensity component of the 

low-resolution image. The discrete wavelet transform known as “a trous” algorithm, 

which provides a shift-invariant property that is not available with the orthonormal 

wavelet system, was used in the wavelet decomposition process. Ranchin and Wald 

[2000] designed the ARSIS concept based on a multiresolution modeling of the 

information, to improve the spatial resolution together with a high quality in the spectral 

content of the synthesized images.  

King and Wang [2001] presented a wavelet based fusion method that combines 

IHS transformation and biorthogonal wavelet decomposition. The Landsat 7 data were 

used to evaluate the proposed fusion method. Chibani and Houacine [2003] investigated 

the use of the nonorthogonal (or redundant) wavelet decomposition in image fusion and 
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concluded that this method is better for image fusion than the standard orthogonal 

wavelet decomposition.  

The major advantage of the wavelet based fusion method lies in the minimal 

distortion of the spectral characteristics in the fusing result. However, it also has 

problems. The spectral content of small objects--one or two pixels-- is lost with the 

multispectral image approximation substitution into the panchromatic pyramid. Also, 

because the wavelet based fusion acts as high- and low- pass filters, the final fusion 

image may suffer from ringing. It may also have problems in distributing pixel 

intensities in large, featureless areas [Yocky, 1996].  

 

1.2.2 Image registration  

Image registration is the process of geometrically aligning two or more images 

of the same scene acquired at different times, or with different sensors, or from different 

viewpoints [Brown, 1992]. It is one of the crucial image processing operations in remote 

sensing. The image registration technique has been developed for a long time. Several 

reviewing image registration algorithm studies have been published [Brown, 1992; 

Fonseca and Manjunath, 1996; Zitova and Flusser, 2003]. However, to date, it is still 

rare to find an accurate, robust, and automatic image registration method, and most 

existing image registration methods are designed for a particular application. Manual 

registration remains by far the most common way to accurately align their imaging data, 

although it is often time consuming and inaccurate [Zavorin and Le Moigne, 2005].  

 

  



 13

1.2.2.1 Area-based matching 

Generally, the image registration problems can be divided into two parts: one is 

how to find enough accurate control point pairs, and the second is how to interpolate the 

image. The image matching method is used to find the correspondent control points. The 

existing automated image matching techniques can be broadly classified into two 

categories: area-based matching (ABM) and feature-based matching (FBM) techniques.  

ABM is a classical matching method. In area-based algorithms, a small window of 

pixels in the sensed image is compared statistically with windows of the same size as the 

reference image. The centers of the matched windows are treated as control points, 

which can be used to solve for mapping function parameters between the reference and 

sensed images [Li et al., 1995]. The normalized cross-correlation and least-squares 

technique are two kinds of widely used area-based matching techniques. The former is 

based on the maximum value of the correlation coefficient between the reference image 

and the sensed image; and the latter is based on minimizing the differences in the gray 

value between the reference image and sensed image. 

There are several publications about area-based matching. Cideciyan et al. [1992] 

used Fourier transformation and cross-correlation for image registration. Zheng and 

Chellapa [1993] used the area correlation in the spatial domain to match the feature 

points that are extracted by the Gabor wavelet decomposition. Hsieh et al. [1997] 

detected feature points using a wavelet transform algorithm; the cross-correlation was 

used to match the detected points across the images. Also in other publications about 

feature extraction, area-base matching is a commonly used method to find the similarity 

of the features in the reference and sensed images. 
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1.2.2.2 Feature-based matching 

FBM techniques do not use the gray values to describe matching entities, but use 

image features derived by a feature extraction algorithm. These features include edges, 

contours, surfaces, other salient features such as corners, line intersections, and points of 

high curvature, statistical features such as moment invariants or centroids, and higher 

level structural and syntactic descriptions [Brown, 1992].  

There are various methods introduced in feature-based matching. Goshtasby et al. 

[1986] used the corresponding centers of gravity of regions as corresponding control 

points to estimate the registration parameters. Ventura et al. [1990] described feature-

based matching using structural similarity detection techniques. Flusser and Suk [1994] 

applied the affine moment invariants principle, a segmentation technique, in registering 

an image with affine geometric distortion. Li et al. [1995] presented two contour-based 

methods, which used region boundaries and other strong edges as matching primitives. 

Dai and Khorram [1999] combined an invariant moment shape descriptor with improved 

chain-code matching to establish correspondences between the potentially matched 

regions detected from the two images. Habib and Alruzouq [2004] used the line 

segments as primitives in a registration process. The method assumed that the line 

segments are plentiful in the scene under processing. 

Wavelet decomposition of the images was used for generating the pyramidal 

structure because of its multiresolution characteristic. Several researchers have reported 

their application of wavelet transform in the image registration. Djamdji et al. [1993] 

used “à trous” algorithm wavelet transformation method for feature extraction. Zheng 

and Chellappa [1993] used Gabor wavelet decomposition to extract feature points. 
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Simhadri et al. [1998] applied the modified “à trous” algorithm wavelet transformation 

in feature extraction. Fonseca and Costa [1997] used the local modulus maxima of the 

wavelet transform to find feature points and cross-correlation method to build the 

correspondence between those feature points. Only those best pair-wise fitting, among 

all pairs of feature points are taken as actual control point pairs. Moigne et al. [2002] 

utilized maxima of wavelet coefficients to form the basic features of a correlation-based 

automatic registration algorithm.  

 

1.2.2.3 Comparison between ABM and FBM 

ABM can be efficiently used in implementation in the Fourier transform domain 

using the Fast Fourier Transform (FFT). Some of the Fourier transform can be used to 

achieve invariance to translation, rotation and scale [Fonseca and Manjunath, 1996]. The 

precision of ABM is higher compared with FBM. These matching algorithms are easy to 

implement because of their simple mathematical model. The imperfections are also 

applicable to ABM. The prerequisite of the ABM is that gray level distribution of the 

sensed image and reference image must be similar. As known, gray values contain little 

explicit information about the object space; as a consequence, the area-based matching 

methods are not reliable enough. Therefore, area-based methods are not well adapted to 

the problem of multisensor image registration since the gray-level characteristics of 

images to be matched can vary from sensor to sensor. Compared with ABM, FBM is 

more robust and reliable [Schenk, 1999]. 

(1) Features are derived properties of the original gray level images and are 

inherently unique.  
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(2) Similarity is based on the attributes and /or relations. It is more invariant to 

illumination, reflectance, and geometry.  

(3) Features are sufficient for describing image content.  

However, the precision of FBM is lower compared with ABM. Also FBM often 

requires sophisticated image processing for feature extraction and depends on the 

robustness of feature detection for reliable matching. 

 

1.2.3 Image normalization 

Due to variations in atmospheric conditions, look/view angles, or sensor 

parameters that occur between acquisition dates, scenes of the same target area acquired 

at different times have been nearly impossible to compare in an automated fashion 

without performing the image normalization. Even visual comparison of these images 

may be difficult [Scott et al., 1988]. There are two kinds of image radiometric 

normalization: namely absolute and relative. The absolute radiometric correction can 

convert the digital counts in satellite image data to radiance at the surface of the Earth 

[Du et al., 2002]. The images from different sensors can be compared by using the 

radiance. The absolute radiometric correction tends to be more accurate than the relative 

correction, but it needs sensor parameters, atmospheric refraction parameters and other 

data that are difficult to obtain. Thus, the difficulty in obtaining the above accurate 

atmospheric and sensor parameters, makes relative radiometric normalization an 

attractive alternative. The relative radiometric normalization applies one image as a 

reference and adjusts the radiometric properties of the subject image to match the 
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reference image [Hall et al., 1991]. The normalized image appears to have been acquired 

under the same solar and atmospheric conditions as the reference image. 

A variety of relative radiometric normalization techniques have also been 

developed. 

Simple regression normalization [Jensen, 1983] uses the least-squares equation to 

derive normalization coefficients.  

Scott et al. [1988] introduced the pseudoinvariant feature normalization method, 

which is based on the statistical invariance of the reflectance of man-made in-scene 

elements such as concrete, asphalt and rooftops, because they are assumed to change not 

too much with time. Differences in the gray-level distributions of these invariant objects 

are assumed to be a linear function and are corrected statistically. 

Haze correction [Chavez, 1988; Yuan and Elvidge, 1996] is a simple method that 

assumes that objects with zero reflectance should have the same minimum digital 

number (DN) on both reference and subject images and is implemented by subtracting 

the digital count associated with darkest materials (zero reflectance) present in a scene.  

Histogram matching uses the equalization of the histogram of a given image to 

another or various images to a reference image and is a statistical method based on the 

cumulative distribution function of the data and does not assure the in-between band 

relationship [Shimabukuro et al., 2002]. This method does not depend on the 

geometrically accurate registration images because of their use for the whole image and 

is useful for matching data of the same scenes acquired on different dates with slightly 

different sun angle or atmospheric effects.  
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The minimum-maximum and the mean-standard deviation normalization [Yuan 

and Elvidge, 1996] are two different methods that both apply statistical parameters, i.e. 

the minimum and maximum respectively, and the mean and standard deviation to derive 

normalization coefficients.  

Hall et al. [1991] used the average of a set of dark and bright pixels (Dark -bright 

set), which are extracted from the subject and reference image through Kauth-Thomas 

greenness-brightness transformation. The underlying assumption of this method is that 

an image always contains at least some pixels that have the same average surface 

reflectance among images acquired at different dates. 

Elvidge et al. [1995] developed a radiometric normalization method (No change 

pixel set) through a no-change set determined from the scattergram. The no-change sets 

are obtained from regions, such as water and stable land clusters, identified as no change 

in the scattergram between near-infrared bands of the subject image and the reference 

image. The initial regression line is generated by those no-change sets. A no-change 

region is determined by setting a threshold around this line. Pixels falling within the no-

change region will be used to compute regression lines for all bands.  

Du et al. [2002] proposed a procedure which selects the pseudo-invariant features 

statistically, and uses principal component analysis to find linear relationships between 

the mulitemporal images of the same area. The procedure is claimed to ensure the 

conservation of radiometric resolution for the multitemporal images involved. 

Ya’allah and Saradjian [2005] presented a method which is based on efficient 

selection of unchanged pixels through pixels in each band. The capability of the method 
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can consider the imaging condition differences and effectively exclude real land change 

pixels from the normalization process. 

Using the mean square error calculation as the statistical measure of the goodness 

of fit between the reference image and subject image, Yuan and Evlidge [1996] 

evaluated some methods and ranked the methods with the “best” at the top of the list: 

No change pixel set, Dark-bright set, Simple regression, Haze correction, Mean-standard 

deviation, Minimum-maximum and pseudoinvariant features. From the visual 

inspection, the no change pixel set method is the best and the Mean-standard deviation, 

Minimum-maximum and pseudoinvariant features methods yield poor matches to the 

reference image. No single approach has universal application because solutions are 

independent of location, application and image. Analysts must, therefore, be aware of 

existing procedures and be prepared to use or adapt these, or develop alternative 

procedures, as appropriate [Heo and Fitzhugh 2000]. The Landsat MSS data of the 

Washington D.C. area used by Yuan and Elvidge contain a high proportion of clear 

water and urban area which should favor methods, like the no change pixel set that rely 

on these ground targets in determining the transformation coefficients [Yang and Lo, 

2000]. 

 

1.3 Problem statement 

High resolution satellite imagery provides researchers with information sources 

necessary for use in many change detection applications. However, problems occur 

when applying conventional traditional image processing methods to process and 

analyze these high resolution images. According to a literature review, the following 
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problems associated with applying conventional fusion, normalization and registration 

techniques to high resolution images were identified:  

Image fusion. A common problem of existing techniques is the colour distortion 

that occurs in the resulting fused images [Zhang, 2002]. For high resolution images, 

such as IKONOS and QuickBird, the wavelength of the panchromatic image is much 

broader than that of the multispectral bands. This discrepancy between the wavelengths 

causes considerable color distortion to occur when fusing high resolution panchromatic 

and multispectral images. To solve the colour distortion problem, methods based on 

wavelet have been introduced and have demonstrated superior performance [Aiazzi et 

al., 2006]. However, when applying wavelet based methods, spatial distortions, typically 

ringing or aliasing effects, and originating shifts or blur of contours and textures may 

occur [Yocky, 1996]. These problems- which can be as pronounced as colour distortion 

mentioned above - are emphasized by misregistration between a panchromatic image 

and its multispecral counterparts, especially if the wavelet is not shift-invariant [Aiazzi 

et al., 2002; Gonzáles Audícana et al., 2004]. 

Image registration. Very high spatial resolution data presents a different set of 

image geometry problems than moderate spatial resolution data. Since the nominal pixel 

sizes of high resolution images, such as QuickBird and IKONOS, are smaller than 10 m, 

the altitude of the sensor is lower than other satellite sensors, such as Landsat, SPOT. 

Relief displacement in high resolution imagery begins to increase due to lower altitude, 

causing localized distortion related to landscape height [Schowengerdt, 1997]. It is also 

difficult for operators to accurately locate control points using manual methods. Since a 

large number of control points are typically required to obtain satisfactory registration 
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results, selecting ground control may be a very time consuming and tedious task 

[Moigne, et al., 2002]. 

Radiometric normalization. Most existing normalization methods were 

developed for use with moderate resolution images, such as Landsat TM or Landsat 

MSS data. These image normalization methods cannot be used directly in normalizing 

high resolution images because of satellite sensor differences. For example, it is difficult 

to implement radiometric normalization between high resolution images because of the 

spatial variability in homogenous areas; this increases the complexity of the selection 

purity of the unchanged targets; also because of channel reduce compared with the 

moderate resolution data, some normalization methods require two near-infrared bands, 

while high resolution sensor often has one near-infrared band, this also increases the 

complexity using some existing normalization methods. 

 

1.4 Objective 

The objective of this research is to develop/improve image preprocessing 

techniques for high resolution change detection, i.e. the image processing operations that 

are applied before the use of a change detection algorithm. These image preprocessing 

techniques will be specifically designed for processing high resolution satellite images 

of urban or sub-urban areas. These new approaches or strategies will be designed to 

overcome the problems that occur when applying conventional image processing 

methods to high resolution images. For this thesis, image fusion, image registration, and 

image normalization techniques will be developed or improved.  

  



 22

The technical objectives of this research for the above three topics and the tasks 

required to complete this research are outline below.  

Image Fusion: The technical objectives for the research conducted for image 

fusion are: 

• Reduce colour distortion that occurs (in the resulting high resolution fused 

images) when applying image processing methods to high-resolution images 

• Remove spatial distortion that occurs (in the resulting high resolution fused 

images) when applying wavelet-based fusion techniques to fuse high resolution 

images 

To satisfy the above two objectives (i.e. reducing colour and spatial distortion), a 

new fusion algorithm suitable for use with high resolution satellite images will be 

developed. The characteristics of this algorithm will be: 

• Preserve colour information contained in the original multispectral and 

panchromatic images 

• Maintain the spatial information of the panchromatic image 

• Applicable for use with a wide variety of high resolution images (e.g. IKONOS, 

QuickBird, and high resolution SAR data) 

Image Registration: The technical objectives for the research conducted for 

image registration are: 

• Reduce local geometric distortions when applying conventional image 

registration techniques (polynomial-based model) to high resolution images of 

areas with significant terrain relief. 

• Resolve difficulty in locating control points accurately using manual methods 
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To satisfy the above objectives, a new image registration algorithm suitable for 

processing high resolution satellite images will be developed. This algorithm will be 

implemented using a wavelet-based feature extraction technique, a combination of 

normalized cross-correlation and probability relaxation matching techniques, and a 

triangle-based local transformation model. The algorithm will be able to select a number 

of feature points semi-automatically, and reduce the local distortion that exists in high 

resolution images of areas with significant terrain relief. 

Image Normalization: The technical objectives for the research conducted for 

image normalization is: 

• to resolve the problems encountered using traditional image normalization 

methods for moderate resolution images in normalizing high resolution 

image. 

To satisfy this objective, strategies to improve existing image normalization 

methods in normalizing high resolution images will be explored and evaluated. 

The metrics used to evaluate the performance of the image fusion, image 

registration and image normalization methods developed for this thesis are outlined in 

Table 1.1 below.  
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Table 1.1. Metrics used to evaluate algorithms developed for this research 

Metric Method 
Evaluated 

Metric Description 

Correlation 
Coefficient 

Image fusion Correlation is widely used in evaluating the quality of the fusion results and is a typical method 
which is included in almost all the publications in image fusion. The correlation coefficient 
measures the closeness or similarity between two images; it can vary between -1 and +1. A value 
close to +1 indicates that two images are very similar, while a value close to -1 indicates that they 
are highly dissimilar [Pradhan, 2005]. There are two kind comparisons: 
 - The first is: the correlation between each band of the multispectral image and the corresponding 
band of fused image was computed. Since the multispectral image has spectral information, the 
correlation between the fused image bands and the multispectral bands is expected to be higher 
than that between panchromatic image and the original multispectral bands. An increase in the 
correlation indicates an increase in the spectral information from multispectral image has been 
included in the corresponding band in fused images. For the fused images, the lower the 
correlation is, the higher the color distortion is. 

 - The second is: the correlation was computed between each band of the fused image and the 
panchromatic image. Since the panchromatic image has better spatial information, the correlation 
between the fused image bands and the panchromatic image is expected to increase compared to 
that of the original multispectral. An increase in the correlation indicates an increase in the spatial 
information from panchromatic image has been included in the corresponding band in fused 
images [Vijayaraj, 2004].  

The root-
mean-square 
error (RMS 

error) 

Image 
registration 

RMS error is the distance between the input (source) location of a control point and the 
retransformed location for the same control point. It reflects the difference between the desired 
output coordinate for a control point and the actual output coordinate for the same point, when the 
point is transformed with the geometric transformation [Erdas, 2002]. A small RMS error means 
that the desired output coordinate for a control point and the actual output coordinate for the same 
point is close. For the registered images, the higher the total RMS error is, the higher the local 
geometric distortion is. 
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(Continued) 

The root-
mean-square 

error 
(RMSE) 

Radiometric 
normalization 

The root-mean-square error (RMSE) can be used to measure the statistical agreement of a 
normalized image with the reference image. It is widely used in quantitatively analysis of the 
normalized results [Elvidge et al., 1995; Yuan and Elvidge, 1996; Yang and Lo, 2000]. The pixel 
digital numbers of the radiometrically normalized image are compared with those of the reference 
image of the same band. If the difference between the digital numbers is small, the RMSE will be 
small, implying that the subject image is radiometrically more similar to the reference image. For 
the normalized images, the higher the RMSE is, the higher the radiometric distortion is. 

  



 26

The selected three research topics are not only important for change detection but 

are also widely used for a variety of other applications. For example: image fusion can 

be used for image sharpening and image classification; image registration for all types 

of applications that use multitemporal or multisensor data; and image normalization for 

creating image mosaics and multiple image composites. Since image fusion, image 

registration and image normalization are used for many different applications, it was not 

feasible to validate the proposed image preprocessing techniques for every application. 

However, the proposed fusion, registration and normalization methods were evaluated 

independently and were evaluated using quantitative (Table 1.1) and qualitative 

techniques.  

The relationship between the data (or datasets) used to evaluate a particular 

processing method, the method evaluated and thesis chapter (i.e. the chapter (journal 

article) that investigates one of the image processing methods examined in this research) 

is summarized in Table 1.2. For image fusion, except data listed in Table 1.2, other 

available data sets have also been used to evaluate the proposed image fusion method; 

the results have not been included in the dissertation. 
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Table 1.2. Remote sensing datasets, method evaluated and thesis chapter 

No. Data Sets Evaluated Method Chapter 

1 Two data sets: an IKONOS data set (1m panchromatic and 4m multispectral 
images; 10,000 by 10,000 pixels; urban area of Fredericton, NB, Canada; 
acquired in October 2001); and a QuickBird data set (0.7m panchromatic and 
2.8m multispectral images; 3,000 by 3,000 pixels; Pyramids area of Egypt; 
acquired in 2002).  

The IHS and wavelet 
integration image 

fusion method 

Chapter 2 
[Zhang, Y., and G. 

Hong ,2005] 

2 Two data sets of Star-3i airborne SAR data (10,000 by 10,000 pixels each), 
covering two different areas, four different MS images (SPOT, Simulated 
Natural Color SPOT, ASTER, Landsat TM); one set (4096 by 4096 pixels) of 
Radarsat image with Landsat TM image. 

The IHS and wavelet 
integration image 

fusion method 

Chapter 3 
[Hong et al. ,2006] 

3 Two data sets from the urban area of Fredericton NB, Canada: an IKONOS 
data (4096 by 4096 pixels) acquired in fall, 2001; and a QuickBird data (4096 
by 4096 pixels) acquired in summer, 2002. 

Several image fusion 
methods and the IHS 

and wavelet 
integration fusion 

method 

Chapter 4 
[Hong and Zhang. 

,2007] 
 

4 Two sets of data: a multi-temporal panchromatic Ikonos data acquired in 2000 
and 2002 (IKONOS panchromatic versus IKONOS panchromatic (2048 by 
2048 pixels); and a multi-temporal, multi-sensor, multi-spectral dataset, 
Quickbird multispectral acquired in 2002 (1024 by 1024 pixels) versus 
IKONOS panchromatic acquired with the same year. 

Image registration 
method 

Chapter 5 
[Hong and Zhang, 

2006a] 

5 Two datasets from the urban area of Fredericton, NB, Canada: IKONOS 
multispectral data (2048 by 2048 pixels) acquired in July, 2000; and QuickBird 
multispectral data (2048 by 2048 pixels) acquired in August, 2002. 

Radiometric 
normalization 

methods 

Chapter 6 
[Hong and Zhang 

,2006b] 

 



 28

1.5 Dissertation outline 

This dissertation is an articles-format dissertation. Five journal articles (two 

published, three submitted for peer review) have been incorporated in the dissertation. 

The dissertation is divided into seven chapters and includes three research topics: image 

fusion, image registration, and radiometric normalization. Figure 1.1 illustrates the 

organization of this dissertation. 

The introduction, which includes the topic selection, research motivation, 

objective, and dissertation outline, is included in the first chapter.  
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Topic selection, research motivation, objective, 

dissertation outline (Chapter 1) 

 
Image fusion 

Image registration 
(Chapter 5, paper 4) 

Radiometric 
Normalization 

(Chapte6, paper 5) 

Proposed a new 
image fusion 

method for optical 
data 

(Chapter 2, paper 1) 

Evaluate the 
proposed fusion 

method for optical 
and radar data 

(Chapter 3, paper 2)

Comparison of 
different wavelet 
fusion methods 

(Chapter 3, paper 3)

Conclusions 
(Chapter 7) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1. Illustrate the organization of this dissertation. 

 
Paper 1: Zhang, Y., and G. Hong (2005). An IHS and wavelet integrated approach to improve pan-sharpening quality of IKONOS and QuickBird images. Information 

Fusion, Vol. 6, No. 3, pp. 225-234.  
Paper 2: Hong, G., Zhang, Y., and Mercer, J.B. (2006). A robust technique for fusing SAR data and multisource multispectral images. Submitted to Photogrammetric 

Engineering and Remote Sensing, under review. 
Paper 3: Hong, G., and Zhang, Y. (2007). Comparison and improvement of wavelet-based image fusion. Submitted to International Journal of Remote Sensing, in 

press. 
Paper 4: Hong, G., and Zhang, Y. (2006a). Wavelet-based image registration technique for high resolution remote sensing image. Submitted to Computers & 

Geosciences, under review. 
Paper 5: Hong, G., and Y. Zhang (2006b). A comparative study on radiometric normalization using high resolution satellite images. International Journal of Remote 

Sensing, accepted, in press. 
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The topic on image fusion occupies three chapters (Chapters 2, 3, and 4), 

resulting in the main contribution in this PhD research. Based on the wavelet 

multiresolution analysis property, a new image fusion method, which integrates IHS and 

wavelet transform, is proposed to reduce the color distortion problem met in using 

current image fusion methods to process high resolution images. 

Chapter 2 is a journal chapter, originally published in the journal Information 

Fusion [Zhang and Hong, 2005]. It introduces the theory of the wavelet transform, the 

IHS transform, and the proposed new image fusion method. Fusion results from 

IKONOS and QuickBird imagery are provided, and an evaluation of the results is also 

included in this chapter. 

In order to test whether the proposed image fusion method can be applied to 

multisource data, the multisource SAR and common multispectral images were fused 

using the proposed method. Chapter 3 includes the results of this fusion and evaluation 

of these results; it has been submitted to Photogrammetric Engineering and Remote 

Sensing [Hong et al., 2006].  

Because the proposed image fusion method is based on wavelet transform, 

problems in image fusion related to wavelets are also discussed in order to take 

advantage of using wavelet in image fusion; both comparison among wavelet-based 

image fusion and suggested improvements are given in Chapter 4, this chapter has also 

been accepted by International Journal of Remote Sensing [Hong and Zhang, 2007].  

While the wavelet multiresolution analysis property is used in the proposed image 

fusion method in the previous chapters (Chapters 2, 3 and 4); it is further explored for 

the application of image registration based on the knowledge and experience acquired 
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from the image fusion research. To reduce the local distortion existing in high resolution 

images with terrain relief, Chapter 5 introduces a new wavelet-based image registration 

method for high resolution images. This chapter has been submitted to Computers & 

Geosciences [Hong and Zhang, 2006a]. The proposed method uses the wavelet multi-

resolution property to extract feature points; the normalized cross-correlation and relax-

based probability matching techniques to find similarity between feature points in 

reference image and sensed image; and the triangle-based local transformation model to 

resample the sensed image. The method was evaluated using two sets of data. The 

evaluations show that the method can semi-automatically select enough control points 

and reduce the local distortions caused by terrain relief.  

On top of the discussion on geometric base problems in Chapter 5, Chapter 6 

discusses a radiomimetic problem, because it is important to have both an identical 

geometric base and a radiometric base to process multi-temporal or multi-sensor images. 

Radiometric normalization is necessary in transforming multi-temporal or multi-sensor 

data into an identical radiometric base. In this chapter, a comparative analysis of image 

normalization in high resolution images is discussed. Improved strategies are provided 

for normalizing the high resolution images through modifications to the existing image 

normalization methods, because existing image normalization methods designed for the 

Landsat TM/MSS image cannot be directly applied to high resolution images. It is 

shown the improved strategies to be very helpful in normalizing high resolution images. 

A journal paper on this topic has been accepted by International Journal of Remote 

Sensing for publication [Hong and Zhang, 2006b]. 
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Chapter 7 summarizes the major work in this research, draws conclusions, and 

gives recommendations for further research. 
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Chapter 2. AN IHS AND WAVELET INTEGRATED APPROACH 

TO IMPROVE PAN-SHARPENING VISUAL QUALITY OF 

NATURAL COLOUR IKONOS AND QUICKBIRD IMAGES♣ 

 

ABSTRACT 

Image fusion is an important tool in remote sensing, as many Earth observation 

satellites provide both high-resolution panchromatic and low-resolution multispectral 

images. To date, many image fusion techniques have been developed. However, the 

available algorithms can hardly produce a satisfactory fusion result for IKONOS and 

QuickBird images. Among the existing fusion algorithms, the IHS technique is the most 

widely used one, and the wavelet fusion is the most frequently discussed one in recent 

publications because of its advantages over other fusion techniques. But the colour 

distortion of these two techniques is often obvious, especially when IKONOS or 

QuickBird natural colour multispectral images are fused with its panchromatic images. 

This study presents a new fusion approach that integrates the advantages of both the IHS 

and the wavelet techniques to reduce the colour distortion of IKONOS and QuickBird 

fusion results. Different IKONOS and QuickBird images have been fused with this new 

approach. Visual and statistical analyses prove that the concept of the proposed IHS and 

wavelet integration is promising, and it does significantly improve the fusion quality 

compared to conventional IHS and wavelet fusion techniques. 

                                                 
♣ Reprinted from Information fusion, Vol. 6, Zhang, Y., G. Hong. “An IHS and wavelet integrated 
approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images.” 
pp. 225-234. Copyright (2005), with permission from Elsevier.  
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2.1 Introduction 

Most Earth observation satellites, such as SPOT, IRS, Landsat 7, IKONOS, and 

QuickBird, provide both panchromatic images at a higher spatial resolution and 

multispectral images at a lower spatial resolution. An image fusion technique that can 

effectively integrate the spatial detail of the panchromatic image and the spectral 

characteristics of the multispectral image into one image is important for a variety of 

remote sensing applications. For example, in geoscience domain image fusion can 

provide more detailed information for land use classification, change detection, map 

updating and hazard monitoring; in national defense it is useful for target detection, 

identification and tracking, and in medical imaging domain for diagnosis, modeling of 

the human body or treatment planning [Pohl and Van Genderen, 1998; Piella,2002]. 

Because of the importance of image fusion techniques, many image fusion 

algorithms have been developed [Qiu, 1990; Chavez et al., 1991; Shettigara, 1992; 

Yocky, 1995; Zhou et al., 1998; Zhang, 1999; Hill et al., 1999; Ranchin and Wald, 

2002]. Pohl and Van Genderen [1998] provided a comprehensive review of most 

published image fusion techniques by 1998. Successful algorithms for the fusion of 

Landsat TM and SPOT Pan images, and alike, fall in general into the following three 

categories: (1) projection and substitution methods, such as IHS colour (Intensity-Hue-

Saturation) fusion, and PCA (Principal Component Analysis) fusion; (2) band ratio and 

arithmetic combination, such as Brovey and SVR (Synthetic Variable Ratio), and (3) the 
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recently popular wavelet fusion which injects spatial features from panchromatic images 

into multispectral images, such as ARSIS (an abbreviation of the French definition 

‘amélioration dela résolution spatial par injection de structures’), and GLP (Gaussian 

Laplacian Pyramid) techniques. The HPF (High Pass Filtering) method also injects 

spatial features into MS images, but the spatial features are extracted using high-pass 

filtering instead of using wavelet transforms.  

Among the three categories, the IHS technique has been most widely used in the 

practical applications, and the wavelet fusion technique has been discussed most 

frequently in the recent publications due to its advantages over other fusion techniques 

[Yocky, 1995; Zhou et al., 1998; Ranchin and Wald, 2002; Yocky, 1996; Aiazzi et al. 

2002; Shi et al. 2003]. Therefore, this study focuses on the IHS and the wavelet fusion 

methods, and explores their potential for further improvement. 

With the IHS fusion, if the intensity image of the IHS transform has a high 

correlation to the panchromatic image being fused, it will produce a satisfactory fusion 

result. The higher the correlation is, the less colour distortion the fused results have. In 

the practice, however, the intensity image and the panchromatic image often differ from 

each other to a certain extent. Hence, colour distortion becomes a common problem of 

the IHS technique. Such a problem has been reported by many authors, such as Chavez 

et al. [1991] and Pellemans et al. [1993]. The colour distortion is especially significant 

when the panchromatic and multispectral images of the IKONOS, QuickBird, and 

Landsat 7 are fused, because the correlation between the panchromatic image and the 

intensity image is often very low, in particular when the natural colour bands 1, 2 and 3 
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are fused with the panchromatic image [Zhang, 2002]. However, despite of colour 

distortion IHS fused images usually show plentiful colour in the fusion results.  

The wavelet base fusion technique usually can better preserve the colour 

information than the IHS does, as the wavelet technique extracts spatial detail 

information from a high-resolution panchromatic image first, and then injects the spatial 

information into the multispectral bands, respectively. In this manner, the colour 

distortion can be reduced. However, the spatial detail information extracted from a high-

resolution panchromatic image is not equivalent to that existing in an original high-

resolution multispectral band. This difference can also introduce colour distortion into 

the fusion result, especially when IKONOS, QuickBird, and Landsat 7 images are fused 

with their panchromatic images. Further, because the spatial detail is injected into 

individual multispectral bands, the fused image sometimes appears like a fusion result 

through a high-pass filtering process, e.g., the integration between colour and spatial 

detail is not smooth. Some ring effects may appear in the image, and small objects may 

not obtain colour information [Yocky, 1995; Yocky, 1996]. Because of this problem, 

further research has been done to reduce it [Aiazzi et al., 2002; Aiazzi et al., 2003]. 

To date, significant colour distortions of the IHS technique for IKONOS or 

QuickBird image fusions have been reported by many authors [Zhang, 2002]. Only a 

few satisfactory fusion results have been reported by some authors in which advanced 

wavelet fusion techniques were involved [Aiazzi et al., 2003; Laporterie-Dejean, 2003].  

To overcome the disadvantages of the IHS fusion technique and those of the 

wavelet fusion technique, and to explore a more effective way to fuse the IKONOS and 

QuickBird images, especially the natural colour multispectral bands, an IHS and wavelet 
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integrated fusion approach has been developed in this study. This proposed approach 

has been implemented with IKONOS and QuickBird images. Visual and statistical 

analyses demonstrate that the new IHS and wavelet integrated fusion approach does 

improve the fusion quality of the IKONOS and QuickBird images compared to the 

original IHS technique and the wavelet technique.  

 

2.2 Conventional IHS and Wavelet Fusion Techniques  

2.2.1 IHS fusion technique 

The colour system with red, green and blue channels (RGB) is usually used by 

computer monitors to display a colour image. Another colour system widely used to 

describe a colour is the system of intensity, hue and saturation (IHS). The intensity 

represents the total amount of the light in a colour (also called brightness), the hue is the 

property of the colour determined by its wavelength, and the saturation is the purity of 

the color. An intensity image of the IHS system usually appears like a panchromatic 

image. This characteristic is utilized in the image fusion to fuse a high-resolution 

panchromatic image into a low-resolution colour image. 

To conduct an image fusion the three bands of a colour image have to be 

transferred from the RGB space into the IHS space. Before this, the colour image should 

be registered to the high-resolution panchromatic image and resampled to the same pixel 

size with the panchromatic image. The intensity image is then replaced by a high-

resolution panchromatic image. To have a better fusion quality, the panchromatic image 

usually needs to be matched to the intensity image before the replacement. After the 
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replacement, the panchromatic image together with the hue and saturation images are 

reversely transferred from the IHS space into the RGB space, resulting in a fused colour 

image. This process is schematized in Figure 2.1.  
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Figure 2.1. IHS image fusion process 

Different transformations have been developed to transfer a colour image from the 

RGB space to the IHS space. One common IHS transformation is based on a cylinder 

colour model which is described by the following equations [Pohl and Van Genderen, 

1998; Shettigara, 1992].  

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

B
G
R

v
v
I

0
2
1

2
1

6
2

6
1

6
1

3
1

3
1

3
1

2
1      (2.1) 

 ⎟
⎠
⎞⎜

⎝
⎛= −

2
1tan 1

v
vH          (2.2) 

 22 21 vvS +=           (2.3) 

where v1 and v2 are two intermediate values. 

The corresponding inverse transformation is defined as: 
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          (2.5) )sin(2 HSv =
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Another commonly used IHS transformation is based on a triangular colour model. 

The forward IHS transformation can be described as below [Qiu, 1990]: 
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The corresponding inverse IHS transformation is: 
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2.2.2 Wavelet fusion technique 

Wavelet transformation is a mathematical tool that can detect local features in a 

signal process. It can also be employed to decompose two-dimensional signals – a 

digital image – into different resolution levels for a multi-resolution analysis. This 

multi-resolution characteristic is utilized for fusing images at different resolution levels.  

Figure 2.2 shows the general concept of a wavelet image fusion process [Nuñez et 

al., 1999]. First, three new panchromatic images are produced according to the 

histogram of R, G, B bands of multispectral image respectively. Then each of the new 

high-resolution panchromatic images is decomposed into a low-resolution 

approximation image and three wavelet coefficients, also called detail images, which 

contain information of local spatial details. The decomposed low-resolution 

panchromatic images are then replaced by the real low-resolution multispectral image 

bands (B, G, R), respectively. In the last step, a reverse wavelet transform is applied to 

each of the sets containing the local spatial details and one of the multispectral bands (B, 

G, and R). After three times of reverse wavelet transforms, the high-resolution spatial 

details from the panchromatic image are injected into the low resolution multispectral 

bands resulting in fused high-resolution multispectral bands. 
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Figure 2.2. General concept of a wavelet image fusion 

(1), (2), (3) and (4) indicate the processing steps of histogram matching, wavelet decomposition, band 
replacement and reverse wavelet transform; R, G and B are three bands of a multispectral image set; and 
the superscripts R, G and B indicate wavelet decompositions from R, G, or B matched Pan images. LLR 
represents an approximation image of pan image according to R band histogram at a lower resolution 
level. HHR, HLR and LHR represent corresponding wavelet coefficients (or detail images) in diagonal, 
horizontal and vertical directions. . 
 

The original concept and theory of a wavelet-based multi-resolution analysis 

comes from Mallat [1989]. Many researchers have applied this theory to different image 

fusions resulting in promising fusion results [Yocky, 1995; Zhou et al., 1998; Ranchin 

and Wald, 2002; Aiazzi et al., 2002; Shi et al., 2003]. Let { }Znms j
nm ∈+ ,,1

,  be a two-

dimension image at a resolution of j+1 with j being an integer. m and n are the 

dimensions of the image in row and column directions, which belong to an integer set Z. 

The wavelet multi-resolution transform can then be expressed as [Shi et al., 2003]: 
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(2.15) 

 

 

where sj is an approximation image at a lower resolution j (e.g., LLP). d j1, d j2 and d j3 

are three wavelet coefficients containing local spatial details (e.g., HHP, HLP and LHP). 

gn is a high-pass filter bank, and hn is a low-pass filter bank.   
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The reverse wavelet transform for reconstructing a high-resolution image is 

written as:  
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where ng~  and nh~  meet the following relationships:  
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The Equation set (2.15) applies to the step 1, and the Equation (2.16) applies to the 

step 3 in Figure 2.2. 

 

2.2.3 The proposed IHS and wavelet integrated fusion  

As denoted in the introduction, the IHS fusion method usually can integrate colour 

and spatial features smoothly. The colour depth (or intensity) of the IHS fusion results is 
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high (rich in colour). And, if the correlation between the IHS intensity image and the 

panchromatic image is high, the IHS fusion can well preserve the colour information. In 

the real cases, however, the colour distortion is significant due to the low correlation 

between the intensity image and the panchromatic image, especially when the natural 

colour multispectral bands and panchromatic images from IKONOS and QuickBird are 

fused.  

On the other hand, the wavelet image fusion usually can better preserve colour 

information than other conventional fusion methods, such as IHS, PCA, and bands 

arithmetic combination, because the high-resolution spatial information from a 

panchromatic image is injected into all the three low-resolution multispectral bands. 

However, the spatial detail from a panchromatic image is often different from that of a 

multispectral band having the same spatial resolution. This difference may introduce 

colour distortion into the wavelet fusion results, and sometimes it may make the 

integration between colour and spatial detail appear unnatural [Yocky, 1996].  

To better utilize the advantages of the IHS and the wavelet fusion techniques for 

the fusion of IKONOS and QuickBird images, and to overcome the shortcomings of the 

two techniques, we proposed an IHS and wavelet integrated fusion approach. The 

concept and the process steps of this approach are illustrated in Figure 2.3. In general, it 

uses the IHS transform to integrate the low-resolution multispectral colour information 

with the high-resolution panchromatic spatial detail information to achieve a smooth 

integration of colour and spatial features (part I of Figure 2.3). However, the wavelet 

transform is utilized to generate a new panchromatic image (new intensity in Figure 2.3) 
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that has a high correlation to the intensity image and contains the spatial detail of the 

original panchromatic image (part II in Figure 2.3).  
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Figure 2.3. Processing flow of the proposed IHS and wavelet transforms integrated fusion method. 

(Two-level wavelet decomposition is applied to both the intensity image and the panchromatic image. 
Only one-level decomposition is symbolically drawn in the figure to highlight the overall concept.) 

 
As shown in Figure 2.3, the detailed steps of this integrated fusion method are: 
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(1) Transforming the multispectral image into the IHS components (Forward 

IHS transform). Before the IHS transform, the multispectral image must be 

co-registered to the panchromatic image and resampled to the pixel spacing 

of the panchromatic image. 

(2) Applying histogram matching to match the histogram of the panchromatic 

image to that of the Intensity component (I), and obtaining a new 

panchromatic image (New Pan). 

(3) Decomposing the new panchromatic image and the intensity component (I) 

into wavelet planes (a two-level decomposition is applied), respectively. The 

intensity image has the same pixel size as the panchromatic image. 

(4) Replacing the approximation image of the panchromatic decomposition 

(LLP) by that of the intensity decomposition (LLI) to inject grey value 

information of the intensity image into the panchromatic image. To avoid an 

over injection of the intensity information, the LLP at the second 

decomposition level is not completely, but partially, replaced by the LLI at 

the same level, namely a new approximation image (LL’) is first generated 

through a weighted combination of LLP and LLI, and then replaces the LLP 

of the panchromatic decomposition. The method for the weighted 

combination is described in Equations 2.18 and 2.19 below. 

(5) Performing an inverse wavelet transform to obtain a new intensity image, 

which has similar grey value distribution to that of the intensity image of IHS 

transform and contains the same spatial detail of the original panchromatic 

image. 
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(6) Transforming the new intensity together with the hue and saturation 

components back into RGB space (inverse IHS transform).  

The triangular model of IHS transform (Equations 2.7 through 2.14) is employed 

in this proposed IHS and wavelet integrated fusion. The method to generate the new 

approximation image LL’, denoted as c, can be expressed as:  

 ,         (2.18) bwawc ×+×= 21

where a and b are the approximation images LLI and LLP, respectively, and w1 and w2 

are the corresponding weight coefficients, which are determined by:  
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where a  and b are the means of a and b, and N is the total pixel number of the 

approximation images.  

In this proposed approach, the gray value information of the intensity image is 

partially injected into the panchromatic image to make the new intensity image having 

similar gray value relationship (high correlation) to the original intensity image and 

containing enough spatial detail from the panchromatic image. This new intensity image 

is, then, used to replace the intensity image of the IHS transform. Finally, the spatial 

detail of the panchromatic image is integrated into the multispectral image bands by a 

reverse IHS transform.  

The correlation coefficient (w1) between LLI and LLP is introduced as the weight to 

the LLI. The coefficient w2 (w2 = 1-w1) is applied to the LLP to control the balance of the 

partial replacement, i.e. the higher to correlation between LLI and LLP, the more weight 
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to the LLI in the replacement. This weighted combination of LLI and LLP ensures that 

the modified panchromatic image (New Intensity) has a high correlation to the intensity 

image and enough spatial detail from the original panchromatic image. 

A similar approach by Nunez et al. [1999] was identified after the completion of 

the research resulting in the proposed approach above. But, significant differences can 

be found between the two approaches. In Nunez’s approach, an “a trous” (“with holes”) 

algorithm was employed to decompose the panchromatic image, the low-resolution 

panchromatic approximation image was completely replaced by L image of a LHS 

transform, and modified Landsat TM R, G and B bands were fused with SPOT 

panchromatic image [Aiazzi et al., 2003]. Neither natural colour images were tested, nor 

IKONOS or QuickBird images were fused.  

 

2.3 Testing data and fusion experiments 

The testing image data consist of an IKONOS data set with 1m panchromatic and 

4m multispectral images, and a QuickBird data set with 0.7m panchromatic and 2.8m 

multispectral images. The IKONOS data set covers the urban area of Fredericton, NB, 

Canada. It was taken in October of 2001. The image size is approximately 10,000 by 

10,000 pixels at the resolution of 1m. The QuickBird image was taken over the well-

known Pyramids area of Egypt in 2002. The image size being tested is approximately 

3,000 by 3,000 pixels at the resolution of 0.7m. Before the image fusion, the 

multispectral images were co-registered to the corresponding panchromatic images and 

resampled to the same pixel sizes of the panchromatic images. 
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The cylinder model and triangular model of the IHS transform, the common 

wavelet fusion transform, and the proposed IHS and wavelet integrated transform were 

employed to fuse the two image data sets. The fusion results are displayed in Figure 2.4 

and 2.5. The same standard stretching method was applied to all the images for the 

display. 
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(a) (b)

(c) (d)

(e)  (f)

Figure 2.4. IKONOS image in Fredericton, Canada, and different fusion results (256×200 pixel subset) 

(a) Original panchromatic image; (b) Original multispectral image with bands 1, 2, and 3; (c) IHS fusion 
result with the cylindrical model; (d) IHS fusion result with the triangular model; (e) Wavelet fusion 
result; (f) Result of the proposed IHS and wavelet integrated method. 
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(b)(a)

(c)

(f) (e)

(d) 

Figure 2.5. Original QuickBird image in the Pyramidal region, Egypt, and different fusion results 
(256×200 pixels subset) 

(a) Original panchromatic image; (b) Original multispectral image with bands 1, 2, and 3; (c) IHS fusion 
result with the cylindrical model; (d) IHS fusion result with the triangular model; (e) Wavelet fusion 

result; (f) Result of the proposed IHS and wavelet integrated method. 
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2.4 Accuracy analyses of the fusion results 

2.4.1 Visual analysis  

It can be seen in Figure 2.4 that the fusion results of the two models of the IHS 

transform (Figure 2.4. c and d) are rich in colour, and they have a good colour and 

spatial feature integration. However, the colour distortions are significant. The colour in 

vegetation areas was deflected to yellow, and that of the paved areas with high spectral 

reflectance was distorted from white to purple. The wavelet fused result (Figure 2.4.e) 

shows clear spatial detail like the original pan image; however, its colour intensity is 

weak. Much colour information has lost. It is clear to see that the result from the 

proposed IHS and wavelet integrated fusion method (Figure 2.4.f) appears best among 

all the results. The colour was least distorted, the spatial detail is as clear as the original 

pan, and the integration of colour and spatial features is natural. 

Figure 2.5 shows the original QuickBird images and the fusion results. The results 

of the two IHS models (Figure 2.5. c and d) are also rich in colour, but with obvious 

colour distortions. The colour in vegetation areas was deflected from dark green to light 

yellow green, and that of highly reflecting roofs was distorted from white to light blue. 

The magnitudes of the colour distortions are different in the two IHS results and they 

differ from object to object. The colour of the wavelet fused result (Figure 2.5.e) is close 

to that of original colour image in vegetation areas, but with obviously weak colour 

intensity in residence areas. The roads and building roofs have almost the same colour 

except the brightness variation. Trees in residence areas can be hardly recognized. 

However, the IHS and wavelet integrated method (Figure 2.5.f) overcomes the 

disadvantage of the IHS methods – significant colour distortion – and that of the wavelet 
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method – weak colour intensity. The colour of this integrated method is, in general, 

closest to that of the original colour image, and it appears like the combination of the 

colour of the IHS fusion result (Figure 2.5.c) and that of the wavelet fusion result 

(Figure 2.5.e).  

Compared to Figure 2.4 and Figure 2.5 it can also be seen that the colour 

distortions of the two IHS models and the conventional wavelet fusion are data source 

dependent. In the IHS fusion results, the colour of highly reflecting building roofs and 

other paved areas are changed from white, in the original IKONOS colour image (Figure 

2.4.b), to purple, in the fusion results (Figure 2.4.c and d), while it is distorted from 

white to light blue, in QuickBird fusion result (Figure 2.4.e). The colour of the 

vegetation areas is also distorted in different directions, namely from dark green to 

yellow green or cyan in the IKONOS fusion results, but to light green in the QuickBird 

fusion results.  

For the wavelet fusion, the colour depth (or intensity) decreases significantly for 

all the areas in the IKONOS fusion result (Figure 2.4.e), while it just decreases mainly 

in the build up areas in the QuickBird fusion result (Figure 2.5.e). For the IHS and 

wavelet integrated fusion approach, however, the colour of fused images can be kept 

close to that of the original colour images regardless the difference of the data source 

(compare Figure 2.4.f and 4.b, and Figure 2.5.f and 5.b). 

The spatial quality of the fusion results has also been analyzed by enlarging the 

fused images and the panchromatic images. In all of the fusion results, cars, building 

corners and other sharp edges can be seen as clear as in the original panchromatic 
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images. This indicates the spatial qualities of all the fusion techniques being tested are 

similar, or the same. 

 

2.4.2 Statistical analysis 

Two kinds of evaluation models are employed to testify the degree of colour 

distortion caused by the different fusion methods. (1) The fusion results of the degraded 

panchromatic and multispectral images (4 times degraded in resolution) are compared 

with original multispectral images. (2) The fusion results from the original 

panchromatic and multispectral images are compared with the original multispectral 

image.   

For IKONOS the original panchromatic and multispectral images are degraded to 

4m and 16m respectively by the cubic convolution resampling method. Table 2.1 shows 

the correlation coefficients between the original bands and the corresponding fused 

bands from the degraded images. CR, CG and CB are the correlation coefficients between 

the original multispectral bands and their corresponding fused bands. 

 
Table 2.1. Correlation coefficients (CR, CG, CB) between original IKONOS multispectal R, G and B bands 
and the corresponding fused bands from the degraded images 

B

 IHS(C) IHS(T) WAVELET WAVELET+IHS 
CR 0.587 0. 627 0.718 0. 832 
CG 0. 560 0. 576 0. 705 0. 806 
CBB 0. 505 0.508 0. 631 0. 766 

 

From Table 2.1, it can be found that the correlation coefficients CR, CG and CB of 

IHS cylinder model, IHS(C), are the lowest among all the fusion methods. The second 

lowest is IHS triangular model, IHS (T), the third lowest is conventional wavelet 

method, and the highest is the proposed IHS and wavelet integrated method. Therefore, 
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we can draw a conclusion that IHS(C) fused image has the largest colour distortion, and 

the fusion result of the IHS and wavelet integrated method has the least colour 

distortion. These statistical assessment results agree with those of the visual analysis, 

e.g., the IHS(C) has the largest colour distortion and the proposed IHS and wavelet 

integrated method has the least colour distortion (see Figure 2.4). 

Like for IKONOS, colour QuickBird panchromatic and multispectral images are 

degraded to 2.8m and 11.2m respectively by the cubic convolution method. The fusion 

result from the degraded images is used to compare with the original multispectral 

image. Table 2.2 shows the correlation coefficients between the original bands and the 

corresponding fused bands from the degraded QuickBird images.  

 
Table 2.2. Correlation coefficients (CR, CG, CB) between original QuickBird multispectral image bands 
and the fused bands from the degraded images 

B

 IHS(C) IHS(T) WAVELET WAVELET+IHS 
CR  0.709 0. 777 0. 835 0. 913 
CG 0.656 0. 730 0. 823 0. 876 
CBB 0.736 0. 846 0. 819 0. 941 

 

It can be seen from Table 2.2 that the IHS(C) technique has the lowest CR, CG and 

CB, followed by the IHS(T), while the IHS and wavelet integrated method has the 

highest correlations. This means that the proposed IHS and wavelet integrated method 

has the smallest colour distortion. It accords with that of visual analysis (Figure 2.5).  

The correlation evaluation between the full resolution multispectral images before 

and after the fusion is also carried out.  

Table 2.3 shows the correlation coefficients between the original image bands and 

the corresponding fused bands for the IKONOS image.  The resolution of panchromatic 

image is 1m, multispectral image is 4m, and fusion result is 1m. From Table 2.3 the 
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same conclusion as Table 2.1 can be drawn, namely IHS(C) fused image has the largest 

colour distortion, followed by the IHS(T) fusion result and the wavelet result, 

respectively. The fusion result of the proposed IHS and wavelet integrated method has 

the least colour distortion. 

 

Table 2.3. Correlation coefficients (CR, CG, CB) between original IKONOS multispectral image bands and 
the corresponding fused bands  

B

 IHS(C) IHS(T) WAVELET WAVELET+IHS 
CR 0. 601 0. 737 0. 883 0. 922 
CG 0. 582 0. 693 0. 877 0. 904 
CBB 0. 575 0. 672 0. 839 0. 917 

 

Table 2.4 shows the correlation coefficients between the original multispectral 

bands and the corresponding fused bands for the QuickBird image. The resolution of the 

panchromatic image is 0.7m, multispectral is 2.8m, and the fusion result is 0.7m. 

 

Table 2.4. Correlation coefficients (CR, CG, CB) between original QuickBird multispectral bands and the 
fused bands  

B

 IHS(C) IHS(T) WAVELET WAVELET+IHS 
CR 0.644 0. 673 0. 833 0. 930 
CG 0.655 0. 623 0. 826 0. 898 
CBB 0.691 0. 801 0. 871 0. 941 

 

From Table 2.4, it can also be found that the same conclusion to Table 2.2 can be 

drawn, i.e. IHS (C) has the largest colour distortion, followed by the IHS (T) and 

wavelet, while the IHS and wavelet integrated method has the least distortion.  

 

2.5 Conclusion 

The algorithms and fusion results of the most popular IHS fusion techniques and 

the recently widely discussed wavelet fusion technique are reviewed and analyzed in 
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this study. To reduce the colour distortion and improve the fusion quality, an IHS and 

wavelet integrated fusion approach is proposed. This approach utilizes the IHS 

transform to fuse high-resolution spatial information into the low-resolution 

multispectral images, and uses the wavelet transform to reduce the colour distortion, in 

the way of generating a new high-resolution panchromatic image that highly correlates 

to the intensity image of the IHS transform. The new panchromatic image is, then, used 

to replace the intensity image for a reverse IHS transform. The fused image is produced 

after the reverse IHS transform.  

IKONOS and QuickBird multispectral and panchromatic images are fused with 

this proposed approach. The fusion results are compared with those of the conventional 

IHS fusion methods (the cylinder model and the triangular model) and the conventional 

wavelet fusion by visual analysis and statistical analysis. The analysis results 

demonstrate that the proposed IHS and wavelet integrated fusion approach does 

significantly reduce the colour distortion compared to the conventional, non-adaptive 

fusion methods. In other words, the results have proved that the concept of the proposed 

IHS and wavelet integration is promising.  
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Chapter 3. A ROBUST TECHNIQUE FOR FUSING 

MULTISOURCE SAR AND MS IMAGES♣ 

 

ABSTRACT 

Synthetic aperture radar (SAR) imaging is independent of solar illumination and 

weather conditions, which makes it a particularly viable alternative, or complement, to 

traditional optical remote sensing techniques. Along with the technology advancement, 

the spatial resolution of SAR is becoming increasingly higher, which makes it possible 

for high resolution mapping purposes. However, significant problems exist in the 

interpretation of SAR images. Although image fusion presents an alternative to improve 

the interpretability of SAR images by fusing the colour information from low resolution 

multispectral (MS) images, few publications about fusing high resolution SAR and low 

resolution optical multispectral image can be found in recent literature. In this paper, a 

new fusion method, based on the integration of wavelet transform and IHS (Intensity, 

Hue, and Saturation) transform, is proposed for SAR and MS fusion to maintain the 

spectral content of the original MS image while retaining the spatial detail of the high-

resolution SAR image. Three data sets are used to evaluate the proposed fusion method: 

two of them are airborne SAR images with MS images at different resolutions; the other 

is a Radarsat image with a Landsat TM image. The fusion results are analyzed visually 

and statistically. 

                                                 
♣This chapter has been submitted.  
Hong G., Y. Zhang (2006). “A robust technique for fusing multisource SAR and MS images." Submitted 
to Photogrammetric Engineering and Remote Sensing, September, 2006. 
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transform 

 

3.1 Introduction 

Synthetic aperture radar (SAR) is an active sensor, and its wavelength ranges from 

1 millimeter to 1 meter, making it a particularly viable alternative, or complement, to 

traditional optical remote sensing techniques [Foody, 1988]. For example, SAR imaging 

is independent of solar illumination and weather conditions; it is not affected by rain, 

fog, hail, smoke and, most importantly, clouds; it can even penetrate some Earth’s 

surfaces to return information about subsurface features because it has a long 

wavelength; and SAR instruments can measure both intensity and phase of the 

backscattered microwaves, resulting not only in a high sensitivity to texture, but also in 

three-dimensional capabilities [Crisp, 2006]. 

However, SAR images are difficult to interpret due to their special characteristics: 

the geometry and the spectral range of SAR are different from optical imagery, and they 

are different from how the human eye works. In addition, the reflectance of objects in 

the microwave range depends on the used frequency band and may significantly differ 

from the usual assumption of more or less diffuse reflection at the Earth’s surface. 

Therefore, mapping staff such as photogrammetric operators often experience 

difficulties in interpreting SAR imagery for topographic mapping [Hellwich et al., 

2001]. 

Image fusion presents a good alternative for increasing the interpretability of SAR 

images by integrating colour information from MS images. The colour information in 
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MS images represents the reflectance of solar energy from a target area, which is easier 

to interpret. However, the brightness of SAR intensity images is dependent upon the 

roughness and material contents of the targeted surface and the wavelength of the 

microwave, which is difficult to interpret but may contain useful information that cannot 

be found in MS images. Therefore, the fusion of SAR and MS images may contribute to 

better understanding of the objects of the target areas [Pohl and Van Genderen, 1998]. 

To date, numerous image fusion algorithms have been developed [e.g., Qiu, 1990; 

Chavez et al., 1991; Shettigara et al., 1992; Yocky, 1995; Zhou et al., 1998; Zhang, 

1999; Hill et al., 1999; Ranchin et al., 2000]. Conventional fusion methods can be 

generally classified into four groups: classical Intensity-Hue-Saturation (IHS) transform, 

Principal Component Analysis (PCA), statistical and arithmetic combination, and the 

recently popular wavelet fusion [Zhang, 2002].  

Wavelet transformation, originally a mathematical tool for signal processing, is 

now widely used in the field of image fusion. Recently, many image fusion methods 

based on wavelet transformation have been published [Yocky, 1995; Li et al., 1995; 

Yocky, 1996; Zhou et al., 1998; Núñez et al., 1999; Ranchin et al., 2000; Aiazzi et al., 

2002]. The physical principal of wavelet used in image fusion is that wavelet can 

separate image into high frequency and low frequency components, the separated high 

frequency from the SAR can be injected into the low resolution multispectral image 

without changing its color. The objects appearing as high frequency in the SAR image, 

for example, small metallic objects, look like bright points; while they appear the same 

as other objects in the optical images, and thus they cannot be discriminated from other 
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objects easily. If the high frequency of those objects from SAR can be injected into a 

multispectral image, they can be easily recognized in the fused image. 

 High resolution orthorectified colour images from aerial photography or satellite 

are widely desired but often prohibitively expensive particularly over large areas, while 

monochromatic orthorectfied radar images at 1.25 meter resolution with corresponding 

horizontal accuracy are now available at relatively low cost over relatively large areas – 

for instance, the whole of Great Britain. It would be desirable for many applications to 

create a fused product from the radar orthorectified image and a suitable MS low 

resolution source [Mercer et al., 2005]. The objective of this paper is to propose an 

effective image fusion method to fuse a high spatial resolution SAR image with 

multisource low spatial resolution MS images and obtain a high spatial resolution 

colorful SAR image. The method itself is based on wavelet and IHS integrations, and 

the intuition of the fusion method is that the fusion result can maintain the spectral 

content of original MS image while retaining the spatial detail of the high-resolution 

SAR image. The justification of the propsed method is listed as follows: the fusion 

between MS and panchromatic images by only stand-alone wavelet transformation often 

produces poor image fusion results (artifacts problem) [Yocky, 1996; Aiazzi et al., 

2006]. The IHS method is good at preserving the spatial characteristics, but strongly 

depends on the resemblance between the panchromatic image and the intensity of the 

MS image [Svab and Ostir, 2006]. To overcome the colour distortion and artifacts 

problems associated with stand-alone wavelet or IHS methods and to develop a reliable 

fusion method for SAR and MS fusion, the wavelet transform and IHS transform are 

integrated in this research. Because the substitution in IHS transform is limited to only 
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the intensity component, the integration of wavelet transform and IHS transform for 

SAR and MS fusion can be made simpler and faster. Results demonstrate that this 

integration can also better preserve color information.  

Three data sets are used to evaluate the proposed fusion method: two are airborne 

SAR data and MS data at different resolutions; the other is a Radarsat image and a 

Landsat TM image. Successful results are achieved in the fusion of all the SAR images 

and MS images from a variety of sensors with significant spatial and spectral variations. 

The ratio of spatial resolution between SAR and MS images varies from 1 to 24 for the 

case of SAR and Landsat TM fusion, 1 to 16 for SPOT, and 1 to12 for ASTER; and the 

spectral variations of the test images range through visible, infrared and microwave. The 

improvements of the proposed method are demonstrated by visual, and statistical 

evaluations. 

 

3.2 IHS, wavelet and the proposed fusion methods 

3.2.1 IHS transform 

Different transformations have been developed to transfer a colour image from the 

RGB space to the IHS space. A commonly used IHS transformation is based on a 

triangular colour model [Qiu, 1990]. The forward IHS transformation can be described 

as below: 
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3.2.2 Wavelet transform 

The original concept and theory of a wavelet-based multi-resolution analysis 

comes from Mallat [Mallat, 1989]. Many researchers have applied this theory to 

different image fusions resulting in promising fusion results [Garguet-Duport et al., 

1996; Yocky, 1996; Zhou et al., 1998; Ranchin et al., 2000; Aiazzi et al., 2002]. 

The discrete wavelet transform can be expressed by following equations: let 

{ }Znms j
nm ∈+ ,,1

,  be a two-dimensional image at a resolution of j+1 with j being an 

integer. m and n are the dimensions of the image in row and column directions, which 
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belong to an integer set Z. The wavelet multi-resolution transform can then be expressed 

as [Zhu and Zhang 2000]. 

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

=

=

=

∑

∑

∑

∑

∈
−−

+

∈
−−

+

∈
−−

+

∈
−−

+

Zlk
nlmk

j
lk

j
nm

Zlk
nlmk

j
lk

j
nm

Zlk
nlmk

j
lk

j
nm

Zlk
nlmk

j
lk

j
nm

ggsd

hgsd

ghsd

hhss

,
22

1
,

3
,

,
22

1
,

2
,

,
22

1
,

1
,

,
22

1
,,

2
1

2
1

2
1

2
1 

 
(3.8) 

 
 
 
 
 
 
 
 

where sj is an approximation image at a lower resolution j (LL in Figure 3.1). d j1, 

d j2 and d j3 are three wavelet coefficients containing local spatial details (LH, HL, and 

HH in Figure 3.1). gn is a high-pass filter bank, and hn is a low-pass filter bank. 

The reverse wavelet transform for reconstructing a high-resolution image is 

written as:  
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where ng~  and nh~  meet the following relationships:  
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Wavelet transform 

Inverse wavelet transform

LL HL

HHLH 

Figure 3.1. Illustration of wavelet transform 

3.2.3 The proposed wavelet-IHS fusion method 

The stand-alone IHS fusion method can usually integrate colour and spatial 

features smoothly. If the grey value distribution of the IHS intensity image is close 

enough to that of the panchromatic image, the IHS fusion method can also well preserve 

the color information. However, especially when the MS and panchromatic images from 

a SAR image and a low resolution MS image are fused, the grey value difference 

between the intensity image and the panchromatic image is obvious. This difference 

results in a significant colour distortion of the IHS fusion images. The colour distortion 

is especially significant when the MS bands 1, 2, and 3, like QuickBird and IKONOS, 

are fused for a natural colour composite [Zhang, 2002].  

On the other hand, the stand-alone wavelet image fusion usually can better 

preserve color information than other conventional fusion methods, such as IHS, PCA, 

and band arithmetic combination, because the high resolution spatial information from a 

panchromatic image is injected into all three low resolution MS bands. However, the 

spatial detail from a panchromatic image is often different from that of a MS band 

having the same spatial resolution because of their spectral range difference. This 

difference may introduce colour distortion into the wavelet fusion results, and 
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sometimes it may make the integration between colour and spatial detail appear 

unnatural [Yocky, 1996].  

To better utilize the advantages of the IHS and the wavelet fusion methods for the 

fusion of a SAR image and a MS image, and to overcome the shortcomings of the two 

methods, an IHS and wavelet integration fusion method is proposed. The concept and 

the process steps of this method are illustrated in Figure 3.2. In general, it uses the IHS 

transform to integrate the low resolution MS colour information with the high 

resolution SAR spatial detail information to achieve a smooth integration of colour and 

spatial features (part I of Figure 3.2). However, the wavelet transform is utilized to 

generate a new image (New Intensity in Figure 3.2) that has a high correlation with the 

intensity image and contains the spatial detail of the original SAR image (part II in 

Figure 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 



 75

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 LHS   LLS

  
 
 HHS  HLS

 

LHI     LLI

 
 
HHI    HLI

 

LHS    LL’ 
 
 
HHS    HLS

Band 3 

Band 2 

Band 1 
Multispectral

SAR 

(1) IHS Transform

(2) Histogram Match 

Saturation 

Hue 

New SAR 

(3) Wavelet Decompose(3) Wavelet Decompose

(5) Inverse Wavelet

(6) Inverse IHS 

(4) Substitution

Band 3 

Band 2 

Band 1 
Fusion 

Intensity 

New Intensity

1 

2 

Figure 3.2. Processing flow of the proposed wavelet-IHS fusion method 

 

As shown in Figure 3.2, the detailed steps of this integration fusion method are: 

(1) Transforming the MS image into the IHS components (forward IHS 

transform). 
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(2) Applying a histogram match between the SAR data and the Intensity 

component (I), and obtaining a new SAR image (New SAR). 

(3) Decomposing the new SAR image and the intensity component (I) into 

wavelet planes, respectively. The intensity image has the same pixel size as 

the SAR image. 

(4) Replacing the approximation image of the SAR decomposition (LLS) by that 

of the intensity decomposition (LLI) to inject grey value information of the 

intensity image into the SAR image. To avoid an over injection of the 

intensity information, the LLS is not completely, but partially, replaced by 

the LLI; namely a new approximation image (LL’) is first generated through 

a weighted combination of LLS and LLI, and then replaces the LLS of the 

SAR decomposition. The combination could be implemented manually or 

automatically. The method for the weighted combination is described in 

Equations 3.11 and 3.12 below.  

(5) Performing an inverse wavelet transform to obtain a new intensity image, 

which has similar grey value distribution to that of the intensity image of the 

IHS transform and contains the same spatial detail of the original SAR 

image.  

(6) Transforming the new intensity together with the hue and saturation 

components back into RGB space (inverse IHS transform).  

The triangular model of the IHS transform (Equations 3.1 through 3.7) is 

employed in this proposed IHS and wavelet integrated fusion. The method to generate 

the new approximation image LL’, denoted as c, can be expressed as:  
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where a and b are the approximation images LLI and LLS, respectively, and w1 and 

w2 are the corresponding weight coefficients, which are determined by:  
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where a  and b are the means of a and b, and N is the total pixel number of the 

approximation images. w1 and w2 could certainly be set manually according to the 

operator’s preference, whether high spectral information or high spatial information is 

required. 

 

3.3 Experiment data and results 

3.3.1 Experimental data sets 

A variety of SAR and MS images from different sensors are used to evaluate the 

proposed wavelet-IHS fusion method. The resolution and spectral range of the image 

data used in this research are listed in Table 3.1. 

Table 3.1. Sensor spectral range and resolution 

Satellite sensor 
 

Resolution 
(m) 

Spectral range 
(μm) 

SPOT (Band1~Band3) 20 0. 50 ~ 0. 89 
SPOT (Simulated natural colour or SNC) 20 —  
Landsat5(TM) (Band1~Band5, Band7) 28.5 0. 45~ 1. 75, 2. 08 ~ 2. 35 
ASTER(Band1~Band3) 15 0.52 ~ 0.86 
Ortho Rectified Star 3i 1.25m X-band 
Radarsat 12.5m C-band (0.057m) 
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Data sets from three significantly different areas are used to evaluate the proposed 

fusion method: two data sets of Star-3i airborne SAR data (10,000 by 10,000 pixels 

each), covering two different areas, are fused with four different MS images 

respectively; one set (4096 by 4096 pixels) of Radarsat image is fused with Landsat TM 

image (band 7, band 4 and band 3).  

STAR-3i is an X-band interferometric SAR (IFSAR) carried in a Learjet [Mercer 

and Schnick, 1999] and has been operated commercially by Intermap Technologies 

since 1997. The core products generated include a Digital Surface Model (DSM) and an 

Orthorectified Radar Image (ORI). ORI resolution was 2.5 meters but after a major 

upgrade it was reduced to 1.25 meters. In this study, the resolution of ORI is 1.25 

meters. 

Three image bands (including one near infrared band) of ASTER data has been 

used in this study. The resolution of those bands is 15m. 

Original SPOT (band1, band2, band3) and simulated natural colour SPOT image 

(SNC SPOT, converted using Cal2 color transform) have been used in this study. The 

Cal2 color transform first accepts a reference image, such as a color aerial photograph, 

as a color reference image (CRI), which defines what “realistic” means; then it uses a 

Least Squares Estimation to determine the optimum parameter values that will match the 

multispectral image to CRI [Mercer et al., 2005]. The color transform is very useful for 

the data, such as SPOT and ASTER, which is short of one natural band. The three MS 

bands used in this instance, corresponding to SPOT bands 3, 2 and 1 are essentially in 

the Near IR, Visible Red and Visible Green parts of the spectrum. From a remote 

sensing perspective, this is well understood and has distinct advantages. However from 
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the perspective of a prospective user anticipating natural color products, this is a 

disadvantage.  

Landsat TM (band 5, band 4, and band 3) has been fused with the Star 3i data, its 

resolution is 28.5m. 

 

3.3.2 Experimental results 

Figure 3.3 and Figure 3.4 show a sub-scene (1024 by 800 pixels) of the fused 

images from one of the two Star-3i SAR test areas (10,000 by 10,000 pixels each). 

Figure 3.5 shows a sub-scene (1024 by 1024 pixels) of the fused images from the 

Radarsat and Landsat TM fusion (4096 by 4096 pixels).  

All the fusion results are produced by the proposed wavelet-IHS integration 

method, except for Figure 3.3 (e) and (f), which are fused by stand-alone IHS and 

wavelet methods, respectively, for comparison purpose. In Figure 3.3, (a) is the original 

Star-3i image, (b) is the SNC SPOT image converted by Cal2 color transform, (c) is the 

fusion result of Star-3i and SNC SPOT produced by the proposed method, (d) is the 

fusion result of Star-3i and SNC SPOT by using the IHS fusion method, (e) is the fusion 

result of the Star-3i and SNC SPOT by using the wavelet fusion method. 
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(a) 

  
(b) (c) 

  
(d)  (e)  

B
A

Figure 3.3. SAR, MS images and fusion results of different methods 

(a) original Star-3i image, (b) SNC SPOT, (c) fusion result of the proposed wavelet-IHS method, (d) 
fusion result of stand-alone IHS method, (e) fusion result of stand-alone wavelet fusion method 

 
Figure 3.4 shows the original MS images from different sensors (left column) and 

the corresponding fusion results of the proposed wavelet-IHS integration method (right 

column). The high resolution SAR used in the fusion is the same as Figure 3.3(a). In 
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Figure 3.4, (a) is the original SPOT bands 1, 2 and 3, (b) is the fusion result of the Star-

3i with SPOT, (c) is ASTER image bands 1, 2 and 3, (d) is the fusion result of the Star-

3i with ASTER, (e) is the Landsat TM image and (f) is the fusion result of the Star-3i 

with Landsat TM.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3.4. MS images from different sensors as input (left column) and the fusion results of the proposed 
wavelet-IHS method (right column) 

(a) SPOT bands 1, 2 and 3, (b) fusion result of SPOT and Star-3i (Fig. 3 (a)), (c) ASTER bands 1, 2, and 
3, (d) fusion result of ASTER and Star-3i, (e) Landsat TM bands (f) fusion result of Landsat TM and Star-

3i 
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In Figure 3.5, (a) is an original Radarsat fine beam amplitude image, (b) is an original 

Landsat TM and (c) is the fusion result of the Radarsat and Landsat TM of the proposed 

wavelet-IHS fusion method.  

 

 
(a) 

(b) (c) 

Figure 3.5. Radarsat and TM fusion of the proposed wavelet-IHS fusion method 

(a) Radarsat fine beam, (b) Landsat TM, (c) fusion result of Radarsat and Landsat TM 
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3.4 Accuracy analyses and comparison of the fusion results 

3.4.1 Visual analysis 

The fusion results (Figure 3.3 (c), Figure 3.4 (b), (d), (e) and Figure 3.5 (c)) show 

that the proposed fusion method can integrate the spatial information of the SAR image 

and color information of the original image into a single fusion image very well. The 

proposed method preserves the spatial information of the SAR data and the color 

information of the original MS image. The colors of the fusion results look close to 

those of the original MS images; and the fusion results look as detailed as the original 

SAR image. Compared to the original SAR data, the land cover types in the fusion 

results can be more easily and accurately interpreted. 

Comparing the fusion results (Figure 3.3) indicates that the stand-alone IHS fusion 

method (Figure 3.3(d)) can integrate the spatial information of the SAR image into the 

fusion image very well; but obvious color distortion exists when compared with the 

original MS image (Figure 3.3(b)). The stand-alone wavelet fusion method can enhance 

the spatial information of the fusion result (Figure 3.3(e)), making the result look clearer 

than the original MS image, but severe color distortion is also introduced. The whole 

image looks gray because the SAR image is integrated equally into the individual bands 

of the MS image.  

In Figures 3.3 and 3.4, one SAR image was fused with several MS images. 

Although a large difference between the spatial resolutions of the SAR and MS images 

exists, and the correlation between the SAR and MS images is very low, the spatial 

information of the SAR data can be incorporated into the MS images very well when the 

SAR image is fused with several MS images. In the MS image, a building is represented 
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by only a few pixels, making it difficult to be identified very well merely from those MS 

images. The building in the SAR image is also hard to judge because its appearance is 

different from traditional optical image. For example, in Figure 3.3(a), it is challenging 

for those inexperienced in interpreting SAR data to identify location A, but in the fusion 

images (Figure 3.3 (c), Figure 3.4 (b), (d), (e)), this building can be identified easily. 

Also for location B in Figure 3.3 (a), it is difficult to identify the type of land cover it is, 

while in fusion images ((Figure 3.3 (c), Figure 3.4 (b), (d), (e)), it is easily determined to 

be grass land. The grass land is especially apparent in Figure 3.3 (c), the fusion result of 

the SAR image and the natural composite of SNC SPOT image. 

In Figure 3.5, one Radarsat image was fused with a TM image. The color of the 

fusion result is very close to the original MS image and the fusion image looks as clear 

as the SAR data. From this fusion result, it is easy to interpret the land cover. For 

example, it is easy to differentiate the road from the water. The backscatter of the road 

and water is very low in the SAR image; they looks similar without considering the 

context, while in the fusion result, they appear absolutely different. Also the dense built-

up area (one sample circled in Figure 3.5 (a)), appears purple in the multispectral image, 

and appears bright in the SAR image; the fusion result can help people differentiate 

them from other types of land cover more easily. 

 

3.4.2 Statistical analysis 

Visual inspection is a straightforward method for appreciating the quality of a 

fusion method. However, a statistical comparison is necessary in order to evaluate 

precisely the performance of each fusion result. The correlation coefficient is often used 
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to evaluate the spectral resemblance of two images. The value of the correlation 

coefficient varies between -1 and +1, with zero indicating the absence of correlation. A 

value close to +1 means that two images are very similar, while a value close to -1 

means that they are absolutely dissimilar (i.e. positive image vs. negative image) 

[Pradhan, 2005]. The correlation coefficient between the fused image and resampled 

multispectral image can reflect how much a fusion method is capable of improving the 

quality of the fused product with respect to that of the resampled multispectral image. 

For example, the microwave SAR image is not correlated closely with the optical 

multispectral image before image fusion; the correlation coefficient between them is 

very low. After image fusion, the correlation coefficient between fused image and 

resampled multispectral image is much higher than that between SAR and resampled 

multispectral image. From the comparison between pre- and post- fusion, it can be 

found the information has changed in the fused image. 

 
Table 3.2 shows the correlation coefficients between the original Star-3i and the 

MS images. In this table, the correlation coefficients are very close to 0; some of them 

are minus, which means Star 3i is not correlated with the bands of those MS images. 

Actually, it can be verified from the point of spectral range: the Star 3i does not overlap 

with the bands of those MS images. 

Table 3.2. Correlation coefficients between Star-3i SAR data and individual bands of different MS images 

 Band R Band G Band B 
SAR (ASTER case) 0.096 0.011 0.023 
SAR (SPOT case) -0.061 -0.059 -0.064 
SAR (SNC SPOT case) -0.079 -0.087 -0.070 
SAR (TM case) -0.059 -0.055 -0.038 
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Table 3.3 shows the correlation coefficients between the fusion results and the 

original MS images, all the fusion results are used the IHS and wavelet integration 

method except the indication cases. From those correlation coefficients, it can be found 

that fusion results are correlated with the original MS images, although the spatial 

information of the SAR data has been incorporated into it, unlike the correlation 

coefficients situation in Table 3.2. Because there exists such a large difference of spatial 

resolution between SAR data and MS data and the noncorrelation between SAR data 

and MS image, the correlation coefficients are not as high as for the optical images 

fusion which has small spatial resolution difference. For SNC SPOT data, the IHS 

method and the wavelet method have also been tested. The correlation coefficients of 

fusion results using the IHS fusion method and the wavelet fusion method are very low 

compared with the fusion result, which was applied by the proposed IHS and wavelet 

integration method. That means there exist higher color distortion in the fusion results 

processed by the IHS method and the wavelet method compared with the fusion result 

processed by the IHS and wavelet integration method. 

Table 3.3. Correlation coefficients between individual bands of fusion results and original MS images 

 Band R Band G Band B 
ASTER  0.292 0.317 0.210 
SPOT 0.313 0.205 0.068 
SNC SPOT 0.127 0.226 0.246 
SNC SPOT(IHS method) -0.011 -0.020 -0.014 
SNC SPOT(Wavelet method) 0.127 0.155 0.151 
TM 0.176 0.054 -0.002 

 
Table 3.4 shows the correlation coefficients between the fusion results and the 

original SAR data, all the fusion results are used the IHS and wavelet integration 

method except the indication cases. From those correlation coefficients, it can be found 

that fusion results are correlated with the original SAR, which means that the fusion 
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results have kept most of the spatial information of the original SAR (all correlation 

coefficients are greater than 0.70), unlike the bands of the original MS images which are 

not correlated with original SAR data (their correlation coefficients are almost 0). This 

fits with our fusion expectation: we want to integrate color information into high spatial 

resolution SAR data at the expense of the small loss of spatial detail. For SNC SPOT 

data, the IHS method and the wavelet method have also been tested. The correlation 

coefficients of the fusion results using the IHS fusion method and the wavelet fusion 

method are slightly high compared with the fusion result applied by the proposed 

wavelet and IHS integration method. Their results are very close to the high resolution 

SAR image, but they have very poor color information; while we want to integrate as 

much as possible color information into the SAR data; the image fusion method is used 

to find the balance between the spatial information and color information from the MS 

image. The fusion results of these two fusion methods could not achieve a good balance 

compared with the fusion results processed by the proposed the wavelet and IHS 

integration method. 

Table 3.4. Correlation coefficients between original Star-3i SAR and individual bands of fusion results  

 Band R Band G Band B 
SAR (ASTER case) 0.828 0.811 0.847 
SAR (SPOT case) 0.722 0.768 0.796 
SAR (SNC SPOT case) 0.765 0.732 0.739 
SAR (TM case) 0.769 0.803 0.795 
SAR (SNC SPOT case) (IHS method) 0.989 0.987 0.995 
SAR (SNC SPOT case) (wavelet method) 0.929 0.908 0.905 

 
In the case of the Radarast image and the TM image fusion, Table 3.5 shows the 

correlation coefficients between the Radarsat image and the original Landsat TM data. 

From those correlation coefficients, it can be found that the original SAR data is slightly 

correlated with the Landsat TM because here TM band combination is band 7, band 4 
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and band 3. Compared with other TM bands, the band 7 wavelength is longer; it is very 

close to wavelength of SAR data, so there exists fairly high correlation coefficient 

between band 7 and SAR data. 

 

Table 3.5. Correlation coefficients between Radarsat data and individual bands of Landsat TM  

 Band R Band G Band B 
Radarsat 0.104 0.155 0.004 

 
Table 3.6 shows the correlation coefficients between the fusion result obtained by 

the proposed fusion method and the original Landsat TM data. We can see that the 

correlation coefficients between the fusion result and the original Landsat TM are much 

bigger than those between the original SAR data and the original Landsat TM data, 

although there is more high resolution spatial information of the SAR data incorporated 

into the fusion result. Those correlation coefficients are so high, it can also be judged 

from visual point: fusion result looks very similar to the original Landsat image. 

Table 3.6. Correlation coefficients between the fusion result obtained by the proposed fusion method and 
TM data 

 Band R Band G Band B 
TM 0.527 0.620 0.549 

 

Table 3.7 shows the correlation coefficients between the fusion result obtained by 

the proposed fusion method and the original Radarsat data. From those correlation 

coefficients, the fusion result is also correlated with the original Radarsat image; that 

means most of the high resolution information of the SAR has been retained (all of the 

correlation coefficients are greater than 0.6). 
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Table 3.7. Correlation coefficient between the fusion result obtained by the proposed fusion method and 
Radarsat data 

 Band R Band G Band B 
Radarsat 0.623 0.622 0.684 

 
For statistical analysis, it is hard to define the term “sufficient correlation 

coefficients”. We can not say a correlation coefficient of 0.70 is sufficient, while a 

coefficient of 0.65 is not sufficient, because this value could be different for different 

images. In this statistical analysis, we evaluate a fusion result by referring to the 

correlation coefficient between original SAR data and original MS data. The 

improvement caused by the fusion method could be inferred from those correlation 

coefficient comparisons. Also, there are few publications investigating the image fusion 

method related to the high resolution SAR image and the optical MS image; even there 

are few publications, they only list some fusion results, no further quantitative 

evaluation of the fusion result is undertaken. Thus, the quantitative evaluation of the 

fusion result of those data is very rare. This is also a good subject for further research. 

 

3.5 Conclusion 

This paper has proposed a new fusion method based on the integration of wavelet 

transform and IHS transform. The IHS method is good at preserving the spatial 

characteristics, but is strongly dependent on the resemblance between the panchromatic 

image and the intensity of the MS image (Svab and Ostir, 2006). Simply using the IHS 

method to fuse the SAR data and the MS image cannot get a good fusion result, because 

SAR image is low correlated with the optical MS images. When the wavelet transform 

is integrated into the IHS transform, the problem is to maintain the low frequency of the 
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intensity and low frequency of SAR data correlated. This integration makes fusion 

process simpler and faster. This integration can also better preserve color information. 

The fusion method can also fuse the MS image and the panchromatic image with 

arbitrary spatial resolutions. 

This paper has also demonstrated the robustness of this method in fusing all kinds 

of multisource data with the SAR data: two data sets (10,000 by 10,000 pixels) of Star-

3i, ASTER, SPOT, Landsat TM, and one data set (4096 by 4096 pixels) of Radarsat and 

TM have been used to evaluate this fusion method. The spectral range used in this 

evaluation has related to not only visible bands and infra bands but also microwave 

bands. The largest spatial resolution ratio between SAR data and MS data is 1:24. For 

those data that lack a blue band, a natural image is simulated by using a natural image as 

the reference image. Using color transformed data to fuse with high resolution SAR 

data, a fusion result, which has similar color to the color transformed MS image, can be 

obtained. This color transform fusion test has been applied to SPOT data and ASTER 

data, and the SPOT result has been listed in the Figure 3.3 (b). The ASTER result is also 

very good; because of space limitations, not all the fusion results are listed. The 

successful fusion results have been achieved for all those experimental data. Visual 

inspection and statistical analysis have been applied in evaluating the fusion results. 

Except for SAR data fusion with MS data, the fusion between optical images has also 

been tested; the good fusion results have been obtained and published in Hong and 

Zhang [2003]. To date, this fusion method has been applied to all available data sets, 

and satisfactory fusion results of all these data sets have been achieved. 
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Chapter 4. COMPARISON AND IMPROVEMENT OF WAVELET-

BASED IMAGE FUSION♣ 

 

ABSTRACT  

The wavelets used in image fusion can be categorized into three general classes: 

orthogonal, biorthogonal, and nonorthogonal. Although these wavelets share some 

common properties, each wavelet also has a unique image decomposition and 

reconstruction characteristic that leads to different fusion results. This paper focuses on 

the comparison of the image fusion methods that utilize the wavelet of the above three 

general classes, and theoretically analyzes the factors that lead to different fusion results. 

Normally, when a wavelet transformation alone is used for image fusion, the fusion 

result is not good. However, if a wavelet transform and a traditional fusion method, such 

as an IHS transform or a PCA transform, are integrated, better fusion results may be 

achieved. Therefore, this paper also discusses methods to improve wavelet-based fusion 

by integrating an IHS or a PCA transform. Because the substitution in the IHS transform 

or the PCA transform is limited to only one component, the integration of the wavelet 

transform with the IHS or PCA to improve or modify the component, and the use of IHS 

or PCA transform to fuse the image can make the fusion process simpler and faster. This 

integration can also better preserve color information. IKONOS and QuickBird image 

data are used to evaluate the seven kinds of wavelet fusion methods (orthogonal wavelet 

                                                 
♣ This chapter has been accepted for publication in the [International Journal of Remote Sensing] 
©[2007] [copyright Taylor & Francis]. 
Hong G., Y. Zhang (2007). “Comparison and improvement of wavelet-based image fusion.” Submitted to 
International Journal of Remote Sensing, in press, 2007. 
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fusion with decimation, orthogonal wavelet fusion without decimation, biorthogonal 

wavelet fusion with decimation, biorthogonal wavelet fusion without decimation, 

wavelet fusion based on the “à trous”, wavelet and IHS transformation integration, and 

wavelet and PCA transformation integration). The fusion results are compared 

graphically, visually, and statistically, and show that wavelet-integrated methods can 

improve the fusion result, reduce the ringing or aliasing effects to some extent, and 

make the whole image smoother. Comparisons of the final results also show that the 

final result is affected by the type of wavelets (orthogonal, birorthogonal, and 

nonorthogonal), decimation or undecimation, and wavelet decomposition levels. 

 
Keywords: image fusion, wavelet, multispectral, panchromatic image, IKONOS 

 

4.1 Introduction 

Image fusion is a technique used to integrate a high-resolution panchromatic image 

with a low-resolution multispectral image to produce a high resolution multispectral 

image, which contains both the high-resolution spatial information of the panchromatic 

image and the color information of the multispectral image. Although an increasing 

number of high-resolution images are available along with sensor technology 

development, image fusion is still a popular and important method to interpret the image 

data for obtaining a more suitable image for a variety of applications, such as visual 

interpretation, digital classification, etc. From studying existing image fusion techniques 

and applications, Pohl and Genderen [1998] concluded that image fusion can provide 

the following functions: 
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(1) sharpen images; 

(2) improve geometric corrections; 

(3) provide stereo-viewing capabilities for stereophotogrammetry; 

(4) enhance certain features not visible in either of the single data alone; 

(5) complement data sets for improved classification;  

(6) detect changes using multitemporal data;  

(7) substitute missing information (e.g., clouds-VIR, shadows-SAR) in one 

image with signals from another sensor image; 

(8) replace defective data. 

Many research papers have reported problems of existing fusion techniques. The 

most significant problem is color distortion. To reduce the color distortion and improve 

the fusion quality, a wide variety of strategies has been developed, each specific to a 

particular fusion technique or image set [Zhang, 2004]. Compared with the traditional 

fusion methods, such as intensity, hue, and saturation (IHS), principal component 

analysis (PCA), brovey transform etc., wavelet is a new fusion method. It is a 

mathematical tool initially designed for signal processing. Since it provides 

multiresolution and multiscale analysis functions, image fusion can be implemented in 

the wavelet transform domain. This characteristic cannot be replaced by some traditional 

fusion methods. A number of papers that discuss image fusion based on wavelet 

transform have been published in recent years [Yocky, 1995; Li et al., 1995; Yocky, 

1996; Garguet-Duport et al., 1996; Zhou et al., 1998; Ranchin and Wald., 2000]. There 

are also papers published about wavelet integration with other fusion methods. Nunez et 

al. [1999] presented a multiresolution-based image fusion method which integrated IHS 
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with additive wavelet decomposition. Tseng et al [2001] used a combination of PCA and 

wavelet based sharpening methods. King and Wang [2001] introduced a wavelet based 

sharpening method that uses IHS transformation and biorthogonal wavelet 

decomposition. Chibani and Houacine [2002] described the joint use of IHS transform 

and redundant wavelet decomposition for fusing the multispectral image and 

panchromatic image. Hong and Zhang [2003] integrated IHS and wavelet to fuse 

Quickbird images and IKONOS images, and obtained promising results. Gonzalez-

Audicana et al. [2004] proposed the wavelet-based fusion method by integrating wavelet 

with IHS and PCA, respectively.  

In recent years, several studies have compared different wavelet based fusion 

techniques. Aiazzi et al. [2002] compared undecimated discrete wavelet transform with 

a generalized Laplacian pyramid in fusing multispectral with high resolution 

panchromatic images. Chiabani and Amrane [2003] compared a redundant wavelet with 

an orthogonal wavelet decomposition. Gonzalez-Audicana et al. [2004] proposed IHS 

and PCA integrated with wavelet respectively and compared the results with a 

decimated and an undecimated wavelet-based fusion method by testing a SPOT 4 XI 

image. Pajares and De La Cruz [2004] introduced a wavelet-based image fusion tutorial 

based on three previous works [Li et al., 1995; Zhang and Blum, 1999; Ranchin and 

Wald, 2000]. Gonzalez-Audicana et al. [2005] compared Mallat’s and “à trous” discrete 

wavelet transforms by testing a degraded IKONOS image. 

From the above literature, the wavelets that are used in image fusion can generally 

be categorized into three different types: orthogonal, biorthogonal, and nonorthogonal. 

This paper focuses on these three wavelets and compares their fusion results; at the same 
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time, two improvement methods (wavelet-integrated methods) are also introduced. This 

paper also provides a clear overview of some important factors that need to be 

considered in the wavelet fusion process, namely, wavelet selection, decimation or 

undecimation, and the wavelet decomposition level selection.  

The rest of this paper is organized as follows: a general description of wavelet 

theory used in the image fusion is given in section 4.2; section 4.3 introduces wavelet-

based and wavelet-integrated fusion algorithms; section 4.4 contains experimental 

results; section 4.5 provides an accuracy analysis and comparison of the fusion results; 

and the conclusion is provided in the final section. 

 

4.2 Wavelet used in the image fusion 

4.2.1 Basic wavelet transform theory 

In wavelet transformation, the basis functions are a set of dilated and translated 

scaling functions: 

)2(2)( 2/
, knn jj
kj −= ϕϕ        (4.1) 

and a set of dilated and translated wavelet functions: 

)2(2)( 2/
, knn jj
kj −= ψψ        (4.2) 

where )(nϕ  and )(nψ  are the scaling function and the mother wavelet function 

respectively. 
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One property that the basis function must satisfy is that both the scaling function 

and the wavelet function at level j can be expressed as a linear combination of the 

scaling functions at the next level j-1: 

∑ −−=
m

mjkj nkmhn )()2()( ,1, ϕϕ        (4.3) 

and 

∑ −−=
m

mjkj nkmgn )()2()( ,1, ϕψ       (4.4) 

where h(m) and g(m) are called the scaling filter and the wavelet filter respectively. 

For any continuous function, it can be represented by the following expansion, defined 

as a given scaling function and its wavelet derivatives [Burrus et al., 1998]: 

∑ ∑∑
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00

ψϕ      (4.5) 

The Discrete Wavelet Transform (DWT) can be expressed as follows: 

∑ −= −
n

jj knhnckc )2()()( *
1         (4.6) 

∑ −= −
n

jj kngnckd )2()()( *
1         (4.7) 

the scaling filter  is a low pass filter extracting the approximation 

coefficients,  with 

)(* nh

)(kc j )()(0 nfnc = , while the wavelet filter  is a high-pass 

filter extracting the detail coefficients . The coefficients are downsampled (i.e. only 

every other coefficient is taken). 

)(* ng

)(kd j

The reconstruction formula is given by: 
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jj −+−= −−∑      (4.8) 

Generally, discrete wavelet is introduced using the method of multi-resolution 

analysis. Let L2(R) be the Hilbert space of functions, a multiresolution analysis (MRA) 

of L2(R) is a sequence of closed subspaces Vj, Ζ∈j  (Z is the set of integers), of L2(R) 

satisfying the following six properties [Mallat, 1989]: 

(1) The subspace are nested: Ζ∈∀⊂ − jVV jj 1  

(2) Separation: { }0=∩ ∈ jZj V  

(3) The union of the subspace generate L2(R): )(2 RLV jj =∪ Ζ∈  

(4) Scale invariance: ZjVtfVtf jj ∈∀∈⇔∈ −1)2()(  

(5) Shift invariance: ZkVktfVtf ∈∀∈−⇔∈ 00 )()(  

(6) ,0V∈∃ϕ  the scaling function, so that { }Zkkj ∈−− )2( 2/ϕ  is a Riesz basis of 

. 0V

There is also a related sequence of wavelet subspaces Wj of L2(R), W,Zj ∈∀ j is 

the orthogonal complement of Vj in Vj-1.Then, jjj WVV ⊕=−1 , where ⊕  is the direct sum. 

The situation discussed above concerns a one-dimension situation; for two-

dimension, the scaling function is defined as: 

)()(),( yxyx ϕϕ=Φ         (4.9) 

vertical wavelet: 

)()(),(1 yxyx ψϕ=Ψ         (4.10) 

horizontal wavelet: 
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)()(),(2 yxyx ϕψ=Ψ         (4.11) 

diagonal wavelet: 

)()(),(3 yxyx ψψ=Ψ         (4.12) 

),( yxΦ  can be thought as 2-D scaling function,  are 

the three 2-D wavelet functions.  

),(),,(),,( 321 yxyxyx ΨΨΨ

 

4.2.2 Different wavelets used in image fusion 

4.2.2.1 Orthogonal wavelet 

The dilations and translations of the scaling function { })(, xkjϕ  constitute a basis 

for  and, similarly,jV { })(, xkjψ  for , if the jW )(, xkjϕ  and )(, xkjψ  are orthonormal, they 

include the following properties [Starck et al., 1998]: 

jj WV ⊥           (4.13) 

0,,,,, '''''' ,,,,,,,,, === ′ ljljlljjljljllljlj ψϕδδψψδϕϕ     (4.14) 

The orthogonal property puts a strong limitation on the construction of wavelets. 

For example, it is hard to find any wavelets that are compactly supported, symmetric 

and orthogonal. 
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4.2.2.2 Biorthogonal wavelet 

If the orthogonal condition is relaxed to biorthogonal conditions, wavelets with 

some special properties that are not possible with orthogonal wavelets can be obtained. 

In the biorthogonal transform, there are two multiresolution analyses, a primal and a 

dual [Strang and Nguyen, 1996]: 

Primal: kjkjjj WV ,, ,,, ψϕ  

Dual: kjkjjj WV ,,
~,~,~,~ ψϕ  

The dilations and translations of the scaling function { })(~
, xkjϕ  constitute a basis 

for jV~  and similarly,{ })(~
, xkjψ  for jW~ , the biorthogonality conditions imply: 

jjWWWVWV jjjjjj ′≠⊥⊥⊥ ′
~,~,~      (4.15) 

,,~
'' ,,, llljlj δϕϕ = '''' ,,,, ,~

lljjljlj δδψψ = , 0,~
',, =ljlj ϕψ , 0,~

',, =ljlj ψϕ   (4.16) 

For biorthogonal transform, perfect reconstruction is available. Orthogonal 

wavelets give orthogonal matrices and unitary transforms; biorthogonal wavelets give 

invertible matrices and perfect reconstruction. For the biorthogonal wavelet filter, the 

low pass and the high pass filters do not have the same length. The low pass filter is 

always symmetric, while the high pass filter could be either symmetric or anti-

symmetric.  
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4.2.2.3 à trous (nonorthogonal wavelet) 

“à trous” (with holes) is a kind of nonorthogonal wavelet that is different from 

orthogonal and biorthogonal. It is a “stationary” or redundant transform, i.e., decimation 

is not implemented during the process of wavelet transform, while orthogonal or 

biothorgonal wavelet can be carried out using either decimation or undecimation mode. 

Compared with other wavelet-based fusion methods, this method is relatively easy to 

implement. The limitation is that it uses a large amount of computer memory. 

 

4.3 Wavelet based image fusion method 

4.3.1 Additive wavelet-based image fusion method 

Figure 4.1 shows the work flow of the wavelet-based fusion method. In the figure, 

the different numbers refers to different processes: (1) histogram match, (2) wavelet 

decomposition, (3) details combination from different image by adding, and (4) inverse 

wavelet transform. 

The whole process can be divided into four steps: 

(1) Assuming the panchromatic image and multispectral image has been 

registered, apply histogram match process between panchromatic image and 

different bands of the multispectral image respectively, and obtain three new 

panchromatic images (PANR, PANG, and PANB). 

(2) Use the wavelet transform to decompose new panchromatic images and 

different bands of multispectral image twice, respectively. 
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(3) Add the detail images of the decomposed panchromatic images at different 

levels to the corresponding details of different bands in the multispectral 

image and get the new details component in the different bands of 

multispectral image. 

(4) Perform an inverse wavelet transform on the bands of multispectral images, 

respectively, and obtain the fused image. 

Additive wavelet-based method using “à trous” algorithm is similar to the above 

steps. The only difference is that “à trous” has only one detail plane while the above has 

three details. 
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Figure 4.1. Work flow of the wavelet-based fusion method 
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4.3.2 Integration of substitution method with wavelet method 

Figure 4.2 shows the work flow of the integration of wavelet-based and 

substitution method. Numbers 1 and 2 are used to divide the whole process into two 

parts: 1 refers to substitution fusion method, 2 refers to the wavelet-based fusion 

method.  

The whole process consists of the following steps: 

(1) Transform the multispectral image into the IHS or PCA components. 

(2) Apply a histogram match between panchromatic image and Intensity 

component or PC1, and obtain new panchromatic image (New Pan). 

(3) Decompose the histogram-matched panchromatic image and Intensity 

component or PC1 to wavelet planes respectively.  

(4) Replace the LLP in the panchromatic decomposition with the LLI of the 

intensity or PC1 decomposition, add the detail images in the panchromatic 

decomposition to the corresponding detail image of the intensity or PC1 

decomposition and obtain LLI, LHP', HHP' and HLP'. Perform an inverse 

wavelet transform, and generate a new intensity or new PC1 component.  

(5) Transform the new intensity together with the hue, saturation components, or 

new PC1 with PC2, PC3, back into RGB space.  
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Figure 4.2. Flow of the fusion based on wavelet and substitution integration 
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4.4 Experimental results 

In this research, five kinds of wavelet-based fusion methods and two kinds of 

wavelet-based integration methods are implemented to test and compare their fusion 

results. Decimation and undecimation cases are considered in the orthogonal and 

biorthorgonal wavelet, respectively. These fusion methods are orthogonal wavelet 

fusion with decimation (simply called ORTH), orthogonal wavelet fusion without 

decimation (simply called UORTH), biorthogonal wavelet fusion with decimation 

(simply called BIOR), biorthogonal wavelet fusion without decimation (simply called 

UBIOR), wavelet fusion based on the “à trous” wavelet (simply called ATRO), wavelet 

and IHS transformation integration (simply called WIHS) and wavelet and PCA 

transformation integration (simply called WPCA). The undecimation orthogonal 

wavelet is used in the WIHS and WPCA fusion method.  

A subset of IKONOS data (320 by 320) and QuickBird data (320 by 320) are used 

to evaluate the different fusion methods. The IKONOS multispectral image (Figure 

4.4(b) is more colorful than the QuickBird multispectral image (Figure 4.3(b)) since the 

IKONOS image was acquired in the autumn and the QuickBird image in the summer, 

the vegetation is almost all green in the QuickBird image while it appears in a variety of 

colors in the IKONOS image. Two data set fusion results are shown in Figure 4.3 and 

Figure 4.4, respectively. Figure 4.3 (a) is the original QuickBird panchromatic image, 

Figure 4.3 (b) is the original QuickBird multispectral image, Figure 4.3 (c) is the fusion 

result of orthogonal wavelet fusion with decimation, Figure 4.3 (d) is the fusion result of 

biorthogonal wavelet fusion with decimation, Figure 4.3 (e) is the fusion result of 

orthogonal wavelet without decimation, Figure 4.3 (f) is the fusion result of 
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biorthogonal wavelet without decimation, Figure 4.3 (g) is the fusion result of “à trous” 

wavelet, Figure 4.3 (h) is the fusion result of PCA transformation combined with 

wavelet, and Figure 4.3 (i) is the fusion result of IHS transformation combined with 

wavelet. The sequence of the different fusion results of IKONOS in Figure 4.4 is the 

same as that in Figure 4.3. 

  
(a) Panchromatic image (b) Multispectral image 

  
(c) ORTHO (d) BIOR 

Figure 4.3. Fusion results of different fusion algorithms using QuickBird data 
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(e) UORTHO (f) UBIOR 

  
(g) ATROU (h) WPCA 

Figure 4.3. Fusion results of different fusion algorithms using QuickBird data 

(Continued) 
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(i) WIHS  
Figure 4.3. Fusion results of different fusion algorithms using QuickBird data (Continued) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 113

(a) panchromatic image (b) Multispectral image 

(c) ORTHO (d) BIOR 

Figure 4.4. Fusion results of different fusion algorithms using IKONOS data 
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(e) UORTHO (f) UBIOR 

(g) ATROU (h) WPCA 
Figure 4.4. Fusion results of different fusion algorithms using IKONOS data (Continued) 
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(i) WIHS  
Figure 4.4. Fusion results of different fusion algorithms using IKONOS data 

(Continued) 
 

4.5 Accuracy analyses and comparison of the fusion results 

4.5.1 Visual analysis  

From the fusion results (Figure 4.3 and Figure 4.4), it is easy to see that the fusion 

methods improve spatial resolution and preserve the color of the original multispectral 

image. This phenomenon is consistent with the characteristic of wavelet-based fusion 

result which can preserve the color information very well compared with the other 

fusion methods. From the original multispectral images in Figure 4.3 (b) and Figure 4.4 

(b), some houses appears as bright spots in the original multispectral image, and cars are 

too blurry to see clearly on the road. After fusion, we can easily see that the buildings 

and cars are better characterized, and as such, are more easily identifiable in the images.  

To be precise, when we compare the orthogonal wavelet with the biorthogonal 

wavelet, the fusion results of ORTH have more aliasing effects than the biorthogonal 

wavelet fusion result because of the shift-invariant property of the biorthogonal wavelet. 

 



 116

If the fusion results are overlaid with a reference image, it can be found the fusion 

results of the orthogonal flicking is heavier than the fusion results of the biorthogonal. 

When the decimation is compared with the undecimation method, the fusion results of 

UORTH (Figure 4.3 (e) and Figure 4.4 (e)), UBIOR (Figure 4.3 (f) and Figure 4.4 (f)), 

ATRO (Figure 4.3 (g) and Figure 4.4 (g)) are smoother than the fusion results of ORTH 

(Figure 4.3 (c) and Figure 4.4 (c)) and BIOR (Figure 4.3 (d) and Figure 4.4 (d)). 

Although the rendering of road feature in fusion results of ORTH and BIOR is superior 

to that in the original mutispectral image, there are discontinuities in these fusion results. 

This situation is in contrast to the continuous rendering (or smooth appearance) of these 

features in the fusion results of UBIOR, UORTH and Atrous. From the fusion results of 

the wavelet-based methods (ORTH, BIOR, UORTH, UBIOR, ATRO), the fused images 

exhibit similar characteristics to images processed using a high pass filter (e.g., features 

appear more discrete, the color is not smoothly integrated into the spatial features). In 

the fusion results of WIHS and WPCA, the above phenomena is reduced to some extent- 

that is, the fused images are smoother than the wavelet-based results (ORTH, BIOR, 

UORTH, UBIOR, and ATRO), because in this wavelet-based fusion method, 

panchromatic information is added in the same amount to all three bands, biasing the 

color of the pixel toward the gray, while in wavelet-integration method (WIHS, WPCA), 

the high-resolution information modifies only the intensity or first component, which 

preserves multispectral information in a better way. 
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4.5.2 Statistical analysis 

All the fusion results are analyzed statistically by using correlation coefficients. 

The higher the value of the correlation coefficients, the more similar the fused image is 

to the corresponding original multispectral image. In other words, its spectral 

information is preserved in the fusion result. Figure 4.5 shows the correlation 

coefficients between the original multispectral image and fusion results of QuickBird 

and Figure 4.6 shows the correlation coefficients between the original multispectral 

image and fusion results of IKONOS. Because the correlation coefficients in the graphic 

representation are so similar, the detail values are also included in the figures 4.5-4.6. In 

Figure 4.5, the original panchromatic image of Quickbird has a low correlation with the 

original multispectral image. This is the same for the IKONOS image (Figure 4.6). The 

correlation between the fusion result and multispectral image are much greater than the 

correlation between the panchromatic image and multispectral image. In the QuickBird 

case, the highest correlation coefficients are WPCA and WIHS (they indeed are very 

close). The lowest are ORTH and BIOR, UORTH, UBIOR and ATRO are in the middle. 

According to this quantitative analysis, ORTH and BIOR are the worst and WPCA and 

WIHS are the best. The IKONOS case is similar to the Quickbird case, WIHS is the 

best , WPCA is the second best, the worst are ORTH and BIOR, UORTH , UBIOR and 

ATRO are similar and in the middle. 
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Figure 4.5. Correlation coefficients between the original multispetral image and fusion results (QuickBird) 
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Figure 4.6. Correlation coefficient between the original multispectral image and fusion results (IKONOS) 

 

A visual examination can provide us with an appreciation for the spatial 

information that has been injected into the fusion result, while it can not provide 

quantitative information. The spatial quality analysis method in Zhou et al. [1998] was 

employed to evaluate the spatial quality of the fused result. The correlation coefficients 

between the high-pass filtered fusion results and the high-pass filtered panchromatic 

image is used as an index of the spatial quality. The principle is that the spatial 
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information unique in panchromatic image is mostly concentrated in the high frequency 

domain. The higher correlation between the high frequency components of fusion result 

and the high frequency component of panchromatic image indicates that more spatial 

information from panchromatic image has been injected into the fusion result. For the 

QuickBird case(Figure 4.7), in terms of the correlation coefficients between high pass 

filtered results and high pass filtered panchromatic image, WPCA is the highest, WIHS 

is the second, followed by ATRO, UBIOR, UORTH, BIOR,and ORTH is the lowest. 

That means the WPCA fusion result is injected into the most spatial information, while 

the ORTH fusion result is injected into the least spatial information. The IKONOS case 

(Figure 4.8) is similar to the QuickBird case. 
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Figure 4.7. Correlation coefficients between the high pass filtered panchromatic image and high pass 

filtered fusion results (QuickBird) 
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Figure 4.8. Correlation coefficients between the high pass filtered panchromatic image and high pass 

filtered fusion results (IKONOS) 

In conclusion, from the above statistical analysis results, we can see that the WIHS 

or WPCA method is the best fusion method from a spatial and spectral information 

perspective, the worst is ORTH or BIOR, UORTH, while UBIOR and ATRO are in the 

middle.  

The fusion results of the degraded panchromatic and multispectral images (four 

times degraded in resolution) were also compared with original multispectral images 

using the approach outlined in Wald et al. [1997] and the same statistical analysis results 

as above were obtained. Owing to space restrictions, the results of this analysis are not 

listed in the paper. 
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4.6 Factors affecting the fusion result 

4.6.1 Comparison between orthogonal wavelet and biorthogonal wavelet in terms 

of fusion purpose 

Figure 4.9 shows the approximation images at 4 different levels produced using 

the orthogonal and biorthogonal wavelet transform under the decimation situation. It 

compares the shift property between the orthogonal wavelet and the biorthogonal 

wavelet in the decimation case. From Figure 4.9, in the orthogonal wavelet case, it is 

easy to see that the approximation image at the higher level is shifted to the lower right 

corner. This is because the orthogonal wavelet is not symmetric; while the biorthogonal 

wavelet used in this research is symmetric, shifting phenomenon does not happen in this 

case.  

Aliasing is a common phenomenon in the wavelet-based image fusion process. 

Theoretically, aliasing introduced by the discrete wavelet transform (DWT) can be 

removed when the inverse DWT is performed using all of the original wavelet 

coefficients. However, the original coefficients have been changed to some extent in the 

image fusion process. Although we try to keep the changed wavelet coefficients as the 

same as the original wavelet coefficients, there are still some differences between those 

coefficients. The orthogonal wavelet can make this phenomenon more pronounced, 

while the biorthogonal wavelet can reduce this phenomenon to some extent because of 

the shift-invariant property.  
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(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

Figure 4.9. Shifting comparison between the orthogonal and biorthogonal wavelets (decimation case) 

(a-d) are the approximation images by using the orthogonal wavelet at levels 1 to 4 respectively. 
(e-h) are the approximation images by using the biorthogonal wavelet at levels 1 to 4 respectively. 

 
Figure 4.10 shows the approximation images at four different levels produced 

using the orthogonal and biorthogonal wavelet transform under the undecimation 

situation. It compares the shift property between the orthogonal and the biorthogonal 

wavelet in the undecimation case. Because no subsampling is applied to the wavelet 

decomposition process, no shifting phenomenon is found in both the Orthogonal and 

Biorthogonal case. These two kinds of wavelet transform will not cause aliasing in the 

fusion result. 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 

Figure 4.10. Shifting comparison between the orthogonal and biorthogonal wavelets (undecimation case) 

(a-d) are the approximation images by using the orthogonal wavelet at levels 1 to 4 respectively. 
(e-h) are the approximation images by using the biorthogonal wavelet at levels 1 to 4 respectively. 

 

4.6.2 Comparison between decimation and undecimation 

Figure 4.11 shows the detail images for the second level of the wavelet transform 

for both decimation (Figure 4.11 (a-c)) and undecimation (Figure 4.11 (d-f)) 

respectively. From Figure 4.11 (a-c), we can see that linear features are disjointed (i.e. 

not continuous) in the detail image of the decimation case. In contrast, linear features in 

the undecimated cases appear continuous. The discontinuities existing in the decimation 

case will introduce artifacts into image fusion process and thus, will affect the final 

fusion result. While continuity existing in the undecimation case does not have this 

problem during the image fusion process. 
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(a) horizontal detail(HH) (b) vertical detail (VV) (c) Diagonal detail(DD) 

   
(e) horizontal detail(HH) (f) vertical detail (VV) (g) Diagonal detail(DD) 

Figure 4.11. Detail comparisons between the decimation and undecimation process 

(a-c) are the HH, VV, DD details by using the decimation process at level 2 respectively. 
(e-g) are the HH, VV, DD details by using the undecimation process at level 2 respectively. 

 

4.6.3 Comparison of wavelet decomposition levels 

Figure 4.12 (a) and (b) shows the fusion results produced using three wavelet 

decomposition levels by using the orthogonal wavelet and biorthogonal wavelet, 

respectively. From Figure 4.12, we see that the fusion images created with three 

decomposition levels is clearer than the fusion images created with two decomposition 

levels (Figure 4.4), also the spatial quality of the fusion images created with three 

decomposition levels is superior to the fusion images created with two decomposition 

levels as measured by their spatial quality metric according to the method mentioned in 

Section 5.2. However, the fusion image shown in Figure 4.12 exhibit a greater spatial 

distortion (i.e., ringing effect, aliasing) and a higher spectral distortion compared with 

the fusion results created with two decomposition levels (see the results in Figure 4.4), 
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we can see that the color of the fusion images created with two decomposition levels is 

closer to the original multisepctral image (Figure 4.4 (b)) than that of the fusion images 

created with three decomposition levels. Zhou et al. [1998] merged a SPOT PAN with 

LANDSAT TM images using two and three decomposition levels and obtained similar 

observations. In general, it may be stated that increasing decomposition level will 

improve spatial quality but degrade spectral quality. Taking this inverse relationship and 

the results of the above experiments into account, two decomposition levels is the 

optimum level in the wavelet decomposition process of image fusion. 

 

 
(a)Wavelet decompose 3 levels(orthogonal) (b) wavelet decompose 3 levels (biorthogonal) 

Figure 4.12. Wavelet decomposition level comparison 

 

4.6.4 The mother wavelet selection 

The choice of an appropriate wavelet transform plays an important role in the 

image fusion process [Zhang and Blum, 1999; Chibani and Houacine, 2003]. In this 

paper, we have not compared the results with the selection of the mother wavelets but 
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relied on the recommendations of other researchers [King and Wang, 2001; Garzelli 

2002; Du et al., 2003]. 

DB4, a family of Daubechies Wavelets, is used as an orthogonal wavelet. 

Daubechies Wavelets are compactly supported wavelets with extremal phase and the 

highest number of vanishing moments for a given support width. Associated scaling 

filters are minimum-phase filters [Misiti et al., 2006]. In DB4, the number of the 

vanishing moments for the analysis wavelet is four. The coefficients for the analysis and 

the synthesis filters are all eight. Garzelli [2002] reported that Daubechies filters with 

eight or ten coefficients have provided good results for image merging of 

multiresolution data. Du et al. [2003] proposed a fusion method that uses DB4, and 

claimed that the method can preserve spatial information and minimize artifacts. 

Biorthogonal Spline 4.4 is used as a biorthogonal wavelet. Biorthogonal Spline 

Wavelets are compactly supported and symmetric, and thus exact reconstruction is 

possible with finite impulse response filters, while it is impossible except for DB1 in the 

orthogonal case. The number of the vanishing moments of this kind of wavelet for the 

analysis wavelet is four. The numbers of coefficients for the analysis filter and synthesis 

filter are nine and seven, respectively. Because of symmetry, Biorthogonal Spline 4.4 is 

shift-invariant. King and Wang [2001] proposed a method which uses the Biorthogonal 

Spline 4.4 with the decimation mode, and won the IGARSS 2000 Data Fusion 

Committee contest.  

“à trous” wavelet is used as a nonorthogonal wavelet. Some researchers used it in 

the image fusion process successfully [Núñez et al., 1999; Chibani and Houacine, 2002]. 
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4.7 Conclusion 

This paper has studied and compared wavelet-based and wavelet-integrated fusion 

methods. All fusion methods were tested on two data sets, IKONOS and Quickbird 

images. The fusion results were compared both visually and statistically. Wavelet-based 

fusion extracts spatial details from high-resolution bands. In this manner, the color 

distortion can be reduced to a certain extent, but the fused image appears similar to a 

high-pass filtered image, e.g., the color appears not to be smoothly integrated into the 

spatial features. The wavelet-integrated method can improve the fusion result, reduce 

the ringing or aliasing effects to some extent, and make the whole image smoother. 

This paper has also elucidated following factors: wavelets (orthogonal, 

birorthogonal, non-orthogonal), decimation or undecimation, and wavelet 

decomposition levels, which could affect the final fusion result. In the wavelet 

decomposition process, the wavelet selection affects the final fusion: the orthogonal 

wavelet used in this research cause aliasing in the decimation case, but does not cause 

aliasing in the undecimation case; the biorthogonal wavelet used in this research does 

not cause aliasing in either the decimation or the undecimation cases; “à trous” 

(nonorthogonal) does not cause aliasing. Also decimation introduces discontinuities into 

the image fusion process, thus producing many artifacts in the fusion result; since 

undecimation does not cause a discontinuity in the image fusion process, fewer artifacts 

are present in the fusion result. Wavelet decomposition levels also affect the fusion 

result. Theoretically, increases in wavelet decomposition level produce more detailed 

information in the fusion result, but at the same time, also increase the amount of spatial 

distortion present in the fusion result, i.e. more artifacts, and spectral or color distortion. 
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Thus, the appropriate selection wavelet decomposition level is also important for the 

fusion result. 
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Chapter 5. Wavelet-Based Image Registration Technique for High 

Resolution Remote Sensing Images♣ 

 

ABSTRACT 

Image registration is the process of geometrically aligning one image to another 

image of the same scene taken from different viewpoints at different times or by 

different sensors. It is an important image processing procedure in remote sensing and 

has been studied by remote sensing image processing professionals for several decades. 

Nevertheless, it is still difficult to find an accurate, robust, and automatic image 

registration method, and most existing image registration methods are designed for a 

particular application. High resolution remote sensing images have made it more 

convenient for professionals to study the Earth; however, they also create new 

challenges when traditional processing methods are used. In terms of image registration, 

a number of problems exist in the registration of high resolution images: (1) the 

increased relief displacements, introduced by increasing the spatial resolution and 

lowering the altitude of the sensors, cause obvious geometric distortion in local areas 

where elevation variation exists; (2) precisely locating control points in high resolution 

images is not as simple as in moderate resolution images; (3) a large number of control 

points are required for a precise registration, which is a tedious and time consuming 

process; and (4) high data volume often affects the processing speed in the image 

                                                 
♣ This chapter has been submitted. 
Hong G., Y. Zhang (2006). “Wavelet-based image registration technique for high resolution remote 
sensing images.” Submitted to Computers & Geosciences, November, 2006. 
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registration. Thus, the demand for an image registration approach that can reduce the 

above problems is growing. This study proposes a new image registration technique, 

which is based on the combination of feature-based matching (FBM) and area-based 

matching (ABM). A wavelet-based feature extraction technique and a normalized cross-

correlation matching and relaxation-based image matching techniques are employed in 

this new method. Two pairs of data sets, one pair of IKONOS panchromatic images 

from different times and the other pair images consisting of an IKONOS panchromatic 

image and a QuickBird multispectral image, are used to evaluate the proposed image 

registration algorithm. The experimental results show that the proposed algorithm can 

select sufficient control points semi-automatically to reduce the local distortions caused 

by local height variation, resulting in improved image registration results. 

 

Keywords: wavelet transform, image registration, image matching, high resolution 

 

5.1 Introduction 

Image registration is the process of geometrically aligning one image to another 

image of the same scene taken from different viewpoints at different times or by 

different sensors. It is a fundamental image processing technique and is important for 

integrating information from different sensors, finding changes in images taken at 

different times, inferring three-dimensional information from stereo images, and 

recognizing model-based objects [Rosenfeld and Kak, 1982]. It has been a research 

topic of three major research areas [Brown, 1992]: computer vision and pattern 
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recognition, medical image analysis, and remotely sensed data processing. In this study, 

image registration of remote sensing images is discussed.  

Generally, the image registration process consists of the following steps [Rignot et 

al., 1991]:  

(1) Feature extraction, which identifies the relevant features in the two images 

(reference image, sensed image), such as edges, intersection of lines, and 

regions.  

(2) Feature matching, which establishes relationship between the features in the 

two images.  

(3) Mapping function building, which determines transformation parameters of 

the mapping functions using the features being matched. 

(4) Image registration, which geometrically transforms and resamples the sensed 

image according to the mapping function established in step (3). 

Image registration algorithms can be broadly classified into two categories 

according to matching method [Fonseca and Manjunath, 1996]: area based methods 

(ABM) and feature based methods (FBM). In ABM algorithms, a small window of 

pixels in the sensed image is compared statistically with windows of the same size in the 

reference image. The most commonly used methods are cross-correlation matching and 

least-squares matching. The centers of the matched windows are treated as control 

points, which can be used to solve for mapping function parameters between the 

reference and sensed images [Li et al., 1995]. ABM is a classical matching method. 

Cideciyan et al. [1992] used Fourier transformation and cross-correlation for image 
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registration. Zheng and Chellappa [1993] used the area correlation in the spatial domain 

to match the feature points that are extracted by the Gabor wavelet decomposition.  

On the other hand, feature-based matching techniques do not use the gray values to 

describe matching entities, but use image features derived by a feature extraction 

algorithm. These features include edges, contours, surfaces, other salient features such 

as corners, line intersections, and points of high curvature, statistical features such as 

moment invariants or centroids, and higher level structural and syntactic descriptions 

[Brown, 1992]. The form of the description as well as the type of feature used for 

matching depends on the task to be solved. Different methods have been developed for 

FBM, including region-based method [Goshtasby et al., 1986], contour-based method 

[Li et al., 1995], structure matching method [Ventura et al., 1990], invariant moment 

method [Flusser and Suk, 1994; Dai and Khorram, 1999], linear feature based method 

[Medioni and Nevatia, 1984; Habib et al., 2003; Shi and Shaker, 2006 ], and wavelet-

based feature extraction method [Djamdji et al., 1993; Zheng and Chellappa, 1993; 

Simhadri et al., 1998; Moigne et al., 2002; Zavorin and Moigene, 2005]. 

The prerequisite of ABM is that the gray level distribution of the sensed image and 

reference image must be similar. Very good initial approximations are required to assure 

convergence. Since gray values contain little explicit information about the object space, 

area-based matching methods are not reliable enough. Therefore, ABM methods are not 

well adapted to the problem of multisensor image registration since the gray-level 

characteristics of images to be matched can vary from sensor to sensor. Compared with 

ABM, FBM is more robust and reliable for the following reasons [Schenk, 1999]: first, 

features are derived properties of the original gray level images and are inherently 
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unique; second, similarity is based on the attributes and /or relations, and is thus more 

invariant to illumination, reflectance, and geometry; third, features are sufficient for 

describing image content. However, FBM often requires sophisticated image processing 

for feature extraction and depends on the robustness of feature detection for reliable 

matching. As a result, the image matching precision is not as high as that of ABM. 

Image registration techniques have been studied and developed for decades. 

Manual registration remains by far the most common way to accurately align the 

imaging data, although it is often time consuming and inaccurate [Zavorin and Moigene, 

2005]. At present, increasingly high-resolution remote sensing images have made it 

more convenient for professionals to study the Earth. However, the high resolution 

images also introduce new challenges for traditional processing methods, including 

current image registration techniques, for the following reasons:  

(1) Very high spatial resolution data introduces a new image geometry problem. 

In order for spatial resolution to become smaller than 1 m, the altitude of the 

sensors is being decreased, which increases the relief displacement and 

causes localized distortion related to landscape height. 

(2) Precisely locating control points in high resolution images is not as simple as 

with moderate resolution images; moreover, it is more error-prone. 

(3) To get precise registration, a large number of control points must be 

manually selected across the whole image, which is a tedious and time 

consuming job. 

(4) High data volume often affects the processing speed in the image 

registration.  
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The objective of this study is to develop a new image registration technique in 

order to reduce the above problems that high resolution images bring. As known, the 

polynomial-model image registration is often used to register different images, because 

it is included in the commercial software and easy to operate. However, for those high 

resolution images with terrain relief, the registration accuracy produced by the 

polynomial-model registration method is poor. While the accurate DEM data of those 

areas are not always available, the orthorectification cannot be implemented; thus, there 

exist necessities to resolve this problem under the situation of no DEM data. The 

proposed method is expected to reduce the problems in registering high resolution 

images with terrain relief and see the improvement compared with the commonly used 

polynomial-based image registration method. 

 

5.2 Methodology 

Finding control points for IKONOS and QuickBird images for an operator may not 

be as easy as it would be for moderate resolution images because of those images’ high 

spatial resolution. For example, a road intersection appearing as a point in a SPOT or 

TM image but as an area in an IKONOS or QuickBird image, making it difficult to 

locate the precise position of the road intersection, and a large number of control points 

must be selected across the whole image in order to obtain the precise registration. This 

is a very tedious and repetitive task for the operator to select them manually. 

Furthermore, this approach requires someone who is knowledgeable in the application 

domain, and is not feasible in cases where there is a large amount of data. Thus, there is 

a need for automated techniques that require little or no operator supervision [Fonseca 
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and Manjunath, 1996; Zavorin and Le Moigne, 2005]. However, until now, there still 

exist a number of scenarios where automatic image registration is not well developed for 

multitemporal and/or multisensor image registration [Bentoutou et al., 2005]; 

automatica image registration still remains an open problems, for example, local 

distortion belongs to the most challenging tasks [Zitova and Flusser, 2003]. For the high 

resolution, there is another problem, namely, the high data volume will affect the 

processing speed for image registration. The proposed method to solve these problems is 

introduced below. 

 

5.2.1 Proposed wavelet-based image registration method  

An innovative image registration algorithm that combines the ABM with FBM 

techniques is proposed. The registration process can be divided into three major steps, as 

illustrated in Figure 5.1: (1) finding the feature points, (2) refining the control points and 

obtaining accurate control point pairs, and (3) building a mapping function according to 

the accurate control point pairs and then resampling the sensed image. 
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Figure 5.1. The work flow of the proposed image registration method 

 
In the first step, feature points detection, the wavelet multi-resolution property 

[Mallat, 1989] is used to produce pyramid images from fine to coarse resolution to 

represent the sensed and reference images. A number of distinct feature points can be 

obtained through finding the local maxima of the modulus wavelet coefficients. The 

pyramidal structure can accelerate the processing speed and is helpful in processing high 

volume data. 

In the second step, matching the feature points, the relationship of feature points 

between the reference image and the sensed image is initially established using the 

normalized cross-correlation method, and then the probability relaxation method is used 

to remove false matching control pairs. As thousands of feature points are selected to 
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find the true control matching pairs, it is very difficult for the probability relaxation 

method (FBM) because of the computation speed limitation; however, the normalized 

cross-correlation (ABM) is fast enough to process many feature points compared with 

the probability relaxation based image matching method, but it also has its limitation 

since it only considers the gray value of the feature points. The matched feature points 

can provide the initial value for the next level of point matching, and the threshold value 

is adjusted to get more feature points varying with the image levels. The next task is to 

obtain the accurate control point pairs according to these initial values. In order to 

achieve a highly accurate registered image, normalized cross-correlation matching is 

employed to refine the control points and to correct for minor control point errors.  

The third step is to build the mapping function for every triangle and to rectify the 

image. Traditionally, one set of polynomial transformation coefficients is used for the 

entire image. The shortcoming of this kind of transformation is that it cannot resolve the 

problem of local distortion. The high resolution satellites, such as IKONOS and 

QuickBird, are close to the Earth relative to the other satellites, so the terrain relief 

affects the geometric distortion seriously. Especially in moderate relief or mountainous 

areas, the distortion is common and cannot be resolved with only one set of 

transformation coefficients for the entire image. In order to resolve this problem, the 

proposed algorithm uses several sets of mapping function coefficients to rectify the 

sensed image.  
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5.2.2 Wavelet-based feature extraction 

Wavelet-based feature extraction applies the principle of finding the modulus 

maxima of wavelet transform locally to detect feature points. Mallat and Hwang [2002] 

used this method to detect edge points, where the magnitude of the gradient is the local 

maximum in the direction of the gradient. Fonseca and Costa [1997] used this method to 

find feature points with the remote sensing data. The basic principle is listed as follows. 

Let ),( yxφ be a smoothing function. Two wavelets, and  are 

obtained by taking the first order derivative of 

),(1 yxψ ),(2 yxψ

),( yxφ  decomposed in two components 

along the x and y directions respectively [Fonseca and Costa, 1997], where 
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For an image I, the wavelet transform at scale (i.e. level j) applied with the 

above two wavelets, has two components: 
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These two components of the wavelet transform are proportional to the two 

components of the gradient vector. At each level, the modulus of the wavelet transform 

at the scale 2j is defined as follows:  
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The local maxima of [ ]),,2( yxIM j  can be located by thresholding the wavelet 

transform modulus image at a given value; accordingly, the feature points at scale 2j can 

be obtained.  
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The wavelet transform decomposes the original image into several sub-images. 

Four sub-images (LL, LH, HL, and HH) are obtained at each level of decomposition 

[Zitova and Flusser, 2003]. LL contains low frequency components in the horizontal and 

vertical directions. LH contains low frequency components in the horizontal direction 

and high frequency components in the vertical direction. HL contains high frequency 

components in the horizontal direction and low frequency components in the vertical 

direction. HH contains high frequency components in both the horizontal and vertical 

directions. The LH and HL sub-bands at each level of the wavelet transform are used to 

form the image gradient. The modulus maxima of the wavelet transform are used to 

detect edge points in the images. Figure 5.2 illustrates the process. 

 
Original image 

 
 
 
 
 
 

Wavelet decomposition image 

 
Feature Point 

 

Magnitude Image 

Wavelet 
 
Decompose

Threshold 
 

HH 

LL

LH

HL 

Figure 5.2. Work flow of the feature point extraction based on wavelet decomposition 
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The “à trous” wavelet is used to overcome the problem of the shift-variance that 

occurs with general discrete wavelet transforms. The “à trous” wavelet is applied once 

to the original image to obtain the highest level feature points, and can keep the shift-

invariance of these feature points because it does not subsample (decimate) the original 

image during the wavelet decomposition process. The shift-variance is very important in 

image registration, since it affects the geometric accuracy of the registered image. 

Moigne et al. [2002] also reported the problem of shift-variance existing in discrete 

wavelet transforms. The discrete wavelet transform decomposes the original image into 

several sub-levels with decimation mode, and the feature points can be obtained in the 

next levels; however, feature points for the highest level cannot be obtained by using the 

discrete wavelet decomposition method. 

 

5.2.3 Normalized cross-correlation matching 

Normalized cross-correlation matching is used to find similarity between the 

feature points in the reference image and the sensed image. The normalized cross-

correlation coefficient, , is calculated below. ABr
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where IA(i, j) and IB(i, j)B  mean the grey value of a subset A in a image and a subset B in 

the other image respectively, AI  and BI  represent the mean grey value of the two subset 
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images respectively, and M and N are the number of rows and columns in the subset 

images. 

A coarse-to-fine matching technique is employed in the proposed image 

registration algorithm. For the lowest level, the number of feature points is not large, 

one feature in the reference image is compared with all the feature points in the sensed 

image, the point in the sensed image that has the maximum correlation coefficient with 

the point in the reference is the corresponding point. A threshold can be set to determine 

the number of matched feature points in the level. After obtaining the initial matched 

feature points, the relaxation based matching method is used to remove the wrongly 

matched feature points. This step is important because the matched feature points will be 

used to determine the approximate position in the next level of the matching procedure. 

If some wrongly matched feature points were transferred to the next level, it would 

definitely affect the matching accuracy at next level. For each level, the number of 

feature points is larger than at the previous level, and the matched feature points from 

the previous level are used to determine the approximate position of every feature point 

in the reference image. For every feature point in the reference image, it is matched with 

the feature points in the sense image which are close to the approximate position 

determined by the matched feature points in the previous level. After obtaining matched 

points, the probability relaxation based matching is used to remove the wrongly matched 

feature points. The same procedure is iterated until the highest level matching. 
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5.2.4 Discrete probability relaxation 

The reason used discrete probability relaxation in image matching is that image 

matching based on hierarchical probabilistic relaxation should be useful for utilizing 

contextual information to reduce local ambiguity and achieve global consistency. If it is 

applied in gray-level-based image matching, it can take advantage of spatial 

relationships, and global consistency can be improved greatly. While in the area-based 

matching process, the cross correlation function may not reach its maximum value at the 

true corresponding points because of the threshold value, some matching results may be 

incorrect. The correct results of the nearest neighbor matching should be used to correct 

the incorrect matching [Zhang et al., 2000]. There are some publications about using the 

probability relaxation in the image matching [Liao et al., 2004; Zhang and Fraser, 2005]. 

Consider a set of feature points { }mAAAA ,,, 21 L=  in an image A, and a set of 

feature points  in an image B. The principle of the relaxation-based 

matching method is based on the following assumption: if (A

{ nBBBB ,,, 21 L= }

i, Bj) is a true control point 

pair between the image A and the image B, then for any other point Ah in the image A 

there may exist a corresponding point Br in the image B such that the distance (Ai, Ah) is 

equal to the distance (Bj, Br) when (Ah, Br) is also a correct match. If (Ai, Bj) is a true 

control pair, then the remaining (m-1) point pairs (Ah, Br) are expected to provide 

support to (Ai, Bj) [Ton and Jain, 1989; Fang, 2000]. 

The compatible coefficient, , is used to describe the relationship between 

two events: (A

),;,( rhjiC

i, Bj) is a true pair, and (Ah, Br) is a true pair. A positive value means that 

the two events are compatible, a value of zero means that they are not correlated, and a 

negative value means that the two events are not compatible. The initial probability that 
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(Ai, Bj) is a true control points is defined as , and 

. The probability of the event after s iterations is denoted , with 

. Figure 5.3 shows the relationship between P
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Figure 5.3. The illustration of the relationship between the parameters in the relaxation process 

 

The compatible coefficient is defined as equation 5.5 and the updating value is 

given by equation 5.6. Equation 5.7 is used to update the matching probability after 

every iteration. It is expected that the final matching probability  will be close to 1 if 

the pair (A

ijp

i, Bj) is a true pair; otherwise it will be close to 0. 
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where  is the Euclidean distance between Aihd i and Ah, and  is the Euclidean distance 

between B

jrd

j and Br. 
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where  is the support in the ll
ijq th iteration of all other pairs to the pair (Ai, Bj). Relative 

distance instead of absolute distance in the support function, which is more tolerate of 

geometric distortion was reported by Ton and Jain [1989]. 
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An example of the probability relaxation process in the image matching is given in 

the following figures and tables: Figure 5.4 shows several control points detected in the 

reference image and the sensed image. Table 5.1 gives the coordinate values of the 

points in Figure 5.4. Table 5.2 shows the matching probability for different iterations. 

The initial probability is uniform that is 1/N (N is the number of feature points). From 

the iteration results, it can be found that the matching probability is close to 1 after 8 

iterations. 

 

(a) Reference image (b) Sensed image 

Figure 5.4. The control points on the reference image and the sensed image 
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Table 5.1. The control points in the reference image and the sensed image 

Reference Image Sensed Image 
Point No. Coordinate(x, y) Point No. Coordinate(x, y) 

1 (648,1943) 1 (685,1939) 
2 (1310,1801) 2 (1339,1795) 
3 (757,1582) 3 (786,1578) 
4 (665,2088) 4 (703,2085) 
5 (716,2154) 5 (757,2153) 
6 (800,2042) 6 (838,2039) 
7 (939,1814) 7 (971,1810) 

 

Table 5.2. The matching probability of several iterations (as percentage) 

First iteration Second iteration 
 1 2 3 4 5 6 7 

1 14 14 14 14 14 14 14 
2 14 14 14 14 14 14 14 
3 14 14 14 14 14 14 14 
4 14 14 14 14 14 14 14 
5 14 14 14 14 14 14 14 
6 14 14 14 14 14 14 14 
7 14 14 14 14 14 14 14  

 1 2 3 4 5 6 7 
1 27 6 8 14 16 17 9 
2 10 29 18 12 13 8 7 
3 10 16 27 10 10 11 14 
4 15 6 6 29 23 16 5 
5 15 7 7 21 28 15 6 
6 19 5 8 16 16 28 7 
7 14 9 17 8 10 9 31  

Fifth iteration Eighth iteration 
 1 2 3 4 5 6 7 

1 44 2 4 12 14 17 5 
2 4 59 19 5 6 3 4 
3 6 16 52 4 5 6 11 
4 12 2 2 43 27 12 2 
5 12 2 3 25 43 11 2 
6 19 1 4 14 13 45 3 
7 10 4 14 3 5 5 60  

 1 2 3 4 5 6 7 
1 100 0 0 0 0 0 0 
2 0 100 0 0 0 0 0 
3 0 0 100 0 0 0 0 
4 0 0 0 100 0 0 0 
5 0 0 0 0 100 0 0 
6 0 0 0 0 0 100 0 
7 0 0 0 0 0 0 100  

5.2.5 Transformation function determination 

A global polynomial mapping function cannot properly deal with images that have 

varying local distortions. The high resolution sensors often use the off-nadir mode to 

capture images, unlike moderate resolution sensors, which normally use a nadir mode. 

Figure 5.5 illustrates the local distortion caused by terrain relief. In Figure 5.5, P 

represents a point on the ground, A represents the location of P on an image captured in 

nadir mode, and B represents the location of P on an image captured in off-nadir mode 
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with angle θ. Assuming the height of P is h, the displacement can be calculated using 

equation 5.8. 

 

 

 

 

A B 

θ 

h 

P  

 

 

 

 
Figure 5.5. The displacement caused by the terrain relief 

 

θhtgdispAB =          (5.8) 

From equation 5.8, for an angle θ of 450, if h is 30 m (relief area), then dispAB is 30 

m; while if h is 0 m (flat area), then dispAB is 0 m. That means for flat area there is no 

displacement, but in a relief area, there is a displacement; thus, in an image with both 

types of terrain areas, the relief area will have a local distortion, while the flat area will 

not. The elevation error also affects the geometric accuracy when elevation is used to 

correct the displacement caused by the terrain relief; one meter of elevation error is 

equal to one meter horizontal error, which is equal to an error of one pixel for IKONOS 

image or an error of 1.6 pixels for QuickBird images. The local distortion caused by the 

off-nadir angle cannot therefore be neglected in high resolution image. 

A triangle-based local transformation is employed in the mapping function to 

reduce the local geometric distortion caused by the terrain relief. Every three neighbour 
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control points form a triangle in both the reference image and sensed image. Once the 

triangle mesh has been constructed for all the control points, the resample process can 

be performed on a triangle-by-triangle basis [ERDAS, 2002]; for every triangle, there is 

a set of transformation coefficients, unlike with the global polynomial transformation, 

which has only one set of transformation coefficients for the entire image. Linear 

transformation within a triangle is a fast and easy method. The equation is listed as 

follows. 

ybxbby

yaxaax

210
'

210
'

++=

++=         (5.9) 

where (x', y') are the coordinates in the sensed image and (x, y) are coordinates in the 

reference image. 

In Figure 5.6, the vertices represent matched control points in the sensed image 

and reference image. For a pixel (x, y) in a triangle of the reference image, the equation 

5. 9 is used to find its corresponding position (x', y') in the sensed image and then the 

gray value of this position is used to fill the corresponding pixel (x, y) of resampled 

sensed image. 

 

(x', y') (x,y) 

Sensed image Reference image 

 

 

 

Figure 5.6. Illustration of the triangle-based resampling process 
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5.3 Experiment and results 

In order to evaluate the proposed image registration algorithm, two data sets 

(Fredericton city, NB, Canada) are used to test the algorithm: one set consists of images 

from the same sensor but acquired at different times (two years difference, 

multitemporal data), while the other set consists of images from different sensors 

acquired in the same year (multisenor data). Details of the data sets are described in 

Table 5.3. These two data sets are especially selected to increase the degree of difficulty 

that the image registration algorithm will deal with. As known, multitemporal or 

multisensor data has radiometric differences because of time differences or sensor 

differences, these kinds of data are more difficult to process compared with the data 

acquired by the same sensor at same time [Bentoutou et al., 2005]. The terrain 

characteristic of the data is of moderate relief with buildings on a slope (Figure 5.7). For 

urban and sub-area areas, this study terrain has a certain representative, because most of 

the urban and sub-urban areas lie in the flat or moderate relief areas in order to be easy 

for people living, although there may be some urban areas lie in mountainous areas. 

Table 5.3. Data used in this experiment 

No. Reference image Sensed image Resolution Size 
1 

(IKONOS-
IKONOS) 

IKONOS panchromatic 
image (2002) 

IKONOS panchromatic 
image (2000) 

1m 2048X2048 

2 
(IKONOS-
QuickBird) 

IKONOS resampled 
panchromatic image (2002) 

QuickBird multispectral 
image (2002) 

2.8m 1024X1024 
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5m 

120m 

Figure 5.7. Terrain characteristic of the study area 

A three level pyramid structure is employed in this experiment. For the second and 

third levels, a discrete wavelet transform with decimation mode is used to get the 

approximation image and a feature points’ image; the feature points of first level are 

obtained by applying an “à trous” wavelet decomposition once. The normalized cross-

correlation matching method is used to get initial matched feature points and the 

probability relaxation matching method is applied to refine the initially matched feature 

points. During the matching process, three thresholds can be set to control the number 

and accuracy of the feature points: the first is the value of acceptable maximum 

correlation coefficients, the second is for the window size for the normalized cross-

correlation matching, and the third is the number of iterations for the probability 

relaxation matching. For the IKONOS-QuickBird case, the IKONOS panchromatic 

image is resampled to 2.8m to keep the same resolution as the QuickBird multispectral 

image. The details for the feature points for every pyramid level are listed in Table 5.4 

and Table 5.5. A total of 101 feature pairs have been obtained in the IKONOS-IKONOS 

case, and 80 feature pairs in the IKONOS-QuickBird case.  
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Table 5.4. Feature point information (IKONOS-IKONOS case) 

Number of feature points  Level no. File size 
(pixels) Sensed 

image 
Reference 

image 

Number of 
initial 

matched pairs 

Number of 
refined matched 

pairs 
3 512X512 1153 1142 79 25 
2 1024X1024 1547 1495 159 35 
1 2048X2048 6325 6251 290 101 

 
Table 5.5. Feature point information (IKONOS-QuickBird case) 

Number of feature points  Level No. File Size 
(pixels) Sensed 

image 
Reference 

image 

Number of 
initial 

matched pairs 

Number of 
refined matched 

pairs 
3 256X256 755 784 68 28 
2 512X512 1156 1289 135 34 
1 1024X1024 5986 6083 263 80 

 

The registered results of these data sets are shown in Figure 5.8 (IKONOS-

IKONOS) and Figure 5.9 (IKONOS-QuickBird). In Figure 5.8, (a) is the IKONOS 

image captured in 2000 (sensed image), (b) is the IKONOS image captured in 2002 year 

(reference image), (c) is the distribution of feature points and (d) is the final registered 

IKONOS image. In Figure 5.9, (a) is the multispectral QuickBird image captured in 

2002 (sensed image), (b) is the IKONOS image captured in 2002 (reference image), (c) 

is the distribution of feature points and (d) is the final registered QuickBird multispectral 

image. 
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(a) IKONOS panchromatic image(2000) (b) IKONOS panchromatic image(2002) 

 
(c) feature points distribution (d) registered image (2000) 

Figure 5.8. The sensed image (a), the reference image (b), and the registered image (d) (IKONOS-
IKONOS case) 
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(a) QuickBird multispectral image (2002) (b) IKONOS image (2002) 

(c) feature points distribution (d) registered QuickBird multispectral image 

Figure 5.9. The original reference image, the sensed image and registered image (IKONOS-QuickBird 
case) 

 
Two methods have been used to check the accuracy of final registered image. The 

first method is the visual analysis, to check the overlaid image between the reference 

image and the registered image. This is a fast and commonly used method. The second 

method is to measure manually selected check points across the image.  
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The results using triangle-based mapping function (TMF) are compared with those 

of a third order polynomial mapping function (PMF). Figure 5.10 shows the registered 

result analysis: (a) is the overlaid image between the registered image and the reference 

image, (b) is a subset of TMF at location I, (c) is a subset of PMF at location I, (d) is a 

subset of TMF at location II and (e) is a subset of PMF at location II. In the overlaid 

image (Figure 5.10 (a)), red area shows objects that exist in the reference image but not 

in the registered image, and green areas show objects that exist in the registered image 

but not in the reference image. Generally speaking, the registered image fits very well 

with the reference image; we cannot find the special red or green color across the 

overlaid image except for some small areas due to the temporal changes. In Figure 5.10 

(c), it can be found that one road appears as red and green two colors, because these 

roads are not registered very well with PMF, while in Figure 5.10 (b) the same roads in 

the triangle-based registered result do not show any red or green, which means that the 

roads in the reference image and the registered image fit very well. The same difference 

can be seen when comparing for the location II (Figure 5.10 (d) and (e)).  

However, it needs to be noted that on the top of buildings and trees, for example, 

at the location III, there are still some parallaxes in green around the building in the 

overlaid image due to the relief displacement of the buildings. This is a typical problem 

for the registration of high resolution images, which cannot be solved by an image to 

image registration algorithm, unless a true ortho-rectificaiton is applied. But the same 

problem does not occur in the moderate resolution image.  
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Figure 5.11 shows the result analysis for IKONOS-QuickBird case. In this analysis, 

the red band of the QuickBird multispectral image is overlaid with the reference image. 

In Figure 5.11 (a), red shows objects that exist in the reference image but not in the 

registered image; green shows objects that exist in the registered image but not in the 

reference image. The color of the overlaid image is different from the previous case, 

because these images are from two different sensors. There is a great difference between 

the spectral ranges of the two bands resulting in color difference in vegetation. Thus, 

when the images are overlaid, it appears to have a large change in vegetation. To 

analyze the result, vegetation should be disregarded; the color of terrain objects is still 

similar to previous case. From Figure 5.11 (a), it can be seen that there is no more red or 

green around terrain features, such as roads, open areas and parking lots, which means 

that the two images are very well registered. Figure 5.11 (c) is a subset of location I in 

the registered image, it can be seen that the roads appear red and green two colors, and 

they seem to be two different roads in the overlaid image, due to the registration errors 

of the PMF. In Figure 5.11 (b), however, we cannot see red and green roads, because the 

roads they register very well with TMF. The same to the location II when we compare 

Figure 5.11 (d) and (e).  
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I 

 
II 

III 

(a) Overlay of the reference image and the registered image 

    
(b)TMF(I) (c) PMF (I) (d) TMF (II) (e) PMF(II) 

Figure 5.10. Comparison of registered results (IKONOS-IKONOS case) 
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(a) Overlay of the reference image with one band of the registered image 

  
(b)TMF(I) (c) PMF (I) (d) TMF (II) (e) PMF(II) 

 
I 

 
II 

Figure 5.11. Comparison of registered results (IKONOS-QuickBird case) 
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The registered results have also been analyzed by manually selecting checking 

points evenly distributed across the images. Figure 5.12 shows the Root Mean Square 

(RMS) error of the registered images for two cases. The triangle-based registration results 

also are compared with those of first order, second order and third order polynomial 

transformation results. For the IKONOS-QuickBird case, the RMS error of the result 

using triangle-based method is 0.95 pixels, which is the lowest RMS error, and the highest 

error, 2.47 pixels, is associated with first order polynomial transformation. For the 

IKONOS-IKONOS error, the smallest RMS error is 3.21 pixels (for the triangle-based 

mapping method), and the highest is 5.13 pixels (for first order polynomial 

transformation).  
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Figure 5.12. RMS error comparison of the registered images 

(The spatial resolution for IKONOS-QuickBird case : 4m; for IKONOS-IKONOS case: 1m) 
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5.4 Conclusion 

This study has proposed a new image registration algorithm based on the wavelet 

multiresolution feature extraction techniques. It integrates a discrete wavelet transform 

(decimate mode) and a redundant wavelet transform (“à trous”) into one image 

registration process. The discrete wavelet transform with decimate mode is used to 

generate a pyramid structure and locate feature points in each level; the “à trous” 

wavelet is used to obtain the feature points at highest level, and to keep the shift-

invariant property of the feature points, which is however a problem when discrete 

wavelet transform with decimate mode is used. Normalized cross-correlation and 

probability relaxation matching techniques are used to find similarity between feature 

points in the reference image and sensed image.  

Two data sets are used to evaluate this method: one set is from the same sensor but 

captured in different years (two years difference), and the other set is from different 

sensors captured in the same year. The results of the proposed method are compared 

with results generated by using first order, second order, and third order polynomial 

transformations; in both cases of comparison, the RMS errors of the triangle-based 

resigtration are the smallest. The experiments demonstrated that the proposed method 

can provide improved registration results and resolve the following problems existing in 

the registration of high resolution images using traditional image registration techniques: 

(1) manually selecting a large number of control point pairs, (2) high volume data, and 

(3) local distortion existing in different sensors and different temporal images. However, 

it has also been noticed that the relief displacement of individual above-ground objects, 
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such as buildings and trees, cannot be solved by the proposed method. To solve this 

problem, a true ortho-rectification technique may have to be used. 
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Chapter 6. A COMPARATIVE STUDY ON RADIOMETRIC 

NORMALIZATION USING HIGH RESOLUTION SATELLITE 

IMAGES♣ 

 

ABSTRACT  

Remotely sensed multitemporal, multisensor data are often required in Earth 

observation applications. A common problem associated with the use of multisource 

image data is the grey value differences caused by non-surface factors such as different 

illumination, atmospheric, or sensor conditions. Such differences make it difficult to 

compare images using same color metric system. Image normalization is required to 

reduce the radiometric influences caused by non-surface factors and to ensure that the 

grey value differences between temporal images reflect actual changes on the surface of 

the Earth. 

A variety of image normalization methods, such as pseudoinvariant features (PIF), 

dark and bright set (DB), simple regression (SR), no-change set determined from 

scattergrams (NC), and histogram matching (HM), have been published in scientific 

journals. These methods have been tested with either Landsat TM data, MSS data or 

both, and test results differ from author to author. However, whether or not existing 

methods could be adopted for normalizing high resolution multispectral satellite images, 

                                                 
♣ This chapter has been accepted for publication in the [International Journal of Remote Sensing] 
©[2006] [copyright Taylor & Francis]. 
Hong G., Y. Zhang (2006). “A comparative study on radiometric normalization using high resolution 
satellite images.” International Journal of Remote Sensing, in press, 2006. 
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such as IKONOS and QuickBird, is still open for discussion because of the dramatic 

change in spatial resolution and the difference of available multispectral bands. In this 

research, the existing methods are introduced and employed to normalize the 

radiometric difference between IKONOS and QuickBird multispectral images taken in 

different years. Some improvements are introduced to the existing methods to overcome 

problems caused by band difference and to achieve more stable and better results. The 

normalized results are compared in terms of visual inspection and statistical analysis. 

This paper examined whether or not existing methods can be directly adopted for image 

normalization with high resolution satellite images, and showed how these methods can 

be modified for use with such images. 

 

Keywords: multitemporal, multisensor, image normalization, high-resolution 

 

6.1 Introduction 

Remotely sensed data is an effective source of information for monitoring changes 

in land use and land cover. With the advent of increasingly higher resolution remote 

sensing images, it is possible to precisely monitor changes in an urban area. In automatic 

change detection process, radiometric normalization and geometric registration of the 

temporal images are the first two operations that must be performed on the images. Both 

these operations affect the final accuracy of change detection. Geometric registration 

transforms the different temporal or sensor images into a common geometric coordinate 

system, while radiometric normalization unifies the color information into the same 

metric system. After image normalization, the images have the same color metric system; 
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thus, they have the same comparability metric. It can be more difficult to quantify and 

interpret changes on multitemporal images under different illumination, atmospheric, or 

sensor conditions without radiometric calibration. Although many changes can be 

detected without applying a radiometric calibration, in order to identify automatically 

what the detected changes are, even in a general sense, image normalization is required 

[Chavez and Mackinnon, 1994]. 

There are two kinds of image radiometric normalization: absolute and relative. 

Absolute normalization needs sensor parameters, atmospheric refraction parameters and 

other data that are difficult to obtain after satellite data acquisition. Absolute 

normalization is generally performed at the satellite data receiving ground station before 

satellite data is released. 

The relative approach to radiometric correction, known as relative radiometric 

normalization, is preferred because no in situ atmospheric data at the time of satellite 

overpasses are required [Yang and Lo, 2000]. Relative radiometric normalization is a 

method of correction that applies one image as a reference and adjusts the radiometric 

properties of subject images to match the reference [Hall et al., 1991; Yuan and Elvidge, 

1996]. Thus, normalized images appear to have been acquired with the reference image 

sensor under atmospheric and illumination conditions equal to those in the reference 

scene [Hall et al., 1991]. From the above descriptions, a key difference between the 

methods is that absolute normalization removes atmospheric errors that exist in both 

images, while relative normalization does not actually remove atmospheric errors. The 

subject image keeps the same atmospheric errors as the reference image. A variety of 

papers are available on image normalization methods [Schott et al., 1988; Eckhard et al., 
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1990; Hall et al., 1991; Elvidge et al., 1995; Yuan and Elvidge, 1996; Heo and 

FitzHugh, 2000]. Yang and Lo [2000] and Yuan and Elvidge [1996] reviewed existing 

image normalization methods. 

IKONOS and QuickBird are two popular types of high resolution satellite images. 

They are often used in monitoring land use and land cover and are often used together. 

In such cases, the matter of comparability and continuity between QuickBird and 

IKONOS is important for many monitoring-related applications. A drawback in 

combining QuickBird and IKONOS for monitoring applications is that most published 

papers on image normalization are based on Landsat TM or MSS data. Also, there exists 

other problems because of satellite sensor difference: first, most of publications were 

discussing the same sensor data, in this study, we discuss image normalization between 

different sensors; second, the high resolution causes problem in the PIF methods which 

didn’t happen in Landsat TM or MSS cases; third, there is no publication coefficients 

for Tasseled Cap Transformation which is required in the DB method; and fourth, the 

NC method requires two near-infrared bands, while for IKONOS or QuickBird, there is 

only one near-infrared band. The purpose of this study is to find strategies and methods 

that can resolve these problems and can be effective in normalizing IKONOS images 

using QuickBird as a reference. The strategies employed in this study used existing 

image normalization methods based on spectral comparability and continuity between 

the IKONOS and QuickBird images. This paper examines if existing methods can be 

directly used for normalizing high resolution satellite images. This paper also describes 

how these existing methods can be modified so that they are suitable for use with such 

images. 
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6.2 Existing radiometric normalization methods 

Image normalization methods can be classified into three general categories: 

statistical methods (i.e. standard deviation method); the histogram matching method; 

linear regression methods (i.e. PIF, DB, NC, etc.). Most existing normalization methods 

are based on simple linear regression. In order to clarify use of the term “image 

normalization” in this paper (except it relates to histogram matching method), the term 

“image normalization” means normalization based on linear regression methods.  

 

6.2.1 The mathematical equation for image normalization 

Casseles and Garcia [1989] verified the linear relationship between reference 

image and subject image. The linear relationship can be described using the following 

equation: 

 

Y_m=amX_m+bm         (6.1) 

where Y_m is the band m of the reference image Y, X_m is the band m of the 

subject image, a and b are normalization coefficients, m is the band number of the image. 

In this equation, the subject image X is normalized by the reference image Y. 

Image normalization can be divided into two steps: (1) selecting normalization 

targets; and (2) determining normalization coefficients. 
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6.2.2 Normalization target selection 

Several methods have been introduced by different authors showing how to select 

ideal targets for estimating the normalization transformation coefficients [Schott et al., 

1988; Eckhard et al., 1990; Hall et al., 1991; Elvidge et al., 1995]. In general, for all 

normalization methods, the targets that meet the following criteria are selected as ideal 

targets for normalization [Eckhardt et al., 1990]: 

(1) The targets should be approximately at the same elevation so that the 

thickness of the atmosphere over each target is approximately the same; 

(2) The targets should contain only minimal amounts of vegetation because 

vegetation spectral reflectance is subject to change over time;  

(3) The targets must be in relatively flat areas so that changes in the sun angle 

between images will produce the same proportional increase or decrease in 

insolation to all normalization targets; 

(4) When viewed on the image display screen, the patterns on the normalization 

targets should not change over time; and 

(5) A set of targets must have a wide range of grey values for the regression 

model to be reliable. 

 

6.2.3 Typical normalization methods 

(1) Simple Regression (SR) method  

Simple regression normalization [Jensen, 1983] uses least-squares to derive the 

normalization coefficients, which can be acquired using the following equation: 
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where m_Y and m_X are the means of band m in reference image Y and subject image X, 

 is the covariance of band m in the reference image Y and subject image X, and 

 is the variance of band m in the subject image X. 

_m_mYXv

_m_mXXv

 

(2) Histogram Matching (HM) method  

Histogram matching is a common image processing procedure for radiometric 

enhancement. It uses the reference image histogram to modify the subject image 

histogram in order to make the subject image histogram distribution similar to reference 

image histogram distribution. Histogram match is a process of determining a look up 

table that will convert the histogram of one image to resemble that of another. It is a 

useful technique for matching image data of the same scene acquired at different dates 

with slightly different sun angles or atmospheric effects [Yang and Lo, 2000]. Chavez 

and Mackinnon [1994] applied the histograms of the reference to normalize the subject 

images for automatic detection of vegetation changes in the southwestern United States. 

 

(3) Pseudoinvariant Feature (PIF) method 

Scott et al. [1988] presented pseudoinvariant feature normalization, which 

analyzed the elements whose reflection distribution is statistically invariant, such as 

concrete, asphalt and rooftops. These elements are assumed not to have any significant 

change between two acquisition dates. Differences in the gray-level distributions of 
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these invariant objects are assumed to be linear and are corrected statistically to perform 

the normalization.  

The equation for solving the normalization coefficients is as follows: 

PIF

PIF

ma
_m

_m

Y

X

δ

δ
= ,  PIF

m
PIF

m ab m__m XY −=       (6.3) 

where and  are standard deviations of the selected pseudoinvariant feature 

set in band m of the reference image Y and subject image X, and 

PIF
_mXδ

PIF
_mYδ

PIF
_mY and PIF

_mX are their 

corresponding means.  

 

(4) Dark-Bright (DB) method  

Hall et al. [1991] used the average of a set of dark and bright pixels (dark-bright 

set-simply called DB), which are extracted from the subject and reference image 

through Kauth-Thomas greenness-brightness transformation, to derive the normalization 

coefficients. It is assumed that an image always contains at least some pixels that have 

the same average surface reflectance among images acquired at different dates.  

The normalization coefficients can be solved using the follow equation: 
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d are the means of the dark set (d) and bright set (b) of band m in 

the reference and subject images respectively.  
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(5) No Change Set (NC) method 

Elvidge et al. [1995] developed a radiometric normalization method, which locates 

the statistical centers for stable land and stable water data clusters using the near-

infrared date 1 versus date 2 scattergrams to establish an initial regression line. The 

near-infrared data were used because at these wavelengths the spectral clusters for water 

and land are clearly separated, and a distinct axis of “no change” can be observed. A no-

change set is determined by placing thresholds about the initial line. Pixels falling within 

the no-change region will be used in the regression analysis of each band to compute 

normalization coefficients for them. 

The normalization coefficients are derived from the following equations: 

NC

NC

m v

v
a

m_m_

m_m_

XX

YX
= ,  NC

m
NC

m ab m_m_ XY −=      (6.5) 

where NC
m_Y and NC

m_X are the means of NC sets in  band m of reference image Y and 

subject image X; is the covariance of NC sets in band m of reference image Y 

and subject Image X, is the variance of NC sets in band m of subject X. 

NCv
m_m_ YX

NCv
m_m_ XX

 

6.2.4 Pros and Cons of existing methods for Landsat TM or MSS 

The SR method uses all pixels in both images to calculate the normalization 

coefficients. It works well if there are no big changes between the two satellite data 

acquisition dates. For this method, the accuracy of geometric registration will affect the 

normalized image accuracy. 
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Similar to the SR method, the HM method uses all pixels in every band of both 

images in calculating the normalization coefficients. It is useful for matching data for 

the same scenes acquired on different dates that have small differences in grey values. 

The final normalized image accuracy will be affected by the geometric registration 

accuracy. 

The PIF method can overcome limitations of the SR method and the HM method. 

Normalized objects are not limited to the grey value differences caused by small 

changes in the sun angle and atmosphere. Accuracy of geometric registration will not 

affect the normalized image accuracy. The PIF method needs human intervention to 

extract the pseudoinvariant feature set. 

The DB method was proposed to improve the PIF method. Similar to the PIF 

method, the DB method also does not require the subject and reference pixels to be 

exactly geometrically registered. In implementing this method, appropriate threshold 

values are required to obtain the dark and bright pixel sets. However, it is difficult to 

obtain them automatically. 

According to Elvidge et al. [1995], the NC method can: 

(1) reduce cloud, shadow, and snow effects compared with the SR method;  

(2) use a large percentage of the total number of image pixels;  

(3) distribute normalization error among different land-cover types; 

(4) eliminate the necessity of identifying bright and dark radiometric control 

pixels;  

(5) accelerate the speed of the normalization procedure. 

The limitations of this method are: 
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(1) it requires the presence of both land and water areas in the satellite images;  

(2) imagery is acquired under similar solar illumination geometries and similar 

phenological conditions; 

(3) no changes take place in land cover for a large portion of the land between 

the subject image and the reference image. 

Using the mean square error calculation as the statistical measure of the goodness 

of fit between the reference image and subject image, Yuan and Evlidge [1996) 

evaluated some methods and ranked the methods in descending order of NC, DB, SR, 

and PIF. From visual inspection, the NC method is the best and PIF is the worst 

compared with the reference image. No single approach has universal application 

because solutions are independent of location, application and image. Analysts must, 

therefore, be aware of existing procedures and be prepared to use or adapt these, or 

develop alternative procedures, as appropriate [Heo and Fitzhugh, 2000]. 

 

6.3 Normalization of the IKONOS image with the QuickBird image 

6.3.1 Image data 

Two datasets were used in this study: IKONOS data which was acquired on July 

21, 2000; and QuickBird data which was acquired on Aug 2, 2002. All images were 

scaled to 16 bits. The resolution of multispectral IKONOS images and QuickBird 

images are 4m and 2.8m respectively. 
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6.3.2 Image registration 

Multispectral IKONOS images and multispectral QuickBird images do not cover 

the same geographic area completely. IKONOS covers a larger area than does 

QuickBird. In the change detection process, the higher is the resolution, the better is the 

result. Therefore, the QuickBird image was used as the reference image, and the 

IKONOS image was used as the subject image. The final registered IKONOS image was 

resampled to 2.8m. Forty- two control points were selected. Those control points are 

distributed evenly throughout the whole image (listed in figure 6.1). Second order 

polynomial equation was used as the mathematical model in the image registration 

process (the equation is listed in Equation (6.6)). Both RMS errors, one of which is in 

the X direction and the other of which is in the Y direction, were less than 1 pixel. 

Nearest neighbour resampling method was used to resample the subject image in order 

to maintain the original spectral characteristic of the images. 

2
5

 2
43210

2
5

2
432

yg xg xy g y g x g g y'

yb  xb xy b y b x b b x' 10

+++++=

+++++=
       (6.6) 

x' and y' are the coordinates in the uncorrected image generated from the referenced 

matrix system (x, y) coordinates. 
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Figure 6.1. The distribution of control points in reference image-QuickBird 

 

6.3.3 Image normalization - difficulties and new solutions 

The Landsat TM, MSS, IKONOS and QuickBird image wavelength and spatial 

resolution are listed in Table 6.1, Table 6.2, Table 6.3 and Table 6.4 respectively. From 

these tables, it can be easy to find that there exist differences between these satellite 

images.  

 
Table 6.1. Landsat TM image wavelength and resolution 

Band Wavelength Region (µm) Resolution (m) 
1 0.45-0.52 (blue) 30 
2 0.52-0.60 (green) 30 
3 0.63-0.69 (red) 30 
4 0.76-0.90 (near-IR) 30 
5 1.55-1.75 (mid-IR) 30 
6 10.4-12.5 (thermal-IR) 120 
7 2.08-2.35 (mid-IR) 30 
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Table 6.2. MSS image wavelength and resolution 

Band Wavelength Region (µm) Resolution (m) 
1 0.5-0.6 (green) 80 
2 0.6-0.7 (red) 80 
3 0.7-0.8 (red - near-IR) 80 
4 0.8-1.0 (near-IR) 80 

 
Table 6.3. IKONOS image wavelength and resolution 

Band Wavelength Region (µm) Resolution (m) 
3.2 m (nadir), 4 m (260 off-nadir) 1 0.445–0.516(Blue) 
3.2 m (nadir), 4 m (260 off-nadir) 2 0.506–0.595(green) 
3.2 m (nadir), 4 m (260 off-nadir) 3 0.632–0.698(red) 
3.2 m (nadir), 4 m (260 off-nadir) 4 0.757–0.853(near infrared) 
0.82 m (nadir), 1m (260 off-nadir) Pan 0.526–0.929 

 
Table 6.4. Quickbird image wavelength and resolution 

Band Wavelength Region (µm) Resolution (m) 
2.44 m (nadir), 2.88 m (250 off-nadir) 1 0.450–0.520(Blue) 
2.44 m (nadir), 2.88 m (250 off-nadir) 2 0.520–0.600(green) 
2.44 m (nadir), 2.88 m (250 off-nadir) 3 0.630–0.690(red) 
2.44 m (nadir), 2.88 m (250 off-nadir) 4 0.760–0.900(near infrared) 
61 cm (nadir), 72 cm (250 off-nadir) Pan 0.450–0.900 

 

Due to differences in spatial resolution, spectral band and radiometric resolution 

between Landsat and IKONOS/QuickBird images, not all the existing methods can be 

directly applied to the normalization of IKONOS or QuickBird images. For example, 

high resolution images, (i.e. IKONOS, QuickBird) can reflect more detailed information 

of objects on the ground compared with low spatial resolution images. For instance, 

water bodies are generally used as pseudoinvariant objects in selecting normalization 

targets. Small objects floating on the water cannot not be recognized by Landsat or MSS, 

while these objects would most likely be detected by high resolution images such as 

IKONOS or QuickBird. Since these floating objects would be still counted as 

pseudoinvariant objects in low resolution images, but could not be counted as 

pseudoinvariant objects in high resolution images, more procedures are required to 

remove them, the detail descriptions have been given in the following PIF method 
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implementation. Also, the NC method requires two near-infrared bands to determine 

normalization coefficients in previous publication case [Elvidge et al., 1995]. However, 

only one near-infrared band is available in the new high resolution multispectral data 

sets, such as IKONOS and QuickBird. There also exist some problems for the DB 

method, because it requires Tasseled Cap Transformation step before collecting Dark set 

and Bright set, but there is only publication paper about experimental coefficients for 

IKONOS [Horne, 2003], and there is no publication paper about experimental 

coefficients for QuickBird. Therefore, difficulties were incurred during the testing of 

normalization methods. Some modifications were made to the existing methods so that 

they would be suitable for use with IKONOS/QuickBird data. The detailed 

implementation of each method for normalizing IKONOS and QuickBird data are 

described below: 

 

(1) The SR method and the HM method 

The SR method and the HM method both use all pixels of the reference image and 

subject image in the normalizing image process. No complicated normalized target 

selection is involved in both methods. There is no significant difference in implementing 

these methods between different satellite data. The normalization coefficients of the SR 

method was derived using Equation (6.2) and are listed in Table 6.5. 

Table 6.5. The normalized coefficients for different normalized methods 

Method Band 1 Band 2 Band 3 Band4 
 a b a b a b a b 

SR 0.485 32.242 0.601 44.882 0.518 20.507 0.575 88.142 
PIF 0.867 -88.605 1.062 -107.218 0.912 -80.272 0.925 -80.608 
DB 0.623 -0.679 0.760 12.766 0.638 6.921 0.747 -3.085 
NC 0.554 14.766 0.671 28.856 0.579 12.832 0.719 2.913 
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(2) The PIF method 

The normalization coefficients were calculated using Equation (6.3) and are listed 

in Table 6.5. 

For the IKONOS image and Quick Bird image, the pseudoinvariant feature set for 

the PIF method is defined by the following equations: 

PIF set=
⎭
⎬
⎫

⎩
⎨
⎧ >< 21 4bandand

3band
4band tt       (6.7) 

where t1 and t2 are the threshold values. For IKONOS case, t1 is set to 2 and t2 is set to 

80; for QuickBird case, t1 is set to 2 and t2 is set to 140. The threshold was set by 

comparing the different normalization results. The results of this method tested by Yuan 

and Elvidge [1996] and Yang and Lo [2000] were not good. Because the data set was 

different from previous research published by other authors [Schott et al., 1988; Eckhard 

et al., 1990; Hall et al., 1991; Elvidge et al., 1995; Yuan and Elvidge, 1996; Yang and 

Lo, 2000], the empirical values supported by those authors were not used in this study. 

In this study, the normalized image and the reference image appear very different 

when directly using these pseudoinvariant feature sets derived from Equation (6.7). 

After analyzing the pseudoinvariant feature sets, the problem was that some floating 

objects in the river with reflectance similar to roof tops, roads and others were included 

in the pseudoinvariant feature sets. Those objects cannot be included into invariant 

change objects in the pseudoinvariant feature set because of its conflict with the 

assumption, wherein the selected normalization targets are assumed not to have any 

significant change between two acquisition dates. In such a case, a mask excluding all 

water area was required to refine the pseudoinvariant feature sets. After it was refined, 

the number of these pseudoinvariant feature sets was changed from 1629789 to 1543225 
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in the Quickbird image and from 1703930 to 1690168 in the IKONOS image. The 

normalized image was very similar to the reference image using refined pseudoinvariant 

feature sets, although it is not as good as other methods. 

 

(3)The DB method 

The greenness and brightness transformation formula differs between Landsat TM 

image/MSS image pairs and QuickBird image/IKONOS image pairs because of 

differences in the satellite sensors. Horne [2003] developed a set of translation 

coefficients for IKONOS images: 

nirredgreenblue xxxx 567.0560.0509.0326.0brightness +++=  

nirredgreenblue xxxx 819.0325.0356.0311.0greeness +−−−=     (6.8) 

There is no special transformation formula in recent publications for QuickBird 

images. Since it is similar to the IKONOS image in both spectral range and radiometric 

resolution, Equation (6.8) was also applied to the QuickBird image for this study. 

Both the dark set and bright set were defined using Equation (6.9), which was 

applied to the IKONOS image and the QuickBird Image: 

Dark set={ 21 tbrightnessandtgreeness ≤≤ } 

and Bright set={ }     (6.9) 21 tbrightnessandtgreeness ≥≤

where t1 and t2 are the threshold values. For IKONOS case, dark set, t1 is set to 1 and t2 

is set to 300; bright set, t1 is set to 1 and t2 is set to 300.For QuickBird case, dark set, t1 

is set to 1 and t2 is set to 190; bright set, t1 is set to 1 and t2 is set to 220. The threshold 

values in Equation (6.9) were obtained by comparing different results. All the empirical 

values that appeared in previous publications had no reference value for this study. The 

 



 182

normalization coefficients were calculated using Equation (6.4) and were listed in Table 

6.5. 

 

(4) The NC method 

IKONOS and QuickBird only have one Near-IR band, unlike MSS satellite data 

which has two Near-IR bands. Thus, there is only one limited condition for determining 

the no-change pixels in the scattergram between Near-Infrared bands for IKONOS and 

QuickBird. In this study, good results were also obtained using the single Near-IR band. 

The NC set was defined by the following equation: 

NC set= }HVWXY{ 404_404_ ≤−− ba        (6.10) 

where a40 and b40 are initial normalization coefficients for the Near-Infrared band 

normalization coefficients (a4 and b4) obtained through locating the centers of water and 

land-surface data clusters from Near-Infrared band—band 4 scattergram, the HVW was 

the corresponding half vertical width of the no-change regions in the scattergrams. The 

relationship of HVW and HPW was:  

)HPW(1HVW 2
40a+=         (6.11) 

where a40 is the initial normalization coefficient of band 4, HPW is the half 

perpendicular width which is set as 10 in this study. 

In this study, the water cluster center coordinate in the scattergram is (53, 45), the 

land cluster center coordinate in the scattergram is (707,511). From these two 

coordinates, the initial normalization coefficients were acquired: a40=0.7125, b40=7.235. 

The HVW is 12.278, which was obtained with known a40 value by using Equation (6.11). 
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The normalization coefficients were calculated using Equation (6.5) and are listed in 

Table 6.5. 

 

6.4 Results 

The original QuickBird, IKONOS images, and the results of the normalized image 

are shown in figure 6.2. In terms of visual inspection, the HM is closest to the reference 

image, that is, the original QuickBird image. The SR, NC and DB look similar and it is 

difficult to determine which of these three normalized images is the best. To the naked 

eye, they all appear similar to the reference image. Compared with the other results, the 

PIF normalized image is most dissimilar to the reference image but it was still 

considered to be acceptable by the authors. 

 

 

 

 

 

 

 



 184

  
(a) (b) 

 
(c) (d) 

Figure 6.2. The reference image, the subject image and normalized images 

(a) Original IKONOS image as the subject image; (b) Original QuickBird image as the reference image; 
(c) SR normalized IKONOS image; (d) HM normalized IKONOS image. 
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(e) (f) 

 
 
 
 
 
(g) 

Figure 6.2. The reference image, the subject image and normalized images (continued) 
(e) PIF normalized image; (f) DB normalized IKONOS image; (g) NC normalized IKONOS image.  

 

Because the visual inspection is prone to subjectivity, the root mean square error 

(RMSE) is also used to evaluate the normalized images statistically. The root mean 

square error and sample sizes are listed in Table 6.6. In this table, the average RMSE of 

the original data is 118.98, all the normalized images average RMSE are less than this 

value. This implies that the normalized images are radiometrically more similar to the 

reference image. Different methods can be ranked according to their average RMSE 

value in descending order of HM, SR, NC, DB, PIF. The average RMSE difference is 

not significant among SM, NC and DB methods. These small differences underscore 

that visually distinguishing between them is difficult. 
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Table 6.6. Sample size and root mean square error of different normalization methods 

Method Radiometric control 
sets in IKONOS 

Radiometric control 
sets in QuickBird  

 
Root Mean Square Error 

 Number % Number % Band1 Band2 Band3 Band4 Average 
RAW* 7639212 100 7639212 100 115.18 90.82 96.57 173.35 118.98 

SR 7639212 100 7639212 100 30.39 53.41 48.06 125.34 64.3 
HM 7639212 100 7639212 100 20.12 45.34 39.16 98.67 50.82 
PIF 1690168 22.12 1543225 20.20 42.36 70.04 65.55 138.92 79.21 

895445(D*) 
1226286(B*) 

 710399(D*) 
1133372(B*) 

  DB 

2121731(T*) 27.74 1843771(T*) 24.13 32.77 57.47 53.25 128.03 67.88 
NC 1240017 16.23 1240017 16.23 31.67 54.88 51.58 127.32 66.36 

* D: dark set; B: bright set; T: total pixel number; RAW means between the subject image and the reference image. 
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6.5 Conclusion 

This study investigated applying typical methods of image normalization for 

normalizing an IKONOS image with a QuickBird image. In this study, the color 

differences between the QuickBird image and the IKONOS image was not very 

significant, there was not much change between the two acquisition dates (2 years), and 

there exists a large water area (water is required in NC method). These characteristics 

satisfy the implementation requirements for all tested image normalization methods. 

This means that the image characteristics do not favor one method over another. Under 

these equitable conditions, the findings or contributions of this research are: 

(1) Refining the PIF set yields a reasonable result, which differs from the 

negative results of previous published studies [Elvidge et al., 1996; Yang and 

Lo, 2000]; 

(2) The DB method provides a good result for the IKONOS image through 

introducing the empirical brightness and greenness transformation formula. 

In addition, it also works well on the QuickBird image, even though there is 

no special brightness and greenness transformation formula for the 

QuickBird image; 

(3) In the NC method, using only one Near-IR band, it is possible to define no 

change area sets and obtain a good result. 

From visually and statistically analyzing the normalized Quickbird and IKONOS 

images, HM produced the best results. That is, HM is the closest to the reference image, 

and is followed by SR, NC, DB and PIF. The differences among SR, NC, and DB are 

negligible. The PIF method ranks the lowest among all the tested normalization methods. 
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In terms of level of automation for each method, DB and PIF methods require more 

operator experience to set the threshold values, while other methods are relatively 

operator independent. Considering the combined effect of normalization and the degree 

of automatic implementation, this study concludes that HM is the most suitable method 

for normalizing QuickBird and IKONOS. 
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Chapter 7. CONCLUSION 

 

7.1 Summary of major work 

This research has developed several techniques and methods to resolve the 

problems encountered in processing high resolution remote sensing data. Three topics 

that have been studied are image fusion, image registration, and image normalization. 

For image fusion, a novel image fusion method based on wavelet transform and 

IHS transform integration has been proposed. The method applies the IHS transform to 

fuse spatial information of the high-resolution image into the low-resolution 

multispectral image, through using the wavelet transform to generate a new high-

resolution component that highly correlates to the intensity component of the IHS 

transform. Then, the new component is used to replace the intensity image for a reverse 

IHS transform. The fused image is obtained after the reverse IHS transform. While 

proposing the new image fusion method, the conventional IHS fusion methods (the 

cylinder model and the triangular model) and the conventional wavelet fusion have also 

been analyzed, and their fusion results have been compared by visual and statistical 

analysis. Initially, the optical images IKONOS and QuickBird, were used to evaluate the 

method. Later, three microwave data sets are used to evaluate the proposed fusion 

method in order to test the robustness of the proposed method. Two of the data sets 

consist of airborne SAR data and multispectral data (ASTER, Landsat, and SPOT) at 

different resolutions. The third data set is a Radarsat image and a Landsat TM image. 

Promising results were achieved in all the fusions of SAR images and multispectral 
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images from a variety of sensors with significant spatial and spectral variations. The 

ratios of resolution are different for the cases of SAR to Landsat TM, SPOT and 

ASTER: 1:24, 1:16, and 1:12 respectively. In addition, the spectral variations of the test 

images range from visible to infrared and microwave. Promising results were also 

achieved in the fusion of SAR and simulated natural colour SPOT images. To date, this 

method has been able to process any input data. In all fusion results, the color 

information of the multispectral image is preserved as well as the spatial information of 

the high resolution image. 

As the proposed image fusion method is related to wavelet, some problems and 

factors related to wavelet-based image fusion methods have also been discussed. First, 

the limitations of the standard wavelet-based image fusion method have been analyzed. 

Second, two improvement methods, wavelet-IHS integration and wavelet-PCA 

integration, have been described. Third, factors that affect the wavelet-based image 

fusion have been discussed, such as wavelet selection (orthogonal, biorthogonal or 

nonorthogonal), decimation or undecimation, and wavelet decomposition level. Seven 

types of wavelet fusion methods (orthogonal wavelet fusion with decimation, orthogonal 

wavelet fusion without decimation, biorthogonal wavelet fusion with decimation, 

biorthogonal wavelet fusion without decimation, wavelet fusion based on the “à trous” 

wavelet and IHS transformation integration, and wavelet and PCA transformation 

integration) have been tested and compared. IKONOS and QuickBird have been used to 

evaluate these fusion methods. 

For image registration, a new image registration technique, which is based on a 

combination of feature-based and area-based matching, has been proposed. A wavelet-
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based feature extraction technique is used to extract the feature points and produce the 

pyramidal structure. Normalized cross-correlation matching is used to build the initial 

correspondence of feature points between the reference image and the sensed image. 

The accurate correspondent feature points can be obtained by using probability 

relaxation-based image matching, which is based on feature information, unlike the 

normalized cross-correlation matching technique, which is based on gray information. A 

coarse-to-fine matching strategy has been used in this registration process. A triangle-

based model (a local transformation) has been used to resample the sensed image. Two 

pairs of data sets, panchromatic images of IKONOS and a panchromatic image of 

IKONOS with a multispectral image of QuickBird, were used to evaluate the proposed 

image registration algorithm. 

For image normalization, current image normalization methods were proposed 

based on the Landsat images; due to differences in spatial resolution, spectral band and 

radiometric resolution between Landsat and IKONOS/QuickBird images, not all the 

existing methods can be directly applied to normalize IKONOS or QuickBird images. 

This research has examined whether or not existing methods can be directly adopted for 

image normalization with high resolution satellite images, and has shown how these 

methods can be modified for use with such images. Some improvements are introduced 

to the existing methods to overcome problems caused by differences of the spatial 

resolution, spectral band, and radiometric resolution. IKONOS and QuickBird 

multispectral images taken in different years have been used to evaluate the improved 

image normalization methods. The normalized results are compared using visual 

inspection and statistical analysis.  
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7.2 Conclusion and recommendation 

The author has proposed a new image fusion method based on wavelet transform 

and IHS integration. The method has been evaluated using the optical image (IKONOS 

and QucikBird) and microwave images (airborne SAR and Radarsat with commonly 

used multispectral images, ASTER, Landsat, and SPOT). Successful results have been 

achieved for those images. This technique has also been evaluated by the industry and 

has attracted corporate interest. Further industrial commercialization will be considered. 

This research has also discussed wavelet-based fusion problems, improvement 

approaches, and the factors that should be considered in the fusion process. For standard 

wavelet-based fusion, color distortion can be reduced to a certain extent, but the fused 

image appears similar to a high-pass filtered image. Wavelet-integrated methods, such 

as wavelet-IHS and wavelet-PCA, can improve the fusion result, reduce ringing or 

aliasing effects to some extent, and make the whole image smoother. The research has 

also elucidated the following factors: wavelets (orthogonal, birorthogonal, non-

orthogonal), decimation or undecimation, and wavelet decomposition levels, which can 

affect the final fusion result. 

The author has proposed a new image registration method, which uses a wavelet-

based feature extraction technique, normalized cross-correlation and relaxation-based 

probability matching techniques, and a triangle-based local transformation model to 

resample the sensed image. The method has been tested on two pairs of data sets: 

panchromatic IKONOS images and a panchromatic IKONOS image with a multispectral 

QuickBird image. It can semi-automatically select enough control points for registration 

and can reduce the local distortions caused by terrain relief. 
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The research has also given improved strategies to normalize the high resolution 

images by using existing image normalization methods which were designed for the 

Landsat TM/MSS image. Due to differences in spatial resolution, spectral band and 

radiometric resolution between Landsat and IKONOS/QuickBird images, not all the 

existing methods can be directly applied to the normalization of IKONOS or QuickBird 

images. From this research, the following findings have been achieved. Refining the 

Pseudoinvariant Feature Set method yields a reasonable result; this differs from the 

negative results of previous published studies. The Dark-Bright method provides a good 

result for the IKONOS image through introducing an empirical brightness and greenness 

transformation formula; in addition, it works well with the QuickBird image, even 

though there is no special brightness and greenness transformation formula for 

QuickBird imagery. In the No Change Set method, using only one Near-IR band, it is 

possible to define no change area sets and obtain a good result. 

Four contributions have been achieved in this research: 

(1) This research has proposed a new image fusion algorithm to reduce the color 

distortion met in using current image fusion methods to process high 

resolution images. The new image fusion algorithm based on integration of 

wavelet transform and IHS transform, can process many different types of 

data and does not have data-specific limitations; to date, it has not been 

unable to process any available input data. 

(2) This research has examined the problems of wavelet-based image fusion and 

provided the improvement methods. The factors that affect the wavelet-based 
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fusion have also been analyzed. The analysis can help researchers understand 

and control the wavelet-based fusion process. 

(3) This research has proposed a new image registration algorithm to reduce the 

local distortion existing in high resolution images with terrain relief, which 

cannot be resolved by traditional image registration methods. The new image 

registration algorithm uses: the wavelet multiresolution property to extract 

feature points; a combination of normalized cross-correlation and probability 

relaxation matching techniques to find similarity between feature points in 

the reference and sensed images; and a triangle-based local transformation 

model to reduce the local distortion caused by terrain relief. The method can 

select a number of feature points semi-automatically, and reduce the local 

distortion existing in high resolution images with relief areas. 

(4) This research has provided improved strategies to resolve the problems 

encountered by using the traditional image normalization methods for 

moderate resolution images. The strategies are used for normalizing the high 

resolution images through modifications to the existing image normalization 

methods. 

 

7.3 Suggestions for further research  

For image fusion, suggestions include further testing the proposed method, 

evaluation of SAR fusion results, and research on factors affecting wavelet-based fusion 

results. Because of data availability, the author could not use all of the existing types of 

data to evaluate the proposed method; it would be worthwhile to test the proposed 
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method by using as many data as possible. Also, quantitative evaluation of the fusion 

results of a high resolution SAR image and an optical MS image is very rare. The most 

commonly used method is the correlation coefficient. The fusion results should be 

evaluated by more quantitative evaluation methods. Good topics for further research on 

wavelet-based fusion are factors that could affect the fusion result, such as selection of 

mother wavelet, selection of the number of vanishing moments, and different fusion 

rules. 

For image registration, suggestions include further refining the control points 

automatically and integrating more matching entities to improve the robustness of the 

proposed method. The proposed method is designed for high resolution images; some 

control points located in trees or buildings have to be removed manually in this research. 

Further research about removing those kinds of control point automatically would be 

beneficial. The control points are used in the proposed image registration method; if 

other matching entities, such as line or area based features, could be integrated into the 

image registration process, the proposed image registration would be more robust when 

applied to different data sources. 

For image normalization, suggestions include objective selection of target objects 

and evaluation of nonlinear mathematical models in image normalization. The target 

selection of most of the image normalization methods is based on human visual 

inspection, and it is prone to subjectivity. The objective selection of normalization 

targets will be explored in further research. The mathematical model used currently is 

mostly based on the linear model, and the nonlinear model is also worth discussing in 

further research. 
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