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Abstract 
 
      The three space Stokes-Helmert scheme of the precise gravimetric geoid 

determination has been theoretically developed and numerically realized in UNB. 

      A transformation of observed values of terrestrial gravity in Real space, from No 

topography space into Helmert space on geoid surface, is accomplished by a series of 

gravity reductions and corrections. Helmert co-geoid can be decomposed into two parts: 

the low-frequency part, called reference co-geoid is determined from satellite data 

directly; the high-frequency part, called residual co-geoid is determined by the solution 

of geodetic boundary value problem using derived terrestrial gravity. The co-geoid is 

transformed to the geoid by correcting from the primary indirect effects. 

      The final Canadian geoid has been compared with GPS/Leveling data. Difference 

due to the long wavelength part of the differences is obvious and other systematic 

errors, such as the bias and vertical deflection between the geometric geoid model and 

gravimetric geoid model, definitely exist. 
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Chapter 1  

Introduction 

1.1 Geoid definition  
The geoid is defined as an equipotential surface of the Earth corresponding to the mean 

sea level approximately, which is the most natural representation of the Earth’s shape. 

In the strict mathematical sense, this surface intersects the direction of gravity at right 

angles everywhere. Generally, it is too complicated to serve as the computational 

surface on which to solve geometrical problems such as point positioning. 

      The reference ellipsoid is customarily considered as a geocentric ellipsoid which 

best fits the geoid globally with the same volume as the geoid and the same mass as the 

Earth. Its minor axis is always parallel to the Earth’s principal polar axis of inertia. This 

geocentric reference ellipsoid that generates normal gravity is used to approximate the 

geoid. 

      The geometrical separation between the geoid and the reference ellipsoid is called 

the geoidal height (or geoidal undulation) and is denoted by . The orthometric height N

H is the height above the geoid and the geodetic height h  is the height above the 

reference ellipsoid. These three parameters are related by the following equation 

(Vaníček and Krakiwsky, 1986): 
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.HNh +=                                                         (1.1) 

 

Figure1.1: Relationship between the geoid, orthometric height and geodetic height. 

Adapted from Smith, NGS (2000) 

In Figure 1.1, the level surface represents the equipotential surface;  denotes geoidal 

height which is the distance along the ellipsoid normal (Q

N

0 to P0); H is orthometric 

height, the distance along plumb line (P0 to P); and h  is the ellipsoid height or geodetic 

height, the distance along the ellipsoid normal (Q to P). 

1.2 Geoid determination 

Since the geoid serves as a geodetic datum for vertical positioning and it is also 

valuable in geophysics, physical oceanography and elsewhere, many efforts in geodesy 
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are focused on its accurate determination. Usually, the geoid can be calculated by using 

either geometric or gravimetric approaches.  

      With the successful development of Global Positioning System (GPS) and its 

capability of measuring geodetic height fairly accurately, geoidal height can be 

calculated by a simple subtraction of geodetic height from orthometric height evaluated 

using spirit levelling. Due to the limited number of GPS/Levelling points, this 

geometric solution cannot provide a high-resolution geoid model over a large region. In 

this situation the cost-efficient gravimetric method is adopted. 

      One of the widely used gravimetric approaches to determining the geoid is the 

Stokes-Helmert’s technique, which was theoretically developed and properly refined at 

the University of New Brunswick (UNB). The associated software package was 

designed to numerically realize the local digital geoid based on the available gravity and 

elevation data. The detailed explanation of the Stokes-Helmert’s theory, the 

introduction to the associated software package, the numerical results’ presentation and 

the corresponding analysis will be shown in a later chapter.  

 

1.3 Thesis objective and structure  

The main objective of this research is to test the software package and come up with 

suggestions for improvements in the realm of user friendliness by understanding and 

mastering the theoretical background of the Stokes-Helmert’s approach, and being 

familiar with the precise geoid determination package, which contains programs and 

related accessories.  
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      The Stokes-Helmert approach, a mathematical model for the determination of 

precise gravimetric geoid, is described in Chapter (2). Firstly, the geodetic boundary 

value problem is introduced. To solve the problem, a harmonic space is created by 

applying the Helmert second condensation technique. Then each procedure in the 

Stokes-Helmert method is explained and the formulae are presented, which make up the 

theoretical methodology behind the corresponding programs.  

      During the computation, one must learn the flowchart of the precise geoid 

determination package, each program’s function, the required input data files, the 

method of generating the input data files, the solution of frequently encountered 

problems in running programs, and the necessary special technique skills, which are all 

fully investigated in Chapter (3). My contribution here has been the correction of two 

main programs, NT_anomaly and Helmert_anomaly, and the preparation of several 

auxiliary programs for data format transformation and data manipulation.  

      Chapter (4) is composed of the explanation for realization of the computational 

methods in programs, and the analysis of the numerical results of each procedure, 

shown by graphical plots and statistical tables respectively. The chapter concludes with 

the comparison between the present Canadian geoid model and the previous one 

produced at UNB. 

      The conclusions are summarized in Chapter (5). Additionally, recommendations for 

further research in the area of the precise geoid determination are presented. 
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Chapter 2  

Theoretical background 

2.1 Geodetic boundary value problem 

Let us begin with an explanation of the concept of the geopotential number (Baeschlin, 

1960) which relates the basic orthometric height (Vaníček and Krakiwsky, 1986), 

∫=−=
P

P
gdlWWC

0
0 ,                                        (2.1)                         

where g  is the mean value of gravity along the plumb line between the point on the 

geoid and the point ;  represents the leveling increment; and W  and  denote the 

gravity potential of the point and of the geoid, respectively.       

0P

P dl 0W

      According to Eqn. (2.1), the geopotential number is the product of gravity 

multiplied by the height increment between the equipotential surface, where the point is 

located and the geoid surface along the plumb line. Geoidal height can be solved 

analogously after the determination of the potential difference between the geoid and 

the ellipsoidal surface. The big issue is to pursue this potential difference.   

      As defined, the geoid is an equipotential surface and is denoted by W equal to , 

both a constant, which is approximated by an Earth-referenced ellipsoid. Throughout 

this thesis, the Geodetic Reference System 1980 (GRS80) is used as the geocentric 

0W
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reference ellipsoid generating a smooth potential field U , the normal potential. The 

normal potential on the reference ellipsoid is chosen to be equal to the real potential on 

the geoid  (Heiskanen and Moritz, 1967). 00 WU =

      Now we are concerned with (i) the difference between the actual gravity potential 

and the normal potential, which is called the disturbing potential T , and (ii) especially 

with T  on the geoid , ),( ΩgrT

,                             (2.2) ),(),(),(:0 Ω−Ω=ΩΩ∈Ω∀ gg UrWrT gr

where  is the solid spherical angle denoted by the pair Ω ),,( λφ  the geocentric co-

latitude and longitude;  stands for the total geocentric solid angle; oΩ r  is the 

geocentric radius of the point; and  is the geocentric radius of a point on the geoid. 

The argument  represents the position in three dimensions. All of the following 

formulae are valid over the whole Earth, i.e., 

gr

),( Ωr

Ω  belongs to oΩ . 

      If the function T  is harmonic outside the geoid, it satisfies Laplace’s differential 

equation in space everywhere above the geoid, 

0),(: 2 =Ω∇≥∀ rTrr g                                                   (2.3) 

with the following condition suited over the geoid surface as a boundary: 

),(),(2),(
Ω∆−=Ω+

∂
Ω∂

= ggrr rgrT
Rr

rT
g

,                               (2.4) 

which is the spherical approximation of the “Fundamental Gravimetric Equation” 

(Heiskanen and Moritz, 1967) and 

 ),(),(),( 0 φγ−Ω=Ω∆ gg rgrg                                           (2.5) 
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where  is the gravity anomaly on the geoid; ),( Ω∆ grg R  is the mean radius of the 

Earth; is the gravity on the geoid; and ),( Ωgrg 0γ  is the normal gravity on the reference 

ellipsoid. 

      The asymptotic condition of function T  at infinity is expressed by 

0),(lim =Ω
∞→

rT
r

.                                                       (2.6) 

Eqns. (2.3), (2.4) and (2.6) form a fixed, linear boundary-value problem called the 

geodetic boundary value problem (GBVP) in physical geodesy, which is suitable for 

determining the disturbing potential T  on the geoid (Heiskanen and Moritz, 1967). 

       The solution of T   for the above discussed boundary values, is given by Stokes 

formula (Stokes, 1849) 

( ) ')',()',(
4

),(
0

ΩΩΩ⋅Ω∆=Ω ∫∫
Ω

dSrgRrT gg ψ
π ,                       (2.7) 

where is the gravity anomaly referred to the geoid, g∆ )',( ΩΩψ is the spherical distance 

between the computation point Ω  and integration point Ω′ , and  denotes a spherical 

Stokes function relating the computation point 

S

Ω  and integration point . Ω′

      Next the geoidal height is derived by applying Bruns formula (Bruns, 1878) N

.
),(

0γ
Ω

= grT
N                                                        (2.8) 

      To determine the geoid, the boundary value, gravity anomaly must be evaluated on 

the geoid by applying the downward continuation from the topographical surface onto 

the geoid. 
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2.2 Construction of harmonic space 

Due to the existence of topography and atmosphere, the most significant problem in 

solving the GBVP arises from the application of Stokes’s formula which requires a 

harmonic space on and above the geoid.  

      One of the most common condensation techniques, Helmert’s second condensation 

method (Heiskanen and Moritz, 1967: Sec. 3-7), was adopted in the Stokes-Helmert 

scheme to satisfy these requirements. In this procedure, the topographical masses 

(masses between the geoid and the topographical surface) are condensed along the 

plumb line onto the geoid surface as an infinitesimally thin layer with a surface density 

given as the product of the average column density of topographical masses with the 

height of the topographical surface. 

      The gravitational potential V generated by the Earth may be split into two parts: 

tg VVV += ,                                                             (2.9) 

where  is the potential generated by the masses below the geoid and  is the 

potential generated by the topographical masses. Based on Helmert’s condensation 

method, the decomposition of the topographical masses reads 

gV tV

tctt VVV δ+= ,                                                       (2.10) 

where  is the potential of the masses condensed on the geoid and  is the residual 

topographical potential. 

ctV tVδ

      An abstract space obtained after such a condensation is called Helmert space (H-

space); consequently, a parameter with a superscript h  indicates that it is defined in H-

Space. Real space (R-space) is used to refer to the original space. According to the 
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techniques of Helmert’s second condensation, the gravity field in H-space (called 

Helmert’s gravity field) has the following characteristics: 

• The isostatic equilibrium of the crust and the features of the gravity field are 

retained essentially intact, because the total mass of the Earth is preserved; 

• Helmert’s disturbing potential at the Earth’s surface becomes smoother than the 

actual one; and 

• Stokes’ formula is applicable on the geoid in H-space without violating the 

required assumption of harmonicity. 

 

2.3 Stokes-Helmert’s scheme 

The second Helmert condensation technique is applied in conjunction with Stokes’ 

approach as the most straightforward method of solving the GBVP. The combination of 

these two main ideas is referred to as the “Stokes-Helmert scheme”.  

 

2.3.1 General introduction to methodology 

The Stokes-Helmert scheme, which was initially constructed by Vaníček and Martinec 

(1994), uses the Helmert condensation idea for precise geoid determination and the 

theoretical properties of Stokes’s solution in Helmert space. Over the last decade, it was 

revised and significantly improved at UNB in the so called Two-space scenario 

(involving the R-space and the H-space). More recently, it was followed by a 

development of the theory to accommodate the three-space scenario (Vaníček and 

Tenzer, 2003), additionally including the “No Topography” space (also referred to as 
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Bouguer space or NT-space) obtained by removing all of the topographical and 

atmospheric masses. The main idea behind it is that the disturbing potential is sought 

from a gravity anomaly in H-space, which leads to geoid determination based on Bruns 

formula. The objective of the scheme is to provide a theory accurate enough for 

calculating the geoidal height to one centimetre accuracy. The biggest obstacle to 

achieving this level of accuracy is in the mitigation of input data errors and 

improvement in area coverage. 

     The main principle of this scheme (shown in Figure 2.1), as originally conceived by 

Vaníček and Martinec (1994), can be characterized as follows: 

• The construction and transformation of the gravity anomaly  from R-

space into NT-space by removing all of the topographical and atmospheric 

masses to obtain a harmonic space and gravity anomaly with comparatively 

smoother pattern; 

),( Ω∆ trg

• The downward continuation of the gravity anomaly from the earth’s surface to 

the geoid in NT-space; 

• Transformation of the gravity anomaly referred to co-geoid from 

NT-space into H-space by the addition of the layer of condensed topographical 

and atmospheric masses onto the co-geoid surface, which is used in Stokes’s 

integral to evaluate the disturbing potential ; 

),( Ω∆ g
NT rg

),( Ωg
H rT

• Reformulation of the GBVP by decomposition of Helmert’s gravity field into 

the low and high frequency field; 

10



• Solution of Stokes formula for the high-frequency Helmert’s gravity field by use 

of the modified spheroidal Stokes kernel and evaluation of the Helmert 

reference spheroid from a satellite geopotential model; and 

• Transformation of the geoid from H-space back into R-space by adding the 

primary indirect topographical effect (PITE). 

 

 

Figure 2.1: Stokes-Helmert’s scheme 

 

2.3.2 Evaluation of gravity anomaly on the Earth’s surface  

The gravity anomaly on the Earth’s surface ),( Ω∆ trg  (Figure 2.2) (Vaníček et al., 

1999) is defined by 
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( ))()(),(),( Ω+Ω−Ω=Ω∆ N
ott Hrrgrg γ ,                     (2.11) 

where and  are the geocentric radius of a point on the Earth’s surface and on the 

ellipsoid surface respectively; 

tr or

NH  is the normal height between telluroid (Molodenskij 

et al., 1960) and ellipsoid surfaces; ς  is the quasigeoidal height, usually called the 

height anomaly; g is the observed gravity on the Earth’s surface; and γ  is the normal 

gravity referred to the telluroid. 

 

 

Figure 2.2: Parameters used in the definition of gravity anomalies 

 

   The difference between normal gravity ),( Ωtrγ , referred to the earth’s surface, and 

the normal gravity  referred to the telluroid 

 can be expressed as follows (Vaníček et al., 1999): 

))()(( Ω+Ω N
o Hrγ

)()()( Ω+Ω≅Ω N
o Hrr
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)(),()(),()]()([),( Ω
∂
Ω∂

−Ω−Ω≅Ω+Ω−Ω =
N

rrot
N

ot H
n
rrHrr

o

γγγγγ . (2.12) 

To evaluate the gravity anomaly ),( Ω∆ trg , the normal heights  should be 

used. In practice, orthometric heights  of gravity observations at the Earth’s 

surface are used instead.  The geoid-quasigeoid correction (Molodenskij et al., 1960) 

should be applied which is approximately described as a linear function of the simple 

Bouguer gravity anomaly , 

)(ΩNH

)(ΩoH

),( Ω∆ rg SB

)(
),()()()(

Ω
Ω∆

Ω≅Ω−Ω
o

t
SB

ooN rgHHH
γ

.                         (2.13) 

The simple Bouguer gravity anomaly  reads ),( Ω∆ t
SB rg

)(2)]()([),(),( Ω−Ω+Ω−Ω=Ω∆ o
o

o
ott

SB HGHrrgrg ρπγ ,       (2.14) 

where is Newton’s gravitational constant. The third term on the right-hand-side of 

Eqn. (2.14) stands for the gravitational attraction generated by the infinite Bouguer plate 

(of mean topographical density 

G

oρ  and thickness equal to the orthometric height 

 of the computation point). )(ΩoH

      Considering the formula for the free-air gravity anomaly  (Heiskanen 

and Moritz, 1967), 

),( Ω∆ t
FA rg

)(),()(),(

)]()([),(),(

Ω
∂
Ω∂

−Ω−Ω=

Ω+Ω−Ω=Ω∆

=
o

rrot

o
ott

FA

H
n
rrg

Hrrgrg

o

γγ

γ
       (2.15) 

and combining Eqns. (2.11) and (2.15) together, the gravity anomaly ),( Ω∆ trg  

becomes 
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)(),(
)(

),(),(),( Ω
∂
Ω∂

Ω
Ω∆

−Ω∆=Ω∆ =
o

rr
o

t
SB

t
FA

t H
n
rrgrgrg

o

γ
γ

.     (2.16) 

The second term on the right-hand-site of Eqn. (2.16) is called the geoid-quasigeoid 

correction denoted by ( )Ω,trχ , which can be simplified using the spherical 

approximation (Heiskanen and Moritz, 1967) 

),()(2),( Ω∆Ω≅Ω t
SBo

t rgH
R

rχ .                                    (2.17) 

The gravity anomaly ),( Ω∆ trg  subsequently takes the following form, 

),()(2),(),( Ω∆Ω+Ω∆=Ω∆ t
SBo

t
FA

t rgH
R

rgrg .                    (2.18) 

In respect to actual observed gravity data, the gravity anomaly  may be 

regarded as an available ‘measurable’ quantity. 

),( Ω∆ trg

 

2.3.3 Definition of gravity disturbance and its 

relation to gravity anomaly 

The gravity disturbance ),( Ωrgδ  is defined by the difference of the gravity ),( Ωrg  

and the corresponding normal gravity ),( Ωrγ  (Vaníček et al., 1999) 

).,(),(),( Ω−Ω=Ω rrgrg γδ                                          (2.19) 

The relation between the gravity disturbance ),( Ωrgδ  and the disturbing potential 

 in Eqn. (2.2) reads as follows (Vaníček et al., 1999) ),( ΩrT

),(),(),( Ω+
∂
Ω∂

−=Ω r
r
rTrg gδεδ ,                                   (2.20) 
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where  is the ellipsoidal correction to the gravity disturbance defined by 

(Bomford, 1971) 

),( Ωrgδε

),(2sin),(),( ΩΩ≅Ω rfrgrg ϕξεδ ,                                (2.21) 

where , and denote the semi-axes and the first numerical flattering 

of the geocentric reference ellipsoid; 

a b abaf /)( −=

ϕ  is the geodetic latitude; and ),( Ωrξ  is the 

meridional component of the deflection of the vertical (Vaníček and Krakiwsky, 1986). 

      The gravity disturbance ),( Ωtrgδ  is related to the gravity anomaly ),( Ω∆ trg  on 

the Earth’s surface by the following formula (Vaníček et al., 1999), 

)).((),(),(),( Ω+−Ω+Ω=Ω∆ N
ottt Hrrrgrg γγδ                   (2.22) 

The difference between gravity anomaly and gravity disturbance accounts for the 

change in normal gravity referred to the earth’s surface and referred to the telluroid, and 

is denoted by ),( ΩΓ tr . Using Bruns formula, ),( ΩΓ tr  may be rewritten to a sufficient 

accuracy (Vaníček and Martinec, 1994) as 

,
))((

),(),()(),(
))((),(),(

Ω+
Ω

∂
Ω∂

=Ω
∂
Ω∂

≅

Ω+−Ω=ΩΓ

== N
o

t
rrrr

N
ott

Hr
rT

n
r

n
r

Hrrr

tt γ
γςγ

γγ
          (2.23) 

where )(Ως  is the height anomaly, and the derivative of normal gravity is taken with 

respect to the normal n to the reference ellipsoid. Applying the spherical 

approximation, Eqn. (2.21) becomes (Vaníček and Martinec, 1994) 

),,(),(2),( Ω−Ω−=ΩΓ tntt rrT
R

r ε                                 (2.24) 

where ),( Ωtn rε  is the ellipsoidal correction for the spherical approximation, 
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⎤
⎢
⎣

⎡
⎟
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⎞

⎜
⎝
⎛ −+≅Ω ϕε  ,                     (2.25) 

where denotes Clairaut’s constant (Heiskanen and Moritz, 1967), and GMbam /22ω=

3 2baR =  is the mean radius of the Earth. 

      Based on Eqns. (2.20), (2.22) and (2.24), the following formula is produced 

(Vaníček et al., 1999) 

),(),(2),(),(),( Ω−Ω−Ω+
∂
Ω∂

−=Ω∆ = tnttgrrt rrT
R

r
r
rTrg

t
εεδ ,       (2.26) 

which is the so-called fundamental gravimetric equation of physical geodesy. It is 

equally valid for the real, No Topography, and Helmert spaces. 

 

2.3.4 Evaluation of NT gravity anomaly on 

the Earth’s surface 

The NT-space is produced after removal of the external (i.e., topographical and 

atmospheric) masses situated above the geoid and, consequently, causing considerable 

changes in the original gravity potential and the corresponding gravity field.  

      Considering in No Topography gravity potential space, the geoid-generated 

disturbing gravity potential ( )Ω,NT
trT  becomes harmonic above the geoid surface 

(Vaníček et al., 2003), 

                              ( ) ( ) ( ) ( )Ω−Ω−Ω=Ω ,,,,NT
t

a
t

t
tt rVrVrTrT ,                     (2.27) 

where  denotes the disturbing gravity potential; ( Ω,trT ) ( )Ω,rV a  represents gravitational 

potential generated by the atmospheric masses. 
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       Combining the fundamental formula of physical geodesy (Eqn. (2.26)), the geoid-

generated disturbing gravity potential ( )Ω,NT
trT  in Eqn. (2.27), and the definition of 

gravity anomaly Eqn. (2.16), the geoid-generated gravity anomaly  can be 

derived (Vaníček et al., 2003) 

( Ω∆ ,NT
trg )
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SBo
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rV
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rV
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rrgH
R

rgrg

tt

ε

εδ

            (2.28)
 

where the fifth term on the right-hand-side of Eqn. (2.28) represents the direct 

topographical effect on the gravitational attraction. The sixth term represents the direct 

atmospheric effect on gravitational attraction. The seventh and eighth terms stand for 

the secondary indirect topographical effect, and the secondary indirect atmospheric 

effect, respectively, on gravitational attraction. The negative radial derivative of the 

gravitational potential  defines the gravitational attraction of the topographical 

masses (Martinec, 1993); the gravitational attraction of the atmospheric masses is given 

by the negative radial derivative of the gravitational potential  of the 

atmospheric masses. 

( Ω,rV t )

)( Ω,rV a

      For the evaluation of the effect of atmospheric and topographical masses on the 

gravitational attraction, a numerical Newtonian integration using a spherical model over 

the whole earth was adopted. The effect of lateral variation of topographical density is 

also taken into consideration.  
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      The gravitational potential ( )( )Ωt
t rV

 
of the topographical masses is given by 

(Martinec and Vaníček, 1994b; Martinec, 1998) 
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The first term on the right-hand-side of Eqn. (2.31) is the gravitational potential of the 

spherical Bouguer shell (of mean topographical density  and thickness equal to the 

orthometric height  of the computation point 

oρ

( )ΩOH ( )Ω,r ) (Wichiencharoen, 1982). 

The second term represents the gravitational potential of the spherical roughness term, 

while the third term represents the effect of the anomalous topographical density ( )Ωδρ  

distribution on the gravitational potential. 

The direct topographical effect on the gravitational attraction (Martinec and Vaníček, 

1994a; Martinec, 1998) reads  
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The first term on the right-hand-side of Eqn. (2.32) is the negative value of the 

gravitational attraction of the spherical Bouguer shell (Wichiencharoen, 1982). The 

second term stands for the negative value of the gravitational attraction of the spherical 

roughness term, i.e. (the spherical terrain correction) and the third term represents the 

negative value of the effect of the anomalous topographical density ( )Ωδρ  distribution 

on the gravitational attraction. 

The gravitational potential ( )Ω,rV a  of the atmospheric masses is expressed by (Novak, 

2000) 
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(2.31) 

where  is the spherically distributed atmospheric density;  is the upper limit of 

the atmosphere; and 

( )raρ limr

( )[ rrl ]′Ω′Ω ,,,ψ
 
denotes the spatial distance between points ( )Ω,r  

and , where the latter point runs along the topography ( Ω′′,r ) limHR + . 

The direct atmospheric effect on gravitational attraction is given by the radial derivative 

of the gravitational potential of the atmospheric spherical roughness term (Novák, 2000) 
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2.3.5 Downward continuation of gravity 

anomaly in NT-space 
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The gravity anomaly in the NT-space has a smooth character. To obtain boundary 

values on the geoid, the gravity anomalies are continued from the Earth’s surface 

downward onto the geoid in the NT-space. This process is known as the downward 

continuation problem, and is described by the Poisson integral equation.  

      The Poisson integral is given by the following formula (Kellogg, 1929) 

  ( ) ( ) ( )[ ] ( ) Ω ′Ω′∆Ω′Ω
Ω

=Ω∆ ∫∫
Ω∈Ω′ O

d,RR,,,K
π4

R, NTNT gr
r

rg t
t

t ψ ,       (2.33) 

where ( ) ( )[ R,,,K Ω′ΩΩ ]ψtr  is the spherical Poisson integral kernel (Sun and Vaníček, 

1998); and  is the vector of the gravity anomalies referred to the co-geoid 

surface (approximated by the reference sphere). 

( ',RNT Ω∆g )

      Due to the harmonicity in NT-space, Poisson’s solution to the Dirichlet problem of 

upward continuation can be employed. The integral can be seen as an operator that 

transforms the gravity anomalies on the geoid into the gravity anomaly at any point 

outside the geoid. When the gravity anomalies on the geoid are known, the gravity 

anomaly at any point outside the earth can, theoretically, be derived by the integral. In 

fact, however, the known gravity anomalies are at the Earth’s surface and the unknown 

gravity anomalies are at the geoid. The problem we are confronted with is, in fact, an 

inverse problem.  

 

2.3.6 Transformation of gravity anomaly on the 

geoid surface from NT-space into H-space  
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To minimize the change in gravity field caused by the removal of the external masses, 

the gravity anomalies ( )Ω∆ ,RNTg  referred to the geoid surface in spherical 

approximation are transformed from the No Topography space into the Helmert space.       

      Helmert’s gravity anomaly ( )Ω∆ ,RHg  referred to the geoid surface is evaluated by 

adding the effect on the gravitational attraction of the condensed topographical and 

condensed atmospheric masses to the NT gravity anomaly ( Ω)∆ ,RNTg  (Vaníček et al., 

2003), 
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The second term on the right-hand-side of Eqn. (2.34) represents the direct effect of the 

condensed topographical masses on the gravitational attraction. The third term 

represents the secondary indirect effect of the condensed topographical masses on the 

gravitational attraction. The fourth and fifth terms stand for the direct effect of the 

condensed atmospheric masses, and the secondary indirect effect of the condensed 

atmospheric masses, respectively, on the gravitational attraction.  

The gravitational potential ( )Ω,RctV  of the condensed topographical masses in Eqn. 

(2.34) is given by (Martinec, 1998),  
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where the first term on the right-hand-side is the gravitational potential of the 

condensed spherical Bouguer shell; the second term stands for the gravitational 

potential of the spherical roughness term of the condensed topographical masses; and 

the third term represents the effect of the anomalous condensed topographical density 

distribution on the gravitational potential.  

      The direct effect of the condensed topographical masses on the gravitational 

attraction reads as (Vaníček et al., 2003),   
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where the first term on the right-hand-side is the gravitational attraction of the 

condensed spherical Bouguer shell; the second term stands for the gravitational 

attraction of the spherical roughness term of the condensed topographical masses; and 

the third term represents the effect of the anomalous condensed topographical density 

distribution on the gravitational attraction. 

The gravitational potential ( )Ω,RcaV  of the condensed atmospheric masses takes the 

following form (Novák, (2000)): 
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( ) ( ) ( )[ ]
( )

( ) ( )[ ] .dR,,,RdG

dR,,,RdG,R

O

lim

lim

O

lim

O

r

HR

12

HR

R

12

∫∫ ∫

∫∫ ∫

Ω∈Ω′
+=′

−

Ω∈Ω′

+

Ω′+=′

−

Ω′Ω′Ω′′′+

Ω′Ω′Ω′′′=Ω

r

a

Hr

aca

lrrr

lrrrV

ψρ

ψρ

22



The direct effect of the condensed atmospheric masses on gravitational attraction can 

further be expressed as (Vaníček et al., 2003), 
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(2.38)                            

The gravity anomaly on the geoid in H-space is then used as the boundary value in the 

spherical Stokes formulation. 

 

2.3.7 Evaluation of the Helmert co-geoid 

Helmert co-geoid  can be evaluated by applying the Stokes integral formula 

(Eqn. (2.7)) (Stokes, 1849) and Bruns formula (Eqn. (2.8)) (Bruns, 1878) as follow 

(Heiskanen and Moritz, 1967) 
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where  is Helmert’s gravity anomaly referred to the reference sphere of radius 

. The homogenous and isotropic spherical Stokes function 

( Ω∆ ,RHg )

))R (( Ω′Ω,Sψ , is given by 

(Heiskanen and Moritz, 1967) as 
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      To implement the surface integration according to the Stokes integral in Eqn. (2.39), 

the gravity anomalies ( )Ω∆ ,RHg  have to be known over the entire Earth. In practice, 

data on gravity anomalies over the entire Earth are not available. For this reason, the 
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summation over n  in the Stokes function given by Eqn. (2.40) can be separated into 

low-degree and high-degree parts (Vaníček and Kleusberg, 1987), 
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Considering Eqn. (2.41), Eqn. (2.39) becomes (Martinec, 1993) 
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( )ΩH
refN  and  represent the reference co-geoid (spheroid) and the high-

frequency (residual) co-geoid respectively (Novák et al., 2001). This approach is based 

on determination of the reference spheroid from the satellite derived potential 

coefficients (Vaníček and Kleusberg, 1987). Surface integration by the Stokes integral 

formula is employed to compute the high-frequency part of the co-geoid solely from 

terrestrial gravity data.  

( )Ω>
H
lnN

 

2.3.7.1 Reference field and spheroid in Helmert’s space 

The reference spheroid is computed from a satellite-derived spherical harmonic global 

model. Due to the attenuation of the strength of the Earth’s gravity, only the low-

frequency component of the Earth’s gravity field can reliably be detected in this way. 

Generally, a value of 20 is employed as the threshold value of degree l . It is believed 

that the frequencies up to this degree can correctly be derived from satellite dynamics, 
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and do not have to be further improved by terrestrial gravity data in a combined global 

geopotential model.  

      The low-frequency gravity disturbing potential ( )Ω,g
H

ref rT  can be estimated from the 

low-frequency spherical satellite-determined harmonic coefficients of a global geo-

potential model as follows (Vaníček and Featherstone, 1998) 
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where nmCδ
 
and nmS  are the fully normalized potential coefficients of degree  and  

order , which have been reduced by the even zonal harmonics of the reference ellipsoid, 

and 

n m

)cos(φnmP  are the fully normalized associated Legendre functions. 

      In similarity, Helmert’s reference gravity anomaly ( )Ω∆ ,H
ref grg

 
can be expressed as 

follows (Vaníček and Featherstone, 1998) 
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The reference spheroid is given by the reference co-geoidal heights . Applying 

Bruns formula, the reference co-geoidal height 

( )ΩH
refN

( )ΩH
refN  reads  

    ( ) ( )
( )φγ o

grT
N

Ω
=Ω

,H
refH

ref .                                       (2.45) 

 

2.3.7.2 GBVP in Helmert’s space 

The GBVP is used for the determination of the high-frequency co-geoid that is residual 

to the reference spheroid which has been described in detail in section 2.1. At this point, 
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two terms should be further explained: (i) boundary values and (ii) the modified 

spheroidal Stokes integral. 

      The boundary value, given as the residual gravity anomaly at the geoid, is defined 

(Vaníček and Kleusberg, 1987) as  

( ) ),(),(, Ω∆−Ω∆=Ω∆ > g
H
refgg

H
ln rgrgrg .                            (2.46) 

In practical terms, the integration domain 0Ω

 
can be divided into a spherical cap called 

the near-zone integration sub-domain 
oψ

Ω  (defined on the interval oψψ ,0∈ ) 

(Vaníček and Kleusberg, 1987) and the far-zone integration sub-domain 
oψO Ω−Ω  (on 

the interval π,oψψ ∈ ). Based on Eqn. (2.39), the near zone contribution to the 

residual co-geoid is calculated. The contribution of the gravity data outside the cap is 

referred to as the truncation error, and is minimized by the modified kernel. It is 

estimated from a global gravity field model (of a higher degree and order than the 

reference satellite-derived field). 

      Thus the Helmert residual co-geoid is evaluated by the Stokes integral in the 

Helmert gravity space using the residual gravity anomalies. The Helmert co-geoid is 

then obtained as a sum of the Helmert reference spheroid and residual co-geoidal 

heights.  

 

2.3.8 Primary indirect effect 

Now the effect of the difference between the gravitational potential of actual 

topographical masses and the gravitational potential of the condensed masses referred to 

the Helmert geoid should be taken into account; this quantity is usually called the 
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Primary Indirect Effect on potential. To transform the geoid from H-space into real 

space, the primary indirect topographical and atmospheric effects on the geoidal heights 

are evaluated.  

      Helmert’s disturbing gravity potential referred to the geoid surface is defined as 

(Vaníček et al., 2003)  

        ( ) ( ) ( ) ( )Ω−Ω−Ω=Ω ,R,R,R,RH at VVTT δδ ,                    (2.49) 

where  is the residual gravitational potential of the topographical masses; and 

 is the residual gravitational potential of the atmospheric masses. 

( Ω,RtVδ )

)

)

( Ω,RaVδ

      The residual gravitational potential of the topographical masses  may be 

rewritten according to Eqn. (2.10) as 

( Ω,RtVδ

                 ( ) ( ) ( )Ω−Ω=Ω ,R,R,R cttt VVVδ .                             (2.50) 

Similar to the treatment of the residual gravitational potential of the topographical 

masses, the residual gravitational potential of the atmospheric masses ( )Ω,RaVδ  is 

given by the difference of the gravitational potential ( )Ω,RaV  of the atmospheric 

masses and the gravitational potential ( )Ω,RcaV  of the condensed atmospheric masses 

(Vaníček et al., 1999): 

                ( ) ( ) ( )Ω−Ω=Ω ,R,R,R caaa VVVδ .                               (2.51) 

The primary indirect effect on geoidal heights which shows the relation between the 

geoidal height  and the co-geoidal height ( )ΩN ( )ΩHN  is defined (Martinec, 1993) as 
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The first term on the right-hand-side of Eqn. (2.52) is the primary indirect topographical 

effect on the geoidal heights; the second term represents the primary indirect 

atmospheric effect on geoidal heights. 

 

2.3.8.1 Primary indirect topographical effect 

The gravitational potential ( )Ω,RtV  of the topographical masses referred to the geoid 

surface is given by (Martinec, 1993) as 
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The gravitational potential ( )Ω,RctV  of the condensed topographical masses referred to 

the geoid surface reads (Martinec, 1993) 
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Eqns. (2.53), (2.54) and (2.50) are combined to yield the primary indirect topographical 

effect on the geoidal heights, which reads (Martinec, 1993) 
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2.3.8.2 Primary indirect atmospheric effect 

The gravitational potential ( )Ω,RaV  of the atmospheric masses referred to the geoid 

surface takes the following form (Novák, 2000), 

                   
(2.56)
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The gravitational potential ( )Ω,RcaV  of the condensed atmospheric masses referred to 

the geoid surface reads (Novák, 2000))  

                      

(2.57) 
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Considering Eqns. (2.54), (2.55) and (2.49) together, the primary indirect atmospheric 

effect on the geoidal heights is given as 

29



( )
( ) ( ) ( ) ( )[ ] ( )[ ]( )

( )

( ) ( ) ( )[ ] ( )[ ]( ) .ddR,,,R,,,RG

ddR,,,R,,,RG,R

O

lim

lim

O

lim

O

r

HR

211

2HR

R

11

∫∫ ∫

∫∫ ∫

Ω∈Ω′
+=′

−−

Ω∈Ω′

+

Ω′+=′

−−

Ω′′′Ω′Ω−′Ω′Ω′+

Ω′′′Ω′Ω−′Ω′Ω′=
Ω

r

a

o

Hr

a

oo

a

rrlrlr

rrlrlrV

ψψρ
φγ

ψψρ
φγφγ

δ

(2.58) 

 

2.3.9 Summary of the Stokes-Helmert’s scheme 

According to the above descriptions, the Stokes-Helmert’s scheme can be summarized 

(see Figure 2.3) as follows: 

•  By the ellipsoidal corrections and the geoid-quasigeoid correction, the free air 

gravity anomaly is transformed into the gravity anomaly on the Earth’s surface 

in R-space; 

• The gravity anomaly on the Earth’s surface in NT-space can be evaluated by 

adding the direct topographical and atmospheric effects on gravity (DTE and 

DAE), and the second indirect topographical and atmospheric effect on gravity 

(SITE-NT and SIAE-NT); 

• The NT gravity anomaly is downward continued from the Earth’s surface onto 

the geoid; 

• Considering the direct condensed topographical and atmospheric effects on 

gravity (DCTE and DAE-H), the second indirect condensed topographical and 

atmospheric effect on gravity (SITE-H and SIAE-H), both taken on the geoid, 

the gravity anomaly referred to the geoid is transformed from NT-space into H-

space; 
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• The reference gravity anomaly and the reference spheroid are evaluated. Then 

the residual gravity anomaly and the residual co-geoid  are calculated by Stokes 

integral; 

• The reference spheroid and the residual co-geoid are combined with PITE to 

arrive at the final geoid. 
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Figure 2.3: Flowchart of the Stokes-Helmert’s scheme 
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Chapter3  

The Precise Geoid Determination 

Software Package 

3.1 Introduction to the software package 

The development of the Stokes-Helmert theory of determination of the gravimetric 

geoid in a three-space scenario and its refinement to achieve theoretical one-centimeter 

accuracy enabled the conception of a corresponding suite of programs called the UNB 

Precise Geoid Determination Package (PGDP); developed over the past decade at 

UNB, PGDP’s main function is the numerical realization of a precise geoid model. Its 

development targets the objective of calculating geoidal height with one centimeter 

accuracy, providing that the accuracies and spacing of the required input data and their 

area coverage meet acceptable standards. Associated documentation considered as the 

reference manual, is comprised of three parts: (i) Manual I:  the theoretical description 

of the Stokes-Helmert method of geoid determination; (ii) Manual II:  the reference 

user’s guide shows the function of each particular program for computation of the 

geoid; and (iii) Manual III:  documentation of auxiliary programs enabling data 

manipulation and format transformation. 
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      To calculate geoidal heights over Canada, the required data include:  available 

terrestrial gravity data; digital elevation model; and other auxiliary data, such as digital 

topographical density model, global elevation model, and global potential model. 

Additionally, GPS/Leveling data are used as a standard to evaluate the accuracy of the 

final geoid model. 

      A flowchart of PGDP operations (see Figure 3.1) shows each computational step, 

related programs and required input files. Operations required to evaluate each gravity 

anomaly and the final geoid are shown in the sequence of boxes in the left-hand side of 

Figure 3.1. Associated programs are shown in the middle and on the right-hand side, 

along with the required input files. Table 3.1 introduces each program’s function. 

From the flowchart and the table, the computational procedure can be readily 

summarized as follows: 

• For the transformation from the mean free air gravity anomaly ),( Ω∆ t

FA
rg  into 

the mean gravity anomaly in NT-space ),( Ω∆ t

NT
rg , the ellipsoidal corrections 

and the geoid-quasigeoid correction, the near zone and far zone terrain 

roughness effects on gravity (STC-near-zone and STC-far-zone), the anomalous 

topographical density effect on gravity (DTE-density), SITE-NT, SIAE-NT, and 

DAE-NT are taken into account. These are calculated by programs 

Ellipsoidal_cor, Geoid_quasigeoid_cor, STC_near_zone and STC_far_zone, 

DTE_density, SITE_NTspace and SIAE_NTspace, and DAE_NTspace 

respectively. 
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• After running program Downward_continuation program, the gravity anomaly 

referred to geoid in NT-space  is obtained from the mean gravity 

anomaly in NT-space 

),( Ω∆ g
NT rg

),( Ω∆ t

NT
rg . 

• Then the gravity anomaly referred to geoid in NT-space  is 

transformed into the gravity anomaly referred to the geoid in H-space 

, by considering the near zone and far zone terrain roughness effects 

on gravity (SCTC-near-zone and SCTC-far-zone), the anomalous topographical 

density effect on gravity (DCTE-density), SICTE-H, SICAE-H, and DCAE-H  

These are calculated by programs SCTC_near_zone and SCTC_far_zone, 

DCTE_density, SITE_Hspace and SIAE_Hspace, and DAE_Hspace 

respectively. 

),( Ω∆ g
NT rg

),( Ω∆ g
H rg

• The residual gravity anomaly is obtained from the Helmert gravity 

anomaly  through subtracting the Helmert’s reference gravity 

anomaly , calculated by program Reference_field. 

),( Ω∆ > g
H
n rg l

),( Ω∆ g
H rg

),( Ω∆ g
H
ref rg

• By employing Stokes_integral, the residual spheroid  is arrived at. 

The addition of the reference spheroid,  calculated by program 

Reference_spheroid, results in Helmert co-geoid.  

),( Ω> g
H
n rN l

),( Ωg
H
ref rN

• Finally, considering the primary indirect topographical effect on geoid 

calculated using programs PITE  and PIAE, the digital geoid is realized.  
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Figure 3.1: Flowchart of the UNB Precise Geoid Determination Package (PGDP) 
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PROGRAM FUNCTION 
FA_gravity_anomaly computation of mean values of free-air gravity anomalies 

STC_near_zone computation of point values of the near-zone contribution to the gravitational 
attraction of the spherical terrain roughness term referred to the Earth’s surface 

STC_far_zone computation of point values of the far-zone contribution to the gravitational 
attraction of the spherical terrain roughness term referred to the Earth’s surface 

Ellipsoidal_cor computation of mean values of the ellipsoidal corrections to the boundary value 
problem 

Geoid_quasigeoid_cor 
computation of mean values of the geoid-quasigeoid correction to the boundary 
value problem 

DTE_density computation of mean or point values of the direct effect of the anomalous 
topographical density distribution referred to the Earth’s surface 

DAE_NTspace computation of point values of the direct effect of atmospheric masses on the 
gravitational attraction referred to the Earth’s surface 

SIAE_NTspace computation of point values of the secondary indirect effect of atmospheric masses 
on the gravitational attraction referred to the Earth’s surface 

SITE_NTspace computation of point values of the secondary indirect effect of topographical masses 
on the gravitational attraction referred to the Earth’s surface 

NT_anomaly computation of mean values of the “No Topography” gravity anomalies referred to 
the Earth’s surface 

Downward_continuation downward continuation of the mean “No Topography” gravity anomalies from the 
Earth’s surface onto the co-geoid 

SITE_Hspace computation of point values of the secondary indirect effect of condensed 
topographical masses referred to the geoid surface 

SIAE_Hspace computation of point values of the secondary indirect effect of condensed 
atmospheric masses on the gravitational attraction referred to the geoid surface 

DAE_Hspace computation of point values of the direct effect of condensed atmospheric masses on 
the gravitational attraction referred to the geoid surface 

DCTE_density computation of point values of the direct effect of the anomalous condensed 
topographical density distribution referred to the geoid surface 

SCTC_near_zone computation of point values of the near-zone contribution to the spherical condensed 
terrain roughness term referred to the geoid surface 

SCTC_far_zone computation of point values of the far-zone contribution to the spherical condensed 
terrain roughness term referred to the geoid surface 

Helmert_anomaly computation of point values of Helmert gravity anomalies referred to the co-geoid 
Reference_field computation of Helmert’s reference gravity anomalies referred to the co-geoid 
Stokes_integral computation of Helmert residual co-geoid 

Reference_spheroid computation of Helmert reference spheroid 

PIAE computation of point values of the primary indirect atmospheric effect on the geoidal 
heights 

PITE computation of point values of the primary indirect topographical effect on the 
geoidal heights 

 

Table 3.1: Function of each program in the UNB Precise Geoid Determination Package 
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3.2 Specification of input files 

In the absence of a statements to the contrary, all original input files have been provided 

by Geodetic Survey Division (GSD) of Natural Resources Canada. At present, heights 

including local digital terrain model and global elevation model, gravity data, 

topographical density data and other are used as standard input data. 

 

3.2.1 Heights 

Two Digital Terrain Models (DTMs) are used for numerical computation: one is the 

detailed DTM; the other is the mean DTM with a relatively smooth character, obtained 

from the detailed DTM. The global elevation model TUG87 (Wieser, 1987) is also 

employed, which contains the spherical harmonic representation of the global 

topography to the degree and order of 180. The coefficients for the second power of 

global topography up to degree and order 90 are also available for evaluation of the 

effects due to the far-zone topographical masses.  

 

3.2.1.1 Detailed Digital Terrain Model (DTM) 

The Canadian Digital Elevation Data (CDED) used as the detailed DTM are often saved 

as binary files using “byn” as extension of the file name. Each file contains two 

sections: (i) an 80-byte header; and (ii) the actual data. The data are sorted in rows 

starting from north to south, and each row is sorted from west to east. All data are 

stored as short or long integers. The size of the file is 80 bytes plus the number of rows, 
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multiplied by the number of columns times the size of data in bytes. Elevations are 

stored as a short integer with a multiplication factor of 1. CDED files are of different 

resolutions determined photogrammetrically according to the latitude. One file of the 

detailed DTM below latitude 68º north contains the elevation within an area of 1º by 1º 

with a resolution of 3′′ by 3′′. Between latitude 68º and 80º north it covers an area of 1º 

by 2º with a resolution of 3′′ by 6′′ while, for areas above latitude 80º north, the 

coverage area is 1º by 4º with a resolution of 3′′ by 12′′. In addition, detailed American-

sourced DTM data are also used. They are referred to as STRM, and come in binary 

format with a different header from CDED. 

      In this solution of the Stokes-Helmert scheme, the detailed DTM covers the 

Canadian landmass. It is required the evaluation of the effects on gravity of the 

following factors associated with topography: STC-near-zone, SCTC-near-zone, DTE-

density and DCTE-density. The corresponding programs in the PGDP require detailed 

DTM’s formatted, regardless of latitude, in a 3′′ by 3′′ geographical grid.  

 

3.2.1.2 Mean Digital Terrain Models 

Mean DTM files are also stored as integers in binary files sorted by rows from north to 

south, and each row sorted from west to east. In practical terms, the North American 

Digital Elevation Model data with a recommended resolution of 30'' by 30'', and derived 

from GTOPO30 (conventionally denoted herein as DEM_NA_30s.byn) is established as 

the original data set of mean orthometric heights. It can be used to generate mean 

orthometric height file with resolution 30" by 30" (DEM_30s) and with resolution 5' by 

5' (DEM_5m). Figure 3.2 shows the 5′ mean orthometric heights covering Canada. 
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Figure 3.2: Mean DTM with 5′ by 5′ resolution (m) 
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3.2.2 Gravity data 

In the absence of a homogeneous and properly densified network of point gravity 

anomalies (with known orthometric heights), terrestrial gravity data are available in 

mean form on 5′ by 5′ grid for both Simple and of Complete Bouguer gravity anomalies 

derived from point values, stored in an ASCII data file in a following format: 

       Latitude (deg), longitude (deg), gravity anomaly (mGal),  

representing a series of data sets. In the meantime, however, averaging the “observed” 

point anomalies in a geographic cell suppresses the observational errors in data 

collection and smoothes the gravity field. The degree of smoothness depends on the 

areal extent of the cell. Practically, in geoid determination, the mean anomalies 

associated with smaller cells eliminate only the local surface irregularities of the gravity 

field without affecting the geoid solution.  

      One of global geopotential models, GRIM4-S4 (Schwintzer et al., 1997) is adopted 

to evaluate the reference gravity anomaly and reference geoidal height. Satellite gravity 

data are given in the form of potential coefficients. 

 

3.2.3 Topographical density data (laterally varying) 

The Digital Topographical Density Model (DTDM) becomes necessary if the desired 

level of accuracy of the geoid model is centimeter or less because, as Martinec (1993) 

has demonstrated theoretically, the lateral density variation of topographical masses 

may introduce errors into the geoid starting at the decimeter level. In the present work, 
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topographical mass density variation effects on the geoid are computed with the use of 

programs DTE_density and DCTE_density within the PGDP (see Table 3.1). Geoid 

computation in the Canadian Rocky Mountains, which have the largest relief and 

density variations in Canada, are the most severely affected by the topographical 

density effect. 

      The laterally varying DTDM is stored in a binary file. The topographical density file 

which used in geoid determination in Canada is called “TopoDensity_CDN_30s.byn” 

with a 30′′ by 30′′ resolution covering the region bounded by north latitudes 30º and 84º, 

and by east longitudes 215º and 349º. It should be transformed into an ASCII file before 

being used. The representative density value for each geological unit is taken as the 

mean value of the density range. In addition, the constant topographical density of 

2670kg/m3 is adopted as the actual value over US territory and sea regions in this file.  

 

3.2.4 Other standard input data 

Normal gravity field parameters are employed, according to the Reference Ellipsoid 

GRS-80.  

      The geopotential model EGM96 (Lemoine et al., 1996) is adopted in computations, 

which contains fully-normalized, unitless spherical harmonic coefficients completed 

from degree 2 order 0 to degree and order 360, and their corresponding standard 

deviations. The EGM96 model represents the latest development in high degree 

geopotential models which combine satellite data and the available surface and marine 

gravity data. The long wavelength effect of the far-zone contribution to the geoid 

surface is generated from this model. 
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3.3 Problems encountered during data processing 

3.3.1 Production of mean DTM files 

As mentioned in Section 3.2.1.2, the data set DEM_NA_30s.byn covers the region of 

North latitude 20º to North latitude 83º, and East longitude 191º to East longitude 350º, 

stored in binary format. 

      Firstly by using the program “H_read.c”, see Appendix. (A.1), ASCII grid files can 

be obtained over the desired region. Such a file is sorted by rows from north to south, 

with each row sorted from west to east. Mean orthometric heights are stored as integers.  

      In the Linux operating system, the command format to run “H_read.c” should be, 

 
./H_read.e  <H_read.job>  H.mean 

 

where H_read.e is the result of the compilation of program “H_read.c”; “H.mean” is the 

name of the output file, which can be defined by the user; and file <H_read.job> 

contains data in the following format: 

                                           
83    0   0 
-150  0   0 
50 
100 
10 
10

                                 

 

 

where the first line number represents the latitude of the most northwest point of the 

area; the second line represents the longitude of the most northwest point of the area; 

the third line represents the amplitude of the latitude in degree; the fourth line represents 
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the amplitude of the longitude in degree; the sixth and the seventh lines represent grid 

step of latitude and of longitude, respectively. Referring to grid step, 10 or 1 represents 

the result resolution is 5′ or 30″, which is designed in program.  

      The first line of the output file, “H.mean” is a header in the following format: 

“Minimum Latitude; maximum latitude; minimum longitude; maximum longitude; step 
in latitude; step in longitude.” 

 
All numbers in the header are in degrees separated by a space and orthometric height 
data begin from the second line; e.g., 
 

 

 

The ne

file con

 

 

 

Each la

file in a

 

 

 

 

The me

to east 

 

33.00417  82.99583  210.00417  309.99583  0.008333333  0.008333333
231 278 211 367 532 231 782 667 321 289 882 701 829 872 291 211
xt step requires running the program “H_grid.c”, see Appendix. (A.2). Its option 

tains the input, and output file names and the corresponding paths, for example: 

/data/Computation_Results/DEM/H.mean 
/data/Computation_Results/DEM/H_1_1.mean 

titude, longitude and associated orthometric height are then saved into an output 

 form such as: 

82.99583  210.00417  231
82.99583  210.01250  278
82.99583  210.02064  211
82.99583  210.02917   … 

an DTM files are generated better in the order from north to south and from west 

to suit the requirement of programs within PGDP. 
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3.3.2 Generation of input files for PGDP 

component programs DAE_NTspace, 

DAE_Hspace, SIAE_NTspace, 

SIAE_Hspace and PIAE 

As stated in Manual Part II, these programs require four types of input files: 

“Inner_zone.dat”, “Near_zone.dat”, “Computation_point.dat” and “H-1deg_world.dat”. 

“Near_zone.dat” and “Computation_point.dat” contain 5′ by 5′ resolution mean 

orthometric height data. “Inner_zone.dat” contains 30′′ by 30′′ resolution mean 

orthometric height data, and “H-1deg_world.dat” denotes the default set of global 

orthometric height data with a 1º by 1º resolution. 

 

3.3.2.1 Mean orthometric heights with 5′ by 

5′ resolution (DEM_5m) 

The generation of mean orthometric heights (with a 5’ by 5’ resolution) can be seen as 

an extension of the procedure quoted in Section 3.3.1. The solution involves, firstly, a 

repetition of the method referred to in Section 3.3.1 to obtain DEM_5m coverage for the 

whole of Canada with an implied range of 33-83º N and 210-310º E. Secondly, the file 

covering the required area is produced with the use of program “subarea.c”, see 

Appendix. (A.3). Considering the size of data sets and the convenience of checking the 

production to avoid mistakes, it is advisable to split the computational area crossing 

Canada into 10º by 10º sections. One example of the option file “subarea.opt” is:  
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/H.mean  720000 
/DEM_5m_1_1 
73.0 83.0 210.0 220.0

 

 

where “H.mean” is DEM_5m as input file covering all of Canada; 72000 is the number 

of rows in file “H.mean”; “DEM_5m_1_1” is the output file name; the numbers in the 

third line represent the boundary latitude and longitude of the DEM_5m_1_1’s 

coverage. 

 
310º 300º 220º 210º 

DEM_5m_5_10 DEM_5m_5_1 

DEM_5m_1_10 

DEM_5m_3_2 DEM_5m_3_10 

33º 

DEM_5m_4_10 DEM_5m_4_1 

DEM_5m_3_1 

DEM_5m_2_1 DEM_5m_2_10 

DEM_5m_1_2 

DEM_5m_2_2 

DEM_5m_4_2 

…

…
…
…
…

230º 

DEM_5m_5_2 

DEM_5m_1_1 
73º 

53º 

 
 
 
 
 
 
 
 
 
 

       Table 3.2: DEM_5m files covering Canada 

 

    

 

 
                          

 

Figure 3.3: Coverage relation between Near_zone.dat and Computation_points.dat 20º 

                                              
 

                                   
DEM_5
m_1_1 

Near_zone_5m_1_1

5º 

5º 

20º 

At the final stage, the resulting DEM_5m files should have an appearance similar to 

Table 3.2, which are the required the “Computation_points.dat”. 
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      The file “Near_zone.dat” is produced by extending 5 additional degrees in each 

direction of the corresponding “Computation_points.dat” as shown in Figure 3.3. Each 

final file “Near_zone.dat” file covers a grid area of 20º by 20º after such an operation. 

 

3.3.2.2 Mean orthometric heights with 30′′ by 

30′′ resolution (DEM_30s) 

There are two ways to produce DEM_30s. One involves the same method as in 

DEM_5m’s generation. The other, which involves repeating the use of “H_read.c” and 

“H_grid.c” to produce DEM_30s files directly, was adopted for practical purposes 

based on the computational efficiency in terms of running time of this pair of programs.   

      Compared to the corresponding “Computation_points.dat”, the “Inner_zone.dat” file 

extends 1 additional degree to each side, as shown in Figure 3.4: 

 

  
                                     
 

                                   DEM_5
m_1_1 

Inner_30s_1_1

1º 

1º 

12º 

12º 

 

 

 

 

  

Figure 3.4:   Coverage relation between Inner_zone.dat and Computation_points.dat 

                                            

3.3.3 Preparation of “Inner_zone.dat” for programs 

SITE_NTspace, SITE_Hspace, and PITE 
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The other input files are generated in the same way as described in Section 3.3.2, with 

the exception of “Inner_zone.dat” which requires that these programs also contain 

topographical density information. DTM_30s is obtained  based on the method outlined 

in Section 3.3.2.2; it is then combined with the gridded density file covering the same 

area as shown in Section 3.2.3. Each row of the resulting file includes latitude 

longitude, orthometric height and topographical density. 

 

3.3.4 Preparation and management of the detailed DTM files  

3.3.4.1 Renaming of detailed DTM data files 

Because the name of the original detailed DTM files is irregular, renaming the files 

according to their position provides superior organizational integrity. Usually, the 

coordinates of the northwestern-most point in the data file are used as the file name. For 

example, “N66E236_h.byn” denotes a detailed DEM file containing elevations within a 

1° × 1° area bounded by 65-66º N and 236-237º E. 

 

3.3.4.2 Reshaping the regions covered by detailed DTM 

GSD provided 12 CDs, each of which contains detailed DTM files corresponding 

roughly to Canada’s (irregularly shaped) provincial and territorial divisions. To satisfy 

the computation requirements to deal with the effects of topography, and especially for 

the convenience of preparing the option files, the detailed DTM files are reorganized 

into several regularly shaped regions, with adjacent regions having one degree of 

overlap in latitude / longitude. 
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3.3.4.3 Generating of detailed DTM files 

The program DTE (which combines STC_near_zone, STC_far_zone, SCTC_near_zone, 

SCTC_far_zone, DTE_density and DCTE_density) requires that the resolution of 

detailed DTM files with binary format be 3′′ by 3′′; also, the scheme of the detailed 

DTM files should be as shown in Figure 3.5 for calculating the 1º by 1º shade region 

due to the requirement for a 1º Newton spherical integral around the computation point. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

N56E249_H.byn 

251ºE 250ºE 249ºE 248ºE 

55ºN 

56ºN 

57ºN 

N55E250_H.byn 

N56E250_H.byn 

N57E250_H.byn 

N55E248_H.byn 

N57E248_H.byn 

N56E248_H.byn 

N57E249_H.byn 

N55E249_H.byn

 
Figure 3.5: Example of the scheme of detailed DTM files 

 

      Thus, the detailed DTM data must cover all of the computation area. In actual 

application, there is lack of such binary DTM files over sea regions (previously 
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unnecessary due to always zero elevation), absence of files over several regions, and the 

resolution is relatively lower than 3′′ by 3′′ in high latitude areas (see Section 3.2.1.1). 

The appropriate programs must be prepared for producing 3" by 3" DTM files for DTE 

to achieve three goals: (i) to produce the file containing zero elevation over sea regions, 

with the exact same format as CDED (Canada) (the corresponding program is called 

“grid1_CDED.c” in Appendix (B.1)) or SRTM (U.S.A.) based on location of the grid 

cell area; (ii) to interpolate the low-resolution mean DTM with 30" by 30" in ASCII 

format, into 3" by 3" binary files for regions lacking the corresponding files and to 

reformat into Binary (the corresponding program is called “grid2_CDED.c” in 

Appendix (B.2)); and (iii) to solve the problem across high latitude area, firstly the 

original detailed DTM file is opened to obtain the elevation data with low resolution 3" 

by 6" or 3" by 12", then the 3" by 3" resolution is achieved by mean of employing linear 

interpolation, finally the data are arranged back to binary file (the corresponding 

program is called grid3_CDED.c” in Appendix (B.3)). The difficult point is to generate 

binary file with special format containing header and orthometric height data. 

 

3.3.5 Programs Reference field and Reference 

spheroid 

The programs Reference_field and Reference_spheroid are interactive. After the 

commencement of computation, these two programs Reference_field and 

Reference_spheroid solicit the user’s preferences (referred to in the program as 
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“options”), a task that may be difficult for a novice user. Users are prompted according 

to the following process questions and general choice areas: 

Firstly, mass-conservation condensation should be chosen as the relevant technique of 

Helmert’s condensation to be applied. The boundary area should begin with 2.5′ and 

end with 57.5′ in general because the results with 5′ by 5′ resolution. These two 

programs require that steps in latitude and longitude be the same, at 5′ increments. The 

maximum degree of approximation should be defined as 20 and the minimum degree 

should be 0. This set of responses meets the minimum requirements at the program 

setup stage.   

 

3.3.6 Evaluation of required region for each file 

At the beginning of the computation, one should define the limits of the resulted geoid 

region. Theoretical prerequisites of downward continuation call for one additional 

degree for eliminating the edge effect; Stokes integration selects the spherical cap with 

a radius of 6º. Obviously, in respect of the procedure for numerical realization of the 

geoid model, the region of each file calculated in Real space should be 7º larger than 

that of the final geoid on each side. The region of each file calculated in NT-space must 

be 6º larger. All files computed in H-space thus have the same geographic region as the 

geoid. 

      This problem becomes complicated if the final geoid model has an irregular shape 

which results in an increased amount of data processing. 

 

3.3.7 Additional comments 
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During the procedure of downward continuation, one of the input files, the mean 

orthometric heights file (DEM_5m) should be exactly 7º by 7º over the computation 

area. The required input files (named NT_anomaly_top.mean and FA_anomaly.mean) 

cover at least the computation area. In the fourth line of the options file, all parameters 

are kept constant; the default fixed computation area is 7º by 7º (84 by 84 rows and 

columns associated with a 5′ by 5′ step-size of the data) resulting with a coverage of 5º 

by 5º being stored to the output files.  

      The option files of several programs require determination of the dimensions of the 

data in latitude and longitude which can be calculated from the total size in degree 

divided by the grid step in degree. For instance: 100 / 0.00833333 = 1200 and 50 / 

0.00833333 = 600. Usually the order is firstly latitude’s dimension, followed by 

longitude’s. However, it should be noted that dimensions of longitude and latitude are 

used in inverse order in the input file of program Stokes_integral, Residual_gravity.geo. 

In addition, this input file’s data are arranged from south to north and from west to east. 

This order is different from the order of most other input data files as well. 

      Before carrying out the computation it is important to learn each original data 

format and the frequently used auxiliary programs, and to discover how to produce and 

manipulate input files using both of them to meet our objective. 

      As for the order of computation, it is unnecessary to run the program multiple times 

according to Figure 3.1. In practice, the actual processing approach depends on the 

requirements for preparing input data and other concrete computational power 

problems. 
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3.4 Special technical skills required 

for calculation 

3.4.1 Requirement for familiarity with 

one computer language 

At the beginning of computation, it is necessary to understand each program to learn the 

methodology behind them, and then to use, and perhaps to revise and refine it. During 

this operation, considerable data manipulation and format transformation are taken 

place, such as summation or differentiation of two files in point list format, preparation 

of the sub-area from the regular grid file in point list format, and computation of the 

minimal, maximal and mean values.  

      In terms of computer languages, a basic knowledge of C, C++ and Fortran is 

recommended because all programs in PGDP, which can be readily operated in Linux 

systems, were written employing these languages. 

  

3.4.2 Capability of writing scripts in Linux 

After the beginning of computations, the time-consuming tasks become apparent. A 

strategically sound approach to processing data involves trying a variety of methods in 

accommodating and data manipulation. The most efficient tactic is writing scripts to run 

programs, even to accomplish seemingly straightforward tasks such as generating input 

and option files automatically. For example, the program DTE requires one option file 

incorporating the names of five types of input files, eight types of output file names, a 
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changeable mode referred to the terrain roughness among other parameters, and a 

required input file called “inputh.dat” including nine detailed DTM or SRTM files, 

whose output file is within a 1º by 1º area. Generally one must repeatedly change and 

save the option and “inputh.dat” files, then run the program almost 4500 times 

respectively if the objective of calculation is the Canadian geoid model. However, 

scripts make them easier. Three scripts are attached in Appendixes. (C.1), (C.2) and 

(C.3). In addition assembling each set of 1º by 1º numerical results is another 

challenging job, and mistakes are likely during manual data-handling. Armed with 

knowledge of writing scripts based on the regularity of the detailed DTM file names and 

of the expected region’s shape, the task of these files’ organization becomes easier, in 

light of which the amount of time spent at the workstation diminishes.  

 

3.4.3 Mastering GMT to make graphical plots 

Given its complexity, graphical representation of the concepts and outputs of a data 

processing methodology in PGDP becomes important; a picture is indeed worth a 

thousand words in relating the meaning and results of this technique. The need to show 

each step’s numerical results succinctly and unambiguously is obvious. The Generic 

Mapping Tool (GMT) is the plot-making software of choice for this purpose, which can 

manipulate geographic and Cartesian data sets to produce illustrations of 3-D 

perspective views. Most plots presented in Chapter 4, for example, were generated by 

GMT.  

 

3.5 Descriptive statistics of program operation 

54



Given an onerous and highly complex task such as determination of the Canadian 

digital geoid model, analysis of PGDP’s computational efficiency is critical. The 

running time span of each program in the PGDP suite is tested in a PC with Pentium 4 

CPU and 1.00 GB of RAM in single processing, which are shown in Table 3.3. Each 

program is listed in the first column; the numbers in third column tell the total number 

of runs to get the output cover the whole Canada; and the total time in the final column 

is calculated by run-time multiply number of runs. Based on running time, without 

considering manipulation of input files and the preparation of option files, 

determination of the Canadian geoid requires around 2363 computational hours. 
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Program 
Run-time 

(minute) 

Coverage 

of output 

Number 

of runs 

Total time 

(minute) 

DTE 15 1º by 1º 4500 67500 

Ellipsoidal_cor 2 10º by 10º 50 100 

Geoid_quasigeoid_cor 3 50º by 100º 1 3 

SITE_NTspace 114 10º by 10º 50 5700 

DAE_NTspace 290 10º by 10º 50 14500 

SIAE_NTspace 340 10º by 10º 50 17000 

Downward_continuation 52 10º by 10º 50 2600 

SITE_Hspace 102 10º by 10º 50 5100 

DAE_Hspace 265 10º by 10º 50 13250 

SIAE_Hspace 169 10º by 10º 50 8450 

Stokes_integral 18 10º by 10º 50 900 

PITE 133 10º by 10º 50 6650 

141753 

(2363 hours) 

 

Table 3.3: Statistics of computational time span for the production of digital geoid 
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Chapter 4  

Numerical Results and Their   

Interpretation 

To this point, each procedure in the Stokes-Helmert approach has been thoroughly 

explained; all associated formulae have been presented in Chapter (2), and the required 

input data files have been described in Chapter (3).  In broader perspective, then, the 

computation task concerns the whole of the Canadian landmass bounded by north 

latitudes 42º and 71º, and by east longitudes 224º and 302º, with the exception of a 

southwest area delimited by 42-48º N and 224-274º E. As described in Section 3.3.6, the 

coverage of each of the individual numerical results may be different depending on 

which space it happens. Based on the resolution of the original simple and complete 

Bouguer gravity anomaly, the Canadian geoid is on a 5’ by 5’ grid, which requires that 

each procedure’s results be evaluated with the same grid step. The computational results 

of each step would be shown in both graphical and tabular form. Generally, the spatial 

behavior of each component can be shown graphically. The tabulated statistics usually 

contain minimum, maximum and mean values, as well as standard deviations. The 

quality and nature of each component can be assessed by the combination of these two 

kinds of display.  
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      Based on the similarity of required input files and of the used mathematical method 

behind programs, a couple of operation procedures are organized together and are 

analyzed in comparison. Both topographical and atmospheric effects are evaluated by a 

Newton integral computed over the entire globe. The integration is usually split into 

several sub-domains where data files of differing resolution are needed, with differing 

division patterns of each integration domain based on the different procedure’s 

operation.  

 

4.1 Direct topographical effect and direct 

condensed topographical effect 

According to the Stokes-Helmert approach, the direct topographical effect (DTE) on 

gravitational attraction must be computed and subsequently removed to obtain NT-

space; following this, the direct condensed topographical effect (DCTE) in gravitational 

attraction is introduced to reduce the overall change of gravity field. 

      The DTE, which is evaluated on the Earth’s surface, consists of three parts: the 

spherical terrain correction (STC) effect, the anomalous topographical density 

distribution effect (DTE-density), and the gravitational attraction of the spherical 

Bouguer shell. Similarly, the DCTE is computed as a sum of the spherical condensed 

terrain correction (SCTC) effect and the gravitational attraction of the anomalous 

condensed topographical density (DCTE-density) plus the effect of the condensed 

spherical Bouguer shell, all of which are evaluated on the geoid surface. 
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4.1.1 STC and SCTC   

The effect of either STC or of SCTC on gravity is calculated through integration over 

the entire Earth. The integration is usually split into two parts:  (i) integration over an 

area immediately adjacent to the point of interest, called the near-zone; and (ii) the 

integration over the rest of the world, referred to as the far-zone. When calculating the 

effect of the near-zone contribution of STC and SCTC (STC-near-zone and SCTC-near-

zone), the DTMs and the 30′′ by 30′′ mean density data are used.  For the far-zone 

contribution (STC-far-zone and SCTC-far-zone), the 30′ by 30′ global elevation data are 

adopted. 

 

4.1.1.1 STC-near-zone and SCTC-near-zone 

Near-zone integration is extended up to 5º of spherical cap around the computation 

point.  This cap is then separated into three parts: (i) the innermost zone (a 5′ by 5′ grid 

area); (ii) the inner zone (residual 1º by 1º grid area); and (iii) the middle zone (residual 

5º by 5º). The Newton integrals are computed using a 3′′ by 3′′ detailed DTM data 

within the innermost area centered at the computation point. The DTM_30s data are 

used for the integration over the inner zone, excepting the innermost zone. The 

remainder of the spherical cap’s integration is completed by using DTM_5m data (see 

Figure 4.1). 

      To match the final computational geoid grid step, both STC-near-zone and SCTC-

near-zone numerical results are 5′ by 5′ cell mean values, which are obtained after the 

averaging of point values within each cell. The number of point values required to 

compute the mean values depends on the roughness of the terrain. In the option files of 
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the corresponding programs, the parameter mode reflects this proposition: mode 1 

means 1 point value; mode 2 to 6 represent 4, 10, 25, 50 and 100 point values 

respectively. For better meeting a sufficient level of accuracy, the higher mode is 

preferred; however, considering the challenge of computationally intensive integrals, 

the optimal number of point values is determined according to the associated 

experimental outcome shown by the program “rough.c” collected in Reference Manual 

III, which should be generally adopted by users. During the author’s computation, the 

mode 6, i.e., that mode indicating the averaging of values of 100 points is used fixedly 

due to the availability of the computer array. 

 

3" by 3" detailed DTM 

60" 

60"1 deg 

1 deg 

DTM_30s 

Inner zone

DTM_5m

5 deg 

Bilinear 
Interpolation 

5' 

5' 

Innermost zone

Middle zone 

 

 

 

 

 

 

 

 

Figure 4.1: Scheme of integration domain 

 

The resulted effects of these two near-zone divisions are shown in Figures 4.2 and 4.3. 

Basic statistics are shown in Table 4.1. Both the figures and the tabulated values 

conform to the expected behavior of the STC: the topographical masses within the near-  
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TERM Minimum Maximum Mean value Std deviation

STE-near-zone -4.803 101.818 0.754 ±3.449 

SCTE-near-zone -14.120 9.410 0.127 ±1.257 

 

Table 4.1: Terrain and condensed terrain effects on gravity – near-zone (mGal) 

 

 

 

 

Figure 4.2: Terrain effect on gravity – near zone (mGal) 
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Figure 4.3 Condensed terrain effect on gravity – near zone (mGal) 
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zone generate a high-frequency gravity field highly correlated with topography. In 

addition, the addition of the STC-near-zone to free air gravity anomalies increases the 

smoothness of the latter. 

 

4.1.1.2 STC-far-zone and SCTC-far-zone 

These two far-zone contributions to gravity computed over the Canadian landmass are 

shown in Figures 4.4 and 4.5. A 30′ step has been used in the surface numerical 

integration over the far-zone integration sub-domain. The topographical masses within 

the near zone generate a high-frequency gravity field and the distant topographical 

masses are responsible for an attenuated low-frequency gravitational field due to the 

consequence of Newton’s law of gravitation. The statistical results of the STC-far-zone 

and SCTC-far-zone effects on the gravitational attraction are shown in Table 4.2. 

 Comparing the statistical parameters in Table 4.2, the far-zone contributions to the 

terrain effects and to the condensed terrain effects on gravity are with almost exactly 

reverse characters, although they are taken at the Earth’s surface and at the geoid, 

respectively. In addition, they seem to be independent of the height of the computation 

point. 

 

4.1.2 DTE-density and DCTE-density 

Similar to the effects of STC-near-zone and SCTC-near-zone, DTE-density and DCTE-

density are also mean values obtained from the averaging of point values with the same 

criteria described in Section 4.1.1.1.  
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TERM Minimum Maximum Mean value Std deviation

STE-far-zone -30.063 449.879 7.847 ±50.073 

SCTE-far-zone -448.435 30.589 -7.809 ±50.053 

 

Table 4.2: Terrain and condensed terrain effects on gravity – far-zone (mGal) 

 

 

 

 

Figure 4.4: Terrain effect on gravity – far zone (mGal) 
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Figure 4.5: Condensed terrain effect on gravity – far zone (mGal) 
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TERM Minimum Maximum Mean value Std deviation

DTE-density -19.048 12.804 0.281 ±1.505 

DCTE-density -0.212 0.075 -0.014 ±0.037 

 

Table 4.3: Anomalous density effects (mGal) 

 

 

 

 

Figure 4.6: Anomalous topographical density effect on gravity (mGal)  
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Figure 4.7: Condensed anomalous topographical density effect on gravity (mGal) 
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Since the almost identical integration kernel is used as for STC-near-zone and SCTC-

near-zone, the integration region and the needed data are similar as well excepting the 

mean laterally varying topographical density data. In most of the topography, the actual 

lateral density varies from 1.0 g.cm-3 (water) to 2.98 g.cm-3 (gabbro). Therefore, by 

disregarding existing water bodies, the variation of topographical density δρ  is almost 

completely within ±0.3 g.cm-3 around the mean value oρ . Since the mean global value 

of )(Ωδρ  is regarded as 0, the far-zone contribution is likely to be very small and can 

be neglected. 

      These two anomalous topographical density effects are plotted in Figures 4.6 and 

4.7, and the corresponding statistical results are shown in Table 4.3. From these figures 

and tabulated values, the DTE-density and DCTE-density display a high frequency 

character, which is correlated with topographical density and topography as well. The 

large anomalous density effect is concentrated in the Rocky Mountains as expected. The 

sign of both effects changes between positive and negative due to the nature of the 

density variation. The DTE-density can reach ±20 mGal. The range of DCTE-density is 

at the 0.1mGal level, which is two orders of magnitude smaller than the DTE-density. 

Thus the implementation of related formula in the program should be rechecked. Since 

it reaches more than 0.01 mGal (in absolute value), it must be taken into account if a 

1cm accuracy level is the aim (Vaníček and Martinec, 1994). Due to a density data 

collection problem as mentioned in Section 3.2.3, the effects over the territory of the 

USA are calculated using a constant density value, which can be seen clearly from 

Figures 4.6 and 4.7. 
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      The calculation results of the two effects of DTE-density and DCTE-density show 

that the introduction of the digital topographical density model will significantly 

improve the accuracy of the geoid evaluation. The results presented here may have 

underestimated the effects because the mean DTDM of 30′′ by 30′′ is not sufficient to 

model the topography density in the Canadian Rocky Mountains. Furthermore, a better 

density model will be needed to estimate the density effects at 1 cm accuracy covering 

the larger region and showing more precise density information. The laterally varying 

density information from the USA should be used in the computation of the southwest 

part of the Canadian geoid model. 

 

 4.1.3 DTE and DCTE 

Due to the simplicity of calculation of the Bouguer shell contribution, it is not 

separately treated in the related program. Figures 4.8 and 4.9 show DTE and DCTE 

respectively. Table 4.4 shows the statistical results of these effects. 

      Each component of the gravitational attraction of topography at the surface and the 

gravitational attraction of condensed topography at the geoid are fully studied and 

analyzed from above of all. Both of DTE and DCTE are seen to have a local, high-

frequency feature. The method of using both local and global DEM to capture the full 

signal with no loss of accuracy is proposed. In the NT-space, the high frequency signals 

of topographical effect are eliminated following the removal of topographical masses, 

which smoothes the gravity field for downward continuation. This is seen as a slight 

advantage since downward continuation should be done in a field with as much signal 

(high frequency) removed as possible. 
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TERM Minimum Maximum Mean value Std deviation 

DTE -444.244 -14.315 -61.876 ±53.197 

DCTE 21.824 523.410 63.084 ±54.978 

 

Table 4.4: DTE and DCTE on gravity (mGal) 

 

 

 

 

Figure 4.8: Direct topographical effect on gravity (mGal) 
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Figure 4.9 Direct condensed topographical effect on gravity (mGal) 
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4.2 Atmospheric effects 

The atmospheric effects on the gravitational attraction contain five parts considered in 

the Stokes-Helmert approach: the direct atmospheric effect referred to the Earth’s 

surface (DAE-NT); the secondary indirect atmospheric effect referred to the Earth’s 

surface (SIAE-NT); the direct condensed effect referred to the geoid (DCAE-H); the 

secondary indirect condensed effect referred to the geoid (SICAE-H); and the primary 

indirect atmospheric effect referred to the geoid (PIAE), which is too small to be taken 

into account during computation.  
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Figure 4.10: Integration scheme for the atmospheric effects 

 

      In the evaluation of these atmospheric effects, the Newton integral is used as well as 

the computing topographical effects. As the integration is to be carried out over the 

entire Earth’s surface, the integration domain is usually split into an inner zone (around 
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the computation point), near-zone and the far-zone (see Figure 4.10) where DEM_30s, 

DEM_5m and 30′ by 30′ mean elevation are used, respectively. The mean DTM files 

can be obtained by the methods described in Section 3.1. These atmospheric effects can 

be found in Figures 4.11 to 4.14, and basic statistical results for individual atmospheric 

effect on gravity can be found in Table 4.5. 

      Summarizing the result of our numerical investigation over Canada, it follows that 

the direct atmospheric effect referred to the Earth surface is much smaller than the 

direct condensed atmospheric effect referred to the geoid. Meanwhile, the secondary 

indirect effect of atmospheric masses is larger than the secondary indirect effect of 

condensed atmospheric masses, and the differences (a few milligals) are not negligible.  

      The direct condensed atmospheric effect and the secondary indirect atmospheric 

effect have a high-frequency character and are especially strongly correlated with the 

topography, while the direct atmospheric effect and the secondary indirect condensed 

atmospheric effect also contain a low-frequency component. The direct atmospheric 

effect is almost negligible over the ocean, whereas it reaches up to 180 µGal at the 

Canadian Rocky Mountains.  

      Based on our numerical investigation of all of the effects caused by atmospheric and 

condensed atmospheric masses, the 30′′ by 30′′ DTM data are sufficient for near-zone 

numerical integration for a region up to 5′ of the spherical distance around the 

computation point, 5′ by 5′ DTM for the middle-zone up to 3º of the spherical distance, 

and 1º by 1º mean heights for the far-zone integration sub-domain because of the 

smooth behavior of the integration kernel.  
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TERM Minimum Maximum Mean value Std deviation 

DAE-NT -0.176 -0.001 -0.02 ±0.018 

SIAE-NT 1.682 1.801 1.766 ±0.028 

DAE-H -0.842 -0.631 -0.819 ±0.030 

SIAE-H 0.758 1.411 0.805 ±0.070 

 

Table 4.5: All effects of atmospheric masses on gravity (mGal) 

 

 

 

 

Figure 4.11: Direct atmospheric effect on gravity (mGal) 
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Figure 4.12: Direct condensed atmospheric effect on gravity (mGal) 
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Figure 4.13: Secondary indirect atmospheric effect on gravity (mGal) 
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Figure 4.14: Secondary indirect condensed atmospheric effect on gravity (mGal) 
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      The atmospheric effects on the geoid are smaller, may be two orders of magnitude 

smaller than DTE. However, the effects are then still a few centimeters, required for a 

centimeter geoid. 

 

4.3 Secondary indirect effect of topography           

evaluated in NT-space (SITE-NT) and H-

space (SICTE-H) respectively, and PITE  

While calculating secondary indirect effect of topography in NT-space (SITE-NT), 

secondary indirect effect of topography in H-space (SICTE-H) and PITE, the splitting 

of the integration domain is the same as the pattern shown in Figure 4.10. The mean 

DTMs and 30′′ by 30′′ DTDM, (see Section 3.2.3) are used as input data for the 

evaluation of the point value of SITE-NT on the Earth surface, SICTE-H and PITE on 

the geoid at a spacing of 5′ by 5′. The anomalous density effects are evaluated from 

integration over a spherical cap with a radius of 3º. The far-zone contribution of the 

lateral density variation effects is not estimated due to lack of global coverage of 

density data and their small values.  

      The values of SITE-NT and SICTE-H on gravity are plotted in Figures 4.15 and 

4.16. The associated statistical values are shown in Table 4.6. Note that the SITE-NT 

and the SICTE-H are characterized by long-wavelength pattern and with same value at 

same gridded points. Consequently, it is not necessary to specify if these effects are 

referred to the Earth’s surface or the geoid, as these are practically the same.  
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      Figure 4.17 shows the PITE on geoidal height. A 30′ by 30′ grid for the numerical 

integration is sufficient for a few millimeters precision of the far-zone contribution to 

PITE. It ranges between -1.040 m and -0.019 m, with the mean value of -0.045m. The 

PITE affects the geoid up to the meter level in the Canadian Rocky Mountains. More 

than 96% of PITE values are within the range of -0.2 m to 0.0 m. The PITE is mainly 

characterized by short wavelength features, which are highly correlated with 

topography. One important reason for this is that its integral kernel decreases quickly 

and the near-zone contribution accounts for the largest portion of this effect.  The PITE 

on the geoidal height is always negative and, thus, must be subtracted in absolute value 

from Helmert’s co-geoid systematically. 

 

4.4 Ellipsoidal correction and geoid-

quasigeoid correction 

The ellipsoidal correction contains two terms. The first is the ellipsoidal correction to 

the gravity disturbance (Ellipsoidal-cor1). The other is the ellipsoidal correction for the 

spherical approximation (Ellipsoidal-cor2).  These effects can be found in Figures 4.18 

to 4.19; Table 4.7 shows the statistical numerical results. 

      The effect of ellipsoidal correction on gravity disturbance is relatively short 

wavelength but with correlation to terrain. As for the ellipsoidal correction for the 

spherical approximation, it is of a very low frequency character. The elevation from the 

global model EGM96 is applied to the related computation.  

 

79



 

 

 

TERM Minimum Maximum Mean value Std deviation 

SITE-NT 80.894 149.622 109.923 ±12.410 

SICTE-H 80.900 149.974 109.947 ±12.435 

 

Table 4.6: Secondary indirect topographical effect on gravity (mGal) 

 

 

 

 

Figure 4.15: Secondary indirect topographical effect on gravity (mGal) 
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Figure 4.16: Secondary indirect condensed topographical effect on gravity (mGal) 
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Figure 4.17: Primary indirect topographical effect on geoid (m) 
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TERM Minimum Maximum Mean value Std deviation

Ellipsoidal-cor1 -0.158 0.172 0.025 ±0.044 

Ellipsoidal-cor2 -0.074 0.022 -0.015 ±0.017 

Geoid-quasigeoid-cor -0.405 0.018 -0.012 ±0.030 

 

Table 4.7: Ellipsoidal correction and Geoid-quasigeoid correction (mGal) 

 

 

 

 

Figure 4.18: Ellipsoidal correction to the gravity disturbance (mGal) 
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Figure 4.19: Ellipsoidal correction for the spherical approximation (mGal) 
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Figure 4.20: Geoid-quasigeoid correction on gravity (mGal) 

 

 

 

 

 

 

 

85



      The geoid-quasigeoid correction is a linear function of the free-air gravity anomaly, 

orthometric height, and the mean topographical density.  Its statistical results are also 

shown in Table 4.7. The geoid-quasigeoid correction is a long wavelength function 

while still retaining some correlation to terrain, see Figure 4.20. Each of these three 

contributions to the resulting geoid amounts to very little of the order of a few 

millimeters.  

 

4.5 Downward continuation 

This program’s output is a 5º by 5º file which requires 7º by 7º computation area 

considering the edge effect and computational area size limitation. The following two of 

Figures 4.21, and 4.22, depict the NT gravity anomaly on the Earth’s surface (GA-E-

NT), and the NT gravity anomaly on the geoid (GA-G-NT), respectively. The 

corresponding statistical values including downward continuation are shown in Table 

4.8. 

      The gravity anomaly in NT-space referred to the Earth’s surface seems relatively 

smooth although having a large range. The gravity anomaly in NT-space referred to the 

geoid is of short wavelength with a large range as well. The mean downward 

continuation contribution demonstrates its high frequency character. Although more 

than 99% of the values are between -10 mGal and 10 mGal, there are some points with 

rather large and irregular values. Some of them (scattered in USA’s Rocky Mountains 

and along Canada’s boundary with Alaska) change sharply from negative to positive or 

the other way round, which is probably the result of a singularity problem after making 

sure the correctness of the input files. It causes the graphical plot of NT gravity anomaly 
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on the geoid to look blurred. Further studies are needed to evaluate the stability of 

downward continuation. 

 

4.6 Helmert reference gravity anomaly 

and Helmert reference spheroid  

As described in Section 2.3.7.1, based on the frequency decomposition of gravity data, 

the geoid height can similarly be decomposed into the low frequency reference spheroid 

and high frequency residual geoid. Both Helmert reference gravity anomaly (Reference-

GA) and Helmert reference spheroid are evaluated from the low frequency gravity 

disturbing potential, which can be accurately determined from the low degree spherical 

harmonic coefficients of a global geopotential model. Presently GRIM4-S4 is adopted. 

      The Reference-GA and Helmert’s reference spheroid can be found in Figures 4.23 

and 4.24. Basic statistical values can be found in Table 4.9. Both of them have a low 

frequency character. The Helmert co-geoid is the major component of the final geoid. 

      The global geopotential model is updated frequently with the advancement of 

satellite techniques. The GRACE Gravity Model 02 (GGM02) can be a better successor 

which is developed to the degree and order 150 based on only GRACE data. 

 

4.7 Residual Helmert gravity anomaly 

and residual spheroid 
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TERM Minimum Maximum Mean value Std deviation 

GA-E-NT  -192.713 346.142 42.543 ±42.033 

DC -72.659 126.776 0.010 ±1.048 

GA-G-NT  -264.756 346.142 43.302 ±39.589 

 

Table 4.8: Gravity anomaly in NT-space and downward contribution (mGal) 

 

 

 

 

Figure 4.21: NT gravity anomaly on the Earth’s surface (mGal) 
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Figure 4.22: NT gravity anomaly on the geoid (mGal) 
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TERM Minimum Maximum Mean value Std deviation

Reference-GA  -44.268 29.639 -5.973 ±16.042 

Reference spheroid -48.104 35.362 -17.211 ±18.137 

 

Table 4.9: Reference gravity anomaly (mGal) and reference spheroid (m) 

 

 

 

 

Figure 4.23: Helmert reference gravity anomaly (mGal) 
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Figure 4.24 Helmert reference spheroid (m) 
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TERM Minimum Maximum Mean value Std deviation

Residual gravity anomaly -187.976 402.1 1.39 ±26.615 

Residual co-geoid  -7.105 6.461 0.403 ±2.173 

 

Table 4.10: Residual gravity anomaly (mGal) and residual co-geoid (m) 

 

 

 

 

Figure 4.25 Residual gravity anomaly in H-space (mGal) 
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                                        Figure 4.26: Residual co-geoid (m) 
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The residual Helmert gravity anomaly is calculated by subtracting the Helmert 

reference gravity anomaly from the Helmert gravity anomaly. The residual co-geoid is 

obtained by means of the solution of the geodetic boundary value problem. First, 

employing the Stokes integral the high frequency disturbing gravity potential is 

calculated. Then the residual co-geoid is calculated according to Bruns formula. 

      The residual Helmert gravity anomaly (Residual-GA) and residual co-geoid are 

plotted in Figures 4.25 and 4.26. The corresponding statistics are shown in Table 4.10. 

Both of the residual Helmert gravity anomaly and residual geoid show the high 

frequency qualities correlated with terrain as expected. 

 

4.8 Geoid model and the comparison of 

results with GPS/Leveling data 

The final Canadian gravimetric geoid model (see Figure 4.27) is obtained after 

combining the reference spheroid and residual co-geoid and adding PITE to so obtained 

co-geoidal height. The associated statistical values are shown in Table 4.11; this seems 

reasonable because it connects closely with topography. 

      Currently, the best independent technique for validating geoid model is its 

comparison to geoid heights derived from GPS ellipsoidal heights and sprit-leveled 

orthometric heights, simply called GPS/Levelings. The results, as compared with 1736 

GPS/Leveling points’ data (Figure 4.28 shows the location of GPS/Leveling points.), 

are shown in Figure 4.29; its statistics can be found in Table 4.11. The differences 

(which are calculated using bilinear interpolation) between GPS/leveling and the 
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computed geoid model, and the related standard deviation are little large. To a certain 

extent, these large differences are resulted from the linear trend of GPS/Leveling data 

and the bias between the geometric geoid model which can be reflected at these 

GPS/leveling points and the gravimetric geoid model produced by the data processing 

methods discussed above. To eliminate these systematic factors, a four-parameter 

transformation (Sideris, 1993) should be applied.  

 

4.9 Comparison between Canadian 

geoid models produced in UNB 

Before the conceptualization of the three-space Stokes-Helmert’s scheme, the two-space 

(R-space and H-space) Stokes-Helmert’s scheme has been employed. Its main principle 

is firstly to obtain Helmert gravity anomaly on the Earth’s surface by a series of gravity 

corrections based on Helmert’s second condensation, and then to implement the 

downward continuation.  

      Built on the two-space Stokes-Helmert’s approach, a geoid model called 

Geoid_UNB2000 (see Figure 4.30) was realized, which ranges from -50.193m to 

25.991m with a standard deviation ±14.080m. The difference between these two UNB 

geoid models is shown in Figure 4.31, which ranges from -0.951m to 4.550m with a 

standard deviation ±0.765m in the compared region.  

      The Geoid_UNB2000 is of a rather low frequency character which is incongruent 

with the actual complicated gravity anomaly. The difference shows clearly the 

topographical effects, especially in the regions of Rocky Mountain and Greenland.  
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TERM Minimum Maximum Mean value Std deviation 

Geoid 26.642 -49.867 -22.894 ±15.162 

Differences  -1.5058 1.5996 -0.0873 ±0.626 

 

Table 4.11: Geoid and compared differences with GPS/Leveling (m) 

 

 

 

Figure 4.27: Canadian geoid model (m) 

 

 

 

 

 

 

96



 

 

 

 

44

50

56

62

68

224 234 244 254 264 274 284 294

 

Figure 4.28: Locations of GPS/Leveling points 
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Figure 4.29: Comparing results with GPS/Leveling data (m) 
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Figure 4.30: Geoid model based on two-space Stokes-Helmert scheme (m) 
 

 

 
 

Figure 4.31: Difference between two Canadian geoid models (m) 
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There are four key factors that make the new model, Geoid_UNB2004 better than its 

predecessor: (i) the implementation of the free-air gravity anomaly as initial gravity 

data, which is theoretically more reasonable than Simple Bouguer gravity anomaly 

adopted in the computation of the Geoid_UNB2000; (ii) the application of the improved 

theory, in which the NT gravity anomaly on the Earth surface regarded as being 

smoother than the Helmert gravity anomaly is adopted for the downward continuation; 

(iii) the consideration of DTE-density and DCTE-density by using the Digital 

Topographical Density Model; and (iiii) the correction of the PITE program to certify 

the numerical results consistent with the related theory.  

 

4.10 Comparison Canadian geoid 

models between UNB’s and GSD’s 

The Canadian Gravimetric Geoid 2000 (CGG2000) was released by the Geodetic 

Survey Division (GSD) of Canada. It is generally built on the two-space Stokes-

Helmert’s scheme as well. However, the derivation of the boundary value, i.e., the 

Helmert gravity anomaly (see Véronneau, 2000) seems rather strange and is obviously 

different from the corresponding approach used in UNB. Additionally, the procedure of 

downward continuation is omitted due to its instability. 

      In order to compare CGG2000 with Geoid_UNB2004, they have to be in the same 

format. The software GPS-Hv2.1 (GPS·H functions as converter from NAD83 

ellipsoidal heights to CGVD28 orthometric heights.) was adopted to interpolate into 5′ 
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by 5′ resolution geoid model (Figure 4.32), which is same as Geoid_UNB2004. The 

boundary was set by north latitudes 48º and 71º, and by east longitudes 224º and 302º.  

      CGG2000 in the investigated region ranges from -49.115m to 27.171m with a 

standard deviation ±15.487m. The difference between Geoid-UNB2004 and CGG2000 

is shown in Figure 4.33, which ranges from -3.171m to 1.563m with a standard 

deviation ±0.550m. The comparison between CGG2000 and GPS/Leveling is depicted 

in Figure 4.34 and the difference ranges from -1.458m and 0.171m with a standard 

deviation ±0.239m. The systematic biases and tilt should be eliminated by using a four-

parameter transformation as well. 

      Two geoid models have exact same pattern with high frequency character. 

However, the difference can not be neglected especially in west part and southeast part 

of sea regions. Additionally, two small areas in Hudson Strait and Foxe Bay still exist 

the big difference. The difference should be resulted from four main factors: (i) the 

difference methodology is employed to calculate the Helmert anomaly; (ii) the 

downward continuation and topographical density variation are not considered in the 

CGG2000; (iii) the more accuracy detailed DTM for the provinces of British Columbia, 

Albert and New Brunswick better than 10 meters is used in GSD; and (iiii) the Helmert 

gravity is adopted as the original gravity data in GSD. 
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Figure 4.32: CGG2000 of GSD (m) 
 
 
 

 

 
 

Figure 4.33: Difference between Geoid_UNB2004 and CGG2000 (m) 
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Figure 4.34: Comparison between CGG2000 and GPS/Levelings (m) 
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Chapter 5  

Conclusions and 

Recommendations 

Each program in the package has been numerically tested and results towards the 

Canadian gravimetric geoid model have been generated. This preliminary solution 

requires further improvement, as becomes clear from the direct comparison with 

GPS/Leveling data. The long wavelength part of the differences between the geoid 

solution and GPS/Leveling is obvious. Other systematic effects, such as the bias and 

vertical deflection between the geometric geoid model and gravimetric geoid model 

seem to exist. Treating these effects might reduce the differences. 

      Both the Digital Terrain Model and the Digital Topographical Density Model are 

employed in the evaluation of the topographical effect, the secondary indirect 

topographical effect, the condensed topographical effect, the secondary indirect 

condensed topographical effect, and the primary indirect topographical effect. 

According to the integration sub-domain and the corresponding required input data, 

both of them play an important role in the near zone contribution to the large magnitude 

of each effect. 
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      Based on the three-space scenario Stokes-Helmert scheme, the application of 

downward continuation of gravity anomaly from the Earth’s surface to the geoid in the 

NT-space (which amounts to more than one hundred of mGals) is regarded as an 

essential step. It is obtained by the solution of the inverse Poisson integral equation, 

which can be evaluated theoretically (Sun and Vaníček, 1998), despite the existence of 

the Poisson kernel’s singularity. However, in practical application, the numerical results 

seem unstable. Sometimes they change irregularly from a large negative value to a 

positive one (or vice versa) in the neighboring grids.  

      The primary indirect topographical effect on geoidal height is calculated by 

applying Bruns formula (Bruns, 1878) to the residual topographical potential evaluated 

at the geoid, which is regarded as the difference between the actual geoidal height and 

the Helmert co-geoidal height and is systematically negative; i.e., the Helmert co-geoid 

is always above the geoid (Vaníček et al., 1995). The practical numerical results 

coincide with the theory and are fully suitable for geoid determination over Canada. 

      During the computation of the Canadian geoid, several problems have been 

encountered, and the associated recommendations are made as following: 

• For precise evaluation of the direct topographical and condensed topographical 

effects, a more detailed DTM is required, especially over the Rocky Mountains. 

In the best possible scenario, with the 1" by 1" detailed DTM or even denser, 

one can meet the 1 cm accuracy, which is the final objective in geoid 

determination. 

• Similar to detailed DTM, the DTDM needs to be more accurate and denser to 

reflect the reality of its topographical character, especially in mountainous 
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regions, and to be of larger coverage if the objective is the determination of the 

geoid across the whole of Canada.  

• Because of the instability of the downward continuation, more effort should be 

made to check the implementation of the associated theoretical methodology. 

• The applied programs of SITE_NT, SITE_H, DAE_NT, DAE_H, SIAE_NT, 

SIAE_H, and PITE were written using old standard C++ language, which can be 

complied only by the version GCC 2.56 contained in the Linux operating 

system. For ease of use in more common applications, it is recommended to 

employ an updated version of C++. 

• Currently, the so-called DTE program, which combines the previous 

STC_near_zone, STC_far_zone, SCTC_near_zone, SCTC_far_zone, 

DTE_density, and DCTE_density, can produce DTE-density, DCTE-density, 

and their two associated output files. One output shows the effects of STC-near-

zone, STC-far-zone, and Bouguer shell together; the other displays all the 

effects of SCTC-near-zone, SCTC-far-zone and condensed Bouguer shell. 

Neither have any physical meaning. 

• Several frequently used programs for transforming data formats or manipulating 

the data files (such as “grid1_CDED.c”, “grid2_CDED.c” to generate the 

detailed DTM file, etc.) most of which were coded by the author, should be 

added to                        

the reference Manual III as auxiliary routines. 

• In the process of completely removing the topographical masses and condensing 

them onto the geoid surface, the estimated orthometric heights are used. Due to 
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orthometric heights’ roughness, the resulting space’s harmonicity and its 

consequent effects on the final digital geoid should be reconsidered.  
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Appendix A 

A.1 H_read.c 

#include <stdio.h> 
 
/* Program for working with binary DEM file. 
   Input file: 
   1st row: Latitude of NW corner in (deg min sec), must be < 84 00 00, 
   2nd row: Longitude of NW corner in (deg min sec), must be > -170 00 00, 
   3rd row: Area in latitude in (deg min sec), 
   4th row: Area in longitude in (deg min sec), 
   5th row: Step in latitude 1: 30x30 sec, 2: 60x60 sec, etc., 
   6th row: Step in longitude 1: 30x30 sec, 2: 60x60 sec, etc.  
   Output file : 
   ascii, from north to south, from west to east  
   header: latmin, latmax, lonmin, lonmax, dlat, dlon (in degrees). */  
 
main() 
{ 
  FILE *fr; 
  short int i,j,p,q,value,dlat,dlon; 
  int nwr,nwc,r,c,n,m,n1,n2,n3,w1,w2,w3,nn1,nn2,nn3,nw1,nw2,nw3; 
  long int k,south,north,west,east,nns,nws,val; 
  double meanval,latmin,latmax,lonmin,lonmax,dla,dlo; 
 
  /* reading of the input file data */ 
 
  scanf("%d %d %d",&nn1,&nn2,&nn3); 
  scanf("%d %d %d",&nw1,&nw2,&nw3); 
  scanf("%d %d %d",&n1,&n2,&n3); 
  scanf("%d %d %d",&w1,&w2,&w3); 
  scanf("%d",&m); 
  scanf("%d",&n); 
 
  /* reading of the binary file header */ 
 
  fr = fopen("DEM_NA_30s.byn","rb"); 
  fread(&south, sizeof(long), 1, fr); 
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  SwapByte( &south, 0, sizeof( long )); 
  fread(&north, sizeof(long), 1, fr); 
  SwapByte( &north, 0, sizeof( long )); 
  fread(&west, sizeof(long), 1, fr); 
  SwapByte( &west, 0, sizeof( long )); 
  fread(&east, sizeof(long), 1, fr); 
  SwapByte( &east, 0, sizeof( long )); 
  fread(&dlat, sizeof(short), 1, fr); 
  SwapByte( &dlat, 0, sizeof( short )); 
  fread(&dlon, sizeof(short), 1, fr); 
  SwapByte( &dlon, 0, sizeof( short )); 
 
  /* writing of the output file header */ 
 
  dla=30*m/3600.0; 
  dlo=30*n/3600.0; 
  latmax=((nn3/60.0+nn2)/60.0+nn1)-dla/2; 
  latmin=latmax-((n3/60.0+n2)/60.0+n1)+dla; 
  lonmin=(-(nw3/60.0+nw2)/60.0+nw1)+dlo/2; 
  lonmax=lonmin+((w3/60.0+w2)/60.0+w1)-dlo; 
  
printf("%10.5lf%10.5lf%11.5lf%11.5lf%13.10lf%13.10lf\n\n",latmin,latmax,360.0+lon
min,360.0+lonmax,dla,dlo); 
 
  /* computing of the start reading position */ 
 
  nns=nn1*3600+nn2*60+nn3; 
  nws=nw1*3600-nw2*60-nw3; 
  r=(n1*3600+n2*60+n3)/30; 
  c=(w1*3600+w2*60+w3)/30; 
  nwr=(north+15-nns)/30; 
  nwc=(15-west+nws)/30; 
  i=nwr; j=nwc; 
  k=80+(38400*(nwr))+(2*(nwc)); 
  fseek(fr, k, SEEK_SET); 
 
  /* reading and processing the data */ 
 
  if (m==1 && n==1) { 
    for(i=nwr;i<nwr+r;i++) { 
      for(j=nwc;j<nwc+c;j++) { 
        fread(&value, sizeof( short ), 1, fr); 
        SwapByte(&value, 0, sizeof( short )); 
        printf("%5d",value); 
      } 
      printf("\n\n"); 
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      k=k+38400; 
      fseek(fr, k, SEEK_SET); 
    } 
  } 
  else { 
    val=0; 
    for(i=1;i<=(r/m);i++) { 
      for(j=1;j<=(c/n);j++) { 
        for(p=1;p<=m;p++) { 
          for(q=1;q<=n;q++) { 
            fread(&value, sizeof ( short ), 1, fr); 
            SwapByte(&value, 0, sizeof( short )); 
            val=val+value; 
          } 
          k=k+38400; 
          fseek(fr, k, SEEK_SET); 
        }  
        meanval=val/(m*n); 
        val=0; 
        printf("%5.0f",meanval); 
        k=k-(m*38400)+(2*n); 
        fseek(fr, k, SEEK_SET); 
      } 
      printf("\n\n"); 
      k=k+(m*38400)-2*n*(c/n); 
      fseek(fr, k, SEEK_SET); 
    } 
  } 
  fclose(fr); 
} 
 
int SwapByte( char *buf, int start_byte , int num_bytes ) 
{ 
   char            temp; 
   if (num_bytes == 2) { 
      temp = buf[start_byte]; 
      buf[start_byte] = buf[start_byte + 1]; 
      buf[start_byte + 1] = temp; 
      return( 1 ); 
   } 
   else if (num_bytes == 4) { 
      temp = buf[start_byte]; 
      buf[start_byte] = buf[start_byte + 3]; 
      buf[start_byte + 3] = temp; 
      temp = buf[start_byte + 1]; 
      buf[start_byte + 1] = buf[start_byte + 2]; 
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      buf[start_byte + 2] = temp; 
      return( 1 ); 
   } 
 else if (num_bytes == 8) { 
      temp = buf[start_byte]; 
      buf[start_byte] = buf[start_byte + 7]; 
      buf[start_byte + 7] = temp; 
      temp = buf[start_byte + 1]; 
      buf[start_byte + 1] = buf[start_byte + 6]; 
      buf[start_byte + 6] = temp; 
      temp = buf[start_byte + 2]; 
      buf[start_byte + 2] = buf[start_byte + 5]; 
      buf[start_byte + 5] = temp; 
      temp = buf[start_byte + 3]; 
      buf[start_byte + 3] = buf[start_byte + 4]; 
      buf[start_byte + 4] = temp; 
      return( 1 ); 
   } 
   else { 
      printf("swap_bytes: num_bytes not one of 2 or 4.\n"); 
      exit(1); 
   } 
} 
 

A.2 H_grid.c 

#include <stdio.h> 
#include <math.h> 
main() 
{ 
  FILE *fr, *fw; 
  int i,j,r,c; 
  float h; 
  float *val; 
  double bmin,bmax,lmin,lmax,db,dl,lon,lat; 
  char ifile[80], ofile[80]; 
  h = 0.0; 
  fr = fopen("H_grid.opt","r"); 
  fscanf(fr,"%s",ifile); 
  fscanf(fr,"%s",ofile); 
  fclose(fr); 
  fr = fopen(ifile,"r"); 
  fscanf(fr,"%lf %lf %lf %lf %lf %lf",&bmin,&bmax,&lmin,&lmax,&db,&dl); 
  r = floor((bmax - bmin)/db + 1.1); 
  c = floor((lmax - lmin)/dl + 1.1); 
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  val = (float *) malloc((r*c + 1) * sizeof (float)); 
  for (i=0; i < r; i++) { 
    for (j=0; j < c; j++) { 
      fscanf(fr,"%f",&val[i*c + j]); 
    } 
  } 
  fclose(fr); 
  fw = fopen(ofile,"w"); 
  for (i=0; i < r; i++) { 
    lat = bmax - i*db; 
    for (j=0; j < c; j++) { 
      lon = lmin + j*dl; 
      fprintf(fw,"%10.5lf%10.5lf%7.1f\n",lat,lon,val[i*c + j]); 
    } 
  } 
  fclose(fw); 
} 
 
 

A.3 subarea.c 

#include <stdio.h> 
#include <math.h> 
 
main() 
{ 
  FILE *fr, *fw; 
  int i,j,n,r,c; 
  double val,a1,a2; 
  double *lat1, *lon1, *val1; 
  double bmin,bmax,lmin,lmax,step,lon,lat; 
  char ifile[80], ofile[80]; 
  step = 0.083333333; 
  fr = fopen("subarea.opt","r"); 
  fscanf(fr,"%s %d",ifile,&n); 
  fscanf(fr,"%s",ofile); 
  fscanf(fr,"%lf %lf %lf %lf",&bmin,&bmax,&lmin,&lmax); 
  fclose(fr); 
  r = floor((bmax - bmin)/step + 0.1); 
  c = floor((lmax - lmin)/step + 0.1); 
  printf("\n %d %d\n",r,c); 
  val1 = (double *) malloc((r*c+1)*sizeof(double)); 
  lat1 = (double *) malloc((r*c+1)*sizeof(double)); 
  lon1 = (double *) malloc((r*c+1)*sizeof(double)); 
  fr = fopen(ifile,"r"); 
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  fw = fopen(ofile,"w"); 
  j = 0; 
  for (i=0; i < n; i++) { 
    fscanf(fr,"%lf %lf %lf",&lat,&lon,&val); 
    if(lat > bmin && lat < bmax && lon > lmin && lon < lmax) { 
      lat1[j] = lat; 
      lon1[j] = lon; 
      val1[j] = (double) val; 
      j++; 
    } 
  } 
  printf("\n%d\n",j); 
  fclose(fr); 
  for (i=0; i < r; i++) { 
    for (j=0; j < c; j++) { 
      fprintf(fw,"%9.4lf%9.4lf%9.3lf\n",lat1[i*c+j],lon1[i*c+j],val1[i*c+j]); 
   /* fprintf(fw,"%9.4lf%9.4lf%9.3lf\n",lat1[i*c+j],lon1[i*c+j],val1[i*c+j]); */ 
    } 
  } 
  fclose(fw); 
} 
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Appendix B 

B.1 grid1_CDED.c 

 
#include <stdio.h> 
 
/* It was writen by Huaining Yang in Sep. 22, 2004. 
   It was used to produce detailed DTM with resolution 3" by 3" in Binary format with 
hight of zeor. 
   Using gcc -lm -o./grid002.e grid002.c to compile the program; 
   Using ./grid002.e N66W233_H.byn 36 230 to run the program.  */ 
 
typedef struct binfile_data 
    { 
     FILE       *File; 
     char       Name[80]; 
     double     South; 
     double     North; 
     double     West; 
     double     East; 
     double     DLat; 
     double     DLon; 
     double     Factor; 
     double     FactorSD; 
     short int  NLat; 
     short int  NLon; 
     short      StdDev; 
     short      Global; 
     short      Type; 
     short      SizeOf; 
     short      Datum; 
     short      Ellipsoid; 
     short      ByteOrder; 
     short      Scale; 
    } BINFILE; 
 
 
int SwapByte( char *buf, int start_byte , int num_bytes ) 
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{ 
   char            temp; 
   if (num_bytes == 2) { 
      temp = buf[start_byte]; 
      buf[start_byte] = buf[start_byte + 1]; 
      buf[start_byte + 1] = temp; 
      return( 1 ); 
   } 
   else if (num_bytes == 4) { 
      temp = buf[start_byte]; 
      buf[start_byte] = buf[start_byte + 3]; 
      buf[start_byte + 3] = temp; 
      temp = buf[start_byte + 1]; 
      buf[start_byte + 1] = buf[start_byte + 2]; 
      buf[start_byte + 2] = temp; 
      return( 1 ); 
   } 
   else if (num_bytes == 8) { 
      temp = buf[start_byte]; 
      buf[start_byte] = buf[start_byte + 7]; 
      buf[start_byte + 7] = temp; 
      temp = buf[start_byte + 1]; 
      buf[start_byte + 1] = buf[start_byte + 6]; 
      buf[start_byte + 6] = temp; 
      temp = buf[start_byte + 2]; 
      buf[start_byte + 2] = buf[start_byte + 5]; 
      buf[start_byte + 5] = temp; 
      temp = buf[start_byte + 3]; 
      buf[start_byte + 3] = buf[start_byte + 4]; 
      buf[start_byte + 4] = temp; 
      return( 1 ); 
   } 
   else { 
      printf("swap_bytes: num_bytes not one of 2 or 4.\n"); 
      exit(1); 
   } 
} 
 
 
short ReadBinaryFileHeaderSwap( BINFILE *BinFile ) 
{ 
 double Scale, Tmp8; 
 long  int Tmp4; 
 short int Tmp2 , i; 
 
 if( !(BinFile->File = fopen( BinFile->Name, "rb"))) 
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    return( 0 ); 
 
 fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp4 , 0 , 4 ); 
 BinFile->South = Tmp4/3600.0; 
 fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp4 , 0 , 4 ); 
 BinFile->North = Tmp4/3600.0; 
 fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp4 , 0 , 4 ); 
 BinFile->West = Tmp4/3600.0; 
 fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp4 , 0 , 4 ); 
 BinFile->East = Tmp4/3600.0; 
 fread( &Tmp2 , sizeof( short ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->DLat = Tmp2/3600.0; 
 fread( &Tmp2 , sizeof( short ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->DLon = Tmp2/3600.0; 
 
 fread( &Tmp2, sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Global = Tmp2; 
 fread( &Tmp2, sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Type = Tmp2; 
 fread( &Tmp8    , sizeof( double ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp8 , 0 , 8 ); 
 BinFile->Factor = Tmp8; 
 fread( &Tmp2    , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->SizeOf = Tmp2; 
 fread( &Tmp2    , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->StdDev = Tmp2; 
 fread( &Tmp8  , sizeof( double ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp8 , 0 , 8 ); 
 BinFile->FactorSD = Tmp8; 
 fread( &Tmp2     , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Datum = Tmp2; 
 fread( &Tmp2 , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Ellipsoid = Tmp2; 
 fread( &Tmp2 , sizeof( short )  , 1 , BinFile->File ); 
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 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->ByteOrder = Tmp2; 
 fread( &Tmp2     , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Scale = Tmp2; 
 
/* Read the dummy bytes */ 
 
 for( i = 0 ; i < 7 ; i++ ) 
  fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File ); 
 
 Scale = ( BinFile->Scale ) ? 1000.0 : 1.0; 
 BinFile->South /= Scale; 
 BinFile->North /= Scale; 
 BinFile->West /= Scale; 
 BinFile->East /= Scale; 
 BinFile->DLat /= Scale; 
 BinFile->DLon /= Scale; 
 
 BinFile->NLat = ( BinFile->North - BinFile->South ) / BinFile->DLat + 1.5; 
 BinFile->NLon = ( BinFile->East - BinFile->West ) / BinFile->DLon + 1.5; 
 
 return( 1 ); 
} 
 
double ReadBinaryFileDataSwap( BINFILE *BinFile ) 
{ 
 double    Value; 
 short int Tmp2; 
 long  int Tmp4; 
 
 if( BinFile->SizeOf == 4 ) 
  { 
   if( fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File ) == 1 ) 
      { 
      SwapByte( (char *)&Tmp4 , 0 , 4 ); 
      Value = Tmp4/BinFile->Factor; 
      } 
   else 
      Value = 9999.0; 
  } 
 else 
  { 
   if( fread( &Tmp2 , sizeof( short )  , 1 , BinFile->File ) == 1 ) 
    { 
      SwapByte( (char *)&Tmp2 , 0 , 2 ); 
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      if( Tmp2 != 32767 ) 
       { Value = Tmp2/BinFile->Factor; } 
      else 
       { Value = 9999.0; } 
    } 
   else 
    { Value = 9999.0; } 
  } 
 
 return( Value ); 
} 
 
void WriteHeadFileSwap(long int North,long int West,long int South,long int East,                                 
short int DLat,short int DLon,double factor,double FactorSD,                                                                
short int StdDev,short int Global,short int type,short int Sizeof,                                                          
short int Datum,short int Ellipsoid,short int ByteOrder,short int Scale,FILE *XYZ) 
 { 
 long int longint; 
 int s,t; 
 
 SwapByte( (char *)&South , 0 , 4 ); 
 fwrite(&South,sizeof(long),1,XYZ); 
 
 SwapByte( (char *)&North , 0 , 4 ); 
 fwrite(&North,sizeof(long),1,XYZ); 
 
 SwapByte( (char *)&West , 0 , 4 ); 
 fwrite(&West,sizeof(long),1,XYZ); 
 
 SwapByte( (char *)&East , 0 , 4 ); 
 fwrite(&East,sizeof(long),1,XYZ); 
 
 SwapByte( (char *)&DLat , 0 , 2 ); 
 fwrite(&DLat,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&DLon , 0 , 2 ); 
 fwrite(&DLon,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&Global , 0 , 2 ); 
 fwrite(&Global,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&type , 0 , 2 ); 
 fwrite(&type,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&factor , 0 , 8 ); 
 fwrite(&factor,sizeof(double),1,XYZ); 
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 SwapByte( (char *)&Sizeof , 0 , 2 ); 
 fwrite(&Sizeof,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&StdDev , 0 , 2 ); 
 fwrite(&StdDev,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&FactorSD , 0 , 8 ); 
 fwrite(&FactorSD,sizeof(double),1,XYZ); 
 
 SwapByte( (char *)&Datum , 0 , 2 ); 
 fwrite(&Datum,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&Ellipsoid , 0 , 2 ); 
 fwrite(&Ellipsoid,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&ByteOrder , 0 , 2 ); 
 fwrite(&ByteOrder,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&Scale , 0 , 2 ); 
 fwrite(&Scale,sizeof(short),1,XYZ); 
 
 
 longint=0; 
 for( s = 0 ; s < 7 ; s++ ) 
 { 
 SwapByte( (char *)&longint, 0 , 4 ); 
 fwrite(&longint , sizeof( long ) , 1 , XYZ ); 
 } 
 } 
 
 
int main(int argc, char *argv[]) 
{ 
 BINFILE BinFile; 
 FILE *XYZ; 
 
 char buffer[80], xyzname[80], gridfile[80], tempstr[10]; 
 double value, latitude, longitude; 
 long int i, j, east, west, size1, size2; 
 short int newheight; 
 short flag; 
 long int gridinterval,max_lat,max_lon,min_lat,min_lon; 
 
    if(argc<2){ 
         printf("usage: %s inputfiles outputfile\n",argv[0]); 
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  return 1; 
       } 
 
    strcpy(buffer,argv[1]); 
    max_lat=atoi(argv[2]); 
    min_lon=atoi(argv[3]); 
    min_lat=max_lat-1; 
    max_lon=min_lon+1; 
    size1 = size2 = 1201; 
    gridinterval=3; 
 
    strcpy( BinFile.Name , buffer ); 
    ReadBinaryFileHeaderSwap( &BinFile ); 
 
    strcpy(gridfile,""); 
    strcat(gridfile,"N"); 
    sprintf(tempstr,"%d",max_lat); 
    strcat(gridfile,tempstr); 
    strcat(gridfile,"W"); 
    sprintf(tempstr,"%d",min_lon); 
    strcat(gridfile,tempstr); 
    strcat(gridfile,"_H.byn"); 
    printf("%s\n",gridfile); 
 
    strcpy( xyzname, gridfile ); 
    XYZ = fopen(xyzname, "wb"); 
    if ((max_lon>180) && (min_lon>180)) 
 { 
  east=max_lon-360; 
  west=min_lon-360; 
 } 
 
    WriteHeadFileSwap(max_lat*3600,west*3600,min_lat*3600,east*3600,gridinterval, 
gridinterval, BinFile.Factor, BinFile.FactorSD, BinFile.StdDev, BinFile.Global, 
BinFile.Type, BinFile.SizeOf,BinFile.Datum, BinFile.Ellipsoid, BinFile.ByteOrder, 
BinFile.Scale,XYZ); 
 
    for(i=0; i<1201; i++) 
      { 
       for(j=0; j<1201; j++) 
          { 
  newheight=0; 
  SwapByte( (char *)&newheight , 0 , 2 ); 
  fwrite(&newheight,sizeof(short),1,XYZ); 
          } 
      } 

127



 
     fclose(BinFile.File); 
     fclose( XYZ ); 
     return 0; 
 
   } 
 
 
B.2 grid2_CDED.c 

 
#include <stdio.h> 
#include <math.h> 
 
 
/* It was writen by Huaining Yang in Sep. 29, 2004. 
   It was used to produce detailed DTM with resolution 
   3" by 3" in Binary format using 30" mean DTM data file. 
   Using gcc -lm -o./grid004.e grid004.c to compile the program; 
   Using ./grid004.e N66W233_H.byn DTM_30s.dat 36 230 to run the program.  */ 
 
typedef struct binfile_data 
    { 
     FILE       *File; 
     char       Name[80]; 
     double     South; 
     double     North; 
     double     West; 
     double     East; 
     double     DLat; 
     double     DLon; 
     double     Factor; 
     double     FactorSD; 
     short int  NLat; 
     short int  NLon; 
     short      StdDev; 
     short      Global; 
     short      Type; 
     short      SizeOf; 
     short      Datum; 
     short      Ellipsoid; 
     short      ByteOrder; 
     short      Scale; 
    } BINFILE; 
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int SwapByte( char *buf, int start_byte , int num_bytes ) 
{ 
   char            temp; 
   if (num_bytes == 2) { 
      temp = buf[start_byte]; 
      buf[start_byte] = buf[start_byte + 1]; 
      buf[start_byte + 1] = temp; 
      return( 1 ); 
   } 
   else if (num_bytes == 4) { 
      temp = buf[start_byte]; 
      buf[start_byte] = buf[start_byte + 3]; 
      buf[start_byte + 3] = temp; 
      temp = buf[start_byte + 1]; 
      buf[start_byte + 1] = buf[start_byte + 2]; 
      buf[start_byte + 2] = temp; 
      return( 1 ); 
   } 
   else if (num_bytes == 8) { 
      temp = buf[start_byte]; 
      buf[start_byte] = buf[start_byte + 7]; 
      buf[start_byte + 7] = temp; 
      temp = buf[start_byte + 1]; 
      buf[start_byte + 1] = buf[start_byte + 6]; 
      buf[start_byte + 6] = temp; 
      temp = buf[start_byte + 2]; 
      buf[start_byte + 2] = buf[start_byte + 5]; 
      buf[start_byte + 5] = temp; 
      temp = buf[start_byte + 3]; 
      buf[start_byte + 3] = buf[start_byte + 4]; 
      buf[start_byte + 4] = temp; 
      return( 1 ); 
   } 
   else { 
      printf("swap_bytes: num_bytes not one of 2 or 4.\n"); 
      exit(1); 
   } 
} 
 
 
short ReadBinaryFileHeaderSwap( BINFILE *BinFile ) 
{ 
 double Scale, Tmp8; 
 long  int Tmp4; 
 short int Tmp2 , i; 
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 if( !(BinFile->File = fopen( BinFile->Name, "rb"))) 
    return( 0 ); 
 
 fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp4 , 0 , 4 ); 
 BinFile->South = Tmp4/3600.0; 
 fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp4 , 0 , 4 ); 
 BinFile->North = Tmp4/3600.0; 
 fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp4 , 0 , 4 ); 
 BinFile->West = Tmp4/3600.0; 
 fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp4 , 0 , 4 ); 
 BinFile->East = Tmp4/3600.0; 
 fread( &Tmp2 , sizeof( short ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->DLat = Tmp2/3600.0; 
 fread( &Tmp2 , sizeof( short ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->DLon = Tmp2/3600.0; 
 
 fread( &Tmp2, sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Global = Tmp2; 
 fread( &Tmp2, sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Type = Tmp2; 
 fread( &Tmp8    , sizeof( double ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp8 , 0 , 8 ); 
 BinFile->Factor = Tmp8; 
 fread( &Tmp2    , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->SizeOf = Tmp2; 
 fread( &Tmp2    , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->StdDev = Tmp2; 
 fread( &Tmp8  , sizeof( double ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp8 , 0 , 8 ); 
 BinFile->FactorSD = Tmp8; 
 fread( &Tmp2     , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Datum = Tmp2; 
 fread( &Tmp2 , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Ellipsoid = Tmp2; 
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 fread( &Tmp2 , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->ByteOrder = Tmp2; 
 fread( &Tmp2     , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Scale = Tmp2; 
 
/* Read the dummy bytes */ 
 
 for( i = 0 ; i < 7 ; i++ ) 
  fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File ); 
 
 Scale = ( BinFile->Scale ) ? 1000.0 : 1.0; 
 BinFile->South /= Scale; 
 BinFile->North /= Scale; 
 BinFile->West /= Scale; 
 BinFile->East /= Scale; 
 BinFile->DLat /= Scale; 
 BinFile->DLon /= Scale; 
 
 BinFile->NLat = ( BinFile->North - BinFile->South ) / BinFile->DLat + 1.5; 
 BinFile->NLon = ( BinFile->East - BinFile->West ) / BinFile->DLon + 1.5; 
 
 return( 1 ); 
} 
 
double ReadBinaryFileDataSwap( BINFILE *BinFile ) 
{ 
 double    Value; 
 short int Tmp2; 
 long  int Tmp4; 
 
 if( BinFile->SizeOf == 4 ) 
  { 
   if( fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File ) == 1 ) 
      { 
      SwapByte( (char *)&Tmp4 , 0 , 4 ); 
      Value = Tmp4/BinFile->Factor; 
      } 
   else 
      Value = 9999.0; 
  } 
 else 
  { 
   if( fread( &Tmp2 , sizeof( short )  , 1 , BinFile->File ) == 1 ) 
    { 
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      SwapByte( (char *)&Tmp2 , 0 , 2 ); 
      if( Tmp2 != 32767 ) 
       { Value = Tmp2/BinFile->Factor; } 
      else 
       { Value = 9999.0; } 
    } 
   else 
    { Value = 9999.0; } 
  } 
 
 return( Value ); 
} 
 
void WriteHeadFileSwap(long int North,long int West,long int South,long int East,                                 
short int DLat,short int DLon,double factor,double FactorSD,                                                                
short int StdDev,short int Global,short int type,short int Sizeof,                                                          
short int Datum,short int Ellipsoid,short int ByteOrder,short int Scale,FILE *XYZ) 
 { 
 long int longint; 
 int s,t; 
 
 SwapByte( (char *)&South , 0 , 4 ); 
 fwrite(&South,sizeof(long),1,XYZ); 
 
 SwapByte( (char *)&North , 0 , 4 ); 
 fwrite(&North,sizeof(long),1,XYZ); 
 
 SwapByte( (char *)&West , 0 , 4 ); 
 fwrite(&West,sizeof(long),1,XYZ); 
 
 SwapByte( (char *)&East , 0 , 4 ); 
 fwrite(&East,sizeof(long),1,XYZ); 
 
 SwapByte( (char *)&DLat , 0 , 2 ); 
 fwrite(&DLat,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&DLon , 0 , 2 ); 
 fwrite(&DLon,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&Global , 0 , 2 ); 
 fwrite(&Global,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&type , 0 , 2 ); 
 fwrite(&type,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&factor , 0 , 8 ); 
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 fwrite(&factor,sizeof(double),1,XYZ); 
 
 SwapByte( (char *)&Sizeof , 0 , 2 ); 
 fwrite(&Sizeof,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&StdDev , 0 , 2 ); 
 fwrite(&StdDev,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&FactorSD , 0 , 8 ); 
 fwrite(&FactorSD,sizeof(double),1,XYZ); 
 
 SwapByte( (char *)&Datum , 0 , 2 ); 
 fwrite(&Datum,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&Ellipsoid , 0 , 2 ); 
 fwrite(&Ellipsoid,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&ByteOrder , 0 , 2 ); 
 fwrite(&ByteOrder,sizeof(short),1,XYZ); 
 
 SwapByte( (char *)&Scale , 0 , 2 ); 
 fwrite(&Scale,sizeof(short),1,XYZ); 
 
 
 longint=0; 
 for( s = 0 ; s < 7 ; s++ ) 
 { 
 fwrite(&longint , sizeof( long ) , 1 , XYZ ); 
 } 
 } 
 
 
int main(int argc, char *argv[]) 
{ 
 BINFILE BinFile; 
 FILE *XYZ,*fr,*fp,*fpp; 
 
 char buffer1[80], buffer2[80],xyzname[80], xyzfile[80],abcfile[80]; 
 char gridfile[80], tempstr[10], tempfile[80]; 
 int m, n, i, j,s,t,temph,value; 
 int *h3, *h30, *hh30, rh30, ch30; /* dimensions of height 30" file */ 
 double dbh30, dlh30; /* step of 30" data */ 
 double bh30min,bh30max,lh30min,lh30max; /* min and max of 30" data */ 
 double latitude, longitude; 
 long int east, west, size1, size2; 
 short int newheight; 
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 short flag; 
 long int gridinterval,max_lat,max_lon,min_lat,min_lon; 
 
 int *h1,*h2; 
 
 
    if(argc<2) 
       { 
         printf("usage: %s inputfiles outputfile\n",argv[0]); 
  return 1; 
       } 
 
    strcpy(buffer1,argv[1]); 
    strcpy(buffer2,argv[2]); 
    max_lat=atoi(argv[3]); 
    min_lon=atoi(argv[4]); 
    min_lat=max_lat-1; 
    max_lon=min_lon+1; 
    size1 = size2 = 1201; 
    gridinterval=3; 
 
 fr = fopen(buffer2,"r"); 
 fscanf(fr,"%lf %lf %lf %lf",&bh30min,&bh30max,&lh30min,&lh30max); 
 fscanf(fr,"%lf %lf",&dbh30,&dlh30); 
 printf("%lf %lf %lf %lf%lf 
%lf\n",bh30min,bh30max,lh30min,lh30max,dbh30,dlh30); 
 
 rh30 = floor((bh30max - bh30min)/dbh30 + 1.1); /* Num. of rows */ 
 ch30 = floor((lh30max - lh30min)/dlh30 + 1.1); /* Num. of columns */ 
 h30 = (int *) malloc((rh30*ch30+1) * sizeof(int)); 
 
 for(i = 0; i < rh30; i++) 
  { 
    for(j = 0; j < ch30; j++) 
       { 
        fscanf(fr,"%d",&h30[i*ch30 + j]); 
       } 
  } 
 fclose(fr); 
 
 
        m=floor((bh30max-max_lat)/dbh30); 
 n=floor((min_lon-lh30min)/dbh30); 
 strcpy(tempfile,"tempfile1"); 
        fp=fopen(tempfile,"w"); 
 for (i=0; i<121; i++) 
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  { 
    for (j=0;j<121;j++) 
      { 
        
value=(h30[((m+i)*ch30+n+j)]+h30[((m+i)*ch30+n+j+1)]+h30[((m+i+1)*ch30+n+j)]+
h30[((m+i+1)*ch30+n+j+1)])/4; 
        fprintf(fp," %d",value); 
      } 
  } 
  fclose(fp); 
         free(h30); 
 
 
        fp=fopen(tempfile,"r"); 
 hh30 = (int *) malloc((121*121+1)*sizeof(int)); 
 for (i=0; i<121; i++) 
  { 
    for (j=0;j<121;j++) 
      { 
               fscanf(fp, "%d", &hh30[i*121+j]); 
      } 
  } 
  fclose(fp); 
 
 strcpy(xyzfile,"tempfile2"); 
        fpp=fopen(xyzfile,"w"); 
 for (i=1; i<=121; i++) 
  { 
    for (j=1;j<=121;j++) 
      { 
        if (fmod(j,121)==0) 
          { 
    fprintf(fpp," %d",hh30[(i-1)*121+j-1]); 
   } 
        else 
           { 
    fprintf(fpp," %d",hh30[(i-1)*121+j-1]); 
    for (t=1;t<=9;t++) 
      { 
       value=hh30[(i-1)*121+j-1]+t*(hh30[(i-1)*121+j]-hh30[(i-1)*121+j-
1])/10; 
       fprintf(fpp," %d",value); 
      } 
    } 
              } 
  } 
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  fclose(fpp); 
  free(hh30); 
 
 
  fp=fopen(xyzfile,"r"); 
  strcpy(abcfile,"tempfile3"); 
         fpp=fopen(abcfile,"w"); 
  h1=(int *)malloc(1202*sizeof(int)); 
         h2=(int *)malloc(1202*sizeof(int)); 
 
 
 for(j=0;j<1201;j++) 
    { 
     fscanf(fp,"%d",&h1[j]); 
    } 
 for (i=1;i<121;i++)  { 
       for(j=0;j<1201;j++) { 
         fscanf(fp,"%d",&h2[j]); 
                fprintf(fpp," %d",h1[j]); 
        } 
 
              for(t=1;t<=9;t++) { 
    for(j=0;j<1201;j++) { 
          temph=h1[j]+t*(h2[j]-h1[j])/10; 
   fprintf(fpp," %d",temph); 
       } 
                } 
        h1=(int*)realloc(h1,1201*sizeof(int)); 
        for(j=0;j<1201;j++) { 
              h1[j]=h2[j]; 
           } 
        h2=(int*)realloc(h2,1201*sizeof(int)); 
 } 
 
      for(j=0;j<1201;j++) { 
         fprintf(fpp," %d",h1[j]); 
         } 
      fclose(fp); 
      fclose(fpp); 
 
      free(h1); 
      free(h2); 
 
 
      fp=fopen(abcfile,"r"); 
      h3 = (int *) malloc((1201*1201+1) * sizeof(int)); 
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 for (i=0; i<1201; i++) 
  { 
    for (j=0;j<1201;j++) 
      { 
               fscanf(fp, "%d", &h3[i*1201+j]); 
      } 
  } 
  fclose(fp); 
 
 
    strcpy( BinFile.Name , buffer1 ); 
    ReadBinaryFileHeaderSwap( &BinFile ); 
 
    strcpy(gridfile,""); 
    strcat(gridfile,"N"); 
    sprintf(tempstr,"%d",max_lat); 
    strcat(gridfile,tempstr); 
    strcat(gridfile,"W"); 
    sprintf(tempstr,"%d",min_lon); 
    strcat(gridfile,tempstr); 
    strcat(gridfile,"_H.byn"); 
    printf("%s\n",gridfile); 
 
    strcpy( xyzname, gridfile ); 
    XYZ = fopen(xyzname, "wb"); 
    if ((max_lon>180) && (min_lon>180)) 
 { 
  east=max_lon-360; 
  west=min_lon-360; 
 } 
 
    WriteHeadFileSwap(max_lat*3600,west*3600,min_lat*3600,east*3600,gridinterval, 
gridinterval, BinFile.Factor, BinFile.FactorSD, BinFile.StdDev, BinFile.Global, 
BinFile.Type, BinFile.SizeOf,BinFile.Datum, BinFile.Ellipsoid, BinFile.ByteOrder, 
BinFile.Scale,XYZ); 
 
    m=0; 
    for(i=0; i<1201; i++) 
      { 
       for(j=0; j<1201; j++) 
          { 
  newheight=h3[m]; 
  SwapByte( (char *)&newheight , 0 , 2 ); 
  fwrite(&newheight,sizeof(short),1,XYZ); 
  m++; 
          } 
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      } 
 
     fclose(BinFile.File); 
     fclose( XYZ ); 
     free(h3); 
 
   } 
 
 
B.3 grid3_CDED.c 

 
#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
#include <stdarg.h> 
 
/* This program was writed by Huaining Yang in Sep. 12, 2004. 
   This program is to divide 1 by 2 degree with 3" by 6" resolution or 1 by 4 
   degree with 3" by 12" resolution Binary DTM into 1 by 1 degree with 3" by 3", 
   which is compiled using gcc -lm -o./grid001.e grid001.c, 
   and using ./grid001.e -inF BinaryFilename to run.    */ 
 
 
typedef struct binfile_data 
    { 
     FILE       *File; 
     char       Name[80]; 
     double     South; 
     double     North; 
     double     West; 
     double     East; 
     double     DLat; 
     double     DLon; 
     double     Factor; 
     double     FactorSD; 
     short int  NLat; 
     short int  NLon; 
     short      StdDev; 
     short      Global; 
     short      Type; 
     short      SizeOf; 
     short      Datum; 
     short      Ellipsoid; 
     short      ByteOrder; 
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     short      Scale; 
    } BINFILE; 
 
void WriteHeaderSwap(long int North,long int West,long int South,long int East,                                    
short int DLat,short int DLon,double factor,double FactorSD, short int StdDev,                                       
short int Global,short int type,short int Sizeof, short int Datum,                                                          
short int Ellipsoid,short int ByteOrder,short int Scale,FILE *fp); 
int SwapByte( char *buf, int start_byte , int num_bytes ); 
short ReadBinaryFileHeaderSwap( BINFILE *BinFile ); 
double ReadBinaryFileDataSwap( BINFILE *BinFile ); 
 
main(int argc, char **argv) 
 
 { 
  char inputfile[100],tempfile[100],gridfile[100],tempstr[10]; 
  float max_lat,max_lon,min_lat,min_lon; 
  long int *latitude,*longitude; 
  int *height; 
  float templat,templon,tempheight; 
  int size1,size2, NN, NNN; 
  long int i,j,k,ii,jj; 
  long int grid_maxlat,grid_minlat,grid_minlon,grid_maxlon; 
  int m,n,gridinterval; 
  int num_lat, num_lon; 
  int minlat,maxlat,minlon,maxlon; 
  long int tempv,south,north,west,east; 
  short int sum, newheight; 
  long int newlon,newlat; 
 
  FILE *fp,*fp2; 
 
  BINFILE BinFile; 
  FILE *XYZ; 
  char  xyzname[80],buffer[80]; 
  double value1, latitude1, longitude1; 
  short flag; 
 
  while (*(++argv)) 
    { 
      if (!strcmp (*argv, "-inF")) 
 { 
   if (!(++argv)) 
     printf(" Need input file !!! "); 
     strcpy(buffer,*argv); 
 } 
    else 
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       printf("Hi, wrong input formate");    
    } 
 
        //read binary file ......then save these data into new ascii file--tempfile1 
  strcpy( BinFile.Name , buffer ); 
  ReadBinaryFileHeaderSwap( &BinFile ); 
 
  strcpy(xyzname,"tempfile1"); 
  XYZ = fopen(xyzname, "w"); 
 
  fprintf(XYZ, 
"%12.4f%12.4f%12.4f%12.4f%6i%6i\n",BinFile.North,BinFile.West+360,                                             
BinFile.South,BinFile.East+360,BinFile.NLat,BinFile.NLon); 
 
  m = BinFile.DLat*3600; 
                n = BinFile.DLon*3600; 
  printf("gridspan is %lf %lf %d %d\n",BinFile.DLat,BinFile.DLon, m, n); 
 
  for(i=0; i<BinFile.NLat; i++) 
   { 
    latitude1 = BinFile.North - i*BinFile.DLat; 
    for(j=0; j<BinFile.NLon; j++) 
     { 
   longitude1 = BinFile.West + j*BinFile.DLon; 
   value1 = ReadBinaryFileDataSwap(&BinFile); 
   if (value1 != 9999 ) 
               fprintf(XYZ, "%12.6f%12.6f%12.3f\n", latitude1, longitude1, 
value1); 
      } 
   } 
  fclose(BinFile.File); 
  fclose( XYZ ); 
 
   //  get data from .tempfile1, ...................... 
   // then divide whole region into 1 degree by 1 degree grid 
   // then at each of 1 by 1, find and interpolate 3 second by 3 second, 
   // and save 1x1 data into a atomatic file(NW_H.byn) in the form of binary 
 
    latitude=malloc(10*sizeof(int)); 
    longitude=malloc(10*sizeof(int)); 
    height=malloc(10*sizeof(int)); 
 
    gridinterval=3; 
    strcpy(inputfile,xyzname); 
    strcpy(tempfile,"tempfile2"); 
    fp=fopen(inputfile,"r"); 
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    fscanf(fp,"%f %f %f %f %d 
%d",&max_lat,&min_lon,&min_lat,&max_lon,&size1,&size2); 
    fclose(fp); 
 
 
    for(ii=max_lat;ii>min_lat;ii--)  { 
        for(jj=min_lon;jj<max_lon;jj++) 
   {     grid_maxlat=ii; 
  grid_minlat=ii-1; 
  grid_minlon=jj; 
  grid_maxlon=jj+1; 
 
  strcpy(gridfile,""); 
  strcat(gridfile,"N"); 
 
  sprintf(tempstr,"%d",grid_maxlat); 
  strcat(gridfile,tempstr); 
  strcat(gridfile,"W"); 
  sprintf(tempstr,"%d",grid_minlon); 
                strcat(gridfile,tempstr); 
  strcat(gridfile,"_H.byn"); 
 
  fp=fopen(inputfile,"r"); 
  fscanf(fp,"%f %f %f %f %d 
%d",&max_lat,&min_lon,&min_lat,&max_lon,&size1,&size2); 
                fp2=fopen(tempfile,"w"); 
  printf("output file....%s\n",gridfile); 
 
  NN=0; 
  while (!feof(fp)) 
   { 
      fscanf(fp,"%f %f %f\n",&templat,&templon,&tempheight); 
      if (templon <0) templon+=360.00; 
       if ((templat>=grid_minlat) && (templat<=grid_maxlat)) 
         { 
   if ((templon>=grid_minlon) && (templon<=grid_maxlon)) 
    { 
        fprintf(fp2,"%f %f %f\n",templat,templon,tempheight); 
      NN++; 
    } 
        } 
  } 
  fclose(fp); 
  fclose(fp2); 
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                //relog data from gridfile and save these data into array 
latitude/longitude/height 
  latitude=realloc(latitude,NN*sizeof(int)); 
  longitude=realloc(longitude,NN*sizeof(int)); 
  height=realloc(height,NN*sizeof(int)); 
 
  fp=fopen(tempfile,"r"); 
 
  NNN=0; 
  minlat=90*3600; 
  maxlat=-90*3600; 
  minlon=3600*360; 
  maxlon=-3600*180; 
 
  while (!feof(fp)) 
  { 
          fscanf(fp,"%f %f %f\n",&templat,&templon,&tempheight); 
   templon=(int)(templon*3600); 
   templat=(int)(templat*3600); 
   if (templon<minlon) minlon=templon; 
   if (templon>maxlon) maxlon=templon; 
   if (templat<minlat) minlat=templat; 
   if (templat>maxlat) maxlat=templat; 
 
   latitude[NNN]=templat; 
   longitude[NNN]=templon; 
   height[NNN]=tempheight; 
   NNN++; 
  } 
  fclose(fp); 
 
  fp=fopen(gridfile,"wb"); 
  num_lat=3600/gridinterval; 
  num_lon=num_lat; 
  if ((grid_maxlon>180) && (grid_minlon>180)) 
  { 
  east=grid_maxlon-360; 
  west=grid_minlon-360; 
  } 
                
WriteHeaderSwap(grid_maxlat*3600,west*3600,grid_minlat*3600,east*3600,gridinter
val, gridinterval,                                 BinFile.Factor,  BinFile.FactorSD,  
BinFile.StdDev, BinFile.Global,  BinFile.Type,                                          
BinFile.SizeOf,  BinFile.Datum, BinFile.Ellipsoid, BinFile.ByteOrder, 
BinFile.Scale,fp); 
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  for(i=1;i<=NN;i++) 
   { 
                   if (n == 6) 
       { 
   if (fmod(i,601)==0) 
         { 
    newheight=height[i-1]; 
    SwapByte( (char *)&newheight , 0 , 2 ); 
    fwrite(&newheight,sizeof(short),1,fp); 
         } 
   else { 
    newheight=height[i-1]; 
    SwapByte( (char *)&newheight , 0 , 2 ); 
    fwrite(&newheight,sizeof(short),1,fp); 
 
    newheight=(height[i-1]+height[i])/2.0; 
    SwapByte( (char *)&newheight , 0 , 2 ); 
    fwrite(&newheight,sizeof(short),1,fp); 
         } 
                      } 
 
     else 
        { 
   if (fmod(i,301)==0) 
   { 
    newheight=height[i-1]; 
    SwapByte( (char *)&newheight , 0 , 2 ); 
    fwrite(&newheight,sizeof(short),1,fp); 
   } 
   else{ 
    newheight=height[i-1]; 
    SwapByte( (char *)&newheight , 0 , 2 ); 
    fwrite(&newheight,sizeof(short),1,fp); 
 
    newheight=(height[i-1]+height[i])/2.0; 
    SwapByte( (char *)&newheight , 0 , 2 ); 
    fwrite(&newheight,sizeof(short),1,fp); 
 
    newheight=(height[i-1]+height[i])/2.0; 
    SwapByte( (char *)&newheight , 0 , 2 ); 
    fwrite(&newheight,sizeof(short),1,fp); 
 
    newheight=(height[i-1]+height[i])/2.0; 
    SwapByte( (char *)&newheight , 0 , 2 ); 
    fwrite(&newheight,sizeof(short),1,fp); 
    } 
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                       } 
                 } 
  fclose(fp); 
          } 
 } 
      free(latitude); 
 free(longitude); 
 free(height); 
 } 
 
 
void WriteHeaderSwap(long int North,long int West,long int South,long int East,                                    
short int DLat,short int DLon,double factor,double FactorSD,                                                                
short int StdDev,short int Global,short int type,short int Sizeof,                                                          
short int Datum,short int Ellipsoid,short int ByteOrder,short int Scale,FILE *fp) 
 { 
 long int longint; 
 int s,t; 
 
  SwapByte( (char *)&South , 0 , 4 ); 
  fwrite(&South,sizeof(long),1,fp); 
 
  SwapByte( (char *)&North , 0 , 4 ); 
  fwrite(&North,sizeof(long),1,fp); 
 
  SwapByte( (char *)&West , 0 , 4 ); 
  fwrite(&West,sizeof(long),1,fp); 
 
  SwapByte( (char *)&East , 0 , 4 ); 
  fwrite(&East,sizeof(long),1,fp); 
 
  SwapByte( (char *)&DLat , 0 , 2 ); 
  fwrite(&DLat,sizeof(short),1,fp); 
 
  SwapByte( (char *)&DLon , 0 , 2 ); 
  fwrite(&DLon,sizeof(short),1,fp); 
 
  SwapByte( (char *)&Global , 0 , 2 ); 
  fwrite(&Global,sizeof(short),1,fp); 
 
  SwapByte( (char *)&type , 0 , 2 ); 
  fwrite(&type,sizeof(short),1,fp); 
 
  SwapByte( (char *)&factor , 0 , 8 ); 
  fwrite(&factor,sizeof(double),1,fp); 
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  SwapByte( (char *)&Sizeof , 0 , 2 ); 
  fwrite(&Sizeof,sizeof(short),1,fp); 
 
  SwapByte( (char *)&StdDev , 0 , 2 ); 
  fwrite(&StdDev,sizeof(short),1,fp); 
 
  SwapByte( (char *)&FactorSD , 0 , 8 ); 
  fwrite(&FactorSD,sizeof(double),1,fp); 
 
  SwapByte( (char *)&Datum , 0 , 2 ); 
  fwrite(&Datum,sizeof(short),1,fp); 
 
  SwapByte( (char *)&Ellipsoid , 0 , 2 ); 
  fwrite(&Ellipsoid,sizeof(short),1,fp); 
 
  SwapByte( (char *)&ByteOrder , 0 , 2 ); 
  fwrite(&ByteOrder,sizeof(short),1,fp); 
 
  SwapByte( (char *)&Scale , 0 , 2 ); 
  fwrite(&Scale,sizeof(short),1,fp); 
 
 
  longint=0; 
  for( s = 0 ; s < 7 ; s++ ) 
   { 
    SwapByte( (char *)&longint, 0 , 4 ); 
    fwrite(&longint , sizeof( long ) , 1 , fp ); 
    } 
} 
 
int SwapByte( char *buf, int start_byte , int num_bytes ) 
{ 
   char            temp; 
   if (num_bytes == 2) { 
      temp = buf[start_byte]; 
      buf[start_byte] = buf[start_byte + 1]; 
      buf[start_byte + 1] = temp; 
      return( 1 ); 
   } 
   else if (num_bytes == 4) { 
      temp = buf[start_byte]; 
      buf[start_byte] = buf[start_byte + 3]; 
      buf[start_byte + 3] = temp; 
      temp = buf[start_byte + 1]; 
      buf[start_byte + 1] = buf[start_byte + 2]; 
      buf[start_byte + 2] = temp; 
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      return( 1 ); 
   } 
   else if (num_bytes == 8) { 
      temp = buf[start_byte]; 
      buf[start_byte] = buf[start_byte + 7]; 
      buf[start_byte + 7] = temp; 
      temp = buf[start_byte + 1]; 
      buf[start_byte + 1] = buf[start_byte + 6]; 
      buf[start_byte + 6] = temp; 
      temp = buf[start_byte + 2]; 
      buf[start_byte + 2] = buf[start_byte + 5]; 
      buf[start_byte + 5] = temp; 
      temp = buf[start_byte + 3]; 
      buf[start_byte + 3] = buf[start_byte + 4]; 
      buf[start_byte + 4] = temp; 
      return( 1 ); 
   } 
   else { 
      printf("swap_bytes: num_bytes not one of 2 or 4.\n"); 
      exit(1); 
   } 
} 
 
short ReadBinaryFileHeaderSwap( BINFILE *BinFile ) 
{ 
 double Scale, Tmp8; 
 long  int Tmp4; 
 short int Tmp2 , i; 
 
 if( !(BinFile->File = fopen( BinFile->Name, "rb"))) 
    return( 0 ); 
 
 fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File );   //read south 
 SwapByte( (char *)&Tmp4 , 0 , 4 ); 
 BinFile->South = Tmp4/3600.0; 
 
 fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File );  //read north 
 SwapByte( (char *)&Tmp4 , 0 , 4 ); 
 BinFile->North = Tmp4/3600.0; 
 
 fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File );  //read weast 
 SwapByte( (char *)&Tmp4 , 0 , 4 ); 
 BinFile->West = Tmp4/3600.0; 
 
 fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File );  //read east 
 SwapByte( (char *)&Tmp4 , 0 , 4 ); 
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 BinFile->East = Tmp4/3600.0; 
 
 fread( &Tmp2 , sizeof( short ) , 1 , BinFile->File );   //dlat 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->DLat = Tmp2/3600.0; 
 
 fread( &Tmp2 , sizeof( short ) , 1 , BinFile->File ); //dlon 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->DLon = Tmp2/3600.0; 
 
 fread( &Tmp2, sizeof( short )  , 1 , BinFile->File );  //global 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Global = Tmp2; 
 
 fread( &Tmp2, sizeof( short )  , 1 , BinFile->File );  // factor 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Type = Tmp2; 
 
 fread( &Tmp8    , sizeof( double ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp8 , 0 , 8 ); 
 BinFile->Factor = Tmp8; 
 
 fread( &Tmp2    , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->SizeOf = Tmp2; 
 
 fread( &Tmp2    , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->StdDev = Tmp2; 
 
 fread( &Tmp8  , sizeof( double ) , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp8 , 0 , 8 ); 
 BinFile->FactorSD = Tmp8; 
 
 fread( &Tmp2     , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Datum = Tmp2; 
 
 fread( &Tmp2 , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Ellipsoid = Tmp2; 
 
 fread( &Tmp2 , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->ByteOrder = Tmp2; 
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 fread( &Tmp2     , sizeof( short )  , 1 , BinFile->File ); 
 SwapByte( (char *)&Tmp2 , 0 , 2 ); 
 BinFile->Scale = Tmp2; 
 
/* Read the dummy bytes */ 
 
 for( i = 0 ; i < 7 ; i++ ) 
  { 
    fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File ); 
    } 
 
 Scale = ( BinFile->Scale ) ? 1000.0 : 1.0; 
 BinFile->South /= Scale; 
 BinFile->North /= Scale; 
 BinFile->West /= Scale; 
 BinFile->East /= Scale; 
 BinFile->DLat /= Scale; 
 BinFile->DLon /= Scale; 
 
 BinFile->NLat = ( BinFile->North - BinFile->South ) / BinFile->DLat + 1.5; 
 BinFile->NLon = ( BinFile->East - BinFile->West ) / BinFile->DLon + 1.5; 
 
 printf("..\n"); 
 printf("%lf %lf\n",BinFile->North ,BinFile->South); 
 printf("%lf %lf\n",BinFile->East ,BinFile->West); 
 printf("NLat %d  NLon %d\n", BinFile->NLat,BinFile->NLon); 
 
 return( 1 ); 
} 
 
double ReadBinaryFileDataSwap( BINFILE *BinFile ) 
{ 
 double    Value; 
 short int Tmp2; 
 long  int Tmp4; 
 
 if( BinFile->SizeOf == 4 ) 
  { 
   if( fread( &Tmp4 , sizeof( long ) , 1 , BinFile->File ) == 1 ) 
      { 
      SwapByte( (char *)&Tmp4 , 0 , 4 ); 
      Value = Tmp4/BinFile->Factor; 
      } 
   else 
      Value = 9999.0; 
  } 
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 else 
  { 
   if( fread( &Tmp2 , sizeof( short )  , 1 , BinFile->File ) == 1 ) 
    { 
      SwapByte( (char *)&Tmp2 , 0 , 2 ); 
      if( Tmp2 != 32767 ) 
       { 
       Value = Tmp2/BinFile->Factor; 
 
        } 
      else 
       { Value = 9999.0; } 
    } 
   else 
    { Value = 9999.0; } 
  } 
 
 return( Value ); 
} 
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Appendix C 

C.1  

#!/bin/sh 
# 
# Preparation of the option files for DTE program 
# Witen by Huaining Yang 
# 
if test -z "$1" 
then 
 echo "Lantitude should be inputed" 
else 
 if test -z "$2" 
 then 
  echo "Longtitude should be inputed" 
 else 
  LANTITUDE=$1 
  LONGITUDE=$2 
  FILENAME=`echo $LANTITUDE $LONGITUDE | awk 
'{printf("DTE_NTglobal_N%sW%s.opt\n", $1, $2);}'` 
  echo $FILENAME  
  cat DTE_TEMPLATE | sed "s/NUM_LANTITUDE/$LANTITUDE/g" \ 
                   | sed "s/NUM_LONGTITUDE/$LONGITUDE/g" \ 
     > $FILENAME 
 fi 
fi 
 
 

C.2 

#!/bin/sh 
# 
# Preparation of the Input files for DTE program 
# Writen by Huaining Yang 
# 
for (( i=59; i<=61; i++)) 
do 
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          for (( j=269; j<=272; j++)) 
          do 
         Lat=$i 
  Lon=$j 
 
  #echo "i=$i; j=$j" 
   
  FILENAME=`echo $Lat $Lon | awk '{printf("input_N%sW%s\n", 
$1,$2);}'` 
                echo "LANTITUDE and LONGITUDE should be $Lat $Lon" 
 
  a=`echo 360-$j | bc` 
  Weight=`echo $i-1 | bc` 
  Value=`echo $i+1 | bc` 
  Zhou=`echo $a-1 | bc` 
  Ting=`echo $a+1 | bc` 
 
  echo $FILENAME 
  cat INPUT_TEMPLATE | sed "s/LAT/$Lat/g" \ 
                     | sed "s/LON/$a/g" \ 
       | sed "s/VALUE/$Value/g"\ 
       | sed "s/WEIGHT/$Weight/g"\ 
       | sed "s/ZHOU/$Zhou/g"\ 
       | sed "s/TING/$Ting/g"\ 
       > $FILENAME 
   done 
done 
 

C.3 

 
#!/bin/sh 
# 
# Running DTE program batchly and automatically 
# Writen by Huaining Yang 
# 
for (( i=48; i<=60; i++)) 
do 
          for (( j=232; j<=248; j++)) 
          do 
   if [ -f DTE_N${i}W${j}.c ] 
          then 
                echo "DTE_N${i}W${j}.c file exist" 
                gcc -lm -o./aa.e DTE_N${i}W${j}.c 
                echo ""# DTE_N${i}W${j}.c was opened #"" 
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                ./aa.e 
                echo ""### the calculation of DTE_N${i}W${j}.c successfully ###"" 
   else 
                echo "Sorry, $1 file does not exist" 
          fi 
   done 
done 
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	The reference spheroid is computed from a satellite-derived 
	where  and  are the fully normalized potential coefficients 
	In similarity, Helmert’s reference gravity anomaly  can be e
	Helmert’s disturbing gravity potential referred to the geoid



