
A MARINE
RECREATIONAL VESSEL

RECONNAISSANCE
SYSTEM UTILIZING
IKONOS IMAGERY

KEVIN PEGLER

October 2004

TECHNICAL REPORT
NO. 217

TECHNICAL REPORT
NO. 226

A MARINE RECREATIONAL VESSEL
RECONNAISSANCE SYSTEM UTILIZING

IKONOS IMAGERY

Kevin H. Pegler

Department of Geodesy and Geomatics Engineering
University of New Brunswick

P.O. Box 4400
Fredericton, N.B.

Canada
E3B 5A3

October 2004

© Kevin Pegler 2004

PREFACE

 This technical report is a reproduction of a dissertation submitted in partial fulfillment

of the requirements for the degree of Doctor of Philosophy in the Department of Geodesy

and Geomatics Engineering, October 2004. The research was supervised by Dr. David

Coleman, and funding was provided by the GEOIDE (Geomatics for Informed Decisions)

Network of Centres of Excellence.

 As with any copyrighted material, permission to reprint or quote extensively from this

report must be received from the author. The citation to this work should appear as

follows:

Pegler, K. (2004). A Marine Recreational Vessel Reconnaissance System Utilizing

IKONOS Imagery. Ph.D. dissertation, Department of Geodesy and Geomatics
Engineering Technical Report No. 226, University of New Brunswick,
Fredericton, New Brunswick, Canada, 205 pp.

 ii

ABSTRACT

This dissertation investigates the ability of IKONOS imagery to detect small

recreational boats. To accomplish this, automatic target detection software called MRV

Recon has been developed which makes use of a weighted Euclidean distance metric.

To test the detection accuracy of MRV Recon, a dataset was created by gathering

position and attribute data for 53 recreation vessel targets within Cadboro Bay, British

Columbia, Canada. IKONOS imagery was collected in May 2003.

The overall detection accuracy was 77 %. The targets were broken down into two

categories: A) less than 6 m in length, and B) greater than 6 m long. The detection rate

for the category B targets was 100%, while the detection rate for the category A targets

was 61%. It is important to note that some category A targets were selected specifically

to test the detection limits of MRV Recon. The smallest target detected was 2.2 m long

and 1.1 m wide. The analysis also revealed that the ability to detect targets between 2.2

m and 6 m long was diminished if the target was a dark colour.

It has been demonstrated that MRV Recon will provide the Canadian Coast Guard

with a unique and effective tool for gathering crucial data on recreational vessels.

 iii

 ACKNOWLEDGEMENTS

First and foremost, I would like to give thanks to my supervisor and friend, Dr. David

J. Coleman, P.Eng. Dr. Coleman’s boundless energy, enthusiasm, and dedication to

Geomatics Engineering set a very high standard for me. I know I am a better man now

than I was when I began this journey largely because of his tutelage. I am deeply

indebted to him.

I would also like to thank the support of the Canadian Coast Guard and the federally

supported Network of Centres of Excellence, GEOIDE (Geomatics for Informed

Decisions). The work is part of GEOIDE project #ENV 60 – Marine Geomatics and

Risk Analysis.

I believe that the Department of Geodesy and Geomatics Engineering is arguably one

of the greatest departments of its kind in the world. Of course, a department is only as

great as the people in it and GGE has some of the best. I would like to show my

appreciation to my departmental colleagues (and others) whose advice, knowledge, or

council I sought: Dr Yun Zhang, Dr. Peter Dare, Dr. Ron Pelot (Dalh), Dr. Peter Keller

(UVic), Dr. Don Kim, Dr. Sunil Bisnath, Mr. Jonathon Beaudoin, Mr. Tomas Beran,

Mr. George Dias, Mr. David Fraser, Captain Michael Hogan, Captain Travis Wert, and

Ms. Chantelle Delorme-Lafontaine (RSI). Thank you all so very much.

I couldn’t have done this degree without the sacrifice of my family. I would like to

acknowledge my parents for supporting the dreams of their only child. Thank you.

For my children, Stephanie and Drew, let this accomplishment serve as an example to

you that no matter what the goal and the difficulties in achieving it, you can achieve it

 iv

by remaining focused, working hard, and maintaining a balanced approach to life. Reach

for the stars, kids!

Finally, I want to thank my wife Shirley, for keeping the household running, bearing

and raising the children, putting up with me, maintaining her own career, and being so

supportive to me that mere words cannot describe. Thank you, with all my heart.

~

 v

TABLE OF CONTENTS

Page

Abstract .. ii
Acknowledgements ...iii
Table of Contents ... v
List of Figures ..viii
List of Tables... x
List of Abbreviations .. xi

1. INTRODUCTION ... 1
 1.1 Selection of Topic ... 1
 1.2 Articles Format Thesis .. 3
 1.3 Outline of Chapters ... 4

2. THE POTENTIAL FOR USING VERY HIGH SPATIAL RESOLUTION

IMAGERY FOR MARINE SEARCH AND RESCUE 7
 2.1 Introduction ... 7

 2.2 Background Research .. 8
2.3 Methodology for Developing a Marine Recreational Reconnaissance
 System ... 14
2.4 Results.. 15
2.5 Further Work.. 18
2.6 Validation of the Reconnaissance System .. 18
2.7 Conclusion .. 18
2.8 Acknowledgements ... 20
2.8 References ... 20

3. EXPERIMENTAL DESIGN ... 22
 3.1 Introduction ... 22
 3.1.1 Previous Target Detection Experiment .. 23
 3.2 Location .. 26
 3.3 Imagery Acquisition .. 27
 3.4 Initial Experimental Design ... 29
 3.5 Design Limitations .. 34
 3.6 Final Experimental Design ... 34
 3.7 Data Collection .. 37
 3.8 Target/Image Position Error Budget ... 39
 3.9 Recommendations ... 42
 3.10 Summary ... 43

4. IMAGE PREPROCESSING ... 44
 4.1 Introduction ... 44
 4.2 Pre-processing ... 46
 4.2.1 Previous Target Detection Experiment 47

 vi

 4.2.2 Evaluation of Results ... 49
 4.2.3 Preprocessing Details ... 50
 4.3 Procedure .. 50
 4.3.1 Masking Procedure ... 53
 4.4 Preprocessing Results .. 55
 4.5 Summary ... 56

5. COMPARISON OF MAXIMUM DISTANCE METRICS FOR USE IN THE
 REMOTE SENSING OF SMALL TARGETS .. 57
 5.1 Introduction ... 57
 5.2 Previous Research ... 59
 5.3 Methodology ... 61
 5.3.1 Data ... 62
 5.3.2 Preprocessing ... 62
 5.3.3 Target Selection ... 64
 5.4 Results ... 67
 5.4.1 3x3 Kernel Results ... 67
 5.4.2 5x5 Kernel Results ... 72
 5.4.3 Overall Detection Results ... 74
 5.5 Weighted Euclidean Distance .. 74
 5.5.1 WED 3x3 Kernel Results ... 75
 5.5.2 Detection Results for WED .. 76
 5.6 Proximity Analysis .. 78
 5.6.1 Analysis on Re-sampled Data ... 80
 5.6.2 Proximity Analysis on Re-sampled Data 83
 5.7 Conclusions ... 84
 5.8 Acknowledgements ... 86
 5.8 References ... 86

6. AUTOMATIC SMALL RECREATIONAL VESSEL DETECTION USING
 IKONOS DATA ... 89
 6.1 Introduction ... 89
 6.2 Objective ... 90
 6.3 Background ... 91
 6.4 Study Site .. 94
 6.5 Data and Preprocessing .. 95
 6.6 Methodology ... 97
 6.7 Results of the Blind Test .. 101
 6.8 Software Enhancements ... 102
 6.9 Final Results and Analysis ... 102
 6.10 Conclusions ... 113
 6.11 References ... 115

7. RESULTS, CONCLUSIONS, AND FUTURE RESEARCH 116
 7.1 Results ... 116
 7.2 Conclusions ... 118

 vii

 7.3 Future Research ... 119
 7.4 Accomplishments and Contributions .. 121

REFERENCES .. 123

APPENDICES

I. MRV Recon C CODE ... 126
II. SOFTWARE DESIGN 1 .. 175
III. SOFTWARE DESIGN 2 .. 186

Vita

 viii

LIST OF FIGURES

Page

1.1 Organizational chart for this dissertation.. 5

2.1 Outlier Detection Method – for 3 band imagery .. 11
2.2 IKONOS Imagery, Fredericton Yacht Club, Fredericton, New Brunswick,

Canada. .. 12
2.3 Proposed Methodology for the Development of a Recreational Vessel

Reconnaissance System .. 14
2.4 Left: Resampled, pseudo-coloured panchromatic band. Right: Resulting “target”

channel ... 16
2.5 Resampled, pseudo-coloured panchromatic band merged with the “target”

channel ... 17
2.6 Digital numbers surrounding a single targeted vessel 17

3.1 Cadboro Bay and RVYC, Vancouver Island, British Columbia, Canada 27
3.2 Mooring a Category A Target, Cadboro Bay, B.C. .. 36
3.3 Category B targets at RVYC ... 37
3.4 IKONOS data with associated ground truth ... 38
3.5 Anchor Geometry ... 40
3.6 Circular anchor error ... 40

4.1 IKONOS imagery for testing pre-processing ... 47
4.2 The manner in which distances were measured off of the SNB reference line .. 48
4.3 Model that performs the unsupervised classification .. 51
4.4 Unsupervised classification results using the ISODATA classifier 52
4.5 The classified image after being processed by the SIEVE module 53
4.6 The image resulting after running the “Unsuper1” model and “MODEL”........ 54
4.7 Results of preprocessing, IKONOS imagery, St. John River 55
4.8 Results Pre-processing on IKONOS imagery, Cadboro Bay 56

5.1 IKONOS imagery, Fredericton New Brunswick, Canada 62
5.2 PCI Modeler preprocessing application ... 63
5.3 Preprocessing results and test targets .. 64
5.4 Spectral response curve for target Alpha ... 65
5.5 Spectral response curve for target Bravo ... 65
5.6 Spectral response curve for target Charlie.. 66
5.7 Spectral response, target Charlie, 3x3 kernel .. 69
5.8 Spectral response, target Alpha, 3x3 kernel ... 70
5.9 Spectral response target Alpha 5x5 kernel ... 73
5.10 Detection results using WED with a 3x3 kernel .. 78
5.11 Detection results using WED with a 5x5 ... 79
5.12 Proximity Analysis ... 80
5.13 Proximity Analysis: Re-sampled data ... 83
5.14 WED, 3x3, re-sampled data .. 84

 ix

6.1 MRV Recon GUI .. 91
6.2 The study site: Cadboro Bay, Vancouver Island, British Columbia, Canada 95
6.3 IKONOS Panchromatic Image of Cadboro Bay .. 96
6.4 Flowchart for MRV Recon ... 98
6.5 Accuracy Assessment Blind Test .. 101
6.6 Positive Detections vs. Length .. 104
6.7 Positive Detection vs. Area ... 105
6.8 Reflectance Cross-sections for Targets Golf and Bravo 106
6.9 False Positives Response Curves ... 108
6.10 False Negatives Response Curves ... 108
6.11 Background Response Curves ... 109
6.12 Comparison of Cross-section for Target Alpha and India 110
6.13 Cross-section through target Charlie and its wake ... 110
6.14 Comparison Between Measured and True Length for Targets 112
6.15 Comparison Between Measured and True Width for Targets 113

7.1 Detection results ... 117

 x

LIST OF TABLES

Page

3.1 Binomial Distribution ... 32
3.2 Initial Budget .. 33
3.3 Target attribute data collected by volunteers ... 35

4.1 Evaluation of Results .. 49

5.1 Outlier frequency and distance from mean for 3x3 kernel 68
5.2 Covariance target Charlie, 3x3 kernel ... 68
5.3 Covariance, target Alpha, 3x3 kernel …... 71
5.4 Covariance target Bravo, 3x3 kernel ... 71
5.5 Inverted covariance (weight) matrix used in Mahalanobis target
 Bravo .. 72
5.6 Outlier frequency and distance from mean for 5x5 kernel 73
5.7 Detection Results .. 74
5.8 Distance from mean using Weighted Euclidean Distance 76
5.9 Distance from mean using Weighted Euclidean Distance 76
5.10 WED Detection Results .. 77
5.11 Detection Results for re-sampled data ... 81
5.12 WED results for re-sampled data .. 82

6.1 Output from MRV Recon ... 100
6.2 MRV Recon Accuracy Assessment ... 103
6.3 Categorized Accuracy Assessment .. 103
6.4 Reflectance Values and Covariance Matrix for Target Golf 106
6.5 Reflectance Values and Covariance Matrix for Target Bravo 107

7.1 Binomial distribution for determination of the true error rate 117
7.2 Research Objectives .. 121

 xi

LIST OF ABBREVIATIONS

GEG Geographical Engineering Group
GIS Geographic Information System
NCE National Centre of Excellence
RADAR Radio Detection and Ranging
MRV Recon Marine Recreational Vessel Reconnaissance
RCC Rescue Coordination Centre
CCG Canadian Coast Guard
RCC Rescue Coordination Centre
DND Department of National Defense
SAR Search and Rescue
MARIS Maritime Activity and Risk Investigation System
PWC Personal Watercraft
VHSR Very High Spatial Resolution
HIS Hyperspectral Imaging
CCGA Canadian Coast Guard Auxiliary
GEOIDE Geomatics for Informed Decisions
DN Digital Number
I/O Input /Output
RVYC Royal Victoria Yacht Club
AOI Area of Interest
TLE Two Line Element
CASARA Civil Air Search and Rescue Association
GPS Global Positioning System
BSF Background Suppression Filtering
NIR Near-Infrared
WED Weighted Euclidean Distance
TR Threshold Ratio
PAN Panchromatic

CHAPTER 1
INTRODUCTION

Something appears to be new only because it was previously
unknown. I have found that the more I learn the more I realize how
little I know.

- Cornelius Shields

The thesis of this dissertation is that IKONOS satellite imagery can be used to

reliably detect and characterize small recreational vessels. This thesis is part of a larger

project objective being to develop a reconnaissance system for small recreational

vessels in support of activity assessment for search and rescue.

1.1 Selection of Topic

How was such a topic selected? The Geographical Engineering Group (GEG) was

approached by a group of researchers from Dalhousie University who were using risk

modeling and Geographic Information Systems (GIS) for aiding the Canadian Coast

Guard (CCG) in marine search and rescue (SAR). The principal researcher in a

National Centre of Excellence (NCE), Dr. Ronald Pelot, GEOIDE research project

asked Dr. David Coleman of the GEG, to join the research team. Dr. Pelot wanted the

partnership because of a need for expertise in Geomatics Engineering.

Meetings were held in the summer of 2000 at the Department of Industrial

Engineering, Dalhousie University to discuss possible veins of research that could be

explored by GEG. Industrial engineers are experts, among other things, in risk

modeling and Dr. Ronald Pelot and his team had already done a significant amount of

work in developing the risk model used to predict where future marine SAR incidents

 1

would occur. The discussions revealed many possible topic areas from which any

number of Ph.D. dissertations could be developed.

However, one topic was particularly intriguing. Dr. Pelot and his team completed

that previous March a study on “Recreational/Tourism Marine Activity Assessment in

the Bay of Fundy” [Pelot et al., 2000]. It outlined the need for accurate information on

the number, locations, and kinds of recreational vessel activities in Canadian waters. It

looked at different methods for gathering this information including: “satellite image

tracking, directed aerial observation, fishery surveillance, land-based RADAR tracking,

directed surface-level observation, and surveys” [Pelot et al., 2000].

In discussing the potential for satellite image tracking to gather information on

recreational vessels the study stated, “… the resolution of available satellite images is

inadequate for this purpose. “ Further, it went on to say:

“Canadian satellite images cannot detect anything less than 7-9
metres in length; this is unacceptable since a large fraction of
the recreational vessel population is less than nine metres.
Certain American satellite images, however, are more powerful
(i.e. resolution of several feet or less) although the quality is
unknown. Many boating characteristics may be unobtainable
unless the resolution and quality is excellent. Finally, obtaining
radar images would be very expensive, and some may be
inaccessible for national security purposes” [Pelot et al., 2000].

The statements above were the genesis of this research into the development of a

marine recreational vessel reconnaissance system (MRV Recon). It was felt that the

assertion, “the resolution of available satellite images is inadequate for this purpose”

could be challenged. In particular, the new commercially available IKONOS imagery

could be used to accurately detect vessels 7-9 metres long. Further, it was believed that

 2

civilian technology could be developed to challenge the notion that this kind of

reconnaissance technology mostly exists within the military.

Just how challenging the reconnaissance would be wasn’t fully realized until after a

meeting with the Director of the Victoria Rescue Coordination Centre (RCC). Mr. John

Palliser was the director of the joint CCG and Department of National Defense (DND)

centre that coordinates all the SAR platforms (boats, aircraft, hovercraft etc.) for the

west coast of Canada. In that interview, Mr. Palliser confirmed the need for better

information on recreational boating. However, he emphasized the importance of being

able to detect very small vessels such as personal watercraft and sea kayaks. He

indicated there was increasing trend in the number of SAR incidents surrounding these

vessels and the cost associated with this trend [Palliser, 2000].

Automatically detecting vessels 6-9 metres in length using IKONOS imagery was

difficult. However, finding a vessel a few metres long that is approaching the best

resolution of IKONOS (1m panchromatic, 4m multispectral) was a much greater

challenge. Recognizing the importance of this problem, a proposal was written and

defended. As was stated at the outset, the thesis was that IKONOS satellite imagery can

be used to reliably detect and characterize small recreational vessels. In addition, it was

proposed that a reconnaissance system for small recreational vessels in support of

activity assessment for search and rescue could be developed.

1.2 Articles Format Dissertation

This dissertation subscribes to an articles format as approved by the School of Graduate

Studies, University of New Brunswick in 2004.

 3

1.3 Outline of Chapters

Figure 1.1 illustrates the organization of this dissertation. There are three chapters

containing the required journal publications. These chapters are prefaced with a small

introduction and are reformatted to meet the guidelines for thesis preparation by the

School of Graduate Studies.

Chapter 2 is a journal chapter, originally published in the journal GeoCarto

International [Pegler et al., 2003] describing the potential for using IKONOS imagery

for marine search and rescue. It contains the background research. Specifically, it looks

at the body of research containing vessel detection. Further, it investigates associated

research in remote sensing as applied to search and rescue, and small target detection.

The various themes are compared and contrasted. Some particularly interesting and

applicable research in small target detection using hyperspectral imagery is discussed in

detail. It forms the foundation for where this research began. Finally, Chapter 2

describes the duplication of the above research and tests its suitability to this problem.

Chapter 3 is a bridging chapter describing the experiment design required for the

data collection. It precedes Chapter 4 because it is important to know how the data was

collected before describing the necessary preprocessing. For this research it was

decided not to use synthetic data, as is common in target detection and computer vision

work, in favour of creating a dataset containing real targets. The chapter describes the

reasons for choosing the study site. It lays out the initial design of the experiment and

the statistics behind that design. It goes on to describe limitations and the subsequent

final experiment design. Chapter 3 concludes with a summary and recommendations to

others who might undertake such a project.

 4

Figure 1.1 Organizational chart for this dissertation.

The work performed in preprocessing the imagery is described in Chapter 4 –

another bridging chapter. The major preprocessing step is the masking out of the upland

portions of the imagery. The preprocessing methodology was developed by a student as

part of her undergraduate Technical Report [Munroe, 2003]. The author supervised the

student.

Chapter 5, “Comparing of Maximum Distance Metrics for use in the Remote

Sensing of Small Targets”, is the second journal chapter. It contains the principal new

engineering research for this thesis. A new distance metric is tested and compared with

the distance metrics used in the original research (as described in Chapter 2).

 5

Chapter 6, Automatic Small Recreational Vessel Detection Using IKONOS Data, is

a journal chapter describing the results of the blind test. It describes the findings and

then some minor enhancements to the software. The test is run again, and the results are

compared with the blind test. Several targets are investigated in depth. The chapter ends

with conclusions regarding the results.

 The final chapter summarizes the entire work, makes recommendations for future

research and then ends by drawing conclusions.

 This dissertation contains three appendices. Appendix I, contains the C code

comprising MRV Recon.

 Appendix II, “Software Design 1” outlines the re-creation and implementation in the

C language of the foundation research. It is the first of two appendices that describes

the design, constraints, hurdles, and internal criticism surrounding the over 2500 lines

of code that comprise MRV Recon.

Appendix III is entitled “Software Design II”. It is the second appendix describing

development of the most time-consuming portion of the research, the programming of

MRV Recon. The appendix outlines the design of the software. The major modules and

functions are described. It outlines the design, constraints, hurdles, and internal

criticism and problems encountered in the programming. Finally, the appendix

concludes with recommendations, and future improvements to MRV Recon.

 6

 CHAPTER 2
THE POTENTIAL FOR USING VERY HIGH SPATIAL

RESOLUTION IMAGERY FOR MARINE SEARCH AND
RESCUE RECONNAISSANCE1

 This chapter presents the first journal paper for this research and was published in

GeoCarto International, by Pegler et al. [2003]. This paper describes the background

research performed and in particular research into a “spatio-spectral” template by

Subramanian and Gat [1998] that could potentially provide the foundation for this

research. Further, the duplication and testing of the spatio-spectral template is

described. The senior author performed the research and writing for this article. The

remaining authors generously supplied both advice and editing.

 The paper makes reference to SARMAP. SARMAP (as it was then called), is now

known as a Maritime Activity and Risk Investigation System (MARIS). Additionally,

readers should be aware that the acronymn SAR stands for search and rescue

(commonly used by most used by most civilian and military agencies performing

rescue operations) and is not to be confused for meaning synthetic aperature RADAR.

2.1 Introduction

Of the many activities taking place on Canadian waters, recreational boating

represents one of the highest incident groups [Pelot, 2000]. Moreover, Canadian Coast

Guard (CCG) personnel have expressed concern over the recent trend in increasing

search and rescue incidents of personal watercraft (PWC) and so-called adventure

tourism [Palliser, 2000]. Adventure tourism can include: sea kayaking, whale watching,

1 Reprinted by permission of GeoCarto International, Vol. 18, No. 3, 2003.

 7

open dinghy cruising, and single handed yacht racing. Researchers at Dalhousie

undertook an assessment of recreational marine activity in a pilot study for the Bay of

Fundy [Pelot, 2000]. The report stated:

‘Current information on recreational boating is very sparse, so
additional data are required to develop a robust model’ and further,
‘…due to the lack of readily available information and data on
recreational boating exposure, there is a need to define a method to amass
a substantial amount of knowledge on all aspects of recreational marine
activity, particularly private boating’ [Pelot, 2000].

As a result of the lack of information on recreational boating activities, the

objectives of this research are threefold:

1) To review the existing research on the use of remote sensing in

marine recreational vessel reconnaissance and search and rescue.

2) To explore the potential for a Marine Recreational Vessel

Reconnaissance system.

3) To implement and test a preliminary system, based on the

background research, to ascertain the feasibility of the project.

2.2 Background Research

There is a significant overlap between research regarding marine search and rescue

and “target” vessel detection. However, most of the search and rescue research is

focused on detection of lost vessels as opposed to military applications [Kruzins et al.,

1998 ; Hongyan and Shiyi, 1995].

This application is distinct from the current general body of research involving

remote sensing in search and rescue because it is not reactive in nature. Remote sensing

 8

is mostly used in marine search and rescue to assist in finding lost vessels in an

emergency scenario. This is often described as ‘beaconless remote sensing’ [Wallace et

al., 1998]. Beaconless remote sensing is utilized when a locator beacon, such as an

Emergency Position Indicating Radio Beacon (EPIRB), has failed to function in a

crisis.

This application is proactive in nature. In this model, the remotely sensed data is

being used to predict and map the likely locations of search and rescue incidents. There

is no requirement to have near real-time data because there is not an immediate risk to

human lives. All that is required is the ability to passively monitor recreational boating

activities to help in the prediction of future SAR incidents to ensure better strategic and

tactical planning by CCG personnel on base location and resource allocation.

Currently, much of the research focus in vessel detection is on the use of Synthetic

Aperture RADAR in search and rescue [Gilliam et al., 1999; Kruzins et al., 1998 ;

Wallace et al., 1998]. It is relied heavily upon in search and rescue due to its all-

weather capabilities. Quite often marine SAR incidents occur during poor weather

conditions, and in those scenarios all-weather imaging is a significant benefit.

Until recently, RADAR remote sensing provided the best balance between

resolution and all-weather capability. However, in the fall of 1999, the first Very High

Spatial Resolution (VHSR) commercial optical remote sensing satellite was launched –

IKONOS. Researchers suggest that the use of the new high resolution remote sensing

satellites show great promise for SAR applications [Wallace et al., 1998]. Moreover,

the use of high resolution optical imagery in the proposed monitoring application

reduces the significance of its inherent weakness - its lack of all-weather capability. If

 9

an area cannot be monitored for recreational vessel activity due to poor weather, the

data can be captured on a subsequent satellite pass. There is little need of a near real-

time object detection capability in this application as exists in other SAR applications

where there is an immediate risk to human life.

There is some interesting research being focused on the use of high resolution

hyperspectral imaging (HIS) for search and rescue [Subramanian and Gat, 1998]. This

methodology seems applicable to the problem at hand. This system uses a single sensor

that can simultaneously gather data in several hundred very narrow bands of the EM

spectrum, as opposed to other systems that gather data from different portions of the

EM spectrum using separate sensors.

The advantage of producing an extremely detailed spectral signature for each pixel

using HIS is that sub-pixel size objects that are otherwise unresolved in conventional

imagery can be detected [Subramanian and Gat, 1998]. In fact, the researchers

demonstrated that objects as small as 1/10 of an image pixel, having a resolution of

three metres, can be detected. The researchers also suggested that the techniques could

be employed with VHSR imagery. However, the reduction in spectral resolution by

moving from hyperspectral to multispectral detectors likely means a corresponding

decrease in ability to detect smaller objects. If, however, the above techniques are

tailored for use in conjunction with one metre resolution VHSR imagery in a

‘simplified’ marine environment, perhaps small recreational vessels could be detected.

The spatio-spectral template developed by Subramanian and Gat [1998] for sub-

pixel object detection is a simple nonparametric solution using ‘local image statistics

 10

based on spatio-spectral considerations’. It is a two stage process: (1) examination of

local statistics and outlier selection and (2) object (or vessel) selection.

In the first stage, the image cube, comprising the separate images of the various

bands recorded by the sensor, is scanned by a 3x3 kernel. Of course, the kernel size can

be adjusted for different scenarios. The mean vector for all layers of the image cube is

calculated. As shown in Figure 2.1, the distance from the pixel currently in the centre of

the kernel to the mean is also calculated. This process is repeated for the entire image

(shown in Figure 2.2). Using this method, individual outliers (possible target vessels)

are selected if they exceed a preset threshold. This threshold ratio is defined as, ‘the

ratio of the distance from the individual pixel to the mean, divided by the standard

deviation of the distances for all nine pixels’, within the 3x3 kernel [Subramanian and

Gat, 1998].

Figure 2.1 Outlier Detection Method – for 3 band imagery.

 11

The second stage of the sub-pixel detection is called Target Detection. All the

outliers selected in the first stage are ranked based on the histogram of the frequency of

selection for each of the outliers. For example, if a 3x3 kernel systematically passes

over the image cube, an individual pixel can be selected as an outlier a maximum of

nine times. Put another way, the centre pixel in a 3x3 kernel can be included in nine

different kernels of the same dimension – unless the pixel is at the edge of the image.

According to Subramanian and Gat [1998], pixels having the highest frequency of

selections as an outlier are then most likely to be actual targets.

Figure 2.2 IKONOS Imagery, Fredericton Yacht Club, Fredericton, New Brunswick, Canada.

After a vessel has been detected, data must be gathered regarding its characteristics.

Shortis et al. [1994] developed a method within their work on target recognition which

will be referred to as ‘target characterization’. The name is given herein, to clarify the

 12

distinction between this method and traditional spectral based classification techniques.

This method of generating information for the vessel length and width for example,

could easily be adapted to provide a heading for the vessel [Zhang, 2001]. Further, the

construction material of the vessel can be determined by using the spectral response of

each target and comparing this with known spectral libraries.

The method developed by Shortis et al. [1994] is as follows:

• Target objects are determined by scanning each line in the image from top to

bottom.

• An eight-way search is initiated around each candidate pixel that exceeds a

predetermined threshold to find other candidate pixels.

• All pixels in the target object are given a unique label.

• The length and width of the target are measured using the ∆x,∆y dimensions

(at this point, the azimuth could be determined) of the target object.

• The line-by-line search for new targets continues until all the targets are

characterized.

Finally, to complete the characterization and classification of the vessel, the spectral

signature under each uniquely labeled target object is generated. This signature is

compared with a reference library of known signatures to determine the material of

construction of the vessel. If the material of construction of the vessel isn’t found in the

spectral library (most vessels are constructed of the following: fiberglass, steel,

aluminum, wood, or concrete) the target could be labeled as a false alarm and

discarded. Research suggests that the ISODATA classification scheme is best suited to

high-resolution imagery (Zhang, 2000).

 13

2.3 Methodology for Developing a Marine Recreation
Reconnaissance System

It is believed, based on the background research, that it is possible to create a

working recreational vessel reconnaissance system using civilian technology in support

of Search and Rescue marine activity assessment. The purpose of the system would be

to gather and classify high quality data on marine recreational vessel inventories for

input into SARMAP.

Figure 2.3 Proposed Methodology for the Development of a Recreational Vessel
Reconnaissance System.

Figure 2.3 illustrates the proposed methodology initially being adopted for this

work. The first stage of the work has entailed a detailed exploration of VHSR imagery:

its relative strengths and weaknesses making use of the imagery shown in Figure 2.2.

 14

The algorithm developed by Subramanian and Gat [1998] has been implemented

using C/C++ code in conjunction with the PCI C/C++ developer’s tool kit. The

feasibility of using this work was then tested on IKONOS imagery containing several

yachts resting on their moorings in the Saint John River, New Brunswick. It is

important to recognize that this imagery was not collected for testing this work nor was

any exhaustive ground truth data gathered. The intention of the first phase of this

project is not to provide rigorous scientific results. As was stated above, the first phase

is to be an exploration into the potential of using the spatio-spectral template for this

purpose. Further, this exploration is being done without spending large sums of money

on ground truthed VHSR imagery. Once the researchers are satisfied that a viable

system is possible, then our partners at CCG will be approached for approval to move

onto the second phase of the research.

2.4 Results

The image on the left side of Figure 2.4 is a resampled and pseudo coloured portion

of the imagery found in Figure 2.2 shown above. The original imagery was not suitable

for even preliminary testing of a sub-pixel target detection algorithm. The “target”

vessels found in the image are on the order of 8m or more, in length. As a result, the

image was resampled to a lower resolution in an attempt to mimic having VHSR

imagery containing small recreational vessels. Given the limited portion of the imagery

found in Figure 2.2 that contains recreational vessels, the resampling to a coarser

resolution was limited before the image (in terms of total number of pixels) became so

small as to be useless.

 15

The panchromatic band was resampled to 6m resolution using bilinear interpolation.

Correspondingly, the multispectral bands were resampled to a 24m resolution also

using a bilinear interpolation. However, the multispectral image was then resampled

back to 6m resolution using a nearest neighbour interpolation to preserve the data

values. Finally, having both the panchromatic and multispectral band with the same

spatial resolution, they were merged into one image cube. Yachts that had a dimension

of eight or more pixels long now are only one or two pixels long. It is still not a sub-

pixel target but much improved for evaluation purposes without incurring great cost.

The image on the right side of Figure 2.4 shows the results from the implemented

spatio-spectral target detection algorithm. Figure 2.5 is a merger of both the images

found in Figure 2.4 to better illustrate the preliminary results.

Figure 2.6 illustrates the output from the target detection algorithm for a specific

vessel that corresponds to the “+” cursor location in Figure 2.5. It is important to note

that only one of the pixels in the vessel was selected as a target. The rest of the pixels

are given a value of zero.

Figure 2.4 Left: Resampled, pseudo-coloured panchromatic band. Right: Resulting “target” channel.

 16

Each of the 11 vessels was “targeted” by the algorithm. Nine targets were detected

incorrectly right along the shoreline and there were 11 unexplained false targets. The

false targets along the shoreline can be attributed to a poor job of masking out the

upland areas by hand. The remaining false targets are unexplained, so some further

development work must be done to enhance the spatio-spectral template and reduce the

number of false targets. We are however encouraged that even with no enhancement of

the original algorithm which was designed for a hyperspectral environment, all the

vessels were targeted.

Figure 2.5 Resampled, pseudo coloured panchromatic band merged with the “target”channel.

Figure 2.6 Digital numbers surrounding a single targeted vessel.

 17

2.5 Further Work

The second stage in the development of a recreational vessel reconnaissance system

would be to adapt and improve the spatio-spectral template developed by Subramanian

and Gat (1998). Specifically, the number of false targets must be reduced.

Future investigations include: a “region-growing” capability must be introduced to

generate all the pixels corresponding to a vessel using each of the “target” pixels as

shown in Figure 2.5, use Mahalanobis distance metric for outlier selection, and

incorporating the response in the NIR band as a test for false targets – one would

assume a low response for a false target in the NIR band if the target was just water.

2.6 Validation of the Reconnaissance System

In the previous research on recreational/tourism marine activity assessment [Pelot,

2000], a single calibration exercise was performed testing the ability of spotters to

identify and classify recreational vessels. The Canadian Coast Guard Auxiliary

(CCGA) provided various vessels of known type and length for the spotters in aircraft

to detect and classify. Eighty-two percent of the vessels were correctly classified. The

methodology developed within MRV Recon may be deemed acceptable if it meets or

exceeds the eighty-two percent classification accuracy achieved by the spotters.

2.7 Conclusion

The research described in this paper is important as it will attempt to adapt existing

investigations in the use of spatio-spectral template for use with hyperspectral imagery

to provide critical reconnaissance data for marine search and rescue. Recreational

 18

boaters, particularly sport fisherman/hunters, PWC operators, and those involved in

adventure tourism, represent one of the highest risk groups on Canadian waters. The

proposed MRV Recon system coupled with the SARMAP software are part of a

proactive program to ensure that Canadian Coast Guard bases have the best possible

spatial distribution. In addition, the technology will ensure the most appropriate SAR

resources are used for responding to marine incidents.

The purpose of the proposed MRV Recon software is to provide the SARMAP

software with the ability to gather data regarding the spatial distribution and

characterization of recreational vessel activities. Preliminary investigations confirm

that commercially available high resolution VHSR satellite imagery may be used to

reliably detect small recreational vessels. Imagery from the VHSR satellite would

provide the primary data to be used in MRV Recon.

The first phase of the research has clearly demonstrated that an operational marine

recreational vessel reconnaissance system is feasible. It also clearly illustrated the

necessity of having VHSR imagery of small recreational vessels such as kayaks and

PWCs with associated ground truth.

Much work remains in this important research to determine whether of not the

proposed approach will meet the 82% classification accuracy achieved by other means.

That being said, the technology exists to construct an excellent tool to help in the

prediction of future marine incidents and thus allow the Canadian Coast Guard to make

better strategic use of their resources and ultimately save lives.

 19

2.8 Acknowledgements

The authors would like to thank the support of the Canadian Coast Guard. This

research is being done as part of a federally supported Network Centre of Excellence

called GEOIDE (Geomatics for Informed Decisions). Specifically the work is part of

GEOIDE project #ENV 60 – Marine Geomatics and Risk Analysis.

2.9 References

Gilliam B., S.W. McCandless Jr., L. Reeves, and B. Huxtable, 1999, “RADARSAT-2
for Search and Rescue”. SPIE Conference on Automatic Target Recognition IX,
Orlando, Florida, April SPIE Volume. 3718 pp.189-194.

Hongyan S. and M. Shiyi , 1995, “Multisensor Data Fusion for Target Identification”.

Chinese Journal of Electronics. Vol. 4, No.3, July 1995. pp 78-84.

Kruzins E., Y.Dong, and B.C. Forster, 1998, “Detection of Vessels Using SAR for

Support to Search and Rescue”. Proceeding of the 9th Australian Remote Sensing
and Photogrammetry Conference. Vol. 1, p.7304. July 20-24.

Palliser, J. 2000 . Personal Communication. Superintendent Victoria Rescue

Coordination Centre, Victoria, British Columbia. June.

Pelot R., 2000, “Recreational/Tourism Marine Activity Assessment in the Bay of

Fundy, Nova Scotia “. Unpublished Report of the Department of Industrial
Engineering, Dalhousie University, Halifax, Nova Scotia. March.

Shortis, M.R., T.A. Clarke, and T. Short, 1994, “A Comparison of Some Techniques

for the Sub-pixel Location of Discrete Target Images”. SPIE Conference on
Videometrics III, Boston, SPIE Vol. 2350. pp 239-250.

Subramanian S., and N. Gat, 1998, “Sub-pixel Object Detection Using Hyperspectral

Imaging for Search and Rescue Operations”. Proceeding of the SPIE Conference on
Automatic Target Recognition VIII, Orlando, Florida. April. Vol. 3371. pp. 216-
225.

Wallace R., D. Affens, and S. McCandless, 1998, “Search and Rescue from Space”.

SPIE Conference on Automatic Target Recognition VIII, Orlando Florida, April.
Vol.3371 pp174-184.

 20

Zhang, Y., 2000, “A Method for Continuous Extraction of Multispectrally Classified
Urban Rivers”. Photogrammetric Engineering and Remote Sensing. Vol. 66. No. 8.
August. pp.991-999.

Zhang, Y., 2001, Personal Communication. Associate Professor, Department of

Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton,
New Brunswick. January.

 21

 CHAPTER 3
EXPERIMENTAL DESIGN

The previous chapters described the implementation and testing of the spatio-

spectral template. This chapter outlines the design of an experiment that creates an

imagery dataset used to test the detection accuracy of MRV Recon. Once the creation

of the dataset has been described herein, the following chapter describes the

preprocessing necessary to allow the dataset to be used in MRV Recon.

In addition to the logical position of this chapter within the dissertation described

above, it also represents its chronological position. It was recognized that once the

initial research and testing was completed, eventually a dataset that reflected the

problem of detecting small recreational boats had to be created. Although this dataset

was not used until the testing performed in the final journal publication (Chapter 6),

work began on it at about this stage of the research.

The dataset described here contains a variety of small recreational vessels. The

initial design, its limitations, and the resulting final design are outlined. Particular

attention is paid to the statistical determination of the number of targets to be used in

the experiment. The chapter concludes with recommendations to others who may

undertake a similar experiment.

3.1 Introduction

Ground truth, in the context of vessel detection, requires simultaneously collecting

the imagery, position, and attributes of the all vessels within the study area. Iverson

 22

[1997] in his work in hyperspectral imagery makes three recommendations for the

meaningful collection of imagery for the detection of targets:

1. The imagery must “represent realistic operational conditions”.
2. “…Requires realistic spectral content and phenomologies for the objects
of interest and for the interfering background”.
3. “…The imagery must have accurate ground truth with regard to the
objects of interest and information should be available on other subpixel
objects or features that can give rise to false alarms (emphasis added).”

Iverson recognized the importance of using “real” data instead of “synthetic” datasets.

Certainly synthetic datasets are easier and cheaper to acquire. However, “real” datasets

more closely mimic the actual operational environment and provide a truer test for

detecting targets. He also recognizes that any meaningful test must be made with

“accurate ground truth” for without knowing what actually exists within an image it is

impossible to prove how well the targets are detected. With these recommendations in

mind, a program for data collection for recreational vessel target detection was

investigated.

3.1.1 Previous Target Detection Experiments

The data collection programs of Iverson [1997] and Subramanian and Gat [1998]

were “land-based”. Land based targets can be set out for an extended period of time

until the imagery is collected. Ground truth for land-based programs is a matter of

driving to the test site and gathering the necessary data.

The design of a data collection exercise for targets on the water is a more difficult

proposition. Given the coarseness of the temporal resolution associated with

 23

spaceborne remote sensing, targets must either remain on the water or be replaced

several times.

Additionally, the weather in the marine environment is often harsh. Working from

open boats, exposed to the elements, the task of setting out targets and collecting data is

challenging in the best conditions. Poor weather prohibits the work of collecting ground

truth and further complicates matters.

 Lengthening the time it takes to simultaneously collect the imagery and ground

truth increases cost and complexity of a vessel detection project. Not surprisingly,

previous efforts in designing a program for vessel detection research that includes

ground truth of the test data are few.

There are two categories of datasets used in vessel detection research. In the first

category, no ground truth data is collected and the detection of target vessels in the

imagery is compared with vessels detected by a human interpreter [Eldhuset, 1996].

This type of experiment would not be appropriate for testing MRV Recon because the

size of the targets are at or near the resolution of the imagery and thus difficult to detect

visually.

The second category of vessel detection research includes the collection of ground

truth. Vachon et al. [1996] studied ship detection using RADARSAT. The “field

program” for this work had three targets participate in the experiment. The targets

ranged in size from 63m to 83m. Further, a Canadian Department of National Defence

Aurora maritime surveillance aircraft was flown over the target area to provide

redundant positioning of the above three targets and, “identify additional ship targets on

an opportunity basis [Vachon et al., 1996]. In this experiment all three target vessels

 24

were detected.

Another investigation was performed using RADARSAT with associated ground

truth of the targets [Randall et. al, 1999]. In this work, which was focused on the

detection of icebergs, vessel detection was a by-product of the iceberg detection. Using

several images, researchers compared the detection of various sizes of icebergs with the

vessels found in the images. The vessels consisted of a moderately sized CCG vessel,

an offshore supply vessel, a barge, a small fishing boat, a wooden schooner used for

harbor tours, and a container ship. Randall reported that all the target vessels were

detected by RADARSAT.

Also exploring the potential of RADAR in vessel detection, Kruzins et al. [1998]

performed experiments that included the collection of ground truth data regarding the

size, type, position, and orientation of 65 vessels ranging in length from 5 m to 100 m.

Kruzins reported that all 65 vessels “used as ground truth have all been captured by the

NASA/JPL AirSAR systems at P, L, and C-Bands”. Perhaps most relevant to this

project, the experiment specifically dealt with recreational vessels as point targets

(no wakes) suggesting that using steep incidence angles for airborne C-Band RADAR

can “detect small pleasure vessels with length ranging from 5-20 m …[Kruzins et. al,

1998]”.

After reviewing the previous target detection experiments, it was decided to create

an experiment similar to that developed by Kruzins albeit for optical imagery rather

than RADAR. Ideally there would be more vessels and in particular vessels between 1

–5 m in length to test the combination of IKONOS and MRV Recon to detect very

small targets.

 25

3.2 Location

Pelot [2000] investigated the detection accuracy of trained spotters in aircraft

searching for marine vessels in the Bay of Fundy. Initially, the location of the study site

for this experiment was also to be in the Bay of Fundy to allow for integration with

Pelot’s study. However, after a preliminary needs analysis, it became apparent that the

Bay of Fundy wasn’t an ideal location to hold a recreational vessel detection study

using satellite imagery. Poor weather, a short recreational boating season, and a

relatively small number of recreational vessels diminished the utility of this site for the

study.

In testimony to the strength of research networks, the location of our GEOIDE

partners in Victoria, British Columbia provided us with an excellent alternative study

site location. During an early meeting between the GEOIDE partners, casual

observation revealed a year round recreational boating season and an extremely large

number of recreational vessels. Additionally, our GEOIDE research partner from the

University of Victoria, Dr. Peter Keller, is an accomplished local yachtsman.

 The year-long season, large boating community, and local inroads into that boating

community were overwhelming reasons to select Victoria over the Bay of Fundy as the

study site for the testing of MRV Recon even at the expense of losing continuity with

the previous research.

Cadboro Bay, adjacent to the suburb of Victoria known as Oak Bay, is a small bay

on the southern tip of Vancouver Island. Figure 3.1 illustrates the bay that is

approximately 1 km wide and 2 km long.

 26

Figure 3.1 Cadboro Bay and RVYC, Vancouver Island, British Columbia, Canada.

Since 1913 it has been the home waters of the Royal Victoria Yacht Club (RVYC). The

RVYC has over 1000 members with an active racing, cruising, and junior program. Dr.

Keller is an active senior member of the RVYC. Outside of the working relationship

with Dr. Keller and his team, potentially of most benefit to the data collection

experiment is all the infrastructure that comes with a large yacht club: launching

facilities, work boats, mooring tackle, and a large number and variety of small

recreational boats.

3.3 Imagery Acquisition

Having now selected Cadboro Bay as the study site or area of interest (AOI), the

next step involved selecting an imagery vendor. With the cost of airborne imagery out

of reach of the project budget, the remaining options rest with spaceborne high

 27

resolution commercial satellite imagery vendors (or their resellers): Space Imaging or

Digital Globe.

 Initial discussions with various sales staff regarding the need for knowing when an

AOI could be imaged met with little enthusiasm. Vendors suggested that, for security

reasons, the collect dates on which a specific AOI could be imaged are not normally

disclosed. The best option was to pay a “priority upgrade surcharge” to ensure that an

AOI would be imaged within an approximately two-week window. This is called

priority tasking. In addition to requesting a priority tasking, a client can specify near

nadir (within 15○) viewing geometry. By constraining the collection of the imagery in

this manner the number of feasible collect dates in the two-week window is reduced.

Since we did not know the specific collect dates, the drawback of priority tasking for

this experiment is that it would require the setting out of the target vessels and

collecting the position attributes every day for two weeks. This would greatly increase

the effort and costs surrounding the collection of ground truth data for this project.

In an attempt to get around this problem, Rancourt [2002] in his Masters research

attempted to answer the question: if we did purchase a priority upgrade, could the

position of the satellite be calculated within that window of time and then know at what

days and times the AOI could be imaged? Using the Two Line Element (TLE) sets

published by NORAD for all orbiting satellites, Rancourt developed software to

calculate when a specified AOI could be imaged.

Nevertheless, discussions continued with the vendors and one individual, Ms.

Chantelle Delorme Lafontaine of RADARSat International, recognized the potential of

the project and championed our desire for having the vendor provide dates and times

 28

the imagery could be collected. Having the vendor provide the dates and time negated

any uncertainty using Rancourt’s software. After some negotiations, and recognition by

the vendors of the necessity of ground truth in this experiment, a deal was struck

whereby SpaceImaging, through their reseller RADARSat International, would provide

the necessary scheduling data if we paid an additional surcharge on top of the priority

upgrade.

In addition to being provided the collect date, it was agreed that they would lift the

usual minimal percent cloud cover restrictions except for the AOI. The inner polygon

shown in Figure 3.1 must remain cloud free so as not to obscure the small targets. In

other words, if on a specific collect date the weather over the region was cloud covered

but the weather over Cadboro Bay was clear, then the vendor would release the

imagery. It would be disheartening and expensive to set out all the targets and to know

that at the collect time the necessary patch of sky was clear, but because of the minimal

percent cloud cover restrictions, the vendor would not release the imagery. The

securing of this agreement alleviated this restriction.

3.4 Initial Experimental Design

The primary consideration in designing the experiment was establishing the number

of targets to include. This consideration was extremely important for two reasons: 1)

the number of targets drives both the cost and complexity of the work associated with

the ground truth and 2) the number of targets included must be great enough to

statistically prove that MRV Recon can accurately detect recreational vessels.

 29

 In order to prove the accuracy of MRV Recon it is necessary to find the upper

bound for the following statement: “I am 95% confident that the probability of failing

to detect a target is no more than … (the unknown upper bound) ”. The quality of the

detection accuracy would be reflected in a very small value for the upper bound

[Tingley, 2003]. A binomial distribution was suited for designing the experiment. The

binomial distribution is quite often used to model random variables in many kinds of

experimental and sample survey situations. The equation for the binomial distribution

[Scheaffer and McClave, 1995] is:

yny p)(1p
y
np(y) −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= (3.1)

where:

p(y) = the probability of success of a trial
n = number of trials
y = the number of successes in the n trials

Schaeffer and McClave [1995] suggest that a random variable Y is binomially

distributed if the following conditions exist:

1) The experiment consists of a fixed number of n identical trials.
2) Each trial can result in one of only two possible outcomes,

“success” or “failure”.
3) The probability of “success”, p, is constant from trial to trial.
4) The trials are independent.
5) y is defined to be the number of successes among the n trials.

Specifically for this experiment, the number of trials n corresponds to the number of

targets. The observed error rate p is:

 30

N
kNp −

= (3.2)

where:

 p = observed error rate;
k = the number of targets correctly detected;

 N = the total number of targets.

For example, if N = 50 targets set out and MRV Recon correctly detected 47 of them

then the observed error rate is:

0.06
50

4750p =
−

= (3.3)

An iterative approach was used to answer the question, “I am 95% confident that

the true error rate (of MRV Recon) is no more than X%”. Using the Binomial

distribution function within the Minitab statistical software, various “candidate” true

error rates are generated for the following equation:

 Pr(3 or more errors; N = 50, a candidate true error rate) = 0.95 (3.4)

After a few iterations for estimates of the true error rate, it was found that an underlying

true error rate (detection rate) would be no more than 12%, as shown in equation (3.5)

below:

 Pr(3 or more errors; N = 50, 12% true error rate) = 0.95 (3.5)

What equation (3.5) suggests is that, if it is estimated a priori that MRV Recon would

fail to detect 3 targets of a total of 50 targets set out in the experiment, then at 95%

confidence, the true error rate (failure to detect) would be no more than 12%. If more

targets were set out then, for the same observed error rate, the true error rate would be

reduced. In the context of designing an experiment, a balance is struck between a

 31

reasonable guess of the observed error rate, the number of targets used in the

experiment, and accepting a reasonable true error rate.

Table 3.1 contains various iterations and combinations of numbers of targets,

observed error rates, and true error rates generated using the binomial function. As

stated above, for given “observed” and “true” error rates, the confidence increases with

a greater number of targets. Note that the confidence of success q is measured as 1-p

(known as a one sided test) where p is the lower bound listed in the table entries.

Finally, when designing the experiment, you must give it every chance to fail in order

to truly test its accuracy. If the experiment is designed with so few targets that there are

no false negatives, then you have an observed error rate of 0%. However, in such a

scenario there will be no reasonable bound established for the true error rate.

Table 3.1 Cumulative Binomial Distribution.

Number of Missed Targets N=25 p = 0.15 N = 50 p = 0.12 N=50, p=0.15 N = 100 p=0.15
0 0.01720 0.001675 0.000296 0.000000
1 0.09307 0.013099 0.002905 0.000002
2 0.25374 0.051264 0.014189 0.000015
3 0.47112 0.134534 0.046047 0.000093
4 0.68211 0.267954 0.112105 0.000426
5 0.83848 0.435336 0.219353 0.001553
6 0.93047 0.606522 0.361299 0.004702
7 0.97453 0.753252 0.518752 0.012165
8 0.99203 0.860799 0.668101 0.027476
9 0.99786 0.929238 0.791094 0.055095

10 0.99951 0.967502 0.880083 0.099447
11 0.99990 0.986476 0.937188 0.163486
12 0.99998 0.994885 0.969939 0.247302
13 1.00000 0.998236 0.986834 0.347425
14 1.00000 0.999444 0.994713 0.457224
15 1.00000 0.999840 0.998050 0.568315

For the initial design of the Cadboro Bay experiment, it was suggested to set out

100 targets. Estimating a reasonable number of false negatives as being 10 (equivalent

to a 10% error being observed) then, at 95% (1 - 0.0550946, from Table 3.1)

 32

confidence, this would lead to a true error rate of no more than 15%. A greater number

of targets would lower the true error rate, but practicality was already in jeopardy as

100 targets are already quite a large number. However, it was felt that this number was

manageable. A budget was developed based on 100 targets and is included as Table 3.2.

The budget reveals that quite a complex experiment was envisioned in the first

design. It included participation of CASARA (Civil Air Search and Rescue

Association) and the Canadian Coast Guard Auxiliary. Further, it was envisioned that

we would have GPS and laser range finders on the support vessels. In addition, the

targets and vehicles to transport them to the study site were to be rented. The total cost

including imagery, communications, insurance, fuel, etc. was budgeted to be around

$37,000.

Table 3.2 Initial Budget.

Proposed Budget

DIRECT COSTS $ Comments

Travel 5,964 Two trip Victoria & Two Ottawa

Imagery 7,200 IKONOS Priority Tasking

Boat Rentals 8,000 60 Kayaks - no discounts average price x 3 single days

Fuel CCGA 1,176 70 l x $0.70 * 8 boats for 3 days

Fuel CASARA 846 151L *4 tanks @ $0.70 per litre * two air craft

Communications 900 two way radios @ $20/day * 15 radios for 3 days

GPS 600 Rentals to put on moving vessels $10 per day * 20 units * 3 days

Ground Control 2,000 Static GPS survey for GCPs

Honorariums 500 RVYC etc

Other positioning 1,020 Leica Laser Locator - range finder @$85.00/day - four units for 3 days

GPS 1,200 GS50 for use with Leica Laser Locator @ $100.00 day

Transportation 960 4 vehicles for 4 days $60.00/day

Project Insurance 1,000 Liability

Food 1,000 Lunch on water

Other

subtotal $32,366

tax 4,854.90 15%
TOTAL $37,221

 33

3.5 Design Limitations

The budgeted cost of $37,000 was a limitation. However, complexity rather than

cost was the biggest limitation. The initial experiment design was too complex. As a

result, the local boating groups shied away from it when approached because of the

large time commitment. Moreover, when it was explained that there was no control

over which days the satellite would image the AOI - meaning that the volunteers would

be committing to possibly several days of work that likely would not fall on a weekend

- their interest understandably waned.

3.6 Final Experimental Design

The final experiment design was scaled back in a number of areas, but chiefly in the

number of targets. By reducing the complexity of the work it was hoped that it would

be more attractive to volunteers - and more cost effective.

The UNB Applied Statistics Centre was again consulted regarding the impact of

reducing the number of targets. The response was that, if the number of targets was

reduced, then there must be a willingness to accept a correspondingly lower confidence

level. For example, (referring to Table 3.1) if we put out 25 targets and fail to detect 3

of them, then it could be concluded that, with 75% confidence (1 - 0.2537), that the

underlying error rate for MRV Recon in this experiment was no more than 15% (0.15).

In comparison, for the same number of failures and true error rates, but using 50

targets, it could be concluded that with 99% confidence the true error rate was no more

than 15%. In other words, the greater the number of targets the more confidence is

associated with the determination of the true error rate.

 34

Immediately after scaling back the experiment, we were approached with a proposal

from the members of the RVYC to undertake the data collection for us for a flat fee of

$4750. The profits from this contract were to go to the club’s junior sailing program.

It was agreed that for this fee they would collect ground truth data for a minimum of 25

targets. Targets included both recreational boats and other objects, such as inflatable

racing marks, moored in Cadboro Bay. Further, GPS positions and detailed descriptions

for each target would be collected. Table 3.3, illustrates the attribute data that were

collected for the targets by the RVYC volunteers.

 Table 3.3 Target attribute data collected by volunteers.

Target
ID

Latitude Long. Heading Length Width Material of
Construction

Sail or
Power

Remarks

The RVYC team created two categories of targets: A and B. Category A targets

were less than 6 m in length. They consisted of small sailing dinghies, prams (small,

blunt nosed rowing dinghies), kayaks, inflatable race marks, and 1 m diameter, steel

permanent mooring balls. With the exception of the mooring balls, all targets in

Category A had to be moored using temporary moorings of polypropylene line and

concrete blocks. Milk jugs were used as floats and were assigned a unique target code

and their position was recorded when they were set out in the bay.

 35

Figure 3.2 Mooring a Category A Target, Cadboro Bay, B.C.

The RVYC agreed to a maximum of four data collection attempts within the

priority tasking window between May 15 and May 29. On the morning of each

collection date, the targets were towed out in rafts and attached to their assigned

mooring. Figure 3.2 shows two support vessels checking the position and correct

mooring location for a small Category A target.

The temporary mooring system allowed for time-consuming setting and positioning

of the moorings to be done over a few evenings prior to the first collection date.

Further, all the attribute data for the small targets - such as length, width, colour, and

material of construction - could be conveniently gathered on shore prior to the first

collection date. This minimized the time impact of volunteers on the collect days

because most of the work was already done. All that had to be done was tow out the

targets to their moorings.

 36

Figure 3.3 Category B targets at RVYC.

Figure 3.3 shows the Category B targets resting on their moorings. Category B

targets are larger than 6 m in length. For the most part, these larger yachts were already

sitting on permanent moorings in the bay just adjacent to RVYC. Teams of volunteers

assigned unique numbers to these targets and collected, sometimes perilously balancing

in small support vessels, attribute data for these larger targets. Again, most of this was

done prior to the first collect date. On the morning of a collect date, a small team of

volunteers would proceed out and check that no changes had occurred such as newly

arrived or departed boats.

3.7 Data Collection

In the end, the RVYC volunteers were able to secure 28 Category A targets. The

majority of these targets were a mixture of privately owned dinghies, kayaks and

inflatable Zodiacs. In addition they borrowed small one-design racing dinghies in the

Optimist, Byte, Laser, Flying Junior and 420 classes. The colours of these targets

ranged from white to grey. The 25 Category B targets were comprised of larger sailing

yachts ranging in size from 6 to 12.5 m in length.

 The first collect date was May 15, 2003. In the morning, the Category A targets

were ferried out to their assigned moorings and the Category B yachts were checked for

 37

any changes. The weather was however uncooperative. The skies remained clouded

over for the entire day and the AOI could not be imaged.

The second collect date was May 18. The targets were set out and the weather was

only marginally better. However about 30 minutes prior to the collect time of 11:24am,

the skies cleared over the AOI while those over the straight remained cloudy.

Figure 3.4 IKONOS data with associated ground truth.

 Figure 3.4 is the resulting IKONOS imagery for the data collection experiment. The

cloud cover can be seen just entering the AOI on the lower left corner of the image.

Otherwise the portion of the bay containing the targets is completely clear.

 38

3.8 Target/Image Position Error Budget

Having now collected the imagery, efforts must now be concentrated on the issues

surrounding the detection accuracy of MRV Recon. Measuring the detection accuracy

of MRV Recon requires comparing what is labeled as a target and what is known to be

a target from the ground truth. In assessing the detection accuracy, the maximum

difference in the position that is allowable to claim a positive detection must be

determined.

There are three components to the total error in position: Global Positioning System

(GPS) error, anchor rode error, and the IKONOS position error. Handheld GPS units

were used to position the targets. Tiberius [2003] suggests that the expected position

estimate using a handheld GPS is between 5 – 20 m of the true position at the 95%

confidence level. A 20 m error is a worst-case scenario. However, Dare [2003]

suggested that in this case, the handheld units are being used on the water and as there

are few obstructions between the satellites and the handheld units, a value of 12 m

would be more realistic to adopt in determining the total error in position.

Figure 3.5 illustrates the geometry of a target (the sailing dinghy) resting at anchor.

From the records kept during the collection of the ground truth, it is known that most of

the pre-made polypropylene anchor lines were 15 m is length. In addition, the

shallowest water depth was 5 m. A boat resting on anchor in a gentle wind and/or

current has an anchor line with a parabolic curve, as shown in Figure 3.5. However,

when the winds and/or currents increase, the anchor line stretches taut. When the line is

taut, the boat is the farthest way from the point directly over the anchor. Using

Pythagoras’s theorem, then r = 14 m.

 39

Figure 3.5 Anchor Geometry.

Figure 3.6 Circular anchor error.

Figure 3.6 illustrates the magnitude of the error due to the target swinging on its

mooring. When the target is set out and positioned using the GPS, its position is at the

 40

centre of the circle. However, it can swing anywhere within the circle that we have

calculated to have a 14 m radius. So the GPS position of the target is +/- 14 m due to

anchor error.

Having dealt with the errors associated with the targets, next the error associated

with the position of the target in the IKONOS image must be addressed. The published

circular error of IKONOS image with the standard positioning package, is 15 m at 90%

confidence level [SpaceImaging, 2003]. In order to match the rest of the errors this

value was scaled to the 95% confidence level. The circular error at 95% confidence

level is 18 m. This translates to the position of the target as measured in the image in

+/- 9 m.

With the individual errors investigated, all that is left is to propagate these to

determine a value for the total error in position. Equation (3.6) is the propagated total

error.

2
IKONOS

2
anchor

2
gpsTotal σσσError ++= (3.6)

Substituting the values determined above yields:

m 2191412Error 222
Total ++=

This total error calculation suggests that if the position of a labeled target as determined

by MRV Recon is within 21 m of the recorded ground truth position, then it is recorded

as a positive detection.

 41

3.9 Recommendations

When undertaking a data collection mission such as this, two areas need special

attention. The first is acquiring the imagery. A great deal of patience is required when

finding a vendor (or re-seller) to champion the work. It was critical for us to be

provided with the collect dates and times so that the targets could be placed just prior to

imagery collection and removed immediately thereafter. Most of the sales people are

frankly not that interested in a relatively low budget research project. Moreover, they

are fairly resistant to a small imagery purchase that comes with a number of special

requests. Thankfully personnel in the remote sensing imagery industry generally well

recognize the importance of furthering the science and engineering surrounding remote

sensing. After all, in the long term it’s of benefit to the vendors of remote sensing

imagery.

 The second area is cost. Although in this case it was completely unsolicited,

acquiring a contract with a stakeholder or interested party is very useful for keeping

costs down. In order to facilitate interest by stakeholders it is important to keep the

complexity of the data collection as low as possible. For this specific project, we would

have ideally liked to have the multi-agency redundant data collection exercise as it was

initially designed, however with only a limited budget, it was difficult to get volunteers

interested. By redesigning the project, we were able to contract with a stakeholder

group and that reduced our cost.

 42

3.10 Summary

Previous research underscored the need for imagery with ground truth. The goal of

this data collection exercise was to get as many small targets as possible in order to test

the ability of MRV Recon and IKONOS to detect these small targets. The Cadboro

Bay, British Columbia, study site was selected for its favourable weather and proximity

to large numbers of recreational vessels.

The initial experiment design called for 100 small targets, with redundant

positioning using GPS, laser range finders, and CASARA over flights. The experiment

was redesigned to be simpler and thus more attractive to volunteer stakeholders. As a

result, a contract was made with members of RVYC to set out and collect ground truth

data for at least 25 suitably sized small targets. In May 2003, 53 targets (28 were 6 m or

less in length) were imaged by IKONOS and position and attribute data were collected

for each target.

A study of the error budget surrounding the targets in the imagery was undertaken.

The study revealed that if the position of a labeled target as determined by MRV Recon

is within 21 m of the recorded ground truth position, then it is recorded as a positive

detection.

 43

CHAPTER 4
 IMAGE PREPROCESSING

This chapter outlines the development of the necessary image preprocessing for

MRV Recon. It introduces the concept of preprocessing for target detection. It

describes the development and testing of a preprocessing application. The results from

the preprocessing are presented. The chapter concludes with a summary.

4.1 Introduction

Most computer vision applications make use of some preprocessing technique to

make the job of processing the image simpler and ultimately reduce the number of false

positives [Trivedi et al., 1989], [Shirvaikar and Trivedi, 1990], [Shortis et al., 1994].

Regardless of the environment surrounding a target and the preprocessing methodology

used, the concept remains the same: remove as much of the data surrounding and

obscuring the target as possible in order to improve the chances of positive detection.

In computer vision for robots or other industrial applications, a common

preprocessing technique is background subtraction. Also called “image segmentation”

or “gray-level segmentation”, the idea is the “conversion between a gray-level image

and a bilevel …image” [Parker, 1997 p. 116]. The result is a black and white image that

contains all the information regarding the number, position and shape of targets with a

lot less information.

Other research suggests that background suppression filtering (BSF) is the

identification of “the spectral signature of the troublesome background element or

elements … and then carry out a projection operation that reduces the dimensionality of

 44

the data set by one …[Ashton, 1999]”. This notion of dimensionality of the data is

compelling when developing a target detection system. Reduction in dimensionality

effectively reduces the amount of data that the detection algorithm must sift through. If

no targets exist in the background, as is the case when targeting marine vessels where

the land is the background, then the chances of having a false positive are reduced. In

non-marine environments the trick is not to have any valid targets hidden amongst the

background data and then remove the opportunity of correctly identifying the targets

when reducing the dimensionality of the dataset.

The environments for target detection and reconnaissance are decidedly more

complex than is often the case for computer vision. In these environments the targets

are greatly obscured, sometimes intentionally, by highly variable background [Shortis

et al., 1994]. Although requiring a two-step process, target detection in a marine

environment (also called vessel detection) may have a simpler background than the

terrestrial counterpart.

The first step in vessel detection is to mask out the land portions of the image

[Randell et al., 1999] [Eldhuset, 1996]. The result is an image only containing water

and the target vessels and thus yielding a higher signal-to-noise ratio to be exploited in

the subsequent detection phase (the second step in vessel detection).

Since the overall project goal is to develop a robust and automated reconnaissance

system for the CCG, a student was engaged to develop an automated pre-processing

method that effectively masks out the upland areas in an image. This work was

envisioned and supervised by the principal author as part of the senior technical report

course in the Department of Geodesy and Geomatics Engineering, UNB. This work

 45

was done by Ms. Katie Munroe, a senior undergraduate student, just prior to collection

of the Cadboro Bay dataset. As a result, testing of the preprocessing was done making

use of an existing IKONOS dataset over Fredericton imaged in July 2001.

As the student’s supervisor, responsibility for any shortcomings of this work rests

with this author. In spite of the author’s lack of experience in supervision of students,

Ms. Munroe’s work [Munroe, 2003] was exemplary and her contribution to the

development of MRV Recon is both significant and appreciated. The remainder of this

chapter will outline the pre-processing steps and results.

4.2 Pre-processing

The IKONOS data cube consists of 5 channels of varying resolution. The

panchromatic channel has a resolution of one-metre. The remaining four multispectral

channels have a four-metre resolution. Prior to any further processing, the four-metre

resolution channels were resampled to one-metre pixels using nearest neighbour

sampling to preserve the original data values. The result is a 5 channel data cube:

panchromatic, blue, green, red, and near infrared band each having one metre square

pixel size. The resulting data cube is shown in Figure 4.1.

 46

Figure 4.1 IKONOS imagery for testing pre-processing (Munroe, 2003).

4.2.1 Testing Masking Techniques

Unsupervised classification, polygon overlay, and a hybrid method combining

unsupervised classification and polygon overlay techniques were tested and compared.

Given the objective of developing an automated system, supervised classification

techniques were not included in the testing. The following is the evaluation criterion

used to select the most suitable method [Munroe 2003]:

1) The distance between the identified shoreline and a reference line.

2) The amount of processing time required.

3) The amount of user interaction required.

4) The potential for automation of the process.

 47

Vector shoreline data from Service New Brunswick is used as the reference line in

the evaluation process. McKay stated to Munroe [2003] that the data have a positional

accuracy of +/- 2.5 m. This accuracy level is sufficient because (1) the resolution of

the imagery being used is only 1 m, so a variation of 2.5 m is not excessive; and (2)

boats are not typically found that close to shore unless alongside a jetty. Figure 4.2

illustrates how the distance from the reference line and the shoreline resulting from

each preprocessing technique were measured.

Figure 4.2 The manner in which distances were measured off of the SNB

Water

Land

SNB
Reference
Line

LEGEND

reference line [Munroe, 2003].

The second technique for masking upland portions of the imagery which was tested

is unsupervised classification. Unsupervised classifications do not require training data

to classify the image. The theory of unsupervised classification is that clustering

procedures can be used to group pixels having close spectral characteristics. Following

the classification, the user must be able to merge the clusters into classes and label them

[Zhang, 2001]. Three different clustering algorithms are tested: ISODATA, K-means,

and Fuzzy K-Means.

 48

4.2.2 Evaluation of Results

Table 4.1 summarizes the results of comparing the three preprocessing methods. An

extensive discussion can be found in the complete technical report (Munroe, 2003).

Table 4.1 Evaluation of Results [Munroe, 2003].

 UNSUPERVISED POLYGON
OVERLAY HYBRID

USER
INTERACTION? NO YES YES

PROCESSING
TIME 8 min 8 min 11 min

PROCESSING
TIME BY USER N/A 5 min 5 min

AUTOMATED?
 YES NO NO

SEMI-
AUTOMATED? N/A YES YES

DISTANCE FROM
REFERENCE
LINE (MAX.
VALUE)

20 – 55 m 5 – 7 m 25 – 50 m

The above demonstrates, particularly in light of the goal of an automated system, that a

pre-processing system based on an unsupervised classification is the most appropriate

for this application. The distance from the reference line is the poorest; however, this is

somewhat confusing. Although the unsupervised method posted the greatest distance

from the reference line it is the only method that masked the land without the SNB

vector data used as a reference line. The other two methods made use of the SNB data

to generate the mask and one would expect the results in the criteria as such to be

better. At the outset of the project, it was hoped that an independent depiction of the

 49

shoreline to use as a reference for testing would be acquired. However, time and

monetary constraints did not allow for this.

4.2.3 Preprocessing Details

The preprocessing is developed within the PCI Modeler™ application contained in

PCI Geomatica™. PCI Modeler allows the user to visually “script” a process. Scripting

allows a developer to visually link together different modules within PCI to form a

“seamless” process. Once a script has been created, it can be used over and over again,

making it a suitable way of automating the masking process [PCI Geomatics, 2002].

Further, once the script has been written, only minimal knowledge of the PCI software

is required in order to perform the preprocessing,

The strength of an unsupervised classification is that the user simply enters the

number of classes they desire and the computer classifies the image. Following the

classification, all pixels belonging to classes other than the water and boat class would

then have to have their gray values set to zero.

4.3 Procedure

In order to mask the image by means of unsupervised classification, the following

steps must be carried out [Munroe, 2003]:

1) Run the “Unsuper1” model in the Geomatica Modeler application.

2) Run the XPACE “Model” module.

3) Run the “Unsuper2” model in the Geomatica Modeler application.

4) Run the XPACE “Model” module.

 50

The model shown in Figure 4.3 is used, with only minor alterations, twice in the

preprocessing method. With the exception of importing and exporting the data in and

out of the Module, the model contains two steps: (1) an unsupervised ISODATA

classification; and (2) a SIEVE filter. The ISODATA was found to be the best

performing of the various unsupervised classification algorithms tested [Munroe, 2003].

Figure 4.3 Model that performs the unsupervised classification [Munroe, 2003].

The output of the ISOCLUS module, which is the ISODATA classifier, is shown in

Figure 4.4. Munroe (2003) in her experiments discovered that no matter how the

ISODATA classifier was manipulated, the target vessels were not classified into a

single class. In fact, the boats were classified into various classes found on the land. As

a result, if the land-based classes were reclassified to a single background class, which

is the goal of the preprocessing, then the boats would be set to background. Since these

are the targets of interest, a way of preserving the boats with the water class had to be

found.

 51

Figure 4.4 Unsupervised classification results using the ISODATA classifier [Munroe, 2003].

This problem is overcome by using a SIEVE filter. This filter is run over the

classified image. It merges all small “island” pixels – below a specified size – into the

largest neighboring class. Figure 4.5 illustrates that the boats below the minimum

cluster size are assigned to the water class. The resulting image has a separate class for

water and all the targets in the water. It can be seen in Figure 4.5 that, after the

classification layer is run through the SIEVE module the boats are reclassified as

belonging to the water class that is the black portion of the figure.

 52

Figure 4.5 The classified image after being processed by the SIEVE module [Munroe, 2003].

4.3.1 Masking Procedure

Armed with an image containing a water/target class, the remaining upland portions

of the image can be set to a background value that will not be processed in the target

detection software because no targets vessels reside on land. The MODEL is an

application that will alter the contents of image channels according to user-defined

code. Code was written to perform a raster overlay operations where all pixels

belonging to classes other than the water class will have their gray values set to zero.

This code is applied to each channel of the image. Unfortunately, the “MODEL” task in

XPACE has not been programmed for Modeler yet. Otherwise, this step could be

integrated into the “Unsuper1” model [Munroe, 2003].

Figure 4.6 shows that many small land “islands” are classed into the water/target

class and are not removed from the imagery by the overlay procedure. Most likely, the

islands would be identified as false positives by a target detection algorithm. The

solution to remove these small islands requires two steps virtually the same as the first

 53

two steps of the preprocessing method. To address this challenge further processing is

required.

Figure 4.6 The image resulting after running the “Unsuper1” model and “MODEL”. Note the land
“islands” that remain [Munroe 2003].

Munroe [2003] describes:

“ the difference between the two stages of processing is that different

parameters are used in the “SIEVE” module and a different code file is

used in XPACE’s “MODEL” module. During this second stage of

processing, the land “islands” are grouped together with the pixels having

gray values of zero by the “SIEVE” module. The code used by “MODEL”

then stipulates that all pixels belonging to this null class will have their

gray values set to zero.“

 54

4.4 Preprocessing Results

Figure 4.7 shows the result of the preprocessing. All the land based parcels have

been set to a background value, and all the waters of the Saint John River and the

vessels in it remain. The brighter portions within the river are shallow water that

appears lighter due to linear enhancement of the image [Munroe, 2003].

Figure 4.8 shows the results of the preprocessing an IKONOS image of Cadboro

Bay dataset using the methodology developed by Munroe [2003].

Figure 4.7 Results of preprocessing, IKONOS imagery, Saint John River [Munroe, 2003].

 55

Figure 4.8 Results Pre-processing on IKONOS imagery, Cadboro Bay.

4.5 Summary

The goal of this chapter was to develop a fully automated preprocessing

methodology to reliably mask out the upland portions of imagery. This goal was nearly

realized with the sole exception that the “Model” application in PCI’s XPACE cannot,

to date, be accessed through PCI’s visual scripting environment. It is believed that

future versions of Geomatica will have this ability [Munroe, 2003]. The pre-processing

methodology developed by Munroe [2003] was used to pre-process the Cadboro Bay

dataset for use in testing the detection accuracy of MRV Recon.

 56

CHAPTER 5
COMPARISON OF MAXIMUM DISTANCE METRICS FOR USE

IN THE REMOTE SENSING OF SMALL TARGETS2

Previously, two chapters outlined the collection of the imagery for the final testing

and the necessary preprocessing of the imagery prior to running MRV Recon for the

final test.

This chapter returns to specific research surrounding the development and

improvement of MRV Recon. It presents the second journal paper for this research,

which has been accepted for publication in the Journal of Surveying Engineering

[Pegler et al., 2004]. This paper describes the new engineering research for this thesis

and builds on the first journal paper and the foundation of research laid down in the

first four chapters of this dissertation. Specifically, a new distance metric is outlined,

tested, and compared with the distance metrics used in the first journal paper.

5.1 Introduction

There are many applications for small target detection in engineering: topographic

mapping, infrastructure inventories and pre-engineering. Near shore marine

applications include: mapping breakwaters, piers, navigation structures, pilings, and

vessel traffic patterns.

The application driving this research is the development of a reconnaissance system

for the Canadian Coast Guard (CCG).

2 Reprinted by permission of ASCE Journal of Surveying Engineering, n.d.

 57

The system will be tailored for detecting small recreational marine vessels for

example: kayaks, personal watercraft, and small sailing dinghies. In the context of

developing a reconnaissance system, it is important to recognize that these are on the

order of only a few metres long – if that - and most are less than a metre wide. This is

near the best resolution for commercially available space borne optical imagery.

Recreational vessels are of interest to strategic decision makers of CCG because

they represent a disturbing 76% of all marine search and rescue (SAR) incidents in

Canadian waters. The small kayaks and personal watercraft are of particular interest to

the CCG because they represent categories of vessels that are experiencing an

increasing trend in the number of SAR incidents (Palliser 2000). CCG desires to reduce

the costs associated with responding to these incidents by instituting prevention

measures and increasing operational efficiency.

Efficiency can be increased in part by redistributing CCG SAR bases to more

effective locations, thus reducing travel times to incidents. Further, a balance can be

made between minimal response time and only maintaining the optimal number of

bases and SAR platforms to minimize costs. To this end, strategic decision makers have

contracted with researchers at Dalhousie University to construct a Maritime Risk

Investigation System (MARIS) (Pelot 2000). The purpose of this system is to map,

using a GIS, the output of a maritime risk model - the anticipated risk of a future

maritime incident. This allows strategic decision makers to analyze the correlation

between the location of SAR bases and locations where it is anticipated that future

incidents will frequently occur.

 58

Developing a small target detection system for the CCG will allow them to gather

data on numbers, types and locations of recreational vessels. Of critical importance is

information on the smaller vessels like personal watercraft (PWC) and kayaks as they

represent increasing incidence trends. In this stage of testing a marine recreation vessel

reconnaissance system (MRV Recon), the Mahalanobis distance metric is implemented

to see if it can improve detection of small targets.

5.2 Previous Research

Research into reconnaissance or target detection falls primarily into two categories:

automatic and semi-automatic. As we are constructing a system for users whose

specialty is marine search and rescue and not geomatics, we will concentrate on

research into automatic systems.

Trivedi suggests that an automated target detection system should be robust,

accurate, fast, and flexible (Trivedi 1987). Others indicate it would be beneficial if the

system could handle the detection without the aid of spectral libraries or templates of

the desired targets (Subramanian and Gat 1998) or the requirement for radiometric

corrections. Finally, the size, composition or orientation of the target should not hinder

the system’s ability to detect it.

Research in automatic target detection specific to vessel detection is often focused

on Synthetic Aperture RADAR of larger commercial and military vessels (Gilliam et

al., 1999; Kruzins et al. 1998). The current resolution of Synthetic Aperture RADAR

sensors is just too coarse for the small targets (Pegler et al. 2003).

Investigations into specific research into target detection for search and rescue led

to the work of Iverson (1997) and Subramanian and Gat (1998) about the development

 59

of a spatio-spectral template for use with hyperspectral imagery. Subramanian and Gat

suggested in their research that it may be possible to adapt the template for use with

high resolution multispectral imagery. Their “spatio-spectral template” relies on

selecting pixels that are distinct from their neighbors. A kernel of user-specified size is

passed over the data cube. At each kernel location, a distance is calculated for every

pixel vector in the kernel from the mean vector. The pixel farthest away from the mean

and/or above a certain threshold is labeled as an outlier. Those pixels possessing the

highest outlier frequency are identified as “targets”.

Various distance metrics can be employed. Equation (5.1) describes the Minkowski

distance metric (Hartigan 1975). When r = 1, it is known as the Manhattan distance and

when r = 2, it is known as the Euclidian distance metric.

r
p

1i
yixi rd ∑

=
−= (5.1)

In his discussions of clustering algorithms, Hartigan (1975) reviewed a “statistical” or

weighted Euclidean distance developed by Mahalanobis. Intrigued to see if the lower

spectral resolution inherent in multispectral imagery versus hyperspectral imagery

could be offset by using the weighting of distances, the senior author decided to

implement the Mahalanobis metric and compare it to the Minkowski metrics. The

formula for the Mahalanobis metric is shown below as equation (5.2). The weighting is

performed by the inverse covariance matrix.

 60

())m(xCmxd x
1

X
T

x
2 −−= − (5.2)

where

 Cx = the covariance matrix

 mx = the mean vector

5.3 Methodology

The initial development of MRV Recon began with adapting and implementing the

work developed by Iverson and Subramanian and Gat. Only the Minkowski distance

metrics were implemented for investigation of the feasibility of adapting this

methodology to high resolution multispectral imagery. The early work suggests that the

spatio-spectral template can be nicely adapted for use with multispectral imagery

(Pegler 2003).

Of particular interest is discovering whether the spatio-spectral template can be

improved upon to ultimately detect small recreational craft such as PWC and kayaks.

However, the first step is to implement the new enhancement and test its performance

against the original spatio-spectral template. The Mahalanobis distance metric was

implemented to address the loss of spectral resolution when using multispectral

imagery instead of hyperspectral imagery. The variance – covariance information is

used to weight the distances to help offset the loss of spectral resolution.

The quality of the anticipated improvement from using the Mahalanobis distance

metric can be established by comparing the number of detected targets, the number of

false positives or false alarms, and the number of false negatives or the failure to detect

a target, with the results from the Manhattan or Euclidean distance metrics.

 61

The MRV Recon software is being constructed by the lead author using C/C++

code in conjunction with the PCI™ Version 7.0 C/C++ developer’s tool kit.

5.3.1 Data

IKONOS data imaged in the spring of 2001 was used for testing in the early stages

of this research. The image in Figure 5.1 shows vessels from the Fredericton Yacht

Club resting on their moorings in the Saint John River, New Brunswick, Canada. The

vessels are mostly sailboats approximately 6 – 13 metres in length. Ideally, we would

employ imagery with much smaller targets in order to test the software’s ability to

detect the small targets we are interested in. However, data of that nature were not

ready in time for this publication [Sept. 2003].

Figure 5.1 IKONOS imagery, Fredericton New Brunswick, Canada.

5.3.2 Preprocessing

The imagery was preprocessed to mask out all the “upland” pixels to a null value.

This is done to improve the efficiency of the software and to avoid falsely identifying

any “vessel” on land. An undergraduate student in fulfillment of her final year technical

 62

report on Geomatics Engineering developed the processing technique (Munroe 2003).

This was done under the supervision of the principal author. The entire preprocessing

technique was implemented using PCI Geomatica 8.0™ software. The goal was to

develop a Modeler™ application (a visual macro tool) that would allow easy repetition

of the preprocessing procedure.

After considerable testing, and in keeping with the project’s desire to provide an

automated solution for the CCG, the unsupervised ISODATA classifier was used.

Figure 5.2 illustrates the graphical user interface and the individual operations used to

construct the preprocessing masking procedure.

Figure 5.2 PCI Modeler preprocessing application.

After the image was imported and classified using the ISODATA classifier, the

resulting classified image is run through a SIEVE filter. The purpose of this filter was

to assign to the surrounding water class any classes found within a body of water

having a user-specified minimum size. This was necessary to avoid having the larger

yachts grouped into a land class; otherwise the yachts would end up classed as

something other than water and then given a background value. The use of the SIEVE

ensures the target vessels are not mixed in with the background values as the

classification schemes suggest. Figure 5.3 illustrates the results of the preprocessing.

 63

Figure 6.3 Preprocessing results and test targets.

“Bravo”

“Charlie”

“Alpha
”

5.3.3 Target Select

To facilitate the inv

targets: Alpha, Bravo,

Figure 5.3 targets Alph

and 9m, respectively.

and Bravo for the five

infrared (labeled Chan

response curve is for th

the left hand image wi

“Upland” Pixels
Figure 5.3 Preprocessing results.

ion

estigation of the process and results of the software, three

and Charlie were singled out for detailed analysis. Shown in

a and Bravo are both fiberglass sailboats having lengths of 8m

Figures 5.4 and 5.5 are spectral response curves of targets Alpha

IKONOS channels: panchromatic, blue, green, red, and near-

nel 1 through 5 in the graph’s legend, respectively). The

e profile lines drawn down the length of the vessels, as shown in

thin each figure.

 64

Alpha

Figure 5.4 Spectral response curves for target Alpha.

Bravo

Figure 5.5 Spectral response curves for target Bravo.

 65

Both targets show a dramatic jump in digital number (DN) for the panchromatic

channel from the surrounding background values. DN values for the blue, green, and

red channels exhibit similar behavior with parallel increases in response for the target

pixels from those of the background water pixels. There is a loose correlation between

increases in DN values for the panchromatic channel and the R,G,B channels with some

minor exceptions. The near-infrared (NIR) channel exhibits the largest jump in value

from the background to target pixels. This behavior makes sense given that NIR

exhibits a very low response for the background water pixels.

Charlie

Figure 5.6. Spectral response curve for target Charlie.

Figure 5.6 is the response curve for target Charlie. Charlie is representative of a

sample of the background pixels. As one would expect, the response curve shows the

highest values are attributed to the blue and green channels. The response in the red

band is quite low, and again the NIR has an extremely low response. The higher

 66

resolution panchromatic band demonstrates some fluctuations that could reasonably be

attributed to small cresting waves or the glint of the sun off the water’s surface. In

general however, across the five bands, the spectral responses for the background pixels

are much lower than those of the target pixels.

5.4 Results

The test image, Figure 5.1, was processed using each of the Manhattan, Euclidean,

and Mahalanobis distance metrics. In turn, each distance metric was tested with a 3x3

and a 5x5 processing kernel. In addition, a particular pixel vector was selected for each

of the targets and the various data values for the pixel and its neighbors were recorded

and investigated.

5.4.1 3x3 Kernel Results

Table 5.1, shows the specific outlier frequency and distance results for each of the

three target pixel vectors. For a 3x3 kernel, a particular pixel has the opportunity of

being an outlier in 9 different cases as the kernel passes over the data cube. Target

Charlie, the background target, was not selected as an outlier by the Manhattan or the

Euclidean distance metrics. However, the Mahalanobis metric selected it as being an

outlier 2 of 9 times. Scanning down the columns containing the actual distance values,

the distances from the mean for target Charlie were the smallest – particularly for the

Minkowski metrics. The range in distances from the mean for the Mahalanobis metric

is much less than the other metrics making it more susceptible to falsely selecting an

 67

outlier. It is important to remember that only those cells that have the highest

frequencies selected from the outlier class as “targets”.

Table 5.1 Outlier frequency and distance from mean for 3x3 kernel

3X3 Kernel
Outlier Frequency Distance from Mean

Target Manhattan Euclidean Mahalanobis Manhattan Euclidean Mahalanobis
Alpha (294p,199l) 9 9 7 1016 610 7

Bravo
(162p,18l) 9 9 7 504 330 3

Charlie
(243p,146l) 0 0 2 11 9 2

 The covariance matrix (Table 5.2) and spectral plot (Figure 5.7) for the 3x3

kernel surrounding the target pixel Charlie suggest that the greatest information

content, described by the largest variance, is found in the panchromatic channel. The

other channels exhibit lower variance than the panchromatic. The Blue/NIR covariance

value is the largest, and the resulting weight for the Mahalanobis distance would be

lower than all other covariance values.

Table 5.2 Covariance target Charlie, 3x3 kernel

 PAN Blue Green Red NIR
PAN 24.9 0.2 0.2 0.1 -0.1
Blue 0.2 4.1 -0.3 -1.5 -3.2

Green 0.2 -0.3 6.2 -0.1 -2.8
Red 0.1 -1.5 -0.1 0.8 1.4
NIR -0.2 -3.2 -2.8 1.4 7.3

 .

 68

Target "Charlie" 3x3 Kernel

0
50

100
150
200

Pa
n

B
lu

e

G
re

en

R
ed N
IR

Band

D
N

242p,145l
243p,145l
245p,145l
242p,146l
243p,146l
244p,146l
242p,147l
243p,147l
244p,147l

Figure 5.7 Spectral response, target Charlie, 3x3 kernel.

In the case of targets Alpha and Bravo, nine out of nine times the pixel vector was

selected as being an outlier for the Manhattan and Euclidean distance metrics. In

comparing its values with those of its neighbors in each of the nine individual kernel

locations, the pixel was distinct from all the other pixels in the kernel. The distances in

all cases were larger than the corresponding distance found for the background pixel

vector Charlie.

Spectral graphs for targets Alpha and Bravo were similar. Figure 5.8 shows the

response curve for target Alpha with a 3x3 kernel. Again, the greatest variance is found

in the panchromatic channel. For example, pixel 294p, 199l, which we know to be part

of a vessel, has a very large value in the panchromatic channel. Several other pixels

also have high DN values for the panchromatic channel. Target Alpha is narrow

enough, see Figure 5.4, that when a 3x3 kernel is centered over 294p, 199l the left side

of the kernel would be over the water. The spectral plot shows that for 295p, 200l (to

the left and below the target pixel vector) that the DN value in the panchromatic is quite

a bit lower than those pixels comprising the vessel. Also, the blue, green, red, and

 69

especially the NIR have lower values which one would expect for the background water

values.

The ability for the NIR to be used to discriminate a target from a background image

is hampered by the 4m resolution of the multispectral channels. For example, the NIR

response, while low for 295p, 200l, is not as low as NIR values found in the pixels

surrounding the background target Charlie. This is due to part of the vessel contributing

to the DN values for 295p, 200l because of the 4m resolution of the multispectral

channels. Other pixels with higher responses in the multispectral have more of the

vessel contributing to the DN value for those pixels. Clearly, the notion that one can

distinguish a vessel from water by relying on the knowledge that water exhibits a very

low response in the NIR channel is diminished by the coarseness of the resolution

found in the multispectral portion of the IKONOS data cube.

Target "Alpha", 3x3 Kernel

0
200
400
600
800

1000

P
an

B
lu

e

G
re

en

R
ed

 N
IR

Band

D
N

293p,198l

294p,198l

295p,198l

293p,199l

294p,199l

295p,199l

293p,200l

294p,200l

295p,200l

Figure 5.8 Spectral response, target Alpha, 3x3 kernel.

 70

Table 5.3 Covariance, target Alpha, 3x3 kernel.

 PAN Blue Green Red NIR
PAN 100689 2112.9 3409.8 3110.5 3356.5
Blue 2112.9 2150.8 3401.7 2947.5 3272.5

Green 3409.8 3401.7 5442.4 4771.5 5225.1
Red 3110.5 2947.5 4771.5 4357.0 4609.2
NIR 3356.5 3272.5 5225.1 4609.2 5044.5

Table 5.4 Covariance target Bravo, 3x3 kernel.

 PAN Blue Green Red NIR

 PAN 30904.2 11201.7 15553.6 15478.5 17116

 Blue 11201.7 9641.2 13617.2 13505.3 14949.5

 Green 15553.6 13617.2 19356.7 19175.7 21281.7

 Red 15478.5 13505.3 19175.7 19051.5 21169.2

 NIR 17116 14949.5 21281.7 21169.2 23634.5

The covariance matrices are slightly different for targets Alpha and Bravo, shown in

Tables 5.3 & 5.4, respectively. Keeping in mind that target Bravo is considerably larger

than target Alpha, it can be seen in both cases that the panchromatic channel carries the

most variance. Relatively speaking, the larger target has a larger variance in the NIR

likely due to contributions from a significant number of background water pixels. In the

case of the smaller target, Bravo, the second largest variance is found in the green

channel. In fact, there is a trend in both cases towards a larger variance in the green

band. Off-diagonal covariance values exhibit similar relative amounts in that the

green/NIR possesses the highest covariance. One would expect that blue/green water

values would be correlated with lower values characteristic in the NIR band.

 71

Table 5.5 Inverted covariance (weight) matrix used in Mahalanobis target Bravo.

 PAN Blue Green Red NIR
PAN 5.82817E-05 -0.00032 0.000121 0.000157 -9.1E-05
Blue -0.000316898 0.029378 -0.00665 -0.02855 0.0132

Green 0.000120513 -0.00665 0.021445 -0.01872 0.001577
Red 0.000156729 -0.02855 -0.01872 0.070743 -0.02856
NIR -9.06579E-05 0.0132 0.001577 -0.02856 0.015921

The Mahalanobis distance can again be thought of as a weighted Euclidean

distance. Table 5.5 is the inverted covariance matrix for target Bravo. As a result,

channels with larger variance and covariances are given lower weight. This would tend

to de-emphasize the high variance we see in the panchromatic channel over a target

vessel and emphasize lower variance background pixels. The implication of this is a

lower likelihood of detecting a small target because we are de-emphasizing the

channels that carry information necessary for detection.

5.4.2 5x5 Kernel Results

The results for the larger 5x5 kernel are found in Table 6.6. For all three distance

metrics, the larger kernel did a poor job of determining that the target pixels for Alpha

and Bravo were indeed targets. The larger kernel size had greater difficulty handling

the larger target Bravo. The larger kernel size makes for a greater number of neighbors

for a target pixel to be compared to and as a result it is harder to be distinct, particularly

for a larger target where the target pixel is being compared not with the distinct

background, but with other pixels comprising DN values representative of a target

vessel.

 72

Table 5.6 Outlier frequency and distance from mean for 5x5 kernel.

5X5 Kernel
Outlier Frequency Distance from Mean

Target Manhattan Euclidean Mahalanobis Manhattan Euclidean Mahalanobis
Alpha (294p,199l) 25 13 8 1244 710 7

Bravo
(162p,18l)

5 2 0 1163 542 3

Charlie
(243p,146l)

0 0 0 13 10 4

Figure 5.9, the spectral response curve for the 25 pixel vectors surrounding

162p,199l of target Alpha, is similar to the response curves for target Bravo. Figure 5.9

demonstrates the same behavior as the other curves we have investigated - a large range

of values in the panchromatic band. The larger sample size in the 5x5 kernel confirms

that in the multispectral band, pixels either have generally higher values across those

channels indicating they represent a vessel, or they have lower values over those

channels – particularly in the NIR – indicating their DN values are being driven by

reflectance of the background water.

Target Alpha 5x5 Kernel

0

200

400

600

800

1000

Pan Blue Green Red NIR

Band

D
N

Series1
Series2
Series3
Series4
Series5
Series6
Series7
Series8
Series9
Series10
Series11
Series12
Series13
Series14

Figure 5.9 Spectral response target Alpha 5x5 kernel.

 73

5.4.3 Overall Detection Results

Table 5.7 summarizes the detection results. The performance of the Mahalanobis

distance metric was very poor, with a low number of positive detections and a very

high number of false positives (i.e. detecting something that isn’t there). The best

overall performance was found using the Manhattan distance metric in combination

with a 5x5 kernel. The Euclidean distance is more sensitive to an increase in DN value

from the mean than the Manhattan metric and as a result more false positives are

recorded than for the Manhattan distance metric.

Table 5.7 Detection Results.

Detection Results – 16 known targets
Distance
Metric

Kernel Size Distance
Threshold

Frequency
Threshold

Positive
Detections

False
Positives

False
Negatives

Manhattan 3x3 750 >8 7 9 7
 5x5 750 >20 16 6 0

Euclidean 3x3 250 >8 16 21 0
 5x5 250 >20 16 29 0

Mahalanobis 3x3 2.3 >8 1 240 15
 5x5 2.3 >20 0 197 16

5.5 Weighted Euclidean Distance

The results above demonstrate that the implementation of the Mahalanobis distance

metric demonstrated no improvement in the ability to detect small targets over the

Minkowski distance metrics. It only managed to correctly identify a single vessel, and

the false positives numbered in the hundreds. Investigation into specific covariance

matrices and the weighting they provide reveals that it does not reflect the weighting

desired for our purposes.

Reviewing the spectral response curves for the targets, suggests that the targets are

distinguished from the background clutter by increased DN values in the Panchromatic,

 74

Green, and NIR bands. These channels also carry higher variances and covariance

values with the other channels. However, a higher weighting is assigned to lower

covariance values using the Mahalanobis distance metric due to the inversion of the

covariance matrix.

Equation 5.3, shown below, is a modified Mahalanobis distance. It is identical to

the original equation with the single exception being that the covariance matrix Cx was

not inverted before use. This modified Mahalanobis distance will be known herein as

the Weighted Euclidean Distance (WED). After implementing the new WED into the

software, it was subjected to similar testing as described above.

())m-(xCm-xd xxx
T2 = (5.3)

where

 Cx = the covariance matrix

 mx = the mean vector

5.5.1 WED 3X3 Kernel Results

Tables 5.8 and 5.9 compare the WED distances with those distances generated by

the Manhattan, Euclidean, and Mahalanobis metrics for all three targets. The WED

metric for targets Alpha and Bravo is behaving in a superior fashion to the Mahalanobis

metrics. In the case of the WED, the range of distance values, between the targets and

the background (as represented by target Charlie), is much greater than the

corresponding range generated by the Mahalanobis metric. By not inverting the Cx

matrix, higher weights are being generated for those bands having a greater variability

 75

and thus more information. The result is better detection of outliers because the outliers

now have much larger distances.

Table 5.8 Distance from mean using Weighted Euclidean Distance for 3x3 kernel.

3x3 Kernel
Distance from Mean

Target Manhattan Euclidean Mahalanobis WED
Alpha (294p,199l) 1016 610 6 7527

Bravo
(162p,18l) 504 330 2 9747

Charlie
(243p,146l) 11 9 2 5

Table 5.9 Distance from mean using Weighted Euclidean Distance for 5x5 kernel.

5x5 Kernel
Distance from Mean

Target Manhattan Euclidean Mahalanobis WED
Alpha (294p,199l) 1016 610 7 2357

Bravo
(162p,18l) 504 330 2 3637

Charlie
(243p,146l) 11 9 2 5

5.5.2 Detection Results for WED

One important lesson coming out from the results was the importance of setting the

distance threshold, and to a lesser extent, the frequency threshold for the Manhattan and

Euclidean metrics. It was found that the detection algorithm had to be carefully “tuned”

to achieve the best detection results. The WED metric was much more robust and did

not require such careful tuning.

 76

As seen in Figures 5.4, 5.5, and 5.6, the NIR values are higher for the targets than

the background water pixels. In implementing the WED metric, a simple routine was

added that filtered out any distances where the NIR value was very low – a

characteristic response of water in the NIR band. In this version of MRV Recon, the

threshold value is user-defined. In the future, there is no reason why the value could not

be automatically calculated - perhaps using a moving average during the calculation of

the mean values.

Table 5.10 further illustrates the improvement had by using the WED metric over

the other metrics tested. Regardless of the kernel size, the WED scored 16 out of 16

positive detections with no false negatives. While the number of false positives for the

WED are much lower than those for the Mahalanobis distance, the values still seem

high.

Table 5.10 WED Detection Results.

Detection Results – 16 known targets
Distance
Metric

Kernel Size Distance
Threshold

Frequency
Threshold

Positive
Detections

False
Positives

False
Negatives

Manhattan 3x3 750 >8 7 9 7
 5x5 750 >20 16 6 0

Euclidean 3x3 250 >8 16 21 0
 5x5 250 >20 16 29 0

Mahalanobis 3x3 2.3 >8 1 240 15
 5x5 2.3 >20 0 197 16

WED 3x3 *NIR > 100 >8 16 24 0
 5x5 *NIR > 100 >20 16 40 0

*No distances are recorded for those pixels having a very low NIR value – a characteristic response of
water in the NIR band

There is a small string of falsely identified targets in the vicinity of the docks and near

shore structures of the Fredericton Yacht Club. However, visual inspection of Figures

 77

5.10 and 5.11 reveals that most of the false positives are surrounding the visible extent

of the target yachts.

 Figure 5.10 Detection results using WED with a 3x3 kernel.

5.6 Proximity Analysis

Recognizing that the blue, green, red, and NIR bands have a larger (4 m) resolution

than the 1 m panchromatic channel, a proximity analysis was performed to see if the

false positives are a function of the differing resolutions. Figure 5.12 is a bar graph of

the results of a proximity analysis. It shows, for every metre outside of a target vessel,

the number of false detections.

 78

 Figure 5.11 Detection results using WED with a 5x5.

The graph reveals that most of the false positives fall either within 4 m of a vessel

or greater than 15 m away. Any false positive greater than 15 m away from any vessel

is clearly an error in detecting a vessel that is not there. False positives that are less than

four metres away from a vessel can be explained by 4 m resolution of the multispectral

portion of the image cube. A pixel vector, lying near the extent of a vessel as found in

the 1m panchromatic channel, can be selected as an outlier if the multispectral values

are significantly influenced by the boat. That is to say, the pixels adjacent to the boat

have their DN values altered because they partially overlap the boat.

 79

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15

Metres

N
um

be
r o

f f
al

se
 p

os
iti

ve
s

MAN 3x3

MAN 5x5

WED 3x3

WED 5x5

EUC 3x3

EUC 5x5

Figure 5.12 Proximity Analysis.

Analysis of the graph in Figure 5.12 clearly shows that the Euclidean metric with a

5x5 kernel performed the worst with 19 false positives more than 15 m away from a

vessel.

The Manhattan distance, as demonstrated above, clearly performed the best.

Although the overall results for WED did not seem encouraging, the proximity analysis

shows that for the case of the 3x3 kernel the performance was acceptable. Of the 24

false positives recorded, only 3 were greater than 15 m away from a vessel. Further, the

remaining false positives were within four m of the vessels.

5.6.1 Analysis on Re-sampled Data

At the outset of this work, we stated that we were interested in detecting vessels like

the following: canoes, kayaks, PWC and sailing dinghies. The size of these vessels is

much nearer the resolution of the IKONOS imagery. Up until now, we have been

testing with considerably larger sailing yachts, most well over 6 m in length.

 80

To get a sense of how the various distance metrics would perform on imagery of

smaller vessels, the data set was re-sampled, by a factor of 4x, to a lower resolution.

Those vessels that once comprised 8 or more pixels in the panchromatic channel, would

now only comprise a few pixels.

Table 5.11 shows the detection results on the re-sampled data. The WED metric has

superior performance to the other metrics tested. Although the other metrics did not

record a false negative – except for the Manhattan metric using a 5x5 kernel – the

number of false positives were at least twice as large as the number of false positives

recorded for the WED.

Table 5.11 Detection Results for re-sampled data.

Detection Results for Re-sampled Data – 16 known targets
Distance
Metric

Kernel
Size

 Distance
Threshold

Frequency
Threshold

Positive
Detections

False
Positives

False
Negatives

MAN 3x3 750 >8 16 30 0
 5x5 750 >20 15 14 1

EUC 3x3 250 >8 16 20 0
 5x5 250 >20 16 24 0

WED 3x3 *NIR >100 >3 15 6 1
 5x5 *NIR >100 >5 15 6 1

*No distances are recorded for those pixels having a very low NIR value – a characteristic response
of water in the NIR band

The detection results for the WED metric on the re-sampled data were an

improvement to those for the full resolution imagery – the only exception being the

recording of a false negative. These results were obtained by adjusting the frequency

threshold to a lower value. The lower value suggests that the smaller vessels do not

stand out from their neighbors as often and the threshold must be lowered to

 81

accommodate this. The target Bravo was not detected and thus a false negative was

recorded for the 16 known targets in the image. Nonetheless, the overall detection

results were excellent with 15 of the 16 targets detected. The number of false positives

is proportional to those for the full resolution imagery. Visual inspection of Figure 5.14

again reveals that most of the false positives are closely surrounding the targets

suggesting that as found above, the coarser resolution multispectral bands tend to “blur”

the results.

Target Bravo (41p, 5l) is located only five lines from the edge of the image and was

not detected by the WED. The WED covariance matrix is generated for a 10x10 kernel

surrounding each pixel except for those very close to the edges where a smaller 3x3

matrix is used. In the case of target Bravo, it appears that the 3x3 kernel was not a large

enough sample to produce a Cx matrix that was able to provide sufficient weighting for

detection.

To ensure it was not Bravo’s small size but its proximity to the edge of the image,

another small target was investigated. The results, as shown in Table 5.12, of the

outlier frequency (the number of times it was selected as being distinct from in

neighbors) for target Delta were identical to target Alpha and the WED were

proportional to for those recorded for Bravo.

Table 5.12 WED results for re-sampled data.

 WED Results for re-sampled data
 Outlier Frequency WED

Target 3x3 5x5 3x3 5x5
Alpha (74p,50l) 9 25 3086 3425

Bravo
(41p,5l) 0 0 0 0

Delta
(101p, 108l) 9 25 2666 3290

Charlie
(55p,41l) 0 0 0 0

 82

5.6.2 Proximity Analysis on Re-sampled Data

In comparing the proximity analysis results on the re-sampled data (Figure 5.13) to

those for the full resolution data, it can be seen that the majority of the false positives

no longer fall within four metres of the vessels. In fact, all the distances metrics

recorded false positives outside this range attesting to the difficulty in detecting small

vessels. The WED metric performed the best in this analysis, recording only two false

positives beyond the 4 m limit furthering our understanding of WED’s performance

with smaller targets. The worst performance was the Manhattan metric recording many

false positives beyond 4 m from the vessels. It also recorded 6 vessels lying greater

than 15 m beyond any vessel.

0
1
2
3
4
5
6
7
8
9

10

1 3 5 7 9 11 13 15

Metres

N
um

be
r o

f F
al

se
 P

os
iti

ve
s

MAN 3x3
MAN 5x5
EUC 3x3
EUC 5x5
WED 3x3
WED 5x5

Figure 5.13 Proximity Analysis: Re-sampled data.

 83

Figure 5.14 WED, 3x3, re-sampled data.

5.7 Conclusions

In working towards a prototype marine recreational vessel reconnaissance system

for the Canadian Coast Guard, we are comparing the Manhattan, Euclidean and

Mahalanobis distance metrics with a new Weighted Euclidean Distance (WED) to

decide on the most suitable for detecting small marine vessels. Of course, this

technology could be used in detecting other targets such as breakwaters, piers,

navigation structures, and pilings, for applications in: topographic mapping,

infrastructure inventories, and pre-engineering design in a near shore marine

environment.

The testing was performed using IKONOS imagery known to contain 16 yachts of

lengths ranging from 6 – 13 m resting on their mooring at the Fredericton Yacht Club

on the Saint John River, New Brunswick, Canada. Three specific targets were

investigated regarding their spectral characteristics, relationships with neighboring

pixels, and detection performance. Two of the targets, Alpha and Bravo, are vessels,

 84

while the third, Charlie, is for comparison purposes a representative pixel vector of the

background water.

The performance of the Mahalanobis distance metric was disappointing. It did,

however, lead to altering the Mahalanobis metric to create the WED metric. Further

testing on the performance of the WED was performed on both full resolution and re-

sampled imagery. The re-sampled imagery was used to “mimic” small targets.

Detection results using the full resolution imagery for the two target vessels were

superior using the Manhattan metric compared to results obtained using the WED,

Euclidean or Mahalanobis distance metrics. The best results were obtained using the

Manhattan metric with a 5x5 kernel with all 16 yachts detected, no false negatives, and

16 false positives. Of the 16 false positives, a proximity analysis demonstrated that the

majority of the false positives were within 3 m of the extent of target vessels in the

panchromatic band. Given that the resolution of the multispectral portion of the image

is 4 m this does not seem surprising. However, 4 false positives were found to be at

least 15 m from any vessel.

The WED performed best when the imagery is re-sampled to mimic smaller vessels.

The WED metric, using either the 3x3 or 5x5 kernel detected 15 of 16 vessels, with one

false negative and 6 false positives. Another major advantage is the robustness of the

WED metric. As discussed above, the Minkowski metrics had to be “tuned” using

thresholds to get optimal results. There were considerable problems with detecting false

positives along the shoreline. No such problems existed with the WED distance. Given

the emphasis on small targets, and the robustness of the WED metric, it will be the

primary distance metric in future versions of MRV Recon.

 85

Now having answered the question that the most appropriate distance metric for use

in this application is the WED, work will continue on developing a robust and practical

small vessel reconnaissance solution for the Canadian Coast guard. Future work

includes refinement of a Weighted Euclidean Distance metric by scaling the weights

assigned to the covariance matrix to further emphasize the Panchromatic, green and

NIR bands. Other work could include testing on a dataset containing very small targets

with associated ground truth, implement and test an expert system approach, and

development of an operational reconnaissance system.

5.8 Acknowledgements

The authors would like to thank the support of the Canadian Coast Guard. This

research is being done as part of a federally supported Network of Centres of

Excellence called GEOIDE (Geomatics for Informed Decisions). Specifically the work

is part of GEOIDE project #ENV 60 – Marine Geomatics and Risk Analysis and

support from GEOIDE and the Canadian Coast Guard is gratefully acknowledged.

5.9 References

Palliser, J. (2000). Personal communication. Superintendent Victoria Rescue

Coordination Centre, Victoria, British Columbia. June.

 86

Pelot R. (2000). “Recreational/Tourism marine activity assessment in the Bay of

Fundy, Nova Scotia.” Unpublished Report of the Department of Industrial

Engineering, Dalhousie University, Halifax, Nova Scotia. March.

Pegler, K., D.J. Coleman, R. Pelot, and Y. Zhang (2003). “The potential for using very

high spatial resolution imagery for marine search and rescue surveillance”.

GeoCarto International. Vol.18, No. 3, September. pp 35-39.

Trivedi M.M.(1987). “Object detection using their multispectral properties”,

Proceeding of the Society of Optical Engineering (SPIE), 754, 255.

Subramanian S. and N. Gat (1998). “Subpixel object detection using hyperspectral

imaging for search and rescue operations”. Proceeding of the Society of Optical

Engineering (SPIE), 3371, 216.

Gilliam B., S.W. McCandless Jr., L. Reeves, B. Huxtable (1999). “RADARSAT-2 for

search and rescue.” Proceeding of the Society of Optical Engineering (SPIE), 3718

189.

Kruzins E., Y.Dong, and B.C. Forster (1998). “ Detection of vessels using SAR for

support to search and rescue.” Proceeding of the 9th Australian Remote Sensing

and Photogrammetry Conference. 1,7304.

Iverson, A.E. (1997). “Subpixel object detection and fraction estimation in

hyperspectral imagery”, Proceeding of the Society of Optical Engineering (SPIE),

3071, 61.

Hartigan, J.A. (1975). “Clustering algorithms”, John Wiley and Sons.

 87

Munroe, K. M. (2003). “The development of a process to mask out upland portions of

high resolution satellite imagery”, Unpublished undergraduate technical report,

Department of Geodesy and Geomatics Engineering, University of New

Brunswick.

 88

CHAPTER 6

AUTOMATIC SMALL RECREATIONAL VESSEL DETECTION
USING IKONOS DATA3

This chapter presents a paper submitted to the journal Photogrammetric

Engineering and Remote Sensing in April 2004. It is the culmination of all the research

presented in the previous chapters. Specifically, it once again describes the imagery

collection (Chapter 3) and the preprocessing of that imagery (from Chapter 4).

Moreover, the new WED metric (Chapter 5) and other enhancements to MRV Recon

are investigated for their ability to detect small recreational boats through a blind test. It

describes the findings and then some minor enhancements to the software. The test is

run again, and the results are compared with the blind test. Several targets are

investigated in depth. The chapter ends with conclusions regarding the results.

6.1 Introduction

Populating a database of marine activities for Canadian waters requires the

locations and classifications of small recreational boats. Data on recreational boating

are more challenging to acquire than other types of data for marine activities such as

commercial fishing or ferry traffic. For example, ferry traffic maintains a schedule and

follows well-defined routes. However, since recreational boating is very sporadic in

nature, it is much more difficult to get accurate information regarding the location and

kinds of activities taking place.

3 Reprinted by permission of Journal of Photogrammetric Engineering and Remote Sensing, n.d.

 89

Researchers at the Department of Industrial Engineering, Dalhousie University have

developed the Maritime Activity and Risk Investigation System (MARIS) for the

Canadian Coast Guard (CCG) (Pelot et al., unpublished report 2000). MARIS consists

of a database containing information on all marine activities. This database supports a

risk model that is used to predict areas where future marine search and rescue (SAR)

incidents will occur. The final component of MARIS is a GIS to map and analyze the

output of the risk model.

The team at Dalhousie expressed the difficulty in getting data on recreational

boating activities (Pelot et al., unpublished report, 2000). As recreational boaters

account for 76% of SAR incidents in Canadian waters, good data on recreational

boating activities are important to get an accurate prediction from the risk model. In

addressing the problem of gathering data on recreational boating, Pelot et al.

(unpublished report, 2000) used human spotters in aircraft to gather reconnaissance

data on recreational boating activities in the Bay of Fundy. In discussing the logistical

hurdles in mounting such an operation, the question arose as to whether the new

generation of high resolution remote sensing satellites along with automatic target

detection software tailored for small recreational boats could be used instead of spotter

aircraft. This was the genesis of the Marine Recreational Vessel Reconnaissance system

or MRV Recon.

6.2 Objective

The objective of the research described in this paper is to investigate the ability of

IKONOS imagery to detect small recreational boats. Further, to continue developing an

 90

end-to-end software solution to the small craft target detection problem. The goal for

the so-called MRV Recon software is to be fully automated, simple, accurate and robust

because its intended user is the CCG. The MRV Recon software was constructed using

C language in conjunction with the PCI™ Version 7.0 C/C++ developer’s tool kit. A

Visual Basic GUI has been developed, as shown in Figure 8.1.

Figure 6.1 MRV Recon GUI.

6.3 Background

This paper is the third in a series investigating the use of high resolution imagery to

detect small boats and describing the development of MRV Recon. The first paper

investigated the potential for using high resolution satellite imagery – like IKONOS –

for marine search and rescue reconnaissance (Pegler et al., 2003). The second paper

(Pegler et al., unpublished Journal of Surveying Engineering paper, 2004) compares

maximum distance metrics for use in the remote sensing of small targets.

 91

The first paper reviewed the application of remote sensing technology to marine

search and rescue. The literature review revealed intriguing work by Subramanian and

Gat (1998) on the use of sub-pixel object detection using hyperspectral imaging for

search and rescue operations. The sub-pixel detection method utilized local image

statistics based on “spatio-spectral” considerations and was based on the work of

Iverson (1997). These works describe a two-stage target detection process involving:

(1) examination of local statistics and “outlier” selection; and (2) target selection.

Step (1) requires using distance metrics, specifically the maximum Euclidean or

Manhattan distance from the mean, to discern those pixels which are distinct from

others in a moving kernel. Those pixels that are distinct are labeled as “outliers”. The

algorithm counts the frequency for which an individual pixel is selected as an “outlier”.

The second step (target selection) labels those pixels that have the highest frequency as

“outliers” as “targets”.

Subramanian and Gat (1998) suggest that, although their spatio-spectral template

was designed for use with hyperspectral imagery, it perhaps could be adapted for use

with the “soon-to-arrive” (recall that their paper was published just prior to the launch

of IKONOS) commercially available high resolution spaceborne multispectral imagery.

This assertion led to the automation and implementation of the spatio-spectral template

and to some preliminary investigations into the utility of this process for detecting

vessels. The early results (Pegler et al., 2003) were satisfactory enough to suggest that,

with more work, very high spatial resolution satellite imagery can be effective in

accurately detecting small recreational vessels.

 92

The research continued in the second paper that concentrated on adapting and

enhancing the spatio-spectral template for use with high resolution multispectral

imagery. In particular, it focused on comparing different distance metrics. As

previously stated, Subramanian and Gat (1998) used Minkowski distance metrics for

their work. In reviewing the literature on clustering algorithms, Hartigan (1975)

described the Mahalanobis distance metric (see Equation 8.1).

())(12
x

T
xmahal mxCmxd x −−= − (6.1)

The Mahalanobis distance metric is essentially the Euclidean distance metric weighted

by the inverted covariance matrix Cx.

Upon implementing the Mahalanobis distance metric, the principal author realized

that, although the idea of using the variance covariance matrix to weight the Euclidean

distance was sound, inverting it was having the opposite of the desired effect. The

Mahalanobis metric was designed to find clusters in data. Clusters by nature have small

covariance values. However, in this application we are looking for “outliers” or those

things that have large covariance values. As a result, the weighting was altered to

favour the “outliers” and not clusters. With the new metric the weighting was altered by

not inverting the covariance matrix as was done in the Mahalanobis distance metric.

 ())(2
xx

T
xwed mxCmxd −−= (6.2)

Equation (8.2) shows the new weighted Euclidean distance (WED) metric. The

reasoning for use of such a metric is to make use of the covariance information to

improve the detection of “outliers” when adapting “spatio-spectral” template for use

with multispectral imagery as opposed to hyperspectral imagery for which it was

originally designed.

 93

The second paper concluded that the new WED distance was superior to the

Manhattan and Euclidean distance metrics for use in small recreational vessel target

detection. The WED metric was less sensitive to the thresholds required in the

Manhattan and Euclidean distance metrics. Further, it was much more robust in not

producing false positives in the shallow waters near shore. Based on the findings of the

first two papers, it was decided to continue with the research by further enhancing the

software and by generating a data set with associated ground truth to fully assess the

detection accuracy of MRV Recon.

6.4 Study Site

The study site for this research is Cadboro Bay, near Victoria, British Columbia,

Canada (Figure 6.2). Cadboro Bay was chosen for its favorable weather, year-round

recreational boating activity, proximity to the infrastructure provided by the Royal

Victoria Yacht Club (RVYC), and support from one of our research partners in the

large, local sailing community.

 94

Figure 6.2. The study site: Cadboro Bay, Vancouver Island, British Columbia, Canada.

6.5 Data and Preprocessing

An agreement was reached with SpaceImaging International to purchase a 100 sq.

km IKONOS imagery bundle for the area of interest (AOI) illustrated by the outer

polygon shown in Figure 6.2. Further, it was agreed that, for a special tasking fee, the

imagery would only be purchased if the AOI corresponding to the inner polygon shown

in Figure 6.2 was cloud-free. Additionally, the dates/times of the data acquisition would

be provided to allow for the deployment of the targets within Cadboro Bay.

 95

Figure 6.3 IKONOS Panchromatic Image of Cadboro Bay.

Figure 6.3 illustrates the resulting imagery collected on 18 May 2003. Some clouds

infiltrated the lower left portion of the bay. However, since no targets were obscured,

the imagery was accepted. The RVYC can be seen in the upper left hand side of the

Bay. One of the support vessels and its wake can be seen rounding the breakwater to

enter the channel to the club’s shore facilities. Just northwest of the club, larger sailing

yachts can be seen resting on permanent moorings.

Researchers for this project were approached by members of the RVYC with a

proposal to perform the necessary work with respect to the gathering of the ground

truth. The profits from the work went to the RVYC Junior sailing program.

 96

The RVYC volunteers gathered position and cataloged attribute data for all the

targets. Of the 53 targets, 28 were specifically selected for their small size and moored

out into the Bay. These 28 targets, in addition to some one-metre diameter steel

mooring balls, comprised the Category A targets - all being less than 6m in length. It

was not necessary to set out the remaining 25 Category B targets (greater than 6m in

length) as they were already resting on permanent moorings – the only exception being

a large trawler and its tender resting at anchor in the bay.

Preprocessing of the data consisted of masking out all the land using an automated

process through a script developed in PCI Author (Munroe, unpublished UNB

undergraduate Technical Report, 2003). Imagery processed after the initial blind test

was linearly stretched to enhance the contrast of the targets with respect to the

background.

6.6 Methodology

Figure 6.4 presents a flowchart of MRV Recon. After the preprocessing, the first

step was to calculate the average of the user-defined kernel for all input channels. Also

at this point the means were calculated for the entire panchromatic and NIR channels.

These values were then weighted to generate the thresholds for these channels that were

utilized when deciding whether to record a WED distance.

 97

Start

Preprocessing:
contrast stretch
and masking out

land

Calculate
mean for a

given kernel
size

Ignore Pixel

For every pixel
with a kernel
calculate the

WED distance

Pixel is
maximum WED
distance AND is

beyond
thresholds?

Record WED
distance

Yes?

No?

End

If the frequency
for a pixel is
beyond the
threshold

Label as a target

For each target
perform an 8-
way search for

the extent of the
boat

Calculate and
record the

length, width and
orientation of the

vessel

No?

ixelIgnore P

Yes?

Calculate the
frequency each

pixel is an outlier

Figure 6.4 Flowchart for MRV Recon.

Once the means were calculated, the kernel is passed over the data cube and the

covariance was generated for each pixel in the kernel. Then, utilizing the mean vectors,

the WED for each pixel was calculated. To drastically reduce the number of potential

 98

false positives, the values of the panchromatic and NIR channels were compared with

the thresholds calculated earlier. If the values exceed the thresholds, then the WED

distance was recorded.

 Once all the WED were recorded in a new channel, a kernel was passed over this

channel and the pixel with the maximum distance was identified. The pixel possessing

the maximum distance was identified as an “outlier” because it was very distinct from

the others in a particular kernel location. Each time a pixel was identified as being an

“outlier”, its “outlier” frequency value was incremented by one. An nxn sized user-

defined kernel meant that every pixel participated in n2 kernel calculations. Therefore,

the maximum times a pixel could be selected as an “outlier” was also n2. So for

example, if a 3x3 kernel was used, the maximum possible “outlier” frequency was 9. A

particular pixel’s status was changed from “outlier” to “target” if its “outlier” frequency

was at or near the maximum frequency. This frequency threshold can be adjusted,

however experience has shown that it should be kept very near the maximum value to

reduce the number of false positives.

 Having identified the target pixels, they could then be characterized. The

characterization algorithm performed a pixel-by-pixel search through the channel

containing the target labels. Once a target was encountered, an eight-way search was

performed solely on the higher resolution panchromatic channel. Labeling of the target

was continued out from a target pixel in each of the eight directions until the edge of

the boat was encountered. The edge of the boat was reached when the value of the

panchromatic channel fell below a threshold conservatively set at 4σ2 of the

panchromatic channel.

 99

 Once the edge of the boat was found for each of the eight cardinal directions, the

longest and shortest dimensions were recorded and the length was calculated and

recorded. Also the direction of the longest axis of the target yields the orientation of the

target vessel plus or minus 180˚. Point targets were assigned a “n/a” value for

orientation as they are too small to determine their orientation.

Table 6.1 Output from MRV Recon.

The process continued until all the target vessels were characterized. The output of

the characterization was sent to a text file. Table 6.1 is a portion of the text output for

this research. Each target was assigned a target number beginning at 100 to avoid

confusion with the frequency values. The current version of MRV Recon provides the

image coordinates of the centre of the target. Future versions would include geographic

or UTM coordinates. Finally, the length, width, and orientation of the targets were

printed.

A blind test was used to ascertain the detection ability of MRV Recon. As a result,

once the image was collected it was processed with the MRV Recon software and the

results were submitted to our research partners in Victoria who retained the ground

truth data and then assessed the results of the blind test.

 100

6.7 Results of the Blind Test

Figure 6.5 shows the results of the blind test. Of the 53 targets, 42 were positively

detected, and 11 were not detected. The false alarm rate was 23. A large portion of the

false alarms were due to the wake of the support vessel clearly visible in Figure 8.3.

Figure 6.5 Accuracy Assessment Blind Test.

Figure 6.5 also shows the locations, depicted with an open circle, of specific targets

of interest that were subjected to detailed investigations. These targets were selected as

being representative of both point and area targets. In addition, the targets marked for

further investigation were selected from all over the bay. Targets Alpha, Bravo, and

 101

Charlie were false positives in the blind test. In the blind test, targets Delta, Echo, Golf,

and Foxtrot, were false negatives. Targets India and Hotel were representative of

background pixels.

The results from the blind test suggest that improvements were necessary to the

MRV Recon software in order to increase the number of positive detections while

reducing the false alarm rate.

6.8 Software Enhancements

Only a few minor enhancements were made to MRV Recon following the blind

test. Primarily, the size of the sampling window used in generating the covariance

matrix was reduced. The final results were achieved using a 5x5 window for calculation

of the covariance matrix.

The NIR threshold was increased from 1.4µ to 1.65µ and the panchromatic

threshold was also increase from 2.6µ to 2.7µ. Finally, the processing kernel size was

altered to a 5x5 kernel from a 3x3 used in the blind test in an attempt to reduce the

number of false positives.

6.9 Final Results and Analysis

After making the enhancements to MRV Recon described above, the image was

reprocessed. Table 6.2 compares the accuracy assessment of the blind test with those of

the final results. The final results show a reduction in the false alarm rate from 23 to 19.

However, this was achieved at the expense of not being able to detect a target

previously detected in the blind test. Correspondingly, the number of false negatives

 102

was increased by 1 from the blind test. Comparing results between the blind test with

the final test underscored an important tradeoff of increasing the ability of software to

achieve positive detections and also increasing the number of recorded false alarms.

The easier the software labels a pixel a “target”, the more likely it will include false

positives within those targets.

Table 6.2 MRV Recon Accuracy Assessment.

File Positives False Negatives False Positives
Blind Test 42 11 23
Final Test 41 12 19

Table 6.3 Categorized Accuracy Assessment.

 Positives False Negatives False Positives
Category A < 6m

Blind Test 24 9 23
Final Test 19 12 19

Category B > 6m
Blind Test 18 2 0
Final Test 22 0 0

While the ratio of positive detections to false negatives stayed nearly the same,

there was a reduction in the number of false alarms found in the blind test. Table 6.3 is

an accuracy assessment of the blind and final tests broken down by target category.

From Table 6.3, it can been seen that for the most part the larger Category B targets

are well handled by the enhanced version of MRV Recon. It detected 22 of the 22

Category B targets. Not surprisingly, there are no false positives in this category. With

the exception of the false positives due to the wake of the boat transiting through the

AOI, false positives are always very small – on the order of one or two pixels in size.

 103

MRV Recon currently allows these “outliers” to slip through in order to detect as many

Category A targets as possible; again this at the expense of an increased false alarm

rate. However, it is clear that MRV Recon is now quite robust in detecting the larger

yachts improving on the 18/22 Category B detection rate in the blind test to a 22/22

Category B detection rate in the final test.

MRV Recon’s performance on the Category A targets (i.e., those less than 6 m in

length) is not as good as that on the larger targets. Figure 6.6 shows that, for the final

test, all of the undetected targets are less than 6 m in length. However, it also shows

that nearly an equal number of Category A targets were successfully detected. The

smallest detected target was a white, fiberglass, dinghy 2.2 m long and 1.14 m wide.

Figure 6.6 Positive Detections vs. Length.

 104

Figure 6.7 Positive Detection vs. Area.

Detection performance with respect to the area of the target is illustrated in Figure 6.7.

By area, the smallest detected target has an area of 2.5 m2. Also shown is that a very

small target is less likely to be detected if it has a dark colour. Examples of the targets

not successfully detected are:

• Two dark green, 1 m diameter, steel mooring balls,

• A dark pink Optimist dinghy (2.31 m long) Note: both identical white

coloured Optimists were detected,

• Two long skinny dark coloured kayaks (5.03 m x .56 m), and

• Two dark grey Byte dinghies (3.66 m long).

Not all the small, undetected targets were dark in colour. Two pairs of yellow plastic

yacht racing marks 1.6 x 0.8 m in size were not successfully detected. As with the dark

 105

green mooring balls, it is our belief that the very small size rather than colour of these

targets is what prohibits their detection.

Figure 6.8 shows a side-by-side comparison of the reflectances from the dark grey

Byte dinghy shown on the left and the similar-sized Flying Junior (FJ) dinghy on the

right. Tables 6.4 and 6.5 show the pixel vectors and covariance matrices for each of the

targets. The darker Byte target has lower values across the pixel vector for the five

bands than the white FJ dinghy.

Figure 6.8 Reflectance Cross-sections for Targets Golf and Bravo.

Table 6.4 Reflectance Values and Covariance Matrix for Target Golf (Grey Byte).

Byte 17282.000 12150.000 11511.000 9725.000 10376.000 2287.664
 PAN Blue Green Red NIR WED

PAN 6.495 0.000 0.000 0.000 0.000
Blue 0.899 1.409 0.000 0.000 0.000

Green -19.670 -9.078 210.339 0.003 0.001
Red -23.715 -12.123 321.688 619.493 0.003
NIR -3.315 -10.761 123.617 356.872 766.004

 106

Table 6.5 Reflectance Values and Covariance Matrix for Target Bravo (White FJ).

FJ 33423.000 16545.000 18491.000 18574.000 16923.000 3795.976
 PAN Blue Green Red NIR WED

PAN 1504.793 0.005 0.003 0.001 -0.001
Blue 519.032 819.209 0.009 0.006 -0.001

Green 332.548 950.223 1578.309 0.013 -0.001
Red -17.092 478.626 1139.768 1003.390 0.000
NIR -44.914 -30.955 4.058 33.579 79.613

The covariance values for a 5x5 window surrounding the center of the target shows

that for the white FJ dinghy the variances are much higher – except for the NIR channel

– than those recorded in the covariance matrix for the Byte dinghy. This provides a

higher weighting for the WED distance for the FJ than the Byte. Thus the WED

distance for the FJ is 3796 vs. 2287.7 for the Byte. So for this example, when the

targets are not extremely small (as in the mooring balls), colour does play an important

role in the ability for MRV Recon to detect smaller targets.

When the colour is dark, the spike in the panchromatic channel is not large enough

to compensate for the smaller contributions of a small target to the 4 m resolution

multispectral channels. A question needing to be explored is - what other

characteristic(s) of the undetected Category A targets are causing them to remain

undetected? Further, what are the causes of the false alarms?

 107

Figure 6.9 False Positives Response Curves.

Figure 6.10 False Negatives Response Curves.

Figures 6.9 and 6.10 plot the digital number (DN) against the bands for the false

positives and false negatives respectively. Figure 6.11 is a similar plot but for two

samples of the background. In all three graphs, a dashed line is drawn on the columns

 108

for the panchromatic and NIR channels. These lines represent the threshold values set

for these channels.

Comparing the graphs for the background pixels and the false positives begs the

question: what is causing a background pixel, like Alpha, to have high enough NIR and

panchromatic values to allow it to pass through the thresholds? Moreover, what causes

the false positive to have a high enough frequency to be selected as an “outlier”? And

finally, what is causing it to have a high enough threshold ratio to be labeled as a

target?

Figure 6.11 Background Response Curves.

It was anticipated that sun glint and breaking waves might cause some localized

“outliers” driven by an increased value from the panchromatic channel. As a result, the

NIR threshold was introduced and then later the panchromatic threshold. However, in

rare cases like target Alpha and portions of the wake, both the panchromatic value and

the NIR values are high enough to pass the thresholds and generate a large enough

WED distance that they are falsely labeled as targets.

 109

Figure 6.12 Comparison of Cross-section for Target Alpha and India.

Figure 6.12 compares the measured reflectance curves for the Alpha (a false

positive) on the left and India (background) on the right. The reflectance curves are for

a cross-section through each of the targets and, to get an idea of the surroundings,

through some of the background. In both cases there is a sharp increase in the

panchromatic band. However, the false positive is distinct from the background sample,

India, in that it also experienced higher values in the blue, green, red, and NIR bands.

The ground truth recorded no target in the vicinity of Alpha.

Figure 6.13 Cross-section through target Charlie and its wake.

 110

Figure 6.13 is a cross-section of the support boat and part of its wake, labeled as

target Charlie. This cross-section allows for direct comparison of a valid target and the

false positives generated by a wake. On the right-hand side of Figure 6.13 is the

panchromatic image of the moving boat showing the location of the cross-section. On

the left-hand side are the five reflectance curves for the cross-section. The dashed lines

drawn across the reflectance curves indicate the panchromatic and NIR thresholds.

From left to right, the curves begin with low reflectance values characteristic of the

background water in front of the moving boat. Then the curves sharply increase

corresponding to the higher reflectance values from the target vessel. The reflectances

then diminish to a jagged, saw-toothed pattern over the wake. The peaks of the saw

teeth are sufficiently high to be over the thresholds and thus get falsely identified as a

target.

Although the false positives due to the wake indicate a different scenario than the

point target false positives like Alpha, it seems that some physical property is causing

the multispectral reflectance values to increase. In the case of the wake, clearly the

turbulence of the propeller is the catalyst of this phenomenon.

The catalyst for the point target false positives is not as readily apparent as that for a

wake. It could be a random sensor error, or something on the water with no ground

truth such as a crab pots (we did observe active fishing activities taking place during the

setting out of targets). In any case, it would be simple enough to remove them all by

creating a function within MRV Recon to ignore all single pixel targets. Unfortunately,

at the resolution of IKONOS, we would be eliminating any possibility of detecting the

 111

very small targets of interest. However, if higher resolution imagery was used such as

QuickBird this would be an option for reducing the false positives.

The purpose of MRV Recon is not only to detect marine recreational vessels but

also to characterize them. Figures 6.14 and 6.15 compare the generated lengths and

widths with those measured during the ground truth. For the most part, the generated

lengths and widths are shorter than those measured during the ground truth. The

average deviation for the length and width is 1.59 and 0.76 m, respectively. Clearly the

threshold set within the characterization function for finding the edge of the boat is

slightly too conservative. However, since the resolution is 1 m in the panchromatic

channel, this means that the targets are being represented generally within in a few

pixels of their correct length and width.

Figure 6.14 Comparison Between Measured and True Length for Targets.

 112

Figure 6.15 Comparison Between Measured and True Width for Targets.

6.10 Conclusions

As was previously stated, the main objective this research is to demonstrate that

very high resolution satellite imagery can be used to detect small recreational boats. A

total of 53 targets were set out in Cadboro Bay, near Victoria, British Columbia.

IKONOS imagery was collected over the AOI in May 2003.

The additional objective of this work was the development of automatic target

detection software that doesn’t require the use of a priori knowledge of the target such

as spectral libraries. A robust solution was built using the C language called MRV

Recon. The imagery was processed using MRV Recon software that uses a weighted

Euclidean distance metric to detect small recreational vessels. A blind test generated a

79% detection rate with 11 false negatives and 23 false positives.

 113

A final test was performed after making some minor enhancements to the MRV

Recon software. In that test, the detection rate was found to be 77% with 12 false

negatives, but only 19 false positives.

An investigation into the false positives has revealed that a large number of the

false positives were caused by the wake of a boat. In addition, investigations of the

reflectance curves for selected false positives suggest that something is creating higher

multispectral values. There appears to a correlation between the boat’s wake and the

unknown process. Further investigation of this process is necessary to lower the number

of false positives generated by MRV Recon.

In the final testing, 61% of targets shorter than 6 metres and 100% of the targets

greater than 6 m in length were detected. The smallest target detected was 2.2 m long

and 1.1 m wide.

The analysis also revealed that the ability to detect targets between 2.2 m and 6 m

long was diminished if the target was a dark colour. With a few exceptions MRV

Recon was able to determine the length and width of the target vessels within a few

pixels of their correct size.

This research demonstrates that that very high resolution satellite imagery can be

used to detect small recreational boats by processing IKONOS data with MRV Recon.

It is anticipated that using higher resolution data such as that from QuickBird would

produce superior results.

 114

6.11 References

Pegler, K., D.J. Coleman, R. Pelot, and Y. Zhang, 2003. The potential for using very
high spatial resolution imagery for marine search and rescue surveillance, GeoCarto
International, 18(3):35-39.

Subramanian S. and N. Gat, 1998. Subpixel object detection using hyperspectral
imaging for search and rescue operations, SPIE, 3371, 216-225.

Iverson, A.E., 1997. Subpixel object detection and fraction estimation in hyperspectral
imagery, SPIE, 3071: 61-71.

Hartigan, J.A., 1975. Clustering Algorithms, John Wiley and Sons.

Note: While differing from the referencing requirements of the University of New

Brunswick, the referencing style of the journal of Photogrammetric Engineering
and Remote Sensing only allows the inclusion of refereed journals and
published books into the references. All other materials must be referenced
within the body of the article as done herein.

 115

CHAPTER 7
 RESULTS, CONCLUSIONS, AND FUTURE RESEARCH

The empires of the future are the empires of the mind.

- Sir Winston Churchill, Speech at Harvard University, September 1943

Although the journal paper included in Chapter 6 describes the majority of the

results, some of the details surrounding the results are included in this final chapter due

to space limitations imposed by the journal. Further, while some conclusions were

drawn in Chapter 6, they will be expanded upon in this chapter. Finally,

recommendations for further work will be made.

7.1 Results

Figure 7.1 illustrates an enlarged portion of the final results. Using the 21 m total

error value (see section 3.8) in determining positive detections, MRV Recon’s overall

detection accuracy is 77 %. The targets are broken down into two categories: A) less

than 6 m in length, and B) greater than 6 m long. The detection rate for targets greater

than 6m long was 100%. The detection rate for targets less than 6 m in length is 61%.

The smallest correctly detected target was 2.2 m long and 1.1 m wide.

 116

Figure 7.1 Detection results.

Table 7.1 Cumulative Binomial distribution for determination of the true error rate.

Number of Missed
Targets

N=53, p=.30 N=53, p=.35 N=53,p= 42 N=53,p=0.43 N=53, p=.50

0 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.000000 0.000000 0.000000 0.000000 0.000000
2 0.000002 0.000000 0.000000 0.000000 0.000000
3 0.000013 0.000000 0.000000 0.000000 0.000000
4 0.000074 0.000003 0.000000 0.000000 0.000000
5 0.000330 0.000019 0.000000 0.000000 0.000000
6 0.001207 0.000087 0.000001 0.000001 0.000000
7 0.003733 0.000333 0.000006 0.000003 0.000000
8 0.009955 0.001094 0.000025 0.000014 0.000001
9 0.023289 0.003142 0.000095 0.000054 0.000003

10 0.048434 0.007994 0.000319 0.000188 0.000012
11 0.090559 0.018208 0.000953 0.000584 0.000045

Not detecting 11 of the 53 targets yields a 21% observed error rate. Table 7.1 is the

cumulative binomial distribution for up to 11 undetected targets out of a total of 53

(targets). Using a similar process to that discussed in Chapter 3, it can be said with 95%

(1 - 0.048434) confidence that - having not detected 11 targets in 53 targets - the true

error rate is no more than 30% (p = 0.30). A 30% true error rate suggests that the

observed error rate is high and this is because we deliberately selected smaller targets to

 117

test the detection limits of the MRV Recon using IKONOS imagery. The end result is a

higher true error rate than desired but, when put in context, makes sense.

7.2 Conclusions

At the outset of this work, the hypothesis of this research was “to prove that

commercially available high resolution IKONOS satellite imagery can be used to detect

small recreational vessels [Pegler, 2003]”. The research has demonstrated that

IKONOS imagery is effective in detecting small recreational vessels. Clearly, with a

100% detection accuracy for recreational vessels over 6 m in length, it is very effective

with the larger sized recreational vessels. Evidently, it is less effective for targets less

than 6 m long. It is important to remember that many of the targets selected in this

category were specifically chosen to push the detection limits of IKONOS and MRV

Recon.

Three years after asserting this thesis, it is somewhat dated. IKONOS is no longer

the only commercially available high resolution satellite imagery. QuickBird is a major

competitor. It is a very similar product, basically the same 5 bands as IKONOS, but

with a higher resolution. QuickBird has a resolution of 0.64 m in the panchromatic

band versus IKONOS’ 1 m resolution. In addition, QuickBird has a resolution of 2.5 m

in the multispectral bands versus IKONOS’ 4 m resolution. This (almost double the

resolution) data should yield superior detection accuracy in the under 6 m in length

targets with no changes necessary to MRV Recon.

In the end, a working reconnaissance system for small recreational vessels has been

developed.

 118

7.3 Future Research

The following is a list of recommendations for future research.

1. As previously described in Chapter 2, a “material of construction” system

should be researched.

2. The detection accuracy of MRV Recon should be tested with a dataset

similar to that gathered in Cadboro Bay, but using the higher resolution

QuickBird, or similar imagery.

3. When more experience is gained by using MRV Recon on additional

imagery, investigations should be made in moving from empirically dervived

thresholds for the NIR, PAN, and TR values to thresholds automatically

calculated from image statistics.

4. With the availability of higher resolution imagery, more emphasis is being

paid to contextual information. For example, detecting fire hydrants would

be restricted to areas between the edge/curb of a road and the roadside edge

of a sidewalk. If an object suspected of being a fire hydrant is outside of this

contextual relationship, then it is removed as a possible target. For vessel

detection, one might construct a contextual rule that a target larger than a few

pixels in size, should have a pointed bow and a long narrow aspect. Although

that is an extremely simple example, the point is that MRV Recon relies

heavily on spectral characteristics to label targets. Further work should be

done to leverage the contextual information resident in higher resolution

imagery.

 119

5. A brief attempt was made to use the PCI Toolkit to access the Image Handler

function to display the results of the target detection. This function couldn’t

be made to work and was abandoned in favour of more pressing research.

Future versions of MRV Recon would include display functionality and

perhaps the ability to query the results for individual targets.

6. MRV Recon should be part of a larger trial by the CCG or MARIS. This trial

should mimic as closely as possible the operational environment in which

these systems would operate. The only way to access the utility of MRV

Recon is to let those for whom it is intended try it out to see if it meets their

needs.

7. In the case of MRV Recon, it has primarily been implemented as a proof of

concept system. This is not to say that any consideration for practicality was

set aside; in fact at the outset decisions such as restricting the design to an

automatic system were made. However, some areas were neglected in

favour of getting the basic system working. For example, little work was

done trapping errors. Any operational system would need to trap any errors

made by the user such as selecting an incorrect file type, or informing the

user of a corrupted file. Although implementing error handling is very time

consuming, any operational system without this functionality would not be

very useful.

 120

7.4 Accomplishments and Contributions

Table 7.2 summarizes the objectives of this research as described in the proposal

[Pegler, 2001]. Chapters 2 and 5 described the development of an automatic marine

recreational vessel reconnaissance system called MRV Recon. Chapter 2, described the

implementation of the spatio-spectral template. Chapter 3 outlined the design and

creation of a data set of small targets with ground truth. Chapter 4 outlined the

preprocessing methods developed to mask out the upland portions the imagery. Chapter

5, the second journal article, described the development of the new WED metric as an

enhancement to the spatio-spectral template. The accuracy of the detection and

characterizations were described in the final journal paper found in Chapter 6.

Table 7.2 Research Objectives

Objectives Satisfactorily Completed

 Yes No

Develop a method to Mask out Upland area

Implement an automated vessel detection system based
on Spatio-Spectral Template

Develop a vessel characterization System

Create a small target dataset with ground truth

Enhance the Spatio-Spectral Template

Develop a prototype marine recreational vessel
reconnaissance system

Material of Construction System

 121

When setting the objectives for this research, an objective to develop a “material of

construction system” was included in the proposal. It was envisioned that once a target

was labeled, its spectral signature would be used in determining its construction

material. There are two factors to explain why this objective is not met. First, the

challenge and difficulty to develop a reliable small target detection system was greatly

underestimated. Towards the middle of the research and subsequent to attending a

target detection conference it became apparent that this would be the most demanding

objective. Secondly, the coarseness of the multispectral bands of IKONOS was

explored in Chapter 5 when comparing the Minkowski and WED metrics. This

coarseness of resolution makes the job of identifying the material of construction

difficult. For these reasons, this objective remains uncompleted, for now.

Despite the lack of a method to identify the material of construction of the target

vessels, it has been shown that MRV Recon will provide the Canadian Coast Guard

with a unique and effective tool for gathering crucial data on recreational vessels.

 122

REFERENCES

Ashton, E. (1999). “Multialgorithm Solution for Automated Multispectral Target
Detection.” Opt. Eng., Vol. 38, No. 4, pp. 717-724, April.

Dare, P. (2003). Personal Communication. Professor and Chair, Department of

Geodesy and Geomatics Engineering, Univerisity of New Brunswick, Fredericton,
New Brunswick. November.

Eldhuset, K. (1996). “An Automatic Ship and Ship Wake Detection System for

Spaceborne SAR Images in Coastal Regions.” IEEE Transactions on Geoscience
and Remote Sensing, Vol. 34, No. 4, pp. 1010 – 1019, July.

Gilliam B., S.W. McCandless Jr., L. Reeves, and B. Huxtable (1999). “RADARSAT-2

for Search and Rescue”. SPIE Conference on Automatic Target Recognition IX,
Orlando, Florida, SPIE Vol. 3718, pp.189-194, April.

Hartigan, J.A. (1975). Clustering Algorithms, John Wiley and Sons.

Iverson, A.E. (1997). “Subpixel Object Detection and Fraction Estimation In

Hyperspectral Imagery”, SPIE, Vol. 3071, pp. 61-71.

Hongyan S. and M. Shiyi (1995). “Multisensor Data Fusion for Target Identification”.

Chinese Journal of Electronics. Vol. 4, No.3, July 1995. pp 78-84.

Kruzins E., Y.Dong, and B.C. Forster (1998). “Detection of Vessels Using SAR for

Support to Search and Rescue”. Proceeding of the 9th Australian Remote Sensing
and Photogrammetry Conference. Vol. 1, p.7304. July 20-24.

Munroe, K. M. (2003). “The Development Of A Process To Mask Out Upland Portions

Of High Resolution Satellite Imagery”. Unpublished undergraduate technical
report, Department of Geodesy and Geomatics Engineering, University of New
Brunswick.

Palliser, J. (2000). Personal Communication. Superintendent Victoria Rescue

Coordination Centre, Victoria, British Columbia, June.

Parker, J. (1997). Algorithms for Image Processing and Computer Vision, John Wiley

and Sons.

PCI Geomatics (2000). PACE C Programmer’s Reference, Version 7.0.

Pegler, K., D.J. Coleman, R. Pelot, and Y. Zhang (2004). “Comparison of Maximum

Distance Metrics for use in the Remote Sensing of Small Targets”, Journal of
Surveying Engineering. Accepted for publication.

 123

Pegler, K., D.J. Coleman, R. Pelot, and C.P. Keller (2004). “Automatic Small

Recreational Vessel Detection using IKONOS Data”, Photogrammetric
Engineering and Remote Sensing. Submitted for review.

Pegler, K., D.J. Coleman, R. Pelot, and Y. Zhang (2003). “The Potential For Using

Very High Spatial Resolution Imagery for Marine Search and Rescue
Surveillance”, GeoCarto International, Vol.18, No. 3, pp.35-39.

Pelot R. (2000). “Recreational/Tourism Marine Activity Assessment in the Bay of

Fundy, Nova Scotia “. Unpublished Report of the Department of Industrial
Engineering, Dalhousie University, Halifax, Nova Scotia, March.

Rancourt, M. Captain, K. Pegler, D.J. Coleman, R. Pelot [2002]. “Development of an

IKONOS Coverage Prediction Application”. Proceedings of The 95th CIG Annual
Geomatics Conference / Joint International Symposium on Geospatial Theory,
Processing and Applications. Ottawa, Jul 8-12.

Randell, C., M. Rokonuzzaman, J. Youden, and R. Khan (1999). “Evaluation of

RADARSAT for Detection, Classification and Discrimination of Icebergs”, Paper
Presented at the IEEE Newfoundland Electrical and Computer Engineering
Conference, St. John’s, November.

Scheaffer, R. and J. McClave (1995). Probability and Statistics for Engineers, Duxbury

Press.

School of Graduate Studies, University of New Brunswick (n.d.). Graduate Student

Handbook. Retrieved 9 February 2004 from
http://www.unb.ca/gradschl/guidelines/thesis_regulations.pdf.

Shirvaikar, M. and M. Trivedi (1990). “Design and Evaluation of a Multistage Object

Detection Approach”, SPIE Vol. 1293, pp 14-22.

Shortis, M.R., T.A. Clarke, and T. Short (1994). “A Comparison of Some Techniques

for the Sub-pixel Location of Discrete Target Images”. SPIE Conference on
Videometrics III, Boston, SPIE Vol. 2350. pp 239-250.

Space Imaging, Inc.(2000). “CARTERRA Geo Technical Specs” Retrieved 17

November, 2000. http://www.spaceimaging.com/carterra/geo/prodinfo/geotech.htm.

Subramanian S., and N. Gat (1998). “Sub-pixel Object Detection Using Hyperspectral

Imaging for Search and Rescue Operations”. Proceeding of the SPIE Conference on
Automatic Target Recognition VIII, Orlando, Florida. Vol. 3371. pp. 216-225,
April.

 124

http://www.unb.ca/gradschl/guidelines/thesis_regulations.pdf
http://www.spaceimaging.com/carterra/geo/prodinfo/geotech.htm

Tiberius, C. (2003). “Standard Positioning Service Handheld GPS Receiver Accuracy.”
GPS World. pp 44-51, February.

Tingley, M. (2003). Personal Communication. Director, Applied Statistics Centre,

University of New Brunswick, Fredericton, New Brunswick, January.

Trivedi, M., A. Bokil, M. Takla, G. Maksymonko, J.T. Broach, (1989). “Analysis of

High Resolution Aerial Images for Object Detection.” SPIE Vol. 1099. pp 58-65.

Trivedi, M.M.(1987). “Object detection using their multispectral properties”,

Proceeding of the Society of Optical Engineering SPIE, Vol. 754, pp. 255-264.

Vachon, P.W., J.W.M. Campbell, C. Bjerkelund, F.W. Dobson, and M.T. Rey (1996).

"Validation of Ship Detection by the RADARSAT SAR", Proceedings of Pacific
Ocean Remote Sensing Conference (PORSEC'96), 13-16 Aug.,Victoria, Canada.

Wallace, R., D. Affens, and S. McCandless (1998). “Search and Rescue from Space”.
SPIE Conference on Automatic Target Recognition VIII, Orlando Florida, April.
Vol.3371 pp174-184.

Zhang, Y. (2000). “A Method for Continuous Extraction of Multispectrally Classified

Urban Rivers”. Photogrammetric Engineering and Remote Sensing. Vol. 66. No. 8.
August. pp.991-999.

Zhang, Y. (2001). “Imaging and Mapping I – GGE3342 Lecture Notes.” Department of

Geodesy and Geomatics Engineering, University fo New Brunswick, Fredericton,
N.B., Canada

.

 125

APPENDIX I

MRV RECON C CODE

 126

/* --
 * - MRV Recon: ESST Plus - Enhanced Spatio Spectral Template All rights reserved.
 * - By Kevin H. Pegler M.Eng.,P.Eng -
 * - Dept. Geodesy and Geomatics Engineering, UNB
 * - GEOIDE Project #ENV 60
 * - Not to be used, reproduced or disclosed without permission.
 * - Esst.c Fall/Winter 2001
 * - Mahal.c Fall 2002/Winter 2003
 * - WED Summer 2003
 * - Characterization Fall 2003
 * - esstplus.c -> includes both esst and mahal(disabled) and WED with some prompting
 * --
 * Usage: from ~/debug open an easi cursor from a DOS prompt window
 * easi> file = "D:\esst\ikonos\ikonostest.pix"
 * > run esstplus >debug.txt
 *
 *
/* -- */
/* Include "pci.h" in all C programs. */
/* -- */
#include "pci.h"
#include <stdlib.h>
#include <malloc.h>
#include <stdio.h>
#include <string.h>
#include <time.h>

/* -- */
/* Function Protocols */
/* -- */
void PixelFill (float *OutBuff2, int pixel, int half_kernel, int numofChans);
void LineFill (float * OutBuff3, int half_kernel, int num_pixels, int numIkonosChan);
void ImgAvg (float *line_ptr2[], float *OutBuff4, int num_pixels, int numIkonosChan, int
half_kernel, int kernel_size, float *nirthrhld, float *panthrhld);
void MaxDistFnct (float *image_buffrMD, float *out_Buff5, int num_pixels, int
numIkonosChan, int TwonumIkonosChan1, int half_kernel, int kernel_size, int line_pos, int
exponent, float *nirthrhld, float *panthrhld, FILE *outfile);
void MahalDistFnct (float *image_buffrMD, float *out_Buff5, int num_pixels, int
numIkonosChan, int TwonumIkonosChan1, int half_kernel, int kernel_size, int
image_line_pos, int dbic_list[], int BigWindow_flag, FILE *outfile, float *nirthrhld, float
*panthrhld, FILE *fp);
void MahalMaxFnct (float *image_buffrMahMax, int num_pixels, int num_lines, int
half_kernel, int kernel_size, int dbic_list[]);

//declare some structures
typedef struct
{
 signed int pixel[1];
 signed int line[1];
} element;

 127

typedef struct
{
 int top;
 int stack_size;
 element stack[3600];
} element_stack;
// define direction control
 struct individ_dir{
 int C[1];
 int R[1];
 };
// initialize an array of structures
struct individ_dir dir_list[8];
struct attribute {
 int smpixel[1];
 int smline[1];
 int cntrpixel[1];
 int cntrline[1];
 int lrgpixel[1];
 int lrgline[1];
 int numbrpixs[1];
 float length[1];
 float width[1];
 char orientation[5];
};
struct attribute the_target_attributes[500];
/*--- */
/* Declare some Function Protocols for Matrix Manipulations Dr.D. Kim */
/*--- */
int gjmatinv(double a[], int n);
void mul_mm(double *A, double *B, double *C, int n1, int n2, int n3);
void mul_mtm(double *A, double *B, double *C, int n1, int n2, int n3);
double calc_mean(double *A, int n);
double calc_var(double *A, int n);
double calc_cov(double *A, double *B, int n);
void calc_vc(double *A, double *B, int n1, int n2);

/*-- */
/* Declare some Function Protocols for Characterization */
/*---*/
void CharacterFnct (float *image_buffrCharactr, int num_pixels, int num_lines,int
half_kernel,int kernel_size, int dbic2_list[],float thrshold, FILE *targetsfile);
void init_stack (element_stack *the_stack);
void boatsizefnctn(element first_targetcoord, int heading[], FILE *targetsfile, int targetlabel);

/*##*/
/* -- */
/* main */
/* ESST - Enhanced Spatio Spectral Template */
/* */

 128

/* -- */
/*##*/
int main(int main_argc, char **main_argv)
{
/* -- */
/* Declare parameters for IMPStatus. */
/* -- */
 char file[257];
 char * gui_filename = NULL;
 //char tempname[50]="c:\\covartmp.pix";
 char outfilename[50]="c:\\esst_out.txt";
 char targetsfilename[50]="c:\\targets_out.txt";
 int argcnt[1];
 void *args[1];
/*--- */
/* Declare some other variables for ESST */
/*--- */
 FILE *fp,*outfile,*targetsfile;
 int dbnc, num_lines, num_pixels, numIkonosChan,kernel_size = 0,line_pos,exponent,
buffsize,bmap, pid, status;
 int i, half_kernel,junk,numReqChan,
TwonumIkonosChan1,numclosed,closeFlag,control_flag,BigWindow_flag;
 //int pixel,channel;
 int dbic_list[100],dbic2_list[2];
 int dboc_list[5],dboc2_list[2],dbic_array[1],windoh[4];
 float *image_buffr,*image_buffr2,*out_buffr,*image_buffrMahMax, *nirthrhld,
*panthrhld, *image_buffrCharactr;
 float Corl[25],meen[5],sigma [5],covr[25],thrshold,timer;
 long numpixssmpld;
 float PercentComplete;
 /*tmpnam(tempname);*/

/*--- */
/* Declare some Function Protocols for Matrix Manipulations Dr.D. Kim */
/*--- */
//int gjmatinv(double a[], int n);
//void mul_mm(double *A, double *B, double *C, int n1, int n2, int n3);
//void mul_mtm(double *A, double *B, double *C, int n1, int n2, int n3);

/* -- */
/* Declare a large number of line pointers to allow for any reasonable kernel size */
/* --- */
 float *line_ptr[250];
 float *lineOut_ptr[250];
/*--- */
/* Get the desired parameters
 //very important to have c:\MRV_Recon_GO.bat set up environment and pass parameters
from

 129

 // C:\Documents and Settings\pegler\Desktop\MRV_Recon.exe
/*--- */
 gui_filename = main_argv[1];
 /*prompt for desired kernel size*/

 kernel_size = atoi(main_argv[2]);
 control_flag = atoi(main_argv[3]);

 /*for (i=0;i<main_argc;i++)
 {
 printf("Arg %d is %s\n",i,main_argv[i]);
 }*/

 /*puts(" Please enter desired kernel size");
 scanf("%d", &kernel_size);*/

 /* must get user to select type of distance metric they'd like*/

 /*puts ("Enter 1 for Minkowski distance metric or, Enter 2 for WED or Mahalanobis");
 scanf("%d", &control_flag);*/

 //kernel_size = main_argv[2];

/* -- */
/* Initialize argument list for IMPStatus. */
/* -- */
 args[0] = (void *) file;
 //args[1] = (void *) &kernel_size;
/* -- */
/* Get parameters using IMPStatus. */
/* -- */
 //printf("Just before IMPStatus\n");
 IMPStatus ("FILE", "C", "64","1","esstplus.","ON",argcnt,args,main_argc, main_argv);
 //IMPStatus
("FILE,KERNEL_SIZE;","C,I;","64,2;","1,1;","esstplus.","ON",argcnt,args,main_argc,
main_argv);

 //printf("filename = %s\n",file);

 IMPPutChar("FILE", gui_filename);

 IMPStatus ("FILE","C","64","1","esstplus.","ON",argcnt,args,main_argc, main_argv);
 /*IMPStatus ("FILE,KERNEL_SIZE;",
 "C, I;",
 "64, 2;",
 "1, 1;",
 "esstplus.","ON",argcnt,args,main_argc, main_argv);*/

 //printf("filename = %s\n",file);
/* -- */

 130

/* Open a file */
/* --- */
 IDBRegister(); /* There is no documentation for this function just in examples*/
 fp = GDBOpen (file, "r+");

/* -- */
/* Run CLR to set up the file */
/* --- */
 //printf("Into IMPRunTask\n");
 //status = IMPRunTask ("EASI", "r clr", RTF_WAIT, NULL,NULL);
 //printf("Out of IMPRunTask\n");

/* -- */
/* Query a file */
/* --- */
 num_lines = GDBChanYSize(fp);
 num_pixels = GDBChanXSize(fp);
 dbnc = GDBChanNum(fp);

/* -- */
/* Print Results to screen */
/* --- */
 //printf("The number of lines are: %d \n", num_lines);
 //printf("The number of pixels are: %d \n", num_pixels);
 //printf("The number of Channels are: %d \n", dbnc);
/* -- */
/* Allocate Memory for the DBIC_List Array fixed at 5 channels */
/* --- */
 numIkonosChan = 5; /*changed to 2 just for testing*/
 TwonumIkonosChan1 = numIkonosChan * 2 + 1; // two times the original channels plus one
 /*numIkonosChan = 1; /* for testing*/

 /*dbic_list = (int *) malloc(sizeof(int) * numIkonosChan);*/

 for (i = 0; i< numIkonosChan; i++){
 dbic_list[i] = i+1; /* this "casts" the values into the array into image channel nums*/

 }
/* -- */
/* Allocate Memory for the DBOC_List Array */
/* --- */
 /*dboc_list = (int *) malloc(sizeof(int) * numIkonosChan);*/
 for (i = 0 ; i < numIkonosChan; i++){

 dboc_list[i] = i + numIkonosChan + 1; /* this "casts" the values into the array into
image channel nums*/

 }
/* -- */
/* Allocate Memory for the floating buffer Arrays */

 131

/* --- */
 image_buffr = (float *) malloc(sizeof(float) * num_pixels * numIkonosChan * kernel_size);

 out_buffr = (float *) malloc(sizeof(float) *(num_pixels * numIkonosChan));

// allocate memory for NIR & PAN thresholds and initialize

 nirthrhld = (float *) malloc(sizeof(float) * 3);

 *(nirthrhld + 0) = 0.000;
 *(nirthrhld + 1) = 0.000;
 *(nirthrhld + 2) = 0.000;

 panthrhld = (float *) malloc(sizeof(float) * 3);

 *(panthrhld + 0) = 0.000;
 *(panthrhld + 1) = 0.000;
 *(panthrhld + 2) = 0.000;
/* -- */
/* Pointers for the image buffer */
/* --- */
 for (i = 0; i < kernel_size; i++)
 {
 junk = num_pixels * numIkonosChan * i;
 line_ptr[i] = image_buffr + (num_pixels * numIkonosChan * i);
 lineOut_ptr[i] = out_buffr + (num_pixels * numIkonosChan * i);
 } /* end of for loop for image buffer pointers */

/* -- */
/* Loop over the imagecube */
/* --- */
 //printf("Starting averaging!\n");
 for (line_pos = 0; line_pos < num_lines; line_pos++)
 {
 //printf("line # = %d \n", line_pos);

 if (line_pos%10 == 0)
 //printf("Averaging %d of %d lines\n", line_pos, num_lines);

/* -- */
/* Read in the ImageData */
/* --- */
 if (line_pos <= (num_lines - kernel_size)){

 IDBRealChanIO (fp,IDB_READ, 0, line_pos, num_pixels, kernel_size,image_buffr,
 num_pixels,kernel_size,numIkonosChan,dbic_list);
 }
 else {

 /* just set the image buffer pointers to last bit of good data */
 /* and read in the remaining original data lines */

 132

 IDBRealChanIO (fp,IDB_READ, 0, line_pos, num_pixels, (num_lines -
line_pos),image_buffr,
 num_pixels,(num_lines - line_pos),numIkonosChan,dbic_list);

 for (i = (num_lines - line_pos + 1); i < (kernel_size + 1); i++)
 {

 line_ptr[i-1] = image_buffr;

 } /* end of for loop for image buffer pointers */

 } /* end of if else block*/

/* -- */
/* Test to see if it will be an unprocessed line */
/* --- */

 half_kernel = floor(kernel_size / 2);

 if (line_pos < half_kernel || line_pos >= (num_lines - half_kernel)){

 /* then call LineFill function */

 LineFill (out_buffr, half_kernel, num_pixels, numIkonosChan);

 /* then write out the result of LineFill */

 IDBRealChanIO (fp,IDB_WRITE, 0, line_pos, num_pixels,
1,out_buffr,num_pixels,1,numIkonosChan,dboc_list);

 } /* end of unprocessed line operations*/

 else {
/* -- */
/* Calculate Average (Mean filter) */
/* Note: PixelFill is called from ImgAvg */
/* --- */

 ImgAvg (line_ptr, out_buffr, num_pixels, numIkonosChan, half_kernel, kernel_size,
nirthrhld, panthrhld);

 IDBRealChanIO (fp,IDB_WRITE, 0, line_pos, num_pixels,
1,out_buffr,num_pixels,1,numIkonosChan,dboc_list);
 } /* end of else*/

 //Free up memory
 /*for (i = 0; i < kernel_size; i++){
 free(line_ptr[i]);
 free(lineOut_ptr[i]);
 } */

 133

 } /* end of for loop over the image cube*/

 printf("Done averaging!\n");
/* -- */
/* Free up memory from the two buffers */
/* */
/* --- */
 free(image_buffr);
 free(out_buffr);
 image_buffr = NULL;
 out_buffr= NULL;
/* -- */
/* calulate average of NIR for a threshold */
/* */
/* --- */
 *(nirthrhld + 2) = *(nirthrhld)/(*(nirthrhld + 1)) * 1.65; // 1.7 for the River - slightly higher
for caddy bay
 *(panthrhld + 2) = *(panthrhld)/(*(nirthrhld + 1)) * 2.7;

 printf("PAN Thrhld - weighting is 1.8x = %f \n", *(panthrhld + 2));
 printf("NIR Thrhld - weighting is 1.4x = %f \n", *(nirthrhld + 2));
/*
##
####################################*/
/* --- */
/* Make Image Buffer larger to accomodate the original channels */
/* and the average channels & mah_buff to accomodate the covariance calcs */
/* ---*/
 if (kernel_size <= 11){
 buffsize = 11;
 }
 else {
 buffsize = kernel_size;
 }
 image_buffr2 = (float *) malloc(sizeof(float) * num_pixels * TwonumIkonosChan1 *
buffsize);
 out_buffr = (float *) malloc(sizeof(float) * num_pixels * TwonumIkonosChan1 * buffsize
); /*10 times larger just for extra room*/
 //covar_buffr = (float *) malloc(sizeof(float) * num_pixels * TwonumIkonosChan1 * 10 *
5); // covariance window maximum of 10 x 10

 //printf(" The number of bytes = %d\n", sizeof(float) * num_pixels * TwonumIkonosChan1 *
buffsize *2);

/* -- */
/* Beginning of Calculation of Outliers */
/* Create a new DBIC list Note: numIkonosChan still valid * 2 */
/* includes the outlier channel */

 134

/* --- */
 /*dbic_list = (int *) malloc(sizeof(int) * 2 * numIkonosChan);*/
 for (i = 0 ; i < TwonumIkonosChan1 ; i++){ /* ie. all original channels to averages calc'd
for originals*/

 dbic_list[i] = i+1; /* this "casts" the values into the array into image channel nums*/
 /*printf("The new dbic_list[%d]= %d\n", i, dbic_list[i]);
 /*printf("The new dbic_list= %p\n", dbic_list);*/
 }

/* -- */
/* DBOC list */
/* --- */
 numReqChan = 1; /*one outlier channel required*/
 /*dbic_list = (int *) malloc(sizeof(int) * numReqChan);*/

 dboc_list[0] = 2 * numIkonosChan + 1;
/* -- */
/* Important! - Prior Calculating Outlier Frequency */
/* You must ensure the histo channel is cleared and set to zero */
/* --- */

/*--- */
/* Program Control */
/*--- */
if (control_flag == 1) {
 puts("You have Requested the Minkowski Distance Metric ");
 //printf("control_flag = %d\n",control_flag);
 puts("Enter the exponent value: 1 for Manhattan Distance or 2 for Euclidean");
 scanf("%d",&exponent);
 /*if (exponent != 1 || exponent != 2) {
 puts("You've enter an incorrect value, EXITING PROGRAM");
 exit(0);

 }*/
}

/*--*/
/* Set up file for formatted output for use in analysis */
/*--*/

/* open the file*/
/* using fopen with the "w" option - if the file doesn't exist then it is created if exists it is
cleared out*/
outfile = fopen(outfilename, "w");
//IMPTermProgressCounter (-1.0,NULL,NULL);
/* -- */
/* Pointers for the image buffer */
/* --- */
 for (i = 0; i < kernel_size; i++)
 {

 135

 line_ptr[i] = image_buffr2 + (num_pixels * numIkonosChan * i);

 } /* end of for loop for image buffer pointers */

 lineOut_ptr[0] = out_buffr;
/* -- */
/* Loop Through the Image cube */
/* --- */

 for (line_pos = 0; line_pos < num_lines; line_pos++){

 //percent complete counter

 //PercentComplete = (line_pos/num_lines) * 100;
 //IMPTermProgressCounter (PercentComplete,NULL,NULL);
 //printf("ESSTPLUS %f", PercentComplete);
 /* set a flag for closing temporary file at the end*/
 closeFlag = 0;
 BigWindow_flag = 0;
 if (line_pos%10 == 0)
 //printf("line_pos = %d of %d lines\n", line_pos, num_lines);

//***
// Start of complex program control
//***
 half_kernel = floor(kernel_size / 2);
 switch (control_flag) {
 // Load Buffers for Minkowski
 case 1: {
 /* Read in the ImageData -> Must read in the extra outlier channel */

 if (line_pos < (num_lines - kernel_size)){

 //printf(" case == 1 First IDBRealChanIO \n");
 IDBRealChanIO (fp,IDB_READ, 0, line_pos, num_pixels,
kernel_size,image_buffr2,
 num_pixels,kernel_size,TwonumIkonosChan1,dbic_list);
 MaxDistFnct (image_buffr2, out_buffr, num_pixels, numIkonosChan,
TwonumIkonosChan1, half_kernel, kernel_size, line_pos, exponent, nirthrhld, panthrhld,
outfile);
 /*IDBRealChanIO (fp,IDB_WRITE, 0, line_pos, num_pixels,
kernel_size,image_buffr2,num_pixels,kernel_size,
 numReqChan,dboc_list);*/

 IDBRealChanIO (fp,IDB_WRITE, 0, line_pos, num_pixels,
kernel_size,image_buffr2,
 num_pixels,kernel_size,TwonumIkonosChan1,dbic_list);

 continue;

 136

 }

 else {

 /* and read in the remaining original data lines */
 /* then call LineFill function */

 LineFill (out_buffr, half_kernel, num_pixels, numReqChan);

 /* then write out the result of LineFill */

 IDBRealChanIO (fp,IDB_WRITE, 0, line_pos, num_pixels,
1,out_buffr,num_pixels,1,numReqChan,dboc_list);

 continue;

 } /* end of if else block*/

 } // end of case 1

 // Load Buffers for MAHALANOBIS

 case 2: {

 //printf("into control_flag == 2 \n");
 // 1) Unprocessed line operations

 if (line_pos < half_kernel || line_pos > (num_lines - 1 - kernel_size)){

 /* then call LineFill function */

 //LineFill (out_buffr, half_kernel, num_pixels, numReqChan);

 /* then write out the result of LineFill */
 //printf(" == 2 First IDBRealChanIO \n");
 //IDBRealChanIO (fp,IDB_WRITE, 0, line_pos,
num_pixels,1,out_buffr,num_pixels,1,numReqChan,dboc_list);
 //printf(" == 2 First IDBRealChanIO \n");

 continue;

 } /* end of unprocessed line operations*/

 // 2) Special Larger CoVariance Window

 else if (line_pos > 4 && line_pos < (num_lines - 5)){ //based again on a 11x11

 137

 BigWindow_flag = 1; // 1 means use a larger window for Covar

 IDBRealChanIO (fp,IDB_READ, 0, (line_pos - 2), num_pixels,
5,image_buffr2,
 num_pixels,5,TwonumIkonosChan1,dbic_list);

 //printf(" == 2 Before GDBCreate \n");
 //tmpfile = GDBCreate (FL_IDB, tempname, num_pixels, 11,
TwonumIkonosChan1, CHN_16U, "");
 closeFlag = 1;
 //printf(" == 2 Second IDBRealChanIO \n");
 //IDBRealChanIO (fp,IDB_READ, 0, (line_pos-5), num_pixels, 11
,covar_buffr, num_pixels,11,TwonumIkonosChan1,dbic_list);
 //printf(" == 2 Third IDBRealChanIO \n");
 //IDBRealChanIO
(tmpfile,IDB_WRITE,0,0,num_pixels,11,covar_buffr,num_pixels,11,TwonumIkonosChan1,dbi
c_list);

 /* Calculate Mahalanobis Distance - MahalDist */

 MahalDistFnct (image_buffr2, out_buffr, num_pixels, numIkonosChan,
TwonumIkonosChan1, half_kernel, kernel_size, line_pos, dbic_list, BigWindow_flag, outfile,
nirthrhld, panthrhld, fp);

 /* -- */
 /* Write to file the Updated Histo channel for the entire kernel */
 /* --- */

 /* testing what is in image_buffr2*/
 /* read in and print out one line of image_buffr2*/
 //printf("Larger Window print buffr contents \n");
 //for (i = 0; i < (num_pixels * TwonumIkonosChan1 * kernel_size); i++){

 //printf(" \n");
 //printf("DN = %f\n",*(image_buffr2 + i));
 //printf(" \n");

 //}
 //printf(" == 2 Fourth IDBRealChanIO \n");

 IDBRealChanIO (fp,IDB_WRITE, 0, (line_pos - 2), num_pixels,5
,image_buffr2,num_pixels,5,TwonumIkonosChan1,dbic_list);

 if (closeFlag == 1){

 //printf(" closing tmpfile \n");
 //GDBClose(tmpfile);

 138

 //remove(tempname);
 }

 BigWindow_flag = 0;
 continue;
 } //else if for Larger CoVar

 // 3) Regular sized CoVar window

 /* Read in the ImageData -> Must read in the extra outlier channel */
 /* note the extra lines of data are read in to accomodate ImgStats */
 //printf(" == 2 Fifth IDBRealChanIO \n");

 //IDBRealChanIO (fp,IDB_READ, 0, line_pos, num_pixels,
kernel_size,image_buffr2,num_pixels,kernel_size,TwonumIkonosChan1,dbic_list);

 /* Output the ImageData, for each line pos to a temp file - used in CoVar */

 //tmpfile = GDBCreate (FL_IDB, tempname, num_pixels, kernel_size,
TwonumIkonosChan1, CHN_16U, "");
 //closeFlag = 1;
 //printf(" == 2 Six IDBRealChanIO \n");

 //IDBRealChanIO
(tmpfile,IDB_WRITE,0,0,num_pixels,kernel_size,image_buffr2,num_pixels,kernel_size,Twon
umIkonosChan1,dbic_list);

 //printf("Into MahalDistFnct \n");

 //MahalDistFnct (image_buffr2, out_buffr, num_pixels, numIkonosChan,
TwonumIkonosChan1, half_kernel, kernel_size, line_pos, dbic_list, BigWindow_flag, tmpfile,
outfile, nirthrhld);

 /* -- */
 /* Write to file the Updated Histo channel for the entire kernel */
 /* --- */

 /* testing what is in image_buffr2*/

 //printf("Everything else print buffr contents \n");
 //for (i = 0; i < (num_pixels * TwonumIkonosChan1 * kernel_size); i++){

 //printf(" \n");
 //printf("DN = %f\n",*(image_buffr2 + i));
 //printf(" \n");

 //}
 //printf(" == 2 Seventh IDBRealChanIO \n");

 139

 //this really screws things up.
 //IDBRealChanIO (fp,IDB_WRITE, 0, line_pos,
num_pixels,1,image_buffr2,num_pixels,1,1,dboc_list);

 //printf("closeFlag = %d \n", closeFlag);
 //printf(" End of loading for Mahalanobis \n");
 if (closeFlag == 1){
 //printf(" closing tmpfile \n");
 //GDBClose(tmpfile);
 //remove(tempname);
 }

 BigWindow_flag = 0;

 } // end of loading for Case = 2

 }//end of switch

/* -- */
/* Bottom - Cleaning Up */
/* --- */
 //Free up memory
 /*for (i = 0; i < kernel_size; i++){

 free (line_ptr[i]) ;

 }

 free (lineOut_ptr[0]); */

 //printf("Bottom of loop over image cube \n");
 } /* end of for loop over the image cube*/

 //printf("Finished second loop...\n");

 free(image_buffr2);
 free(out_buffr);

 image_buffr2 = NULL;
 out_buffr = NULL;
 //free(covar_buffr);

 140

//###
######################################

/* --- */
/* If using Mahal dist then loop over the final channel and select outlier */
/* -- */

// only do this step for Mahal processing

 if(control_flag == 2){ //22 is just an escape for testing

 printf("Enter final Mahal outlier selector \n");

 image_buffrMahMax = (float *) malloc(sizeof(float) * num_pixels * 3 * num_lines);

 dbic2_list[0] = 11; //TwonumIkonosChan1 - 1;//this contains the distance
 dbic2_list[1] = 12; //TwonumIkonosChan1;
 dboc2_list[0] = 11; //TwonumIkonosChan1 - 1;
 dboc2_list[1] = 12; //TwonumIkonosChan1;
 //printf("dbic2_list[0] = %d dbic2_list[1] = %d dboc2_list[0] = %d \n",
dbic2_list[0],dbic2_list[1],dboc2_list[0]);

 // read in the entire image but only the last two channels

 //printf("into first read \n");
 IDBRealChanIO
(fp,IDB_READ,0,0,num_pixels,num_lines,image_buffrMahMax,num_pixels,num_lines,2,dbic
2_list);

 // Go out and select the max Mahalanobis Distance
 //printf("Into MahalMaxFnct\n");
 MahalMaxFnct (image_buffrMahMax, num_pixels, num_lines, half_kernel, kernel_size,
dbic2_list);

 //printf ("Max threshold ratio > 0.8 \n");

 /* testing what is in image_buffr2*/
 /* read in and print out one line of image_buffr2*/

 /*for (i = 0; i < 500; i++){

 for (pixel = 0; pixel < num_pixels * num_lines * 2; pixel++){

 printf(" \n");

 141

 printf(" pixel = %f\n", *(image_buffrMahMax + pixel));
 printf(" \n");

 }

 }

 printf("exiting early for testing purposes \n");
 exit(1);*/

 // write out the second last channel to the last channel

 //printf("Writing out \n");
 IDBRealChanIO (fp,IDB_WRITE, 0, 0, num_pixels,
num_lines,image_buffrMahMax,num_pixels,num_lines,2,dboc2_list);
 //printf("num_pixels = %d num_lines = %d \n", num_pixels, num_lines);
 //IDBRealChanIO (fp,IDB_WRITE, 0, 0,
num_pixels,num_lines,image_buffrMahMax,num_pixels,num_lines,5,dbic_list);

 free(image_buffrMahMax);
 image_buffrMahMax = NULL;

 }// end of control flag for mahal freq

 //Free up some memory

free(nirthrhld);
nirthrhld = NULL;

//**

// TARGET CHARACTERIZATION

//**

//printf("Gonna do target characeterization\n");

image_buffrCharactr = (float *) malloc(sizeof(float) * num_pixels * 2 * num_lines * 5);

//read in the imagery to the buffr
//only the pan and freq channel

dbic2_list[0] = 1; //Pan channel

if(control_flag == 1)//Minkowski
dbic2_list[1] = 11;//Freq channel

 142

if(control_flag == 2)//Mahal
dbic2_list[1] = 12;//Freq channel

dbic_array[0] = 1; //Pan
bmap = 0;
windoh[0] = 0;
windoh[1] = 0;
windoh[2] = num_pixels;
windoh[3] = num_lines;

/* open the targets_out file*/
/* using fopen with the "w" option - if the file doesn't exist then it is created if exists it is
cleared out*/

targetsfile = fopen(targetsfilename, "w");

// print the column headings

fprintf(targetsfile,"Target Number Pixel Line Length Width Orientation \n");

IDBRealChanIO
(fp,IDB_READ,0,0,num_pixels,num_lines,image_buffrCharactr,num_pixels,num_lines,2,dbic2
_list);

//require the mean and std deviation for pan channel for threshold

numpixssmpld = ImageStats(fp, 1, dbic_array, bmap, windoh, covr, Corl, meen, sigma);

thrshold = meen[0] + (4 * sigma [0]); //using one stnd deviation to tighten things up a bit
printf("End of boat threshold = %f\n",thrshold);

//printf("Frequency threshold = >8 \n");
//printf("threshold = %f\n",thrshold);

CharacterFnct (image_buffrCharactr, num_pixels, num_lines, half_kernel, kernel_size,
dbic2_list, thrshold, targetsfile);

printf("final write \n");

if(control_flag == 1)//Minkowski
dbic2_list[1] = 12;//Freq channel

IDBRealChanIO (fp,IDB_WRITE, 0, 0, num_pixels,
num_lines,image_buffrCharactr,num_pixels,num_lines,2,dbic2_list);

 143

/* -- */
/* SPAWN the HANDLER */
/* --- */

//IMPRunTask("handler",NULL,0, NULL,&pid);
/* -- */
/* Close a file */
/* --- */

 /* All files are closed: */
 /*numclosed = _fcloseall();*/
 fclose (outfile);
 fclose (targetsfile);
 numclosed = fclose(fp);
 timer = (float)(clock() / 1000);
 printf("Program Execution Time = %f minutes\n",timer/60);
/* -- */
/* Exit program using IMPReturn. */
/* -- */
printf("\n\nControl C to EXIT");
while (1) {

}
exit(1); //IMPReturn(); //IMPReturn always exits with an error msg.
} /*End of Main*/

/* -- */
/* ALL FUNCTIONS LOCATED BELOW */
/* -- */

/*##*/
/* -- */
/* PixelFill */
/* Function to put a Zero value in unprocessed pixels */
/* found at the edge of images */
/* -- */
/*##*/

void PixelFill (float *OutBuff2, int pixel, int half_kernel, int numofChans)
{

int i;

 144

for (i = 0; i < numofChans; i++)
 {
 /*printf("i = %d \n", i);*/

 *(OutBuff2 + pixel * numofChans + i) = 0;
 /*printf ("Pixel Fill value = %f\n", *(OutBuff2 + pixel * numofChans + i));*/

 }

}

/*##*/
/* -- */
/* LineFill */
/* Function to put a Zero value in unprocessed lines */
/* found at the edge of images */
/* -- */
/*##*/

 void LineFill (float * OutBuff3, int half_kernel, int num_pixels, int numChan)
 {

int pixel;

 /* fill a line up, pixel by pixel by number of channels, with zeros */
 for (pixel = 0; pixel < (((num_pixels - 1) * numChan) + 1); pixel++){

 *(OutBuff3 + pixel) = 0;
 }

 }

/*##*/
/* -- */
/* ImgAvg */
/* Function to perform an mean filter */
/* Called for each line of image */
/* -- */
/*##*/

void ImgAvg (float *line_ptr2[], float *OutBuff4, int num_pixels, int numIkonosChan, int
half_kernel, int kernel_size, float *nirthrhld, float *panthrhld)

 145

{

 int j, k, channel, pixel;

 float sum;
 /*printf("Into ImgAvg: \n");*/
/* -- */
/* Average calc'd for a single line */
/* -- */

 for (pixel = 0; pixel < num_pixels; pixel++){

 //printf("pixel = %d \n", pixel);

 if (pixel < half_kernel || pixel >= (num_pixels - half_kernel)) {

 PixelFill(OutBuff4, pixel, half_kernel, numIkonosChan);
 }
 else {

 //***
 //calc running sum for NIR and PAN threshold
 //only calc for pixels not set to background value of 0
 //***

 if (*(line_ptr2[0] + (pixel * numIkonosChan) + 4) != 0 && *(line_ptr2[0] +
(pixel * numIkonosChan) + 1) != 0){
 *(nirthrhld) = *(nirthrhld) + (*(line_ptr2[0] + (pixel * numIkonosChan) + 4));
//sum up the NIR channel
 *(panthrhld) = *(panthrhld) + (*(line_ptr2[0] + (pixel * numIkonosChan)));
 *(nirthrhld + 1) = (*(nirthrhld + 1) + 1); //add one to the total number of pixels
 //printf(" running counter = %f \n", *(nirthrhld + 1));
 }
 //***

 for(channel = 0; channel < numIkonosChan; channel++){

 sum = 0;

 for (j = 0; j < ((2 * half_kernel) + 1); j++){ /* line in kernel*/

 for (k = (pixel - half_kernel); k < ((pixel + half_kernel)+ 1); k++){ /* pixel
in kernel*/
 /*printf("Channel = : %d ", channel);
 printf("J= : %d ", j);
 printf("K= : %d ", k);
 junk = (2 * half_kernel) + 1;

 146

 printf("*(line_ptr2[j] + k * numIkonosChan + channel) = %f ",
*(line_ptr2[j] + k * numIkonosChan + channel));
 printf("line_ptr2[%d]=: %f", j,*line_ptr2[j]);*/
 sum = sum + *(line_ptr2[j] + k * numIkonosChan + channel);

 /*printf(" Sum = : %f \n", sum);*/
 }/* end of k loop*/

 }/* end of j loop*/

 *(OutBuff4 + pixel * numIkonosChan + channel) = sum / (pow(kernel_size,
2));
 /*printf(" Avg= : %f \n", *(OutBuff4 + pixel * numIkonosChan + channel));*/
 }/*end of channel loop*/

 } /*end of the else statement*/
 } /* end of pixel for loop*/

} /* bottom of image average*/

/*##*/
/* -- */
/* MaxDist */
/* Function to calculate max dist - outliers */
/* Called for each line */
/* -- */
/*##*/

 void MaxDistFnct (float *image_buffrMD, float *out_Buff5, int num_pixels, int
numIkonosChan, int TwonumIkonosChan1, int half_kernel, int kernel_size, int
image_line_pos, int exponent, float *nirthrhld, float *panthrhld, FILE *outfile){

 int pixel, channel, j,k, MaxLine, MaxPixel;

 int numlinesdown, numpixintoline,posinkernel;

 float dist, maxdist;

 //printf("Into MaxDist \n");
 //printf("num_pixels = %d half_kernel = %d kernel_size = %d \n",
num_pixels,half_kernel,kernel_size);

 for (pixel = 0; pixel < num_pixels ; pixel++){

 if (pixel < half_kernel || pixel > (num_pixels - kernel_size)) {

 PixelFill(out_Buff5, pixel, half_kernel, TwonumIkonosChan1);
 }

 147

 else {

 maxdist = 0;
 /*printf("maxdist = %d \n", maxdist);*/
 for (j = 0; j < kernel_size; j++){ /* line in kernel*/
 /*printf("line in kernel: j = %d \n", j);*/
 for (k = (pixel); k < ((pixel + kernel_size)); k++){ /* pixel in kernel*/
 /*printf("pixel in kernel: k = %d \n", k);*/
 dist = 0;

 numlinesdown = num_pixels * TwonumIkonosChan1 * j;
 numpixintoline = pixel * TwonumIkonosChan1;
 posinkernel = (k - pixel) * TwonumIkonosChan1;

 //printf ("TwonumIkonosChan1 = %d numIkonosChan = %d\n",
TwonumIkonosChan1,numIkonosChan);
 //printf("Numlinesdown = %d numpixintoline = %d posinkernel =
%d\n", numlinesdown,numpixintoline,posinkernel);*/

 for(channel = 0; channel < numIkonosChan ; channel++){

 /*printf("channel = %d \n", channel);*/

 /*printf("*(image_buffrMD + numlinesdown + numpixintoline +
posinkernel + channel)= %f \n",
 *(image_buffrMD + numlinesdown + numpixintoline +
posinkernel + channel));
 printf("*(image_buffrMD + numlinesdown + numpixintoline +
posinkernel + channel + numIkonosChan)= %f \n",
 *(image_buffrMD + numlinesdown + numpixintoline +
posinkernel + channel + numIkonosChan));*/
 dist = dist + pow(fabs(*(image_buffrMD + numlinesdown +
numpixintoline + posinkernel + channel) -
 *(image_buffrMD + numlinesdown + numpixintoline +
posinkernel + channel + numIkonosChan)), exponent);
 /*printf("dist before root:%f \n", dist);*/
 }/*end of channel loop*/

 /* Don't take the root for Manhattan distances*/

 if (exponent != 1) {
 dist = sqrt(dist);
 }
 /* -- */
 /* Formatted Text Output */
 /* for specific pixels of interest */
 /* note: this is hardwired for simplicity */
 /* just using multiple IF statements to control - quick & dirty */
 /* -- */

 148

 /*if (image_line_pos >= (107 - half_kernel) && image_line_pos <= (107
+ half_kernel)){
 if (pixel >= (100 - half_kernel) && pixel <= (100 + half_kernel)){
 /*note the compensation for counting from 0 to actual pixel &
line values*/
 /*fprintf(outfile,"%d,%d,%f,%f,%f,%f,%f,%f \n",(pixel +
1),(image_line_pos + 1), *(image_buffrMD + numlinesdown +
numpixintoline + posinkernel + 0),
 *(image_buffrMD + numlinesdown + numpixintoline +
posinkernel + 1),
 *(image_buffrMD + numlinesdown + numpixintoline +
posinkernel + 2),
 *(image_buffrMD + numlinesdown + numpixintoline +
posinkernel + 3),
 *(image_buffrMD + numlinesdown + numpixintoline +
posinkernel + 4),
 dist);

 }
 }

 /*printf("dist = %f \n", dist);*/
 if (dist > maxdist) {

 maxdist = dist;
 /*printf("max dist @ line %d, pixel %d = %f \n", j,k,maxdist);*/
 /* store the "coordinates" of the new MaxDist"*/

 MaxLine = j;
 MaxPixel = k;

 } /*end of if statement*/

 } /* end of k "pixel in kernel" loop*/

 } /* end of j "line" loop*/
 /* Increment the exisiting histogram value for the outlier by 1*/
 /* recalc image buffer "coords" based on MaxLine and MaxPixel*/

 numlinesdown = num_pixels * TwonumIkonosChan1 * MaxLine;
 /*numpixintoline = pixel * TwonumIkonosChan1; Doesn't change from
above*/
 posinkernel = (MaxPixel - pixel) * TwonumIkonosChan1;
 /*
 printf("Numlinesdown = %d numpixintoline = %d posinkernel = %d\n",
numlinesdown,numpixintoline,posinkernel);

 printf(" \n");
 printf(" \n");

 149

 printf("*(image_buffrMD + numlinesdown + numpixintoline + posinkernel +
TwonumIkonosChan1 - 1)= %f \n",
 *(image_buffrMD + numlinesdown + numpixintoline + posinkernel +
TwonumIkonosChan1 - 1));
 printf("*(image_buffrMD + numlinesdown + numpixintoline + posinkernel +
TwonumIkonosChan1 -1) + 1 = %f \n",
 (*(image_buffrMD + numlinesdown + numpixintoline + posinkernel +
TwonumIkonosChan1 - 1) + 1));*/

 /*to improve performance, only select an outlier if maximum distance is
beyond a threshold*/

 if (maxdist > (*(nirthrhld + 2)) && maxdist > (*(panthrhld + 2))){

 /*printf("Image Line Number = %d\n", image_line_pos);
 printf("PIXEL IN IMAGE = %d \n", pixel);
 printf("*(image_buffrMD + numlinesdown + numpixintoline + posinkernel
+ TwonumIkonosChan1 -1) + 1 = %f \n",
 (*(image_buffrMD + numlinesdown + numpixintoline + posinkernel +
TwonumIkonosChan1 - 1) + 1));*/

 *(image_buffrMD + numlinesdown + numpixintoline + posinkernel +
TwonumIkonosChan1 - 1) =
 (*(image_buffrMD + numlinesdown + numpixintoline + posinkernel +
TwonumIkonosChan1 - 1) + 1);

 }

 /*printf(" After buffr incremented: *(image_buffrMD + numlinesdown +
numpixintoline + posinkernel + TwonumIkonosChan1 - 1)= %f \n",
 *(image_buffrMD + numlinesdown + numpixintoline + posinkernel +
TwonumIkonosChan1 - 1));
 printf(" Image Line Position: %d \n", image_line_pos);
 printf(" \n");*/

 } /*end of the else statement*/

 } /*end of pixel loop*/

 //printf("End of MaxDist \n");
 }/*End of MaxDist function*/

 150

/*##*/
/* -- */
/* MahalDist */
/* Function to calculate mahalanobis dist - outliers */
/* Called for each line */
/* -- */
/*##*/

 void MahalDistFnct (float *image_buffrMD, float *out_Buff5, int num_pixels, int
numIkonosChan, int TwonumIkonosChan1, int half_kernel, int kernel_size, int
image_line_pos, int dbic_list[], int BigWindow_flag, FILE *outfile, float *nirthrhld, float
*panthrhld, FILE *fp){

 int cell, channel,ll,i,j,k,cntr,n1,bitmap;
 //int singular;
 int numlinesdown, numpixintoline, posinkernel, buffoffset;

 long pixs_sampled;

 double dist;

 float XminusM[5],Corr[25], means[5], std_dev[5];

 float CoVar[25];

 int window[4];

 double XminusMDbl[5],IntoCoVar[605],CoVarDbl[25],X_MCovar[5],MahalSqrd[1];

 bitmap = 0;//set to zero to sample the entire channel
 n1 = 1;
 //printf("Into MahalDist \n");
 //printf("BigWindow_flag = %d \n", BigWindow_flag);

 //printf("num_pixels = %d half_kernel = %d kernel_size = %d \n",
num_pixels,half_kernel,kernel_size);

 numlinesdown = 0;
 posinkernel = 0;
 numpixintoline = 0;
 buffoffset = 2 * num_pixels * TwonumIkonosChan1;

 window[0] = 0;
 window[1] = 0;
 window[2] = 0;
 window[3] = 0;

 for (cell = 0; cell < num_pixels ; cell++){
 cntr = 0;

 151

 //printf("cell IN IMAGE (cell) = %d \n", cell);

 //clear the array
 for (i = 0; i < 605; i++){

 IntoCoVar[i] = 0;

 }
 // for testing content
 numpixintoline = cell * TwonumIkonosChan1;
 /* if (image_line_pos ==20 && (cell > 29 || cell < 37)){

 printf("test output\n");
 printf("%d, %d, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f\n"
 ,(cell + 1),(image_line_pos + 1),*(image_buffrMD + numpixintoline + 0),
 (image_buffrMD + numpixintoline + 1),(image_buffrMD +
numpixintoline + 2),
 (image_buffrMD + numpixintoline + 3),(image_buffrMD +
numpixintoline + 4),
 (image_buffrMD + numpixintoline + 5),(image_buffrMD + numpixintoline
+ 6),
 (image_buffrMD + numpixintoline + 7),(image_buffrMD + numpixintoline
+ 8),
 *(image_buffrMD + numpixintoline + 9));

 }*/

 if (cell < 5 || (cell > (num_pixels - 11))) {

 PixelFill(out_Buff5, cell, half_kernel, TwonumIkonosChan1);
 continue;
 }

 else {

 //printf ("TwonumIkonosChan1 = %d numIkonosChan = %d\n",
TwonumIkonosChan1,numIkonosChan);
 //printf("Numlinesdown = %d numpixintoline = %d posinkernel = %d\n",
numlinesdown,numpixintoline,posinkernel);

 dist = 0;

 //printf("BigWindow_flag = %d \n", BigWindow_flag);

 // Window size = kernel size BigWindow_flag == 1 // 1 means possibly use
a larger window for Covar
 if (BigWindow_flag == 1 && (cell > 4 && cell < (num_pixels - 12))){
//upsize that window{

 //printf(" Setting a big window \n");

 152

 window[0] = cell;

 window[1] = (image_line_pos - 5);

 window[2] = 11;

 window[3] = 11;

 //printf("window[0]=%d\n",window[0]);
 //printf("window[1]=%d\n",window[1]);
 //printf("window[3]=%d\n",window[3]);
 //printf("window[2]=%d\n",window[2]);
 //printf("image_line_pos = %d \n",image_line_pos);
 //printf("cell= %d \n",cell);

 // Populate IntoCoVar to calculate Covariance
 int wsize = 5;
 //printf("into CoVar \n");
 for (channel = 0; channel < numIkonosChan; channel++){
 //printf("channel = %d \n",channel);
 for (j = 0; j < wsize; j++){ //whole lines down
 //printf("j or whole lines down = %d \n", j);
 for (k = 0; k < wsize; k++){ //pixels in
 //printf("pixels into line = %d \n", k);
 IntoCoVar[cntr] = *(image_buffrMD + (j *
TwonumIkonosChan1 * num_pixels) + ((cell + k - 2) * TwonumIkonosChan1) + channel);
 cntr++;
 } //end of pixel loop in 11 x 11 covar kernel

 }// end of line loop in 11 x 11 covar kernel

 }//end of IntoCoVar Channel loop

 } //end of BigWindow

 else { // regular size covar window
 //printf(" setting a regular sized window\n");
 window[0] = cell;

 window[1] = 0;

 window[2] = kernel_size;

 window[3] = kernel_size;

 //printf("window[0]=%d\n",window[0]);
 //printf("window[1]=%d\n",window[1]);
 //printf("window[3]=%d\n",window[3]);

 153

 //printf("window[2]=%d\n",window[2]);
 //printf("image_line_pos = %d \n",image_line_pos);
 //printf("cell= %d \n",cell);

 } //end of BigWindow else

 //printf("calling ImageStats \n");
 //pixs_sampled = ImageStats(fp, numIkonosChan, dbic_list, bitmap,
window, CoVar, Corr, means, std_dev);

 calc_vc(IntoCoVar, CoVarDbl, 5, numIkonosChan);

 /*printf("out of ImageStats \n");

 printf("cell= %d \n",cell);

 printf("kernel size = %d \n", kernel_size);

 /* change each element of CoVar to a double*/

 for (i = 0; i < 25; i++){

 CoVarDbl[i] = CoVarDbl[i]/100000;
 //CoVarDbl[i] = 1;
 }
 // weight the pan channel heavily and NIR? for small target
discrimination
 //if (i == 1)

 CoVarDbl[0] = CoVarDbl[0] * 3; //pan
 CoVarDbl[24] = CoVarDbl[24] * 2;//NIR

 if (cell == 0 && image_line_pos == 1)

 printf("Weighting the Pan channel by 100 and NIR by 5 \n");
 //}

 // Identity matrix for testing Mahal distance - sum of squares

 //for (i = 0; i < 5; i++){

 // for (j = 0; j < 5; j++){

 // if (i == j)
 // CoVarDbl[i*5+j] = 1;
 // else
 // CoVarDbl[i*5+j] = 0;

 //printf("CoVarDdbl[%d]= %f\n", i, CoVarDbl[i]);

 154

 // }

 //}

 /* invert the Covariance Matrix*/

 /*printf("cell= %d \n",cell);
 printf("kernel size = %d \n", kernel_size);
 printf("going to mat inv \n");*/
 //testing to see if not inverting the Covar matrix helps
 //singular = gjmatinv(CoVarDbl,numIkonosChan);

 //printf("out of mat inv \n");
 //printf("singular = %d \n", singular);

 /* zero the XM matrix*/
 for (ll = 0; ll < numIkonosChan; ll++){

 XminusM[ll] = 0;

 }

 //printf("kernel_size = %d \n",kernel_size);
 //printf("cell= %d \n",cell);

 numpixintoline = cell * TwonumIkonosChan1;

 //printf ("TwonumIkonosChan1 = %d numIkonosChan = %d\n",
TwonumIkonosChan1,numIkonosChan);
 //printf("numpixintoline = %d \n", numpixintoline);

 for(channel = 0; channel < numIkonosChan ; channel++){

 //printf("channel = %d \n", channel);

 /*printf("*(image_buffrMD + numpixintoline + channel)= %f \n",
 *(image_buffrMD + numpixintoline + channel));
 printf("*(image_buffrMD + numpixintoline + channel +
numIkonosChan)= %f \n",
 *(image_buffrMD + numpixintoline + channel +
numIkonosChan));*/

 XminusM[channel] = (*(image_buffrMD + buffoffset + numpixintoline
+ channel) -
 *(image_buffrMD + buffoffset + numpixintoline + channel +
numIkonosChan));

 //printf("XminusM[%d] = %f \n", channel, XminusM[channel]);

 155

 }/*end of channel loop*/

 /*>>>>>>>>>>>>>>>>>>>>>>>>>>>*/
 /* Matrix manipulations here */
 /*>>>>>>>>>>>>>>>>>>>>>>>>>>>*/

 /* Cast the arrays over to double from float*/

 for (i = 0; i < numIkonosChan; i++){

 XminusMDbl[i] = XminusM[i];

 }

 //printf("into first mul_mtm\n");

 mul_mtm(XminusMDbl,CoVarDbl,X_MCovar,n1,numIkonosChan,numIkonosChan);
 //printf("out of first mul_mtm\n");

 //printf("into 2nd mul_mm\n");
 mul_mm(X_MCovar, XminusMDbl, MahalSqrd, n1,numIkonosChan,n1);
 //printf("out of 2nd mul_mm\n");

 //printf("MahalSqrd[0] = %f\n",MahalSqrd[0]);

 dist = sqrt(fabs(MahalSqrd[0])/10000); //just for testing getting rid of neg
values
 //dist = sqrt(MahalSqrd[0]);

 /* -- */
 /* Formatted Text Output */
 /* for specific pixels of interest */
 /* note: this is hardwired for simplicity */
 /* multiple IF statements for control - quick & dirty */
 /* -- */
 if (image_line_pos >= (1374 - half_kernel) && image_line_pos <= (1374 +
half_kernel)){
 if (cell >= (1275 - half_kernel) && cell <= (1275 + half_kernel)){
 //note the compensation for counting from 0 to actual pixel & line
values
 printf("Writing out CoVar\n");
 fprintf(outfile,"%d,%d,%f,%f,%f,%f,%f,%f\n\n"
 ,(cell + 1),(image_line_pos + 1),*(image_buffrMD +
numpixintoline + buffoffset + 0),
 *(image_buffrMD + numpixintoline + buffoffset +
1),*(image_buffrMD + numpixintoline + buffoffset + 2),

 156

 *(image_buffrMD + numpixintoline + buffoffset +
3),*(image_buffrMD + numpixintoline + buffoffset + 4),
 dist);
 fprintf(outfile,"%f,%f,%f,%f,%f\n",
 CoVarDbl[0],
 CoVarDbl[1],
 CoVarDbl[2],
 CoVarDbl[3],
 CoVarDbl[4]);
 fprintf(outfile,"%f,%f,%f,%f,%f\n",
 CoVarDbl[5],
 CoVarDbl[6],
 CoVarDbl[7],
 CoVarDbl[8],
 CoVarDbl[9]);
 fprintf(outfile,"%f,%f,%f,%f,%f\n",
 CoVarDbl[10],
 CoVarDbl[11],
 CoVarDbl[12],
 CoVarDbl[13],
 CoVarDbl[14]);
 fprintf(outfile,"%f,%f,%f,%f,%f\n",
 CoVarDbl[15],
 CoVarDbl[16],
 CoVarDbl[17],
 CoVarDbl[18],
 CoVarDbl[19]);
 fprintf(outfile,"%f,%f,%f,%f,%f\n\n",
 CoVarDbl[20],
 CoVarDbl[21],
 CoVarDbl[22],
 CoVarDbl[23],
 CoVarDbl[24]);
 }
 }

 //--
 // Put the Mahalanobis distance back into the file
 //--

 /*printf("dist = %f \n", dist);*/

 //} /*end of if statement*/

 //--
 // Put the Mahalanobis Distance in its place in an empty channel
 //--
 //printf("dist = %f \n", dist);

 157

 // Probable location of future EXPERT SYSTEM
 //printf("nirthrhld + 2 = %f \n", *(nirthrhld * 2));
 if(*(image_buffrMD + buffoffset + numpixintoline + 4) > (*(nirthrhld + 2))
&& (*(image_buffrMD + buffoffset + numpixintoline) > (*(panthrhld + 2))))
 *(image_buffrMD + buffoffset + numpixintoline + TwonumIkonosChan1 -
1) = dist;// minus 1 gets into the last channel.
 //printf("*(image_buffrMD + numpixintoline + TwonumIkonosChan1 - 1) =
%f \n", *(image_buffrMD + numpixintoline + TwonumIkonosChan1 - 1));

 }//end of else that includes all mahal calculations
 //printf("bottom of cell loop, next cell\n");
 } /*end of cell loop*/

 //printf("End of MahalDist \n");
 }/*End of MahalDist function*/

//
==
=========
// C_math.cpp
//
// HISTORY: Original - 3 AUGUST 2001
// Modified - 11 October 2001
//
// PURPOSE: Common Math Functions.
//
// ---
// All rights reserved. -- Dr. Donghyun Kim [February 16, 2002]
// GPS Research Laboratory, University of New Brunswick, Canada
//
==
=========

// ---
// Gauss-Jordan matrix inverse
// - a[]: an input square matrix to be overwritten
// - n: matrix dimension
// - det: determinent
// Return value: =0: non-singular (but will be cross-checked later.)
// =-1: singular
// ---
int gjmatinv(double *a, int n){

 int ii, jj, kk;
 double det, t, xx;
 /*printf("Into Mat Inverse \n");*/

 det = 1;
 for (kk=0; kk<n; kk++) {

 158

 t = a[n*kk+kk];

 // Singularity check
 if (t == 0.0)
 return(-1);

 det *= t;
 for (ii=0; ii<n; ii++)
 a[n*kk+ii] /= t;

 a[n*kk+kk] = 1/t;
 for (jj=0; jj<n; jj++)
 if (jj != kk) {
 xx = a[n*jj+kk];
 for (ii=0; ii<n; ii++)
 if (ii != kk) a[n*jj+ii] -= a[n*kk+ii]*xx;
 else a[n*jj+ii] = -xx/t;
 }
 }

 return(0);
}

// ---
// Matrix multiplication (mul_mm()) function definition
// ---
void mul_mm(double *A, double *B, double *C, int n1, int n2, int n3){

 int m, j, k;
 double sum;
 /*printf("Into mul_mm function \n");*/
 // Dimension : (n1,n2)*(n2,n3)
 // Calc. matrix : A*B = C
 for (m=0; m<n1; m++){
 /*printf("m= %d of n1 = %d \n", m,n1);*/
 for (j=0; j<n3; j++) {
 /*printf("j= %d of n3 = %d \n", j,n3);*/
 sum = 0;
 for (k=0; k<n2; k++){
 /*printf("k= %d of n2 = %d \n", k,n2);*/
 sum += A[m*n2+k]*B[k*n3+j];
 /*printf("sum = %f\n",sum);*/
 }
 /*printf("c[%d*%d+%d] = c[%d] = MahalSqrd[0] = %f\n",m,n3,j,(m*n3+j),sum);*/
 C[m*n3+j] = sum;

 }
 }
 /*printf("Out of mul_mm function \n");*/

 159

}

// ---
// Matrix multiplication (mul_mtm()) function definition
// ---
void mul_mtm(double *A, double *B, double *C, int n1, int n2, int n3) {

 int m, j, k;
 double sum;
 /*printf("Into mul_mtm function\n");*/
 // Dimension : (n2,n1)t*(n2,n3)
 // Calc. matrix : At*B = C
 for (m=0; m<n1; m++)
 for (j=0; j<n3; j++) {
 sum = 0;
 for (k=0; k<n2; k++)
 sum += A[k*n1+m]*B[k*n3+j];
 C[m*n3+j] = sum;
 /*printf("C[%d] = %f \n",(m*n3+j),sum);*/
 }
 /*printf("Out of mul_mtm function \n");*/
}

// ---
// Mean calculation
// ---
double calc_mean(double *A, int n) {
 int i;
 double sum, mean;

 sum = 0;
 for (i=0; i<n; i++)
 sum += A[i];

 if (n < 2) mean = 1.0e100; // set an infinite value
 else mean = sum/n;

 return(mean);
}

// ---
// Variance calculation
// ---
double calc_var(double *A, int n) {
 int i;
 double var, mean, sum;

 160

 mean = calc_mean(A,n);
 sum = 0;
 for (i=0; i<n; i++)
 sum += pow(A[i]-mean,2.0);

 if (n < 2) var = 1.0e100; // set an infinite value
 else var = sum/n;

 return(var);
}

// ---
// Covariance calculation
// ---
double calc_cov(double *A, double *B, int n) {
 int i;
 double cov, mean1, mean2, sum;

 mean1 = calc_mean(A,n);
 mean2 = calc_mean(B,n);

 sum = 0;
 for (i=0; i<n; i++)
 sum += (A[i]-mean1)*(B[i]-mean2);

 if (n < 2) cov = 1.0e100; // set an infinite value
 else cov = sum/n;

 return(cov);
}

// ---
// Variance-covariance matrix calculation
// ---
void calc_vc(double *A, double *B, int n1, int n2) {
 int i, j, k;
 double M1[1000] = {0,}; // NOTE: select a large number (e.g., 1000)
 double M2[1000] = {0,}; // make it sure (n1<1000) in this example.
 double coVAR;

 // Dimensions
 // A(n1,n2), B(n2,n2)

 for (i=0; i<n2; i++) {
 // Get the first column vector
 for (k=0; k<n1; k++)
 M1[k] = A[i*n1+k];

 for (j=0; j<n2; j++) {

 161

 if (i >= j) {

 if (i == j)
 // compute variance
 coVAR = calc_var(M1, n1);
 else {
 // Get the second column vector
 for (k=0; k<n1; k++)
 M2[k] = A[j*n1+k];

 // compute covariance
 coVAR = calc_cov(M1, M2, n1);
 }
 // Augment vc-matrix
 B[i*n2+j] = coVAR;

 } else {

 // Utilize symmetric characteristics
 B[i*n2+j] = B[j*n2+i];

 }

 }

 }

}

/*##*/
/* -- */
/* MahalMaxDist */
/* Function to select the max mahalanobis dist in a kernel */
/* Called once only at end of Mahal processing */
/* -- */
/*##*/

void MahalMaxFnct (float *image_buffrMahMax, int num_pixels, int num_lines, int
half_kernel, int kernel_size, int dbic_list[]){

int line, pixel, j, i,MaxLine,MaxPixel,MaxFlag, cntr;

int numlinesdown, numpixsintoline;

float maxmahdist,dist,mean,sum,diffsrd,stnd_dev,maxthresratio;

 162

//printf("inside MahalMaxFnct \n");

dist = 0;
cntr = 0;
sum = 0;
diffsrd = 0;
/*
 for (line = 0; line < num_lines; line++){

 for (pixel = 0; pixel < num_pixels; pixel++){

 numlinesdown = line * num_pixels * 2;
 numpixsintoline = pixel * 2;
 //printf("Chan 10 before = *(image_buffrMahMax + numlinesdown +
numpixsintoline) = %f \n", *(image_buffrMahMax + numlinesdown + numpixsintoline));
 *(image_buffrMahMax + numlinesdown + numpixsintoline) = 0;
 //printf("Chan 10 after = *(image_buffrMahMax + numlinesdown + numpixsintoline)
= %f \n", *(image_buffrMahMax + numlinesdown + numpixsintoline));
 //printf("next channel 11 = %f \n", *(image_buffrMahMax + numlinesdown +
numpixsintoline + 1));
 }
 }

*/
//printf("exiting early /n");
//exit(1);

 //two for loop to go through the entire image
 for (line = half_kernel; line < (num_lines - half_kernel); line ++){

 for (pixel = half_kernel; pixel < (num_pixels - half_kernel); pixel ++){
 //printf ("New Kernel \n");
 maxmahdist = 1;
 maxthresratio = 0;
 MaxLine = 0;
 MaxPixel = 0;
 MaxFlag = 0;
 numlinesdown = 0;
 numpixsintoline = 0;
 //printf("MaxFlag = %d \n", MaxFlag);

 // Calculating Kernal Stats

 cntr = 0;

 163

 dist = 0;
 mean = 0;
 diffsrd = 0;
 stnd_dev = 0;
 for (i = (line - half_kernel); i < (line + half_kernel + 1); i++){

 for (j = (pixel - half_kernel); j < (pixel + half_kernel + 1); j++){

 numlinesdown = i * num_pixels * 2;
 numpixsintoline = j * 2;

 //printf("dist = %f \n", *(image_buffrMahMax + numlinesdown +
numpixsintoline));
 dist = dist + *(image_buffrMahMax + numlinesdown + numpixsintoline);
 //printf("cuml_dist = %f \n", dist);
 cntr = cntr++;
 //printf("cntr = %d \n", cntr);

 } // end of pixel in kernel loop

 } //end of line in kernel loop

 // sample mean

 mean = dist/cntr;
 //printf("mean = %f \n\n", mean);
 //sample standard deviation

 for (i = (line - half_kernel); i < (line + half_kernel + 1); i++){

 for (j = (pixel - half_kernel); j < (pixel + half_kernel + 1); j++){

 numlinesdown = i * num_pixels * 2;
 numpixsintoline = j * 2;

 //printf("dist = %f \n", *(image_buffrMahMax + numlinesdown +
numpixsintoline));
 diffsrd = diffsrd + pow(mean - *(image_buffrMahMax + numlinesdown +
numpixsintoline), 2);

 } // end of pixel in kernel loop

 } //end of line in kernel loop

 stnd_dev = sqrt (fabs(diffsrd / cntr));
 //printf("standard Dev = %f \n\n", stnd_dev);

 164

 dist = 0;
 for (i = (line - half_kernel); i < (line + half_kernel + 1); i++){

 for (j = (pixel - half_kernel); j < (pixel + half_kernel + 1); j++){

 numlinesdown = i * num_pixels * 2;
 numpixsintoline = j * 2;

 //printf("dist = %f \n", *(image_buffrMahMax + numlinesdown +
numpixsintoline));

 dist = *(image_buffrMahMax + numlinesdown + numpixsintoline);
 //printf("mean = %f \n", mean);
 //printf("dist - mean = %f \n", (dist - mean));
 //printf("standard Dev = %f \n", stnd_dev);
 //printf("Threshold Ratio = %f \n\n", (fabs(dist - mean) / stnd_dev));
 //THRESHOLD RATIO TEST
 if (dist > maxmahdist) {
 //printf("Inside dist if, MaxFlag = %d \n", MaxFlag);
 maxmahdist = dist;
 maxthresratio = (fabs(dist - mean)) / stnd_dev;
 //printf("Max dist = %f \n", maxmahdist);
 MaxLine = i;
 MaxPixel = j;
 MaxFlag = 1;

 } // end of if statement

 } // end of pixel in kernel loop

 } //end of line in kernel loop

 //printf(" Before Max Flag If MaxFlag = %d \n", MaxFlag);
 // Add one to the Frequency channel for the pixel having the largest maxdist

 if (MaxFlag == 1 && maxthresratio > 0.5){ //list is printed to the screen for the user

 if (line == 10 && pixel == 10)
 printf("Maximum Threshold Ratio = 0.5 \n");
 //printf("Inside freq if, MaxFlag = %d\n", MaxFlag);

 //printf(" A max dist was selected \n");

 numlinesdown = MaxLine * num_pixels * 2;
 numpixsintoline = MaxPixel * 2;
 //printf("Chan 12 before = *(image_buffrMahMax + numlinesdown +
numpixsintoline + 1) = %f \n", *(image_buffrMahMax + numlinesdown + numpixsintoline +
1));
 *(image_buffrMahMax + numlinesdown + numpixsintoline + 1) =
(*(image_buffrMahMax + numlinesdown + numpixsintoline + 1) + 1);

 165

 //printf("Chan 12 after = *(image_buffrMahMax + numlinesdown +
numpixsintoline + 1) = %f \n", *(image_buffrMahMax + numlinesdown + numpixsintoline +
1));
 } //end of MaxFlag if statement

 }//end of pixel loop

 } // end of line loop

}// end of MahalMaxFnct

/*##*/
/* -- */
/* init_stack */
/* Function to initial the stack for characterization by J.Beaudoin*/
/* -- */
/*##*/

void init_stack (element_stack *the_stack)
{
 the_stack->top = -1;
 the_stack->stack_size = 3600;
 memset(the_stack->stack,0,3600 * sizeof(element));

 return;
}

/*##*/
/* -- */
/* Pop */
/* Function to get pixel coords off the stack */
/* coding by J.Beaudoin idea by K.P. */
/* -- */
/*##*/

element pop(element_stack *the_stack)
{
 element return_element;

 if (the_stack->top == -1)
 {
 return_element.pixel[0] = -999;
 return_element.line[0] = -999;
 }

 166

 else
 {
 return_element.pixel[0] = the_stack->stack[the_stack->top].pixel[0];
 return_element.line[0] = the_stack->stack[the_stack->top].line[0];
 the_stack->top--;
 }

 return(return_element);
}

/*##*/
/* -- */
/* push */
/* Function to put a set of pixel coords on the stack */
/* coding by J.Beaudoin idea by K.P. */
/* -- */
/*##*/

void push(element_stack *the_stack, element shit_to_push)
{
 the_stack->top++;

 the_stack->stack[the_stack->top].pixel[0] = shit_to_push.pixel[0];
 the_stack->stack[the_stack->top].line[0] = shit_to_push.line[0];

 return;
}

/*##*/
/* -- */
/* Characterizaton */
/* Function to perform target labelling and characterization */
/* -- */
/*##*/

void CharacterFnct (float *image_buffrCharactr, int num_pixels,
 int num_lines, int half_kernel, int kernel_size, int dbic2_list[],float thrshold,
FILE *targetsfile){

int targetlabel,line,pixel,numlinesdown,numpixsintoline, direct_cntr,
numlinesdownb, numpixsintolineb, pixsindirectn, heading[9],i,j,sigma_targets;

 167

float deltapix, deltaline;

element a_targetcoord, first_targetcoord, b_targetcoord;

element_stack targets_stack;

char orient[7];

//attribute_array the_target_attributes;

//printf("Into Characterization \n");

targetlabel = 101; //labels begin at 100 and end up in the freq channel which has a max value of
10x10 window - crazy

dir_list[0].R[0] = -1;
dir_list[0].C[0] = 0;

dir_list[1].R[0] = -1;
dir_list[1].C[0] = -1;

dir_list[2].R[0] = 0;
dir_list[2].C[0] = -1;

dir_list[3].R[0] = 1;
dir_list[3].C[0] = -1;

dir_list[4].R[0] = 1;
dir_list[4].C[0] = 0;

dir_list[5].R[0] = 1;
dir_list[5].C[0] = 1;

dir_list[6].R[0] = 0;
dir_list[6].C[0] = 1;

dir_list[7].R[0] = -1;
dir_list[7].C[0] = 1;

//get the stack ready to go

init_stack (&targets_stack);
//printf("Past Init stack \n");
//loop through the 2 channel image
for (line = 0; line < num_lines; line++){
 //printf("Characterization line# = %d\n", line);
 for (pixel = 0; pixel < num_pixels; pixel++){

 numlinesdown = line * num_pixels * 2;

 168

 numpixsintoline = pixel * 2;

 //first test to see if this pixel is a target by its freq or label
 if (*(image_buffrCharactr + numlinesdown + numpixsintoline + 1) < 100) { //if
greater than 100 go to the next pixel as it has already been labelled
 //frequency tests
 //1) if < highest frequency then set to zero
 //if (*(image_buffrCharactr + numlinesdown + numpixsintoline + 1) <
(kernel_size * kernel_size)){
 // *(image_buffrCharactr + numlinesdown + numpixsintoline + 1) = 0;
 //}

 if (*(image_buffrCharactr + numlinesdown + numpixsintoline + 1) >
((kernel_size * kernel_size) - 2)){

 if (line == 10 && pixel == 10)
 printf("Frequency Threshold = %d \n", ((kernel_size * kernel_size) - 1));
 // any pixel making it to here is to be labelled
 // begin search
 //push the pixel onto the stack

 first_targetcoord.pixel[0] = pixel;
 first_targetcoord.line[0] = line;
 push (&targets_stack, first_targetcoord);

 //keep going until all elements are off the stack

 while (1) {

 a_targetcoord = pop(&targets_stack);

 if (a_targetcoord.pixel[0] == -999)
 break; //ends terminates the endless loop

 //label the seed pixel from the stack
 numlinesdownb = a_targetcoord.line[0] * num_pixels * 2;
 numpixsintolineb = a_targetcoord.pixel[0] * 2;
 *(image_buffrCharactr + numlinesdownb + numpixsintolineb + 1) =
targetlabel;

 //now for each direction from the particular stack element go until no more
boat adding to stack if still boat
 for (direct_cntr = 0; direct_cntr < 8; direct_cntr++){
 //printf("direct_cntr = %d\n",direct_cntr);
 //using the direction counter move along a direction until edge of boat
 pixsindirectn = 1;
 while (1){
 // don't go farther than the edge of the image

 169

 if ((a_targetcoord.line[0] + (pixsindirectn *
dir_list[direct_cntr].R[0])) < 0 ||
 (a_targetcoord.line[0] + (pixsindirectn *
dir_list[direct_cntr].R[0])) > (num_lines - 1))
 break; //past the image edge

 if ((a_targetcoord.pixel[0] +(pixsindirectn *
dir_list[direct_cntr].C[0])) < 0 ||
 (a_targetcoord.pixel[0] +(pixsindirectn *
dir_list[direct_cntr].C[0])) > (num_pixels - 1))
 break; //past the image edge

 //using the direction counter move along a direction until edge of boat
 numlinesdownb = (a_targetcoord.line[0] + (pixsindirectn *
dir_list[direct_cntr].R[0])) * num_pixels * 2;
 numpixsintolineb = (a_targetcoord.pixel[0] +(pixsindirectn *
dir_list[direct_cntr].C[0])) * 2;

 // test to see if it is still a boat OR if has previously been labelled
 if (*(image_buffrCharactr + numlinesdownb + numpixsintolineb) <
thrshold ||
 *(image_buffrCharactr + numlinesdownb + numpixsintolineb + 1)
>= 100){
 //printf("heading = %d with pixsindirectn =
%d\n",direct_cntr,pixsindirectn);
 break; //stops looping along a particular direction

 } //Edge of boat IF
 //otherwise put that pixel on the stack to be checked and labelled
 b_targetcoord.line[0] = a_targetcoord.line[0] + (pixsindirectn *
dir_list[direct_cntr].R[0]);
 b_targetcoord.pixel[0] = a_targetcoord.pixel[0] +(pixsindirectn *
dir_list[direct_cntr].C[0]);
 push (&targets_stack, b_targetcoord);
 pixsindirectn = pixsindirectn + 1;
 //printf("pixsindirection = %d\n",pixsindirectn);
 }// bottom of while loop - contiuing along a particular direction
 }// bottom of the direction loop
 } //bottom of infinite while loop for the entire STACK
 //call the Boat Size function and report on that particular target
 //boatsizefnctn(first_targetcoord, heading, targetsfile,targetlabel);
 targetlabel = targetlabel + 1;
 printf("Number of targets = %d\n", (targetlabel - 100));
 }//frequency filter IF
 } //IF < 100

 } //end of pixel loop
}// end of line loop */

//loop again to gather attributes for the found targets.

 170

//loop through the 2 channel image

for (i = 100; i < (targetlabel + 1); i++){

 j = 0;
 for (line = 0; line < num_lines; line++){
 //printf("second line loop # = %d \n",line);
 for (pixel = 0; pixel < num_pixels; pixel++){
 //printf("second pixel loop # = %d \n",pixel);
 numlinesdown = line * num_pixels * 2;
 numpixsintoline = pixel * 2;
 //pixel is labelled with the label of interest
 if (*(image_buffrCharactr + numlinesdown + numpixsintoline + 1) == i) {
 j = j + 1;
 //printf("target label = %d\n", i);
 //printf("j = %d\n", j);
 //printf("second line loop # = %d \n",line);
 //printf("second pixel loop # = %d \n",pixel);
 //first pixel is always one end of the boat
 if (j==1){
 //craps out in here
 the_target_attributes[i].smpixel[0] = pixel;
 the_target_attributes[i].smline[0] = line;
 the_target_attributes[i].numbrpixs[0] = j;
 }//bottom of first pixel

 //SEEK THE OTHER END OF THE BOAT
 //printf("Other end of boat \n");
 the_target_attributes[i].lrgpixel[0] = pixel;
 the_target_attributes[i].lrgline[0] = line;
 the_target_attributes[i].numbrpixs[0] = j;
 //printf("numbrpixs[%d] = %d\n",i, the_target_attributes[i].numbrpixs[0]);
 }// end of if testing it is a correctly labelled pixel

 } //pixel loop

 } // line loop

}//bottom of i target# loop

//printf("starting the BIG second looper\n");
//Now calculate the attributes
sigma_targets = 0;
for (i = 101; i < targetlabel ; i++){
 //printf("i = %d\n", i);

 171

 if (the_target_attributes[i].numbrpixs[0] == 1){

 //SINGLE PIXEL TARGETS UNLABELLED

 //*(image_buffrCharactr + (the_target_attributes[i].smline[0] * num_pixels * 2) +
(the_target_attributes[i].smpixel[0] * 2) + 1) = 0;
 the_target_attributes[i].length[0] = 1;
 //printf("numbrpixs[%d] = %d\n",i, the_target_attributes[i].numbrpixs[0]);
 the_target_attributes[i].width[0] = 1;
 the_target_attributes[i].cntrpixel[0] = the_target_attributes[i].smpixel[0];
 the_target_attributes[i].cntrline[0] = the_target_attributes[i].smline[0];
 //of course a single pixel target doesn't have orientation so this is a default value.
 //ptr_orient = "N/A";
 sprintf(orient,"N/A");
 }//end of one pixel boat
 //printf("past the IF\n");
 if (the_target_attributes[i].numbrpixs[0] > 1){

 //calculate the length note: the addition of one to include the entire last pixel to the lenght
 deltapix = pow (the_target_attributes[i].lrgpixel[0] - the_target_attributes[i].smpixel[0],
2);
 deltaline = pow (the_target_attributes[i].lrgline[0] - the_target_attributes[i].smline[0], 2);
 the_target_attributes[i].length[0] = sqrt (deltapix + deltaline);

 //kind of a cludgie width calculation but demonstrates what is doable and is robust
 the_target_attributes[i].width[0] = the_target_attributes[i].numbrpixs[0] /
the_target_attributes[i].length[0];

 //ORIENTATION OF THE TARGET

 if (the_target_attributes[i].lrgpixel[0] == the_target_attributes[i].smpixel[0] &&
 the_target_attributes[i].lrgline[0] > the_target_attributes[i].smline[0]){
 //orient = "N/S";
 sprintf(orient,"N/S");
 the_target_attributes[i].cntrline[0] = the_target_attributes[i].smline[0] +
 (floor(the_target_attributes[i].lrgline[0] - the_target_attributes[i].smline[0])/2);
 the_target_attributes[i].cntrpixel[0] = the_target_attributes[i].smpixel[0];
 }
 if (the_target_attributes[i].lrgline[0] == the_target_attributes[i].smline[0] &&
 the_target_attributes[i].lrgpixel[0] > the_target_attributes[i].smpixel[0]){
 //orient = "E/W";
 sprintf(orient,"E/W");
 the_target_attributes[i].cntrpixel[0] = the_target_attributes[i].smpixel[0] +
 (floor(the_target_attributes[i].lrgpixel[0] - the_target_attributes[i].smpixel[0])/2);
 the_target_attributes[i].cntrline[0] = the_target_attributes[i].smline[0];
 }
 if (the_target_attributes[i].lrgline[0] > the_target_attributes[i].smline[0] &&
 the_target_attributes[i].lrgpixel[0] > the_target_attributes[i].smpixel[0]){
 //orient = "NW/SE";
 sprintf(orient,"NW/SE");
 the_target_attributes[i].cntrpixel[0] = the_target_attributes[i].smpixel[0] +

 172

 (floor(the_target_attributes[i].lrgpixel[0] - the_target_attributes[i].smpixel[0])/2);
 the_target_attributes[i].cntrline[0] = the_target_attributes[i].smline[0] +
 (floor(the_target_attributes[i].lrgline[0] - the_target_attributes[i].smline[0])/2);
 }
 if (the_target_attributes[i].lrgline[0] > the_target_attributes[i].smline[0] &&
 the_target_attributes[i].lrgpixel[0] < the_target_attributes[i].smpixel[0]){
 //orient = "NE/SW";
 sprintf(orient,"NE/SW");
 the_target_attributes[i].cntrpixel[0] = the_target_attributes[i].smpixel[0] -
 (floor(the_target_attributes[i].smpixel[0] - the_target_attributes[i].lrgpixel[0])/2);
 the_target_attributes[i].cntrline[0] = the_target_attributes[i].smline[0] +
 (floor(the_target_attributes[i].lrgline[0] - the_target_attributes[i].smline[0])/2);
 }
 //regardless of number of pixels comprising a boat, print out the results

 }//end of boats of more than one pixel

 fprintf(targetsfile," %d \t%d\t%d\t%f\t%f\t%s\n",
 i,
 the_target_attributes[i].cntrpixel[0],
 the_target_attributes[i].cntrline[0],
 the_target_attributes[i].length[0],
 the_target_attributes[i].width[0],
 orient);
 sigma_targets++;

 //printf("bottom of the targetlabel looper\n");
}//bottom of the target label loop
 fprintf(targetsfile,"\nTotal number of targets = %d\n",sigma_targets);
 //printf("bottom of characterization\n");
} //end of Characterization function

/*##*/
/* -- */
/* Boat size */
/* Function to calculate target attributes */
/* -- */
/*##*/

void boatsizefnctn(element first_targetcoord, int heading[], FILE *targetsfile, int targetlabel){

int totalnum_pixels,i,finalheading[4], length, width, Azimuth;
totalnum_pixels = 0;
Azimuth = 0;
width = 0;
length = 0;

for (i = 0; i<8; i++){

 173

 //printf("heading[%d] = %d\n",i,heading[i]);
 totalnum_pixels = totalnum_pixels + heading[i];
}// bottom of for loop
 length = heading[0] + heading[4];

 for (i = 0; i<4; i++){
 finalheading[i] = heading[i] + heading[i + 4];
 //printf("finalheading[%d] = %d\n",i,finalheading[i]);
 // figure out the length
 if (finalheading[i] > length){
 length = finalheading[i];
 Azimuth = i;
 }
 }// end of length/azimuth loop

//figure of the width of the boat
 // Az => e/w
 if (Azimuth == 0){
 width = finalheading[2];
 }
 // Az => NW/SE
 if (Azimuth == 1){
 width = finalheading[3];
 }
 // Az => N/S
 if (Azimuth == 2){
 width = finalheading[0];

 }
 // Az => NE/SW
 if (Azimuth == 3){
 width = finalheading[1];
 }

// Generate Target Report

 fprintf(targetsfile,"\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\n",targetlabel,(first_targetcoord.pixel[
0] + 1),(first_targetcoord.line[0] + 1),length,width, Azimuth,totalnum_pixels);

}//end of boat size function

 174

APPENDIX II
 SOFTWARE DESIGN 1

This appendix contains information regarding the programming issues surrounding

the initial implementation of MRV Recon.

The initial design of MRV Recon duplicated the spatio-spectral template developed

by Subramanian and Gat [1998]. Once duplicated, the spatio-spectral template was

tested using IKONOS imagery. Once the testing was completed, areas for enhancing

MRV Recon could be identified.

This is the first of two appendices dedicated to software design. The goal of these

appendixes is to highlight the major functions within MRV Recon. For the sake of

clarity, many “housekeeping” aspects of the software are not included in these chapters.

For example, several functions are called to handle the special case of pixels along the

edges of the image. They are relatively simple, but not discussing them makes it easier

for the reader to wade through what is already quite tedious material. However, those

interested in the details can find all the C code for MRV Recon in Appendix I.

II.I The PCI C/C++ Toolkit

Included with PCI V. 7.0 is a library of C functions that perform many standard

image analysis functions, including: input and output, statistics, image queries, among

others. By providing a toolkit, advanced users can develop complex image processing

software without having to write code for many typical functions. In order to access the

PCI C Toolkit, a header file must be included in the code:

#include "pci.h"

 175

Once the header file is included, the library can be accessed. The following is an

example of a commonly used C function that allows the reading into a buffer of a .pix

file:

IDBRealChanIO (fp,IDB_READ, 0, line_pos, num_pixels,
kernel_size,image_buffr,num_pixels,kernel_size,numIkonosChan,dbic_list);

The C function automatically reads the imagery header file and then places the required

data into a buffer. In this case, MRV Recon has a memory buffer allocated called

image_buffr. The function only needs the offsets (0, line_pos, num_pixels, kernel_size)

to the portion of the imagery required, and the channels (dbic_list) to be copied.

Writing out from a buffer to a file is done in exactly the same manner except for

changing the parameter IDB_READ to IDB_WRITE.

There is no intent to create a programmer’s guide for the PCI C Toolkit. However,

beyond this brief introduction there will be interspersed comments on specific issues

surrounding some toolkit functions used in creating MRV Recon.

II.II Design Criteria

From the outset, MRV Recon was envisioned to have the following criteria:

• Automatic

• Simple to use

• Flexible

• Accurate

• Robust

The primary design criterion is that the software must be usable for non-remote sensing

experts. Ultimately, when MARIS and MRV Recon become operational, CCG

 176

personnel will use them. It is important to provide a system that is automatic, simple to

use, only requiring minimal instruction.

MRV Recon is designed to be flexible. It is anticipated that imagery from different

vendors would be processed so the design allows for any size of imagery, with any

number of channels, and differing resolutions.

Finally, MRV Recon is designed to be accurate and robust. The focus of the entire

work is predicated on how accurately MRV Recon can detect small recreational

vessels. Even though it is designed to be simple to use, requiring minimal user

interaction, ideally the software should be designed to trap any errors that occurred.

II.III MRV Recon Memory Handling

A major decision in designing MRV Recon – even prior to duplicating the

algorithm from Subramanian and Gat - concerned the handling of the memory buffers

for loading the image. Therefore, the memory buffers are designed for the required

flexibility. MRV Recon was tested using IKONOS imagery. However, it is designed to

handle imagery of any resolution, any size, and with a varying number of channels.

Therefore, the size of the buffers to hold the imagery accommodates both different

imagery, and different sizes of user-defined nxn processing kernels.

The following is the fast memory allocation PCI function call used in MRV Recon:

image_buffr = (float *) malloc(sizeof(float) * num_pixels * numIkonosChan *
kernel_size);

The function malloc reserves a block of memory, in this case reserving elements

of memory being equal to size of the data type float. The dimensions of the block

being reserved is set to the width of the image in pixels and having a length equal to

 177

the size of the processing kernel. So, for example, if a 3x3 kernel is used to process

an image of 1000 pixels wide by 2000 pixels long, that contains 5 channels, then a

buffer of 1000 x 3 x 5 (of size float) is reserved. Utilizing a loop, the buffer calls for

each line in the image.

Figure II.I Illustration of MRV Recon memory buffer loading

Figure II.I conceptually illustrates how the imagery file is loaded into memory. The

matrix of cells represents the entire image being processed by MRV Recon. As stated

above, the program loops through each line of the image. At each line a portion of the

image is loaded into memory. The rectangle is surrounded with dashed lines and

contains the dashed diagonal lines. This represents the portion of the imagery loaded

into a reserved memory buffer. Figure II.I shows the line being operated on was the

fifth line of the image.

MRV Recon then passes a kernel, in this case a 3x3 kernel, across this portion of

memory. A loop is used to investigate each of the 9 pixels of the kernel. Shown in the

inset of Figure II.I are pixel numbers 12, 13, and 14. In the example shown in Figure

II.I, each pixel has three channels. Each individual channel represents the smallest

 178

division of memory in a buffer. It is here where the digital numbers (DN) are recorded

for each band of the satellite. The DN represents the radiance for each band recorded by

the CCD in the satellite.

It is important to realize that Figure II.I is conceptual only. It is a way to understand

how the imagery was stored and manipulated. In reality the computer physically stores

the data in a different manner. For example, the block of memory reserved to store a

portion of the imagery is not a two-dimensional array, as shown in Figure II.I, but

rather a one-dimensional array of memory. Nonetheless, each individual piece of

memory can be accessed as if it is stored in two dimensions and sometimes it is easier

to think of it in a two-dimensional sense.

From the example shown in Figure II.I, how is the recorded DN for channel 3 of

pixel number 13 (see inset) accessed? As described above, a block of memory of

sufficient size is reserved and, for the example in Figure II.I named image_buffr. In the

C language, using only the name, the first memory address for this block can be

accessed. Using pointer arithmetic the remaining “portions” of data can be accessed. A

pointer in C is a programming device that is used to find a specific piece of memory.

The DN for band k for a particular pixel (having a pixel number p and line number l) is;

DN(p,l,k) = Np*l*Nk+p*Nk+k (II.I)

where

Np = width of image in pixels

Nk = number of channels

 179

For example, accessing channel 3 of pixel 13 would be done in the following

manner:

1. The data in the beginning of the memory block is accessed using the following

statement:

*(image_buffr)

2. Pixel 13 is towards the middle of the second line of the image buffer (refer to

Figure II.I). Therefore, the number of whole lines along the memory buffer is 1.

Each line comprises, in this example, 38 pixels. Each pixel contains three

channels. So the pointer is moved to the beginning of the second line by:

 *(image_buffr + numlinesdown * num_pixels*num_channels):

 Where;

numlinesdown = 1;
num_pixels = 38;
num_channels = 3;

3. The final step is to move the pointer to channel 3, pixel 13, of the second line of

the buffer. Therefore, 12 whole pixels having three channels each must be

added to the pointer. Lastly, now that the pointer is within pixel 13, it must be

moved to the third channel. So the entire pointer arithmetic is:

*(image_buffr + numlinesdown * num_pixels*num_channels +
numpixsintoline * num_channels + channel);

Where;

numlinesdown = 1;
num_pixels = 38;
num_channels = 3;
numpixsintoline = 12;
channel = 3;

 180

Although there are other common ways of handling pointers for imagery such as

using a two dimensional pointer addressing, the above is conceptually simple and has

worked well. Although the above is a fictitious example, the variable names are

consistent with the variable names found in MRV Recon. The C code for MRV Recon

is attached in Appendix I.

Figure II.II MRV Recon initial design I flowchart.

In retrospect, the initial design of handling the memory buffers was poor in terms of

the processing speed of MRV Recon. It certainly addressed the criterion of flexibility

especially in handling very large datasets, but this was at the expense of considerable

input/output (I/O) to the hard drive. Any access to the hard drive is inherently slow. The

 181

small size of the initial test datasets hid the impact of this flaw. However, it is a

problem that could be overcome in future versions of MRV Recon by increasing the

buffer size and thus reducing the I/O to the hard drive.

II.IV MRV Recon Design

The initial design of MRV Recon is shown in Figure II.II. Again, this initial design

duplicated Subramanian and Gat’s spatio-spectral template. Once the filename and

kernel size are retrieved from the user, and the image file is queried for its size and

number of channels, the software design can be broken down into two functions: 1)

ImgAvg function that performed image averaging and 2) the MaxDistFnct function that

calculated the maximum Minkowski distance and increments the outlier frequency.

II.IV.I Image Averaging

The ImgAvg function began with a loop over the entire image. For each line of the

image, a buffer the width of the image having a length of the size of the user-defined

kernel is read into the memory reserved. A second loop moves a kernel “across” the

buffer for each pixel. Next a loop is made for every pixel in the kernel. Finally, a loop

is made for each channel. The values for each channel are summed and the average is

calculated for each channel for the centre pixel of a kernel. These averages are then

placed into another buffer of the same size of the first. Once the entire line is processed

this “average” buffer is then written out to empty channels in the image.

The PCI toolkit function IDBRealChanIO will not allow the overwriting of an

existing channel. This is an inconvenience in the design of MRV Recon which meant

 182

that there must be new empty channels existing in the imagery file prior to processing,

with MRV Recon ready to receive the output from the ImgAvg function.

II.IV.II Maximum Distance Calculation

 The MaxDistFnct function, utilized a similar cascading buffer but in this function it

had to be larger to accommodate the larger number of channels – the original channels

in addition to the average channels produced by the ImgAvg function. The Minkowski

uses the raw digital number (DN) values and the newly calculated average DN values.

r
p

i
ii

ryxd ∑
=

−=
1

 (II.II)

Equation (II.II) is the general Minkowski equation [Hartigan, 1975]. The Minkowski

distance is commonly known as the “Euclidean distance” when r = 2. When r = 1 it is

commonly known as the “Manhattan distance”. The user is prompted by MRV Recon

as to whether the Euclidean or Manhattan distance should be used. The value of the

exponent variable (i.e. r) is set depending on which metric was selected. The variable p

is the number of channels.

Similar to the image average function described above, the distance is calculated for

every pixel in the kernel as it moves across a line. Mathematically (for a Euclidean

distance):

for a NxN kernel, and for all p,l:

1+=),(),(lpflpf , if

() 2

1 1 1

2

∑∑∑
= = =

−=
N

i

N

j

N

k

k

kjikji xxlpdist ,,,,max,

 183

where:

 p = pixel

 l = line

 i = pixel in NxN kernel

 j = line in NxN kernel

 k = channel

 Nk = number of channels

The distance is calculated between the original channel values and the values

calculated for the mean channels. The maximum distance within a kernel is then

selected. The program then increments that pixel’s outlier frequency by 1 and stores

this frequency in a separate channel. The pixels having a high outlier frequency f, are

then labeled as targets.

II.V Summary

The goal of this initial design of MRV Recon is to reproduce the spatio-spectral

template. The design criteria for MRV Recon are as follows: automatic, simple,

flexible, accurate, and robust.

The memory buffers reserved for MRV Recon must be large enough to store a

number of lines of the image equaling the size of the user-defined processing kernel.

The program reads in and writes out a portion of the image corresponding to the buffer

size for each line in the image. While this is I/O intensive, it allows virtually any sized

image to be processed.

 184

This initial design of MRV Recon is composed of two major functions. The first

function calculates the average of the original channels for a user-defined kernel size.

The second function selects the maximum Minkowski distance within each location of

the convolved kernel. Each time a pixel is found to be a maximum its outlier frequency

is incremented by one. Those pixels with the highest frequency of being an outlier, or

exceeding a predefined threshold, are labeled as targets.

 185

APPENDIX III
 SOFTWARE DESIGN 2

This appendix describes the coding of the enhancements made to the early work of

Subramanian and Gat [1998]. Further, it outlines the programming issues surrounding

other improvements to MRV Recon and provides a link to the discussions and testing

of the third journal paper included in Chapter 6. As in Appendix II, only the most

important software design issues are discussed. Again, key problems encountered will

be analyzed.

III.I Integrating the Mahalanobis/WED Distance

In order to test if the new distance metric is an improvement, MRV Recon had to be

redesigned to be able to allow the user to select either the Minkowski or Mahalanobis

distance. While seemingly simple, it became more and more complex as a selection of

Mahalanobis distance metric required loading buffers of different sizes and channels

than those used for the Minkowski distance metric.

Equation (III.I) is the Mahalanobis distance metric. Most of the quantities for this

have already been calculated. The (x-mx) vector is the difference between the original

vector and the mean vector. The means are calculated for use in the Minkowski

distances and used for this function.

())(xX
T

x mxCmxd −−= −12 (III.I)

 186

The covariance matrix (Cx) is a new quantity to be calculated. The calculation of

the Cx matrix requires a larger window surrounding the user-defined kernel. The user-

defined kernel defines the number of pixels surrounding the pixel currently being

processed to see which has the maximum distance. However, the window surrounding

the pixel being processed for deriving the Cx matrix must be large enough so that a

sufficient sample size is gathered to avoid a non-singular Cx matrix. A non-singular

matrix cannot be inverted using the Gauss-Jordan inverse. Later, the problem of

inversion would not be important because the WED metric does not require inversion

of the Cx matrix.

To accommodate the calculation of the Cx matrix, a two-tiered memory buffer is

developed. Figure III.I shows the conceptual representation of the memory buffer used

in the Mahalanobis Distance Function (MahalDistFnct)..

Figure III.I Two-tiered memory buffer used in MahalDistFnct.

The MahalDistFnct is called for each line of the image. In order to accommodate a

larger window for the Cx matrix, a larger buffer must be loaded into memory. In the

case shown in Figure III.I, the user-defined processing kernel is 3x3 in size surrounding

 187

pixel 13 shown in the inset. A larger window surrounding each kernel location is

sampled for the generation of the Cx matrix. For simplicity’s sake, Figure III.I has a 5x5

kernel for sampling of the Cx matrix. In reality, MRV Recon allows a variable size

window for generation of the Cx matrix. All the initial testing of Mahalanobis metric is

done using a Cx matrix generated from a 10x10 window.

Care had to be taken to design a way to handle the varying kernel sizes. The

following code fragment populates an array that contains the sample for generating the

Cx matrix:

Int wsize = 5;
for (channel = 0; channel < numIkonosChan; channel++){

 for (j = 0; j < wsize; j++){ //whole lines down
 for (k = 0; k < wsize; k++){ //pixels in

IntoCoVar[cntr] = *(image_buffrMD + (j *
TwonumIkonosChan1 * num_pixels) + ((cell + k - 2) *
TwonumIkonosChan1) + channel);

 cntr++;
 } //end of pixel loop
 }// end of line

 }//end of IntoCoVar Channel loop

The code fragment populates the IntoCoVar array with a 5x5 window. The buffer is

sized within Main to match this window size. Other than a series of nested loops to

manage the individual channels and picking out the elements for a particular kernel

location, it is quite straightforward.

In contrast to straightforward handling of the memory for generating the Cx matrix,

accessing the original and mean vectors for the user-defined kernel requires the use of

an offset for the buffer:

buffoffset = 1 * num_pixels * TwonumIkonosChan1;
for(channel = 0; channel < numIkonosChan ; channel++){

 188

XminusM[channel] = (*(image_buffrMD + buffoffset +
numpixintoline + channel) - *(image_buffrMD + buffoffset +
numpixintoline + channel + numIkonosChan));

 }/*end of channel loop*/

The fragment of code above illustrates the use of the offset for the example in

Figure III.I. To access the portion of code containing the data within the kernel, the

pointer must be moved one whole line of data past the beginning address for

image_buffrMD. So in the example above, the pointer address is moved, 1 line times

the number of pixels per line by 6 channels per pixel (3 original channels and 3 mean

channels). A loop is used to fill an array containing the difference between the original

DN value and the mean DN value for a pixel. This array is the (x-mx) vector used in

calculating the Mahalanobis distance.

The PCI Toolkit provides a C function to calculate statistics for an image or a

portion of an image:

pixs_sampled = ImageStats(fp, numIkonosChan, dbic_list,
bitmap, window, CoVar, Corr, means, std_dev);

This particular function caused a great deal of problems in getting MRV Recon

running. First, the User’s Guide provided for the toolkit states that if some of the

statistical values are not required then just replace the vector name used to contain the

statistic with a NULL [PCI, 2000, pg. 340]. This is incorrect. If a NULL value is used,

the ImageStats function behaves erratically. In this case, the values put in the CoVar

vector were erroneous – sometimes. This behavior made it difficult to find the problem.

In addition, the ImageStats function contains a small memory leak. In other words,

it doesn’t return to the heap all the memory it requested when the function is called.

This caused no difficulties with smaller files used for testing MRV Recon. However,

 189

when larger files were run, “Out of Memory” errors occurred. Again, this was a

troublesome bug to locate because: (1) one tends to trust the toolkit function more than

their own code because presumably it has been thoroughly checked; and (2) a small

memory leak is difficult to find.

Once found, another function to calculate the necessary covariance values replaced

the faulty ImageStats function:

singular = gjmatinv(CoVarDbl,numIkonosChan);
mul_mtm(XminusMDbl,CoVarDbl,X_MCovar,n1,
numIkonosChan,numIkonosChan);
mul_mm(X_MCovar, XminusMDbl, MahalSqrd, n1, numIkonosChan,n1);
dist = sqrt(fabs(MahalSqrd[0])/10000);

The above code completes the necessary steps for calculating the Mahalanobis distance.

The function gjmatinv inverts the variance - covariance matrix and the mul_mtm and

the mul_mm multiplies a matrix by the transpose of another and multiplies two matrices

together, respectively. The final Mahalanobis distance is scaled by 10,000 so as to

reduce its size to fit the float data type imagery where it will be stored.

As described in Chapter 6, the Mahalanobis distance metric proved to be

inadequate. The WED distance was implemented. The C code remained the same

except for two minor changes. First, the function gjmatinv was not needed because the

WED metric does not require the inversion of the variance – covariance matrix.

Secondly, because the variance – covariance matrix is not being inverted, the size of the

window used to generate the variance – covariance matrix can be reduced because the

danger of inverting a non-singular matrix is removed.

 190

III.II The Maximum WED

The resulting WED distances are stored in a new channel. However, because of the

greater complexity in calculating the WED distance than the Minkowski, the maximum

distance and outlier frequency is handled by a separate function called MahalMax -

note the function name reflects its origins as the Mahalanobis Max function. MRV

Recon only calls MahalMax from Main once, after all the WED distances are

calculated.

The MahalMax function operates in a similar manner to the MaxDist function. It

loops through the entire image and for each pixel in each line it selects the maximum

distance. However, it differs from the MaxDist function in that it doesn’t always

increase the frequency of a particular maximum distance. Subramanian and Gat (1998)

in their work tested the use of a “threshold ratio”(TR). Preliminary test results revealed

that targets were being falsely identified where there was obviously no target. The TR

is implemented to help reduce the false alarm rate.

σ
distdist

TR
meanmahal -

= (III.II)

where

mahaldist = individual distance

meandist = mean of a WED distances

σ = standard deviation of pixels in the kernel

Equation (III.II) is for the threshold ratio. For a particular pixel within a user-defined

kernel, the mean of all the WED distances is subtracted from the individual WED

 191

distance for that pixel. That difference is then divided by the standard deviation (σ) of

the distances within the kernel.

for (i = (line - half_kernel); i < (line + half_kernel + 1); i++){
 for (j = (pixel - half_kernel); j < (pixel + half_kernel + 1); j++){
 numlinesdown = i * num_pixels * 2;
 numpixsintoline = j * 2;

dist = *(image_buffrMahMax + numlinesdown + numpixsintoline);
 //THRESHOLD RATIO TEST
 if (dist > maxmahdist) {
 maxmahdist = dist;
 maxthresratio = (fabs(dist - mean)) / stnd_dev;
 MaxLine = i;
 MaxPixel = j;
 MaxFlag = 1;
 } // end of if statement
 } // end of pixel in kernel loop
} //end of line in kernel loop
if (MaxFlag == 1 && maxthresratio > 0.5){

numlinesdown = MaxLine * num_pixels * 2;
numpixsintoline = MaxPixel * 2;
//INCREMENT OUTLIER FREQUENCY

*(image_buffrMahMax + numlinesdown + numpixsintoline + 1) =
(*(image_buffrMahMax + numlinesdown + numpixsintoline + 1) + 1);
} //end of MaxFlag if statement

The above code fragment implements the TR within MRV Recon. The code loops

through a particular kernel testing each distance with all the others until the maximum

WED distance is found. If a maximum distance is found, the location of the maximum

distance is recorded in the MaxLine and MaxPixel. If the TR value (assigned to the

variable maxthresratio) is greater than 0.5, only then will the outlier frequency be

implemented at the location of the maximum distance. The outlier frequencies are

stored within a new channel in the image file. Although, Subramaniam and Gat [1998]

reported using a value of 1.0 for the TR value, it was found to be too high and excluded

many targets. After many attempts, a value of 0.5 for the TR was found to achieve the

best results.

 192

III.III Outlier Controls

At the outset of this project, the idea was not just to implement the work of Iverson

[1997]) and Subramanian and Gat [1998] but to adapt it for use with imagery such as

IKONOS and enhance its ability to detect small targets. The enhancement is not limited

to the use of the WED distance metric, but also the implementation of various

thresholds, weightings, frequency limits, and threshold ratios. Collectively, these are

known as “outlier controls” indicating their purpose of improving detection rate of

MRV Recon while limiting the number of false positives.

Figure III.III illustrates the various outlier controls used in MRV Recon beginning

with the user-defined kernel size. The user selects a kernel size keeping in mind that the

larger the kernel, the greater the number of pixels that the currently investigated pixel

will be compared to when determining if it is an outlier. This makes it harder to stand

out as distinct from its neighbours. The converse is also true; the smaller the kernel

size, the easier it is to stand out. However, this means possibly allowing more false

positives.

 193

Figure III.II MRV Recon Outlier Controls

As shown in Figure III.II, the MahalDistFnct function contains three outlier

controls. The thresholding of the near infrared channels (NIR) and the panchromatic

(PAN) channels are very similar. Once a WED distance is calculated for a pixel, it is

only retained for use if the corresponding values of the NIR and PAN are above

imperically determined thresholds.

NIRNIR mT *.651= (III.III)

 194

PANPAN mT *.702= (III.IV)

where:

NIRm = mean of the NIR channel (excluding the background pixels)

PANm = mean of the PAN channel (excluding the background pixels)

The PAN and NIR thresholds are shown in the code below:

*(nirthrhld + 2) = *(nirthrhld)/(*(nirthrhld + 1)) * 1.65;
*(panthrhld + 2) = *(panthrhld)/(*(nirthrhld + 1)) * 2.7;
if(*(image_buffrMD + buffoffset + numpixintoline + 4) > (*(nirthrhld + 2))
&& (*(image_buffrMD + buffoffset + numpixintoline) > (*(panthrhld + 2))))
*(image_buffrMD + buffoffset + numpixintoline + TwonumIkonosChan1 - 1)
= dist;

As previously stated, water in general exhibits low NIR values. The NIR threshold

is used to minimize the number of background water pixels selected as an outlier.

Similarly, the PAN threshold is used to restrict only those pixels that have a very high

NIR value as being labeled an outlier. It was found that a pixel could be a local

maximum driven by slightly higher NIR and PAN values, but not high enough to be a

target. Invoking the PAN threshold lowers the chances of allowing a non-target pixel to

be falsely labeled. The threshold values are generated from the mean values of the NIR

and PAN channels and are weighted by 1.65 and 2.7, respectfully. These weighting

were developed when testing the St. John River dataset.

The following fragment of C code invokes the third outlier control from within the

MahalDistFnct.

CoVarDbl[0] = CoVarDbl[0] * 3; //pan
 CoVarDbl[24] = CoVarDbl[24] * 2;//NIR

 195

This third control weights the variance values generated for the PAN and NIR

channels within the Cx matrix.

23= PANPAN σW (III.V)

22= NIRNIR σW (III.VI)

where

W is the weight

σ = standard deviation

PAN = panchromatic band

NIR = near infrared band

The testing has shown the NIR and PAN channels carry the greatest variance or

information. By further accentuating the weighting of these two channels, pixels with

high PAN and NIR values will produce a higher WED distance due to the weighting.

This ensures that these pixels stand out amongst their neighbours and are labeled as

outliers.

In describing the MahalMax function, the next outlier control shown in Figure III.II,

was outlined. The TR or threshold ratio as was described in section III.2 also controls

outliers.

The final control resides within the CharacterFnct. The characterization function

investigates the outliers having a high frequency and then labels them as targets. Once

labeled, target attributes are gathered automatically within the CharacterFnct.

//frequency tests
if (*(image_buffrCharactr + numlinesdown + numpixsintoline + 1) >
((kernel_size * kernel_size) - 1)){
 // any pixel making it to here is to be labelled
 // begin search
 //push the pixel onto the stack

 196

 first_targetcoord.pixel[0] = pixel;
 first_targetcoord.line[0] = line;
 push (&targets_stack, first_targetcoord);

The above code fragment ensures that only pixels having a very high outlier

frequency namely ((kernel_size * kernel_size) - 1)) are labeled as a target. Lowering the

minimum allowable frequency makes it easier for false positives to be labeled as

targets. Conversely, targets that are difficult to detect can be positively detected by

lowering the minimal allowable frequency. Again, this is at the expense of increasing

the number of false positives. A balance must be struck between ability to detect small

targets and the number of allowable false positives.

III.IV Characterization Function

After a vessel has been detected, data must be gathered regarding its

“characteristics”. To clarify the distinction between gathering characteristics and

traditional spectral-based classification techniques, the function that performs this task

is referred to as the characterization function. Central to the characterization function

is the use of a “stack” structure. The stack is an array of structures. Each element of the

structure is composed of a pixel’s attributes and its element number in the stack array is

its target label.

 197

Figure III.III The Characterization Function.

Figure III.III illustrates the major components of the CharacterFnct. It is composed

of three primary loops: the Target Label Loop, the Target Attribute Loop, and the

Target Size Loop.

The Target Label Loop begins, as previously described, with a test of the outlier

frequency. If the frequency is higher than the minimal allowable frequency, the pixel is

labeled as a target. Next the pixel and line coordinates, along with its label, are put onto

the stack.

A suitable analogy for the stack would be a spring-loaded dinner plate dispenser

commonly found in cafeterias. As plates are added the spring compresses due to the

weight. As a patron removes a plate, the spring lifts the next plate upwards making

retrieval convenient for the next patron.

 198

The stack works much in the same way. Instead of plates however, there are linked

memory storage addresses containing the attribute data for each labeled target.

first_targetcoord.pixel[0] = pixel;
first_targetcoord.line[0] = line;
push (&targets_stack, first_targetcoord);

The above portion of the CharacterFnct illustrates the use of the stack. The current

pixel and line values are stored in the defined C structure called first_targetcoord. The

function push then “pushes” the structure (pixel and line values) onto the top of the

stack. A similar function pop takes the top element off the stack. These functions are

used to add and remove elements to and from the stack so that it is always kept current

with respect to the labeled targets.

Once the target is labeled and put onto the stack, a continuous loop is constructed to

interrogate each element of the stack. The loop is only broken when the bottom of the

stack is reached. The bottom is marked with a special end of data value. This way,

every element is certain to be processed.

Beginning the actual investigation for a target, an 8-way search is performed from

the centre of each target. The function keeps labeling adjacent pixels with the centre

pixel’s target number, until the edge of the boat is found. The boat’s edge is deemed to

be found when the panchromatic value of the pixel falls below a threshold:

 thrshold = meen[0] + (4 * sigma[0]);
if (*(image_buffrCharactr + numlinesdownb + numpixsintolineb) < thrshold

The above code fragment shows that the edge of boat threshold is set at µ+4σ. If the

PAN value falls below this threshold then the labeling ends and the search begins for

 199

the edge of the boat in the next of the eight directions. If all eight directions are done,

the next target is “popped” off the stack.

The second of the three loops shown in Figure III.III gathers the target attributes.

For each target on the stack, the previous loop essentially performs a region growing

function. The next loop seeks out and records the minimum and maximum pixel and

line numbers for a target.

Figure III.IV Example of Labeling Target # 128.

For example, Figure III.IV illustrates the target labeling for a small target. On the left

hand side of Figure III.IV is the panchromatic band for target number 128. Beginning at

the centre pixel the eight-way search is performed and the region representing the boat

is grown. On the right hand side of Figure III.IV the results of the labeling routine can

be seen. The second loop finds the extreme pixel and line coordinates for the target

region.

 200

//SEEK THE OTHER END OF THE BOAT
the_target_attributes[i].lrgpixel[0] = pixel;
the_target_attributes[i].lrgline[0] = line;
the_target_attributes[i].numbrpixs[0] = j;

The above code fragment places the largest pixel and line coordinate, as well as the

total number of pixels within the region, into the_target_attributes[] array. Again, the

array element number corresponds to the target number.

The final loop in the characterization function, shown in Figure III.III, calculates

the dimensions of the target using the values in the the_target_attributes[] array.

deltapix = pow (the_target_attributes[i].lrgpixel[0] -
the_target_attributes[i].smpixel[0], 2);
deltaline = pow (the_target_attributes[i].lrgline[0] -
the_target_attributes[i].smline[0], 2);
the_target_attributes[i].length[0] = sqrt (deltapix + deltaline);

The code fragment above shows how the largest and smallest pixel values are retrieved

from the_target_attributes[] array. Using Pythagorean theorem, the length is then

calculated and put into the_target_attributes[].length[0] structure.

The characterization function also makes use of the the_target_attributes[] array

to determine the orientation of the target by finding the longest axis of the target region

and determining its aspect. The orientation is distinct from heading. Heading indicates a

direction of travel. Orientation only reveals the direction the longest axis of the vessel.

The final step in the characterization function is the printing out to a text file each

of the targets and its corresponding attributes. Figure III.V shows the text output of

MRV Recon.

 201

Figure III.V MRV Recon Characterization function output.

III.V Summary

This chapter describes the programming of enhancements made to the spatio-

spectral template. The implementation of first the Mahalanobis and then the WED

metrics are described. In particular, problems surrounding the erratic behavior of the

ImageStats function from the PCI C Toolkit and its replacement with another function

are described.

The chapter explains the function that selects the maximum WED distance within a

kernel. In addition, various outlier controls are described. These controls help to

minimize the number of false positives generated by MRV Recon. Finally, the

characterization function that automatically generates the attributes of the targets is

explained.

 202

Vita

Kevin Huntly Pegler, P.Eng.

Place and Date of Birth:
King City, Ontario
Canada
19 April 1961

Home Address:
175 Topcliffe Crescent
Fredericton, N.B.
Canada E3B 4P8

EDUCATION

Diploma, University Teaching
Faculty of Education
University of New Brunswick, 2002.

Master of Engineering,
Dept. Geodesy and Geomatics Engineering
University of New Brunswick, 1999.

Graduate Diploma, Remote Sensing
College of Geographic Sciences (COGS), 1996.

Diploma, Geographic Information Systems, (Honours)
Algonquin College, 1995.

Bachelor of Technology, Surveying Engineering
Dept. of Civil Engineering
Ryerson Polytechnic University, 1994.

PUBLICATIONS

Pegler, K., D.J. Coleman, R. Pelot, and Y. Zhang, [2004]. Comparison of maximum
distance metrics for use in the remote sensing of small targets, Journal of Surveying
Engineering, in press.

Pegler, K., D.J. Coleman, R. Pelot, and Y. Zhang, [2003]. The potential for using very
high spatial resolution imagery for marine search and rescue surveillance, GeoCarto
International, 18(3):35-39.

 203

Rancourt, M. Captain, K. Pegler, D.J. Coleman, R. Pelot [2002]. “Development of an
IKONOS Coverage Prediction Application”. Proceedings of The 95th CIG Annual
Geomatics Conference / Joint International Symposium on Geospatial Theory,
Processing and Applications. Ottawa, Jul 8-12.

Pegler, K., D.J. Coleman, R. Pelot, and Y. Zhang [2002]. “IKONOS Sub-pixel Target
Detection for Use in Marine Search and Rescue” Proceedings of the XXII FIG
International Congress and ACSM-ASPRS Conference and Technology Exhibition,
2002,Washington, D.C.

Pegler, K. and D.J. Coleman [2002]. “Quality Control Issues Surrounding the
Reprocessing of Digital Terrain Models”. GIM. Vol. 16, March, pp. 12-15.

Pegler, K. [2001]. “An Examination of Alternative Compensation Methods for the
Removal of the Ridging Effect from Digital Terrain Model Data Files”. Department
of Geodesy and Geomatics Engineering Technical Report No. 209, University of
New Brunswick, Fredericton, N.B., Canada.

Pegler K. and D.J. Coleman [2001]. “New Brunswick Technical Specifications for
Minimization of the Ridging Effect in Service New Brunswick Digital Terrain
Models.” Contract Report prepared for Service New Brunswick, Fredericton, N.B.
March.

Pegler, K., D.J. Coleman, R. Castonguay, and H. Nguyen [2000]. “Comparing TIN
Random Densification with the Mean Profile Filter to Minimize the Ridging
Phenomenon in Service New Brunswick DTMs”. Geomatica, Vol. 54, No.4, pp 433-
440.

Pegler, K. and D.J. Coleman [1999]. “Removal of Ridging Effects from Digital Terrain
Model Data Files: Examining the Alternatives”. Proceedings of the 1999 Annual
Conference of the Urban and Regional Information Systems Association. Chicago.

Pegler K. and D.J. Coleman [1999]. "Investigation of Alternative Approaches to
Systematic Removal of Ridging Effect in New Brunswick Digital Terrain Model
Products". Contract Report prepared for Service New Brunswick, Fredericton, N.B.,
Canada. April.

Pegler, K. [1999]. “TIN Random Densification: A Process to Minimize the Ridging
Phenomenon in DTMs.” Unpublished thesis. Department of Geodesy and Geomatics
Engineering, University of New Brunswick, Fredericton, N.B., Canada.

Pegler, K. [1987]. “Volume Calculations on an Arc Basis.” Unpublished thesis.
Department of Survey Engineering, Ryerson PolytechnicUniversity, Toronto, Ont.,
Canada.

 204

PRESENTATIONS

Atlantic Institute, “A Marine Recreational Vessel Reconnaissance System”,
Fredericton, New Brunswick. June, 2004.

Society of Optical Engineering, “Comparison of Distance Metrics for Use Within a
Marine Recreational Vessel Reconnaissance System”. San Diego, California. August,
2003.

GEOIDE Annual Meeting, “A Marine Recreational Vessel Reconnaissance System.”
Victoria, British Columbia. May, 2003.

Maritime Safety and Risk Analysis Conference, “A Marine Recreational Vessel
Reconnaissance System.” Halifax, Nova Scotia. March, 2003.

GEOIDE Annual Meeting, “Sub-Pixel Target Detection for Marine Search and
Rescue.” Toronto, Ontario. May, 2002.

XXII FIG & ASPRS Annual Conference, “IKONOS Sub-pixel Target Detection for
Marine Search and Rescue”. Washington, D.C. April, 2002.

Annual Conference of the Urban and Regional Information Systems Association,
Removal of Ridging Effects from Digital Terrain Model Data Files: Examining the
Alternatives” Chicago, Illinois, August, 1999.

Atlantic Institute, “Alternative Approaches to Systematic Removal of Ridging Effect in
New Brunswick Digital Terrain Model Products”, Quebec City, Quebec. June, 1999.

 205

	Phd_dissertation_final.pdf
	2.4 Results
	Figure 2.5 Resampled, pseudo coloured panchromatic band mer
	2.5 Further Work
	2.6 Validation of the Reconnaissance System

	2.7 Conclusion
	2.9 References
	Proposed Budget
	Long.

	6.4 Study Site

	6.8 Software Enhancements
	6.9 Final Results and Analysis
	Category A < 6m
	Category B > 6m
	6.10 Conclusions
	6.11 References
	MRV RECON C CODE
	/* ---
	* - MRV Recon: ESST Plus - Enhanced Spatio Spectral Template
	* - By Kevin H. Pegler M.Eng.,P.Eng -
	* - Dept. Geodesy and Geomatics Engineering, UNB
	* - GEOIDE Project #ENV 60
	* - Not to be used, reproduced or disclosed without permissi
	* - Esst.c Fall/Winter 2001
	* - Mahal.c Fall 2002/Winter 2003
	* - WED Summer 2003
	* - Characterization Fall 2003
	* - esstplus.c -> includes both esst and mahal(disabled) an
	* --
	* Usage: from ~/debug open an easi cursor from a DOS prompt
	* easi> file = "D:\esst\ikonos\ikonostest.pix"
	* > run esstplus >debug.txt
	*
	*
	/* ---
	/* Include "pci.h" in all C programs.
	/* ---
	#include "pci.h"
	#include <stdlib.h>
	#include <malloc.h>
	#include <stdio.h>
	#include <string.h>
	#include <time.h>
	/* ---
	/* Function Protocols
	/* ---
	void PixelFill (float *OutBuff2, int pixel, int half_kernel,
	void LineFill (float * OutBuff3, int half_kernel, int num_pi
	void ImgAvg (float *line_ptr2[], float *OutBuff4, int num_pi
	void MaxDistFnct (float *image_buffrMD, float *out_Buff5,
	void MahalDistFnct (float *image_buffrMD, float *out_Buff5
	void MahalMaxFnct (float *image_buffrMahMax, int num_pixels,
	//declare some structures
	typedef struct
	{
	signed int pixel[1];
	signed int line[1];
	} element;
	typedef struct
	{
	int top;
	int stack_size;
	element stack[3600];
	} element_stack;
	// define direction control
	struct individ_dir{
	int C[1];
	int R[1];
	};
	// initialize an array of structures
	struct individ_dir dir_list[8];
	struct attribute {
	int smpixel[1];
	int smline[1];
	int cntrpixel[1];
	int cntrline[1];
	int lrgpixel[1];
	int lrgline[1];
	int numbrpixs[1];
	float length[1];
	float width[1];
	char orientation[5];
	};
	struct attribute the_target_attributes[500];
	/*--
	/* Declare some Function Protocols for Matrix Manipulations
	/*--
	int gjmatinv(double a[], int n);
	void mul_mm(double *A, double *B, double *C, int n1, int
	void mul_mtm(double *A, double *B, double *C, int n1, int
	double calc_mean(double *A, int n);
	double calc_var(double *A, int n);
	double calc_cov(double *A, double *B, int n);
	void calc_vc(double *A, double *B, int n1, int n2);
	/*--
	/* Declare some Function Protocols for Characterization
	/*--
	void CharacterFnct (float *image_buffrCharactr, int num_pixe
	void init_stack (element_stack *the_stack);
	void boatsizefnctn(element first_targetcoord, int heading[],
	/*##
	/* ---
	/* main */
	/* ESST - Enhanced Spatio Spectral Template
	/* */
	/* ---
	/*##
	int main(int main_argc, char **main_argv)
	{
	/* ---
	/* Declare parameters for IMPStatus.
	/* ---
	char file[257];
	char * gui_filename = NULL;
	//char tempname[50]="c:\\covartmp.pix";
	char outfilename[50]="c:\\esst_out.txt";
	char targetsfilename[50]="c:\\targets_out.txt";
	int argcnt[1];
	void *args[1];
	/*--
	/* Declare some other variables for ESST */
	/*--
	FILE *fp,*outfile,*targetsfile;
	int dbnc, num_lines, num_pixels, numIkonosChan,kernel_size
	int i, half_kernel,junk,numReqChan, TwonumIkonosChan1,numcl
	//int pixel,channel;
	int dbic_list[100],dbic2_list[2];
	int dboc_list[5],dboc2_list[2],dbic_array[1],windoh[4];
	float *image_buffr,*image_buffr2,*out_buffr,*image_buffrMahM
	float Corl[25],meen[5],sigma [5],covr[25],thrshold,timer;
	long numpixssmpld;
	float PercentComplete;
	/*tmpnam(tempname);*/
	/*--
	/* Declare some Function Protocols for Matrix Manipulations
	/*--
	//int gjmatinv(double a[], int n);
	//void mul_mm(double *A, double *B, double *C, int n1, i
	//void mul_mtm(double *A, double *B, double *C, int n1, int
	/* ---
	/* Declare a large number of line pointers to allow for a
	/* ---
	float *line_ptr[250];
	float *lineOut_ptr[250];
	/*--
	/* Get the desired parameters
	//very important to have c:\MRV_Recon_GO.bat set up environment and pass parameters from
	// C:\Documents and Settings\pegler\Desktop\MRV_Recon.exe
	/*--
	gui_filename = main_argv[1];
	/*prompt for desired kernel size*/
	kernel_size = atoi(main_argv[2]);
	control_flag = atoi(main_argv[3]);
	/*for (i=0;i<main_argc;i++)
	{
	printf("Arg %d is %s\n",i,main_argv[i]);
	}*/
	/*puts(" Please enter desired kernel size");
	scanf("%d", &kernel_size);*/
	/* must get user to select type of distance metric they'd li
	/*puts ("Enter 1 for Minkowski distance metric or, Enter 2 f
	scanf("%d", &control_flag);*/
	//kernel_size = main_argv[2];
	/* ---
	/* Initialize argument list for IMPStatus.
	/* ---
	args[0] = (void *) file;
	//args[1] = (void *) &kernel_size;
	/* ---
	/* Get parameters using IMPStatus.
	/* ---
	//printf("Just before IMPStatus\n");
	IMPStatus ("FILE", "C", "64","1","esstplus.","ON",argcnt,ar
	//IMPStatus ("FILE,KERNEL_SIZE;","C,I;","64,2;","1,1;","esst
	//printf("filename = %s\n",file);
	IMPPutChar("FILE", gui_filename);
	IMPStatus ("FILE","C","64","1","esstplus.","ON",argcnt,args,
	/*IMPStatus ("FILE,KERNEL_SIZE;",
	"C, I;",
	"64, 2;",
	"1, 1;",
	"esstplus.","ON",argcnt,args,main_argc, main_argv);*/
	//printf("filename = %s\n",file);
	/* ---
	/* Open a file */
	/* --
	IDBRegister(); /* There is no documentation for this functio
	fp = GDBOpen (file, "r+");
	/* ---
	/* Run CLR to set up the file
	/* --
	//printf("Into IMPRunTask\n");
	//status = IMPRunTask ("EASI", "r clr", RTF_WAIT, NULL,NULL)
	//printf("Out of IMPRunTask\n");
	/* ---
	/* Query a file */
	/* --
	num_lines = GDBChanYSize(fp);
	num_pixels = GDBChanXSize(fp);
	dbnc = GDBChanNum(fp);
	/* ---
	/* Print Results to screen
	/* --
	//printf("The number of lines are: %d \n", num_lines);
	//printf("The number of pixels are: %d \n", num_pixels);
	//printf("The number of Channels are: %d \n", dbnc);
	/* ---
	/* Allocate Memory for the DBIC_List Array fixed at 5
	/* --
	numIkonosChan = 5; /*changed to 2 just for testing*/
	TwonumIkonosChan1 = numIkonosChan * 2 + 1; // two times the
	/*numIkonosChan = 1; /* for testing*/
	/*dbic_list = (int *) malloc(sizeof(int) * numIkonosChan);*/
	for (i = 0; i< numIkonosChan; i++){
	dbic_list[i] = i+1; /* this "casts" the values into the arr
	}
	/* ---
	/* Allocate Memory for the DBOC_List Array
	/* --
	/*dboc_list = (int *) malloc(sizeof(int) * numIkonosChan);*/
	for (i = 0 ; i < numIkonosChan; i++){
	dboc_list[i] = i + numIkonosChan + 1; /* this "casts" the v
	}
	/* ---
	/* Allocate Memory for the floating buffer Arrays
	/* --
	image_buffr = (float *) malloc(sizeof(float) * num_pixels *
	out_buffr = (float *) malloc(sizeof(float) *(num_pixels * nu
	// allocate memory for NIR & PAN thresholds and initialize
	nirthrhld = (float *) malloc(sizeof(float) * 3);
	*(nirthrhld + 0) = 0.000;
	*(nirthrhld + 1) = 0.000;
	*(nirthrhld + 2) = 0.000;
	panthrhld = (float *) malloc(sizeof(float) * 3);
	*(panthrhld + 0) = 0.000;
	*(panthrhld + 1) = 0.000;
	*(panthrhld + 2) = 0.000;
	/* ---
	/* Pointers for the image buffer
	/* --
	for (i = 0; i < kernel_size; i++)
	{
	junk = num_pixels * numIkonosChan * i;
	line_ptr[i] = image_buffr + (num_pixels * numIkonosChan * i)
	lineOut_ptr[i] = out_buffr + (num_pixels * numIkonosChan * i
	} /* end of for loop for image buffer pointers */
	/* ---
	/* Loop over the imagecube
	/* --
	//printf("Starting averaging!\n");
	for (line_pos = 0; line_pos < num_lines; line_pos++)
	{
	//printf("line # = %d \n", line_pos);
	if (line_pos%10 == 0)
	//printf("Averaging %d of %d lines\n", line_pos, num_lines);
	/* ---
	/* Read in the ImageData
	/* --
	if (line_pos <= (num_lines - kernel_size)){
	IDBRealChanIO (fp,IDB_READ, 0, line_pos, num_pixels, kernel_size,image_buffr,
	num_pixels,kernel_size,numIkonosChan,dbic_list);
	}
	else {
	/* just set the image buffer pointers to last bit of good da
	/* and read in the remaining original data lines */
	IDBRealChanIO (fp,IDB_READ, 0, line_pos, num_pixels, (num_lines - line_pos),image_buffr,
	num_pixels,(num_lines - line_pos),numIkonosChan,dbic_list);
	for (i = (num_lines - line_pos + 1); i < (kernel_size + 1)
	{
	line_ptr[i-1] = image_buffr;
	} /* end of for loop for image buffer pointers */
	} /* end of if else block*/
	/* ---
	/* Test to see if it will be an unprocessed line
	/* --
	half_kernel = floor(kernel_size / 2);
	if (line_pos < half_kernel || line_pos >= (num_lines - half_
	/* then call LineFill function */
	LineFill (out_buffr, half_kernel, num_pixels, numIkonosCha
	/* then write out the result of LineFill */
	IDBRealChanIO (fp,IDB_WRITE, 0, line_pos, num_pixels, 1,out_
	} /* end of unprocessed line operations*/
	else {
	/* ---
	/* Calculate Average (Mean filter) */
	/* Note: PixelFill is called from ImgAvg */
	/* --
	ImgAvg (line_ptr, out_buffr, num_pixels, numIkonosChan, hal
	IDBRealChanIO (fp,IDB_WRITE, 0, line_pos, num_pixels, 1,out_
	} /* end of else*/
	//Free up memory
	/*for (i = 0; i < kernel_size; i++){
	free(line_ptr[i]);
	free(lineOut_ptr[i]);
	} */
	} /* end of for loop over the image cube*/
	printf("Done averaging!\n");
	/* ---
	/* Free up memory from the two buffers */
	/* */
	/* --
	free(image_buffr);
	free(out_buffr);
	image_buffr = NULL;
	out_buffr= NULL;
	/* ---
	/* calulate average of NIR for a threshold */
	/* */
	/* --
	*(nirthrhld + 2) = *(nirthrhld)/(*(nirthrhld + 1)) * 1.65; /
	*(panthrhld + 2) = *(panthrhld)/(*(nirthrhld + 1)) * 2.7;
	printf("PAN Thrhld - weighting is 1.8x = %f \n", *(panthrhld + 2));
	printf("NIR Thrhld - weighting is 1.4x = %f \n", *(nirthrhld + 2));
	/* ###
	/* ---
	/* Make Image Buffer larger to accomodate the original
	/* and the average channels & mah_buff to accomodate th
	/* --
	if (kernel_size <= 11){
	buffsize = 11;
	}
	else {
	buffsize = kernel_size;
	}
	image_buffr2 = (float *) malloc(sizeof(float) * num_pixels *
	out_buffr = (float *) malloc(sizeof(float) * num_pixels * Tw
	//covar_buffr = (float *) malloc(sizeof(float) * num_pixels
	//printf(" The number of bytes = %d\n", sizeof(float) * num_pixels * TwonumIkonosChan1 * buffsize *2);
	/* ---
	/* Beginning of Calculation of Outliers */
	/* Create a new DBIC list Note: numIkonosChan still valid
	/* includes the outlier channel */
	/* --
	/*dbic_list = (int *) malloc(sizeof(int) * 2 * numIkonosChan
	for (i = 0 ; i < TwonumIkonosChan1 ; i++){ /* ie. all o
	dbic_list[i] = i+1; /* this "casts" the values into the arr
	/*printf("The new dbic_list[%d]= %d\n", i, dbic_list[i]);
	/*printf("The new dbic_list= %p\n", dbic_list);*/
	}
	/* ---
	/* DBOC list */
	/* --
	numReqChan = 1; /*one outlier channel required*/
	/*dbic_list = (int *) malloc(sizeof(int) * numReqChan);*/
	dboc_list[0] = 2 * numIkonosChan + 1;
	/* ---
	/* Important! - Prior Calculating Outlier Frequency *
	/* You must ensure the histo channel is cleared and set t
	/* --
	/*--
	/* Program Control
	/*--
	if (control_flag == 1) {
	puts("You have Requested the Minkowski Distance Metric ");
	//printf("control_flag = %d\n",control_flag);
	puts("Enter the exponent value: 1 for Manhattan Distance or
	scanf("%d",&exponent);
	/*if (exponent != 1 || exponent != 2) {
	puts("You've enter an incorrect value, EXITING PROGRAM");
	exit(0);
	}*/
	}
	/*--
	/* Set up file for formatted output for use in analysis
	/*--
	/* open the file*/
	/* using fopen with the "w" option - if the file doesn't exi
	outfile = fopen(outfilename, "w");
	//IMPTermProgressCounter (-1.0,NULL,NULL);
	/* ---
	/* Pointers for the image buffer
	/* --
	for (i = 0; i < kernel_size; i++)
	{
	line_ptr[i] = image_buffr2 + (num_pixels * numIkonosChan * i
	} /* end of for loop for image buffer pointers */
	lineOut_ptr[0] = out_buffr;
	/* ---
	/* Loop Through the Image cube
	/* --
	for (line_pos = 0; line_pos < num_lines; line_pos++){
	//percent complete counter
	//PercentComplete = (line_pos/num_lines) * 100;
	//IMPTermProgressCounter (PercentComplete,NULL,NULL);
	//printf("ESSTPLUS %f", PercentComplete);
	/* set a flag for closing temporary file at the end*/
	closeFlag = 0;
	BigWindow_flag = 0;
	if (line_pos%10 == 0)
	//printf("line_pos = %d of %d lines\n", line_pos, num_lines);
	//**
	// Start of complex program control
	//**
	half_kernel = floor(kernel_size / 2);
	switch (control_flag) {
	// Load Buffers for Minkowski
	case 1: {
	/* Read in the ImageData -> Must read in the extra outl
	if (line_pos < (num_lines - kernel_size)){
	//printf(" case == 1 First IDBRealChanIO \n");
	IDBRealChanIO (fp,IDB_READ, 0, line_pos, num_pixels, kernel_size,image_buffr2,
	num_pixels,kernel_size,TwonumIkonosChan1,dbic_list);
	MaxDistFnct (image_buffr2, out_buffr, num_pixels, numIkonos
	/*IDBRealChanIO (fp,IDB_WRITE, 0, line_pos, num_pixels, kernel_size,image_buffr2,num_pixels,kernel_size,
	numReqChan,dboc_list);*/
	IDBRealChanIO (fp,IDB_WRITE, 0, line_pos, num_pixels, kernel_size,image_buffr2,
	num_pixels,kernel_size,TwonumIkonosChan1,dbic_list);
	continue;
	}
	else {
	/* and read in the remaining original data lines */
	/* then call LineFill function */
	LineFill (out_buffr, half_kernel, num_pixels, numReqChan);
	/* then write out the result of LineFill */
	IDBRealChanIO (fp,IDB_WRITE, 0, line_pos, num_pixels, 1,out_
	continue;
	} /* end of if else block*/
	} // end of case 1
	// Load Buffers for MAHALANOBIS
	case 2: {
	//printf("into control_flag == 2 \n");
	// 1) Unprocessed line operations
	if (line_pos < half_kernel || line_pos > (num_lines - 1 - ke
	/* then call LineFill function */
	//LineFill (out_buffr, half_kernel, num_pixels, numReqChan
	/* then write out the result of LineFill */
	//printf(" == 2 First IDBRealChanIO \n");
	//IDBRealChanIO (fp,IDB_WRITE, 0, line_pos, num_pixels,1,out
	//printf(" == 2 First IDBRealChanIO \n");
	continue;
	} /* end of unprocessed line operations*/
	// 2) Special Larger CoVariance Window
	else if (line_pos > 4 && line_pos < (num_lines - 5)){ //bas
	BigWindow_flag = 1; // 1 means use a larger window for Covar
	IDBRealChanIO (fp,IDB_READ, 0, (line_pos - 2), num_pixels, 5,image_buffr2,
	num_pixels,5,TwonumIkonosChan1,dbic_list);
	//printf(" == 2 Before GDBCreate \n");
	//tmpfile = GDBCreate (FL_IDB, tempname, num_pixels, 11, Two
	closeFlag = 1;
	//printf(" == 2 Second IDBRealChanIO \n");
	//IDBRealChanIO (fp,IDB_READ, 0, (line_pos-5), num_pixels, 1
	//printf(" == 2 Third IDBRealChanIO \n");
	//IDBRealChanIO (tmpfile,IDB_WRITE,0,0,num_pixels,11,covar_b
	/* Calculate Mahalanobis Distance - MahalDist */
	MahalDistFnct (image_buffr2, out_buffr, num_pixels, numIkono
	/* ---
	/* Write to file the Updated Histo channel for the enti
	/* --
	/* testing what is in image_buffr2*/
	/* read in and print out one line of image_buffr2*/
	//printf("Larger Window print buffr contents \n");
	//for (i = 0; i < (num_pixels * TwonumIkonosChan1 * kernel_
	//printf(" \n");
	//printf("DN = %f\n",*(image_buffr2 + i));
	//printf(" \n");
	//}
	//printf(" == 2 Fourth IDBRealChanIO \n");
	IDBRealChanIO (fp,IDB_WRITE, 0, (line_pos - 2), num_pixels,5
	if (closeFlag == 1){
	//printf(" closing tmpfile \n");
	//GDBClose(tmpfile);
	//remove(tempname);
	}
	BigWindow_flag = 0;
	continue;
	} //else if for Larger CoVar
	// 3) Regular sized CoVar window
	/* Read in the ImageData -> Must read in the extra outl
	/* note the extra lines of data are read in to accomodate I
	//printf(" == 2 Fifth IDBRealChanIO \n");
	//IDBRealChanIO (fp,IDB_READ, 0, line_pos, num_pixels, kerne
	/* Output the ImageData, for each line pos to a temp file
	//tmpfile = GDBCreate (FL_IDB, tempname, num_pixels, kernel_
	//closeFlag = 1;
	//printf(" == 2 Six IDBRealChanIO \n");
	//IDBRealChanIO (tmpfile,IDB_WRITE,0,0,num_pixels,kernel_siz
	//printf("Into MahalDistFnct \n");
	//MahalDistFnct (image_buffr2, out_buffr, num_pixels, numIko
	/* ---
	/* Write to file the Updated Histo channel for the enti
	/* --
	/* testing what is in image_buffr2*/
	//printf("Everything else print buffr contents \n");
	//for (i = 0; i < (num_pixels * TwonumIkonosChan1 * kernel_
	//printf(" \n");
	//printf("DN = %f\n",*(image_buffr2 + i));
	//printf(" \n");
	//}
	//printf(" == 2 Seventh IDBRealChanIO \n");
	//this really screws things up.
	//IDBRealChanIO (fp,IDB_WRITE, 0, line_pos, num_pixels,1,ima
	//printf("closeFlag = %d \n", closeFlag);
	//printf(" End of loading for Mahalanobis \n");
	if (closeFlag == 1){
	//printf(" closing tmpfile \n");
	//GDBClose(tmpfile);
	//remove(tempname);
	}
	BigWindow_flag = 0;
	} // end of loading for Case = 2
	}//end of switch
	/* ---
	/* Bottom - Cleaning Up */
	/* --
	//Free up memory
	/*for (i = 0; i < kernel_size; i++){
	free (line_ptr[i]) ;
	}
	free (lineOut_ptr[0]); */
	//printf("Bottom of loop over image cube \n");
	} /* end of for loop over the image cube*/
	//printf("Finished second loop...\n");
	free(image_buffr2);
	free(out_buffr);
	image_buffr2 = NULL;
	out_buffr = NULL;
	//free(covar_buffr);
	//##
	/* ---
	/* If using Mahal dist then loop over the final channel
	/* --
	// only do this step for Mahal processing
	if(control_flag == 2){ //22 is just an escape for testing
	printf("Enter final Mahal outlier selector \n");
	image_buffrMahMax = (float *) malloc(sizeof(float) * num_pix
	dbic2_list[0] = 11; //TwonumIkonosChan1 - 1;//this contains
	dbic2_list[1] = 12; //TwonumIkonosChan1;
	dboc2_list[0] = 11; //TwonumIkonosChan1 - 1;
	dboc2_list[1] = 12; //TwonumIkonosChan1;
	//printf("dbic2_list[0] = %d dbic2_list[1] = %d dboc2_list[0] = %d \n", dbic2_list[0],dbic2_list[1],dboc2_list[0]);
	// read in the entire image but only the last two channels
	//printf("into first read \n");
	IDBRealChanIO (fp,IDB_READ,0,0,num_pixels,num_lines,image_bu
	// Go out and select the max Mahalanobis Distance
	//printf("Into MahalMaxFnct\n");
	MahalMaxFnct (image_buffrMahMax, num_pixels, num_lines, hal
	//printf ("Max threshold ratio > 0.8 \n");
	/* testing what is in image_buffr2*/
	/* read in and print out one line of image_buffr2*/
	/*for (i = 0; i < 500; i++){
	for (pixel = 0; pixel < num_pixels * num_lines * 2; pixel+
	printf(" \n");
	printf(" pixel = %f\n", *(image_buffrMahMax + pixel));
	printf(" \n");
	}
	}
	printf("exiting early for testing purposes \n");
	exit(1);*/
	// write out the second last channel to the last channel
	//printf("Writing out \n");
	IDBRealChanIO (fp,IDB_WRITE, 0, 0, num_pixels, num_lines,ima
	//printf("num_pixels = %d num_lines = %d \n", num_pixels, num_lines);
	//IDBRealChanIO (fp,IDB_WRITE, 0, 0, num_pixels,num_lines,im
	free(image_buffrMahMax);
	image_buffrMahMax = NULL;
	}// end of control flag for mahal freq
	//Free up some memory
	free(nirthrhld);
	nirthrhld = NULL;
	//**
	// TARGET CHARACTERIZATION
	//**
	//printf("Gonna do target characeterization\n");
	image_buffrCharactr = (float *) malloc(sizeof(float) * num_p
	//read in the imagery to the buffr
	//only the pan and freq channel
	dbic2_list[0] = 1; //Pan channel
	if(control_flag == 1)//Minkowski
	dbic2_list[1] = 11;//Freq channel
	if(control_flag == 2)//Mahal
	dbic2_list[1] = 12;//Freq channel
	dbic_array[0] = 1; //Pan
	bmap = 0;
	windoh[0] = 0;
	windoh[1] = 0;
	windoh[2] = num_pixels;
	windoh[3] = num_lines;
	/* open the targets_out file*/
	/* using fopen with the "w" option - if the file doesn't exi
	targetsfile = fopen(targetsfilename, "w");
	// print the column headings
	fprintf(targetsfile,"Target Number Pixel Line Length Width Orientation \n");
	IDBRealChanIO (fp,IDB_READ,0,0,num_pixels,num_lines,image_bu
	//require the mean and std deviation for pan channel for thr
	numpixssmpld = ImageStats(fp, 1, dbic_array, bmap, windoh, c
	thrshold = meen[0] + (4 * sigma [0]); //using one stnd devia
	printf("End of boat threshold = %f\n",thrshold);
	//printf("Frequency threshold = >8 \n");
	//printf("threshold = %f\n",thrshold);
	CharacterFnct (image_buffrCharactr, num_pixels, num_lines, h
	printf("final write \n");
	if(control_flag == 1)//Minkowski
	dbic2_list[1] = 12;//Freq channel
	IDBRealChanIO (fp,IDB_WRITE, 0, 0, num_pixels, num_lines,ima
	/* ---
	/* SPAWN the HANDLER
	/* --
	//IMPRunTask("handler",NULL,0, NULL,&pid);
	/* ---
	/* Close a file */
	/* --
	/* All files are closed: */
	/*numclosed = _fcloseall();*/
	fclose (outfile);
	fclose (targetsfile);
	numclosed = fclose(fp);
	timer = (float)(clock() / 1000);
	printf("Program Execution Time = %f minutes\n",timer/60);
	/* ---
	/* Exit program using IMPReturn.
	/* ---
	printf("\n\nControl C to EXIT");
	while (1) {
	}
	exit(1); //IMPReturn(); //IMPReturn always exits with an err
	} /*End of Main*/
	/* ---
	/* ALL FUNCTIONS LOCATED BELOW
	/* ---
	/*##
	/* ---
	/* PixelFill */
	/* Function to put a Zero value in unprocessed pixels */
	/* found at the edge of images
	/* ---
	/*##
	void PixelFill (float *OutBuff2, int pixel, int half_kernel,
	{
	int i;
	for (i = 0; i < numofChans; i++)
	{
	/*printf("i = %d \n", i);*/
	*(OutBuff2 + pixel * numofChans + i) = 0;
	/*printf ("Pixel Fill value = %f\n", *(OutBuff2 + pixel * numofChans + i));*/
	}
	}
	/*##
	/* ---
	/* LineFill */
	/* Function to put a Zero value in unprocessed lines */
	/* found at the edge of images
	/* ---
	/*##
	void LineFill (float * OutBuff3, int half_kernel, int num_pi
	{
	int pixel;
	/* fill a line up, pixel by pixel by number of channels, wit
	for (pixel = 0; pixel < (((num_pixels - 1) * numChan) + 1)
	*(OutBuff3 + pixel) = 0;
	}
	}
	/*##
	/* ---
	/* ImgAvg */
	/* Function to perform an mean filter */
	/* Called for each line of image
	/* ---
	/*##
	void ImgAvg (float *line_ptr2[], float *OutBuff4, int num_pi
	{
	int j, k, channel, pixel;
	float sum;
	/*printf("Into ImgAvg: \n");*/
	/* ---
	/* Average calc'd for a single line
	/* ---
	for (pixel = 0; pixel < num_pixels; pixel++){
	//printf("pixel = %d \n", pixel);
	if (pixel < half_kernel || pixel >= (num_pixels - half_kerne
	PixelFill(OutBuff4, pixel, half_kernel, numIkonosChan);
	}
	else {
	//***
	//calc running sum for NIR and PAN threshold
	//only calc for pixels not set to background value of 0
	//***
	if (*(line_ptr2[0] + (pixel * numIkonosChan) + 4) != 0 &&
	*(nirthrhld) = *(nirthrhld) + (*(line_ptr2[0] + (pixel * num
	*(panthrhld) = *(panthrhld) + (*(line_ptr2[0] + (pixel * num
	*(nirthrhld + 1) = (*(nirthrhld + 1) + 1); //add one to the
	//printf(" running counter = %f \n", *(nirthrhld + 1));
	}
	//***
	for(channel = 0; channel < numIkonosChan; channel++){
	sum = 0;
	for (j = 0; j < ((2 * half_kernel) + 1); j++){ /* line in
	for (k = (pixel - half_kernel); k < ((pixel + half_kernel)+
	/*printf("Channel = : %d ", channel);
	printf("J= : %d ", j);
	printf("K= : %d ", k);
	junk = (2 * half_kernel) + 1;
	printf("*(line_ptr2[j] + k * numIkonosChan + channel) = %f "
	printf("line_ptr2[%d]=: %f", j,*line_ptr2[j]);*/
	sum = sum + *(line_ptr2[j] + k * numIkonosChan + channel);
	/*printf(" Sum = : %f \n", sum);*/
	}/* end of k loop*/
	}/* end of j loop*/
	*(OutBuff4 + pixel * numIkonosChan + channel) = sum / (pow(
	/*printf(" Avg= : %f \n", *(OutBuff4 + pixel * numIkonosChan + channel));*/
	}/*end of channel loop*/
	} /*end of the else statement*/
	} /* end of pixel for loop*/
	} /* bottom of image average*/
	/*##
	/* ---
	/* MaxDist */
	/* Function to calculate max dist - outliers */
	/* Called for each line
	/* ---
	/*##
	void MaxDistFnct (float *image_buffrMD, float *out_Buff5,
	int pixel, channel, j,k, MaxLine, MaxPixel;
	int numlinesdown, numpixintoline,posinkernel;
	float dist, maxdist;
	//printf("Into MaxDist \n");
	//printf("num_pixels = %d half_kernel = %d kernel_size = %d \n", num_pixels,half_kernel,kernel_size);
	for (pixel = 0; pixel < num_pixels ; pixel++){
	if (pixel < half_kernel || pixel > (num_pixels - kernel_size
	PixelFill(out_Buff5, pixel, half_kernel, TwonumIkonosChan1)
	}
	else {
	maxdist = 0;
	/*printf("maxdist = %d \n", maxdist);*/
	for (j = 0; j < kernel_size; j++){ /* line in kernel*/
	/*printf("line in kernel: j = %d \n", j);*/
	for (k = (pixel); k < ((pixel + kernel_size)); k++){ /* pix
	/*printf("pixel in kernel: k = %d \n", k);*/
	dist = 0;
	numlinesdown = num_pixels * TwonumIkonosChan1 * j;
	numpixintoline = pixel * TwonumIkonosChan1;
	posinkernel = (k - pixel) * TwonumIkonosChan1;
	//printf ("TwonumIkonosChan1 = %d numIkonosChan = %d\n", TwonumIkonosChan1,numIkonosChan);
	//printf("Numlinesdown = %d numpixintoline = %d posinkernel = %d\n", numlinesdown,numpixintoline,posinkernel);*/
	for(channel = 0; channel < numIkonosChan ; channel++){
	/*printf("channel = %d \n", channel);*/
	/*printf("*(image_buffrMD + numlinesdown + numpixintoline + posinkernel + channel)= %f \n",
	*(image_buffrMD + numlinesdown + numpixintoline + posinkernel + channel));
	printf("*(image_buffrMD + numlinesdown + numpixintoline + posinkernel + channel + numIkonosChan)= %f \n",
	(image_buffrMD + numlinesdown + numpixintoline + posinkernel + channel + numIkonosChan));/
	dist = dist + pow(fabs(*(image_buffrMD + numlinesdown + numpixintoline + posinkernel + channel) -
	*(image_buffrMD + numlinesdown + numpixintoline + posinkernel + channel + numIkonosChan)), exponent);
	/*printf("dist before root:%f \n", dist);*/
	}/*end of channel loop*/
	/* Don't take the root for Manhattan distances*/
	if (exponent != 1) {
	dist = sqrt(dist);
	}
	/* ---
	/* Formatted Text Output */
	/* for specific pixels of interest */
	/* note: this is hardwired for simplicity
	/* just using multiple IF statements to control - quick & d
	/* ---
	/*if (image_line_pos >= (107 - half_kernel) && image_line_po
	if (pixel >= (100 - half_kernel) && pixel <= (100 + half_ker
	/*note the compensation for counting from 0 to actual pixel
	/*fprintf(outfile,"%d,%d,%f,%f,%f,%f,%f,%f \n",(pixel + 1),(image_line_pos + 1), *(image_buffrMD + numlinesdown + numpixintoline + posinkernel + 0),
	*(image_buffrMD + numlinesdown + numpixintoline + posinkerne
	*(image_buffrMD + numlinesdown + numpixintoline + posinkerne
	*(image_buffrMD + numlinesdown + numpixintoline + posinkerne
	*(image_buffrMD + numlinesdown + numpixintoline + posinkerne
	dist);
	}
	}
	/*printf("dist = %f \n", dist);*/
	if (dist > maxdist) {
	maxdist = dist;
	/*printf("max dist @ line %d, pixel %d = %f \n", j,k,maxdist);*/
	/* store the "coordinates" of the new MaxDist"*/
	MaxLine = j;
	MaxPixel = k;
	} /*end of if statement*/
	} /* end of k "pixel in kernel" loop*/
	} /* end of j "line" loop*/
	/* Increment the exisiting histogram value for the outlier b
	/* recalc image buffer "coords" based on MaxLine and MaxPixe
	numlinesdown = num_pixels * TwonumIkonosChan1 * MaxLine;
	/*numpixintoline = pixel * TwonumIkonosChan1; Doesn't change
	posinkernel = (MaxPixel - pixel) * TwonumIkonosChan1;
	/*
	printf("Numlinesdown = %d numpixintoline = %d posinkernel = %d\n", numlinesdown,numpixintoline,posinkernel);
	printf(" \n");
	printf(" \n");
	printf("*(image_buffrMD + numlinesdown + numpixintoline + posinkernel + TwonumIkonosChan1 - 1)= %f \n",
	*(image_buffrMD + numlinesdown + numpixintoline + posinkernel + TwonumIkonosChan1 - 1));
	printf("*(image_buffrMD + numlinesdown + numpixintoline + posinkernel + TwonumIkonosChan1 -1) + 1 = %f \n",
	(*(image_buffrMD + numlinesdown + numpixintoline + posinkernel + TwonumIkonosChan1 - 1) + 1));*/
	/*to improve performance, only select an outlier if maximum
	if (maxdist > (*(nirthrhld + 2)) && maxdist > (*(panthrhld +
	/*printf("Image Line Number = %d\n", image_line_pos);
	printf("PIXEL IN IMAGE = %d \n", pixel);
	printf("*(image_buffrMD + numlinesdown + numpixintoline + posinkernel + TwonumIkonosChan1 -1) + 1 = %f \n",
	(*(image_buffrMD + numlinesdown + numpixintoline + posinkernel + TwonumIkonosChan1 - 1) + 1));*/
	*(image_buffrMD + numlinesdown + numpixintoline + posinkerne
	(*(image_buffrMD + numlinesdown + numpixintoline + posinker
	}
	/*printf(" After buffr incremented: *(image_buffrMD + numlinesdown + numpixintoline + posinkernel + TwonumIkonosChan1 - 1)= %f \n",
	*(image_buffrMD + numlinesdown + numpixintoline + posinkernel + TwonumIkonosChan1 - 1));
	printf(" Image Line Position: %d \n", image_line_pos);
	printf(" \n");*/
	} /*end of the else statement*/
	} /*end of pixel loop*/
	//printf("End of MaxDist \n");
	}/*End of MaxDist function*/
	/*##
	/* ---
	/* MahalDist */
	/* Function to calculate mahalanobis dist - outliers *
	/* Called for each line
	/* ---
	/*##
	void MahalDistFnct (float *image_buffrMD, float *out_Buff5
	int cell, channel,ll,i,j,k,cntr,n1,bitmap;
	//int singular;
	int numlinesdown, numpixintoline, posinkernel, buffoffset;
	long pixs_sampled;
	double dist;
	float XminusM[5],Corr[25], means[5], std_dev[5];
	float CoVar[25];
	int window[4];
	double XminusMDbl[5],IntoCoVar[605],CoVarDbl[25],X_MCovar[5]
	bitmap = 0;//set to zero to sample the entire channel
	n1 = 1;
	//printf("Into MahalDist \n");
	//printf("BigWindow_flag = %d \n", BigWindow_flag);
	//printf("num_pixels = %d half_kernel = %d kernel_size = %d \n", num_pixels,half_kernel,kernel_size);
	numlinesdown = 0;
	posinkernel = 0;
	numpixintoline = 0;
	buffoffset = 2 * num_pixels * TwonumIkonosChan1;
	window[0] = 0;
	window[1] = 0;
	window[2] = 0;
	window[3] = 0;
	for (cell = 0; cell < num_pixels ; cell++){
	cntr = 0;
	//printf("cell IN IMAGE (cell) = %d \n", cell);
	//clear the array
	for (i = 0; i < 605; i++){
	IntoCoVar[i] = 0;
	}
	// for testing content
	numpixintoline = cell * TwonumIkonosChan1;
	/* if (image_line_pos ==20 && (cell > 29 || cell < 37)){
	printf("test output\n");
	printf("%d, %d, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f\n"
	,(cell + 1),(image_line_pos + 1),*(image_buffrMD + numpixint
	(image_buffrMD + numpixintoline + 1),(image_buffrMD + n
	(image_buffrMD + numpixintoline + 3),(image_buffrMD + n
	(image_buffrMD + numpixintoline + 5),(image_buffrMD + nu
	(image_buffrMD + numpixintoline + 7),(image_buffrMD + nu
	*(image_buffrMD + numpixintoline + 9));
	}*/
	if (cell < 5 || (cell > (num_pixels - 11))) {
	PixelFill(out_Buff5, cell, half_kernel, TwonumIkonosChan1);
	continue;
	}
	else {
	//printf ("TwonumIkonosChan1 = %d numIkonosChan = %d\n", TwonumIkonosChan1,numIkonosChan);
	//printf("Numlinesdown = %d numpixintoline = %d posinkernel = %d\n", numlinesdown,numpixintoline,posinkernel);
	dist = 0;
	//printf("BigWindow_flag = %d \n", BigWindow_flag);
	// Window size = kernel size BigWindow_flag == 1 // 1 means
	if (BigWindow_flag == 1 && (cell > 4 && cell < (num_pixels
	//printf(" Setting a big window \n");
	window[0] = cell;
	window[1] = (image_line_pos - 5);
	window[2] = 11;
	window[3] = 11;
	//printf("window[0]=%d\n",window[0]);
	//printf("window[1]=%d\n",window[1]);
	//printf("window[3]=%d\n",window[3]);
	//printf("window[2]=%d\n",window[2]);
	//printf("image_line_pos = %d \n",image_line_pos);
	//printf("cell= %d \n",cell);
	// Populate IntoCoVar to calculate Covariance
	int wsize = 5;
	//printf("into CoVar \n");
	for (channel = 0; channel < numIkonosChan; channel++){
	//printf("channel = %d \n",channel);
	for (j = 0; j < wsize; j++){ //whole lines down
	//printf("j or whole lines down = %d \n", j);
	for (k = 0; k < wsize; k++){ //pixels in
	//printf("pixels into line = %d \n", k);
	IntoCoVar[cntr] = *(image_buffrMD + (j * TwonumIkonosChan1
	cntr++;
	} //end of pixel loop in 11 x 11 covar kernel
	}// end of line loop in 11 x 11 covar kernel
	}//end of IntoCoVar Channel loop
	} //end of BigWindow
	else { // regular size covar window
	//printf(" setting a regular sized window\n");
	window[0] = cell;
	window[1] = 0;
	window[2] = kernel_size;
	window[3] = kernel_size;
	//printf("window[0]=%d\n",window[0]);
	//printf("window[1]=%d\n",window[1]);
	//printf("window[3]=%d\n",window[3]);
	//printf("window[2]=%d\n",window[2]);
	//printf("image_line_pos = %d \n",image_line_pos);
	//printf("cell= %d \n",cell);
	} //end of BigWindow else
	//printf("calling ImageStats \n");
	//pixs_sampled = ImageStats(fp, numIkonosChan, dbic_list, bi
	calc_vc(IntoCoVar, CoVarDbl, 5, numIkonosChan);
	/*printf("out of ImageStats \n");
	printf("cell= %d \n",cell);
	printf("kernel size = %d \n", kernel_size);
	/* change each element of CoVar to a double*/
	for (i = 0; i < 25; i++){
	CoVarDbl[i] = CoVarDbl[i]/100000;
	//CoVarDbl[i] = 1;
	}
	// weight the pan channel heavily and NIR? for small target
	//if (i == 1)
	CoVarDbl[0] = CoVarDbl[0] * 3; //pan
	CoVarDbl[24] = CoVarDbl[24] * 2;//NIR
	if (cell == 0 && image_line_pos == 1)
	printf("Weighting the Pan channel by 100 and NIR by 5 \n");
	//}
	// Identity matrix for testing Mahal distance - sum of squar
	//for (i = 0; i < 5; i++){
	// for (j = 0; j < 5; j++){
	// if (i == j)
	// CoVarDbl[i*5+j] = 1;
	// else
	// CoVarDbl[i*5+j] = 0;
	//printf("CoVarDdbl[%d]= %f\n", i, CoVarDbl[i]);
	// }
	//}
	/* invert the Covariance Matrix*/
	/*printf("cell= %d \n",cell);
	printf("kernel size = %d \n", kernel_size);
	printf("going to mat inv \n");*/
	//testing to see if not inverting the Covar matrix helps
	//singular = gjmatinv(CoVarDbl,numIkonosChan);
	//printf("out of mat inv \n");
	//printf("singular = %d \n", singular);
	/* zero the XM matrix*/
	for (ll = 0; ll < numIkonosChan; ll++){
	XminusM[ll] = 0;
	}
	//printf("kernel_size = %d \n",kernel_size);
	//printf("cell= %d \n",cell);
	numpixintoline = cell * TwonumIkonosChan1;
	//printf ("TwonumIkonosChan1 = %d numIkonosChan = %d\n", TwonumIkonosChan1,numIkonosChan);
	//printf("numpixintoline = %d \n", numpixintoline);
	for(channel = 0; channel < numIkonosChan ; channel++){
	//printf("channel = %d \n", channel);
	/*printf("*(image_buffrMD + numpixintoline + channel)= %f \n",
	*(image_buffrMD + numpixintoline + channel));
	printf("*(image_buffrMD + numpixintoline + channel + numIkonosChan)= %f \n",
	(image_buffrMD + numpixintoline + channel + numIkonosChan));/
	XminusM[channel] = (*(image_buffrMD + buffoffset + numpixintoline + channel) -
	*(image_buffrMD + buffoffset + numpixintoline + channel + numIkonosChan));
	//printf("XminusM[%d] = %f \n", channel, XminusM[channel]);
	}/*end of channel loop*/
	/*>>>>>>>>>>>>>>>>>>>>>>>>>>>*/
	/* Matrix manipulations here */
	/*>>>>>>>>>>>>>>>>>>>>>>>>>>>*/
	/* Cast the arrays over to double from float*/
	for (i = 0; i < numIkonosChan; i++){
	XminusMDbl[i] = XminusM[i];
	}
	//printf("into first mul_mtm\n");
	mul_mtm(XminusMDbl,CoVarDbl,X_MCovar,n1,numIkonosChan,numIko
	//printf("out of first mul_mtm\n");
	//printf("into 2nd mul_mm\n");
	mul_mm(X_MCovar, XminusMDbl, MahalSqrd, n1,numIkonosChan,n1)
	//printf("out of 2nd mul_mm\n");
	//printf("MahalSqrd[0] = %f\n",MahalSqrd[0]);
	dist = sqrt(fabs(MahalSqrd[0])/10000); //just for testing ge
	//dist = sqrt(MahalSqrd[0]);
	/* ---
	/* Formatted Text Output */
	/* for specific pixels of interest */
	/* note: this is hardwired for simplicity
	/* multiple IF statements for control - quick & dirty */
	/* ---
	if (image_line_pos >= (1374 - half_kernel) && image_line_pos
	if (cell >= (1275 - half_kernel) && cell <= (1275 + half_ker
	//note the compensation for counting from 0 to actual pixel
	printf("Writing out CoVar\n");
	fprintf(outfile,"%d,%d,%f,%f,%f,%f,%f,%f\n\n"
	,(cell + 1),(image_line_pos + 1),*(image_buffrMD + numpixint
	(image_buffrMD + numpixintoline + buffoffset + 1),(image_
	(image_buffrMD + numpixintoline + buffoffset + 3),(image_
	dist);
	fprintf(outfile,"%f,%f,%f,%f,%f\n",
	CoVarDbl[0],
	CoVarDbl[1],
	CoVarDbl[2],
	CoVarDbl[3],
	CoVarDbl[4]);
	fprintf(outfile,"%f,%f,%f,%f,%f\n",
	CoVarDbl[5],
	CoVarDbl[6],
	CoVarDbl[7],
	CoVarDbl[8],
	CoVarDbl[9]);
	fprintf(outfile,"%f,%f,%f,%f,%f\n",
	CoVarDbl[10],
	CoVarDbl[11],
	CoVarDbl[12],
	CoVarDbl[13],
	CoVarDbl[14]);
	fprintf(outfile,"%f,%f,%f,%f,%f\n",
	CoVarDbl[15],
	CoVarDbl[16],
	CoVarDbl[17],
	CoVarDbl[18],
	CoVarDbl[19]);
	fprintf(outfile,"%f,%f,%f,%f,%f\n\n",
	CoVarDbl[20],
	CoVarDbl[21],
	CoVarDbl[22],
	CoVarDbl[23],
	CoVarDbl[24]);
	}
	}
	//--
	// Put the Mahalanobis distance back into the file
	//--
	/*printf("dist = %f \n", dist);*/
	//} /*end of if statement*/
	//--
	// Put the Mahalanobis Distance in its place in an empty cha
	//--
	//printf("dist = %f \n", dist);
	// Probable location of future EXPERT SYSTEM
	//printf("nirthrhld + 2 = %f \n", *(nirthrhld * 2));
	if(*(image_buffrMD + buffoffset + numpixintoline + 4) > (*
	*(image_buffrMD + buffoffset + numpixintoline + TwonumIkono
	//printf("*(image_buffrMD + numpixintoline + TwonumIkonosChan1 - 1) = %f \n", *(image_buffrMD + numpixintoline + TwonumIkonosChan1 - 1));
	}//end of else that includes all mahal calculations
	//printf("bottom of cell loop, next cell\n");
	} /*end of cell loop*/
	//printf("End of MahalDist \n");
	}/*End of MahalDist function*/
	// ===
	// C_math.cpp
	//
	// HISTORY: Original - 3 AUGUST 2001
	// Modified - 11 October 2001
	//
	// PURPOSE: Common Math Functions.
	//
	// ---
	// All rights reserved. -- Dr. Donghyun Kim [February 16
	// GPS Research Laboratory, University of New Brunswick, Ca
	// ===
	// ---
	// Gauss-Jordan matrix inverse
	// - a[]: an input square matrix to be overwritten
	// - n: matrix dimension
	// - det: determinent
	// Return value: =0: non-singular (but will be cross-chec
	// =-1: singular
	// ---
	int gjmatinv(double *a, int n){
	int ii, jj, kk;
	double det, t, xx;
	/*printf("Into Mat Inverse \n");*/
	det = 1;
	for (kk=0; kk<n; kk++) {
	t = a[n*kk+kk];
	// Singularity check
	if (t == 0.0)
	return(-1);
	det *= t;
	for (ii=0; ii<n; ii++)
	a[n*kk+ii] /= t;
	a[n*kk+kk] = 1/t;
	for (jj=0; jj<n; jj++)
	if (jj != kk) {
	xx = a[n*jj+kk];
	for (ii=0; ii<n; ii++)
	if (ii != kk) a[n*jj+ii] -= a[n*kk+ii]*xx;
	else a[n*jj+ii] = -xx/t;
	}
	}
	return(0);
	}
	// ---
	// Matrix multiplication (mul_mm()) function definition
	// ---
	void mul_mm(double *A, double *B, double *C, int n1, in
	int m, j, k;
	double sum;
	/*printf("Into mul_mm function \n");*/
	// Dimension : (n1,n2)*(n2,n3)
	// Calc. matrix : A*B = C
	for (m=0; m<n1; m++){
	/*printf("m= %d of n1 = %d \n", m,n1);*/
	for (j=0; j<n3; j++) {
	/*printf("j= %d of n3 = %d \n", j,n3);*/
	sum = 0;
	for (k=0; k<n2; k++){
	/*printf("k= %d of n2 = %d \n", k,n2);*/
	sum += A[m*n2+k]*B[k*n3+j];
	/*printf("sum = %f\n",sum);*/
	}
	/*printf("c[%d*%d+%d] = c[%d] = MahalSqrd[0] = %f\n",m,n3,j,(m*n3+j),sum);*/
	C[m*n3+j] = sum;
	}
	}
	/*printf("Out of mul_mm function \n");*/
	}
	// ---
	// Matrix multiplication (mul_mtm()) function definition
	// ---
	void mul_mtm(double *A, double *B, double *C, int n1, int
	int m, j, k;
	double sum;
	/*printf("Into mul_mtm function\n");*/
	// Dimension : (n2,n1)t*(n2,n3)
	// Calc. matrix : At*B = C
	for (m=0; m<n1; m++)
	for (j=0; j<n3; j++) {
	sum = 0;
	for (k=0; k<n2; k++)
	sum += A[k*n1+m]*B[k*n3+j];
	C[m*n3+j] = sum;
	/*printf("C[%d] = %f \n",(m*n3+j),sum);*/
	}
	/*printf("Out of mul_mtm function \n");*/
	}
	// ---
	// Mean calculation
	// ---
	double calc_mean(double *A, int n) {
	int i;
	double sum, mean;
	sum = 0;
	for (i=0; i<n; i++)
	sum += A[i];
	if (n < 2) mean = 1.0e100; // set an infinite value
	else mean = sum/n;
	return(mean);
	}
	// ---
	// Variance calculation
	// ---
	double calc_var(double *A, int n) {
	int i;
	double var, mean, sum;
	mean = calc_mean(A,n);
	sum = 0;
	for (i=0; i<n; i++)
	sum += pow(A[i]-mean,2.0);
	if (n < 2) var = 1.0e100; // set an infinite value
	else var = sum/n;
	return(var);
	}
	// ---
	// Covariance calculation
	// ---
	double calc_cov(double *A, double *B, int n) {
	int i;
	double cov, mean1, mean2, sum;
	mean1 = calc_mean(A,n);
	mean2 = calc_mean(B,n);
	sum = 0;
	for (i=0; i<n; i++)
	sum += (A[i]-mean1)*(B[i]-mean2);
	if (n < 2) cov = 1.0e100; // set an infinite value
	else cov = sum/n;
	return(cov);
	}
	// ---
	// Variance-covariance matrix calculation
	// ---
	void calc_vc(double *A, double *B, int n1, int n2) {
	int i, j, k;
	double M1[1000] = {0,}; // NOTE: select a large number
	double M2[1000] = {0,}; // make it sure (n1<1000)
	double coVAR;
	// Dimensions
	// A(n1,n2), B(n2,n2)
	for (i=0; i<n2; i++) {
	// Get the first column vector
	for (k=0; k<n1; k++)
	M1[k] = A[i*n1+k];
	for (j=0; j<n2; j++) {
	if (i >= j) {
	if (i == j)
	// compute variance
	coVAR = calc_var(M1, n1);
	else {
	// Get the second column vector
	for (k=0; k<n1; k++)
	M2[k] = A[j*n1+k];
	// compute covariance
	coVAR = calc_cov(M1, M2, n1);
	}
	// Augment vc-matrix
	B[i*n2+j] = coVAR;
	} else {
	// Utilize symmetric characteristics
	B[i*n2+j] = B[j*n2+i];
	}
	}
	}
	}
	/*##
	/* ---
	/* MahalMaxDist */
	/* Function to select the max mahalanobis dist in a kernel
	/* Called once only at end of Mahal processing
	/* ---
	/*##
	void MahalMaxFnct (float *image_buffrMahMax, int num_pixels,
	int line, pixel, j, i,MaxLine,MaxPixel,MaxFlag, cntr;
	int numlinesdown, numpixsintoline;
	float maxmahdist,dist,mean,sum,diffsrd,stnd_dev,maxthresrati
	//printf("inside MahalMaxFnct \n");
	dist = 0;
	cntr = 0;
	sum = 0;
	diffsrd = 0;
	/*
	for (line = 0; line < num_lines; line++){
	for (pixel = 0; pixel < num_pixels; pixel++){
	numlinesdown = line * num_pixels * 2;
	numpixsintoline = pixel * 2;
	//printf("Chan 10 before = *(image_buffrMahMax + numlinesdown + numpixsintoline) = %f \n", *(image_buffrMahMax + numlinesdown + numpixsintoline));
	*(image_buffrMahMax + numlinesdown + numpixsintoline) = 0;
	//printf("Chan 10 after = *(image_buffrMahMax + numlinesdown + numpixsintoline) = %f \n", *(image_buffrMahMax + numlinesdown + numpixsintoline));
	//printf("next channel 11 = %f \n", *(image_buffrMahMax + numlinesdown + numpixsintoline + 1));
	}
	}
	*/
	//printf("exiting early /n");
	//exit(1);
	//two for loop to go through the entire image
	for (line = half_kernel; line < (num_lines - half_kernel);
	for (pixel = half_kernel; pixel < (num_pixels - half_kernel)
	//printf ("New Kernel \n");
	maxmahdist = 1;
	maxthresratio = 0;
	MaxLine = 0;
	MaxPixel = 0;
	MaxFlag = 0;
	numlinesdown = 0;
	numpixsintoline = 0;
	//printf("MaxFlag = %d \n", MaxFlag);
	// Calculating Kernal Stats
	cntr = 0;
	dist = 0;
	mean = 0;
	diffsrd = 0;
	stnd_dev = 0;
	for (i = (line - half_kernel); i < (line + half_kernel + 1
	for (j = (pixel - half_kernel); j < (pixel + half_kernel +
	numlinesdown = i * num_pixels * 2;
	numpixsintoline = j * 2;
	//printf("dist = %f \n", *(image_buffrMahMax + numlinesdown + numpixsintoline));
	dist = dist + *(image_buffrMahMax + numlinesdown + numpixsin
	//printf("cuml_dist = %f \n", dist);
	cntr = cntr++;
	//printf("cntr = %d \n", cntr);
	} // end of pixel in kernel loop
	} //end of line in kernel loop
	// sample mean
	mean = dist/cntr;
	//printf("mean = %f \n\n", mean);
	//sample standard deviation
	for (i = (line - half_kernel); i < (line + half_kernel + 1
	for (j = (pixel - half_kernel); j < (pixel + half_kernel +
	numlinesdown = i * num_pixels * 2;
	numpixsintoline = j * 2;
	//printf("dist = %f \n", *(image_buffrMahMax + numlinesdown + numpixsintoline));
	diffsrd = diffsrd + pow(mean - *(image_buffrMahMax + numlin
	} // end of pixel in kernel loop
	} //end of line in kernel loop
	stnd_dev = sqrt (fabs(diffsrd / cntr));
	//printf("standard Dev = %f \n\n", stnd_dev);
	dist = 0;
	for (i = (line - half_kernel); i < (line + half_kernel + 1
	for (j = (pixel - half_kernel); j < (pixel + half_kernel +
	numlinesdown = i * num_pixels * 2;
	numpixsintoline = j * 2;
	//printf("dist = %f \n", *(image_buffrMahMax + numlinesdown + numpixsintoline));
	dist = *(image_buffrMahMax + numlinesdown + numpixsintoline)
	//printf("mean = %f \n", mean);
	//printf("dist - mean = %f \n", (dist - mean));
	//printf("standard Dev = %f \n", stnd_dev);
	//printf("Threshold Ratio = %f \n\n", (fabs(dist - mean) / stnd_dev));
	//THRESHOLD RATIO TEST
	if (dist > maxmahdist) {
	//printf("Inside dist if, MaxFlag = %d \n", MaxFlag);
	maxmahdist = dist;
	maxthresratio = (fabs(dist - mean)) / stnd_dev;
	//printf("Max dist = %f \n", maxmahdist);
	MaxLine = i;
	MaxPixel = j;
	MaxFlag = 1;
	} // end of if statement
	} // end of pixel in kernel loop
	} //end of line in kernel loop
	//printf(" Before Max Flag If MaxFlag = %d \n", MaxFlag);
	// Add one to the Frequency channel for the pixel having the
	if (MaxFlag == 1 && maxthresratio > 0.5){ //list is printed
	if (line == 10 && pixel == 10)
	printf("Maximum Threshold Ratio = 0.5 \n");
	//printf("Inside freq if, MaxFlag = %d\n", MaxFlag);
	//printf(" A max dist was selected \n");
	numlinesdown = MaxLine * num_pixels * 2;
	numpixsintoline = MaxPixel * 2;
	//printf("Chan 12 before = *(image_buffrMahMax + numlinesdown + numpixsintoline + 1) = %f \n", *(image_buffrMahMax + numlinesdown + numpixsintoline + 1));
	*(image_buffrMahMax + numlinesdown + numpixsintoline + 1) =
	//printf("Chan 12 after = *(image_buffrMahMax + numlinesdown + numpixsintoline + 1) = %f \n", *(image_buffrMahMax + numlinesdown + numpixsintoline + 1));
	} //end of MaxFlag if statement
	}//end of pixel loop
	} // end of line loop
	}// end of MahalMaxFnct
	/*##
	/* ---
	/* init_stack */
	/* Function to initial the stack for characterization by J.
	/* ---
	/*##
	void init_stack (element_stack *the_stack)
	{
	the_stack->top = -1;
	the_stack->stack_size = 3600;
	memset(the_stack->stack,0,3600 * sizeof(element));
	return;
	}
	/*##
	/* ---
	/* Pop */
	/* Function to get pixel coords off the stack
	/* coding by J.Beaudoin idea by K.P.
	/* ---
	/*##
	element pop(element_stack *the_stack)
	{
	element return_element;
	if (the_stack->top == -1)
	{
	return_element.pixel[0] = -999;
	return_element.line[0] = -999;
	}
	else
	{
	return_element.pixel[0] = the_stack->stack[the_stack->top].p
	return_element.line[0] = the_stack->stack[the_stack->top].li
	the_stack->top--;
	}
	return(return_element);
	}
	/*##
	/* ---
	/* push */
	/* Function to put a set of pixel coords on the stack
	/* coding by J.Beaudoin idea by K.P.
	/* ---
	/*##
	void push(element_stack *the_stack, element shit_to_push)
	{
	the_stack->top++;
	the_stack->stack[the_stack->top].pixel[0] = shit_to_push.pix
	the_stack->stack[the_stack->top].line[0] = shit_to_push.line
	return;
	}
	/*##
	/* ---
	/* Characterizaton */
	/* Function to perform target labelling and characterizatio
	/* ---
	/*##
	void CharacterFnct (float *image_buffrCharactr, int num_pixels,
	int num_lines, int half_kernel, int kernel_size, int dbic2_list[],float thrshold, FILE *targetsfile){
	int targetlabel,line,pixel,numlinesdown,numpixsintoline, dir
	numlinesdownb, numpixsintolineb, pixsindirectn, heading[9],i
	float deltapix, deltaline;
	element a_targetcoord, first_targetcoord, b_targetcoord;
	element_stack targets_stack;
	char orient[7];
	//attribute_array the_target_attributes;
	//printf("Into Characterization \n");
	targetlabel = 101; //labels begin at 100 and end up in the f
	dir_list[0].R[0] = -1;
	dir_list[0].C[0] = 0;
	dir_list[1].R[0] = -1;
	dir_list[1].C[0] = -1;
	dir_list[2].R[0] = 0;
	dir_list[2].C[0] = -1;
	dir_list[3].R[0] = 1;
	dir_list[3].C[0] = -1;
	dir_list[4].R[0] = 1;
	dir_list[4].C[0] = 0;
	dir_list[5].R[0] = 1;
	dir_list[5].C[0] = 1;
	dir_list[6].R[0] = 0;
	dir_list[6].C[0] = 1;
	dir_list[7].R[0] = -1;
	dir_list[7].C[0] = 1;
	//get the stack ready to go
	init_stack (&targets_stack);
	//printf("Past Init stack \n");
	//loop through the 2 channel image
	for (line = 0; line < num_lines; line++){
	//printf("Characterization line# = %d\n", line);
	for (pixel = 0; pixel < num_pixels; pixel++){
	numlinesdown = line * num_pixels * 2;
	numpixsintoline = pixel * 2;
	//first test to see if this pixel is a target by its freq or
	if (*(image_buffrCharactr + numlinesdown + numpixsintoline
	//frequency tests
	//1) if < highest frequency then set to zero
	//if (*(image_buffrCharactr + numlinesdown + numpixsintolin
	// *(image_buffrCharactr + numlinesdown + numpixsintoline +
	//}
	if (*(image_buffrCharactr + numlinesdown + numpixsintoline
	if (line == 10 && pixel == 10)
	printf("Frequency Threshold = %d \n", ((kernel_size * kernel_size) - 1));
	// any pixel making it to here is to be labelled
	// begin search
	//push the pixel onto the stack
	first_targetcoord.pixel[0] = pixel;
	first_targetcoord.line[0] = line;
	push (&targets_stack, first_targetcoord);
	//keep going until all elements are off the stack
	while (1) {
	a_targetcoord = pop(&targets_stack);
	if (a_targetcoord.pixel[0] == -999)
	break; //ends terminates the endless loop
	//label the seed pixel from the stack
	numlinesdownb = a_targetcoord.line[0] * num_pixels * 2;
	numpixsintolineb = a_targetcoord.pixel[0] * 2;
	*(image_buffrCharactr + numlinesdownb + numpixsintolineb + 1
	//now for each direction from the particular stack element g
	for (direct_cntr = 0; direct_cntr < 8; direct_cntr++){
	//printf("direct_cntr = %d\n",direct_cntr);
	//using the direction counter move along a direction until e
	pixsindirectn = 1;
	while (1){
	// don't go farther than the edge of the image
	if ((a_targetcoord.line[0] + (pixsindirectn * dir_list[direct_cntr].R[0])) < 0 ||
	(a_targetcoord.line[0] + (pixsindirectn * dir_list[direct_cntr].R[0])) > (num_lines - 1))
	break; //past the image edge
	if ((a_targetcoord.pixel[0] +(pixsindirectn * dir_list[direct_cntr].C[0])) < 0 ||
	(a_targetcoord.pixel[0] +(pixsindirectn * dir_list[direct_cntr].C[0])) > (num_pixels - 1))
	break; //past the image edge
	//using the direction counter move along a direction until e
	numlinesdownb = (a_targetcoord.line[0] + (pixsindirectn * d
	numpixsintolineb = (a_targetcoord.pixel[0] +(pixsindirectn *
	// test to see if it is still a boat OR if has previously be
	if (*(image_buffrCharactr + numlinesdownb + numpixsintolineb) < thrshold ||
	*(image_buffrCharactr + numlinesdownb + numpixsintolineb + 1) >= 100){
	//printf("heading = %d with pixsindirectn = %d\n",direct_cntr,pixsindirectn);
	break; //stops looping along a particular direction
	} //Edge of boat IF
	//otherwise put that pixel on the stack to be checked and la
	b_targetcoord.line[0] = a_targetcoord.line[0] + (pixsindirec
	b_targetcoord.pixel[0] = a_targetcoord.pixel[0] +(pixsindire
	push (&targets_stack, b_targetcoord);
	pixsindirectn = pixsindirectn + 1;
	//printf("pixsindirection = %d\n",pixsindirectn);
	}// bottom of while loop - contiuing along a particular dire
	}// bottom of the direction loop
	} //bottom of infinite while loop for the entire STACK
	//call the Boat Size function and report on that particular
	//boatsizefnctn(first_targetcoord, heading, targetsfile,targ
	targetlabel = targetlabel + 1;
	printf("Number of targets = %d\n", (targetlabel - 100));
	}//frequency filter IF
	} //IF < 100
	} //end of pixel loop
	}// end of line loop */
	//loop again to gather attributes for the found targets.
	//loop through the 2 channel image
	for (i = 100; i < (targetlabel + 1); i++){
	j = 0;
	for (line = 0; line < num_lines; line++){
	//printf("second line loop # = %d \n",line);
	for (pixel = 0; pixel < num_pixels; pixel++){
	//printf("second pixel loop # = %d \n",pixel);
	numlinesdown = line * num_pixels * 2;
	numpixsintoline = pixel * 2;
	//pixel is labelled with the label of interest
	if (*(image_buffrCharactr + numlinesdown + numpixsintoline +
	j = j + 1;
	//printf("target label = %d\n", i);
	//printf("j = %d\n", j);
	//printf("second line loop # = %d \n",line);
	//printf("second pixel loop # = %d \n",pixel);
	//first pixel is always one end of the boat
	if (j==1){
	//craps out in here
	the_target_attributes[i].smpixel[0] = pixel;
	the_target_attributes[i].smline[0] = line;
	the_target_attributes[i].numbrpixs[0] = j;
	}//bottom of first pixel
	//SEEK THE OTHER END OF THE BOAT
	//printf("Other end of boat \n");
	the_target_attributes[i].lrgpixel[0] = pixel;
	the_target_attributes[i].lrgline[0] = line;
	the_target_attributes[i].numbrpixs[0] = j;
	//printf("numbrpixs[%d] = %d\n",i, the_target_attributes[i].numbrpixs[0]);
	}// end of if testing it is a correctly labelled pixel
	} //pixel loop
	} // line loop
	}//bottom of i target# loop
	//printf("starting the BIG second looper\n");
	//Now calculate the attributes
	sigma_targets = 0;
	for (i = 101; i < targetlabel ; i++){
	//printf("i = %d\n", i);
	if (the_target_attributes[i].numbrpixs[0] == 1){
	//SINGLE PIXEL TARGETS UNLABELLED
	//*(image_buffrCharactr + (the_target_attributes[i].smline[0
	the_target_attributes[i].length[0] = 1;
	//printf("numbrpixs[%d] = %d\n",i, the_target_attributes[i].numbrpixs[0]);
	the_target_attributes[i].width[0] = 1;
	the_target_attributes[i].cntrpixel[0] = the_target_attribute
	the_target_attributes[i].cntrline[0] = the_target_attributes
	//of course a single pixel target doesn't have orientation s
	//ptr_orient = "N/A";
	sprintf(orient,"N/A");
	}//end of one pixel boat
	//printf("past the IF\n");
	if (the_target_attributes[i].numbrpixs[0] > 1){
	//calculate the length note: the addition of one to include
	deltapix = pow (the_target_attributes[i].lrgpixel[0] - the_t
	deltaline = pow (the_target_attributes[i].lrgline[0] - the_t
	the_target_attributes[i].length[0] = sqrt (deltapix + deltal
	//kind of a cludgie width calculation but demonstrates what
	the_target_attributes[i].width[0] = the_target_attributes[i]
	//ORIENTATION OF THE TARGET
	if (the_target_attributes[i].lrgpixel[0] == the_target_attributes[i].smpixel[0] &&
	the_target_attributes[i].lrgline[0] > the_target_attributes[i].smline[0]){
	//orient = "N/S";
	sprintf(orient,"N/S");
	the_target_attributes[i].cntrline[0] = the_target_attributes
	(floor(the_target_attributes[i].lrgline[0] - the_target_attr
	the_target_attributes[i].cntrpixel[0] = the_target_attribute
	}
	if (the_target_attributes[i].lrgline[0] == the_target_attributes[i].smline[0] &&
	the_target_attributes[i].lrgpixel[0] > the_target_attributes[i].smpixel[0]){
	//orient = "E/W";
	sprintf(orient,"E/W");
	the_target_attributes[i].cntrpixel[0] = the_target_attribute
	(floor(the_target_attributes[i].lrgpixel[0] - the_target_att
	the_target_attributes[i].cntrline[0] = the_target_attributes
	}
	if (the_target_attributes[i].lrgline[0] > the_target_attributes[i].smline[0] &&
	the_target_attributes[i].lrgpixel[0] > the_target_attributes[i].smpixel[0]){
	//orient = "NW/SE";
	sprintf(orient,"NW/SE");
	the_target_attributes[i].cntrpixel[0] = the_target_attribute
	(floor(the_target_attributes[i].lrgpixel[0] - the_target_att
	the_target_attributes[i].cntrline[0] = the_target_attributes
	(floor(the_target_attributes[i].lrgline[0] - the_target_attr
	}
	if (the_target_attributes[i].lrgline[0] > the_target_attributes[i].smline[0] &&
	the_target_attributes[i].lrgpixel[0] < the_target_attributes[i].smpixel[0]){
	//orient = "NE/SW";
	sprintf(orient,"NE/SW");
	the_target_attributes[i].cntrpixel[0] = the_target_attribute
	(floor(the_target_attributes[i].smpixel[0] - the_target_attr
	the_target_attributes[i].cntrline[0] = the_target_attributes
	(floor(the_target_attributes[i].lrgline[0] - the_target_attr
	}
	//regardless of number of pixels comprising a boat, print ou
	}//end of boats of more than one pixel
	fprintf(targetsfile," %d \t%d\t%d\t%f\t%f\t%s\n",
	i,
	the_target_attributes[i].cntrpixel[0],
	the_target_attributes[i].cntrline[0],
	the_target_attributes[i].length[0],
	the_target_attributes[i].width[0],
	orient);
	sigma_targets++;
	//printf("bottom of the targetlabel looper\n");
	}//bottom of the target label loop
	fprintf(targetsfile,"\nTotal number of targets = %d\n",sigma_targets);
	//printf("bottom of characterization\n");
	} //end of Characterization function
	/*##
	/* ---
	/* Boat size */
	/* Function to calculate target attributes
	/* ---
	/*##
	void boatsizefnctn(element first_targetcoord, int heading[],
	int totalnum_pixels,i,finalheading[4], length, width, Azimut
	totalnum_pixels = 0;
	Azimuth = 0;
	width = 0;
	length = 0;
	for (i = 0; i<8; i++){
	//printf("heading[%d] = %d\n",i,heading[i]);
	totalnum_pixels = totalnum_pixels + heading[i];
	}// bottom of for loop
	length = heading[0] + heading[4];
	for (i = 0; i<4; i++){
	finalheading[i] = heading[i] + heading[i + 4];
	//printf("finalheading[%d] = %d\n",i,finalheading[i]);
	// figure out the length
	if (finalheading[i] > length){
	length = finalheading[i];
	Azimuth = i;
	}
	}// end of length/azimuth loop
	//figure of the width of the boat
	// Az => e/w
	if (Azimuth == 0){
	width = finalheading[2];
	}
	// Az => NW/SE
	if (Azimuth == 1){
	width = finalheading[3];
	}
	// Az => N/S
	if (Azimuth == 2){
	width = finalheading[0];
	}
	// Az => NE/SW
	if (Azimuth == 3){
	width = finalheading[1];
	}
	// Generate Target Report
	fprintf(targetsfile,"\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\n",targetlabel,(first_targetcoord.pixel[0] + 1),(first_targetcoord.line[0] + 1),length,width, Azimuth,totalnum_pixels);
	}//end of boat size function
	Vita
	PRESENTATIONS

